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Background / Context:  
 Valid and reliable measurement of unobserved latent variables is essential to 
understanding and improving education (Raudenbush & Sadoff, 2008). A common and persistent 
approach to assessing latent constructs in education is the use of rater inferential judgment (e.g., 
Eckes, 2009). In rater-mediated assessments, raters conduct evaluations by interpreting evidence 
(e.g., responses, behaviors) using their trained, but subjective, judgments. For this reason, the use 
of raters to assign scores has been described as an indirect or rater-mediated process because 
measurements are not directly observed but rather inferred through raters’ judgments (Bejar, 
Williamson & Mislevy, 2006). 

An important assumption underlying meaningful comparisons in rater-mediated 
assessments is that measurement is invariant across raters. Measurement invariance across raters 
suggests that raters use items similarly so that the relationships between a latent trait and the 
manifest items with which it is measured do not depend upon which rater conducted an 
evaluation. When items function differently across raters, ratings no longer preserve a common 
meaning and basis for comparison across raters because scales are rater-specific. In this way, the 
extent to which a common scale can be formed across raters depends largely on the extent to 
which raters share a common basis for assigning scores. 

Research has shown that a significant source of construct-irrelevant variation in many 
rater-mediated assessments arises from differences among raters in how they apply the standards 
established by an instrument (e.g., Hill, Charalambous, & Kraft, 2012). Such variations often 
arise from consistent differences among raters in how they apply standards across all items and 
participants but they also arise in more complex ways through, for example, multifaceted 
interactions among raters, items, and participants. Although findings of rater differences are not 
surprising, the complexity, inconsistency across items and participants, and magnitude relative to 
construct-relevant variance found by recent reports have demonstrated just how critical of an 
issue rater variability can be and raises questions about the degree to which scores from different 
raters are on commensurate scales (Kelcey, McGinn, & Hill, 2014). Despite extensive and 
consistent evidence of rater differences across a broad array of assessments, scores from different 
raters are routinely treated as if they were exchangeable across raters and are often used to make 
high-stakes comparative decisions (e.g., Baumgartner & Steenkamp, 2001). 

To address these shortcomings, recent work has developed flexible methods to 
accommodate measurement noninvariance in rater-mediated assessments through cross-
classified random item effects models (Kelcey, McGinn, & Hill, 2014). By leveraging empirical 
estimates of rater-specific deviations in the item parameters, these methods allow for the 
empirical identification and direct adjustment for noninvariance. In turn, a common, inter-rater 
scale can often be established to facilitate comparisons across units assessed by different raters.  
 

Purpose / Objective / Research Question / Focus of Study: 
The purpose of this study is to develop high-dimensional explanatory random item effects 

models designed for rater-mediated assessments. The models are built to address three specific 
issues. First, an important limitation of the use of cross-classified random item effects models in 
rater-mediated assessments is that the number of latent dimensions increases quickly with the 
number of items and facets. In turn, estimation of the latent dimensions quickly becomes 
computationally challenging and near impossible with a more than a handful of items and facets. 
For these reasons, the proposed models intentionally draw on the recently developed Metropolis-
Hastings Robbins-Monro algorithm to estimate parameters (Cai, 2010). 
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Second, an important limitation of previous work is that it has not considered the 
potential for interactions among facets and between facets and items. More specifically, previous 
work in this area has only considered the potential for noninvariance along a single facet (i.e., 
noninvariance among raters). However, it is plausible that for many types of assessments, 
noninvariance may simultaneously exist along multiple facets as well as along interactions 
among those facets. Our formulation of the proposed model incorporates an n-level crossed 
random effects approach (i.e., any number of [crossed] levels) that allows for interactions among 
facets and with items so as to track and accommodate complex sources of noninvariance. 

Third, although previous research has examined the presence of noninvariance in rater-
mediated assessments, it has not examined the extent to which characteristics of each facet 
systematically explain variability in measurement. For instance, do raters with more years of 
experience demonstrate more lenient applications of rating standards or, similarly, are some 
items systematically more difficult for lower versus upper elementary students? Further, do 
complex interactions produce additional noninvariance—for example, are more experienced 
raters more lenient with lower elementary students? To address these explanatory questions we 
further introduce structural links between random and fixed facet-specific effects. In turn, our 
formulation draws on a latent regression framework to investigate correlates of noninvariance. 
 

Setting & Participants: 
To illustrate the proposed method, we applied it to a longitudinal study of students’ 

academic engagement in elementary school. Two cohorts of students were rated about up to 
three times per year for three years across grades kindergarten to second or third to fifth. Across 
the study there were about 6000 students measured about 17,000 times. As a result, there are 
multiple concurrent facets that may contribute to the observed variation in engagement ratings. 
For the purposes of our application, the object of measurement or target of our inference is 
students’ persistent engagement across those assessments. As a result, variance owing to other 
facets is viewed as construct-irrelevant variance. For instance, variance originating from 
consistent rater differences, short-term temporal instabilities, differences among items, and their 
interactions is construct-irrelevant variance. In our application, we assess the extent to which 
each of these facets contributes to measurement noninvariance.  
 

Significance / Novelty of study: 
Although strict measurement invariance across raters and other facets is optimal, the 

reality is that it will rarely hold in complex rater-mediated assessments. Developing 
measurement models that are more tightly attuned to the types of measurement errors present in 
rater-mediated assessments is likely to improve the validity and comparability of scores across 
raters and other sources of construct-irrelevant variation. The proposed method relaxes 
assumptions of measurement invariance in n-level cross-classified rater-mediated assessments by 
introducing random item effects to test for noninvariance in each facet and their interactions and 
empirically construct an inter-rater scale. More conceptually, the approach helps to identify and 
accommodate differences in how items function within and across facets so as to place 
measurements from different contexts on a similar scale.  

 

Statistical, Measurement, or Econometric Model:  
We explicate an example model based on the aforementioned data structure of the student 

engagement measure. Let Yisr be the rating for item i measured at time t for student s by rater r. 
Using a dichotomous (dis)agree rating scale, our formulation begins with the standard two-
parameter logistic item response model  
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   *logit( 1) ( )itsr i ts isrY a b       (1) 
where ai represents the discrimination parameter for item i, bisr represents the threshold or 
difficulty of item i, and *

ts represents the level of academic engagement by student s at time t.  
Next, we expand the scope of this model to take into account construct-irrelevant 

variance originating from different facets. First, let us expand on the person-side variance by 
decomposing *

ts  into a component attributable to student s’s persistent level of engagement 

across time ( s ), a time-specific component ( ts ) that captures temporal instability or short-term 

deviations or differences, a rater-specific component ( r ) that captures the extent to which a 
rater is uniformly more severe across all items relative to other raters, and a rater-by-student 
interaction component ( r s  ) capturing the extent to which a rater is uniformly more severe with 
particular groups of students across all items. Assume that these components have independent 
normal distributions and ~ (0,1)ts N  .  Equation (1) becomes 

*
ts ts s r r s               (2) 

Next, expand on the item-side variance by tracking how the difficultly parameter ( isrb ) 

varies. First, we establish an intercept ( 0
ib ), then decompose difficulty into a rater-specific 

component ( irb ) that quantifies the extent to which obtaining a positive rating is more difficult 

when being rated by rater r on item i (this differs from r because irb  captures item-specific 

differences in severity whereas r  captures the average severity differences across all items), a 

student-specific component ( isb ) that captures the extent to which obtaining a positive rating on 
item i is more difficult for student s than for an average student (suggests ratings function 
differently for different students—e.g., those in upper v. lower elementary), and finally a rater-
by-student-by-item interaction component ( i r s   ) that captures the potential for obtaining a 
positive rating to be more difficult for certain students when rated by rater r on item i (e.g., a 
rater is more severe on a particular with upper elementary kids). Assume that these components 
have independent normal distributions. Equation (1) is further expanded so that 

0
isr i ir is i r sb b b b             (3) 

The model thus far has outlined person-side random effects (2) and item-side random 
effects (3) but we have not incorporated explanatory components. Each parameter can be 
associated with fixed effects through models that provide structural links. These structural links 
attempt to model why we observe variation originating from each facet (e.g., why are some raters 
more severe in rating engagement. To introduce explanatory components, we expand so that  
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Here the .
0 ’s are the intercepts, .

. ’s are the latent regression coefficients capturing the 
extent to which a predictor (denoted as X, W, and Z), such as student gender, is associated with 
variation in a specific facet, and .

 ’s (and r s
  ) are the unexplained residual variation in the 

components with continued independent normal distributions. Let ntsX  be time-varying student 
predictors (e.g., age a time of assessment), jsW  be time-invariant student predictors (e.g., gender 

of student), krZ  be rater predictors (e.g., gender of rater), and ( )msrWZ  are the interactions formed 
by the product of time-invariant student predictors and rater predictors. 
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Next introduce item-side explanatory structural models for each random item effect 
associated with the difficulty parameter. We have 
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Here the .
0 ’s are the intercepts, .

. ’s are the latent regression coefficients capturing the 
extent to which a predictor (denoted as F, W, and Z), such as student gender, is associated with 
variation in a specific facet, and .b ’s (and i r s

   ) are the unexplained residual variation in the 
difficulty components with continued independent normal distributions. Let liF  be item 
predictors (e.g., negatively worded item or other characteristic of item), qsW  be time-invariant 

student predictors (e.g., gender of student), prZ  be rater predictors (e.g., gender of rater), and 

( )msrWZ  are the interactions formed by the product of time-invariant student predictors and rater 
predictors. Substituting equations leaves us with  

logit( 1) ([ ] [ ] [ ] [ ] {[ ] [ ] [ ] [ ]})itsr i ts t s s r r r s r s i i ir ir is is i r s i r sY a X W Z WZ b F b Z b W WZ                                           (6) 
 To estimate the model, we drew on the Metropolis-Hastings Robbins-Monro algorithm 
detailed in (Cai, 2010). 
Findings / Results 
 Although there are several important differences among the models in terms of 
invariance, fit, and the tenability of assumptions, we simply highlight relative model fit and the 
relative magnitude of the variance originating from each facet. Our results indicated that there 
was significant variability across most facets including variability in the item parameters across 
raters and students. Most notably, measurement noninvariance captured by the item-side 
variance was a massive 31% (Table 2). More specifically, when an instrument is invariant across 
facets, the item side variation should be near zero. However, our analyses suggested that 21% of 
the observed variance was attributable to rater-by-item specific differences and an additional 
10% was attributable to student-by-item specific differences. Put differently, students’ academic 
engagement scores heavily depend on who rated them and scores from different raters for 
different students are not fundamentally on different scales. 

Our preliminary analyses indicated the model that best balanced parsimony with fit based 
on the information criteria was the model that included random effects for items, time points, 
students, raters, students-by-raters, items-by-raters, and items-by-students (Table 1). Put 
differently, our analyses suggested that: (1) items differed in their difficulty, (2) students’ 
engagement levels varied across time points, (3) persistent engagement levels varied across 
students, (4) raters differed in the severity with which they applied the scale (on all items), (5) 
raters differed in how they applied the scale to different students, (6) individual items functioned 
differently across raters, and (7) items functioned differently across students.  
Conclusions  
 The comparability of rater-mediated scores is a well-known and complex problem 
because raters may vary in how they interpret and score observations. In this study, we proposed 
a new approach to address measurement noninvariance in raters but also across additional facets. 
Evidence from our initial case study suggests the feasibility and promise of n-level random item 
effect models to address measurement non-invariance in rater-mediated assessments. However, 
the potential value of this method needs to be carefully studied to understand the extent to which 
random item effect models to can effectively address non-invariant conditions.  
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Appendix B. Tables and Figures 
 
 
 
Table 2: Relation between value-added and classroom observation scores  
 AIC BIC 
Full model 195,330 195,364
Without three-way interaction (students-raters-items) 193,340 193,386
With only main facets and rater-item interaction 206,404 206,466
With only main facets (items, students, raters) 211,388 211,434
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Table 1: Variance in item parameters across raters (total variance=1) 
 
Facet Variance 
Students  0.22 
Items 0.02 
Time 0.02 
Raters 0.21 
Students-by-raters 0.22 
Items-by-raters 0.21 
Students-by-items 0.10 
 
 


