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Background / Context:

Estimates of fidelity of implementation are essential to interpret the effects of educational
interventions in randomized controlled trials (RCTs). While random assignment protects against
many threats to validity, and therefore provides the best approximation to a true counterfactual
condition, it does not ensure that the treatment condition faithfully reflects researchers’
intentions (Lipsey, 1993). If program success relies upon changes in practices, routines, or
behaviors of participants, which is the case in most K-12 education interventions, then causal
inferences about success or failure rely on a valid account of the various states of the program in
treatment conditions.

Although fidelity measures are widely considered a necessary component of field
experiments there is no consensus on how one should go about this important work (e.g. Cordray
& Pion, 2006; O’Donnell, 2008). Many agree that measures should be grounded in an a-priori
program theory (O’Donnell, 2008), but there is very little direction on what constitutes a
sufficient theory (Donalson & Lipsey, 2006). As a result, researchers rarely articulate the
theories that guide the construction of their fidelity measures, and the few that do provide very
general descriptions that are open to multiple interpretations (e.g. Nelson et. al, 2012).

Fidelity measures without clearly articulated program theories are at risk for the two
biggest threats to validity: construct underrepresentation and construct irrelevant variance
(Messick, 1994). It is no surprise then that validity evidence for fidelity measures is rarely
reported (Hagermoser-Sanetti & Kratochwill, 2009), and when validity evidence is reported it is
typically done so only at the instrument level.

I argue that fidelity measures should be construct driven to address these threats to
validity (Messick, 1994). Construct driven measures use visible performance to make inferences
about invisible theoretical constructs. In contrast, many fidelity measures are designed as task
driven assessments. Although task driven measures are sometimes appropriate in other contexts,
such as judging an athlete’s performance in the Olympic games, the goal of measuring fidelity is
not to simply describe behavior during a specific moment in time. Instead, fidelity measures use
a sample of observational moments to make inferences about overall implementation. So, to
establish a measure’s validity researchers should clearly articulate three things: latent program
theory, observable evidence of program theory, and the nature of the correspondence between
them.

Purpose / Objective / Research Question / Focus of Study:

I used Wilson’s (2005) four building blocks of measurement to guide the development of a
fidelity measure in a randomized controlled trial of the middle school statistics curriculum, Data
Modeling. 1 found this framework useful due to its emphasis on all three components of construct
driven measurement. Guided by the four building blocks (Figure 1), this presentation illustrates
the use of this framework by addressing the following questions.

1. What are the latent constructs that make up the Data Modeling program theory?
What would constitute an “item” in the context of Data Modeling instruction?

3. What are the likely outcomes from our observations, and how do they relate to our
construct?

4. How do we model our measurements to provide inference about the construct?
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Significance / Novelty of study:

This fidelity measure is novel in two regards. First, it frames validity as establishing a
relationship between latent theory and observation, which is always uncertain. In contrast,
validity is sometimes treated as a once-and-for-all event (Wilson, 2006). Wilson’s (2006)
framework, however, treats validity as an ongoing, iterative process of construct
conceptualization, operationalization, and measurement modeling. It is through this process that
the validity of inferences made from observable data is maintained.

Second, this framework has yet to be used for a fidelity measure. Many of the terms and
concepts within the framework have a shared meaning in the context of cognitive assessments,
but the meaning is less clear for fidelity measures. We discuss the meaning of these concepts for
our fidelity measure, and discuss challenges we faced in our novel use of the framework.

Usefulness / Applicability of Method:

Construct. The first step in Wilson’s framework is to articulate latent constructs of
interest in a construct map. The construct map consists of descriptions of the different states of
the construct, and orders the states in relation to the values of the researcher. For fidelity
measures the construct map serves as an initial conceptualization of a fidelity scale since it
orders the different states in terms of increasing fidelity. For example, the description of the
highest level of the construct map describes the state of the theory under ideal implementation.
The construct map is a useful grain size because it allows for descriptions of the constructs
making up ones program theory that are specific enough to have meaning, but is still general
enough to contribute to knowledge beyond a specific intervention.

We drew from multiple iterations of design studies (Cobb, et al. 2003) and qualitative
analyses to inform our initial theoretical commitments. Through this design research the
curriculum stabilized into a sequence of 7 units addressing data display, center statistics,
variability statistics, general use of statistics, chance, modeling, and inference. Within these units
students experience a recurring activity structure in which they consider a question, invent a
method for addressing the question, and then compare and critique their methods during a whole
class discussion called a “method review.” For example, in the first unit students independently
measure the length of a common object and are often surprised to find great variability in the
measurements. It is in the face of this variability they are asked to look for patterns or trends in
the data that would help them estimate the “true” length of the object. Next, they invent ways to
display the data that would lead others to see “at-a-glance” the trend they noticed. Last, the
students discuss the different choices made to create the displays, and the effect of these choices
on what one could see (or not see) about the data.

Through this sequence we have found that although student invented methods are often
different than conventional ones, they contain conceptual similarities that can be cultivated into
more conventional concepts. Through previous qualitative research we developed theories about
the usefulness of specific types of inventions and about productive teacher strategies for making
the mathematical concepts in the inventions salient to students. For example, many students
invent data displays without a consistent scale because they think it is not useful to represent
numbers for which there is no data (Lehrer, Kim, & Schauble, 2007). Teachers can juxtapose
these methods with displays that have a consistent scale and ask students what each shows and
hides about he data. Students then have an opportunity to develop an understanding of scale that
is motivated by the goal of communicating important trends in the data (e.g. scale allows
students to see “gaps” in the data). These theories led us to focus our conceptualization of
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fidelity of the practice of using the variability in student-invented methods to amplify
mathematical concepts and practices. We articulated five categories of likely teacher practices,
and ordered them in terms of increasing fidelity. Figure 2 is a simplified version of our construct
map. There are three important things to notice about our map. First, the language is general
enough to be applied to all of our units. However, the specific concepts we want to see
emphasized are different for each unit, so we also articulated unit specific construct maps to
communicate these differences. Second, the descriptions of our theory are in latent terms, that is,
they cannot be directly observed. So, the map itself does not constitute a measure. Third, we are
measuring teacher practice, which is inherently interactional and must be observed to measure.

Item. The second step in Wilson’s framework directs researchers to develop an
operationalization of their theory. The term “item” can often evoke images of test forms for
cognitive assessment, but more generally an item refers to any real world situation where one’s
construct can be manifested in observable action (Wilson, 2005). Since we wanted to observe the
instructional role of student invention we could not arbitrarily schedule observations. Instead, we
needed to observe at the moments where their use was most salient. This led us to focus on the
instructional moments where students were discussing their invented methods, the “method
reviews.” We then developed three types of observable data for each method review. The first
type was a set of summary variables that described broad characterizations of the whole class.
We also collected images of each student invention to account for the types produced in each
class. However, teacher practice is best observed in classroom interactions. To characterize this
we developed a set of binary variables to be scored in five-minute adjacent segments. These
variables looked for unit general student and teacher participation, but also unit specific
mathematical concepts.

Each variable was designed to index a particular level of the construct map. This
rationale provided initial validity information. Through iterative piloting and discussions with
intervention experts we refined these variables to better index each level. In addition, it
challenged our initial conceptions of our theory. For example, our original construct map had
only four levels, but piloting the observable variables revealed that we were not accounting for a
common use of student-invented methods. So, we added a new level describing the use of
inventions to promote only procedural understanding of conventional methods. This highlights
that developing valid measures is not a linear process. Rather, it is iterative. Theory motivates
operationalization, but operationalization can often challenge ones initial theory.

The critical role of instrumentation in developing fidelity measures is rarely addressed in
intervention research. Occasionally researchers will reference vague notions of using multiple
instruments to “triangulate” data (Nelson, et. al 2012), but they do not address the ways in which
our measures are both supported and constrained by material instruments. For example, the types
of data one can collect during live observations using with pencil and paper are very different
than the possibilities when computers are available to aid the observer. We capitalized on new
technologies to create an instrument to aid in the collection, organization, and transmission of
observation data. This instrument allowed observers to mark variables, collect images, and it also
automated the segmentation of the class into five-minute sections. However, it also influenced
the construction of our variables since some were not feasible given the available instruments.
For these reasons the role of instrumentation in validity should be more clearly articulated in
fidelity measures.

Outcome Space. When researchers use the observable variables above to index a class
there are a large number of possible data profiles. For example, consider a fictional, and much
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simpler observation system consisting of 2 variables that could be marked “high,” “medium,” or
“low.” There are nine possible outcomes in this simple system, and each of them should inform
the construct of interest in some way. However, in our system there are many more possible
outcomes. The third step in Wilson’s framework requires researchers to consider the outcome
space of possible data profiles, and how they relate to the construct map. We began by looking
for qualitative distinctions in the data profiles that related to our construct. For example, profiles
indicating that student-inventions were used to discuss all relevant concepts were mapped to a
higher level of the construct map than classes that only discussed one relevant concept.

We used these qualitative distinctions to generate scoring algorithms for data profiles.
We considered two types of outcome spaces to generate these scoring rules. First, each of our
segment variables was binary, and since they were designed to index particular levels of the
construct map we could relate each possible outcome (“0” or “1”) to the level of the map it
corresponds to. Table 1 is a list of the segment variables and the level a score of “1” is related to.
However, we also considered the outcome space of co-occurrences of particular variables. For
example, if one of the mathematical concept variables is scored then we can look to the other
variables to better understand how the concept was discussed.

Measurement Model. A measurement model describes theoretically grounded
expectations for influences on item responses. Modeling the item responses is important to
further interrogate the validity of the items and to make inferences about ones latent construct.
We are still collecting data, so I do not yet have empirical illustrations of our measurement
model, but we plan on using a Rasch model to examine the relationship between observed data
and our construct map. The Rasch model is a member of a family of generalized linear mixed
models (Wilson, 2005). We are committed to this model for three reasons. First, our data are
binary so the logit link in the model allows us to estimate the probability of observing a variable
with a linear combination of item and teacher practice parameters. Second, the model estimates a
fixed effect for each item that describes the influence of an item on the probability of an
occurrence during a segment. This provides information about the “behavior” of the items. Third,
this model estimates teacher practice parameters on the same logit scale as the items, which
provides information about the fidelity of implementation. For example, there should be a higher
probability of observing mathematical concepts in classes with high fidelity than in those with
low fidelity.

Conclusions:

Theoretically grounded measures of fidelity are desperately needed in RCTs of
educational interventions. However, establishing the validity of such measures is challenging and
uncertain work. We have found much needed guidance from Wilson’s (2005) framework in
developing measures with ongoing and iterative attention to construct validity. Deliberately
thinking about construct articulation, item design, outcome space, and measurement model
produced meaningful validity evidence, and allowed us to make principled refinements to
increase the validity of our measure. However, as previously mentioned, we do not see validity
as something that is established once-and-for-all. In this spirit, we continue to interrogate our
measure, and will continue to refine it.
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Figure 1: Wilson’s four building blocks of measure development.

Use of Variability in Student Invention

Student invented methods are seen as a resource to communicate
5 different mathematical strategies in order to synthesize specific
mathematical ideas into systems of meaning.

Student invented methods are seen as a resource to communicate
4 different mathematical strategies in order to promote specific
mathematical ideas.

Student invented methods are seen as an instructional resource to
3 promote a right/wrong orientation towards mathematical procedures.

Student invented method are seen as an instructional resource to
2 primarily increase engagement.

Student invented methods are not valued as an instructional resource.

1

Figure 2: Construct Map describing theoretical grounding for fidelity measure
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Table 1: Relationship between unit 1 segment variables and construct map

Observable Variable Construct MAP Level

1 2 3 4 5

Did students share invented displays? X

Did students make comments or ask questions about the X
conceptual elements of the invented displays?

Did students make comments or ask questions about the X
procedural or calculational elements of the invented
displays?

Student
Contributions

Did the teacher select student-invented displays to be X
shared?

Did the teacher compare different ways to display data? X

Did the teacher use questions similar to the ones in the X
curriculum to support students to think about and discuss
displaying data?

Did the teacher make connections between different X
students' thinking?

Did the teacher connect student thinking to the big X
ideas?

Did the teacher press students to explain their thinking? X

Teacher Practice

Did the teacher only focus on conventional displays?

< | P

Did the teacher focus only on the procedural elements of
creating displays?

Did the teacher primarily lecture on displays without X
letting students discuss their thinking?

Did the teacher treat displays as “right” or “wrong”? X
s Was the order of a display talked about? X
S Was the scale of a display talked about? X
é Was the grouping in a display talked about? X
S 2, | Was the effect of design decisions on the shape of a X
% § display talked about?
% 3 Did the teacher and/or students talk about what one or X
2. more displays show about the data?
_SI:J Did the teacher and/or students talk about what one or X
:Q) more displays hide about the data?
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