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Abstract  

This chapter situates fraction learning within the integrated theory of numerical development. 

We argue that the understanding of numerical magnitudes for whole numbers as well as for 

fractions is critical to fraction learning in particular and mathematics achievement more 

generally. Results from the Delaware Longitudinal Study, which examined domain-general and 

domain-specific predictors of fraction development between third and sixth grade, are 

highlighted. The findings support an approach to teaching fractions that centers on a number line. 

Implications for helping struggling learners are discussed. 

Keywords:  fractions; mathematics; numerical cognition; number line 

 

  



FRACTION DEVELOPMENT IN CHILDREN 3 

Fraction Development in Children: Importance of Building Numerical Magnitude Understanding   

 Fractions are a crucial component of the U.S. mathematics curriculum in elementary and 

middle school (Council of Chief State School Officers & National Governors Association Center 

for Best Practices, 2010). Yet fractions and their magnitudes are sources of great confusion for 

many students. For example, about half of eighth graders on the National Assessment of 

Education Progress (NAEP; 2004) experienced difficulties when asked to order three fractions 

with unlike denominators. Moreover, only a third of eleventh graders can successfully translate 

decimals into fractions (Kloosterman, 2010) and many community college students still struggle 

when making fraction magnitude comparisons (Schneider & Siegler, 2010). Frequently students 

do not recognize that the numerator and denominator work together to form a fraction’s 

magnitude. Persistent difficulties with fractions can have far-reaching consequences, both on 

professional and personal levels. Fraction knowledge supports learning of algebra (Booth & 

Newton, 2012), and algebra proficiency, in turn, prepares students for higher education and 

careers in science, technology, engineering, and mathematics (STEM) disciplines. Fraction 

knowledge also supports daily life functioning related to managing personal finances, 

understanding mortgage interest rates, doing home repairs, cooking, managing medical dosages, 

and so forth. Difficulties with fractions have even been suggested as a root cause of mathematics 

anxiety (Heitin, 2015). 

 This chapter has several aims. First, we situate fraction learning within the integrated 

theory of numerical development, proposed by Siegler, Thompson, and Schneider (2011). The 

integrated theory asserts that the unifying property of all real numbers is that they have 

magnitudes or numerical values that can be ordered on the number line (Siegler, Fuchs, Jordan, 

Gersten, & Ochsendorf, 2015). Next, we identify key areas of fraction knowledge and then chart 
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fraction development from early childhood through middle school. In particular, we discuss 

research findings from our large longitudinal study of fraction learning from third through sixth 

grade, supported by the U.S. Department of Education Institute of Education Sciences. The four-

year study identified domain-general and domain-specific predictors and concomitants of 

fraction learning. Overall, we show that fraction development during this formal instructional 

period is fundamental to mathematics success more generally. Finally, we discuss implications 

for helping students who struggle with fractions, especially with respect to building numerical 

magnitude understandings.  

Integrated theory of numerical development 

Earlier theories of numerical development conceptualize whole number learning and 

fraction learning as two separate processes, with fractions secondary to whole numbers (Siegler 

et al., 2013; Siegler et al., 2011). Although whole numbers are characterized as being naturally 

acquired early in development, segmented theories assume fraction knowledge occurs much later 

and with great difficulty (e.g., Geary, 2004; 2006; Gelman & Williams, 1998). In fact, whole 

number understanding has been described as interfering with the learning of fractions (Geary, 

2006; Vamakoussi & Vosniadou, 2010). For example, children often overextend the principle of 

whole number ordinality (Ni & Zhou, 2005), identifying unit fractions with the larger 

denominator as having the larger magnitude (e.g., 1/6 > 1/5 because 6 > 5).  

More recently, research has begun to emphasize how the numerical property of 

magnitude can unite number learning into a continuous process, one that includes fractions as 

well as whole numbers (Matthews, Lewis, & Hubbard, in press; Siegler & Lortie-Forgues, 2014). 

Properties of whole numbers, however, are not invariant across all real numbers, and, in 

particular, differ from fractions in important ways. Whole numbers have unique successors, 
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which are expressed as a single symbol and are finite within a given interval; they  increase or 

stay the same with addition and multiplication and decrease or stay the same with subtraction 

and division. Properties of fractions, on the other hand, sometimes behave in the opposite 

manner. However, the one property that unites all real numbers is that they have magnitudes that 

can be located on a number line (Siegler, Fazio, Bailey, & Zhou, 2013; Siegler & Lortie-Forgues, 

2014; Siegler et al., 2011).  

According to the integrated theory, number learning involves continually expanding the 

size and type of number whose magnitudes can be accurately represented (Siegler & Lortie-

Forgues, 2014). Children typically begin with non-symbolic magnitude representations. The 

ability to discriminate between sets of one to four objects (the object tracking system) and more 

than four objects (the approximate number system) emerges in infancy (Feigenson, Dehaene, & 

Spelke, 2004). For example, even infants can recognize the difference between eight and 16 dots, 

a 2:1 ratio (Xu & Spelke, 2000). Because infants prefer to look at novel objects, their looking 

time decreases, or habituates, to the repeated presentation of the same image (e.g., Groves & 

Thompson, 1970). In Xu and Spelke’s (2000) study, after being habituated to an array of dots 

that either contained eight or 16 dots, infants looked longer at an array of dots with the opposite 

amount (i.e., either eight or 16 dots). Moreover, there is evidence that sensitivity to ratios is also 

present in infants (McCrink & Wynn, 2007). Matthews et al. (in press) argue there is a core 

cognitive system that processes non-symbolic ratios, which is referred to as the “ratio processing 

system” (RPS). Analogous to whole number development, in which both formal and informal 

learning links non-symbolic magnitudes (e.g., three dots) to symbolic representations (e.g., the 

numeral “3”), children’s non-symbolic understanding of ratios (e.g., the ability to recognize that 
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the proportion of red to blue in a bar is the same or different as the ratio of red to blue in another 

bar) may underpin the learning of conventional fraction symbols (Boyer & Levine, 2012).  

The ability to link non-symbolic to symbolic magnitude representations develops 

gradually (Siegler & Lortie-Forgues, 2014). Comprehension of numerical magnitudes can be 

seen on a number line task, where children are presented with an image of a horizontal line 

flanked with two values (e.g., 0 on the left and 100 on the right) and asked to locate the position 

of a given number on the line (Siegler & Opfer, 2003). Accuracy on the number line task 

undergoes a developmental shift, with children becoming increasingly closer to the target 

number with age. On unfamiliar scales, children overestimate relatively smaller numbers and 

underestimate relatively larger magnitudes (Siegler & Booth, 2004; Siegler & Opfer, 2003). 

Magnitudes on a scale from 0-10 are typically understood linearly by first grade (Bertelletti, 

Lucangeli, Piazza, Dehaene, & Zorzi, 2010; Siegler & Booth, 2004), with 0-100 understood by 

second grade (Booth & Siegler, 2006), 0-1,000 by fourth grade (Siegler & Opfer, 2003), and 0-

100,000 by sixth grade (Opfer & Siegler, 2007; Opfer & Thompson, 2008).  

Eventually, children learn to represent fractions as well as whole numbers on the number 

line (Siegler & Lortie-Forgues, 2014). Children are first able to locate proper fractions (a/b, 

where b is larger than a) and then mixed numbers (a combination of a whole number plus a 

proper fraction) on a number line (e.g., 0 to 2), and later learn the magnitudes of improper 

fractions (b/a, where b is larger than a; Resnick et al., 2015). The integrated theory of numerical 

development emphasizes that fractions are a pivotal part of number learning more generally, with 

fractions representing the first opportunity for children to learn properties of whole numbers are 

not always true of all numbers (Siegler & Lortie-Forgues, 2014; Siegler et al., 2011).  
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There is growing evidence that magnitude understanding is foundational to mathematics 

learning. Accuracy in whole number line estimation (e.g., Booth & Siegler, 2006; 2008; 

Holloway & Ansari, 2008; Jordan et al., 2013; Sasanguie, Göbel, Moll, Smets, & Reynvoet, 

2013) and fraction number line estimation (Bailey et al., 2012; Resnick et al., 2015; Siegler et al., 

2012; Siegler & Pyke, 2013; Siegler et al., 2011) both predict overall mathematics achievement.  

Understanding of fractions involves both conceptual and procedural knowledge  

Any mathematical domain involves both concepts and procedures (Geary, 2004). 

Knowledge of mathematical concepts is often termed conceptual knowledge; knowing how to 

execute steps to reach a correct answer is termed procedural knowledge. In the domain of 

fractions, measures of conceptual understanding typically assess students’ ability to estimate 

fraction magnitudes on a number line (as discussed previously), compare fraction magnitudes 

(e.g., Hecht, Close, & Santisi, 2003), find equivalent fractions, and recognize parts of a whole 

and parts of a set (e.g., Jordan et al., 2013). Measures of procedural knowledge require students 

to solve fraction arithmetic problems, with variations of addition, subtraction, multiplication, and 

division items (e.g., Siegler et al., 2011). Procedural knowledge may also be used to help 

students compare magnitudes and find equivalent fractions (e.g., cross multiplying the 

numerators with the denominators). 

Facility with both fraction concepts and procedures is needed for students to develop 

fraction proficiency. Imagine, for example, a student who demonstrates near perfect accuracy 

when estimating fraction magnitudes on a number line. However, when given the addition 

problem 1/2 + 1/4, the student does not know the procedural steps for finding a common 

denominator (e.g., 1/2 = 2/4; 2/4 + 1/4 = 3/4). The student may nevertheless reach the correct 

answer by using his or her strong grasp of fraction magnitudes. That is, the student visualizes a 
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mental number line and sees that adding 1/2 and 1/4 results in a location on the number line that 

is 3/4 of the whole number one. In this case, the student compensates for low procedural 

knowledge with high conceptual knowledge. However, the same student may struggle with the 

problem 2/7 + 4/21. Although he or she understands the conceptual underpinnings of the 

problem, the mental number line provides limited help for finding exact sums of two fractions 

with greater numerators and denominators. To solve this problem, the procedure of identifying a 

common denominator, which involves multiplicative skills, is more advantageous and accessible 

than a mental number line (2/7 = 6/21; 6/21 + 4/21 = 10/21), although magnitude understanding 

can help students evaluate the plausibility of their solutions (Bailey et al., 2015; Siegler & 

Lortie-Forgues, 2014). Conceptual knowledge of magnitudes is necessary but not sufficient for 

achieving with fractions. Likewise, students who execute procedures for solving fraction 

arithmetic problems without magnitude understanding will encounter limited success on problem 

solving tasks that require deeper knowledge.  

Fraction concepts and procedures ideally develop hand over hand (Hansen et al., 2015b). 

Recent analyses exploring how each type of knowledge influences the other indicate that the 

relation between fraction concepts and procedures is bidirectional; knowledge of fraction 

concepts impacts the development of fraction procedures and in turn, knowledge of procedures 

affects concepts, although likely to a lesser extent (Bailey et al., 2015; Fuchs et al., 2013; Fuchs 

et al., 2014; Hecht & Vagi, 2010). Overall, examination of the development of both fraction 

concepts and fraction procedures provides a more accurate picture of students’ fraction 

development. 

Fraction development in early childhood 
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Before formal instruction, most preschoolers have a basic understanding of fractions. 

Young children successfully solve non-symbolic calculations with fractions, make sense of 

fractions through equal sharing, and show an early sense of proportionality and partitioning. 

Despite these early foundational abilities, children also hold misconceptions about fractions that 

can persist throughout elementary school.  Each of these areas is discussed in this section. 

 Early fraction calculation ability. To assess fraction calculation in three- to seven-year-

old children, Mix, Levine, and Huttenlocher (1999) modified a previously used nonverbal 

calculation task where children are asked to view an array of black dots, which is then covered 

and transformed by adding dots to or subtracting them from the covered array; the child’s task is 

point at a picture of an equivalent array of dots after the transformation (Jordan, Levine, & 

Huttenlocher, 1994). On Mix and colleagues’ nonverbal fraction calculation task, an amount 

representing the first term of a fraction problem (represented as quarters of a circular sponge) 

was placed into a shallow hole (e.g., two quarters of the sponge). Then, the hole was hidden, and 

parts of the circular sponge (e.g., one quarter of the sponge) was either added to or subtracted 

from the amount that was hidden, but the child could not see the outcome (e.g., a quarter of the 

sponge; 1/2 - 1/4 = 1/4). The experimenter then asked the child to choose the correct amount 

from an array of four pictures showing different fractions (pieces) of a circle. The researchers 

found that while nonverbal whole-number calculation skill emerges about a year earlier than 

nonverbal fraction calculation skill, children as young as four years of age perform significantly 

above chance on fraction calculations with totals less than or equal to one. Mix and colleagues 

suggest that this later development of nonverbal fraction calculation skills may be related to the 

complexity of the spatial skills required for fraction versus whole-number calculation. That is, 

whole number calculations simply require movements in and out of space whereas the fractions 
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problems also required children to rotate, separate, and recombine amounts. Overall, the findings 

suggest that well before formal instruction in fractions begins, children can meaningfully 

calculate with fractions, most likely through their experience with parts and wholes in the 

environment as well as -- to some extent -- through their fundamental non-symbolic 

understandings of number and proportions. 

Equal sharing. One way children make sense of fractions is through equal sharing 

experiences (Davis & Pepper, 1992; Empson, 1999). Children learn about fractions through real-

world experiences with sharing snacks and toys, and perhaps unsurprisingly, many become 

concerned with the “fairness” or “evenness” of the sizes of the fractions when working on equal 

sharing problems (Brizuela, 2006; Empson, 1999). In a descriptive study of fraction learning in a 

first-grade classroom, Empson (1999) showed that children develop fraction concepts using their 

own representations in equal sharing situations. Before instruction, the majority of children 

successfully solved equal sharing problems that involved halving or repeated halving (e.g., when 

asked to share nine apples equally between two horses, children understood that both horses will 

receive four apples and the remaining apple must be split into two equal parts). By the end of the 

study period, nearly all of the children showed knowledge of at least one fraction other than one-

half and could solve equal sharing problems that involved partitioning other than repeated 

halving after instruction based on children’s informal understanding of fractions.  

 Early knowledge of proportionality. Proportional reasoning is foundational to 

understanding fractions (Boyer & Levine, 2012). Building on the idea that children have intuitive 

understanding of proportionality that is not dependent on formal instruction, Singer-Freeman and 

Goswami (2001) administered a proportional analogy task to preschool children. Two models of 

familiar foods were used in the task: one represented a continuous quantity (pizza) and the other 
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a discontinuous quantity (box of chocolates). During each trial, the experimenter presented two 

models to the child (e.g., two pizzas) and then removed a proportion from one of the models 

(e.g., one-half of a pizza). Children were asked to take away the same amount from the other 

model. Proportional reasoning with continuous quantities (e.g., pizzas) was relatively easy for 

the young children. On the other hand, children encountered greater difficulty reasoning about 

proportions when the task involved discrete quantities (e.g., individual chocolates), most likely 

because the presence of discrete, countable quantities encourages counting (Boyer, Levine, & 

Huttenlocher, 2008; Singer-Freeman & Goswami, 2001). Rather than thinking of a fraction as 

one magnitude (e.g., “one-third of the candy” or “less than half of the candy”), children may 

focus only on the size of the numerator or denominator or the total amount (e.g., “one piece of 

candy” or “three pieces total”).  

 Early misconceptions. The early fraction knowledge that young children demonstrate is 

not without misunderstandings. Children even struggle with the concept of “half.” Although 

children can solve concrete problems that involve halving (e.g., half of the pizza), they do not 

seem to have a complete understanding of the term. Some kindergartners and first graders see 

“half” as any fraction, regardless of whether they were halves, thirds, or quarters (Brizuela, 2006; 

Empson, 1999). Still other children are uncomfortable naming fractions, instead preferring to 

refer to fractions of pizzas or cookies as “pieces” (Brizuela, 2006; Mack, 1990). Some children 

do not understand what a half is. For example, when asked to identify “half”, they may point to a 

partitioning line that separates a figure and call that “the half”, rather than one of the pieces 

themselves (Brizuela, 2006). Interestingly, young students sometimes assert that half means “a 

little more than,” particularly in the context of age. For example, children might assert that on 

their next birthday, they will be seven, and on the day after the birthday, they will be seven and a 
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half (Brizuela, 2006). These conflicting sets of beliefs indicate that young children are thinking 

about fractions; however, full understanding of seemingly simple concepts, such as half, 

develops later. Because children live in a world that uses fractions in colloquial language, they 

pick up on aspects of fractions that are salient to them and, as a result, may hold several 

differing, seemingly conflicting understandings of fractions (Brizuela, 2006). 

 Although children show early knowledge of fraction calculation, equal sharing, and 

proportional reasoning, this knowledge does not translate easily to symbolic fractions and their 

magnitudes. When children use written arithmetic, they become confused because the same 

symbols that they have used for whole numbers are used in a new way to represent fractions 

(Sophian, Garyantes, & Chang, 1997). For example, children have seen the number “1” used to 

represent one object and “2” used to represent two objects, but the fraction “1/2” can have 

multiple meanings (half of one object, or three out of six objects).    

Fraction development between third and sixth grade: Findings from the Delaware 

Longitudinal Study  

 The goal of our longitudinal project was to identify predictors of fraction learning from 

third through sixth grade. We examined the development of fraction concepts and procedures 

over multiple time points: before, during, and right after formal fraction instruction in school. 

We uncovered empirically distinct growth trajectory classes for fraction learning and analyzed 

student performance to help explain why so many children struggle with fractions.  

We started the project with about 500 children in third grade. Participants were drawn 

from schools that primarily followed a curriculum sequence based on the U.S. Common Core 

State Standards-Mathematics (Council of Chief State School Officers & National Governors 

Association Center for Best Practices & Council of Chief State School Officers, 2010). Although 
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students represented a diverse range of ethnicities, SES, and ability levels, we oversampled in 

higher risk schools serving low-income communities. Based on the aforementioned integrated 

theory of numerical development, we hypothesized that accurate representations of numerical 

magnitudes would be uniquely important for acquisition of fraction knowledge in particular and 

mathematics skills more generally. To test this premise, we examined the extent to which general 

and number specific cognitive processes predict fraction outcomes.  

Domain-general predictors included measures of classroom attention, working memory, 

language, nonverbal reasoning, and reading fluency. Our mathematics specific predictors 

included whole number line estimation, non-symbolic proportional reasoning, and whole number 

calculation skills (i.e., addition and multiplication fluency and long division). Non-symbolic 

proportional reasoning supports thinking about multiplicative relations, a crucial component of 

fractions (Boyer & Levine, 2012). Most of the predictor measures were administered in third and 

fifth grades, with the exception of proportional reasoning, multiplication, and long division, 

which were administered only fifth grade. Fraction outcomes, which were assessed over multiple 

time points between fourth and sixth grades, included a fraction number line estimation task, a 

curriculum-based fraction concepts measure using released items from the U.S. National 

Assessment of Educational Progress (NAEP; 2007, 2009), and a measure of fraction arithmetic 

procedures. In all of our main analyses we controlled for the influence of background factors 

(i.e., gender, income status, and age).  

Predictors of fraction knowledge. Overall, multiple regression analyses showed that 

both domain-specific knowledge and domain-general knowledge shape change in fraction 

learning, with numerical magnitude understanding being especially important (Jordan et al., 

2013; Hansen et al 2015a). The standardized beta coefficients (measure of effect size or the 
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expected increase or decrease of the dependent variable in standard deviation units) of predictors, 

by grade, are presented in Table 1.  

(1) Third grade predictors of
 
fourth grade fraction outcomes (Jordan et al., 2013). For 

fourth-grade fraction concepts, number line estimation, attentive behavior, addition fluency, 

language, nonverbal ability, and reading fluency, all made significant and unique contributions. 

For fourth-grade fraction procedures, number line estimation, working memory, attentive 

behavior, and addition fluency contributed reliably and independently to the model. Overall, the 

complete set of number-related and general processes predicted fourth graders’ fraction concepts 

better than fraction procedures (56% versus 30% of explained variance).  

(2) Fifth grade predictors of sixth grade fraction outcomes (Hansen et al., 2015a). Whole 

number line estimation, non-symbolic proportional reasoning, attentive behavior, long division, 

and working memory all contributed uniquely to fraction concepts in sixth grade. On a sixth-

grade measure of fraction procedures, attentive behavior, whole number line estimation, 

multiplication fluency, and long division made unique and significant contributions. Overall, the 

entire set of fifth grade predictors accounted for 58% of the explained variance for fraction 

concepts and 40% for fraction procedures in sixth grade. The lower overall predictability of our 

measures for fraction procedures compared to fraction concepts could indicate that instruction in 

rote computation algorithms may be used more in current practice than instruction that 

emphasizes understanding of what fractions are. 

In the aforementioned study of sixth grade predictors (Hansen et al., 2015a), number line 

estimation is more important to fraction concepts than to procedures, which differs from our 

earlier finding that third-grade number line estimation is equally predictive of fraction concepts 

and procedures at fourth grade (Jordan et al., 2013). A possible explanation for this 
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developmental difference might be that fourth grade fraction computation involves relatively 

simple procedures involving like denominators for addition and subtractions. In later grades, 

students must be facile with multiple procedures and operations. Attention and whole number 

computational abilities (multiplication fluency and division) emerge as key predictors of sixth 

grade fraction procedures.   

Interestingly, our non-symbolic proportional reasoning measure contributed 

independently to students’ proficiency with fraction concepts, over and above symbolic math-

related and general predictors. The data are in keeping with Matthews et al.’s (in press) 

conjecture, discussed earlier, that a core cognitive system that processes non-symbolic ratios 

underpins fraction learning. Although proportional reasoning and whole number line estimation 

are moderately correlated, the independent contribution of proportional reasoning shows that 

fundamental understandings of scale relations and multiplicative reasoning (e.g., 1/3 is the same 

as 3/9; Boyer & Levine, 2012; Gunderson, Ramirez, Beilock, & Levine, 2012) are important for 

learning fraction concepts, particularly in the context of area models for representing fractions 

that are widely used in the United States.  

We also examined students’ performance on individual items on our fraction concepts 

and procedures measures in sixth grade (Hansen et al., 2015b). There were substantial gaps 

between lower and higher performing children on items requiring them to compare and order 

fractions. Lower performing students struggled relative to their higher performing peers on tasks 

that required flexible thinking, such as ones where the denominator of the fraction did not 

correspond directly to the pieces shown (e.g., “Shade 4/5 of 10 circles”). It should be noted that 

almost all students experienced difficulties when presented with fraction estimation problems 

(e.g., “Estimate the sum: 7/8 + 12/13”), suggesting that generally more attention should be 
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devoted to this instructional topic. On procedures, we found that low performing sixth graders 

tend to misapply whole number strategies when adding and subtracting fractions with unlike 

denominators (e.g., 2/5 + 3/4 = 5/9).  This approach reflects weak understanding or attention to 

the bipartite structure of fractions, that is, that the numerator and denominator of the fraction 

together represent one magnitude. 

Growth in fraction magnitude understanding. We assessed the development of 

children’s fraction number line estimation over five time points between fourth and sixth grade 

(Resnick et al., 2015). No previous studies had examined the development of fraction magnitude 

estimation during this time, which is when the majority of fraction instruction takes place in 

American schools. At each time point, students were asked to estimate where fractions should be 

placed on number lines ranging from 0 to 1 and 0 to 2. See Figure 1 for examples of task items.  

Over the course of the study, most students increased their estimation accuracy. However, 

latent class growth analyses revealed three empirically distinct growth trajectory classes: (1) 

students who were highly accurate from the start and became even more accurate; (2) students 

who were inaccurate at first but showed steep growth; and (3) students who started inaccurate 

and showed minimal growth. Disturbingly, about 42% of students left sixth grade with only a 

minimal grasp of fraction magnitudes. Another 26% of students seemed to benefit a great deal 

from their fractions instruction in later elementary and early middle school but still were not as 

accurate as roughly one third of the students who started the study with considerable strength in 

estimating fraction magnitudes. Growth trajectory class membership was highly predictive of 

performance on a high-stakes, statewide mathematics test at the end of sixth grade. That is, 67% 

of the inaccurate, minimal growth group did not meet state mathematics standards vs. only 5% of 

the highly accurate group and 17% of the steep growth group. 
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Students with poor multiplication fluency, weak classroom attention, and inaccurate 

whole number line estimation skill at the start of the study in fourth grade were much more likely 

to fall into the low-accuracy, minimal growth group. Analyses of performance showed that 

younger grades and low-accuracy/minimal-growth students typically estimated both proper and 

improper fractions as being less than one, indicating they were not attending to the relation 

between numerator and denominator. These students seemed to define fractions as “really small” 

or “less than one”. Emphasis on proper fractions in early fraction instruction may lead students to 

view all fractions (a/b) as numbers between zero and one (Vosniadou, Vamvakoussi, & 

Skopeliti, 2008). 

Overall analysis by fraction type revealed that students’ estimation skills with improper 

fractions were less accurate and developed later than their skill with proper fractions and mixed 

numbers. This finding supports the integrated theory of numerical development, described 

earlier, which asserts that numerical development involves increasingly widening the range and 

type of number understood as magnitudes that can be accurately located on a number line 

(Siegler & Lortie-Forgues, 2014).  

In sum, findings to date from the Delaware Longitudinal Study show that although a 

range of domain-general and number-specific competencies predict fraction outcomes, the ability 

to estimate numerical magnitudes on a number line is a key marker of fraction and mathematics 

success. Children with mathematics difficulties may have fundamental problems related to whole 

number magnitude representations that are further complicated by the introduction of fractions 

into the curriculum. In addition, attentive behavior, non-symbolic proportional reasoning, and 

calculation fluency all were consistently important predictors of fraction learning and growth. 

Helping students who struggle with fractions 
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According to a recent report by the U.S. Department of Education National Center for 

Educational Statistics, only 32% of eighth graders nationwide scored at or above proficiency on 

the 2015 nationwide NAEP assessments (NAEP; 2015). Moreover, the situation is most urgent 

for minority and low-income students, who generally perform more poorly than their non-

minority and non-low income peers. As such, current research findings on the importance of 

numerical magnitude understanding for developing fraction knowledge in particular, and to 

mathematics achievement more generally, should have particular resonance for educators and 

policymakers. 

Research findings strongly support an approach to teaching fractions as well as whole 

numbers that centers on a number line. Students who develop an understanding that all real 

numbers, including fractions, are assigned to their own location on a number line have an 

advantage not only in learning fractions but also in learning algebraic concepts (Booth, Newton, 

& Twiss-Garrity, 2014). Until recently, a part-whole interpretation of fractions has been 

dominant in the U.S. mathematics curriculum (Siegler et al., 2015). Yet instructional activities 

using number lines successfully support student learning of whole numbers (Ramani & Siegler, 

2008) and fractions (Fuchs et al., 2013; Fuchs et al., 2014).  

Part-whole instruction defines a/b as a parts out of b parts. Even low-performing students 

are successful on part-whole problems where the denominator matches the number of partitions 

in the whole (Hansen et al., 2015b); while low-performing students can shade 3/4 of a rectangle 

when the rectangle is separated into four equal parts, they are unable to when it is partitioned into 

8 equal parts. These same students, however, may be able to show that 3/4 is equivalent to 6/8 by 

performing the operation: 3/4 x 2/2 = 6/8. Such disconnects between conceptual and procedural 

knowledge makes it difficult for students to use fraction procedures in every day situations 
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because they do not understand the concepts that support all procedures. A number line approach 

has the potential to remedy some of these difficulties by emphasizing that fractions are numbers 

that can be ordered and placed on the number line (Fuchs et al., 2013; Fuchs et al., 2014). For 

example, a number line could be used to illustrate fraction equivalence (3/4 is the same as 6/8 

because they are actually the same location on a number line), the inversion property of fractions 

(fractions with the same numerator become smaller as the denominators increase), and the 

density of fractions (between any two fractions, there are an infinite number of fractions).   

To promote learning of fraction magnitudes, interventions should also address students’ 

attention. Attentive behavior allows students to stay on task and to acquire relevant knowledge 

and skills in their mathematics classrooms. Attentive behavior also facilitates effective strategy 

application on number line tasks; in order to understand the magnitude of a given fraction, 

students need to attend to the numerator and denominator simultaneously and to inhibit 

ineffective whole number strategies (Bonato, Fabrri, Umilta, & Zorzi, 2007; Meert, Gregoire, & 

Noel, 2010). Further, students must attend to the varying end points of the number line (e.g., 0 to 

1, 0 to 2, 0 to 5) when placing fractions; low-performing students tend to always place 1/2 in the 

midpoint of the line rather than the absolute value of 1/2 (Carrique, Hansen et al., submitted).  

The importance of multiplication fluency should not be underestimated for fraction 

learning. Fast and accurate calculation skills facilitate reasoning about fractions and their 

(Seethaler, Fuchs, Star, & Bryant, 2011; Hecht et al., 2003). For example, it helps students see, 

with minimal cognitive effort, multiplicative relations between equivalent fractions (1/4 is the 

same as 2/8) as well as between improper fractions and mixed numbers (6/4 is the same as 6 x 

1/4, or 1 1/2). Unfortunately, many U.S. curricula do not support multiplication fluency practice 

after fifth grade.  
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Additionally, as noted earlier in this chapter, typical instruction focuses on proper 

fractions (i.e., fractions less than 1; Vosniadou et al., 2008), even if a number line approach is 

used. Focusing on proper fractions facilitates to the common misunderstanding that all fractions 

are small numbers less than one. This type of reasoning makes sense given the general use of the 

word “fraction” to mean a tiny part, such as a fraction of a second or a fraction of an inch. 

Children should work with number lines showing more than one from the start, although this 

assertion requires further investigation. Placing proper and improper fractions on number lines 

from 0 to 2 encourages reasoning about the relationship between the numerator and the 

denominator as students move from 0 to 1 and beyond 1. Number line approaches help children 

see when a < b, the fraction is less than 1; when a = b, the fraction is equal to 1; and when a > b, 

the fraction is greater than one.  

According to the U.S. Department What Works Clearinghouse Practice Guide on 

assisting students who are struggling with mathematics, in depth treatment of rational number 

should be the focus of middle school math interventions (Gersten et al., 2009).  Research 

supported instruction emphasizing fraction magnitudes and centered on a number line must be 

implemented to stem cascading difficulties when algebra becomes a primary focus (Siegler et al., 

2012; Siegler & Pyke, 2013). 

  



FRACTION DEVELOPMENT IN CHILDREN 21 

References 

Bailey, D. H., Zhou, X., Zhang, Y., Cui, J., Fuchs, L. S., Jordan, N. C., Gersten, R., & Siegler, R. 

S. (2015). Development of fraction concepts and procedures in U.S. and Chinese 

children. Journal of Experimental Child Psychology, 129, 68-83. 

doi:10.1016/j.jecp.2014.08.006 

Bailey, D. H., Hoard, M. K., Nugent, L., & Geary, D. C. (2012). Competence with fractions 

predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 

113(3), 447-455. 

Bertelletti, I., Lucangeli, D., Piazza, M., Dehaene, S., & Zorzi, M. (2010). Numerical estimation 

in preschoolers. Developmental Psychology,46,545-551. doi:10.1037/a001788 

Bonato, M., Fabbri, S., Umiltà, C., & Zorzi, M. (2007). The mental representation of numerical 

fractions: Real or integer? Journal of Experimental Psychology: Human Perception and 

Performance, 33(6), 1410-1419. doi:10.1037/0096-1523.33.6.1410 

Booth, J. L., & Newton, K. J. (2012). Fractions: could they really be the gatekeeper’s doorman? 

Contemporary Educational Psychology, 37(4), 247-253. 

doi:10.1016/j.cedpsych.2012.07.001 

Booth, J. L., Newton, K. J., & Twiss-Garrity, L. K. (2014). The impact of fraction magnitude 

knowledge on algebra performance and learning. Journal of Experimental Child 

Psychology, 118, 110-118. doi:10.1016/j.jecp.2013.09.001 

Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure 

numerical estimation. Developmental Psychology, 42(1), 189.  

doi:10.1037/0012-1649.41.6.189 



FRACTION DEVELOPMENT IN CHILDREN 22 

Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic 

learning. Child Development, 79(4), 1016-1031. doi: 10.1111/j.1467-8624.2008.01173.x 

Boyer, T. W., & Levine, S. C. (2012). Child proportional scaling: Is 1/3=2/6=3/9=4/12? Journal 

of Experimental Child Psychology, 111(3), 516-533. doi:10.1016/j.jecp.2011.11.001 

Boyer, T. W., Levine, S. C., & Huttenlocher, J. (2008). Development of proportional reasoning: 

Where young children go wrong. Developmental Psychology, 44(5), 1478-1490. 

doi:10.1037/a0013110 

Brizuela, B. M. (2006). Young children’s notations for fractions. Educational Studies in  

Mathematics, 62(3), 281-305. doi:10.1007/s10649-005-9003-3 

Carrique, J., Hansen, N., Jordan, N. C., & Dyson, N. (2015). Helping struggling seventh-graders 

learn fraction concepts. Manuscript submitted for publication. 

Council of Chief State School Officers & National Governors Association Center for Best 

Practices. (2010). Common core state standards for mathematics. Common Core State 

Standards Initiative. Retrieved from 

http://www.corestandards.org/assets/CCSSI_Mathematics%20Standards.pdf. 

Davis, G. E., & Pepper, K. L. (1992). Mathematical problem solving by pre-school children. 

Educational Studies in Mathematics, 23(4), 397-415. doi: 10.1007/BF00302442 

Empson, S. B. (1999). Equal sharing and shared meaning: The development of fraction concepts 

in a first-grade classroom. Cognition and Instruction, 17(3), 283-342. 

doi:10.1207/S1532690XCI1703_3 

Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in cognitive 

sciences, 8(7), 307-314. doi:10.1016/j.tics.2004.05.002 



FRACTION DEVELOPMENT IN CHILDREN 23 

Fuchs, L. S., Schumacher, R. F., Long, J., Namkung, J., Hamlett, C. L., Cirino, P. T., Jordan, N. 

C., Siegler, R. S., Gersten, R., & Changas, P. (2013). Improving at-risk learners' 

understanding of fractions. Journal of Educational Psychology, 105(3), 683-700. 

doi:10.1037/a0032446 

Fuchs, L. S., Schumacher, R. F., Sterba, S. K., Long, J., Namkung, J., Malone, A., Hamlett, C. 

L., Jordan, N. C., Gersten, R., Siegler, R. S., & Changas, P. (2014). Does working 

memory moderate the effects of fraction intervention? An aptitude-treatment interaction. 

Journal of Educational Psychology, 106(2), 499-514. doi:10.1037/a0034341 

Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities,  

37(1), 4-15. doi:10.1177/00222194040370010201 

Geary, D. C. (2006). Development of mathematical understanding. In W. Damon & R. M. Lerner  

(Series Eds.) & D. Kuhn & R. S. Siegler (Vol. Eds.), Handbook of child 

psychology:Volume 2: Cognition, perception, and language (6th ed., pp. 777–810). 

Hoboken, NJ: Wiley. 

Gelman, R., & Williams, E. (1998). Enabling constraints for cognitive development and  

learning: Domain specificity and epigenesis. In W. Damon, D. Kuhn, & R. S. Siegler 

(Eds.), Handbook of child psychology. New York: Wiley. 

Gersten, R., Beckmann, S., Clarke, B., Foegen, A., Marsh, L., Star, J. R., & Witzel, B. (2009). 

 Assisting students struggling with mathematics: Response to Intervention (RtI) for  

elementary and middle schools (NCEE 2009-4060). Washington, DC: National Center 

for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. 

Department of Education. Retrieved from  

 http://ies.ed.gov/ncee/wwc/publications/practiceguides/  



FRACTION DEVELOPMENT IN CHILDREN 24 

Groves, P. M., & Thompson, R. F. (1970). Habituation: a dual-process theory. Psychological 

Review, 77(5), 419. doi:10.1037/h0029810 

Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between 

spatial skill and early number knowledge: The role of the linear number line. 

Developmental Psychology, 48(5), 1229-1241. doi:10.1037/a0027433 

Hansen, N., Jordan, N. C., & Carrique, J. (2015b). Identifying learning difficulties with fractions: 

A longitudinal study of student growth from third through sixth grade. Manuscript 

submitted for publication. 

Hansen, N., Jordan, N. C., Siegler, R. S., Fernandez, E., Gersten, R., Fuchs, L., & Micklos, D. 

(2015a). General and math-specific predictors of sixth-graders’ knowledge of fractions. 

Cognitive Development, 35, 34-49. doi:10.1016/j.cogdev.2015.02.011 

Hecht, S., Close, L., & Santisi, M. (2003). Sources of individual differences in fraction skills. 

Journal of Experimental Child Psychology, 86(4), 277-302. 

doi:10.1016/j.jecp.2003.08.003 

Hecht, S. A., & Vagi, K. J. (2010). Sources of group and individual differences in emerging 

fraction skills. Journal of Educational Psychology, 102(4), 843-859. 

doi:10.1037/a0019824 

Heitin, L. (2015, February 10). ‘Fraction Phobia’: The Root of Math Anxiety? [Web blog post]. 

Retrieved from 

http://blogs.edweek.org/edweek/curriculum/2015/02/fractionphobia_the_root_of_mat.ht

ml 



FRACTION DEVELOPMENT IN CHILDREN 25 

Holloway, I. D., & Ansari, D. (2008). Domain-specific and domain-general changes in children’s 

development of number comparison. Developmental Science, 11(5), 644-649. 

doi:10.1111/j.1467-7687.2008.00712.x 

Jordan, N. C., Hansen, N., Fuchs, L. S., Siegler, R. S., Gersten, R., & Micklos, D. (2013). 

Developmental predictors of fraction concepts and procedures. Journal of Experimental 

Child Psychology, 116(1), 45-58. doi:10.1016/j.jecp.2013.02.001 

Jordan, N. C., Levine, S. C., & Huttenlocher, J. (1994). Development of calculation abilities in 

middle- and low-income children after formal instruction in school. Journal of Applied 

Developmental Psychology, 15(2), 223-240. doi:10.1016/0193-3973(94)90014-0 

Kloosterman, P. (2010). Mathematics Skills of 17-Year-Olds in the United States: 1978 to 2004. 

Journal for Research in Mathematics Education, 41(1), 20-51. Retrieved from 

http://www.jstor.org/stable/40539363 

Mack, N. K. (1990). Learning fractions with understanding: Building on informal knowledge.

 Journal for Research in Mathematics Education, 21(1), 16-32. doi:10.2307/749454 

Matthews, Lewis, & Hubbard (in press). Individual differences in nonsymbolic ratio processing 

predict symbolic math performance. Psychological Science.  

McCrink, K., & Wynn, K. (2007). Ratio abstraction by 6-month-old infants. Psychological 

Science, 18(8), 740-745. doi:10.1111/j.1467-9280.2007.01969.x 

Meert, G., Grégoire, J., & Noël, M. P. (2010). Rational numbers: Componential versus holistic 

representation of fractions in a magnitude comparison task. The Quarterly Journal of 

Experimental Psychology, 62(8), 1598-1616. doi:0.1080/17470210802511162 

Mix, K., Levine, S. C., & Huttenlocher, J. (1999). Early fraction calculation ability. 

Developmental Psychology, 35(1), 164-174. doi:10.1037//0012-1649.35.1.164 



FRACTION DEVELOPMENT IN CHILDREN 26 

Ni, Y., & Zhou, Y. (2005). Teaching and learning fraction and rational numbers: The origins and  

implications of whole number bias. Educational Psychologist, 40(1), 27-52. 

doi:10.1207/s15326985ep4001_3 

Opfer, J. E., & Siegler, R. S. (2007). Representational change and children’s numerical 

estimation. Cognitive Psychology, 55(3), 169-195. doi:10.1016/j.cogpsych.2006.09.002 

Opfer, J. E., & Thompson, C. A. (2008). The trouble with transfer: Insights from microgenetic 

changes in the representation of numerical magnitude. Child Development, 79(3), 788-

804. doi: 10.1111/j.1467-8624.2008.01158.x 

Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-

income children’s numerical knowledge through playing number board games. Child 

Development, 79(2), 375-394. doi:10.1111/j.1467-8624.2007.01131.x 

Resnick, I., Hansen, N., Carrique, J. Rajan, V., Jordan, N. C. (2015, October). Developmental 

Growth Trajectories in Fraction Magnitude from Fourth through Sixth Grade. Poster 

presented at the Cognitive Developmental Society Biennial Meeting, Columbus, OH. 

Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number 

sense, symbolic number processing, or number–space mappings: What underlies 

mathematics achievement?. Journal of Experimental Child Psychology, 114(3), 418-431.  

doi:10.1016/j.jecp.2012.10.012 

 

Schneider, M., & Siegler, R. S. (2010). Representations of the magnitudes of fractions. Journal 

of Experimental Psychology: Human Perception and Performance, 36(5), 1227-1238. 

doi:10.1037/a0018170 



FRACTION DEVELOPMENT IN CHILDREN 27 

Seethaler, P.M., Fuchs, L.S., Star, J.R., & Bryant, J.R. (2011). The cognitive predictors of

 computational skill with whole versus rational numbers: An exploratory study. Learning

 and Individual Differences, 21(5), 536-542. doi:10.1016/j.lindif.2011.05.002 

Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., 

Susperreguy, M. I., & Chen, M. (2012). Early predictors of high school mathematics 

achievement. Psychological Science, 23, 691-697. doi:10.1177/0956797612440101 

Siegler, R. S., Fazio, L. K., Bailey, D. H., & Zhou, X. (2013). Fractions: the new frontier for 

theories of numerical development. Trends in Cognitive Science, 17(1), 13-19. 

doi:10.1016/j.tics.2012.11.004 

Siegler, R., Fuchs, L., Jordan, N., Gersten, R., & Ochsendorf, R. (2015). The Center for

 Improving Learning of Fractions: A progress report. In S. Chinn (Ed.), The Routledge   

international handbook of dyscalculia and mathematical learning difficulties, (pp. 292

 303). New York: Routledge. 

Siegler, R. S., & Lortie-Forgues, H. (2014). An integrative theory of numerical development.   

Child Development Perspectives, 8(3), 144-150. doi:10.1111/cdep.12077 

Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for 

multiple representations of numerical quantity. Psychological Science, 14(3), 237-250. 

doi:10.1111/1467-9280.02438 

Siegler, R. S., & Pyke, A. A. (2013). Developmental and individual differences in understanding 

of fractions. Developmental Psychology, 49(10), 1994-2004. doi:10.1037/a0031200 

Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number  

and fractions development. Cognitive Psychology, 62(4), 273-296. 

doi:10.1016/j.cogpsych.2011.03.001 



FRACTION DEVELOPMENT IN CHILDREN 28 

Singer-Freeman, K. E., & Goswami, U. (2001). Does half a pizza equal half a box of chocolates? 

Proportional matching in an analogical task. Cognitive Development, 16(3), 811-829. 

doi:10.1016/S0885-2014(01)00066-1 

Sophian, C., Garyantes, D., & Chang, C. (1997). When three is less than two: Early 

developments in children's understanding of fractional quantities. Developmental 

Psychology, 33(5), 731-744. doi:10.1037/0012-1649.33.5.731 

U.S. Department of Education, Institute of Education Sciences, National Center for Education 

Statistics, National Assessment of Educational Progress (NAEP), 2004 Mathematics 

Assessment. Retrieved July 2011 from http://nces.ed.gov/nationsreportcard/. 

U.S. Department of Education, Institute of Education Sciences, National Center for Education 

Statistics, National Assessment of Educational Progress (NAEP), 2008 Mathematics 

Assessment. Retrieved July 2011 from http://nces.ed.gov/nationsreportcard/. 

U.S. Department of Education, Institute of Education Sciences, National Center for Education 

Statistics, National Assessment of Educational Progress (NAEP), 2015 Mathematics 

Assessment. Retrieved October 2015 from http://nces.ed.gov/nationsreportcard/. 

Vamvakoussi, X., & Vosniadou, S. (2010). How many decimals are there between two fractions?

 Aspects of secondary school students' understanding of rational numbers and their

 notation. Cognition and Instruction, 28(2). doi:10.1080/07370001003676603 

Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The framework theory approach to the 

problem of conceptual change. International handbook of research on conceptual 

change, 3-34. 

Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 

74(1), B1-B11. doi:10.1016/S0010-0277(99)00066-9 

http://psycnet.apa.org/doi/10.1037/0012-1649.33.5.731


FRACTION DEVELOPMENT IN CHILDREN 29 

  



FRACTION DEVELOPMENT IN CHILDREN 30 

 

 

Table 1 

 

Multiple Regression Standardized Beta Coefficients of Predictors of Fraction Concepts and 

Procedures by Grade 

 

 Fourth grade Sixth grade 

Variable Concepts Procedures Concepts Procedures 

  

Whole number line estimation
1
 

   

    -.271*** 

 

-.237*** 

    

    -.361*** 

    

    -.183*** 

Attention .225*** .135* .170*** .254*** 

Language .196*** .081 --- --- 

Addition luency .169*** .126* --- --- 

Nonverbal reasoning .111** .097 --- --- 

Reading fluency .086*     -.037 .048 .011 

Working memory .044 .137** .114** .011 

Non-symbolic proportional 

reasoning 
--- --- .198***       .080 

Multiplication fluency --- --- .037 .171** 

Long division --- --- .113* .171** 

     

 

Note. Predictors of fourth-grade outcomes were assessed in third grade; predictors of sixth-grade 

outcomes were assessed in fifth grade. Empty cells indicate variables that were not included in the 

multiple regression analysis.  

* p < .05. 

** p < .01. 

*** p < .001. 

  

                                                 
1
 Percentage of absolute error with lower score indicating more accurate estimation 
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Figure 1. Example items for (A) 0-1 and (B) 0-2 fraction number line estimation tasks.  Students 

are  asked to mark where the fraction should be placed  on the line.  
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