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Abstract Body 

 

Background / Context:  
Results from large-scale evaluation studies form the foundation of evidence-based policy. The 

randomized experiment is often considered the gold standard among study designs because the 

causal impact of a treatment or intervention can be assessed without threats of confounding from 

external variables. Treatment randomization strengthens the internal validity, or the extent to 

which causal conclusions can be drawn, of the study results (Campbell, 1957). Policy-makers 

have become increasingly interested in the external validity of results, or the extent to which the 

results from a study generalize to a population of interest. Randomization of treatment addresses 

the question of expected treatment effects within a study, but probability sampling is needed to 

generalize the results from the sample to the target population of inference. However, recent 

research revealed that sites in large scale experiments are often not randomly sampled, thereby 

threatening the external validity of their results (Olsen, Orr, Bell, & Stuart, 2013). Stuart, Cole, 

Bradshaw, & Leaf (2011) and Olsen, et al. (2013) developed methods to assess the similarity 

between the sample and population for generalization. Hedges & O’Muircheartaigh (2011) and 

Tipton (2013) proposed re-weighting methods to adjust for differences between the given sample 

and target population. These re-weighting methods utilize propensity scores to model selection 

into the sample given observable covariates. 

 

Purpose / Objective / Research Question / Focus of Study: 
The absence of probability sampling causes estimates of population parameters to be biased. 

Model-based methods used to derive bias-reduced estimators often require multiple assumptions, 

many of which are untestable with the data. While point estimation is a desirable goal in most 

research studies, it is important to distinguish between inferences based on the data alone and 

inferences based on strong assumptions. Interval estimation or partial identification offers an 

alternative approach to estimating treatment effects without the need for assumptions. In this 

paper, we derive partial identification bounds on the expected treatment effect for the population 

under three different frameworks: 1) Worst-case framework with no assumptions on the data; 2) 

Treatment optimization where subjects select the treatment that optimizes the expected outcome 

and; 3) Monotone treatment response where the response function is assumed to be weakly 

increasing in the treatment. Under each framework, we analyze the impact that additional, but 

weak, assumptions have on the width of the estimation bounds and discuss important differences 

between the bounds for the expected treatment effect for the sample and those for the treatment 

effect for the population. We derive the bounds using the original sample and the stratum-

specific bounds where the strata are delineated by the propensity scores for generalization. 

 

Significance / Novelty of study: 

Current methods to improve generalizability from non-random samples have focused on deriving 

point estimates for the population. To date, partial identification or interval estimates have not 

been explored in the field of generalizability. 

 

Statistical, Measurement, or Econometric Model:  
Propensity score methods for generalization require several assumptions to be made on the 

sample and population. The three primary assumptions needed are the stable unit treatment value 

assumption (SUTVA), strong ignorability of treatment assignment, and strong ignorability of 
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sample selection (Stuart, et al. (2011), Tipton (2013)). Under SUTVA, the potential response of 

each individual is independent of both the treatment assignment mechanism and the sample 

selection mechanism. Furthermore, SUTVA stipulates that the potential responses be 

independent of the treatment assignment and sample selection assignment of other individuals. 

Under each ignorability assumption, the potential responses are independent of the treatment and 

sample assignment mechanism when conditioning on the propensity scores. When these 

assumptions are met, re-weighting methods such as subclassification and inverse propensity 

weighting (IPW) are used to derive bias-reduced estimators of the population average treatment 

effect (PATE).  

 

Partial Identification 
Although the three assumptions needed to use propensity scores for generalization allow 

point estimation of the PATE, they are untestable because they require knowledge about the 

distribution of potential responses in both the sample and population. The credibility of 

inferences is often tied to the strength of the assumptions made in deriving the results. The 

concept of partial identification has been developed extensively through the work of Manski 

(1999, 2003, 2009) and Horowitz and Manski (2000). Given a dichotomous treatment T, 

continuous outcome Y, treatment assignment vector Z, and sample selection vector W, the 

potential outcome under a given treatment is denoted by Y(T). Here, Z=1 (0) indicates whether 

the individual received treatment (control) and W=1 (0) indicates whether the individual was 

selected (not selected) into the sample. Each potential outcome can be written as:  

 

E(Y(1))= E(Y(1)|Z=1) P(Z=1) + E(Y(1)|Z=0) P(Z=0) 

E(Y(0)) = E(Y(0)|Z=1) P(Z=1) + E(Y(0)|Z=0) P(Z=0) 

 

The sample average treatment effect (SATE) is given by the difference between these two 

potential outcomes. In the context of generalizability, the PATE is estimated using the same 

difference, but each potential outcome now has two additional terms: 

 

E(Y(1))= E(Y(1)|Z=1, W=1) P(Z=1, W=1) + E(Y(1)|Z=0, W=1) P(Z=0, W=1) + 

     E(Y(1)|Z=1, W=0) P(Z=1, W=0) + E(Y(1)|Z=0, W=0) P(Z=0, W=0) 

 

E(Y(0)) = E(Y(0)|Z=1, W=1) P(Z=1, W=1) + E(Y(0)|Z=0, W=1) P(Z=0, W=1) +  

     E(Y(0)|Z=1, W=0) P(Z=1, W=0) + E(Y(0)|Z=0, W=0) P(Z=0, W=0) 

 

For each set of potential outcomes, terms such as E(Y(1)|Z=0, W=1) are considered 

counterfactual outcomes. Since each individual receives at most one treatment, these 

counterfactuals are unobservable because they represent outcomes under a treatment condition 

that was not assigned. When the outcome of interest, Y, is bounded, these unobservable 

counterfactuals are replaced by the bounds of Y in order to derive estimation bounds on the 

treatment effect. A lower bound for the PATE is given by the difference between the lower 

bound of E(Y(1)) and the upper bound of E(Y(0)). The upper bound for the PATE is then the 

difference between the upper bound of E(Y(1)) and the lower bound of E(Y(0)). Tighter bounds 

are possible with additional assumptions on the response function and treatment selection 

process. 
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Research Design:  

In generalizability studies, administrative data on the population, such as demographic 

and socioeconomic information, is used in the propensity score model. In this paper, we derive 

the estimation bounds for the PATE using the administrative data of the population, combined 

with the information on the outcome and sample. The potential outcomes used to estimate the 

PATE are a function of the indicator variables, Z and W. An important difference between the 

bounds for the SATE and those for the PATE is that the latter contain potential outcomes that are 

unobservable from not being selected into the experiment. In particular, since treatment is only 

administered to units selected into the sample, the potential outcomes under each treatment 

condition for units not selected into the sample are unobservable. 

 We derive estimation bounds for the PATE with a bounded outcome, Y, under three 

scenarios. The first, which we refer to as the “full” form, estimates the bounds by treating all of 

the counterfactuals as unobserved and replacing them with the lower and upper bounds for Y. 

These are referred to as the “worst-case” bounds. Since the PATE includes terms related to units 

not selected into the sample, the bounds for the PATE are necessarily wider than those for the 

SATE. The second framework, referred to as the “reduced counterfactual” scenario, assumes that 

one of the counterfactuals, E(Y(0)|Z=0,W=0), is identified. This counterfactual outcome 

represents the expected outcome under the control condition for units that were assigned to 

control and were not selected into the sample. Under the “reduced counterfactual” case, the 

distribution of these potential outcomes is assumed to be observable through the use of the 

administrative data. The rationale for this assumption is that if the control condition represents 

the “business as usual” condition, then units not selected into the sample realize this outcome by 

not participating in the experimental study. The last framework, the “reduced” framework, uses 

the same assumption as the “reduced counterfactual” case, but makes a restriction that units not 

selected into the sample do not receive treatment. Specifically, the counterfactual 

E(Y(1)|Z=1,W=0) P(Z=1,W=0) is treated as zero so that the estimation bounds for the PATE are 

tighter. This framework would apply to cases where an experimental study was terminated after 

one iteration so that the probability of subjects participating in future iterations of the study is 

zero.  

 The worst case bounds reflect the simplest situation where no assumptions are made on 

the data. For each of the scenarios described, we considered two additional frameworks for the 

estimation bounds. The first imposes an additional assumption on treatment selection. In studies 

where units select the treatment that optimizes their outcome, tighter bounds are possible. An 

example of this scenario would be job seekers who choose the job that pays the highest wage. 

Treatment optimization imposes an upper bound on two of the unobservable counterfactual 

outcomes so that these upper bounds are substituted for the worst case bounds. The second 

framework makes the assumption that the response function, Y, is weakly increasing (monotone) 

in the treatment, T. With this assumption, the lower and upper bounds of the PATE are functions 

of the realized outcomes under each treatment condition. 

  

Usefulness/Applicability of Method: 

We provide an example of estimation bounds using data from a cluster randomized controlled 

trial (Konstantopoulos, Miller & van der Ploeg, 2013). This experiment analyzed the effect of a 

benchmark assessment system on student achievement in English Language Arts (ELA) and 
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mathematics. The effect of this system was assessed using the Indiana Statewide Testing for 

Educational Progress-Plus (ISTEP+) scores. The experimental study consisted of fifty-six K-8 

schools who volunteered to implement the system, of which 34 were randomly assigned to the 

state’s benchmark system while 22 served as control schools. In the treatment schools, students 

were regularly given formative assessments aligned with the state test and their teachers received 

feedback on their performance as a way to dynamically guide their instruction in the periods 

leading up to the state exam.  

 The question of interest was, if the Indiana benchmark assessment system was 

implemented in all schools throughout the state, what is the expected treatment effect in terms of 

students’ ELA and mathematics achievement? To answer this question, the original population 

of 1,587 schools was re-defined to exclude all charter schools, schools with over 95 percent male 

students, with over 95 percent English Language Learners (ELL), with over 95 percent of 

students with special education needs and schools with fewer than 100 students. These schools 

were removed because they were not considered as similar to the experimental sample and 

subsequent analyses was based on the resulting population of 1,514 schools and sample of 54 

schools. A propensity score model was fitted to the data and the population was stratified into 

three equal-sized strata, seen in Figure 1. One of the strata contained only two schools from the 

sample so that the stratum specific estimate of the PATE would have a larger standard error. 

Estimates of the PATE using subclassification and IPW, as well as the unweighted estimate 

(without any re-weighting) are given in Table 1. Note that all three estimates are not statistically 

significant at the α = 0.05 level.  

 To investigate the partial identification bounds of the PATE, we chose 4th grade ELA 

scores as the outcome of interest and re-defined the population again to only include 4th grade 

serving schools. For each school, we considered a discrete version of the ELA scores using the 

ISTEP+ cutoff scores of Pass Plus, Pass, and Not Pass. The outcome, Y, was therefore binary 

with Y=1 if the school received a “Pass” and Y = 0 if the school received a “Not Pass.” The 

partial identification bounds under the “full,” “reduced counterfactual” and “reduced” scenarios 

for the worst case, treatment optimization, and monotone treatment response frameworks are 

given in Table 2. The stratum-specific bounds for each combination is given in Table 3.  

 

Findings / Results:  
Compared to the point estimates of the PATE, the partial identification bounds were consistent 

with the insignificant treatment effect finding. This consistency with the point estimates was also 

seen in the stratum-specific bounds of the PATE. Furthermore, the partial identification bounds 

were derived with few to no assumptions on the empirical evidence.  
 

Conclusions:  
Partial identification offers an alternative method of deriving information on treatment effects, 

but with fewer assumptions on the data. The example of this paper demonstrates that the 

estimation bounds may provide nearly the same information as point estimates in terms of the 

significance of the treatment effect. Partial identification methods are important when the 

credibility of inferences rely on strong untestable assumptions. 
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Appendix B. Tables and Figures 

 

Figure 1: Distribution of Propensity Score Logits 
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Table 1: Estimates of the PATE 

 Unweighted IPW Subclassification 

Estimate 0.20 0.19 0.26 

Standard Error 0.12 0.12 0.15 

 

Table 2: Bounds on the Expected Treatment Effect 

 

 Worst Case Outcome Opt Monotone Trt 

 Full RC Reduced Full RC Reduced Full Reduced 

LB -0.97 -1.88 -0.93 -0.95 -1.82 -0.91 0.00 0.00 

UB 0.98 1.02 0.07 0.97 1.01 0.06 0.03 0.07 

Note: “RC” refers to the reduced counterfactual case. “LB” and “UB” refer to the lower bound 

and upper bound, respectively. 

 

Table 3: Bounds on the Expected Treatment Effect by Stratum 

 

  Worst Case Outcome Opt Monotone Trt 

  Full RC Reduced Full RC Reduced Full Reduced 

Stratum 

1 

LB -0.97 -1.9 -0.95 -0.95 -1.86 -0.93 0.00 0.00 

 UB 0.98 1.00 0.05 0.97 0.99 0.04 0.03 0.05 

 

Stratum 

2 

LB -0.97 -1.91 -0.96 -0.96 -1.88 -0.95 0.00 0.00 

 UB 0.97 0.99 0.04 0.96 0.97 0.03 0.03 0.04 

          

Stratum 

3 

LB -0.96 -1.81 -0.86 -0.93 -1.68 -0.83 0.00 0.00 

 UB 0.99 1.09 0.14 0.97 1.08 0.13 0.05 0.15 

 


