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Overview

1. Introduction (10 min.)

2. Review of Statistics (10 min.)e e o Stat st cs ( 0 )

3. SAS for Multi-level Models (20 min.)

4. Research Using MMs (5 min.)

5 Question / Answer Period (15 min )5. Question / Answer Period (15 min.)
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1.1 Introduction

• Why multi-level models?

• Avoid aggregation bias and inflated std. err.gg g

• Disentangle group- and individual-level effects

• Strengthen generalizability to group-level pop.

• Model changes over timeg
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1.2 Definition of Terms

• SAT

• College admissions test consisting of Critical g g
Reading, Math & Writing sections on 200-800 scale

• Advanced PlacementAdvanced Placement

• High school program created to give students the 
opportunity to take college level coursesopportunity to take college-level courses

• Visit: http://www.collegeboard.com/
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1.3 Multi-level Modeling
Opportunities

• Model first-year grade point average 
(FYGPA) at 110 colleges and universities

• Model prob. of participation in Advanced 
Placement Program® at many high schoolsPlacement Program® at many high schools

• Model FYGPA with high-school- and 
college-variability with cross-classified data
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1.4 SAS Requirements for
Multi-level Modeling

• Many observations

• Large sample size within each groupg p g p

• Sufficient number of groups

• Computing power

• Procedures (and optional statements withinProcedures (and optional statements within 
some procedures) are memory-intensive
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1.5 Nested Data Structure in SAS
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1.6 Repeated Measures Data in SAS
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1.7 SAS Mixed Effects Procedures

• Main procedures discussed:

• PROC MIXED

• PROC GLIMMIX (experimental in v9.1.3; v9.2)

O h i h i d d l bili i• Others with mixed model capabilities:

• PROC GLM; PROC HPMIXED (v9.2); PROC 
LATTICE; PROC NESTED; PROC NLMIXED; 
PROC VARCOMP
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2.1 From Linear to
Multi-level Models

• Multi-level models (MMs) as generalization 
of linear and generalized linear models

• Assumption of independent error terms

with

PROC REG DATA= DATA_001;
MODEL Y = X1-Xp;

RUN;

PROC MIXED DATA= DATA_001;
MODEL Y = X1-Xp;

RUN;

10 Multi-level, NYASUG, Dec. 2008



2.2 Null Multi-level Model

• Two-level data; individuals within groups

• Intercepts vary by group; no other pred.

N t ti f R d b h & B k (2001)• Notation from Raudenbush & Bryk (2001).

Model SAS Code
PROC MIXED DATA= DATA_001

COVTEST;
MODEL Y / SOLUTION;

SAS Code

Variance Components
MODEL Y = / SOLUTION;
RANDOM INTERCEPT /
SUBJECT= Group TYPE= VC; 

RUN;
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2.3 Null MM as a Single Equation

• Substituting the expression for      from the 
group-level into the individual-level 
equation:

Grand mean
Group random effect

Residual
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2.4 Graph of Null MM
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2.5 Do we Need a Multi-level Model?

• Based on the null model (or an ANOVA 
table) we compute the intra-class 
correlation coef. (ICC) for linear models

• Indicates the proportion of error variance in the p p
outcome relative to overall error variance.
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2.6 SAS Output:
Null Model

• ICC= 0.014 / 0.10

= 0 14= 0.14

• ICC not 
meaningful for 
GLMM

• COVTEST option 
in PROC MIXED
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2.7 SAS Output: Null Model

• Random intercept specified

• No other predictors included in the model
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3.1 MM with Level-1 Random 
Intercepts & Fixed Slopes

• Intercepts vary by group; other predictors• Intercepts vary by group; other predictors 
are fixed

Model

SAS Code
PROC MIXED DATA= DATA_001

COVTEST;
MODEL Y X1 Xp / SOLUTION;

SAS Code

Variance Components
MODEL Y= X1-Xp / SOLUTION;
RANDOM INTERCEPT /
SUBJECT= Group TYPE= VC; 

RUN;
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3.2 Graph of MM with Level-1 
Fixed X1 Slope
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3.3 Graph of Null MM
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3.4 SAS Output:
Fixed Slopes

• Same random 
effects as null

• Slopes are 
constrained to beconstrained to be 
equal across 
groupsgroups
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3.5 MM with Fixed- & Random-
Intercept and Slope Effects

• Intercepts and other parameters vary
Model

SAS Code

Variance Components

PROC MIXED DATA= DATA_001
COVTEST;

MODEL Y X1 Xp / SOLUTION;

SAS Code

p MODEL Y= X1-Xp / SOLUTION;
RANDOM INTERCEPT X1-Xp /
SUBJECT= Group TYPE= VC; 

RUN;
21 Multi-level, NYASUG, Dec. 2008

RUN;



3.6 Graph of MM with Level-1 
Fixed- and Random-Effects
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3.7 SAS Output:
Random Slopes

• Same random 
effects as null

• Slope for X1 
allowed to be varyallowed to be vary 
across groups

• Notice       in 
CovParms table
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3.8 Generalized Linear
Multi-level Models

• With a non-normal outcome, it may be 
appropriate to use a generalized linear 
multi-level model (GLMM)

• PROC GLIMMIX will meet most needs; PROC ;
NLMIXED may be appropriate otherwise

• Recall ICC not meaningful; rely on size and• Recall ICC not meaningful; rely on size and 
standard error of cov. parameter estimates

Prediction sluggish in exp GLIMMIX
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3.9 SAS Specification of GLMM

PROC GLIMMIX DATA = Data_004

METHOD= RSPL INITGLM IC= PQMETHOD= RSPL INITGLM IC= PQ

NAMELEN= 65 NOCLPRINT;

CLASS Group ID;CLASS Group_ID;

NLOPTIONS TECHNIQUE= NRRIDG;

MODEL Event X1 Xp / DIST BINARYMODEL Event= X1-Xp / DIST= BINARY

LINK= LOGIT SOLUTION CL;

RANDOM INTERCEPT / SUBJECT Group ID;RANDOM INTERCEPT / SUBJECT= Group_ID;

RUN;
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3.10 PROC GLIMMIX for Propensity 
Score Matching

• Add the following to our PROC GLIMMIX:

OUTPUT OUT= Data_004_Pred

PREDICTED(BLUP ILINK)= Treat_Prob_Pred

STDERR(BLUP ILINK)= Treat_Prob_SE;

• Use the predicted probabilities to perform 
propensity score matching
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3.11 Notes on Covariance Structure

• Theory and subject matter expertise should 
dictate the covariance structure

• For hierarchically structured data:

G ll t t i ti (J )• Generally most restrictive (J parm.): TYPE= VC

• Generally least restrictive (J2 parm.): TYPE= UN

•Many other options; check OnlineDoc
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3.12 What Can Go Wrong?

• Convergence problems

• PROC HPMIXED?  Need SAS 9.2.

• Another estimation method?

• Fewer fixed- and random-effects?

• Variance components not estimatedVariance components not estimated

• Consider modifying RANDOM statement.
28 Multi-level, NYASUG, Dec. 2008



3.13 What Else Can Go Wrong?

• “Out of memory” Error

• Some mixed procedures are prone to this errorp p

• “PROC MIXED is looking for a contiguous 
memory space and cannot find one largememory space and cannot find one large 
enough due to the relocation of the operating 
system modules.” -SAS Problem Note 15060.y

• Solution: Try to defragment the target drive.
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3.14 Diagnosing and Solving 
Problems

• Diagnose what’s going wrong and when

• Use the LOGNOTE option on PROC MIXED for p
estimation progress step-by-step

• Remove statements / options to find the issue• Remove statements / options to find the issue

• If convergence is a problem, consider re-
parameterizing the modelparameterizing the model

• Especially in the case of generalized linear MMs
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3.15 Example of LOGNOTE Output

NOTE: Levelizing effects.

NOTE P e i bje t d effe t

NOTE: A linear combination of covariance 

parameters is confounded with the residual 
NOTE: Processing subject and group effects.

NOTE: Setting up data.

NOTE: Loading data.

p

variance.

NOTE: Computing Cholesky root of cross-

products matrix.

NOTE: Computing likelihood in iteration 0.

NOTE: Computing G derivatives in iteration 1.

NOTE: Computing likelihood in iteration 1.

NOTE: Computing H matrix.

NOTE: Computing Type 3 sums of squares.

NOTE: PROCEDURE MIXED used (Total p g

NOTE: Computing G derivatives in iteration 1.

NOTE: Convergence criteria met but final 

hessian is not positive definite.

(

process time):

real time           0.35 seconds

cpu time            0.14 secondsp

NOTE: Computing likelihood in iteration 2.

p

31 Multi-level, NYASUG, Dec. 2008



4.1 Research & SAS Applications of 
Multi-level Models

• Model first-year grade point average at 110 
colleges and universities

• Model probability participation in Advanced 
Placement Program® at many high schoolsPlacement Program® at many high schools

• Model high-school- and college-variability in 
the effect of AP® participation
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4.2 Model FYGPA Across 110 
Colleges

• Outcome: FYGPA, as normal continuous

• Levels: student and college (nested)Levels: student and college (nested)

• Possible SAS Procedures:

• PROC MIXED

• PROC HPMIXED (new in 9 2)• PROC HPMIXED (new in 9.2)

• For large number of fixed- or random-effects
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4.3 Model AP Participation Across 
Many High Schools

• Outcome: Indicator of AP Participation

• Levels: student and high school (nested)Levels: student and high school (nested)

• High schools may be nested within districts

• Possible SAS Procedures:

• PROC GLIMMIX (9 2; exp in 9 1 3)• PROC GLIMMIX (9.2; exp. in 9.1.3)

• PROC NLMIXED
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4.4 Model Effect of AP® 
Participation across HS & Colleges

• Outcome: FYGPA, as normal continuous

• Levels: student high school and collegeLevels: student, high school and college

• Data are cross-classified by HS and college

• Possible SAS Procedures:

• PROC MIXED• PROC MIXED

• PROC HPMIXED (new in 9.2)
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4.5 HS & College Cross-classified 
Data

• Data are not strictly nested

• Students from high schools A, B and C attend g ,
colleges I and II

• Random effects: high school and college levels• Random effects: high school and college levels
HS A HS CHS B

College I College II
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4.6 SAS Specification of CCMM

PROC MIXED DATA = Data_002 COVTEST;

CLASS HS_ID College_ID;

MODEL Y= X1-Xp / SOLUTION CL;

High 
School 
Random 

RANDOM INTERCEPT X1 /

SUBJECT= HS_ID;

Effects

RANDOM INTERCEPT X1-Xp /

SUBJECT= College_ID;
C ll

RUN;
College 
Random 
Effects
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4.7 Non-Educational Applications

• Multi-site clinical trials

• Patients strictly nested within sites or cross-y
classified across sites

• Retail applications• Retail applications

• PROC GLIMMIX to estimate same-store sales 
over quarterly observations
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4.8 General References

• Multi-level Modeling Texts:

• Raudenbush, S. W. and Bryk, A. S.  2002.  , y ,
Hierarchical Linear Models: Applications and 
Data Analysis Methods.  Second Edition. 

• Snijders, T. A. B. and Bosker, R. J.  1999.  
Multilevel Analysis: An Introduction to Basic y
and Advanced Multilevel Modeling.
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4.9 SAS-Oriented Reference

• Multi-level Modeling Articles for SAS:

• Singer, J. D.  1998.  “Using SAS PROC MIXED g , g
to Fit Multilevel Models, Hierarchical Models, 
and Individual Growth Models.”  Journal of 
Educational and Behavioral Statistics, Vol. 24, 
323-355.
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5.1 Question / Answer Period

• Any questions?  Statistical, SAS-oriented or 
otherwise?
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Thank You

• Thank you all very much for having me.

• Special thanks to Martin Feuerman ofSpecial thanks to Martin Feuerman of 
NYASUG and Mary-Margaret Kerns of The 
College BoardCollege Board.
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Contact Information

Brian F. Patterson
The College Board, Research & Development
Assistant Research ScientistAssistant Research Scientist

212-713-7714212 713 7714
bpatterson@collegeboard.org

http://www.collegeboard.com/research
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