Key Indicators of College Success: Predicting College Enrollment, Persistence, and Graduation

Kelly E. Godfrey Haifa Matos-Elefonte College Board

Background & Literature

- Plethora of research examining factors contributing to students' decision to enroll in college, their persistence, and graduation
- This research models the work of Johnson (2008)
 - Taking both student- and school-level characteristics
- And follows the approach of Adelman (2006)
 - focuses on the student's pathway through high school to enrollment, persistence, and ultimately graduation with a Bachelor's degree.

Data

- Student high school performance and higher education enrollment data were acquired from the Department of Education (DOE) from a large, diverse state located in the continental United States
- National assessment data were acquired from College Board's archives

Methods: Hierarchical Generalized Linear Models (HGLMs)

- Hierarchical linear modeling is appropriate here
 because students are nested in high schools
- Two-level HGLMs predicting the three outcomes (enrollment, persistence, graduation) using a Bernoulli distribution
- HGLMs estimated through restricted penalized quasi-likelihood (PQL) estimation method
- Tests if student and school level variables can predict the outcomes

Methods: Variables

Student level variables

• Gender

5

- Limited English Proficiency status
- AP course taker flag
- Race (dummy coded into four variables)
- Free/reduced lunch status
- High school GPA
- SAT taker flag (enrollment only) or SAT Verbal & Math scores (persistence and graduation)
- 10th grade state assessment scores in Reading and Mathematics
- Percent of high school coursework at an honors, pre-International Baccalaureate (IB), IB, or AP level

School level variables

- Percent absent 21 days or more
- Percent free/reduced lunch status
- Mean ACT composite score
- · Percent who took the ACT
- Mean SAT (Verbal + Math) score
- · Percent who took the SAT
- · Percent who took the PSAT
- Percent of teachers with a Master's degree or higher
- Teachers' average years of experience
- Total number of discipline referrals in 2001-2002 academic year
- Percent of class that are gifted
- · Percent of class identified as ELL
- Number of AP courses taught at the school
- Student-teacher ratio

Number of Full-Time teachers

Sample

++	Table 1: Basic Demographic Information				
·*		Percentage of Sample			
Gender					
Male		46.5%			
Female		52.8%			
Race/Ethni	city				
Asian		2.4%			
Black		19.1%			
Hispanio	:	15.7%			
White		58.3%			
Other		4.5%			
Limited Eng	lish Proficient	13.1%			
Free/Reduce	ed Lunch	37.5%			
AP course ta	akers	27.3%			
Other Limited Eng Free/Reduce	ed Lunch	4.5% 13.1% 37.5%			

6

Sample

 Table 2: Percentage of Sample Enrolled, Persisted, and Graduated from a Public In-state

 Institution
 Percentage of Entire Sample

 Outcome
 Percentage of Entire Sample

 Enrolled in public, in-state institution Fall 2002
 41.3%

 Persistence to Fall 2003
 30.2%

 Graduation with Bachelor's within 5 years
 12.1%

Sample

Table 3: Percentage of Free/Reduced Lunch and Limited English Proficient students who Enroll, Persist, Graduate from a Public In-state Institution

Outcome	Percentage of	Percentage of
	F/R Lunch	LEP
Enrolled in public, in-state institution Fall 2002	33.0%	41.6%
Persistence to Fall 2003	21.9%	30.6%
Graduation with Bachelor's within 5 years	5.4%	7.3%

Table 4: Percentage of SAT Taking and AP Participating Students who Enroll, Persist, Graduate from a Public In-state Institution

Outcome	Percentage of SAT Takers	Percentage of AP Takers
Enrolled in public, in-state institution Fall 2002	55.9%	55.8%
Persistence to Fall 2003	44.8%	47.8%
Graduation with Bachelor's within 5 years	21.4%	28.8%

Results: Enrollment

Enrollment =1 if a student enrolled in a 2 or 4 yr college in the fall semester immediately following graduation from high school (Fall 2002)

Fixed Effects	Coefficient (SE)	Odds Ratio	t (df)	р
Intercept (γ ₀₀)	-0.61 (0.04)	0.55	-14.75 (382)	0.00
Random Effects	Variance	df	Chi squ :	
τ ₀₀	0.56	382	8487.87 ((

Table 5: Empty Logistic Multilevel Model Predicting Enrollment

The estimated probability of enrollment for students in this sample is .35 (calculated as $\exp(-.61)/(1 + \exp(-.61) = 0.54/(1 + 0.54) = 0.35)$

The intraclass correlation coefficient for this model is .15 (calculated as ICC = $\tau_{00}/(\tau_{00}+3.29) = .56/(.56+3.29) = .15$)

Results: Enrollment

 All student level variables were included in the model to determine those that are significant predictors of enrollment and their variation across schools

	Coefficient	Odds		
	(SE)	Ratio	t (df)	р
Intercept (y00)	-1.32	0.27	-21.42 (378)	0.00
Gender_F (y10)	0.23	1.25	11.50 (378)	0.00
Lunch (y20)	-0.33	0.72	-14.309 (378)	0.00
HS_GPA (γ30)	0.61	1.85	16.192 (378)	0.00
10th_Reading (γ40)	0.001	1	3.572 (378)	0.00
SAT_Take (γ50)	0.91	2.49	30.03 (378)	0.00
PCT_HNRS (y60)	1.01	2.75	8.15 (378)	0.00
Race_Black (y70)	0.3	1.35	7.5 (378)	0.00
Race_His (y80)	0.16	1.18	5.22 (378)	0.00
Race_Oth (y90)	0.33	1.39	7.22 (378)	0.00
Random effects (var. components)	Variance	<u>df</u>	Chi-Square	p
Intercept (τ00)	1.11	278	1674.85	0.00

Table 6: Level 1 Logistic Coefficients Model Predicting College Enrollment

Results: Enrollment

• Lastly, all school-level variables were included in the model (significant interactions shown below)

Table 7: Contextual Logistic Model Predicting College Enrollment

--- -

	Coefficients	Odds							
	(SE)	Ratio	t (df)	р					
Model for the intercepts					Model for PCT_Honors slope				
Intercept (y00)	-1.14 (.05)	0.32	-21.71 (244)	0.00	Intercept (y60)	.85 (.15)	2.34	5.81 (244)	0.00
PCTABS21 (y01)	03(.01)	0.97	-3.20 (244)	0.002	Mean SAT(y65)	003 (.001)	1.0	-2.25 (244)	.03
PCT_ACT (γ04)	.01 (.004)	1.01	2.75 (244)	0.01	PCT_Gift (y610)	10(.03)	.91	-2.85 (244)	.01
PCT_SAT (γ06)	-1.02 (.47)	0.36	-2.19(244)	0.03	PCT_ELL (γ611)	08 (.03)	.92	-2.55 (244)	.01
PCT_PSAT (γ07)	.65 (.29)	1.92	2.20 (244)	0.03	Num_FTE (γ615)	01(.01)	.92	-2.23 (244)	.03
PCT_Gift (γ010)	.05 (.01)	1.05	3.31 (244)	0.001		01(.01)	.55	-2.25 (244)	.05
Num_FTE (γ015)	0.01 (.00)	1.01	3.95 (244)	0.00	Model for Race_BLA slope	00 (04)	1.00	C 1 C (FR 007)	
Model for Gender_C slope					Intercept (y70)	.23 (.04)	1.26	6.16 (58,997)	0.00
Intercept (y10)	.23 (.02)	1.25	9.05 (244)	0.00	PCT_PSAT (γ77)	40 (.20)	.81	-2.02 (58,997)	.04
PCT_Lunch (y12)	.58 (.23)	1.78	2.55 (244)	0.01	PCT_ELL (γ711)	02(.01)	.98	-2.01 (58,997)	.04
Model for Lunch slope					DISC_TOT (y712)	001 (.00)	1.0	-2.64 (58,997)	.01
Intercept (y20)	-0.33 (.03)	0.72	-11.65 (58,997)	0.00	Model for Race_HIS slope				
TeachAvg (y29)	02(.01)	0.98	-2.21 (58,997)	0.03	Intercept (γ80)	.11 (.05)	1.11	2.18 (58,997)	.03
Num_FTE (y215)	002 (.001)	0.99	-2.89 (58,997)	0.00	Model for Race_OTH slope				
Model for HSGPS slope					Intercept (γ90)	.36 (.06)	1.43	6.06 (58,997)	0.00
Intercept (y30)	.64 (.04)	1.89	17.33 (244)	0.00	PCT_ELL (γ911)	.04 (.01)	1.04	2.98 (58,997)	0.00
PCT_Lunch (y32)	-1.14 (.33)	0.32	-3.46 (244)	0.00	NUM FTE (γ915)	01 (.002)	.99	-2.96 (58,997)	.004
PCT_SAT (γ36)	-1.69 (.31)	0.18	-5.45 (244)	0.00					
Num_FTE (γ315)	003 (.001)	0.99	-2.03 (244)	0.04					
Model for 10th_Reading slope					Random effects (var. components)	<u>Varian</u>	<u>ce</u>	df <u>Chi-Square</u>	p
Intercept (y40)	0.001 (.0004)	1.00	3.65 (58,997)	0.00	Intercept (τ00)	.47		225 1025.08	0.00
PCT_SAT (γ46)	01 (.003)	0.99	-2.25 (58,997)	0.02		ブ	P		
Model for SAT_Take slope							2		
Intercept (y50)	.87 (.03)	2.39	25.71 (244)	0.00			CC	ollegeBoar	d b
PCT_ACT (γ54)	01 (.002)	0.99	-2.79 (244)	0.01		-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
PCT_SAT (γ56)	1.25 (.30)	3.51	4.16 (244)	0.00	Still a considerable amount of varian			inspiring mine	125
					further explained with additional me	asures.			

Results: Persistence

Persistence =1, if a student with enroll = 1 had a record of enrollment in Fall 2002, Spring 2003, and Fall 2003 semesters.

Table 8:	Empty Logistic Multi	level Model Pred	licting Persistence	8
Fixed Effects	Coefficient (SE)	Odds Ratio	t (df)	р
Intercept (γ ₀₀)	0.92 (0.03)	2.51	32.48 (362)	0.00
Random Effects	Variance	df	Chi squ	
τ ₀₀	0.18	362	1436.20 (

- The probability of a student from a typical high school persisting through to the Fall 2003 academic term in a public in-state institution of higher education after enrolling in the Fall 2002 term is 71.5 percent (calculated as exp(.92)/(1 + exp(.92) = 2.51/3.51 = .715)
- The intraclass correlation coefficient for this model is .05 (calculated as ICC = $\tau 00/(\tau 00+3.29) = .18/(.18+3.29) = .05$)

Results: Persistence

 All student level variables were included in the model to determine those that are significant predictors of persistence and their variation across schools

Coefficient 1.31	Ratio 3.7	t(df) 26.02 (335)	p
1.31	3.7	26.02 (225)	0.00
	0.17	20.02 (333)	0.00
0.09	1.1	2.31 (335)	0.02
0.25	1.29	3.61 (335)	0.00
-0.3	0.74	-5.97 (335)	0.00
1.32	3.76	23.0 (335)	0.00
-0.002	1.00	-3.15 (335)	0.00
0.001	1.00	3.29 (335)	0.00
1.03	2.79	6.14 (335)	0.00
0.35	1.42	7.08 (335)	0.00
0.3	1.34	5.17 (335)	0.00
0.48	1.62	5.29 (335)	0.00
Variance	df	Chi-Square	р
0.24	33	45.29	0.08
•	0.25 -0.3 1.32 -0.002 0.001 1.03 0.35 0.3 0.48 <u>Variance</u>	0.25 1.29 -0.3 0.74 1.32 3.76 -0.002 1.00 0.001 1.00 1.03 2.79 0.35 1.42 0.3 1.34 0.48 1.62	0.25 1.29 3.61 (335) -0.3 0.74 -5.97 (335) 1.32 3.76 23.0 (335) -0.002 1.00 -3.15 (335) 0.001 1.00 3.29 (335) 1.03 2.79 6.14 (335) 0.35 1.42 7.08 (335) 0.3 1.34 5.17 (335) 0.48 1.62 5.29 (335)

Table 9: Level 1 Logistic Random Coefficients Model Predicting College Persistence

Results: Persistence

• Lastly, all school-level variables were included in the model (significant interactions shown below)

Table 10: Contextual Logistic Model Predicting College Persistence

	Coefficients		10	
	(SE)	Odds Ratio	t (df)	р
Model for the intercepts				
Intercept (y00)	1.22 (.06)	3.38	19.20 (226)	0.00
PCT_Gift (y010)	.04 (.01)	1.05	3.09 (226)	0.00
Num_FTE (y015)	.01 (.00)	1.01	2.61 (226)	0.01
Model for Gender_C slope				
Intercept (y10)	.11 (.06)	1.12	1.87 (18,623)	0.06
Model for LEP slope				
Intercept (y20)	01(.17)	0.99	04 (18,623)	0.97
Model for Lunch slope				
Intercept (y30)	25 (.07)	0.78	-3.47 (18,623)	0.00
PCT ELL (γ311)	.04 (.01)	1.04	3.20 (18,623)	0.00
StudTeach (y314)	.05 (.03)	1.05	1.98 (18,623)	0.05
Model for HSGPA slope	\rightarrow			
Intercept (y40)	1.40 (.09)	4.05	15.94 (18,623)	0.00
Model for 10th_Reading slope				
Intercept (y50)	00(.00)	1.00	-1.00 (18,623)	0.32
Model for SAT_M slope				
Intercept (γ60)	.00 (.00)	1.00	1.30 (18,623)	0.20
PCT_ACT (γ64)	00(.00)	1.00	-3.02 (18,623)	0.00
Model for PCT_Honors slope				
Intercept (y70)	1.14 (.28)	3.12	4.00 (226)	0.00
PCT ACT(y74)	.04 (.02)	1.04	2.07 (226)	0.04
Model for AP slope				
Intercept (y80)	.37 (.07)	1.44	4.99 (18,623)	0.00
Num_FTE (γ815)	01(.00)	0.99	-2.48 (18,623)	0.01
Model for Race_BLA slope				
Intercept (y90)	.40 (.10)	1.5	4.22 (18,623)	0.01
Model for Race_Other slope			- •	
 Intercept (γ100)	.58 (.15)	1.21	49 (18,623)	0.00

Random effects (var. components)	<u>Variance</u>	<u>df</u>	<u>Chi-Square</u>	<u>p</u>
Intercept (100)	.09	215	382.40	0.00

Persistence model warrants further investigation!

Results: Graduation

Graduate = 1, if a student with enroll = 1 and persist = 1 had obtained a Bachelor's degree from a public in-state university within five years from high school graduation.

Table 11:	Empty Logistic Mult	ilevel Model Pred	dicting Graduatic	n
Fixed Effects	Coefficient (SE)	Odds Ratio	t (df)	р
Intercept (γ ₀₀)	-0.48 (0.04)	0.62	-13.0 (353)	0.00
Random Effects	Variance	df	Chi squ	are
τ ₀₀	0.33	353	2021.47 (0.00)

- The probability of a student coming from a typical high school that enrolls in a public in-state higher education institution in Fall 2002 and persisting through to Fall 2003 academic term graduating with a Bachelor's degree within 5 academic years is 38.3 percent (calculated as $\exp(-.48)/(1 + \exp(-.48) = 0.62/(1 + 0.62) = 0.383)$.
- The intraclass correlation coefficient for this model is .09

(calculated as ICC = $\tau 00/(\tau 00+3.29) = .33/(.33+3.29) = .09$)

15

Results: Graduation

 All student level variables were included in the model to determine those that are significant predictors of persistence and their variation across schools

	Coefficient	Odds Ratio	t(df)	p
Intercept (y00)	-0.51 (.06)	0.6	8.58 (328)	0.00
Gender (γ10)	0.36 (.04)	1.44	8.62 (328)	0.00
Lunch (y20)	32 (.04)	0.73	-6.21 (328)	0.00
HS_GPA (γ30)	2.0 (.06)	7.38	32.12 (328)	0.00
10 th _Reading (γ40)	.00 (.00)	1.00	5.04 (328)	0.00
SATM (γ50)	.00 (.00)	1.00	5.03 (328)	0.00
PCT_HNRS (γ60)	2.37 (.17)	10.65	13.89 (328)	0.00
ΑΡ (γ70)	.22 (.05)	1.25	4.52 (328)	0.00
Race_Asi (γ80)	40 (.10)	0.67	-4.09 (328)	0.00
Race_Bla (γ90)	.20 (.07)	1.22	2.82 (328)	0.01
Race_His (γ100)	.38 (.07)	0.68	-5.29 (328)	0.00
Race_Oth (γ110)	.21 (.08)	1.23	2.63 (328)	0.01
Random effects (var. components)	Variance	df	Chi-Square	p
Intercept (t00)	0.63	38	73.32	0.00

Table 12: Logistic Random Coefficients Model Predicting College Graduation

Results: Graduation

• Lastly, all school-level variables were included in the model (significant interactions shown below)

Table 13: Contextual Logistic Model Predicting College Graduation					Model for PCT_Honors slope	2.04 (.29)	7.70	7.10 (15,004)	0.00
]					PCTSAT (y66)	5.06 (2.04)	158.11	2.48 (15,004)	0.01
					TeachAvg (γ69)	.19 (.09)	1.21	2.09 (15,004)	0.04
Model for the intercepts	Coefficients (SE)	Odds Ratio	t (df)	р	StudTeach (y614)	26 (.10)	0.77	-2.71 (15,004)	0.01
Intercept (y00)	67 (.07)	0.51	-9.43 (222)	0.00	Model for AP slope				
PCT_Lunch (y02)	-1.32 (.64)	0.27	-2.07 (222)	0.04	Intercept (y70)	.23 (.07)	1.26	3.34 (15,004)	0.00
Mean_ACT (y03)	.16 (.06)	1.18	2.63 (222)	0.01	PCT_Gift (γ710)	03(.01)	0.97	-2.14 (15,004)	0.03
PCT_ACT (y04)	.01 (.01)	1.01	2.07 (222)	0.04	Model for Race_ASI slope	100(101)		2.12.1 (120,000.1)	
Model for Gender_C slope						40/16)	0.61	-2.98 (15,004)	0.00
Intercept (y10)	.47 (.06)	1.60	7.48 (15,004)	0.00	Intercept (y80)	49(.16)			
Model for Lunch slope					ΡΟΤΑΟΤ (γ84)	02(.01)	0.98	-2.18 (15,004)	0.03
Intercept (y20)	46 (.08)	0.63	-5.61 (15,004)	0.00	TeachAvg (γ89)	.12 (.05)	1.13	2.30 (15,004)	0.02
PCTABS21 (y21)	-0.02 (.01)	0.98	-2.03 (15,004)	0.04	Model for Race_BLA slope				
Mean_SAT (y25)	0.002 (.00)	1.00	2.01 (15,004)	0.04	Intercept (y90)	.38 (.11)	1.47	3.53 (15,004)	0.00
PCT_PSAT (y27)	.76 (.36)	2.15	2.12 (15,004)	0.03	PCTABS21 (γ91)	03 (.01)	0.97	-2.33 (15,004)	0.02
StudTeach (y214)	.08 (.03)	1.08	2.60 (15,004)	0.01					
Model for HSGPA slope					Model for Race_HIS slope	Coefficients (SE)	Odds Ratio	t (df)	р
Intercept (y30)	2.06 (.10)	7.86	19.90 (15,004)	0.00	Intercept (y100)	35 (.14)	0.71	-2.46 (15,004)	0.01
Model for 10th_Reading slope					PCTTeach (y08)	03(.01)	0.97	-2.16 (15,004)	0.03
Intercept (y40)	.01 (.00)	1.01	4.23 (15,004)	0.00	TeachAvg (y09)	.11 (.04)	1.12	3.15 (15,004)	0.00
PCTSAT (y46)	03(.01)	0.98	-2.67 (15,004)	0.01	Model for Race_Other slope				
Model for SAT_M slope					Intercept (y110)	.27 (.13)	1.31	2.14 (15,004)	0.03
Intercept (y50)	.001 (.00)	1.00	3.79 (15,004)	0.00	Deadle and file at a face				
PCT_Lunch (y52)	01(.00)	0.99	-2.02 (15,004)	0.04	<u>Random effects (var.</u> <u>components)</u>	Variance	df	Chi-Square	n
TeachAvg (y59)	0004 (.00)	1.00	-2.33 (15,004)	0.02	componentar	vanalite	<u>ur</u>	<u>enroquate</u>	p
PCT_ELL (y511)	.0002 (.00)	1.00	2.02 (15,004)	0.04	Intercept (τ00)	.09	222	435.28	0.00

Discussion

- Student- and school-level characteristics are important predictors of educational outcomes!
- Results consistent with the College Board's notion of College Readiness
 - Multiple measures (academic & non-cognitive) should be taken into account when assessing whether students are ready for college.
 - Academic measure = HSGPA + SAT + Academic Rigor
- Evidence that AP test-taking is linked with success in college.

18

Limitations

- Data Source
 - Not all institutions provide data (or accurate data) to The National Student Clearinghouse
- Definition of Persistence
 - Too stringent?
- Estimation method
 - Laplace vs restricted PQL

Future Research

 Replicate study using the College Board's new College Readiness indicator (HSGPA, composite SAT Scores and the new academic rigor index)

• Conduct 3 level HGLM's to examine how characteristics of institutions of higher education play a role in students' decision to enroll.

Questions and Comments

- Researchers are encouraged to freely express their professional judgment. Therefore, points of view or opinions stated in College Board presentations do not necessarily represent official College Board position or policy.
- Questions should be directed to kgodfrey@collegeboard.org & hmatoselefonte@collegeboard.org

