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Bias and Bias Correction in Multi-Site Instrumental Variables Analysis  

Of Heterogeneous Mediator Effects 

 

Abstract 

We explore the use of instrumental variables (IV) analysis with a multi-site randomized trial to 

estimate the effect of a mediating variable on an outcome in cases where it can be assumed that the 

observed mediator is the only mechanism linking treatment assignment to outcomes, as 

assumption known in the instrumental variables literature as the exclusion restriction. We use a 

random-coefficient IV model that allows both the impact of program assignment on the mediator 

(compliance with assignment) and the impact of the mediator on the outcome (the mediator effect) 

to vary across sites and to co-vary with one another.  This extension of conventional fixed-

coefficient IV analysis illuminates a potential bias in IV analysis which Reardon and Raudenbush 

(forthcoming) refer to as “compliance-effect covariance bias.” We first derive an expression for this 

bias and then use simulations to investigate the sampling variance of the conventional fixed-

coefficient two-stage least squares (2SLS) estimator in the presence of varying (and co-varying) 

compliance and treatment effects.  We next develop two alternate IV estimators that are less 

susceptible to compliance-effect covariance bias.  We compare the bias, sampling variance, and root 

mean squared error of these “bias-corrected IV estimators” to those of 2SLS and OLS.  We find that, 

when the first stage 𝐹-statistic exceeds 10 (a commonly-used threshold for instrument strength), 

the bias-corrected estimators typically perform better than 2SLS or OLS.  In the last part of the 

paper we use both the new estimators and 2SLS to reanalyze data from two large multi-site studies.    
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Bias and Bias Correction in Multi-Site Instrumental Variables Analysis  

Of Heterogeneous Mediator Effects 

 

I. Introduction 

 The large number of randomized trials and regression discontinuity analyses that have 

been conducted during the past decade have produced internally valid estimates of the causal 

effects of many different social and educational interventions on many different types of behaviors 

and outcomes for many different types of individuals.  These findings provide a growing base of 

credible evidence about the effectiveness of specific interventions, which is beginning to play an 

important role in evidence-based policy making and practice.  However, because the theories 

behind many interventions are not well-developed, and because many interventions have multiple 

components, it is generally more complicated to determine the mechanisms through which an 

intervention operates.  

Understanding the mechanisms through which an intervention operates requires 

identifying a set of hypothesized mediators through which the intervention operates, estimating the 

effects of the intervention on these mediators, and then estimating the effects of the mediators on 

the outcomes of interest.  Although randomized experiments provide a straightforward method of 

estimating the effect of an intervention on a mediator, they do not provide as straightforward a 

method of obtaining unbiased estimates of the effect of a mediator on an outcome.   This is both 

because the mediators are not randomly assigned (which leads to selection bias) and because the 

values of the mediators are often measured with error (which leads to measurement-error induced 

attenuation bias, also known as “errors-in-variables”).  Under certain conditions, however, 

instrumental variables (IV) methods can be used to obtain unbiased estimates of mediator effects in 

randomized experiments or regression discontinuity analyses.  

The intuition of the IV method is as follows.  A randomized trial or regression discontinuity 
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analysis can provide an internally valid estimate of the effects of an assigned treatment (𝑇) on an 

outcome (𝑌) and on a mediator (𝑀).  In situations like this, the assigned treatment is an 

“instrument” of exogenous change in both the mediator and the outcome.  In the simplest case, if it 

can be assumed that the full effect of the treatment on the outcome is produced by the mediator (an 

assumption known as the “exclusion restriction”), the average effect of the mediator on the 

outcome (∆𝑌
∆𝑀

) equals the ratio of the effect of the treatment on the outcome (∆𝑌
∆𝑇

) to the effect of the 

treatment on the mediator (∆𝑀
∆𝑇

). Because the randomized experiment or regression discontinuity 

design provides unbiased estimates of the latter two effects, their ratio will be an (asymptotically) 

unbiased estimate of the effect of a unit change in the mediator on the outcome (∆𝑌 ∆𝑇⁄
∆𝑀 ∆𝑇⁄ = ∆𝑌

∆𝑀
). 

Consider for example, the recent multi-site impact evaluation of the federal Reading First 

(RF) Program (Gamse et. al., 2008) on reading achievement in the early elementary school grades. 

Reading First’s theory of change posits that the RF program would increase teachers’ use of five 

dimensions of reading instruction (phonemic awareness, phonics, vocabulary, fluency and 

comprehension; hereafter referred to as “RF instructional methods”), and that this type of 

instruction improves students’ reading achievement.  Because instructional methods were not 

randomized in the RF study, we can use an IV analysis to test the latter hypothesis, under the 

assumption that the only way that assignment to RF would affect student achievement was through 

its effect on the amount of time teachers spent using the desired instructional methods.  The results 

of the RF impact study showed that on average, Reading First increased the amount of time that 

teachers spent on RF instruction by 11.6 minutes per day (∆𝑀
∆𝑇

= 11.6) and increased student 

reading achievement by 4.29 scale score points (∆𝑌
∆𝑇

= 4.29). If all of Reading First’s effect on reading 

achievement is produced by its effect on the use of RF instructional methods, these findings imply 

that the effect of such instruction is 0.37 scale-score points per additional instructional minute 

(∆𝑌 ∆𝑇⁄
∆𝑀 ∆𝑇⁄ = 4.29

11.6
= 0.37). 
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The Reading First study was a multi-site trial, in which schools in 18 sites (17 school 

districts and one statewide program) were assigned on the basis of a continuous rating score or by 

randomization to receive the RF program or not.  In a multi-site design, a more complex IV analysis 

is possible.  Because the treatment is ignorably assigned in each site, site-specific instruments can 

be constructed by interacting treatment assignment with a zero/one indicator for each site. Such 

“multiple-site, multiple instrument” IV analyses can have both advantages and disadvantages. 

One potential advantage is an increase in precision that will occur if the effect of treatment 

assignment on the mediator varies substantially across sites.  For example, if Reading First 

increased the use of RF instruction by 20 minutes per daily reading block in some sites and by 2 

minutes per daily reading block in other sites, an analysis that uses a separate instrument for each 

site can leverage this variation to provide more precise estimates of the average mediator effect.  A 

second potential advantage of using a separate instrument for each site is that doing so may make it 

possible to study how the mediator effect varies across sites, if the sample sizes within each site are 

sufficiently large to enable precise estimates within each site.  A third potential advantage of using a 

separate instrument for each site is that this makes it possible to study the separate effects of 

multiple mediators of a given intervention, as was done by Kling, Liebman and Katz (2007), Duncan, 

Morris and Rodrigues (2011), and Nomi and Raudenbush (2012).  

A potential disadvantage of using multiple site-by-treatment interactions as instruments is 

that, if the impacts of the treatment on the mediator do not vary significantly across sites, the use of 

multiple instruments may lead to substantially decreased precision and increased finite sample bias 

(Bound, Jaeger, & Baker, 1995; Hahn & Hausman, 2002; Stock & Yogo, 2005; and Angrist & Pischke, 

2009). 

 In this paper we investigate the magnitude of the bias of multiple-site, multiple instrument 

instrumental variables estimators.  We consider not only the role of finite sample bias, but also the 

role of a second type of bias, what Reardon and Raudenbush (forthcoming) refer to as “compliance-
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effect covariance bias.”  This bias arises if the effect of the treatment on the mediator and the effect 

of the mediator on the outcome covary across sites (or persons, though in the present paper we are 

concerned with between-site variation).1  Reardon and Raudenbush (forthcoming) derive 

expressions for the value of compliance-effect covariance bias under two-stage least squares (2SLS) 

estimation of multiple-site, multiple instrument IV models with infinite samples, but do not 

examine compliance effect covariance bias in finite samples.  In this paper we extend Reardon and 

Raudenbush’s analysis by deriving an expression for compliance-effect covariance bias of 2SLS in 

finite samples.  We then conduct a set of simulations that explore the sampling variance of 2SLS 

estimates in the presence of compliance-effect covariance.  We find that compliance-effect 

covariance bias can be substantial, that it grows asymptotically with sample size (unlike finite 

sample bias, which declines with sample size), and that conventional 2SLS standard errors 

substantially underestimate the true sampling variance of the estimates when the effects of the 

mediator are heterogeneous. 

In the second half of the paper, we develop two “bias-corrected IV estimators” that are 

designed to reduce bias caused by compliance-effect covariance across sites.  We use simulations to 

compare the statistical properties of these new estimators to those of 2SLS and OLS.  These findings 

indicate that under a wide range of conditions, the new estimators perform better than 2SLS and 

OLS (in terms of bias and root mean squared error) if the instruments used have a first-stage 𝐹-

statistic greater than 10 (a commonly recommended threshold for defining sufficiently “strong” 

instruments; see Staiger and Stock, 1997; Stock and Yogo, 2003).  

                                                           
1 The econometrics literature on instrumental variables analysis of correlated random coefficient models 
(Heckman & Vytlacil, 1998) addresses an issue that differs somewhat from compliance-effect covariance bias. 
Bias in correlated random coefficients models is produced by a correlation between the level of a mediator 
and its per unit effect on an outcome of interest. This would occur for example, if sites that used more of a 
particular type of reading instruction experienced larger (smaller) effects on student reading achievement 
per unit of the instruction than did sites that used less of the instruction. Compliance-effect covariance bias is 
produced by a correlation between a treatment-induced change in the value of a mediator and its per unit 
effect on an outcome of interest. This would occur for example, if sites where treatment increased the specific 
type of reading instruction by a lot experienced larger (smaller) effects per unit of the instruction on student 
achievement than did sites where treatment increased the instruction by less.     
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The paper concludes with two examples of the application of the bias-corrected IV 

estimators.  We first use them to estimate the effect of class size on student achievement, using data 

from data for the Tennessee class-size experiment, Project STAR.  We then use them to reanalyze 

data from the Reading First Impact Study described above, estimating the per unit effect of RF 

instructional methods on students’ reading achievement. These two empirical examples provide a 

useful contrast of potential applications.  

 

II. Bias in the 2SLS estimator 

Notation 

Consider a multi-site randomized trial, in which 𝑁 subjects (indexed by i) are nested in a set 

of 𝐾 sites (indexed by 𝑠 ∈ {1,2, … ,𝐾}).  Within each site, a random sample of 𝑛 = 𝑁/𝐾 subjects 

(which can be individuals, classrooms, or schools) are ignorably assigned to treatment condition 

𝑇 ∈ {0,1}.  Let 𝑝 ∈ (0,1) denote the proportion of subjects in each site assigned to the treatment 

condition 𝑇 = 1.  Note that, for ease of exposition, we set n and p to be constant across sites. 

In each site, treatment status is assumed to affect an outcome 𝑌 through a single mediator 

𝑀.  Both the person-specific effect of 𝑇 on 𝑀 (the person-specific “compliance,” denoted Γ) and the 

person-specific effect of 𝑀 on 𝑌 (the person-specific “effect,” denoted Δ) may be heterogenous 

across subjects.  Our goal is to estimate the average effect of 𝑀 on 𝑌 in the population, denoted by 

𝛿 = 𝐸[Δ]. 

Throughout the paper, we make several assumptions.  First, we make a pair of “stable unit 

treatment value assumptions,” or SUTVA, described by Rubin (1986; see also Angrist, Imbens, and 

Rubin, 1996, and Reardon and Raudenbush, forthcoming, for statements of the SUTVA assumptions 

in the IV case).  This is required so that the causal estimands are well-defined.  We also assume that 

𝑐𝑜𝑣𝑠(Γ,Δ) = [𝑐𝑜𝑣(Γ,Δ)|𝑆 = 𝑠] = 0 (no within-site compliance-effect covariance).  Although implicit 

in all IV models where the mediator is not binary, this assumption is not trivial in many cases—in 
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particular, it may be violated if individuals have some knowledge of the likely impact that 𝑀 will 

have on them, and can choose levels of 𝑀 in response to 𝑇, as in the Roy model (Roy, 1951).  

However, this assumption is met unambiguously if both 𝑇 and 𝑀 are binary and we focus only on 

compliers (Reardon & Raudenbush, forthcoming).  We assume no within-site compliance-effect 

covariance in order to focus on a distinct type of bias that may arise in multi-site IV analyses.  To 

that end, we do not assume that the between-site compliance-effect covariance (denoted 

𝑐𝑜𝑣(𝛾𝑠, 𝛿𝑠), where the average compliance in site 𝑠 is denoted 𝛾𝑠 and the average effect of 𝑀 on 𝑌 in 

site 𝑠 is denoted 𝛿𝑠) is zero; our focus in this paper is on the bias generated by non-zero covariance.   

Within a given site 𝑠, let the data generating model be  

𝑀𝑖 = Λ𝑠 + 𝛾𝑠𝑇𝑖 + 𝑒𝑖,    𝑒𝑖~𝑁(0,𝜎2) 

𝑌𝑖 = Θ𝑠 + 𝛿𝑠𝑀𝑖 + 𝑢𝑖,    𝑢𝑖~𝑁(0,𝜔2) 

�
𝑒𝑖
𝑢𝑖�~ ��0

0� ,� 𝜎2 𝜌𝜎𝜔
𝜌𝜎𝜔 𝜔2 ��, 

where 𝜌 is the correlation between 𝑒 and 𝑢.  Across sites, the covariance matrix of the 𝛾𝑠’s and the 

𝛿𝑠’s is  

�
𝛾𝑠
𝛿𝑠�~ ��

𝛾
𝛿� , �

𝜏𝛾 𝜏𝛾𝛿
𝜏𝛾𝛿 𝜏𝛿 ��. 

 (1) 

Note that the intercepts Λ𝑠 and Θ𝑠 here are conceived of as fixed (rather than random), and may be 

correlated with one another and/or with 𝛾𝑠 and 𝛿𝑠.  These intercepts are irrelevant to the bias, 

however, so it is not necessary to specify their structure.  

 

Estimation 

We wish to estimate 𝛿 = 𝐸[Δ].  One approach would be to estimate 𝛿𝑠 = 𝐸[Δ|𝑆 = 𝑠] in each 

site separately, using standard instrumental variables methods, and then to average the 𝛿𝑠’s across 

sites.  There are several drawbacks to this approach, however.  First, if the instrument is weak in 
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some sites, the estimated 𝛿𝑠 in those sites may be substantially biased due to finite sample bias, 

leading to bias in the estimated average effect.  Second, a precision-weighted average of the 𝛿𝑠 will 

weight sites with greater compliance (larger values of  𝛾𝑠) more, leading to biased estimates of 𝛿 if 

𝜏𝛾𝛿 ≠ 0 (see Raudenbush, Reardon, & Nomi, 2012). 

 A second approach would be to pool the data across sites and fit a just-identified site-fixed 

effects IV model, using only a single instrument (Raudenbush, Reardon, & Nomi, 2012).  If 𝛾𝑠 is 

heterogeneous such a model will be inefficient because it will not make use of all the exogenous 

variation in the mediator 𝑀 that is induced by the instrument. 

 A third approach is to pool the data and fit an over-identified IV model, using 𝐾 site-by-

treatment status interactions as instruments.  As we noted above, such a model may be preferable 

to either of the two approaches above in some cases.  Because these instruments may collectively 

account for much more variation than a single instrument, the overidentified model may be more 

efficient than the single instrument model.  In addition, by pooling the data, bias due to weak 

instruments in individual sites may be avoided.2  Moreover, unlike the two approaches above, 

which can only be used if there is a single mediator, the multiple site-by-treatment interaction IV 

model can be used to identify the effects of multiple mediators.  Although we do not consider the 

multiple mediator case in this paper, our approach here may be adapted to that case. 

 We implement this approach as follows:  First, we construct 𝐾 instruments as site-by-

treatment status interactions.   Denote these as 𝑍𝑖𝑠 = 𝐷𝑖𝑠𝑇𝑖, where 𝐷𝑖𝑠 = 1 if subject 𝑖 is in site 𝑠 and 

𝐷𝑖𝑠 = 0 otherwise.  Now the first-stage model is  

𝑀𝑖 = Λ𝑠 + �𝛾𝑠𝑍𝑖𝑠
𝐾

𝑠=1

+ 𝑒𝑖 ,     𝑒𝑖~𝑁(0,𝜎2). 

                                                           
2 On the other hand, if the extra instruments explain little additional variance in the mediator, using 𝐾 site-by-
treatment assignment instruments may produce multiple weak instruments, leading to inefficient and biased 
estimates (Chamberlain and Imbens, 2004: Staiger and Stock, 1997).   A fourth possible approach is to use 𝐽 
instruments, where  1 < 𝐽 < 𝐾, by interacting treatment status with indicators for 𝐽 subsets of the 𝐾 sites, 
where the subsets are defined in such a way that there is little within-subset variation in compliance.  We 
take up this possibility later in the paper.  
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 (2a) 

The second stage equation is 

𝑌𝑖 = Θ𝑠 + 𝛿𝑀�𝑖 + 𝑢𝑖,   𝑢𝑖~𝑁(0,𝜔2). 

 (2b) 

Bias in OLS and 2SLS estimation 

Now let 𝐹 denote the population 𝐹-statistic (the expected value of the 𝐹-statistic 

corresponding to the null hypothesis that 𝛾𝑠 = 0  ∀𝑠 in the first-stage equation).  We show in 

Appendix A1 that this will be equal to  

𝐹 =
𝑛𝑝(1 − 𝑝)

𝜎2 �𝛾2 + 𝜏𝛾� + 1. 

 (3) 

Estimating 𝛿 via OLS will lead to bias if 𝑀𝑖 is correlated with 𝑢𝑖 in Equation (2b).  In Appendix A2, 

we show that the OLS bias (the bias in the estimate of 𝛿 obtained from fitting Equation (2b) via 

OLS) will be 

𝐸�𝛿̂𝑂𝐿𝑆� − 𝛿 = 𝜌
𝜔
𝜎
�

𝑛
𝐹 + 𝑛 − 1

� +
2𝛾𝜏𝛾𝛿
𝛾2 + 𝜏𝛾

�
𝐹 − 1

𝐹 + 𝑛 − 1
� 

 (4a) 

Estimating 𝛿 via two-stage least squares (2SLS) will also result in bias.  In particular, as we show in 

Appendix A3, the 2SLS bias (the bias in the estimate of 𝛿 obtained from fitting Equations (2a) and 

(2b) via 2SLS) is approximately 

𝐸�𝛿̂2𝑆𝐿𝑆� − 𝛿 ≈ 𝜌
𝜔
𝜎
�

1
𝐹
� +

2𝛾𝜏𝛾𝛿
𝛾2 + 𝜏𝛾

�
𝐹 − 1
𝐹

�  

 (5a) 

Note that both the OLS bias and the 2SLS bias have two components— one component that 

depends on the covariance of the errors (𝜌), and one component that depends on the covariance 

between the gammas and deltas (𝜏𝛾𝛿).  The first component can be thought of as bias that arises 
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from treatment selection on levels (individuals’ received value of 𝑀 is correlated with their potential 

value of 𝑌 that we would observe if they were assigned 𝑀 = 0); it gives rise to selection bias in OLS 

and finite sample bias in IV estimators.  The second component can be thought of as bias that arises 

from compliance selection on site-average effects (site-average compliance with the instrument is 

correlated with the site-average effect the mediator has on the outcome 𝑌), as might be predicted 

by the Roy model (Roy, 1951; Borjas, 1987); it gives rise to what we refer to as compliance-effect 

covariance bias (Reardon & Raudenbush, forthcoming).  Equations (4a) and (5a) make clear that 

both OLS and 2SLS are biased in finite samples if either 𝜌 ≠ 0 or 𝜏𝛾𝛿 ≠ 0.  Moreover, both the OLS 

and 2SLS biases can be written as weighted averages of the two components: 

𝐸�𝛿̂𝑂𝐿𝑆� − 𝛿 = 𝜌
𝜔
𝜎

(1 − 𝜆𝑂𝐿𝑆) +
2𝛾𝜏𝛾𝛿
𝛾2 + 𝜏𝛾

(𝜆𝑂𝐿𝑆) 

 (4b) 

and 

𝐸�𝛿̂2𝑆𝐿𝑆� − 𝛿 ≈ 𝜌
𝜔
𝜎

(1 − 𝜆2𝑆𝐿𝑆) +
2𝛾𝜏𝛾𝛿
𝛾2 + 𝜏𝛾

(𝜆2𝑆𝐿𝑆), 

 (5b) 

where  𝜆𝑂𝐿𝑆 = 𝐹−1
𝐹+𝑛−1

 and 𝜆2𝑆𝐿𝑆 = 𝐹−1
𝐹

.  In the case of OLS, the weighting depends on the relative 

magnitudes of 𝐹 and 𝑛.  If 𝑛 ≫ 𝐹, 𝜆𝑂𝐿𝑆 approaches 0, in which case the bias due to the correlation of 

the errors is most significant.  In the case of 2SLS, however, the weight depends only on the 

magnitude of 𝐹.  When 𝐹 is large, bias due to the correlation of the errors (finite sample bias) is 

minimized and bias due to the correlation of 𝛾𝑠 and 𝛿𝑠 plays a dominant role.  Because 𝜆2𝑆𝐿𝑆 > 𝜆𝑂𝐿𝑆 

for  𝑛 > 1, the bias due to the second component will always get more weight in the 2SLS estimator 

than in the OLS estimator.  However, the total bias will depend not just on these weights but on the 

relative magnitude of the two bias components.  Thus, it is not a priori clear whether 2SLS yields 

less bias than OLS.  
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Factors contributing to bias in the 2SLS estimator 

 The first component of bias in Equation (5a) is pure finite sample bias.  This bias term is 

proportional to the within-site correlation of the error terms in the first and second stage equations 

and inversely proportional to𝐹.  As 𝐹 gets large, finite sample bias becomes trivial.   

The second component of the bias in (5a) is compliance-effect covariance bias.  If 𝛾 = 0, this 

bias term is 0.3  If, however, 𝛾 ≠ 0, we can write the compliance-effect covariance bias term as  

2𝛾𝜏𝛾𝛿
𝛾2 + 𝜏𝛾

�
𝐹 − 1
𝐹

� = 2𝐶𝑜𝑟𝑟(𝛾𝑠, 𝛿𝑠)�𝜏𝛿 �
𝐶𝑉𝛾

𝐶𝑉𝛾2 + 1
� ∙ �

𝐹 − 1
𝐹

�, 

 (6) 

where 𝐶𝑉𝛾 = �𝜏𝛾/𝛾 is the coefficient of variation of 𝛾𝑠.   

 The compliance-effect covariance bias component depends on four factors.  First, the bias 

term is proportional to the correlation between 𝛾𝑠 and 𝛿𝑠. Second, the bias term is proportional to 

the standard deviation of the 𝛿𝑠’s across sites.  Third, the bias depends on the amount of between-

site variation in compliance relative to the magnitude of the average compliance across sites.  

Holding constant 𝐶𝑜𝑟𝑟(𝛾𝑠, 𝛿𝑠), 𝜏𝛿 , and 𝐹, the magnitude of the compliance-effect covariance is 

maximized when �𝐶𝑉𝛾� = 1 (see appendix A4).  As 𝐶𝑉𝛾 approaches 0 (in which case the compliance 

is homogeneous across sites) or ±∞ (i.e., as the average compliance across sites goes to 0), the 

compliance-effect covariance bias term goes to 0.  And fourth, the compliance-effect covariance bias 

is smaller when 𝐹 is small.  When the instruments are collectively strong, the bias due to between-

site compliance-effect covariance is maximized.4  Thus, compliance-effect covariance can lead to 

bias in the 2SLS estimator even with an arbitrarily strong set of instruments.   

                                                           
3 To see this, note that 𝐹 = 𝑛𝑝(1−𝑝)

𝜎2
�𝛾2 + 𝜏𝛾� + 1, so we can write the compliance-effect bias term as 

2 𝑛𝑝(1−𝑝)
𝜎2

𝛾𝐶𝑜𝑣(𝛾𝑠, 𝛿𝑠) �1
𝐹
�, so 𝛾 = 0 implies the bias is zero. 

4 Note that if 𝛾 ≠ 0, 𝐹 = 𝑛𝑝(1−𝑝)
𝜎2

𝛾2�1 + 𝐶𝑉𝛾2� + 1, i.e.,  𝐹 depends on 𝑛, 𝑝,𝜎2, 𝛾, and 𝐶𝑉𝛾 . Therefore, changing 𝐹 
by changing 𝐶𝑉𝛾  will affect compliance-effect covariance bias in two ways while changes in 𝐹 due to changes 
in 𝑛, 𝑝,𝜎2, or 𝛾, holding 𝐶𝑉𝛾  constant, will only affect compliance-effect covariance bias through their effect on 
𝐹. 
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 Each of the four factors influencing the compliance-effect covariance bias component is, in 

principle, estimable from the observed data (although estimation of 𝜏𝛿 and 𝐶𝑜𝑟𝑟(𝛾𝑠, 𝛿𝑠) will be 

complicated by finite sample bias in the estimation of the 𝛿𝑠’s).  The correlation between the first- 

and second-stage error terms is not estimable from the observed data however.  When 𝐹 is large, 

however, the contribution of finite sample bias to the overall bias is negligible.  This suggests that 

we may be able to devise a better estimator of 𝛿—one that is less biased by compliance-effect 

covariance—than 2SLS, at least for the case where 𝐹 is relatively large.  In Part IV of this paper, we 

develop two such estimators. 

 Equation (5a) provides an approximation to the bias induced by the combination of finite 

within-site samples and compliance-effect covariance.  However, Equation (5a) does not describe 

the sampling variance of the 2SLS estimator in the presence of compliance and effect heterogeneity, 

compliance-effect covariance, and finite within-site samples.  It is well-known that 2SLS yields 

standard errors that are too small when there are many weak instruments, but these results have 

been developed under the assumption that 𝛿𝑠 is constant across sites (Chamberlain and Imbens, 

2004; Angrist and Pischke, 2009).  In the following section, we conduct a set of simulation analyses 

to describe the sampling variance of the OLS and 2SLS estimators in the presence of heterogeneous 

compliance and effect. 

 

III. Simulation Analyses 

This section presents results from a series of simulations conducted with three goals: (i) to 

test whether the 2SLS bias formula presented in Equation (5a) is accurate (since it is based on an 

approximation) and to examine the extent of 2SLS bias that exists under a range of conditions, (ii) 

to assess the sampling variation of the 2SLS estimator in the presence of compliance and effect 

heterogeneity and compliance-effect covariance; and (iii) to compare the magnitude of the bias and 

the root mean squared error (RMSE) of the 2SLS estimator relative to the OLS estimator. To 
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simplify matters, the within-site variance of the individual compliance and effect parameters are set 

to zero; therefore, these simulations focus on variation and covariance of 𝛾𝑠 and 𝛿𝑠 across-site, not 

within-site.  Appendix B provides a more detailed description of the simulation set-up.  

Results of the simulations are shown in Table 1.  In each panel of Table 1, one of the four key 

parameters that influence the bias and sampling variability of the 2SLS estimator—𝐶𝑉𝛾 , the 

expected first-stage F- statistic, the compliance-effect correlation, 𝐶𝑜𝑟𝑟(𝛾𝑠, 𝛿𝑠), and the variance of 

the effect, 𝜏𝛿—is systematically manipulated while the other three are held constant (see Appendix 

B for details). Note that, except for Panel B, we set the 𝐹-statistic to 10.  Columns 5-14 report the 

results obtained from 2000 simulation samples drawn from a population of sites generated 

according to the parameter values shown in columns 1-4.  In each case, the simulated data are 

generated based on a true effect of 𝛿 = 1, so the bias reported in columns 5 and 6 of Table 1 can be 

interpreted as the ratio of the bias to the magnitude of the true effect. 

Magnitude of the estimated 2SLS bias in the presence of compliance-effect covariance in finite samples 

 In Table 1, column 5 reports the predicted 2SLS bias as computed from Equation (5a).  

Column 6 reports the estimated 2SLS bias from the simulations (the difference between the average 

2SLS estimate over the 2000 simulations and the true effect).  In each case, the estimated bias in 

column 6 is very close to that predicted by Equation (5a).  As expected, the bias is larger when 𝐶𝑉𝛾 

is near 1; when 𝐹 is small; when the correlation of 𝛾𝑠 and 𝛿𝑠 is large; and when the variance of 𝛿𝑠 is 

large.  One key lesson from Table 1 is that 2SLS bias can be substantial, even when 𝐹 ≥ 10, 

particularly when the absolute value of the compliance-effect correlation is large or the variance of 

𝛿 is large (see rows 11, 15, and 19).  

 

Sampling variability of the 2SLS estimator in the presence of compliance-effect covariance in finite 

samples 

Table 1 reports both the true sampling variation (column 7) (the standard deviation of the 
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2SLS estimates of 𝛿 across the 2,000 simulation samples) and the average standard error reported 

by conventional 2SLS estimation algorithms (column 8).  These conventional 2SLS-estimated 

standard errors are based on the assumption that 𝛿𝑠 is constant across sites.  Equation (B14) in 

Reardon and Raudenbush (forthcoming), however, implies that the sampling variance of the 2SLS 

estimator depends on the variance of 𝛿𝑠; assuming that 𝜏𝛿 = 0 will lead one to underestimate the 

sampling variance of the 2SLS estimator.  This is evident in comparing columns 7 and 8 in Table 1.  

The true sampling variance of the 2SLS estimates is generally much larger than that implied by the 

conventional 2SLS-estimated standard errors.  Only in row 16, where 𝜏𝛿 is set to zero, does the 

2SLS standard error appropriately match the true sampling variance of the estimator.  Note that 

this result is not merely due to the fact that, in over-identified 2SLS models, the estimated standard 

errors are often too small, especially when the instruments are collectively weak (Chamberlain and 

Imbens, 2004; Angrist and Pischke, 2009).  Even in row 10, where the 𝐹-statistic is 101, the 2SLS-

estimated standard error is one-tenth of the true sampling standard deviation.  We conclude that 

conventional 2SLS-estimated standard errors may substantially underestimate the sampling 

variance of the estimates when the mediator effect is heterogeneous. 

 

Comparing 2SLS and OLS estimators in the presence of compliance-effect covariance in finite samples 

It is useful to compare the performance of the 2SLS estimator to the OLS estimator in the 

presence of compliance-effect covariance. Table 1 includes four columns that make this comparison 

possible: columns 10 and 11 report the predicted OLS bias (based on Equation 4a) and the 

estimated OLS bias, respectively; column 12 reports the true OLS sampling variation (the standard 

deviation of the OLS estimates across the 2,000 simulation samples in each case); column 13 

reports the average reported OLS-estimated standard error across the 2000 samples; and column 

14 shows the root mean squared error (RMSE) for OLS (the square root of the sum of the squares of 

columns 11 and 12). These results lead to three observations: First, for the range of the parameters 
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tested, OLS bias tends to be larger than 2SLS bias. Second, the average OLS-estimated standard 

error substantially underestimates the true variability of the OLS estimator (unless 𝜏𝛿 = 0), which 

tends to be smaller than the true variability of the 2SLS estimator. Finally, the RMSE for the OLS 

estimator tends to be larger than the RMSE of the 2SLS estimator because the OLS bias is generally 

larger than the 2SLS bias even though OLS estimates are more precise than 2SLS. Note that this 

does not apply to cases where the 2SLS bias is larger than the OLS bias due to a large compliance-

effect covariance (e.g., rows 11, 15, and 19).  

We draw three primary conclusions from the described simulation analysis.  First, 

Equations (4a) and (5a) provide good approximations of the 2SLS and OLS biases in finite samples 

and in the presence of site-level compliance-effect covariance.  Second, even when the instruments 

are collectively strong, conventional 2SLS-estimated standard errors substantially underestimate 

sampling variance when the mediator effect is heterogeneous across sites.  Third, unless 

compliance-effect covariance bias is large, the 2SLS estimator generally has less bias but larger 

sampling variance than the OLS estimator; consequently, the RMSE for the OLS estimator tends to 

be larger than that of the 2SLS estimator. Although the presence of compliance-effect covariance 

leads to some bias, it may generally not be so large as to render 2SLS less desirable than OLS. 

 

IV. A Bias-Corrected Multi-Site Single Mediator IV Estimator  

In Section II we demonstrated that 2SLS yields biased estimates of the average effect of 𝑀 

when there is between-site compliance-effect covariance, even if 𝐹 is arbitrarily large.  As we 

suggested there, however, because the magnitude of compliance-effect covariance bias may be 

estimable from the observed data under certain conditions, it may be possible to develop a method 

of correcting the 2SLS estimates to eliminate this bias. 

To build some intuition regarding our approach, consider the hypothetical data described in 

Figure 1 below.  Each of the panels on the left side of the figure shows a the relationship between 𝛿𝑠 
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and 𝛾𝑠.  In each case, 𝛿 (the average value of 𝛿𝑠 across sites) equals 1.  Likewise, in each case, the 

average compliance across sites equals 1, and both 𝛾𝑠 and 𝛿𝑠 have a variance of 1.  This implies that 

𝐶𝑉𝛾 = 1, so these figures correspond to cases in which compliance-effect covariance bias is 

maximized (for a given value of 𝐹, 𝐶𝑜𝑟𝑟(𝛾𝑠, 𝛿𝑠), and 𝜏𝛿).  The three figures on the left side differ only 

in the correlation between 𝛿𝑠 and 𝛾𝑠, ranging from 𝐶𝑜𝑟𝑟(𝛿𝑠, 𝛾𝑠) = −0.50 to 𝐶𝑜𝑟𝑟(𝛿𝑠, 𝛾𝑠) = +0.50. 

 Under the assumptions that treatment affects the outcome only through the mediator 

(exclusion restriction) and there is no within-site compliance-effect covariance, the average intent-

to-treat effect on the outcome within a site 𝑠 will be 𝛽𝑠 = 𝛾𝑠𝛿𝑠.  The figures on the right side plot 

these computed ITT effects against the 𝛾𝑠’s.  In practice, we can estimate the 𝛽𝑠’s and the 𝛾𝑠’s, so we 

can readily produce figures of the type shown here.  Note that a non-zero correlation between 𝛾𝑠 

and 𝛿𝑠 will produce a figure on the right that shows a non-linear association between 𝛽𝑠 and 𝛾𝑠.  

This is evident in the quadratic fitted curves in the righthand figures.  Thus, non-linearity in the 

observed relationship between 𝛽𝑠 and 𝛾𝑠 is informative regarding the extent of compliance-effect 

covariance across sites, and so may be useful in developing a bias-corrected estimator. 

 2SLS is equivalent to a linear regression of 𝛽𝑠 on 𝛾𝑠 (albeit with no intercept, as the 

exclusion restriction requires that 𝛽𝑠 = 0 when 𝛾𝑠 = 0), weighting each site by its sample size and 

the variance of the instrument within each site (Reardon & Raudenbush, forthcoming; Raudenbush, 

Reardon, & Nomi, 2012).5 The slope of this line is the 2SLS IV estimate of 𝛿.  Recall that the average 

value of 𝛿𝑠 is 1, so an unbiased estimate would yield a slope of 1, as shown by the solid line in the 

figures.  The results of the 2SLS regression are shown by the dashed line.  Note that when 

𝐶𝑜𝑟𝑟(𝛿𝑠, 𝛾𝑠) > 0, the slope of the fitted line is substantially greater than 1; when 𝐶𝑜𝑟𝑟(𝛿𝑠, 𝛾𝑠) < 0, 

the slope of the line is substantially less than 1.  The reason for this is that the sites where 𝛾𝑠 is 

largest in magnitude (farthest from 0) have more leverage in the regression; the correlation 

                                                           
5 Angrist (1990) does this graphically, in a way that is equivalent to weighting each site by the variance of the 
treatment; in the stylized example here, we assume all sites have equal instrument variance and equal sample 
size.   



18 

between 𝛾𝑠 and 𝛿𝑠 means that these sites also have larger (or smaller) than average 𝛿𝑠’s, leading to 

biased estimates. 

 

Two Bias-Corrected Estimators 

We now develop two bias-corrected IV estimators.  First, assume that the association 

between 𝛾𝑠 and 𝛿𝑠 is linear: 

𝛿𝑠 = 𝛼0 + 𝛼1𝛾𝑠 + 𝜈𝑠,   𝜈𝑠~𝑁[0,𝜎𝜈2]. 

 (7) 

Note that this assumption is weaker than the assumption that 𝐶𝑜𝑣(𝛾𝑠, 𝛿𝑠) = 0.  We can, in principle, 

relax the linearity assumption further, and allow the relationship between 𝛾𝑠 and 𝛿𝑠 to be described 

by some higher-order polynomial.  Equation (8) would then include a set of terms involving the 

expected values of the higher-order powers of 𝛾𝑠. This would result in a higher-order regression 

model in Equation (12) below. 

Taking the expectation of both sides of Equation (7) yields 

𝐸[𝛿𝑠] = 𝛼0 + 𝛼1𝐸[𝛾𝑠] 

𝛿 = 𝛼0 + 𝛼1𝛾. 

 (8) 

Equation (8) suggests a bias-corrected estimator for 𝛿. Specifically, if we can estimate 𝛼0, 𝛼1, and 𝛾, 

we can estimate 𝛿 as  

𝛿𝑏𝑐 = 𝛼�0 + 𝛼�1𝛾�. 

 (9) 

We can construct a second bias-corrected estimator by directly estimating the 2SLS compliance-

effect covariance bias and subtracting it from the 2SLS estimate.  Note that Equation (7) implies 

that 𝛼1 = 𝜏𝛾𝛿/𝜏𝛾; the compliance effect covariance bias (from Equation 5a) is therefore  
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2𝛾𝛼1𝜏𝛾
𝛾2 + 𝜏𝛾

�
𝐹 − 1
𝐹

�. 

 (10) 

Thus, if we could estimate 𝐹, 𝛼1, 𝛾, and 𝜏𝛾, we can construct a plug-in bias-corrected estimator:  

𝛿𝑝𝑖  = 𝛿2𝑆𝐿𝑆 −
2𝛾�𝛼�1𝜏̂𝛾
𝛾�2 + 𝜏̂𝛾

�
𝐹� − 1
𝐹�

�. 

 (11) 

To construct 𝛿𝑏𝑐 and 𝛿𝑝𝑖, we must estimate 𝐹, 𝛼0, 𝛼1, 𝛾, and 𝜏𝛾 First, we can estimate 𝛾, 𝜏𝛾, and 𝐹 

from the following random-coefficients model:6    

𝑀𝑖 = Λ𝑠 + 𝛾𝑠𝑇𝑖 + 𝑒𝑖  

�Λ𝑠𝛾𝑠
�~𝑁 ��Λ𝛾� , �

𝜏Λ 𝜏𝛾Λ
𝜏𝛾Λ 𝜏𝛾 ��. 

 (12) 

Now, we note that  

𝛽𝑠 = 𝐸[𝐵|𝑆 = 𝑠] 

= 𝐸[ΓΔ|𝑆 = 𝑠] 

= 𝐸[Γ|𝑆 = 𝑠] ∙ 𝐸[Δ|𝑆 = 𝑠] + 𝐶𝑜𝑣(ΓΔ)|𝑆 = 𝑠 

= 𝛾𝑠 ∙ 𝛿𝑠 + 𝐶𝑜𝑣(ΓΔ)|𝑆 = 𝑠. 

 (13) 

Given the assumption of no within-site compliance-effect covariance, substituting Equation (7) into 

(13) yields  

𝛽𝑠 = 𝛾𝑠 ∙ 𝛿𝑠  

= 𝛾𝑠(𝛼0 + 𝛼1𝛾𝑠 + 𝜈𝑠) 

                                                           
6 We can compute 𝐹 from the estimates of 𝛾, 𝜏𝛾 , and 𝜎2 using Equation (3).  In practice, if 𝜏𝛾  is small relative 
to the sampling variance of the 𝛾�𝑠’s, fitting a random coefficient model like (12) may not be possible, because 
the maximum-likelihood algorithm may not converge.  In such cases, however, there is little or no need to use 
a random coefficient model; a fixed effects IV model (a model with a single instrument) would be preferable.  
We could also fit (12) using site-fixed effects and site-by-treatment assignment interactions via OLS, and then 
shrink the resulting 𝛾�𝑠’s, as described following Equation (15).  
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= 𝛼0𝛾𝑠 + 𝛼1𝛾𝑠2 + 𝛾𝑠𝜈𝑠,   𝜈𝑠~𝑁[0,𝜎𝜈2]. 

 (14) 

In other words, under the assumption that 𝛿𝑠 is linearly related to 𝛾𝑠, 𝛽𝑠 can be written as a 

quadratic function of 𝛾𝑠, passing through the origin, with a heteroskedastic error term.  The 

parameters 𝛼0 and 𝛼1 can be estimated by fitting this model to the 𝛽̂𝑠’s and 𝛾�𝑠’s. 

Although the assumption that 𝑇 is ignorably assigned within sites ensures that we can 

obtain unbiased estimates of the 𝛽𝑠’s and 𝛾𝑠’s, two factors will complicate the estimation of 𝛼0 and 

𝛼1 from the observed data.  First, we do not observe 𝛽𝑠 and 𝛾𝑠; rather, we estimate them and so 

observe 𝛽̂𝑠 = 𝛽𝑠 + 𝑏𝑠 and 𝛾�𝑠 = 𝛾𝑠 + 𝑔𝑠.  Regressing 𝛽̂𝑠 on 𝛾�𝑠 and 𝛾�𝑠2 will yield biased estimates of 𝛼0 

and 𝛼1 because of the error in 𝛾�.  Second, in finite samples, the correlation between 𝑒 and 𝑢 (the 

errors in the first and second-stage equations) will induce a correlation between 𝑏𝑠 and 𝑔𝑠, as will 

𝛿 ≠ 0 (see Equation A3.5 in Appendix A3); this will induce bias in the estimates of 𝛼0 and 𝛼1.   

We can correct the first problem by regressing the 𝛽�𝑠’s on shrunken estimates of 𝛾𝑠 and 𝛾𝑠
2.  

In Appendix A5 we show that  

𝐸�𝛽̂𝑠�𝛾�𝑠� = 𝛼0𝛾𝑠∗ + 𝛼1𝛾𝑠2
∗ + 𝐶𝑜𝑣(𝑏𝑠,𝑔𝑠)

𝜆(𝛾�𝑠 − 𝛾)
𝜏𝛾

, 

 (15) 

where 𝜆 = 𝜏𝛾/(𝜏𝛾 + 𝜏𝑔) is the reliability of the 𝛾�𝑠’s; 𝛾𝑠
∗ = 𝐸�𝛾𝑠�𝛾�𝑠� = 𝜆𝛾�𝑠 + (1 − 𝜆)𝛾; and 

𝛾𝑠
2∗ = 𝐸�𝛾𝑠

2�𝛾�𝑠� = 𝛾𝑠
∗2 + 𝜏𝛾(1 − λ).  When 𝐹 is large and 𝐶𝑉𝛾 is not small, the expected value of the 

final term in Equation (15) will be small.7  This suggests we can regress the 𝛽�𝑠’s on 𝛾𝑠
∗ and 𝛾𝑠

2∗ (with 

no intercept) to estimate 𝛼0 and 𝛼1.  Given the estimates 𝛾�, 𝜏�𝛾, 𝐹�  ,𝛼�0, and 𝛼�1, we can then compute 

𝛿𝑏𝑐 and 𝛿𝑝𝑖 from Equations (9) and (11).  If we have large samples within sites, we can estimate the 
                                                           
7 In Appendix A5 we discuss the case where 𝐹 is small and/or 𝐶𝑉𝛾  is small; in such cases, the final term in (15) 
may have a large, non-zero expected value, implying that Equation (15) should have a non-zero intercept. In 
such cases, however, our simulations show that including an intercept in model (15) leads to a very large 
sampling variance of the estimates of the intercept and 𝛼�0; the loss in precision is far worse than any 
reduction in bias achieved. 
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𝛽�𝑠’s and 𝛾𝑠’s very reliably, which will lead to precise estimates of 𝛾, 𝜏𝛾, 𝛼0, and 𝛼1, and thus, to 

precise estimates of 𝛿.  Note that 𝛿𝑝𝑖 and 𝛿𝑏𝑐 rely on the same basic information (both use 𝛾�, 𝜏̂𝛾, and 

𝛼�1; 𝛿𝑏𝑐 also uses 𝛼�0, however), but in different ways, suggesting that they may perform somewhat 

differently under different conditions. 

  

Standard errors for 𝛿𝑏𝑐 and 𝛿𝑝𝑖 

We compute standard errors for 𝛿𝑏𝑐 and 𝛿𝑝𝑖 via bootstrapping.  Specifically, we (i) draw a 

sample of 𝐾 sites, with replacement, from the original sample of sites; (ii) draw a sample of 𝑝 ∙ 𝑛 

treatment and (1 − 𝑝)𝑛 control cases, with replacement, separately in each resampled site; (iii) 

estimate 𝛿𝑏𝑐 and 𝛿𝑝𝑖 from this new sample as described above in Equations (9) and (11); (iv) 

repeat steps (i)-(iii) many times (we use 500 draws in the simulations described below); and (v) 

use the variances of the estimates from these repeated draws as estimates of the sampling 

variances of the 𝛿’s.  

 

V. Simulation Analyses 

We assess the performance of the two bias-corrected IV estimators described in Section IV 

using a set of simulations, comparing the results based on the new estimators with those from 2SLS.  

Appendix B describes the simulation set up in detail.   We vary three parameters—the coefficient of 

variation for compliance (𝐶𝑉𝛾), the expected 𝐹 statistic, and the compliance-effect correlation—

across simulations.  

Table 2 presents the estimated bias, sampling variation, estimated standard error, and root 

mean square error of the two bias-corrected estimators for a range of simulated populations.  

Columns 1-3 report the parameters used in each simulation; columns 4 through 11 report the 

estimation results for the two bias-corrected IV estimators.  For comparison, Columns 12-15 report 

the corresponding 2SLS bias, standard error and RMSE. 
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Bias of the bias-corrected IV estimators in the presence of compliance-effect covariance in finite 

samples 

Columns 4 and 8 in Table 2 present the estimated bias for the two bias-corrected estimators 

across 2000 simulation iterations.8 Panel A indicates that the magnitude of the estimated bias of 

both bias-corrected estimators reaches its minimum value when 𝐶𝑉𝛾equals 1, other things being 

equal. As 𝐶𝑉𝛾 deviates from 1, the absolute value of estimated bias increases.9  Thus, the bias 

corrected estimators are most effective at eliminating bias when 𝐶𝑉𝛾 is near 1.  This is in stark 

contrast with the pattern observed in panel A of Table 1 and in columns 12-15 of Table 2, which 

show that bias in 2SLS exhibits an inverse “U” shape that reaches its maximum value when 𝐶𝑉𝛾  is 1 

and diminishes steadily as 𝐶𝑉𝛾  starts deviates from  1 in either direction.  Panel A also indicates that 

the bias-corrected estimator exhibits less bias than the plug-in estimator when 𝐶𝑉𝛾 < 1, and more 

bias than the plug-in estimator when 𝐶𝑉𝛾 ≥ 1. 

Panel B suggests that both bias-corrected estimators do a good job eliminating bias when 

the first stage 𝐹-statistic is large.  A comparison between Columns 4, 8, and 12 indicates that, when 

𝐹 is extremely small, the absolute value of bias of the bias-corrected estimators is similar to that of 

2SLS.  As 𝐹 increases, the magnitude of the bias shown in Columns 4 and 8 decreases both in 

absolute terms and as a proportion of 2SLS bias.  

Panel C shows that, for cases examined here, bias in the bias-corrected estimator decreases 

as 𝐶𝑜𝑟𝑟(𝛾𝑠, 𝛿𝑠) increases, other things being equal.  Bias in the plug-in estimator appears slightly 

larger in the case where 𝐶𝑜𝑟𝑟(𝛾𝑠, 𝛿𝑠) is larger than where it is moderate in size, though it is still very 

                                                           
8 Some iterations did not produce an estimate for 𝛿 because the restricted maximum likelihood (RMLE) 
model used to obtain shrunken estimates of 𝛾𝑠 did not converge. Therefore the actual number of successful 
iterations varies by parameter values used in the simulation, ranging from 1,821 to 2,000 out of 2,000 total 
iterations.  
9 Panel A demonstrates this pattern for an F-statistic of 10.  Additional results (not reported here) 
demonstrate that while this pattern holds for a wide range of F-statistics, this “U” shape pattern is more 
pronounced when the F-statistic is small and becomes more muted as the F-statistic increases. 
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small compared to the bias in the 2SLS estimator.  Note that compliance-effect bias in 2SLS or OLS 

increases with 𝐶𝑜𝑟𝑟(𝛾𝑠, 𝛿𝑠). So results in this panel indicate that, when 𝐶𝑉𝛾  is 1 and the 𝐹-statistic is 

fairly large (e.g., 𝐹 = 26), both bias-corrected estimators performs very well when they are needed 

the most—when the compliance-effect bias is large. 

 

Sampling variability of the bias-corrected IV estimators in the presence of compliance-effect 

covariance in finite samples 

Columns 5 and 9 report the true sampling variation (the standard deviation of the estimates 

across the 2000 simulation samples) of the two bias-corrected estimators, while columns 6 and 10 

report the average bootstrapped standard error of the estimates, for each scenario.  In general, 

except when 𝐹 is very small, the sampling variance of both bias-corrected estimators is roughly 

similar to that of the 2SLS estimates.  This suggests that the bias correction does not come at any 

significant loss of precision compared to 2SLS (of course, the sampling variances of the bias-

corrected estimators and of 2SLS are much larger than the conventional 2SLS-estimated standard 

errors, as shown in column 14).  Moreover, the bootstrapped standard errors for the bias-corrected 

estimators are very close to the true standard errors, except when 𝐹 is very small.   

 

Comparing the bias-corrected IV estimators to the 2SLS and OLS estimators in the presence of 

compliance-effect covariance in finite samples 

Figure 2 compares the estimated bias and RMSE from the 2SLS and bias-corrected IV 

estimators under a variety of conditions.  The horizontal axis in each graph indicates the first stage 

𝐹-statistic and the vertical axis either the bias (left panel of figures) or RMSE (right panel).  We 

present separate graphs for 𝐶𝑉𝛾  values of 1.0, 0.2, and 0.10 In each case, 𝐶𝑜𝑟𝑟(𝛾𝑠, 𝛿𝑠) is fixed at 0.25.  

                                                           
10 This figure shows how the four estimators behave as 𝐶𝑉𝛾  starts to deviate from the optimal value of 1 
towards 0.  Results are similar to those presented here when 𝐶𝑉𝛾  deviates from the optimal value of 1 
towards infinity.  Figure C1 in appendix C present graphical demonstrations of those results. 
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In each of the graphs on the left panel, the area below the 2SLS bias line is decomposed into 

two parts: the light grey area on top represents the amount of compliance-effect bias (CEB) in the 

2SLS estimator and the dark grey area at the bottom represents the finite sample bias component 

(FSB) of the 2SLS estimator. This decomposition is based on Equation 5a and the sum of these two 

components closely tracks the estimated 2SLS bias (the sum does not exactly track the bias as the 

decomposition is an approximation).  These three graphs illustrate that the relative bias of 2SLS 

and the bias-corrected estimators depends both on 𝐶𝑉𝛾  and the first stage 𝐹-statistic.  As expected, 

the bias corrected estimators reduce 2SLS bias the most when 2SLS compliance-effect bias is large 

relative to the 2SLS finite sample bias. 

Specifically, when 𝐶𝑉𝛾  is 1, the bias-corrected estimators always have smaller bias than the 

2SLS estimator, regardless of the first-stage 𝐹-statistic (top graph). This is not surprising since, for 

any given 𝐹-statistic, the bias-corrected estimators have minimum bias when 𝐶𝑉𝛾  is 1, while 2SLS 

bias is maximized at this point. The dotted line closely tracks the FSB area (in dark grey), indicating 

that, in this case,  the bias-corrected estimators are very successful in eliminating almost all of the 

compliance-effect bias in the 2SLS estimator, regardless of the 𝐹-statistic.  

When 𝐶𝑉𝛾  is different from 1 but does not lie in the extremes (i.e., 𝐶𝑉𝛾=0.2), the bias-

corrected estimators can still produce a smaller bias than the 2SLS method if the 𝐹-statistic is 

greater than 10 (middle graph).  As 𝐶𝑉𝛾  continues to deviate from 1 and reaches the extreme of zero 

(i.e., when γ𝑠 does not vary across sites), the bias in the bias-corrected estimators approaches the 

bias in the 2SLS estimator as the 𝐹-statistic increases, but the 2SLS estimator produces the smallest 

bias among the four methods for all 𝐹-statistics presented here (bottom graph). This is not 

surprising since in this case, there is no compliance-effect bias in the 2SLS estimator (the first term 

in Equation 5a is zero), therefore there is nothing for the alternative method to correct for. 

The three graphs on the right side of Figure 2 compare the root mean squared error (RMSE) 

of these four estimators. The layout for these graphs is the same as that for the graphs on the left 



25 

side except that the vertical axis now represents the RMSE instead of the bias.  These three graphs 

show that the RMSE for the bias-corrected estimators is generally larger than that for the 2SLS 

estimator when 𝐹 is small (less than 10), but decreases faster as 𝐹 increases than does the RMSE of 

the 2SLS estimator. As a result, the bias-corrected IV estimators have the smallest RMSE when 𝐹 is 

above some threshold, though this threshold depends on 𝐶𝑉𝛾  —it is the smallest when 𝐶𝑉𝛾  is 1 (top 

graph) and becomes larger as 𝐶𝑉𝛾  deviates from 1(middle and bottom graph).  

Figure 3 provides similar comparisons of the magnitude of bias and RMSE among the three 

estimators as a function of the compliance-effect correlation.  In these figures, the 𝐹-statistic is set 

to a value of 26, and the horizontal axis indicates values of 𝐶𝑜𝑟𝑟(𝛾𝑠, 𝛿𝑠). All other attributes of the 

graph are the same as in Figure 2.11  

Similar to Figure 2, the three graphs on the left side of figure 3 show that when 𝐶𝑉𝛾 = 1, the 

bias-corrected estimators work well in eliminating the compliance-effect bias in the 2SLS bias, 

especially when the CEB is large (top graph).  When 𝐶𝑉𝛾  deviates somewhat from 1, the bias-

corrected estimators eliminate some, but not all of the compliance-effect bias (middle graph).  

When there is no compliance-effect bias in the 2SLS estimator (either because 𝐶𝑜𝑟𝑟(𝛾𝑠, 𝛿𝑠) = 0 or 

𝐶𝑉𝛾 = 0), the bias in the 2SLS estimator is smaller than that of the bias-corrected estimator.  

Nonetheless, as the three graphs on the right side of figure 3 show that, across all cases examined in 

this figure, the RMSE of the bias-corrected estimator is always smaller or equal to that of 2SLS, even 

when there is no compliance-effect covariance bias.  The RMSE of the plug-in estimator is similar in 

magnitude, although it is sometimes larger than that of 2SLS.  This suggests that the bias-corrected 

IV estimator may be generally preferable to 2SLS as long as 𝐹 is modestly large (recall that it is 26 

in the figures here) and 𝐶𝑉𝛾 ≤ 1. 

It is clear that the combination of 𝐶𝑉𝛾 , the 𝐹-statistic, and 𝐶𝑜𝑟𝑟(𝛾𝑠, 𝛿𝑠) affect the 

                                                           
11 Like in Figure 2, this figure presents situations when 𝐶𝑉𝛾  deviates from 1 towards 0. Results are similar 
when 𝐶𝑉𝛾  deviates from 1 towards infinity. Results for those cases are presented in Figure C2 of Appendix C. 
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performance of the bias-corrected IV estimators relative to that of the 2SLS estimator.  In general, 

when the F-statistic is greater than 10, the bias-corrected IV estimators outperform the 2SLS 

estimator both in terms of bias and RMSE under a wide range of conditions. This is especially true 

when 𝐶𝑉𝛾does not deviate from 1 too much and when 𝐶𝑜𝑟𝑟(𝛾𝑠, 𝛿𝑠) is not very close to zero.  When 

the 𝐹-statistic is less than 10, the bias-corrected estimators generally perform worse than 2SLS. 

However, because IV methods should generally not be used when the 𝐹-statistc is less than 10 (for 

example, see Yogo and Stock, 2005), this is not a particularly useful comparison.   

 

VI. Empirical Examples  

 We now apply 2SLS and the bias-corrected IV estimators to a reanalysis of data from two 

studies: (1) the Tennessee class size experiment, Project STAR (e.g., Finn and Achilles, 1990) and 

(2) the federal Reading First Impact study described earlier.  For both examples we estimate the 

relationship between a hypothesized mediator and an outcome using OLS, 2SLS and the bias-

corrected estimator. However the examples represent two very different study designs.  Project 

STAR randomly assigned a large number of individual students to treatment status in a large 

number of sites (schools), whereas the Reading First Impact Study examined student outcomes for 

a small number of schools that were assigned to treatment or control status in a small number of 

sites.  The two examples also differ in terms of the factors that influence the effectiveness of our 

bias-corrected estimator: (1) the strength of their instruments, (2) their cross-site variation in 

compliance, and (3) their cross-site correlation between compliance and mediator effects.  In 

addition, the RF study was a cluster-randomized trial: schools, rather than students, were randomly 

assigned to treatment conditions.  We take this clustering into account in our analyses, but do not 

spend time discussing the clustering issue, as it is orthogonal to the key issues of identification and 

bias that we focus on in this paper. 
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Project STAR 

Project STAR (Student-Teacher Achievement Ratio) randomized approximately 5,900 

entering kindergarten students at 79 elementary schools to either a small class (13 – 17 students) 

or a regular-sized class (22 – 26 students) (Krueger, 1999 and Nye, Hedges and Konstantopoulos, 

2000). Students assigned to a regular-sized class were further randomly assigned to classes with or 

without a classroom aide. Because previous analyses found no difference in student outcomes for 

students in regular-sized classrooms with or without an aide (Krueger, 1999) we combine these 

two groups into a single regular-size classroom group.  

The mediator of interest for us is actual class size, which differs from assigned class size 

because some students assigned to small classes ended up in classes with 18 or more students, and 

some assigned to regular classes had fewer than 22 in their class.  Note that this mediator is an 

interval-scaled, multi-valued variable rather than a binary “compliance” indicator.  Therefore, this 

example is not simply a case where we are interested in adjusting the experimental estimates for 

non-compliance, but rather are interested in estimating the effect of a one-unit change in class-size.  

As we show below, actual class size (and the effect of being assigned to a small class) vary 

significantly among students, even among those assigned to the same treatment condition. We use 

79 instruments—a zero/one indicator for assignment to a small class interacted with a zero/one 

indicator for each school. We use OLS, 2SLS with 79 instruments, and the two bias-corrected IV 

estimators with 79 instruments to estimate the effect of actual class size on student math and 

reading achievement at the end of the kindergarten year for students who were randomized when 

they entered kindergarten.  

The left hand panel of table 3 summarizes the results of our reanalysis of the STAR data.  We 

begin by considering the OLS and 2SLS estimates of the effects of class size.  The OLS estimates in 

Table 3 indicate that, on average, reducing the size of a kindergarten class by one student increases 

math achievement by 1.04 scale-score points and increases reading achievement by 0.72 scale-score 
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points. The corresponding 2SLS estimates are 1.11 points in math and 0.71 points in reading, 

estimates that are very close to the OLS results. This similarity is likely because in Project STAR a 

very large proportion of the variance in class size was determined by random assignment, leaving 

little endogenous variation in class size to produce bias.  Hence, unlike many mediators which vary 

naturally across individuals in a study sample, and thus may be correlated with their unobserved 

characteristics, Project STAR does not appear to have a substantial endogeneity problem.   

Prior to estimating the effects of class size using the bias-corrected 2SLS estimators, it is 

useful to assess the potential compliance-effect covariance bias that might be present in the 2SLS 

estimates.  To do so, we examine the 𝐹-statistic and estimate 𝐶𝑉𝛾, 𝜏𝛿 , and 𝐶𝑜𝑟𝑟(𝛾, 𝛿) to determine 

whether, based on our simulations reported in Table 2 and Figures 2-3 above, we expect the bias-

corrected estimators to outperform 2SLS.  For both math and reading, 𝐶𝑉𝛾 ≈ 0.25 and 𝐹 > 1,000; 

the large F-statistic reflects the facts that variation in class size is largely due to randomization and 

that the average sample per school is substantial.  Using the methods described in Raudenbush, 

Reardon, and Nomi (2012) and in in Appendix D, we estimate 𝜏𝛿 ≈ 3.5 for both math and reading, 

and 𝐶𝑜𝑟𝑟(𝛾, 𝛿) = −0.24 and −0.36 in math and reading, respectively.  These values suggest that the 

bias-corrected estimators should perform extremely well.  Based on Figure 2, when 𝐶𝑉𝛾 = 0.2 and 

𝐶𝑜𝑟𝑟(𝛾, 𝛿) = 0.25, both the bias-corrected estimators are substantially less biased and have smaller 

RMSE when 𝐹 is 100.  Given that 𝐹 is even larger in the STAR example (and given that 2SLS bias 

does not decline significantly after 𝐹 is above 10), we prefer the bias-corrected IV estimates for 

these STAR analyses.  Based on these values, Equation (5a) implies that the compliance-effect 

covariance bias in the 2SLS estimator is roughly 0.27 in both math and reading; this is a moderate 

amount of bias relative to the 2SLS effect estimates of -1.11 and -0.71. 

The two bias-corrected IV estimates (reported at the bottom of Table 3) are larger (18 to 35 

percent larger, in fact) than their 2SLS counterparts.  They imply that reducing the size of a 

kindergarten class by one student increases average student achievement by 1.32 or 1.39 scale-



29 

score points for math and 0.96 or 0.97 scale-score points for reading (depending which of the two 

bias-corrected estimators we use).  Expressed as effect sizes these results imply a roughly 0.03 

standard deviation increase in test scores per student of class size reduction.  Note, however, that 

the standard errors of the bias-corrected estimates are 15-20% larger than the 2SLS- and OLS-

estimated standard errors, and that the confidence intervals for the 2SLS, OLS, and bias-corrected 

estimates overlap considerably.  For Project STAR, where variation in the mediator was mainly 

induced by randomization (and thus mainly exogenous) and where there are numerous 

randomized individuals per block and numerous blocks, the four estimation approaches yield 

roughly comparable point estimates and statistical inferences. Nonetheless, although our 

conclusions about the effectiveness of reducing class sizes may not change much depending on 

which we estimator we use in this case, the values of 𝐶𝑉𝛾, 𝐹, and 𝐶𝑜𝑟𝑟(𝛾, 𝛿) and the simulations in 

Section V suggest that the two bias-corrected estimates are to be preferred to the 2SLS or OLS 

estimates in this example.  As Figure 2 shows, when 𝐶𝑉𝛾 ≈ 0.2 and 𝐶𝑜𝑟𝑟(𝛾, 𝛿) ≈ 0.25 and 𝐹 ≥ 100, 

the two bias-corrected estimators have very similar bias and RMSE; we have no clear way to choose 

between them in this case (nor do we need to, as they yield very similar estimates). 

Another potential way to assess the impact of compliance-effect covariance bias is to 

examine the estimates of 𝛼1. Because these estimates for Project STAR are statistically significant 

(at least in the case of reading) they provide reliable evidence of a true departure from linearity in 

the relationship between the effect of randomization on student achievement (𝛽) and the effect of 

randomization on class size (𝛾).  This departure from linearity implies the presence of compliance-

effect covariance bias. 

To help visualize this relationship, Figure 4 presents a graph of reduced-form OLS estimates 

of 𝛽 and Empirical Bayes estimates of 𝛾 for each school in the sample. Superimposed on this 

scatter-plot is the estimated quadratic relationship implied by the estimates of 𝛼0 and 𝛼1 in Table 3. 

The top graph is for reading and the bottom graph is for math. Because it is difficult to see a pattern 
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in the plotted points, consider what is implied by the fitted curve.  Sites in which there was a 

greater reduction in class size as a result of treatment assignment have, on average, a larger 

increase in test scores as a result of treatment assignment, but this association does not appear to 

be linear.  This nonlinearity implies a covariance between the site-average compliance levels and 

site-average effects—a unit-change in class size appears to effect test scores the most, on average, 

in the schools where random assignment induced a smaller change in class size.  This might result 

from a non-linearity in the underlying relationship between class size and achievement.   

 

Reading First 

The Reading First Impact Study was conducted in 18 sites (comprising 17 school districts 

and one statewide program) where between 6 and 32 schools per site were assigned to treatment 

or comparison condition status.12  Data from the study make it possible to estimate program 

impacts on RF instructional time (the mediator of interest).  In addition estimates were obtained for 

program impacts on student reading achievement measured by SAT10 reading scale scores for 

three annual student cohorts in grades one and two. The smallest block for estimating impacts is a 

single cohort in a single grade from a single site. There are 108 such blocks. Because the unit of 

assignment to Reading First is schools, the effective sample size of these blocks is quite small and 

the strength of instruments created by interacting assigned treatment status with zero/one block 

indicators is quite weak (their first stage 𝐹-statistic is 3.48).  Thus our analyses are based on 36 

blocks (which pool student cohorts within grade-by-site cells) or 18 blocks (which pool student 

cohorts and grades within sites).  

As we reported in the introduction above, an IV analysis with a single instrument indicates 

that on average, student reading achievement increased by 0.37 scale score points (4.29
11.6

) per 
                                                           
12 Treatment was not assigned randomly in most of the RF sites, but was rather assigned on the basis of an 
observed rating score.  Our analysis here, like the impact analysis reported by Gamse et al (2008), is based on 
a regression discontinuity design, but that feature of the analysis is not essential to our exposition and so is 
excluded for simplicity.  
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additional minute of RF instruction. The right side of table 3 reports corresponding results obtained 

from OLS, 2SLS with multiple instruments and the two bias-corrected IV estimators with multiple 

instruments.  The OLS estimates indicate a very small mediator effect: an additional 0.037 or 0.122 

scale score points per minute of RF instruction per daily reading block (which correspond to effect 

sizes of 0.001 and 0.003 per minute of instruction for 18 blocks or 36 blocks, respectively). The 

2SLS estimates of this mediator effect are much larger: 0.397 or 0.387 for 18 or 36 blocks (effect 

sizes of roughly 0.01), respectively, estimates that are very close to the single-instrument estimate 

of 0.37 points per minute of RF instruction.   

The corresponding bias-corrected IV estimates are 0.365 for 18 blocks and 0.484 for 36 

blocks. Hence, they are roughly comparable to estimates produced by 2SLS. This is especially true 

for the finding based on 18 blocks where the first-stage F-statistic for 2SLS (17.7) suggests that one 

can have some confidence in the bias-corrected estimators.  This suggests that the Reading First 

example might not involve substantial compliance covariance bias.  To explore this issue it would 

be useful to examine the quadratic coefficient in the regressions used to produce bias-corrected 

estimates. However, as can be seen from Table 3, this coefficient is not estimated precisely enough 

to provide information that is useful for this purpose.  

Several further points about these findings are important to consider. Note first that 

estimated standard errors are not presented for the OLS, 2SLS or bias-corrected estimators.  This is 

because the small number of schools in each block (the smallest blocks have only 6 schools) do not 

support valid bootstrapped standard errors (Freedman, 2005).  Thus for this example, it is not 

possible to use bootstrapped standard errors to provide statistical inferences for any of the 

estimators.13  This problem is likely to arise frequently when aggregate units (clusters) are assigned 

to treatment or control status, which typically results in small numbers of aggregate units per block. 

                                                           
13 For the 2SLS and OLS estimators, it is possible to obtain estimated standard errors through conventional 
methods based on standard software packages. However, as demonstrated earlier in the paper, those 
standard errors tend to understate the sampling variation, especially when first stage F is small. Therefore 
conventional standard errors for the OLS and 2SLS estimators are not reported in Table 3 either. 
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Note second that estimates of mediator effects produced by 2SLS and the bias corrected estimator 

are many times larger than those produced by OLS.  This probably reflects attenuation bias in the 

OLS estimates that is created by a lack of reliability in the observational measure of RF instructional 

time (each classroom was only observed by a single rater during a single 60–90 minute reading 

block).  Neither 2SLS and nor the bias-corrected estimators are subject to this problem.  

In summary, Project STAR illustrates a situation in which the bias-corrected estimators are 

likely to work quite well: the 𝐹-statistic is unusually large (over 1,000), the coefficient of variation 

for compliance equals about 0.26, and the number of observations per block (over 70) is large 

enough to support accurate bootstrapped standard errors.  Reading First provides a much more 

limited application. The 𝐹-statistic is 17.7 or 8.2, the coefficient of variation for compliance is 0.76 

or 0.79 and the number of observations per block (ranging from 6 to 32) is too small to support 

bootstrapped standard errors. 

 

VII. Discussion and Conclusion 

 The use of multiple site-by-treatment status instruments to identify the effects of the 

mediators of a treatment in a multi-site trial is a potentially promising method, though it does not 

come without some complexity.  In addition to the usual set of assumptions required for 

identification in instrumental variables models, an additional assumption—that there is no 

correlation between the site-average compliance rates and the site-average effects of the 

mediator—is required (Reardon and Raudenbush, forthcoming).  This assumption is required 

regardless of whether the goal is to identify a complier average causal effect (a LATE, in Angrist, 

Imbens, and Rubin’s 1996 terminology) or an average effect in a population (ATE).  Note that in 

2SLS estimation (and in other parametric IV methods), the assumption of compliance-effect 

independence implies that the relationship between the site-specific intent-to-treat effects (the 𝛽𝑠’s 

in our notation) and the site-specific average compliances (the 𝛾𝑠's) is linear.  If the compliance-
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effect independence assumption is not met, then the implicit linearity assumption in multiple 

instrument 2SLS model will lead to biased estimates. However, this bias is not unique to 2SLS 

MSMM-IV estimation: it is present as well in some other standard methods of IV analysis, such as 

the limited information maximum likelihood IV estimator (LIML).  Moreover, Raudenbush, 

Reardon, and Nomi (2012) note that even a non-parametric method such as averaging estimates 

from multiple sites (which might themselves be estimated using any one of a number of IV 

estimators) using precision weights will suffer from the same between-site compliance-effect 

covariance bias that we describe here.    

 Reardon and Raudenbush (forthcoming, Appendix C) derive an asymptotic expression for 

the 2SLS bias due to compliance-effect covariance, but do not consider how compliance-effect 

covariance bias may interact with finite sample bias.  Here we have shown that the magnitude of 

the compliance effect covariance bias depends on the strength of the instruments.  We have derived 

an analytic expression approximating the magnitude of both finite sample bias and compliance-

effect covariance bias.  This expression shows that, ceteris parabis, the magnitude of compliance-

effect covariance bias increases asymptotically as the instruments grow stronger, while finite 

sample bias decreases.  Thus, a strong set of instruments is no guarantee against compliance-effect 

covariance bias.  Our simulations illustrate that the bias formula closely matches the true bias over 

a wide range of the parameter space, and demonstrates that the bias due to compliance-effect 

covariance may be substantial.  

 To address this problem, we develop two closely-related alternative instrumental variables 

estimators—the bias-corrected IV estimator and the plug-in bias-corrected IV estimator. Our 

simulations show that these two estimators perform very well over a wide range of conditions 

when the first stage 𝐹-statistic is greater than 10.  In this situation, as long as 𝐶𝑉𝛾 is not too extreme 

and 𝐶𝑜𝑟𝑟(𝛾𝑠, 𝛿𝑠) is not very close to zero, the bias-corrected estimators generally outperform the 

2SLS estimator both in terms of bias and RMSE.  Note that both the coefficient of variation for 
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compliance and the first stage 𝐹-statistic can easily be estimated based on the data, so researchers 

can readily assess whether it is preferable to use the bias-corrected estimators.  

The two bias-corrected estimators rely on a weaker assumption than the 2SLS estimator.  

While 2SLS requires the assumption that the site-average compliances and the site-average effects 

of the mediator are independent, the bias-corrected estimators require only that that the 

association between the site-average compliances and the site average effects be linear.  This is a 

significantly more plausible assumption than the assumption of no association.  The bias-corrected 

estimators are therefore preferable to 2SLS in a wide range of situations for the analysis of 

mediator effects in multi-site trials. 

Several general caveats are important to note here.  First, because IV models rely heavily on 

the exclusion restriction for identification of mediator effects, IV analysis is suitable for mediation 

analysis only when the exclusion restriction is valid—that is, only when the effect of the instrument 

on the outcome is fully mediated by the specified mediator or mediators.  Partial mediation models, 

in which there may be a direct effect of the instrument as well as mediated effects, rely on 

fundamentally different assumptions and different analytic strategies than those we have described 

here.  IV models for mediation require that we specify and measure all mechanisms through which 

an instrument affects an outcome. 

Second, our focus in this paper has been on reducing the 2SLS bias caused by between-site 

compliance-effect covariance.  If, however, the mediator is not binary, and the researcher wishes to 

estimate an average effect of the mediator in the population, there may be additional bias caused by 

within-site compliance-effect covariance (Reardon and Raudenbush forthcoming).  Such potential 

bias is a feature of all 2SLS estimators, whether they rely on a single instrument or multiple 

instruments.  In principle, this bias may be larger or smaller than the bias due to between-site 

compliance-effect covariance, depending on the magnitudes of the covariances and the strength of 

the instruments.   Methods of detecting and correcting such within-site compliance-effect 
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covariance bias have been suggested elsewhere (Heckman and Vytlacil 1999; Reardon and 

Raudenbush forthcoming); we do not discuss them here.  
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Figure 2: Bias and RMSE of Four Estimators by F-statistic and CVγ, when Corr (γS, δS ) = 0.25 
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Figure 4. Relationship between Reduced-form OLS Estimates of 𝜷𝒔 and Empirical Bayes 
Estimates of 𝜸𝒔 for Each School in the Tennessee STAR Sample, for Kindergarten Reading and 
Math Test Scores  
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Case CVγ F sd (δ)
Predicted 

Bias
Estimated 

Bias
True Average

RMSE
Predicted 

Bias
Estimated 

Bias
True Average

RMSE

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Panel A: CVγ varies
1 0 10 0.25 1 0.050 0.051 0.173 0.064 0.180 0.479 0.483 0.142 0.013 0.503
2 0.2 10 0.25 1 0.137 0.137 0.173 0.061 0.221 0.482 0.487 0.139 0.013 0.506
3 1 10 0.25 1 0.275 0.283 0.223 0.061 0.361 0.489 0.494 0.139 0.013 0.513
4 5 10 0.25 1 0.137 0.151 0.256 0.062 0.297 0.482 0.488 0.139 0.013 0.507
5 ∞ 10 0.25 1 0.050 0.074 0.259 0.064 0.270 0.479 0.485 0.140 0.013 0.504

Panel B: Expected F -statistic varies
6 1 2 0.25 1 0.375 0.387 0.243 0.135 0.457 0.499 0.504 0.139 0.013 0.523
7 1 5 0.25 1 0.300 0.309 0.229 0.086 0.385 0.495 0.500 0.139 0.013 0.519
8 1 10 0.25 1 0.275 0.283 0.223 0.061 0.361 0.489 0.494 0.139 0.013 0.513
9 1 26 0.25 1 0.260 0.267 0.220 0.039 0.346 0.472 0.478 0.139 0.013 0.497
10 1 101 0.25 1 0.252 0.259 0.218 0.021 0.339 0.416 0.423 0.146 0.013 0.447

Panel C: Corr(γs,δs) varies
11 1 10 -0.75 1 -0.625 -0.603 0.240 0.078 0.649 0.445 0.446 0.145 0.013 0.469
12 1 10 -0.25 1 -0.175 -0.157 0.225 0.067 0.275 0.467 0.471 0.139 0.013 0.491
13 1 10 0 1 0.050 0.063 0.223 0.063 0.232 0.478 0.483 0.138 0.013 0.502
14 1 10 0.25 1 0.275 0.283 0.223 0.061 0.361 0.489 0.494 0.139 0.013 0.513
15 1 10 0.75 1 0.725 0.720 0.234 0.061 0.757 0.511 0.517 0.142 0.013 0.536

Panel D: sd (δ) varies
16 1 10 0.25 0 0.050 0.051 0.045 0.044 0.068 0.478 0.479 0.009 0.010 0.479
17 1 10 0.25 0.2 0.095 0.096 0.061 0.044 0.114 0.480 0.482 0.028 0.012 0.483
18 1 10 0.25 1 0.275 0.283 0.223 0.061 0.361 0.489 0.494 0.139 0.013 0.513
19 1 10 0.25 5 1.175 1.221 1.101 0.234 1.644 0.533 0.558 0.696 0.013 0.892
Note: Details of simulation in Appendix B.   In each row, the following parameters are used: Each simulation data sets has 50 sites, with 200 observations within site, 50% 
of which are assigned to the treatment condition.  The variances of the first and second stage error terms are set to 1, and their correlation is set to 0.5.  In column (5), the 
predicted bias is computed from Equation (5a); in column (10), the predicted bias is computed from Equation (4a).  The RMSE in column (9) is computed as the square 
root of the sum of the squares of columns (6) and (7).  The RMSE in column (14) is computed as the square root of the sum of the squares of columns (11) and (12).

Table 1. Estimated Bias and Root Mean Squared Error of Multiple-Site, Multiple-Instrument 2SLS Estimator

Data Generating Parameters 2SLS Estimator OLS Estimator
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Case CVγ F
Estimated 

Bias
True Average

RMSE
Estimated 

Bias
True Average

RMSE
Estimated 

Bias
True Average

RMSE
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Panel A: CVγ varies
1 0 10 0.25 -0.178 0.144 0.160 0.228 -0.258 0.133 0.160 0.290 0.051 0.173 0.064 0.180
2 0.2 10 0.25 -0.182 0.152 0.170 0.237 -0.265 0.142 0.150 0.301 0.137 0.173 0.061 0.221
3 1 10 0.25 0.083 0.278 0.270 0.290 -0.007 0.245 0.190 0.245 0.283 0.223 0.061 0.361
4 5 10 0.25 0.189 0.248 0.220 0.312 0.072 0.238 0.210 0.249 0.151 0.256 0.062 0.297
5 ∞ 10 0.25 0.193 0.251 0.230 0.317 0.073 0.241 0.220 0.252 0.074 0.259 0.064 0.270

1 0 26 0.25 -0.062 0.140 0.148 0.153 -0.098 0.135 0.140 0.167 0.020 0.157 0.040 0.158
2 0.2 26 0.25 -0.062 0.142 0.152 0.155 -0.100 0.138 0.150 0.171 0.116 0.159 0.039 0.196
3 1 26 0.25 0.039 0.230 0.223 0.233 0.002 0.217 0.200 0.217 0.267 0.220 0.039 0.346
4 5 26 0.25 0.080 0.227 0.213 0.241 0.040 0.236 0.220 0.239 0.129 0.257 0.040 0.287
5 ∞ 26 0.25 0.082 0.230 0.215 0.244 0.041 0.240 0.220 0.244 0.043 0.260 0.041 0.264

Panel B: Expected F -statistic varies
6 1 2 0.25 -0.349 2.664 0.774 2.687 -0.346 1.052 0.270 1.107 0.387 0.243 0.135 0.457
7 1 5 0.25 0.114 0.435 0.359 0.450 -0.044 0.337 0.270 0.340 0.309 0.229 0.086 0.385
8 1 10 0.25 0.083 0.278 0.270 0.290 -0.007 0.245 0.190 0.245 0.283 0.223 0.061 0.361
9 1 26 0.25 0.039 0.230 0.223 0.233 0.002 0.217 0.200 0.217 0.267 0.220 0.039 0.346
10 1 101 0.25 0.014 0.215 0.210 0.215 0.003 0.210 0.200 0.210 0.259 0.218 0.021 0.339

Panel C: Corr(γs,δs) varies
11 1 26 0.00 0.058 0.236 0.229 0.243 0.021 0.221 0.210 0.222 0.030 0.223 0.040 0.232
12 1 26 0.25 0.039 0.230 0.223 0.233 0.002 0.217 0.200 0.217 0.270 0.223 0.040 0.361
13 1 26 0.75 -0.001 0.189 0.189 0.189 -0.039 0.209 0.190 0.213 0.730 0.234 0.040 0.757

Table 2. Estimated Bias and RMSE of Bias-Corrected IV Estimator and Multiple-Site, Multiple-Instrument 2SLS IV Estimator

Data Generating Parameters Bias-Corrected IV Estimator 2SLS Estimator

Note: Details of simulation in Appendix B.  In each row, δ=1 and sd(δ)=1.  All additional parameters are set as described in Table 1. Columns (5) and (9) report the standard deviation of the 
distribution of estimates of δ over 2000 samples.  Column (6) reports the average bootstrapped standard error (see text for description of bootstrapping procedure) over 100 samples 
(bootstrapped standard errors were computed for only 100 iterations due to computational time).   The RMSE in columns (7) and (11) are computed as described in Table 1.

Plug-in Bias-Corrected IV Estimator
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18 Blocks 36 Blocks

OLS Estimator
δ -1.039 ** -0.718 ** 0.037 0.122
Bootstrapped s.e.(δ) (0.340) (0.230) (n.a.) (n.a.)

2SLS Estimator
δ -1.114 ** -0.714 ** 0.397 0.387
Bootstrapped s.e.(δ) (0.350) (0.230) (n.a.) (n.a.)

Observable/Estimable Parameters
F -statistic 1082.1 1071.5 17.7 8.2
τγ 3.45 3.47 63.25 68.30
γ -7.25 -7.26 10.47 10.45
CVγ 0.26 0.26 0.76 0.79

Estimated τδ 5.814 2.216 0.531 0.363
Estimated Corr(γs, δs) -0.240 -0.357 0.216 -0.009

Estimated 2SLS Compliance-
Effect Covariance Bias 0.279 0.256 0.143 -0.005

α0 -3.583 * -3.025 ** 0.157 0.491
s.e.(α0) (1.546) (0.959) (1.025) (0.783)
α1 -0.312 + -0.285 * 0.020 -0.001
s.e.(α1) (0.187) (0.116) (0.060) (0.045)

Bias-Corrected Estimator
δ -1.319 ** -0.957 *** 0.365 0.484
Bootstrapped s.e.(δ) (0.420) (0.260) (n.a.) (n.a.)

Plug-in Bias-Corrected Estimator
δ -1.392 ** -0.969 *** 0.254 0.127
Bootstrapped s.e.(δ) (0.418) (0.269) (n.a.) (n.a.)

N (sites/blocks) 79 79 18 36
N(observations) 5,871 5,789 248 248

Estimates from Quadratic Regression

Note: + p<.10; * p<.05; ** p<.01; *** p<.001.  Estimated compliance effect covariance bias 
computed from Equation (5a).  Boostrapped standard errors computed as described in text.

Table 3. Estimated Mediator Effects Using Empirical Data

Project STAR Reading First
Math Reading
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Appendix A 

Within a given site 𝑠, let the data generating model be  

𝑀𝑖 = Λ𝑠 + 𝛾𝑠𝑇𝑖 + 𝑒𝑖,    𝑒𝑖~𝑁(0,𝜎2) 

𝑌𝑖 = Θ𝑠 + 𝛿𝑠𝑀𝑖 + 𝑢𝑖,    𝑢𝑖~𝑁(0,𝜔2) 

�
𝑒𝑖
𝑢𝑖�~ ��0

0� , � 𝜎2 𝜌𝜎𝜔
𝜌𝜎𝜔 𝜔2 �� , 

where 𝜌 is the within-site correlation of 𝑒𝑖 and 𝑢𝑖.  Across sites, the covariance matrix of the 𝛾𝑠’s and 

the 𝛿𝑠’s is  

�
𝛾𝑠
𝛿𝑠�~ ��

𝛾
𝛿� , �

𝜏𝛾 𝜏𝛾𝛿
𝜏𝛾𝛿 𝜏𝛿 ��. 

 (1) 

 

A1: Derivation of the population 𝑭-statistic (Equation 3)14 

Suppose 𝑊 is distributed as a non-central chi-square with 𝑑𝑓 = 𝜈1 and non-centrality 

parameter 𝜆; and 𝑈 is distributed as a central chi-square with 𝑑𝑓 = 𝜈2 independently of 𝑊, then 

𝐹 = 𝑊/𝜈1
𝑈/𝜈2

 will be distributed as 𝐹(𝜈1, 𝜈2, 𝜆), a non-central 𝐹 with numerator degrees of freedom 𝜈1, 

denominator degrees of freedom 𝜈2 and non-centrality parameter 𝜆.  This variable has mean 

(Johnson & Kotz, 1994) 

𝐸[𝐹] =
𝜈2

(𝜈2 − 2) ∙ �1 +
𝜆
𝜈1
�. 

 (A1.1) 

When 𝜈2 is large, 𝜈2
(𝜈2−2) ≈ 1, so we have  

𝐸[𝐹] ≈ 1 +
𝜆
𝜈1

. 

 (A1.2) 

                                                           
14 We thank Steve Raudenbush for providing this derivation. 
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Now consider the data generating model given above.  Define 𝑧𝑠 = 𝛾�𝑠
𝑠𝑒(𝛾�𝑠) = 𝑀�𝑠𝑡=1−𝑀�𝑠𝑡=0

𝜎/�𝑛𝑝(1−𝑝)
, the ratio of 

the sample mean difference between experimental and control groups in site s and its standard 

error.  Then 𝑧𝑠 is distributed as a non-central 𝑍 with non-centrality parameter 𝜆𝑠 = 𝐸[𝑧𝑠] =

𝛾𝑠
𝜎/�𝑛𝑝(1−𝑝)

.  It follows that 𝑊 = ∑ 𝑧𝑠2𝐾
𝑠=1  is distributed as a non-central chi-square with degrees of 

freedom 𝜈1 = 𝐾 and non-centrality parameter  

𝜆 = 𝐸 ��𝜆𝑠2
𝐾

𝑠=1

� = 𝐸 �
∑ 𝜆𝑠2𝐾
𝑠=1

𝜎2/𝑛𝑝(1 − 𝑝)� =
𝐾𝑛𝑝(1 − 𝑝)(𝛾2 + 𝜏𝛾)

𝜎2
. 

 (A1.3) 

Now define  

𝑈 = ���𝑀𝑖𝑠 − Λ�𝑠 − 𝛾�𝑠𝑇𝑖𝑠�
2/𝜎2

𝑛

𝑖=1

𝐾

𝑠=1

. 

 (A1.4) 

𝑈 is distributed as a central chi-square with 𝑑𝑓 = 𝜈2 = 𝐾(𝑛 − 2). Now note that 𝐹 = 𝑊/𝜈1
𝑈/𝜈2

 is the 𝐹-

statistic for the test of the null hypothesis that the instrument has no effect in every site, 

𝐻0: 𝛾𝑠 = 0,∀𝑠, or, alternately, 𝐻0 : ∑ 𝛾𝑠2 = 0𝐾
𝑠=1 .  So long as 𝜈2 = 𝐾(𝑛 − 2) is large, Equation (A1.2) 

yields Equation (3): 

𝐸[𝐹] ≈ 1 +
𝜆
𝜈1

= 1 +
𝑛𝑝(1 − 𝑝)�𝛾2 + 𝜏𝛾�

𝜎2
 

 (3) 

 
A2: Derivation of OLS bias (Equation 4a)  

 Let 𝑋𝑖+ = 𝑋𝑖 − 𝑋�𝑠 denote the within-site centered value of a variable 𝑋.  Then centering both 

sides of Equation (2b) and substituting in the centered version of (2a) yields 



48 
 

𝑌𝑖+ = 𝛿𝑠𝑀𝑖
+ + 𝑢𝑖+ 

= 𝛿𝑀𝑖
+ + [(𝛿𝑠 − 𝛿)𝑀𝑖

+ + 𝑢𝑖+] 

= 𝛿𝑀𝑖
+ + [(𝛿𝑠 − 𝛿)(𝛾𝑠𝑇𝑖+ + 𝑒𝑖+) + 𝑢𝑖+] 

= 𝛿𝑀𝑖
+ + [(𝛿𝑠 − 𝛿)(𝛾𝑇𝑖+ + (𝛾𝑠 − 𝛾)𝑇𝑖+ + 𝑒𝑖+) + 𝑢𝑖+]. 

 (A2.1) 

Estimating 𝛿 via OLS yields 

𝐸�𝛿𝑂𝐿𝑆� =
𝐸[𝐶𝑜𝑣(𝑌𝑖+,𝑀𝑖

+)]
𝑉𝑎𝑟�𝑀𝑖

+�
 

=
𝐸[𝐶𝑜𝑣(𝛿𝑀𝑖

+ + [(𝛿𝑠 − 𝛿)(𝛾𝑇𝑖+ + (𝛾𝑠 − 𝛾)𝑇𝑖+ + 𝑒𝑖+) + 𝑢𝑖+],𝑀𝑖
+)]

𝑉𝑎𝑟�𝑀𝑖
+�

 

= 𝛿 +
𝐸�𝐶𝑜𝑣�[(𝛿𝑠 − 𝛿)(𝛾𝑇𝑖+ + (𝛾𝑠 − 𝛾)𝑇𝑖+ + 𝑒𝑖+) + 𝑢𝑖+], (𝛾𝑇𝑖+ + (𝛾𝑠 − 𝛾)𝑇𝑖+ + 𝑒𝑖+)��

𝑉𝑎𝑟�𝛾𝑇𝑖+ + (𝛾𝑠 − 𝛾)𝑇𝑖+ + 𝑒𝑖+�
 

= 𝛿 +
𝐸�2𝛾𝜏𝛾𝛿𝑉𝑎𝑟(𝑇𝑖+) + 𝐶𝑜𝑣(𝑢𝑖+, 𝑒𝑖+)�

𝛾2𝑉𝑎𝑟�𝑇𝑖+�+ 𝜏𝛾𝑉𝑎𝑟�𝑇𝑖+� + 𝑉𝑎𝑟�𝑒𝑖+�
 

= 𝛿 +
2𝑝(1 − 𝑝)𝛾𝜏𝛾𝛿 + 𝜌𝜔𝜎
𝑝(1 − 𝑝)�𝛾2 + 𝜏𝛾�+ 𝜎2

 

= 𝛿 +
2𝑛𝑝(1 − 𝑝)

𝜎2 𝛾𝜏𝛾𝛿 + 𝑛𝜌𝜔
𝜎

𝑛𝑝(1 − 𝑝)
𝜎2 �𝛾2 + 𝜏𝛾� + 𝑛

 

= 𝛿 +
2𝑛𝑝(1 − 𝑝)

𝜎2 𝛾𝜏𝛾𝛿 + 𝑛𝜌𝜔
𝜎

𝐹 + 𝑛 − 1
 

= 𝛿 + 𝜌
𝜔
𝜎
�

𝑛
𝐹 + 𝑛 − 1

� +
2𝛾𝜏𝛾𝛿
𝛾2 + 𝜏𝛾

�
𝐹 − 1

𝐹 + 𝑛 − 1
� 

 (A2.2) 

 

A3: Derivation of 2SLS bias (Equation 5a) 

Combining Equations (2a) and (2b) yields the reduced form Equation 
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𝑌𝑖 = Θ𝑠 + 𝛿𝑠Λ𝑠 + 𝛿𝑠𝛾𝑠𝑇𝑖 + 𝛿𝑠𝑒𝑖 + 𝑢𝑖 

= Α𝑠 + 𝛽𝑠𝑇𝑖 + 𝜖𝑖,    𝜖𝑖~𝑁(0, 𝛿𝑠2𝜎2 + 𝜔2 + 2𝛿𝑠𝜌𝜎𝜔) 

 (A3.1) 

We begin by fitting Equation (2a) via OLS.  This yields estimates of the average compliance in each 

site 𝑠: 

𝛾�𝑠 = 𝛾𝑠 + 𝜈𝑠,    𝜈𝑠~𝑁�0,
𝜎2

𝑛𝑝(1 − 𝑝)�
. 

 (A3.2) 

We also can estimate, within each site, the average ITT effect 𝛽𝑠.  Here we have: 

𝛽̂𝑠 = 𝛽𝑠 + 𝜂𝑠,    𝜂𝑠~𝑁�0,
(𝛿𝑠2𝜎2 + 𝜔2 + 2𝛿𝑠𝜌𝜎𝜔)

𝑛𝑝(1 − 𝑝) �. 

 (A3.3) 

In finite samples: 

𝛾�𝑠 = 𝛾𝑠 + 𝑔𝑠 

 𝛽̂𝑠 = 𝛽𝑠 + 𝑏𝑠,  

 (A3.4) 

where 𝑔𝑠 = (𝑒̅𝑠1 − 𝑒̅𝑠0) and 𝑏𝑠 = 𝛿𝑠(𝑒̅𝑠1 − 𝑒̅𝑠0) + (𝑢�𝑠1 − 𝑢�𝑠0), and where 𝑒̅𝑠𝑡 and 𝑢�𝑠𝑡 are the average 

values of the error terms 𝑒𝑖 and 𝑢𝑖 among those with 𝑇 = 𝑡 in the site 𝑠 sample.  Now, 

𝐶𝑜𝑣(𝑔𝑠, 𝑏𝑠) = 𝐶𝑜𝑣�𝑒̅𝑠1 − 𝑒̅𝑠0,𝛿𝑠(𝑒̅𝑠1 − 𝑒̅𝑠0)� + 𝐶𝑜𝑣(𝑒̅𝑠1 − 𝑒̅𝑠0,𝑢�𝑠1 − 𝑢�𝑠0) 

= 𝛿𝑉𝑎𝑟(𝑒̅𝑠1 − 𝑒̅𝑠0) + 𝐶𝑜𝑣(𝑒̅𝑠1 − 𝑒̅𝑠0,𝑢�𝑠1 − 𝑢�𝑠0) 

= 𝛿�𝑉𝑎𝑟(𝑒̅𝑠1) + 𝑉𝑎𝑟(𝑒̅𝑠0)� + 𝐶𝑜𝑣(𝑒̅𝑠1,𝑢�𝑠1) + 𝐶𝑜𝑣(𝑒̅𝑠0,𝑢�𝑠0) 

= 𝛿 �
𝜎2

𝑝𝑛
+

𝜎2

(1 − 𝑝)𝑛�
+ �

𝜌𝜎𝜔
𝑝𝑛

+
𝜌𝜎𝜔

(1 − 𝑝)𝑛
� 

=
𝛿𝜎2 + 𝜌𝜎𝜔
𝑛𝑝(1 − 𝑝) . 



50 
 

 (A3.5) 

Under the assumption of no within-site compliance-effect covariance, 𝛽𝑠 = 𝛾𝑠𝛿𝑠.  Thus 

𝐶𝑜𝑣�𝛾�𝑠, 𝛽̂𝑠� = 𝐶𝑜𝑣(𝛾𝑠,𝛽𝑠) + 𝐶𝑜𝑣(𝑔𝑠, 𝑏𝑠) 

= 𝐶𝑜𝑣(𝛾𝑠, 𝛾𝑠𝛿𝑠) +
𝛿𝜎2 + 𝜌𝜎𝜔
𝑛𝑝(1 − 𝑝)  

= 𝜏𝛾𝛿 + 𝛾𝐶𝑜𝑣(𝛾𝑠, 𝛿𝑠) +
𝛿𝜎2 + 𝜌𝜎𝜔
𝑛𝑝(1 − 𝑝) . 

 (A3.6) 

Note that 2SLS with site-by-treatment interactions is equivalent to fitting the regression model  

𝛽̂𝑠 = 𝛿𝛾�𝑠 + 𝑣𝑠 

 (A3.7) 

via WLS, weighting each point by 𝑊𝑠 = 𝑛𝑠𝑝𝑠(1 − 𝑝𝑠).  This yields 

𝛿(2𝑆𝐿𝑆) =
∑ 𝑛𝑠𝑝𝑠(1 − 𝑝𝑠)𝛾�𝑠𝛽̂𝑠𝐾
𝑠=1

∑ 𝑛𝑠𝑝𝑠(1 − 𝑝𝑠)𝛾�𝑠2𝐾
𝑠=1

   

 (A3.8) 

Under the assumption that that 𝑛𝑠 = 𝑛 and 𝑝𝑠 = 𝑝 for all 𝑠, we have 

𝛿(2𝑆𝐿𝑆) =
∑ 𝛾�𝑠𝛽̂𝑠
𝐽
𝑠=1

∑ 𝛾�𝑠2
𝐽
𝑠=1

 

 (A3.9) 

Now the expected value of the 2SLS estimator will be approximately equal to the ratio of the 

expected values of the numerator and denominator: 

𝐸�𝛿̂(2𝑆𝐿𝑆)� ≈
𝐸[∑ 𝛾�𝑠𝛽̂𝑠]𝐽

𝑠=1

𝐾 �𝛾2 + 𝜏𝛾 + 𝜎2
𝑛𝑝(1 − 𝑝)�

 

=
𝛾𝛽 + 𝐸�𝐶𝑜𝑣�𝛾�𝑠, 𝛽̂𝑠��

�𝛾2 + 𝜏𝛾 + 𝜎2
𝑛𝑝(1 − 𝑝)�

 



51 
 

=
𝛾�𝛾𝛿 + 𝜏𝛾𝛿� + 𝜏𝛾𝛿 + 𝛾𝜏𝛾𝛿 + 𝛿𝜎2 + 𝜌𝜎𝜔

𝑛𝑝(1 − 𝑝)

�𝛾2 + 𝜏𝛾 + 𝜎2
𝑛𝑝(1 − 𝑝)�

  

= 𝛿 +
2𝛾𝜏𝛾𝛿 + 𝜌𝜎𝜔

𝑛𝑝(1 − 𝑝)

�𝛾2 + 𝜏𝛾 + 𝜎2
𝑛𝑝(1 − 𝑝)�

   

= 𝛿 +
2𝛾𝜏𝛾𝛿

�𝛾2 + 𝜏𝛾 + 𝜎2
𝑛𝑝(1 − 𝑝)�

+
𝜌𝜎𝜔

𝑛𝑝(1 − 𝑝)�𝛾2 + 𝜏𝛾� + 𝜎2
 

= 𝛿 + 𝜌
𝜔
𝜎
�

1
𝐹
� +

2𝛾𝜏𝛾𝛿
𝛾2 + 𝜏𝛾

�
𝐹 − 1
𝐹

� 

 (A3.10) 

A4: Proof that CEC bias is maximized when 𝑪𝑽𝜸 = 𝟏 

Equation (6) shows that compliance-effect covariance bias depends linearly on 𝐶𝑉𝛾
𝐶𝑉𝛾2+1

. Let 

𝑓(𝑥) = 𝑥
𝑥2+1

.  Then note that 𝑓 �1
𝑥
� =

1
𝑥

1
𝑥2+1

= 𝑥
𝑥2+1

= 𝑓(𝑥).  We consider only the case where 𝑥 ≥ 0, 

because the sign of the 𝐶𝑉 is arbitrary.  A plot of 𝑓(𝑥) is shown below, indicating that 𝑓(𝑥) is 

maximized when 𝑥 = 1.  Note that for values of 𝑥 between 0.5 and 2, the bias is at least 80% of its 

maximum; for values less than 0.25 or greater than 4, the relative bias is less than half its maximum 

possible. 
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Figure A4.1 

 
 

 

A5: Derivation of Eq 15: 

Equation (14) indicates that 𝛽𝑠 can be written as a quadratic function of 𝛾𝑠 plus a heteroskedastic 

error term: 

𝛽𝑠 = 𝛼0𝛾𝑠 + 𝛼1𝛾𝑠2 + 𝛾𝑠𝑣𝑠 

 (A5.1) 

Adding the sampling error in 𝛽̂𝑠 to both sides of the equation yields 

𝛽̂𝑠 = 𝛼0𝛾𝑠 + 𝛼1𝛾𝑠2 + 𝛾𝑠𝑣𝑠 + 𝑏𝑠. 

 (A5.2) 

Taking the expectation, given the estimated 𝛾�𝑠’s, yields 

𝐸�𝛽̂𝑠�𝛾�𝑠� = 𝐸[𝛼0𝛾𝑠|𝛾�𝑠] + 𝐸[𝛼1𝛾𝑠2|𝛾�𝑠] + 𝐸[𝛾𝑠𝑣𝑠|𝛾�𝑠] + 𝐸[𝑏𝑠|𝛾�𝑠]. 

0.0

0.2

0.4

0.6

0.8

1.0

M
ag

ni
tu

de
 o

f B
ia

s 
(re

la
tiv

e 
to

 m
ax

im
um

)

.25 .5 1 2 4
Coefficient of Variation

Relative Magnitude of 2SLS Compliance-Effect Covariance Bias,
by Coefficient of Variation of Site-Level Compliance



53 
 

 (A5.3) 

Now define 𝛾𝑠∗ = 𝐸[𝛾𝑠|𝛾�𝑠] = 𝜆𝛾�𝑠 + (1 − 𝜆)𝛾, where 𝜆 = 𝜏𝛾/(𝜏𝛾 + 𝜏𝑔) is the reliability of the 𝛾�𝑠’s.  In 

addition, define 𝛾𝑠2
∗ = 𝐸[𝛾𝑠2|𝛾�𝑠] = 𝛾𝑠∗

2 + 𝜏𝛾(1− λ).  Then, noting that 𝑣𝑠 ⊥ 𝛾𝑠, we have  

𝐸�𝛽̂𝑠�𝛾�𝑠� = 𝛼0𝛾𝑠∗ + 𝛼1𝛾𝑠2
∗ + 𝐸[𝑏𝑠|𝛾�𝑠]. 

 (A5.4) 

Now, note that  

𝐸[𝑏𝑠|𝛾�𝑠] = 𝐸[𝑏𝑠|𝛾�𝑠 = 𝛾] +
𝐶𝑜𝑣(𝑏𝑠,𝛾�𝑠)
𝑉𝑎𝑟(𝛾�𝑠)

(𝛾�𝑠 − 𝛾) 

= 𝐸[𝑏𝑠] +
𝐶𝑜𝑣(𝑏𝑠,𝑔𝑠)
𝜏𝛾 + 𝜏𝑔

(𝛾�𝑠 − 𝛾) 

= 𝐶𝑜𝑣(𝑏𝑠,𝑔𝑠)
𝜆(𝛾�𝑠 − 𝛾)

𝜏𝛾
 

= 𝐶𝑜𝑣(𝑏𝑠,𝑔𝑠)
𝜆𝛾�𝑠 + (1 − 𝜆)𝛾 − 𝛾

𝜏𝛾
 

=
𝐶𝑜𝑣(𝑏𝑠,𝑔𝑠)

𝜏𝛾
𝛾𝑠∗ −

𝐶𝑜𝑣(𝑏𝑠,𝑔𝑠)
𝜏𝛾

𝛾 

 (A5.5) 

Substituting this into (A5.4) and rearranging, we have 

𝐸�𝛽̂𝑠�𝛾�𝑠� = �−
𝛾𝐶𝑜𝑣(𝑏𝑠,𝑔𝑠)

𝜏𝛾
� + �𝛼0 +

𝐶𝑜𝑣(𝑏𝑠,𝑔𝑠)
𝜏𝛾

�𝛾𝑠∗ + 𝛼1𝛾𝑠2
∗. 

 (A5.6) 

This indicates that if we fit the model  

𝛽̂𝑠 = 𝑐 + 𝑎0𝛾𝑠∗ + 𝑎1𝛾𝑠2
∗ + 𝜂𝑠, 

 (A5.7) 

we will obtain 

𝐸[𝑐̂] = −
𝛾𝐶𝑜𝑣(𝑏𝑠,𝑔𝑠)

𝜏𝛾
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𝐸[𝑎�0] = 𝛼0 +
𝐶𝑜𝑣(𝑏𝑠,𝑔𝑠)

𝜏𝛾
 

𝐸[𝑎�1] = 𝛼1 

 (A5.8) 

Recall that, under our assumptions, 𝛿 = 𝛼0 + 𝛼1𝛾.  This suggests the following estimator for 𝛿: 

𝛿 = 𝑎�0 +
𝑐̂
𝛾�

+ 𝑎�1𝛾�. 

 (A5.9) 

If 𝛾� is reasonably precisely estimated, then  

𝐸�𝛿� = 𝐸[𝑎�0] + 𝐸 �
𝑐̂
𝛾��

+ 𝐸[𝑎�1𝛾�] 

≈ 𝐸[𝑎�0] +
𝐸[𝑐̂]
𝐸[𝛾�] + 𝐸[𝑎�1]𝐸[𝛾�] 

≈ 𝛼0 +
𝐶𝑜𝑣(𝑏𝑠,𝑔𝑠)

𝜏𝛾
−
𝛾𝐶𝑜𝑣(𝑏𝑠,𝑔𝑠)

𝜏𝛾𝛾
+ 𝛼1𝛾  

≈ 𝛼0 + 𝛼1𝛾. 

 (A5.10) 

However, if 𝐶𝑜𝑣(𝑏𝑠,𝑔𝑠)
𝜏𝛾

 is small, then fitting A5.7 will yield 

𝐸[𝑐̂] ≈ 0 

𝐸[𝑎�0] ≈ 𝛼0 

𝐸[𝑎�1] = 𝛼1, 

 (A5.11) 

which suggests that we can fit instead the model 

𝛽̂𝑠 = 𝑎0𝛾𝑠∗ + 𝑎1𝛾𝑠2
∗ + 𝜂𝑠, 

 (A5.12) 

and instead estimate 𝛿 as: 

𝛿 = 𝑎�0 + 𝑎�1𝛾�. 
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 (A5.13) 

Although the latter model will yield biased estimates, it will be more efficient, and this efficiency 

gain may outweigh the bias (that is, the estimator in A5.13 may have smaller mean squared error 

than that in A5.9). 

 Note that Equation A3.5 provides an expression for 𝐶𝑜𝑣(𝑏𝑠,𝑔𝑠): 

𝐶𝑜𝑣(𝑏𝑠,𝑔𝑠) =
𝛿𝜎2 + 𝜌𝜎𝜔
𝑛𝑝(1 − 𝑝)  

=
𝛾2 + 𝜏𝛾
𝐹 − 1

�𝛿 + 𝜌
𝜔
𝜎
�. 

 (A5.14) 

Thus, the expected value of the intercept in the regression model will be  

𝐸[𝑐̂] =
−𝛾�𝛾2 + 𝜏𝛾�

(𝐹 − 1)𝜏𝛾
�𝛿 + 𝜌

𝜔
𝜎
� 

=
−𝛾(1 + 𝐶𝑉𝛾2)
(𝐹 − 1)𝐶𝑉𝛾2

�𝛿 + 𝜌
𝜔
𝜎
�. 

 (A5.15) 

Note that the intercept will be large, in general, when 𝛾 is large but 𝜏𝛾 is small (i.e., when 𝐶𝑉𝛾 is 

small).  However, in these cases, the sampling variance of both 𝑐̂ and 𝛼�0 will be very large, as the 

regression model in A5.8 will have little variance in the 𝛾𝑠∗’s (other than sampling variance, which 

will be non-informative) and estimation of 𝑐̂ and 𝛼�0  will rely on substantial extrapolation.  In 

contrast, when 𝛾 is small and 𝜏𝛾 is large (i.e., when 𝐶𝑉𝛾  is large), the intercept will be close to zero, 

in which case, fitting model A5.12 may be sufficient to provide an approximately unbiased estimate 

of 𝛿.   

 Because the estimator in A5.9 will be very imprecise in the cases when it is most needed 

(when 𝐶𝑉𝛾  is small and 𝐹 is small), we choose to use the estimator in A5.13 instead, as it has much 

less sampling variance than the former.  In simulations not shown we confirmed that the A5.9 
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estimator has a larger root mean squared error (often extremely large) than that in A5.13.  Based 

on this, we report results in the paper based on the no-intercept estimator. 

 

Appendix B. Simulation Set-up 

The data used in the simulations presented in this paper are generated through a two-step 

process. In the first step, we generate a set of 50 sites, each characterized by the vector 

[𝛾𝑠, 𝛿𝑠,Λ𝑠,Θ𝑠,𝑛𝑠,𝑝𝑠]′, drawn from a population where  

⎣
⎢
⎢
⎢
⎢
⎡
𝛾𝑠
𝛿𝑠
Λ𝑠
Θ𝑠
𝑛𝑠
𝑝𝑠 ⎦
⎥
⎥
⎥
⎥
⎤

~𝑁

⎣
⎢
⎢
⎢
⎢
⎡

⎝

⎜⎜
⎛

𝛾
1
0
0

200
0.5  ⎠

⎟⎟
⎞

,

⎝

⎜⎜
⎜
⎛

𝜏𝛾2 𝜏𝛾𝛿 0 0 0 0
𝜏𝛾𝛿 𝜏𝛿2 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0⎠

⎟⎟
⎟
⎞

⎦
⎥
⎥
⎥
⎥
⎤

 

 (B.1) 

We fix 𝑛𝑠 = 𝑛 = 200 and 𝑝𝑠 = 𝑝 = 0.5 for all simulations here for simplicity, and set the 

covariances of the site fixed effects in the first and second stage equations (Λ𝑠 and Θ𝑠 in our 

notation) with every other parameter to be zero.  The means of Λs and Θs are arbitrarily set to 0 

and their variances are arbitrarily set to 1, but these means and variances have no impact on the 

bias or precision of any of the estimators discussed here.  By manipulating 𝛾, 𝜏𝛾2, 𝜏𝛿2, and 𝜏𝛾𝛿 , we can 

set 𝐶𝑉𝛾, 𝐹, 𝐶𝑜𝑟𝑟(𝛾𝑠, 𝛿𝑠), and �𝜏𝛿2, to the values used in Tables 1 and 2.  Specifically, we set 

𝛾 = �
𝜎2

𝑛𝑝(1 − 𝑝) ∙
(𝐹 − 1)
1 + 𝐶𝑉𝛾

�

1
2

= �
0.02 ∙ (𝐹 − 1)

1 + 𝐶𝑉𝛾
�

1
2

 

𝜏𝛾2 = 𝛾2 ∙ 𝐶𝑉𝛾2 

𝜏𝛿2 = ��𝜏𝛿2�
2

 

𝜏𝛾𝛿 = �𝜏𝛾2 ∙ 𝜏𝛿2�
1
2 ∙ 𝐶𝑜𝑟𝑟(𝛾𝑠, 𝛿𝑠). 

 (B.2) 
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These values ensure that the simulations correspond to the scenarios described in Tables 1 and 2.15 

In the second step, we generate 200 observations within each site, each characterized by 

the vector [Γ,Δ, 𝑒𝑖,𝑢𝑖]′.  The sample in a site 𝑠 is drawn from a population where  

�

Γ
Δ
𝑒𝑖
𝑢𝑖

�~𝑁 ��

𝛾𝑠
𝛿𝑠
0
0

� ,�

0 0 0 0
0 0 0 0
0 0 𝜎2 𝜌𝜎𝜔
0 0 𝜌𝜎𝜔 𝜔2

��. 

 (B.3) 

For simplicity, we fix 𝜎2 = 𝑉𝑎𝑟(𝑒𝑖) = 𝜔2 = 𝑉𝑎𝑟(𝑢𝑖) = 1 and 𝜌 = 0.5 in all simulations.  We also set 

𝑉𝑎𝑟𝑠(Γ) = 𝑉𝑎𝑟𝑠(Δ) = 0 in all sites.  Note that this simulation design constrains compliance and 

effect to vary (and covary) only across sites; there is no variance among individuals within a site. 

 We then randomly assign 100 observations within each site to receive 𝑇𝑖 = 1, and the other 

100 to receive 𝑇𝑖 = 0.  We then compute, for each observation, values of the mediator and the 

outcome: 

𝑀𝑖𝑠 = Λ𝑠 + Γ𝑇𝑖 + 𝑒𝑖 

𝑌𝑖𝑠 = Θ𝑠 + Δ𝑀𝑖𝑠 + 𝑢𝑖𝑠. 

 (B.4) 

For each simulation scenario, we repeat this process 2000 times to generate the estimates shown in 

Tables 1 and 2. 

 

Appendix C: Additional Comparisons Among OLS, 2SLS, and the Bias-Corrected Estimator 

Figures 2 and 3 present simulation results for the OLS, 2SLS, and bias-corrected estimators 

as 𝐶𝑉𝛾 deviates from 1 towards 0.  Figures C1 and C2 show the same results for the three estimators 

of interest as 𝐶𝑉𝛾  deviates from 1 towards infinity.  Patterns observed in these cases closely mirror 

those in Figures 2 and 3. 

                                                           
15 The 0.02 term in Equation (B.2) comes from the fact that we set 𝜎2 = 1 below. 
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Figure C-1: Bias and RMSE of Four Estimators by F-statistic and CVγ, when Corr (γS, δS ) = 0.25 
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Figure C-2: Bias and RMSE of Three Estimators by Corr (γS, δS ) and CVγ, when F-statistic=26 
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Appendix D: Estimating the correlation between 𝛄𝐬 and 𝛅𝐬  

Equation (7) implies that  

𝐶𝑜𝑣(𝛾𝑠, 𝛿𝑠)
𝜏𝛾

= 𝛼1 

𝐶𝑜𝑣(𝛾𝑠, 𝛿𝑠) = 𝛼1𝜏𝛾 

𝐶𝑜𝑟𝑟(𝛾𝑠, 𝛿𝑠) = 𝛼1�
𝜏𝛾
𝜏𝛿

. 

 

This implies that we can estimate 𝐶𝑜𝑟𝑟(𝛾𝑠, 𝛿𝑠) if we can estimate 𝛼1, 𝜏𝛾 , and 𝜏𝛿 reasonably precisely.  

We obtain 𝛼�1 from fitting Equation (13), and we obtain 𝜏𝛾from the random-coefficients first-stage 

model (Equation 10).  Estimating 𝜏𝛿 is not as straightforward.  We estimate 𝜏𝛿using the methods 

described in Raudenbush, Reardon, and Nomi (2012).  The resulting estimates of 𝐶𝑜𝑟𝑟(𝛾𝑠, 𝛿𝑠) are 

shown in Table 3. 

 

 

 


