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Abstract Body 
 

Background / Context:  
 
In some instances, intentionally or not, study designs are such that there is clustering in one 
group but not in the other.  For example, a treatment may be administered to subgroups of 
individuals by doctors, therapists, or teachers.  The subgroups create statistical clusters whose 
additional between-group variance needs to be taken into account when estimating effect sizes 
and their sampling variance.  The treatments might then be compared to a waitlist or no 
treatment control group.  In that case, the design is such that there is clustering in only one group 
(the treatment group). 
 
These one-group cluster-randomized designs (sometimes called partially clustered designs) can 
be found in areas such as medicine, psychology, and education.  However, clustering is often 
ignored in the analyses and the data are assessed as if the individuals within the treatment 
subgroups are independent of one another.  In a review of six public health and behavioral health 
journals spanning the years 2002 to 2006, Pals, Murray, Alfano, Shadish, Hannan, and Baker 
(2008) found that 32 out of 34 articles ignored the group-level entirely, analyzing the data at the 
individual level.  Ignoring this between-cluster variation underestimates the error term, inflates 
the magnitude of the effect size, and can lead to inflated Type I errors (or chances of concluding 
that an effect is present when it is actually not; see, e.g., Wampold & Serlin, 2000).  Thus, 
assuming independence of observations may lead to wrong conclusions.  Naturally, making these 
incorrect assumptions impacts meta-analyses, which are syntheses of statistical estimates from a 
collection of studies used to summarize a particular topic (Lipsey & Wilson, 2001).  The overall 
mean effect will be inflated if the magnitudes of the effects included in the meta-analysis are 
inflated. 
 
Purpose / Objective / Research Question / Focus of Study: 
 
This paper describes methods for computing effect size estimates and their variances when there 
is clustering in only one group and the analysis has not taken that clustering into account.  We 
provide the effect size and sampling variance computations, along with the adjustments for the 
test of significance.  In addition, we provide examples of how much the statistical results can be 
affected (or adjusted) once one-group clustering is taken into account depending on various data 
characteristics. 
 
Significance / Novelty of study: 
 
In 2007 and 2011, Hedges derived adjusted statistics that allow for the calculation of effect sizes 
and their sampling variances when the summary data comes from a clustered two-level design or 
a clustered three-level design.  However, these statistics account for clustering when it exists in 
all treatment groups, not when it exists in only one.  Moreover, researchers have developed 
multi-level random- and mixed-effects models that take one-group clustering into account in 
order to test for individual study significance (e.g., Bauer, Sterba, & Hallfors, 2008; Hoover, 
2002; Lee & Thompson, 2005; Roberts & Roberts, 2005), but none of the researchers provide 
solutions for computing appropriate effect sizes.  The purpose of this paper is to do exactly that.  
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The corrections we provide to the statistical estimates will lead to more accurate effect size 
estimation, which should then lead to more appropriate conclusions in both individual studies as 
well as in meta-analyses. 
 
Statistical, Measurement, or Econometric Model:  
 
Estimating effect sizes.  Effect sizes typically calculated in the social sciences are standardized 
mean differences (SMDs), defined as the difference between treatment and control group means 
over the standard deviation.  Thus, here we focus only on deriving the statistics that correct 
SMDs and their sampling variances for one-group clustering.  Let Yij

T be the jth individual in the 
ith treatment cluster and Yi

C be the ith individual in the control group (which has no clusters). 
 
If clustering is not taken into account, the SMD may be computed by 
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where TYand CY  are the overall (grand) means in the treatment and control groups, 
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When clustering in the treatment group is taken into account, we multiply dNaive by a correction 
factor so that the adjusted SMD dT is 
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where NC is the sample size in the control group, n is the subgroup sample size within the mT 
treatment group clusters so that NT = nmT is the sample size in the treatment group, N is the total 
sample size (N = NT + NC), and ρ is the intraclass correlation defined by 
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with 2
B  and 2

W  representing the between- and within-group variances, respectively.  Note that 
when clustering does not exist, ρ = 0 and the correction factor is one, reducing dT to dNaive.  But 
anytime ρ > 0, the correction factor will imply that |dT|  ≤  | dNaive |, producing a smaller effect size 
once one-group clustering is taken into account.  So, for example, if NC = 10, mT = 2, and n = 5, 
so that NC = NT = 10, the ratio dT/dNaive ranges from 0.98 for ρ = 0.05 to 0.91 for ρ = 0.25. 
 
The sampling variance of the effect must also be corrected from 
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where h is the effective degrees of freedom of ST
2 given by 
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Again, imagine that NC = 10, mT = 2, and n = 5.  The ratio vT/vNaive ranges from 1.07 for ρ = 0.05 
to 1.36 for ρ = 0.25.  Notice that the adjustment is larger in magnitude for the variance than for 
the effect size, with the effect decreasing by 9% and variance increasing by 36% when ρ = 0.25. 
 
Adjusting the significance test.  In addition to inflating the effect size and underestimating the 
variance, studies that ignore one-group clustering in their analyses may compute tests of 
significance for the treatment effect that produce t- or F-statistics that are larger than the actual t 
or F.  That may lead to inappropriately rejecting the null hypothesis that the treatment and 
control group means are equal, as the p-values will be smaller than those computed if clustering 
were not ignored. 
 
When clustering is ignored, the usual Student’s  t is computed as 
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with NT + NC – 2 degrees of freedom.  Taking one-group clustering into account, the t-value must 
be adjusted by multiplying tNaive by the square root of factor f 
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which leads to the following expression for tA 
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tA has a t-distribution with h degrees of freedom when the null hypothesis is true, where h is 
defined above. 
 
Usefulness / Applicability of Method:  
 
How much the results are affected when clustering is not taken into account differs depending on 
the data characteristics.  Table 1 presents sample data results of how the effect size statistics 
change as ρ, mT, n, and NC increase.  Columns 5 to 7 contain the results for the effect size, 
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variance, and degrees of freedom when clustering is ignored (i.e., unadjusted), Columns 8 to 10 
denote the results when clustering is taken into account, and Columns 11 to 13 show the absolute 
value of the percent adjustment. 
 
Overall, Table 1 shows that an increase in the intraclass correlation leads to a decrease in the 
statistics presented, while increases in the number of clusters and sample size lead to increases.  
So as ρ increases, dT  and h decrease in absolute magnitude and vT increases substantially.  As mT 
and n increase, vT always decreases and h always increases; however, the magnitude of the 
adjustment, which leads to decreases in dT and and h and increases in vT, is much larger with 
changes in n.  Look, for example, at the cases where ρ = 0.20 and the sample sizes are equal at 
NC = NT = 200 (mT = 20 with n = 10 and mT = 4 with n = 50).  The absolute magnitude of the 
adjustment for dT, vT, and h, is 5.4%, 72.2%, and 18.5% in the previous case and 6.4%, 434.6%, 
and 49.4% in the latter case, respectively.  That suggests that changes in n drive the adjustment 
more than changes in mT. 
 
Next, we examined how the t-test estimates are adjusted as ρ, mT, n, and NC change.  Table 2 
presents those results, which show that when ρ > 0, nominally significant t-values are often 
actually insignificant after an adjustment for clustering in one group is made.  Notice that, once 
again, n drives the adjustment more than mT, as including more individuals in fewer clusters 
produces larger adjustments.  For example, in the case where p = 0.10, when mT = 8 and n = 5, 
the results are significant at the 0.05 level (tA = 2.027, h = 76.256, p = 0.0462), but when mT = 5 
and n = 8, the results are no longer significant (tA = 1.902, h = 75.350, p = 0.0610).  In the case 
where p = 0.20, neither set of results are significant.  Thus, the results suggest that changes in ρ 
and n appear to produce larger changes in tA and h than do changes in mT; however, changing all 
three values can change the results (and conclusions) drastically. 
 
Conclusions:  
 
Studies in fields such as education, psychology, and medicine sometimes require a design in 
which there is clustering in the treatment group, but not in the control group (a partially clustered 
design).  Too often, this one-group clustering is ignored in statistical analyses, leading to inflated 
effect sizes, underestimated variances, and increased Type I errors.  We derived adjusted 
statistics to account for this clustering in estimating effect sizes and their sampling variances, as 
well as produced appropriate t-test adjustments.  In examining sample data, we found that not 
accounting for one-group clustering affects the variance and degrees of freedom more than the 
effect size.  With those same degrees of freedom used in the t-test, it is easy to change the 
conclusion of the test from significant to non-significant once one adjusts for this clustering.  
This is especially true with larger values for the intraclass correlation and subgroup sample sizes, 
as the number of subgroups in the treatment group affects the results at a smaller magnitude.  
Last, note that even small changes in the effect size may affect meta-analyses, or syntheses of 
studies.  If a portion of the effect sizes are adjusted toward zero in order to account for treatment 
group clustering, the combined mean effect will also decrease in size.  Moreover, with 
substantially larger variances about the effects, the effect sizes will be less precise and therefore 
receive less weight in the combined estimate of effect size in a meta-analysis.  Depending on the 
magnitude of both, the meta-analytic results may change considerably.
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Appendix B. Tables and Figures 
  
Table 1.  Changes in effect size statistics as functions of ρ, mT, n, and NC 
 

    Unadjusted   Adjusted for Clustering    Percent Adjustment 

Ρ mT n NC    dNaive vNaive N-2   dT vT h   d v h 
0.00 4 10 40 

 
1.000 0.056 78 

 
1.000 0.056 78.0 

 
0.0 0.0 0.0 

0.05 4 10 40 
 

1.000 0.056 78 
 

0.984 0.066 77.2 
 

1.6 17.5 1.0 
0.10 4 10 40 

 
1.000 0.056 78 

 
0.969 0.076 74.9 

 
3.1 35.2 4.0 

0.20 4 10 40 
 

1.000 0.056 78 
 

0.936 0.097 65.4 
 

6.4 71.4 16.1 
0.30 4 10 40 

 
1.000 0.056 78 

 
0.903 0.118 52.0 

 
9.7 108.9 33.4 

0.40 4 10 40 
 

1.000 0.056 78 
 

0.868 0.140 38.2 
 

13.2 147.9 51.0 

                0.20 2 10 20 
 

1.000 0.113 38 
 

0.923 0.193 33.3 
 

7.7 70.4 12.4 
0.20 4 10 40 

 
1.000 0.056 78 

 
0.936 0.097 65.4 

 
6.4 71.4 16.1 

0.20 6 10 60 
 

1.000 0.038 118 
 

0.941 0.065 97.7 
 

5.9 71.7 17.2 
0.20 9 10 90 

 
1.000 0.025 178 

 
0.943 0.043 146.3 

 
5.7 72.0 17.8 

0.20 15 10 150 
 

1.000 0.015 298 
 

0.945 0.026 243.4 
 

5.5 72.1 18.3 
0.20 20 10 200 

 
1.000 0.011 398 

 
0.946 0.019 324.4 

 
5.4 72.2 18.5 

                0.20 4 5 20 
 

1.000 0.113 38 
 

0.938 0.143 34.7 
 

6.2 26.1 8.6 
0.20 4 10 40 

 
1.000 0.056 78 

 
0.936 0.097 65.4 

 
6.4 71.4 16.1 

0.20 4 15 60 
 

1.000 0.038 118 
 

0.936 0.081 91.4 
 

6.4 116.8 22.5 
0.20 4 25 100 

 
1.000 0.023 198 

 
0.936 0.069 133.2 

 
6.4 207.6 32.7 

0.20 4 50 200 
 

1.000 0.011 398 
 

0.936 0.060 201.4 
 

6.4 434.6 49.4 
0.20 4 100 400   1.000 0.006 798   0.936 0.056 270.0   6.4 888.5 66.2 

 
Note:  NC = NT = nmT; N = NC + NT. 
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Table 2.  T-test adjustments as functions of ρ, mT, n, and NC 
 

    Unadjusted   Adjusted for Clustering    Percent Adjustment 

Ρ mT n NC    tNaive N-2 pNaive   tA H pA   t h p 
0.00 4 10 40 

 
2.236 78 0.0282 

 
2.236 78.0 0.0282 

 
0.0 0.0 0.0 

0.05 4 10 40 
 

2.236 78 0.0282 
 

2.010 77.2 0.0479 
 

10.1 1.0 69.9 
0.10 4 10 40 

 
2.236 78 0.0282 

 
1.831 74.9 0.0711 

 
18.1 4.0 152.0 

0.20 4 10 40 
 

2.236 78 0.0282 
 

1.561 65.4 0.1233 
 

30.2 16.1 337.3 
0.30 4 10 40 

 
2.236 78 0.0282 

 
1.361 52.0 0.1794 

 
39.1 33.4 535.9 

0.40 4 10 40 
 

2.236 78 0.0282 
 

1.204 38.2 0.2360 
 

46.2 51.0 736.6 

                0.10 2 20 40 
 

2.236 78 0.0282 
 

1.561 73.6 0.1228 
 

30.2 5.6 335.3 
0.10 4 10 40 

 
2.236 78 0.0282 

 
1.831 74.9 0.0711 

 
18.1 4.0 152.0 

0.10 5 8 40 
 

2.236 78 0.0282 
 

1.902 75.4 0.0610 
 

14.9 3.4 116.2 
0.10 8 5 40 

 
2.236 78 0.0282 

 
2.027 76.3 0.0462 

 
9.4 2.2 63.6 

0.10 10 4 40 
 

2.236 78 0.0282 
 

2.074 76.6 0.0414 
 

7.3 1.8 46.9 
0.10 20 2 40 

 
2.236 78 0.0282 

 
2.178 77.4 0.0325 

 
2.6 0.8 15.0 

                0.20 2 20 40 
 

2.236 78 0.0282 
 

1.233 61.0 0.2223 
 

44.9 21.8 688.1 
0.20 4 10 40 

 
2.236 78 0.0282 

 
1.561 65.4 0.1233 

 
30.2 16.1 337.3 

0.20 5 8 40 
 

2.236 78 0.0282 
 

1.660 67.2 0.1016 
 

25.8 13.8 260.1 
0.20 8 5 40 

 
2.236 78 0.0282 

 
1.850 70.7 0.0685 

 
17.3 9.4 142.8 

0.20 10 4 40 
 

2.236 78 0.0282 
 

1.928 72.1 0.0578 
 

13.8 7.6 104.9 
0.20 20 2 40   2.236 78 0.0282   2.118 75.2 0.0375   5.3 3.5 32.9 

 
Note:  NC = NT = nmT; N = NC + NT.  N is kept constant to keep the unadjusted estimates constant for ease of interpretation. 


