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A variety of computerized interactive learning platforms exist. Most include instructional 
supports in the form of problem sets. Feedback to users ranges from a single word like 
“Correct!” to offers of hints and partially to fully worked examples. Behind-the-scenes design of 
such systems varies as well – from static dictionaries of problems to “intelligent” and responsive 
programming that adapts assignments to users’ demonstrated skills, timing, and an array of 
other learning theory-informed data collection within the computerized environment. This short 
paper presents background on digital learning contexts and describes the lively conversation 
with attendees at the conference session. The topics were the research design and early 
results of a cluster-randomized controlled trial study in community college elementary algebra 
classes where the intervention was a particular type of web-based activity and testing system.  
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Research Questions 
Funded by the U.S. Department of Education, we are conducting a large-scale mixed 

methods study in over 30 community colleges. The study is driven by two research questions: 
Research Question 1: What student, instructor, or community college factors are associated with 

more effective learning from the implemented digital learning platform? 
Research Question 2: What challenges to use-as-intended (by developers) are faculty 

encountering and how are they responding to the challenges as they 
implement the learning tool? 

 
Background and Conceptual Framing 

First, there are distinctions among cognitive, dynamic, and static learning environments (see 
Table 1). Learning environments can vary along at least two dimensions: (1) the extent to which 
they adaptively respond to student behavior and (2) the extent to which they are based on a 
careful cognitive model.  
  
Table 1. Conceptual framework of the types of instruction based on adaptability and their basis 
in a theory of learning. 
 Static Dynamic 
Is a particular 
model of learning 
explicit in design 
and implementation 
(structure and 
processes)? 

No 
 

Text and tasks with 
instructional adaptation 
external to the materials  

Adaptive tutoring systems 
(Khan Academy, ALEKS, 
ActiveMath) 

Yes Textbook design and use 
driven by fidelity to an 
explicit theory of learning 

“Intelligent” tutoring systems 
(Cognitive Tutor) 

Static learning environments are those that are non-adaptive without reliance on an 
underlying cognitive model – they deliver content in a fixed order and contain scaffolds or 
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feedback that are identical for all users. The design may be based on intuition, convenience, or 
aesthetic appeal. An example of this type of environment might be online problem sets from a 
textbook that give immediate feedback to students (e.g., “Correct” or “Incorrect”).  

Dynamic learning environments keep track of student behavior (e.g., errors, error rates, or 
time-on-problem) and use this information in a programmed decision tree that selects problem 
sets and/or feedback based on students’ estimated mastery of specific skills. An example of a 
dynamic environment might be a system such as ALEKS or the “mastery challenge” approach 
now used at the online Khan Academy. For example, at khanacadmy.org a behind-the-scenes 
data analyzer captures student performance on a “mastery challenge” set of items. Once a student 
gets six items in a row correct, the next level set of items in a programmed target learning 
trajectory is offered. Depending on the number and type of items the particular user answers 
incorrectly (e.g., on the path to six items in a row done correctly), the analyzer program identifies 
target content and assembles the next “mastery challenge” set of items. Above and beyond such 
responsive assignment generation, programming in a “cognitively-based” dynamic environment 
is informed by a theoretical model that asserts the cognitive processing necessary for acquiring 
skills (Anderson et al. 1995; Koedinger & Corbett, 2006). For example, instead of specifying 
only that graphing is important and should be practiced, a cognitively-based environment also 
will specify the student thinking and skills needed to comprehend graphing (e.g., connecting 
spatial and verbal information), and provide feedback and scaffolds that support these cognitive 
processes (e.g., visuo-spatial feedback and graphics that are integrated with text). In cognitively-
based environments, scaffolds themselves can also be adaptive (e.g., more scaffolding through 
examples can be provided early in learning and scaffolding can be faded as a student acquires 
expertise; Ritter et al., 2007). Like other dynamic systems, cognitively-based systems can also 
provide summaries of student progress, which better enable teachers to support struggling 
students. Some studies have shown the promise of cognitively-based dynamic environments in 
post-secondary mathematics (Koedinger & Sueker, 1996). 
 

Method 
The study we report here is a multi-site cluster randomized trial (note: because the study is 

currently underway, we purposefully under-report some details). Half of instructors at each 
community college site are assigned to use a particular adaptive web-based system in their 
instruction (Treatment condition), the other half teach as they usually would (Control condition). 
The primary outcome measure for students’ performance is an assessment from the Mathematics 
Diagnostic Testing Program (MDTP), which is a valid and reliable assessment of students’ 
algebraic knowledge (Gerachis & Manaster, 1995).  

Using a stratified sampling approach to recruitment, we first conducted a cluster analysis on 
all 112 community college sites eligible to participate in the study (i.e., in a state that was a study 
partner and offering semester-long courses in elementary algebra that met at least some of the 
time in a physical classroom or learning/computer lab). The cluster analysis was based on 
college-level characteristics that may be related to student learning (e.g., average age of students 
at the college, the proportion of adjunct faculty, etc.). This analysis led to five clusters of 
colleges. Our recruitment efforts then aimed to include a proportionate number of colleges within 
each cluster. The primary value of this approach is that it allows more appropriate generalization 
of study findings to the target population (Tipton, 2014). Recruitment for our first cohort of 
participants yielded a study sample of 38 colleges similar to the overall distribution across 
clusters that was the target for the sample (see Figure 1).  



 

 
Figure 1. Recruited sample proportions and target sample proportions across clusters. 

 
 
Sample for this Report 

Initial enrollment in the study included 89 teachers across the 38 college sites. For this 
report on early results, we used the data from the participating students of 30 instructors across 
19 colleges. Student and teacher numbers related to the data set reported on here are shown in 
Table 2. 
 

Table 2. Counts of Teachers, Students, and Colleges in the Study. 
Condition Teachers Students Colleges 
Control 19 147 15 

Treatment 11 80 10 
Total 30 227 19 

 
Quantitative Analysis 

The primary aim of the quantitative analysis was to address Research Question 1, how and 
for whom the particular adaptive computer environment might be effective. To this end, 
ultimately we will employ Hierarchical Linear Modeling (HLM) on the full data set. Models will 
include interaction terms between instructors’ treatment assignment and covariates at different 
levels (e.g., students’ history of course-taking, self-concept of ability), to explore the moderating 
impact of tool use on student learning. The primary post-test outcome measure is the MDTP 
elementary algebra assessment. A different but related MDTP pre-algebra diagnostic served as 
the measure of students’ baseline knowledge. For this report, we have focused on the MDTP 
post-test as an indicator of algebraic knowledge. 
  
Qualitative Analysis 

To address Research Question 2, a great deal of textual, observational, and interview data 
are still being gathered. These data allow careful analysis of the intended and actual use of the 
learning environment and the classroom contexts in which it is enacted – an examination of 
implementation structures and processes. Indices of specific and generic fidelity derived from 
this work also will play a role in HLM generation and interpretation in the coming year. 
 



Preliminary Results 
Fall 2015 was the first full semester of data gathering for the project. It was our “practice” 

semester in that researchers were refining instruments and participant communication processes 
while treatment condition instructors were trying out the web-based learning tool with their 
classes for the first time. The “efficacy study” semester takes place in Spring 2016.  
 
At the Conference: Poster Conversations 

At the time of the conference, we had early results from the practice semester that suggested 
an aptitude by treatment interaction. Specifically, students in the Treatment group who started 
out with lower scores relative to the group mean on their algebra readiness pre-test, showed more 
benefit than Control group students (i.e., Treatment group students from the lower scores group 
had higher scores, relative to the group mean, on their post-test in elementary algebra). Some 
discussions in the poster session at the conference revolved around this interaction. For instance, 
one conference participant reported finding a similar result using a web-based technology: In his 
study, lower ability students exhibited higher grades when they were required to use the web-
based tutor than when they were not. In another discussion, a conference participant 
hypothesized that instructors need to gain familiarity with technology before they can effectively 
use web-based learning tools for teaching. Indeed, after a semester of practice, Treatment but not 
Control instructors in our study reported an increase in their ability to use technology for 
teaching mathematics. Though not statistically significant (p = .12), the difference was consistent 
with the conference participants’ hypothesis. Another key set of conversations at the poster were 
about the idea of an adaptive system that was based on a relatively stable “learning trajectory” or 
“genetic decomposition” as compared to a “cognitively-based” model approach that includes 
variability within a trajectory or decomposition, depending on the student, as the mechanism to 
guide selection algorithms when diagnosing and responding to student work in the computerized 
learning environment. We believe interactions such as those at the poster help to improve 
communication between the cognitive science research community and the RUME community. 

 
Since the Conference: Updated Results 

Since the conference, we have cleaned more data and have conducted analyses on this 
updated set. These analyses indicated that the aptitude by treatment interaction that was reported 
on the poster was no longer statistically significant: Estimate = -0.04, p = 0.71. Nevertheless, 
findings may continue to change as we continue to collect data in our efficacy semester. 

Here we can add information about a new analysis of post-semester test scores that 
corrected for instructor clustering and students’ scores on their algebra readiness pre-test. This 
analysis indicated that students in the treatment condition (adjusted M = 23.80, unadjusted SD = 
6.67, N = 80) performed higher on their post-test than students in the control condition (adjusted 
M = 22.45, unadjusted SD = 8.27, N = 147), albeit these mean scores, at about 1 point difference, 
were not statistically different (Estimate = 0.93, p = 0.62). The effect size for this difference was 
Hedges’ g = .12, which is considered small, but within expectation for efficacy trials of this type 
and is worth noting (Cheung & Slavin, 2015; Hill et al. 2008). As mentioned, this analysis 
included only a subset of students (data cleaning is ongoing) and results may continue to change 
as we collect, clean, and add more data to the analysis. Figure 2 shows box-plots of pre-test and 
adjusted post-test scores. 



 
Figure 2. Left: Box-plot of pre-test scores. Right: Box-plot of adjusted post-test scores. 

 
Next Steps 

We will continue this study with a second cohort of new participants who will repeat the 
year-long study in the 2016-2017 academic year. Our specific objectives in the upcoming year 
are to (1) complete data collection from the first cohort for the primary efficacy study (i.e., data 
for hundreds of students for Spring 2016), (2) continue reporting findings from the Spring 2016 
efficacy study of cohort 1, (3) recruit a second cohort of participants for another practice 
semester and efficacy study in 2016-17, and (3) begin the practice semester of the study with 
second cohort of participants. 

Of particular interest is how the spread of information shown in Figure 3 might look for the 
efficacy (Spring 2016) data set. We look forward to having more to report and new questions to 
discuss at the 2017 conference. 

 
Figure 3. Adjusted mean post-test score by condition. Vertical bars represent standard errors of 

the means. 
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