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Abstract Body 
Limit 4 pages single-spaced. 
 
Background / Context:  
Description of prior research and its intellectual context. 

 

In recent years, there has been increasing focus on the issue of multiple hypotheses 
testing in education evaluation studies. In these studies, researchers are typically interested in 
testing the effectiveness of an intervention on multiple outcomes, for multiple subgroups, at 
multiple points in time or across multiple treatment groups. When multiple hypotheses are tested, 
the probability of committing at least some Type I errors increases and more dramatically with a 
greater number of tests. Multiple testing procedures (MTPs) adjust p-values for statistical 
estimates upwards to counteract this problem. MTPs are being increasingly applied in impact 
evaluations in education. For example, the  IES technical methods report, “Guidelines for 
Multiple Testing in Impact Evaluations,” (Schochet, 2008) recommends multiple testing 
procedures as one of several strategies for dealing with the multiple hypotheses issue. In 
addition, the What Works Clearinghouse applies a particular procedure, the Benjamini-Hochberg 
procedure (Benjamini & Hochberg, 1995) to statistically significant findings in studies under 
review that have estimated effects for multiple measures and/or groups (U.S. Department of 
Education, 2013).  

However, an important consequence of making adjustments for multiplicity is a change 
in the statistical power for detecting true effects.  It is typically argued that applying MTPs 
results in a loss of power, which can be substantial. The evidence that supports this claim focuses 
on “individual power,” the power of each individual test among the multiple tests (Schochet, 
2008). The extent of loss in individual power varies by circumstances particular to a given study, 
which may include one or more of the following: (1) number of tests, (2) the proportion of tests 
that are truly null, (3) the correlation between test statistics, (4) the specified probability of 
making a Type I error, and (5) the particular multiple testing procedure used to adjust p-values.  

However, the individual power of specific hypothesis tests may not always be the most 
appropriate way to define power in impact evaluations with multiple tests. Just as we account for 
multiplicity with respect to Type I errors, we may want to account for multiplicity with respect to 
Type II errors (the inverse of power), as these two types of errors are inextricably linked. That is, 
just as we move from controlling Type I errors at the individual level to the set level (e.g. 
“family” of hypotheses) under multiplicity, we can also move from measuring power at the 
individual level to the set level. For example, perhaps in some cases it makes sense to consider 
the power to detect at least one true effect (as small as the specified minimum detectable effect 
sizes (MDES’s)) across multiple outcomes or in other cases the power to detect at least half of 
all effects that exist or all effects that exist. The choice depends on the objectives of the study, or 
how success of the intervention is defined. 

When ensuring that evaluation studies in education are sufficiently powered, typical 
current practice focuses on individual power and does not take the planned or actual use of 
multiple testing procedures into account. For determining power, sample size requirements or 
MDES for a single, non-adjusted test, the literature, resources and tools for helping researchers 
design education studies with adequate sample sizes are extensive (e.g. Dong (2013), Spybrook 
et al. (2011), Raudenbush et al. (2011), Hedges and Rhoads (2010), Bloom, Richburg-Hayes, and 
Black (2007)). However, no education or impact evaluation literature on estimating 
power/sample size/MDES while accounting for multiplicity adjustments was found by the 
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author. The IES guidelines for multiple testing (Schochet, 2008) state that “statistical power 
calculations for confirmatory analysis must account for multiplicity,” but give no explanation for 
how to do this in the case that multiple testing procedures are used to adjust p-values.  
 
Purpose / Objective / Research Question / Focus of Study: 
Description of the focus of the research. 

 

This paper provides critical alternatives to current practice in two ways. First, it presents 
alternatives to how power is typically defined in studies with multiple tests. The definition of 
power that is appropriate for a particular study can have substantial implications for the power 
(or the sample size requirement or the minimum detectable effects (MDE’s)). With some 
alternative definitions of power, studies that focus on multiple outcomes may actually gain 
statistical power over a focus on a single outcome, even after making p-value adjustments. With 
other definitions, power losses can be substantial. Second, for multiple definitions of statistical 
power under multiplicity, this paper presents methods for estimating power while accounting for 
p-value adjustments using one of five common multiple testing procedures (MTPs) – Bonferroni 
(Dunn, 1959, 1961), Holm (Holm, 1979), single-step and step-down versions of Westfall-Young 
(Westfall and Young, 1995), and Benjamini-Hochberg (Benjamini and Hochberg, 1995) 
procedures.   

The paper focuses on the scenario in which multiple tests are conducted due to an interest 
in effects on multiple primary outcomes. It also focuses on the simplest research design and 
analysis plan that education evaluations would typically use in practice: a multisite randomized 
trial with the randomization of individuals blocked by site - in which effects are estimated using 
a model with site-specific intercepts, assuming constant effects across blocks. However, the 
power estimation methods can easily be extended to other model assumptions as well as other 
study designs. 

Setting: (Not applicable) 
Description of the research location 
 
Population / Participants / Subjects: (Not applicable) 
Description of the participants in the study: who, how many, key features, or characteristics. 
 
Intervention / Program / Practice: (Not applicable) 
Description of the intervention, program, or practice, including details of administration and 
duration. 
 

Significance / Novelty of study: 
Description of what is missing in previous work and the contribution the study makes. 
 

Current practice for ensuring that impact evaluations in education have adequate 
statistical power does not take the use of multiplicity adjustments into account. This paper 
presents alternative ways to define power and presents methods for estimating power under 
multiplicity. All the methods for estimating power are easy to implement, fast, and can easily be 
extended to other multiple testing procedures not covered in this paper, as well as to other 
research designs. 
 
Statistical, Measurement, or Econometric Model:  
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Description of the proposed new methods or novel applications of existing methods. 
 

The methods for estimating power are motivated by the approach of using Monte-Carlo 
data simulation. With a simulation approach, an analyst would first specify a data-generating 
distribution that corresponds to her research design and model assumptions. For a blocked RCT 
in which we assume that effects are constant across all blocks, one would need to specify the 
number of blocks, the (harmonic) mean number of individuals within each block, the proportion 
assigned to the treatment group, the number of outcomes, the desired or predicted MDES for 
each outcome, the explanatory power of the block indicators and any baseline covariates (R2), 
and the correlational structure of the residuals (which determines the correlational structure of 
the test statistics). In each of a large number of samples generated by this data generating 
distribution, the analyst could then estimate impacts on the multiple outcomes, use an MTP to 
adjust the resulting p-values for the multiple outcomes and record which p-values fall below a 
specified significance level, α. Individual power for detecting statistically significant effects on 
any given outcome when using a particular MTP is the proportion of samples in which the 
adjusted p-values corresponding to the outcome are less than, α (e.g. 0.05). Then, d-minimal 
power is the proportion of samples in which at least d of the adjusted p-values are less than α, 
and complete power is the proportion of samples in which all non-adjusted p-values are less than 
α. (With complete power, no adjustments to raw p-values are required because the probability 
that all tests will have a raw p-value less than α when any single test would have a raw p-value 
less than α just by chance, is less than the probability that any single test would have p-value less 
than α by chance (Koch, 1996; Westfall et al., 2011).  

This simulation approach can be complex and extremely computationally intensive – 
particularly when using an MTP that relies on resampling (i.e. bootstrapping or permutation) to 
estimate the null distribution of test statistics or p-values, as is the case for the Westfall-Young 
MTPs.* The methods presented in this paper, however, avoid the need to generate any data or fit 
any regressions. Instead, building on the work of Band and Young (2005), the methods rely on 
the generation (i.e. simulation) of test statistics distributed under the null hypothesis, with the 
assumed correlation structure. These test statistics can then be shifted so that they then have the 
distribution under an alternative hypothesis that the effects are at least as large as specified 
MDES’s. These test statistics under the alterative can also be converted to p-values. MTPs that 
can be carried out simply with raw p-values (e.g., Bonferroni, Holm, Benjamini-Hochberg) are 
straight-forward. For Westfall-Young, the null distribution of test statistics can be generated by 
simulation rather than by resampling or permutation. We implemented the methods in R.† On a 
16 core/30 GB RAM machine, it takes, for example, just a few seconds to estimate all definitions 
of power for six outcomes and all MTPs other than Westfall-Young. For Westfall-Young, it 
takes 4.5 minutes.  
 
Usefulness / Applicability of Method:  
Demonstration of the usefulness of the proposed methods using hypothetical or real data.  

                                              
* For example, there are three outcomes, 10,000 permutations, and 10,000 simulated samples, computing estimates of power for 
any given set of assumptions would involve fit t ing 3 * 10,000^2 regressions. 
† We validated the power estimation methods by (1) assuming just a single block, replicating power estimates presented in 
Schochet (2008), which focus on Bonferroni, Holm and Benjamini-Hochberg adjustment procedures; (2) for our design of 
interest (a blocked RCT) and our assumed model (with constant impacts across all blocks and with school dummies included in 
the intercept) replicating power estimates provided in Power-Up! (Table RBD2-c) (Dong and Maynard, 2013), and replicating 
estimates obtained by Monte-Carlo simulation, as described above. 
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Overall, this paper should help applied researchers specify more accurate estimates of 
power and perhaps more appropriate estimates of power – for their particular study - than those 
that are currently used in education research. 
 
Research  Design: (Not applicable) 
Description of the research design. 
 

Data Collection and Analysis:  
Description of the methods for collecting and analyzing data. 
 

The power estimation methods were used to examine how statistical power changes when 
moving from testing for effects on a single outcome to testing for effects on more outcomes and 
how the changes in power depend on the MTP, the numbers of tests, R2, the correlations between 
the test statistics, and the proportions of null hypotheses that are actually false. Assuming that 
there will be effects on all outcomes may be misleading, especially if researchers include 
outcomes on which they do not necessarily expect impact but which they include because they 
are policy relevant.  

Findings / Results:  
Description of the main findings with specific details. 
 

Some of the key preliminary findings are: (1) Having sufficient power to detect effects on 
each outcome (individual power) is not the same as having sufficient power to detect effects on 
all outcomes (complete power). If researchers really care about detecting impacts on all 
outcomes under primary consideration, a focus on complete power may be warranted. This 
typically means that researchers have much less power – or need a much larger sample size or 
must settle for higher MDES’s – than they anticipated if they powered their studies for individual 
power or ignored multiplicity altogether in the planning phase. (2) If researchers really only care 
about detecting impacts on at least one outcome or a small fraction of outcomes, then they often 
will have more power than they would have anticipated for individual power or even if they had 
planned to ignore multiplicity altogether. This could alternatively mean smaller sample sizes are 
required or smaller MDES’s can be detected. (3) Across a wide a variety of scenarios, the 
Benjamini-Hochberg MTP typically results in the best power (with some exceptions but often for 
unlikely scenarios in practice). However, a trade-off in using the Benjamini-Hochberg MTP is 
that because it controls the false discovery rate, it is less strict about false positives. If one is 
worried about any false positives, the step-down version of the Westfall-Young MTP, which 
provides strong control of the family-wise error rate, will most likely produce the most power, 
especially when the test statistics are moderately or strongly correlated and the number of 
outcomes is large. (4) When planning a study that will test for effects on multiple outcomes, 
power estimates  that assume effects on all outcomes can be overly optimistic if that is not the 
case, often substantially so. (5) Relative to power for a single outcome, changes in power that are 
the result of adjusting for multiplicity tend to be even greater with a higher R2 in a blocked RCT.  

Conclusions:  
Description of conclusions, recommendations, and limitations based on findings. 
 

Researchers should consider alternative definitions of power when it is appropriate for the 
objectives of their study, and they should estimate power that takes multiplicity adjustments into 
account. The methods for estimating power are straight-forward and fast. 
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Appendices  
Not included in page count. 
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