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Abstract Many scientific theories and discoveries involve reasoning about extreme scales,
removed from human experience, such as time in geology and size in nanoscience. Thus,
understanding scale is central to science, technology, engineering, and mathematics. Unfortu-
nately, novices have trouble understanding and comparing sizes of unfamiliar large and small
magnitudes. Relational reasoning is a promising tool to bridge the gap between direct
experience and phenomena at extreme scales. However, instruction does not always improve
understanding, and analogies can fail to bring about conceptual change, and even mislead
students. Here, we review how people reason about phenomena across scales, in three sections:
(a) we develop a framework for how relational reasoning supports understanding extreme
scales; (b) we identify cognitive barriers to aligning human and extreme scales; and (c) we
outline a theory-based approach to teaching scale information using relational reasoning,
present two successful learning activities, and consider the role of a unified scale instruction
across STEM education.

Keywords Size and scale . Relational reasoning . Analogy. Progressive alignment . Corrective
feedback

Being able to reason about size and scale is central to performance in science, technology,
engineering, and mathematics (STEM; Hawkins 1978; Tretter et al. 2006) and, as such, are
suggested as a unifying theme in science education (National Research Council 2011;
American Association for the Advancement of Science 1993). Size refers to an absolute
magnitude or value. Scale refers to systems of measurement, which allow for the comparison
of relative sizes. For example, years and kilometers are both conventional scales to measure
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temporal duration and spatial distance, respectively. Knowing that the Earth formed 4.6 billion
years ago provides a scale, or measure, to understand that while there is approximately 225
million years between when dinosaurs and humans appear, these two events occurred close
together relative to the history of the planet.

Many fundamental scientific concepts and discoveries, such as the example above, are at
extreme scales, far removed from human experience. Additional examples include the astro-
nomical distances involved in space exploration and the rapidly developing field of nanotech-
nology—both are based on phenomena occurring at scales that cannot be directly perceived.
Unfortunately, scales outside of human perception can be particularly difficult to comprehend.
While novices can typically place events and phenomena in the correct sequential order, they
fail to understand the magnitude in between (Jones et al. 2008; Miller and Brewer 2010; Trend
2001; Tretter et al. 2006). In particular, novices have trouble assigning, comprehending, and
comparing absolute sizes, especially at extreme scales (e.g., Delgado et al. 2007; Jones et al.
2008; Libarkin et al. 2005).

Because scales outside of human perception cannot be directly experienced, comprehension
likely requires relational reasoning. Relational reasoning is a basic cognitive mechanism
involved in the formation of conceptual categories and encompasses the ability to detect
similarities and differences in patterns among objects, concepts, and situations (James 1890;
Alexander and the Disciplined Reading and Learning Research Laboratory (DRLRL) 2012).
Below, we present a theoretical framework for how relational reasoning may support under-
standing scales outside of human perception. We then identify cognitive barriers to the
application of relational reasoning in understanding scale. Finally, we outline a theory-based
approach to teaching scale information using relational reasoning. We present two successful
learning activities and consider the role of unifying scale instruction across STEM education.

Framework for How Relational Reasoning Supports Scale Understanding

Similarities Between Human and Extreme Scales

There is converging cognitive, neurocognitive, developmental, and comparative evidence that
suggest reasoning about any type of scale (e.g., temporal, spatial, abstract) uses the same
neural and conceptual resources (e.g., Bueti and Walsh 2009; Cantlon et al. 2009; Lourenco
and Longo 2011; Walsh 2003; for a review, see Cohen Kadosh et al. 2008). Magnitude
information is cognitively stored as a hierarchical combination of both metric and
categorical information (Huttenlocher et al. 1988; Huttenlocher et al. 2000). For
example, recollection that a wedding took place on June 12, implicitly includes the
higher-level categorical information that the wedding took place in the summer. Such
use of categorical information is seen even at extremely large and small scales (Landy
et al. 2014; Resnick et al. 2016a, b). Variation in estimation thus occurs because of
imprecision of category boundaries, with increased variation associated with larger
category ranges (Shipley and Zacks 2008; Zacks and Tversky 2001).

Because people reason about scales within and outside of human perception in
similar ways, analogical reasoning may be especially relevant in understanding ex-
treme scales (Resnick et al. 2016a, b). Analogical reasoning is a specific kind of
relational reasoning, which refers to aligning structural similarities between a base
concept and target concept (e.g., Gentner et al. 2007; Markman and Gentner 1993a). In
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an analogy, a new unfamiliar concept is mapped onto a relevant analog accessed from memory
to identify systematic correspondences (Gentner and Holyoak 1997). This mapping process is
characterized by a consistent, one-to-one connections between the structural relations of the
base and target concepts, and not their features ( Gentner 1982, 1983; Gentner &Gentner 1983).
The base concept functions to organize and visualize the target concept, which, in turn,
increases understanding and recall (Orgill and Bodner 2004; Simons 1984). Thus, the base
concept serves as a structure to help explain or clarify the target concept (Gentner 1983;
Markman and Gentner 1993a).

One way people may come to understand scales far removed from their personal experience
is by aligning the structural similarities of extreme scales with familiar human scales. Landy
et al. (2014) suggest that extreme scales are reasoned about by recycling, and not extending,
cognitive resources involved in small number processing. In their study, when estimating
values on a billion scale, undergraduates first divided the billion scale into smaller subscales,
made linear adjustments within each subscale, and then combined the subscales to compromise
the original billion scale. Being able to build and use extensive complex units, or categories, is
associated with a range of mathematical abilities (Carpenter and Moser 1983; Lamon 1994),
because it allows for the comparison of individual items as well as their aggregate (Callanan
and Markman 1982). Indeed, unitizing is characteristic of STEM experts’ reasoning about
scale (Tretter et al. 2006).

Dissimilarities Between Human and Extreme Scales

Despite similarities in reasoning at scales within and outside of human perception, there are
some notable differences. The same observation at one scale can have a completely different
meaning at another scale. For example, while fluctuations in weather indicate something about
daily atmospheric conditions, the same weather fluctuations over much longer periods of time
can indicate changes in climate. Further, even very small changes in Earth’s average
temperature over long periods of time can have very large effects, even though
temperature can change dramatically within a 24-h period with no noticeable effect
the following day (Riebeek 2010).

Phenomena at different scales can also behave very differently, and, as such, properties of
phenomena at a given scale may not be true of other scales. A classic example of scaling
effects can be found in the observation of structural strength; after falling eight feet a horse’s
bones will break whereas a dog falling, the same amount would be able to walk away (Galileo
1638). This particular scaling effect is largely due to the ratio of surface area to volume varying
as the scale of the object changes and has serious implications in construction.

Human scales and extreme scales may also be formally conceptualized using mutually
exclusive, or antinomic, organizational structures. For example, while time at human scales is
based on temporal durations (60 s=1 min, 60 min=1 h), time at geologic scales is based on
the occurrence of important events (the Mesozoic = age of reptiles; the Cenozoic= age of
mammals). Thus, human temporal scales are equally spaced whereas geologic temporal scales
are not.

Alexander and DRLRL (2012) have identified three ways in which people reason relation-
ally about differences. Anomalous reasoning is the ability to identify deviations from an
established pattern (Dumas et al. 2013). Antithetical and antinomic reasoning both involve
being able to reconcile conflicting information (Alexander et al. 2016), with antithesis
pertaining to identifying oppositional relations and antinomy pertaining to incompatible
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relations (Dumas et al. 2013). Reasoning about dissimilarities requires being able to first detect
a pattern and then identify subsequent deviations from that pattern (Dumas et al. 2013) and has
been implicated as a mechanism for conceptual change (Gentner 1983; Hummel and Holyoak
2003; Vosniadou and Mason 2012). Conceptual change can occur because the process
of mapping a base concept and target concept not only creates new knowledge, but
can also cause the evaluation and reconceptualization of existing conceptual categories
and schemas (Hatford 1993).

People may come to understand scales far removed from their personal experience
by identifying and reasoning about observed differences between different scales.
Fractions, for example, typically represents the first real opportunity for students to
reason about numbers other than whole numbers (Siegler and Lortie-Forgues 2014;
Siegler et al. 2011). Importantly, the properties of whole numbers are not true of all
numbers; while the multiplication of whole numbers always results in a larger
number, the same is not true of fractions. Learning about fractions often results in a
deeper understanding of numerical properties because students must reconcile proper-
ties of fractions with their previous understanding of number (Siegler and Lortie-
Forgues 2014; Siegler et al. 2011). While fractions can be located interstitially
between whole numbers, given their different properties, fractions and whole numbers
can be categorized as separate scales.

Finally, being able to flexibly structure scales with different anchors, or opposing
ends of a continuum, is likely an important part of reasoning about scales both within
and outside of human experience. There is nothing about a given anchor point that
necessarily defines that value as the exact opposite of another anchor point; however,
positioning them as such is a form of antithetical reasoning that can allow for the
visualization of relative magnitude. There is convergent evidence human’s internal
representation of number is along a spatialized number line (Dehaene et al. 1993; de
Havia and Spelke 2010). Having an accurate, and thus linear, mental number line
supports a range of mathematical reasoning (Booth and Siegler 2008; Laski and
Siegler 2007; Thompson and Siegler 2010). Children begin with a compressed repre-
sentation of number, with smaller numbers occupying a relatively greater proportion
of their mental number line and larger unfamiliar numbers occupying less (see Barth
and Paladino (2011) and Opfer et al. (2011) for a discussion on mental models of
magnitude representation). Linearity develops over time for an increasingly wider
range of scales (Booth and Siegler 2006; Siegler and Booth 2004; Siegler and
Opfer 2003), though some may never come to accurately reason about extremely
small and large scales (Landy et al. 2013; Schneider and Siegler 2010).

Summary of Theoretical Framework

Above, we describe a theoretical framework for how relational reasoning supports
reasoning about scale. We identified representational similarities between human and
extreme scales and suggested that conceptual resources in small number processing
are recycled in an analogous fashion to support reasoning about extreme scales.
Dissimilarities were also identified, suggesting that extreme scales also require anom-
alous, antinomous, and antithetical reasoning. We suggested such reasoning functions
to create conceptual change, with antithetical reasoning being particularly important in
developing flexibility in representation between scales.
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Barriers to Relational Reasoning

In the previous section, we present a theoretical framework for how relational reasoning may
be involved in understanding scales far removed from human experience. Unfortunately,
relational reasoning can fail to bring about conceptual change (Brown and Salter 2010; Duit
1991) and can often mislead students, resulting in misconceptions about the target concept that
are hard to identify and resolve (Brown and Clement 1989; Duit 1991; Zook 1991; Zook and
DiVesta 1991; Thagard 1992; Clement 1993; Zook and Maier 1994; Glynn 1995; Kaufman
et al. 1996). In the current section, we identify barriers to alignment and discuss how they
relate to reasoning about scales outside of human perception. While much of the literature
reviewed here is on analogy, findings likely apply to all types of relational reasoning because
anomaly, antinomy, and antithesis also require the alignment of a base and target concept
(Alexander and DRLRL 2012).

There are a number of potential barriers in the alignment of human scales and extreme
magnitude. Without a familiar base concept, for example, it can be difficult to identify the
structure, making it all but impossible to make relevant connection to another concept (Gentner
1983; Kotovsky and Gentner 1996). While people may have experience with human scales,
that does not ensure they will have a firm linear representation of the scale’s magnitude. For
example, while most humans likely encounter buildings of different sizes every day, it might
not be clear how tall each building actually is.

It can also be difficult to identify relevant features to align if the base and target
concepts have multiple differences, because the two concepts can be aligned in many
different ways (Gentner and Gunn 2001; Kokinov and French 2003; Markman and
Gentner 1996, 1997). This is particularly problematic when the unrelated features are
more salient than the underlying structure. For example, a common analogy when
explaining the geologic time scale is to map geologic time onto a 24-hour clock. The
geologic time scale is a system of chronological measurement of Earth’s history.
Divisions of time are hierarchically organized based on major geologic events. The
geologic time scale is conventionally depicted as a spatial representation, with Earth’s
formation (4.6 billion years ago) located at the bottom of a column(s) and present day
located at the top (Fig. 1). However, there are a number of salient differences between
the geologic time scale and a clock (Fig. 2). One salient difference is the temporally
equal divisions of the clock (60 s = 1 min, 60 min = 1 h), which may lead novices to
erroneously believe that the periods of Earth’s history are also evenly spaced (which
they are not). In this example, students are focusing on making an analogy between
the distribution of divisions of time, and, thus failing to make an analogy between the
relative magnitudes of time between events (e.g., to understand humans appeared
relatively recently).

There may also be psychological barriers to alignment based on pre-existing spatial
or functional characteristics. For example, when mapping an extreme scale to a cross-
country road trip, categorization of state properties may influence magnitude recall in
unintended ways (e.g., Friedman and Brown 2000; Stevens and Coupe 1978). Prac-
tical constraints on the classroom may also create barriers to understanding. For
example, if aligning an extreme magnitude to a roll of toilet paper, the physical size
of the classroom may necessitate bending the roll of toilet paper. In this case, it can
be difficult to accurately represent the magnitude of the base concept, and, subse-
quently, be able to map magnitude relations between scales.

Educ Psychol Rev



Fig. 1 The geologic time scale. Image from the Geological Society of America

Fig. 2 Comparison between a spatial representation of the geologic time scale and the geologic time scale
mapped onto a clock. In this example, we highlight three differences between both representations that may
interfere with aligning relative magnitudes between the two scales
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Scaffolding Relational Reasoning to Support Scale Learning: a Unified Scale
Curriculum

To address the challenge of teaching magnitudes and phenomena outside of human
perception, teachers have adopted a wide range of approaches. For example, one-part-
per-billion has been represented as one hamburger in a chain of hamburgers circling
the Earth’s equator two and a half times (Kamrin et al. 1995). Geologic time has been
mapped onto spatial structures, such as a roll of toilet paper, the Eiffel Tower, or a
football field (Clary and Wandersee 2009; Wheeling Jesuit University 2004). The
relative size of the universe has been depicted in visualizations like the famous
“Powers of Ten” video (Eames and Eames 1968) and, more recently, websites like
“The Scale of the Universe 2” (Huang and Huang 2012), which allow users to
compare the sizes of different objects at each scale. Unfortunately, instruction does
not always improve understanding. Even with these analogies, students continue to
struggle comprehending phenomena and magnitudes at extreme scales (e.g., Delgado
et al. 2007; Jones et al. 2008; Libarkin et al. 2005).

However, there are a number of approaches to scaffold relational reasoning. The
act of making comparisons provides a path for experiential learning of relational
structure (Gentner and Namy 1999). The more commonalities that exist between the
base and target concepts, and if these commonalities are highlighted, the more
salient corresponding relations will be (Gentner and Namy 2006). Highly similar
base and target concepts also facilitate identifying how concepts are different
(Goldstone 1994; Markman and Gentner 1993a, 1993b; Medin et al. 1993).

Using similar base and target concepts is not always possible, such as aligning
human and extreme scales. The progressive alignment (Kotovsky and Gentner 1996;
Thompson and Opfer 2010) of scales may alleviate the conceptual dissimilarity
between human scales and extreme scales by providing more structural alignment
across smaller increases of scale. Alignment of highly similar base and target concepts
can increase the uniformity between the two representations, and, thus, helps to
extend reasoning to more unfamiliar concepts (Gentner and Namy 2006). Specifically,
the process of comparing two highly similar concepts can make higher-order relations
more salient, which promotes identifying the same higher-order relations within
unfamiliar concepts (Kotovsky and Gentner 1996). Progressive alignment also has
the added benefit of providing learners with repeated opportunity to practice making
relevant alignments (Resnick et al. 2016a, b).

A reason why novices may be less accurate when estimating magnitudes at extreme
scales compared to human scales is because they have far fewer conceptual categories
and less organization (Trend 2001). Thus, the hierarchical alignment of scale infor-
mation can provide structure to populate the unfamiliar scale with salient category
boundaries, or landmarks, and to emphasize the relation between scales (Resnick et al.
2016a, b). Hierarchical alignment refers to identifying the relation between all previ-
ous concepts when progressively aligning concepts. Seeing the causal relation between
phenomena at multiple levels within and between scales, the common characteristics
that hold together conceptual categories, and where they exist in the hierarchy can
help develop an interconnected internal organization of scale (Resnick et al. 2012).
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Successful Learning Activities

Below, we present two learning activities that use a spatial analogy to align the geologic time
scale with a smaller more manageable scale—a number line. While the use of a spatial
analogy to represent the geologic time scale is common (Libarkin et al. 2007), it is not
always sufficient in fostering a sense of linear scale. For example, having repeated exposure
to a conventional spatial representation of the geologic time scale (Resnick et al. 2013),
mapping the geologic time scale onto a human lifespan (Petcovic and Ruhf 2008), or
mapping the geologic time scale to a physical space that learners traverse (Semken et al.
2009) have not been effective in learning the magnitude involved in the geologic time scale
(see Fig. 3 for examples why some common spatial analogies for geologic time may fail).
The activities below incorporate the theoretical framework presented above for how rela-
tional reasoning supports understanding scale along with techniques for overcoming barriers
to alignment.

Hierarchical Alignment Activity In the hierarchical alignment activity, learners begin by
mapping a familiar scale onto a linear number line. The learners then progressively map
successively larger scales onto the same amount of space. Using the same amount of space for
the analogy provides structural alignment, highlighting one alignable difference—the magni-
tude of each scale. In each analogical step, the learners identify the relative locations of all
previous scales, hierarchically organizing the scales (Fig. 4). For example, when learning
geologic time, learners may construct ten separate timelines on to a 1-m space: personal
history, an average human lifespan (from 75 years ago), American history (520 years ago),
recorded history (5512 years ago), human evolution (6 million years ago (Ma)), Cenozoic
Period (65 Ma), Phanerozoic Eon (542 Ma), Proterozoic Eon (2.5 billion years ago (Ga)),
Archean Eon (3.8 Ga), and Hadean Eon (4.6 Ga—the full geologic time scale). Here, each
timeline is based on conventionally defined boundaries (e.g., the Archean, Proterozoic, and
Cenozoic are all divisions in the geologic time scale) that differ by orders of magnitude. In
order to hierarchically populate each timeline with events and the relation between scales, the
learner would locate all previous scales for each timeline, by calculating how many years each
centimeter represented and then how many centimeters were required to represent each scale.
The hierarchical alignment activity has been successful in reducing magnitude-based errors in
estimation of both geologic events and astronomical distances, which also transferred to more
accurate estimations of extreme abstract magnitude (Resnick et al. 2013).

Fig. 3 Examples of analogies for the geologic time scale and potential barriers to alignment. Lightest
gray = Phanerozoic, light gray = Proterozoic, dark gray=Archean, darkest gray =Hadean
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Corrective Feedback Activity In the corrective feedback activity, learners are presented
with scale information, are asked to make predictions about the location of that scale
information on a linear scale, and are then immediately provided with corrective feedback.
Immediate (Coulter and Grossen 1997) and corrective (Sharpe et al. 1997) feedback promotes
student understanding and is specifically effective for learning about unfamiliar magnitudes
(Thompson and Opfer 2010). Learners should be provided with multiple opportunities to make
different alignments, which can be implemented across several learning sessions. Spaced
practice is beneficial, as students learn better when concepts are taught spaced across learning
sessions as opposed to taught repeatedly within a shorter time span (e.g., Pashler et al. 2007).

When using the corrective feedback activity to teach geologic time, for example, students
were first presented with an image of the geologic time scale, which conventionally is
nonlinear, and directly alongside a blank linear timeline of equal length (Fig. 5). Students
were asked where a particular division highlighted on the geologic time scale would be located
on the linear scale and provided with four response options on the blank timeline. The students
used a clicker response system, which is a handheld electronic device that allows entire classes
to answer a multiple choice question simultaneously, to make their prediction. Clicker
response systems can improve learning and engagement, particularly when paired with
immediate corrective feedback (Kay and LeSage 2009). Students were then provided with
immediate corrective feedback on a new slide (Fig. 6). The corrective feedback slide showed
the conventional geologic time scale alongside a linear timeline. In both representations, the
major categories of time were depicted, with the estimated division of time highlighted in color
and connected by an arrow. Structural alignment is attained by having the conventional
geologic time scale, the blank linear timeline, and the corrective feedback timeline all being

Fig. 4 Timelines at the hundred and thousand scale in the hierarchical alignment activity. The three previous
timelines are located relative to the current scale
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Today we are going to 
talk about the Cambrian 
& Ordovician Periods.  

You can see them 
highlighted on the 
Geologic Time Scale.  

Where would these 
periods be located on the 
linear time scale on the 
right?

A

B

C

D

Fig. 5 Example of a clicker slide. Students are asked to locate where the highlighted divisions on the geologic
time scale would be located on the linear timeline
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Phanerozoic Eon
Paleozoic Era
Cambrian & Ordovician Periods
(Early Paleozoic)

Fig. 6 Example of slide containing corrective feedback. The conventional geologic time scale is aligned with the
linear time scale
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of equal length and directly next to one another, showing the corresponding categories of time
in the conventional geologic time scale and the corrective feedback timeline, and highlighting
the estimated division in both representations using color and connecting them with arrows.
The instructor completed ten different alignments over ten classes, with each alignment
representing a major category of geologic time. Lecture material was framed around each
temporal category.

The corrective feedback activity was associated with improved exam scores, more accurate
estimations of extreme temporal magnitude, and transfer to more accurate estimations of
extreme abstract magnitude (Resnick et al. 2013). Importantly, when just the slide aligning
the geologic time scale with the linear timescale was presented, and students thus did not
actively make a prediction about where scale information would be located on a linear scale,
there was no improvement in temporal or abstract magnitude estimations and exam scores
decreased (Resnick et al. 2013).

While any effect at the exam level may be surprising, it is important to note that the course
content was structured around the geologic time scale, and, as such, a better understanding of
how categories of geologic time relate to one another is directly relevant for exam perfor-
mance. Further, the relation between exam performance and the corrective feedback activity
was found across multiple semesters. It is hypothesized that when students understand the
scale of geologic time, they are better able to place key course concepts (such as major
evolutionary radiations, plate tectonics, and climate changes) into context, and, therefore,
understand their underlying processes and systems.

More unexpected is that just seeing the alignment, without actively making a prediction,
actually interfered with learning. Prediction may serve to engage the students into correctly
aligning both representations. If students failed to understand the relation between the two
representations, they would be left with multiple representations of the same content, which
can interfere with understanding (Ainsworth 1999). Students often have difficulty aligning
multiple representations (de Jong et al. 1998), a characteristic of expert understanding (Kozma
et al. 2000).

Unification of Scaling Instruction Across STEM

Unifying themes across science education has been proposed as a mechanism to foster a more
coherent curriculum (Tretter et al. 2006). By engaging in the core ideas and practices of
science in different contexts, students are able to leverage a common language and familiarity
to improve overall understanding (AAAS 1993). While learning from connected and integrat-
ed materials leads to improved retention, critical thinking, and problem solving (e.g., Ellis and
Fouts 2001), US curriculum has unfortunately been characterized as being fractured and
incoherent (Schmidt et al. 2002).

Scale is particularly poised to serve as an important unifying theme in STEM education;
size, and scale represent foundational concepts across the STEM disciplines. One way to unify
a scale curriculum is to develop cohesive techniques that help students align the vast set of
scales across the sciences, thus building a foundation of scale understanding. The use of
relational reasoning to teach concepts at extreme scales is particularly important, as very small
and very large scales cannot be directly experienced (Jones et al. 2009).

Using our theoretical framework for how relational reasoning supports understanding of
extreme scales, aligned with how people naturally reason about magnitude, is essential in
developing an effective scale curriculum. This review found that a scale curriculum should
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provide learners with multiple opportunities to align magnitude to a spatial linear representa-
tion, using the same amount of space for each alignment (structural alignment). Students
should also be engaged in actively making predictions about where scale information would be
located on a linear scale; the use of a clicker response system may be a useful technique.
Immediate corrective feedback and spaced instruction are also useful in establishing salient
landmarks. Finally, progressive and hierarchical alignments appear to have an additive benefit
on learning scale information (Resnick et al. 2016a, b).

The hierarchical alignment activity and the corrective feedback activity are examples of
how a scale curriculum might be designed. Importantly, both activities are designed to be
transposable for teaching any magnitude-based context. Future investigations may examine the
benefit of science of learning principles, such as active prediction, immediate feedback, spaced
learning, and the use of visual representations. However, it is clear that relational reasoning and
analogy are paramount in understanding many foundational scientific concepts and phenom-
ena that take place at extreme scales far removed from human experience.
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