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Abstract Body 

 

Background / Context:  
Meta-analyses are syntheses of effect-size estimates obtained from a collection of studies to 

summarize a particular field or topic (Hedges, 1992; Lipsey & Wilson, 2001). These reviews are 

used to integrate knowledge that can inform both scientific inquiry and public policy (e.g., The 

Campbell Collaboration, 2010; The Cochrane Collaboration, 2010). Therefore, it is important to 

ensure that the estimates of the effect sizes are both robust and free of bias. 

 

One such scenario under which bias can occur is from a failure to account for clustering. 

Clustering occurs when, for example, schools are assigned to conditions and students are 

grouped together within each school. Recent research has shown that a failure to account for 

between-group clustering has the potential to bias effect sizes (Hedges, 2009). As a result, 

corrections have been proposed for such clustered designs. 

 

The typical design is such that clustering exists for each condition. Occasionally, however, study 

designs are such that clustering exists in one condition but not the other.  For example, students 

may be assigned to a set of tutors or patients may receive counseling from a designated set of 

therapists.  In these scenarios, the individuals in the treatment group are nested within subgroups 

of either tutors or therapists; however, control group individuals lack clustered effects as they do 

not receive any treatment. 

 

These studies may be referred to as one-group cluster-randomized designs or partially clustered 

designs. The subgroups in the treatment group create statistical clusters whose additional 

between-group variance needs to be taken into account during analysis. Clustering is often 

ignored, however, and the data are assessed as if the individuals within the treatment subgroups 

are independent of one another (Pals, Murray, Alfano, Shadish, Hannan, & Baker, 2008). 

 

In order to account for this clustering, researchers have developed multi-level random- and 

mixed-effects models that take one-group clustering into account in order to test for individual 

study significance (e.g., Bauer, Sterba, & Hallfors, 2008; Hoover, 2002; Lee & Thompson, 2005; 

Roberts & Roberts, 2005). Only recently were methods developed to calculate appropriately 

adjusted effect sizes from such designs. Hedges and Citkowicz (under review) derived adjusted 

statistics that allow for the calculation of effect sizes and their sampling variances when the 

summary data is from a one-group clustered, two-level design study. 

 

Despite these advances, we do not yet have an understanding of the degree to which not 

accounting for clustering will bias the overall meta-analytic mean effect and its variance. 

Assessing this bias will help to encourage future meta-analysts to account for this bias as well as 

caution policymakers and practitioners when considering meta-analytic results that fail to adjust 

for clustering. 

 

Purpose / Objective / Research Question / Focus of Study: 
The purpose of this study is to investigate the consequences of not accounting for one-group 

clustering in meta-analyses.  We conducted a series of simulations in order to find out how 

distorted meta-analytic results can be when analysts fail to correct effect sizes for one-group 
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clustering. The results of these analyses, in addition, demonstrate the extent to which we may be 

confident in previously conducted meta-analyses that did not have the tools to adjust the effects 

and variance in such designs. 

 

Significance / Novelty of study: 

Before Hedges and Citkowicz’s (under review) derivations, statistical adjustments to the effect 

sizes and variances of one-group clustered designs were not available. Thus, previously 

conducted meta-analyses of studies that included such cluster-randomized designs will have 

inflated mean effects. To our knowledge, no one has investigated to what extent these 

unadjusted, synthesized results may be inflated. The purpose of this project is to compare the 

adjusted and unadjusted (or naïve) meta-analytic results. 

 

Statistical, Measurement, or Econometric Model:  
Model.  When clustering exists in the treatment group, one may denote the j

th
 observation in the 

i
th

 cluster by Yij
T
 (i = 1, …, m; j = 1, …, n), so that there are m clusters of size n in the treatment 

group.  With no clustering in the control group, the i
th

 observation may be represented by Yi
C
 (i = 

1, …, N
C
).  The mean of the i

th
 cluster in the treatment group is  ̅  

  (i = 1, …, m), and the overall 

(grand) means in the treatment and control groups may be represented by  ̅  
  and  ̅ 

 , 

respectively.  The sample sizes are N
T
 = nm and N

C
 in the treatment and control groups, 

respectively, while the total sample size is N = N
T
 + N

C
 = nm + N

C
.  Using those values, the total 

pooled within-treatment group variance ST
2
 may be estimated via 

   
2 2

1 1 12

2

Cm n N
T T C C
ij i

i j i
T

Y Y Y Y

S
N

 
  

  




  

. 

 

In order to estimate the model and generate observed effects (discussed below), we assume that 

the observations are normally distributed within both the treatment group clusters and the 

individual observations of the control group.  That is 

   
      

    
  , i =1, …, m; j = 1, …, n, 

  
         

  , i = 1, …, N
C
. 

Also assume that the clusters in the treatment group have random between-cluster effects so that 

the cluster means themselves are normally distributed: 

  
      

    
  , i = 1, …, m. 

Thus, the variance in the control group is simply σW
2
, while the variance in the treatment group 

is   
    

    
 .  The parameter used to summarize the relationship between the variances is 

called the intraclass correlation coefficient ρ and is defined by 
2 2

2 2 2
B B

B W T

ρ
 

  
 


. 

 

One-group correction.  Hedges and Citkowicz (under review) derived statistical adjustments to 

the standardized mean difference effects (SMDs are the effect sizes typically calculated in the 

social sciences) of one-group clustered designs.  We define those below. 

 

If clustering is not taken into account, a naïve estimate of SMD may be computed by 
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T C

Naive
T

Y Y
d

S

 
 . 

In order to account for clustering in the treatment group, we multiply dNaive by a correction factor 

so that the adjusted SMD dT is 

( 2)
1

2

T C C

T
T

Y Y N n
d

S N

 
   

  
   

, 

where ρ is the intraclass correlation defined above. 

 

The naïve sampling variance of the effect is 

 

2

2 2

Naive
Naive T C T C

dN
v

N N N N
 

 
, 

but may also be corrected to 

       
2

1 1
CnN T

T T C N

δN
v

2hN N


         
, 

where h is the effective degrees of freedom of ST
2
 given by 

    
       
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2 2

2 1
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T T
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  

      
. 

 

Usefulness / Applicability of Method:  

We used the model defined above to generate pilot data that results in clustered effects in the 

treatment group.  We varied the following data characteristics to investigate how their 

differences impact the meta-analytic results: 

 

Level 1: 

 Treatment subgroup sample size:  n = 20 or 100; 

 Intraclass correlation:  ρ = 0.05 or 0.20. 

 

Level 2:   

 Heterogeneity:  τ
2
 = 0 or 0.05; 

 Number of effects included in the meta-analysis:  k = 10 or 60; 

 Proportion of effects that include one-group clustering:  clustering = 0.10 or 0.90. 

 

The characteristics we did not vary include the true mean effect (μ = 0.20) and the number of 

clusters (or subgroups) in the treatment group (m = 30). The level-1 parameter combinations 

were derived using observed statistics in education (Hedges & Hedberg, 2007). Heterogeneity 

statistics were assumed from a recent review of the Cochrane database (Turner, Davey, Clarke, 

Thompson, & Higgins, 2012), and the number of studies included in the meta-analysis are the 

25% and 75% quartiles of studies included in recent social science meta-analyses (Polanin, 

2013). The proportion of one-group clustering represents a hypothesized range of scenarios. 
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The combination of the five factors resulted in 32 cells for which we ran 5,000 replications 

each.
1
  We then used both the naïve and adjusted formulas to estimate effects and variances.  We 

combined those effects using both meta-analytic fixed- and random-effects models.
2
  We then 

compared the results of the models that include only the naïve effect-size data (dnaive) to those of 

the true effect-size data (dtrue, i.e., naïve when no clustering exists in the data and adjusted when 

clustering exists). 

 

Findings / Results: 

We first examined the results of the overall mean effect estimated using the random effects 

model.  Table 1 shows that the coverage rates of 95% confidence intervals for the mean effect 

are similar (and close to the nominal level of 0.95) for the naïve and true effects data in almost 

all the cells.  Moreover, bias (Table 2) and root mean squared errors (RMSE, see Table 3) are 

close to zero for both data sets, indicating little deviance of the estimated naïve and true mean 

effects from the true mean effect (μ = 0.20).  The reason for the similarity in mean effect results 

for the naïve and true data is that the between-study variance component (τ
2
) is taking in any 

extra variability that clustering produced in the naïve data.  Thus,  ̂ is slightly overestimated in 

the naïve data meta-analyses. 

 

Next we assessed the results for the fixed-effects model.  Table 4 shows that the coverage rates 

of 95% confidence intervals for the mean effect are close to 0.95 for the true data, but decrease 

substantially for the naïve data as the proportion of clustering, ρ, and n increase.  This occurs 

because the standard errors for the naïve mean effects are underestimated, producing confidence 

intervals that are too narrow.  Bias (Table 5) and RMSE (Table 6) are slightly larger for the naïve 

mean effects, particularly when the proportion of clustering and ρ are larger.  However, with 

values still relatively close to zero, the naïve mean effects do not deviate from the true mean 

effect very much (and the estimated true mean effects do not deviate at all). 

 

Last, we investigated heterogeneity for the fixed-effects model where between-study variability 

(τ
2
) was not generated into the meta-analytic data.  The various heterogeneity diagnostics, found 

in Table 7, indicate that increases in the proportion of clustering, ρ, and n produce significant 

results for the naïve data, suggesting that there is a substantially amount of heterogeneity when, 

in fact, no between-study variability exists.  Thus, because the naïve data does not account for 

one-group clustering, the heterogeneity tests inappropriately detect excess variability. 

 

Conclusions:  
The goal of our study was to investigate the consequences of not accounting for one-group 

clustering in meta-analysis.  We found that when one conducts a meta-analysis using a random-

effects model, the overall mean effect may be fairly accurate, but the variance component will be 

overestimated as it takes in the extra variability due to clustering.  Running fixed-effects models 

may produce mean effects that also resemble true mean effects, but the confidence intervals will 

be much too narrow when most of the studies contain one-group clustering and have larger n’s 

and ρ’s, leading one to believe the estimates are more precise than they actually are (and 

potentially leading to inappropriate significance conclusions).  Moreover, the between-study 

heterogeneity tests will be wrong most of the time. 

                                                 
1
 We plan on expanding this pilot study by including more gradations in values for each of the parameters we vary. 

2
 Note that only 16 cells were run for the fixed-effects models as they do not include a variance component. 
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Appendix B. Table and Figures 
 

Table 1.  Coverage rates of 95% confidence intervals for the random-effects mean 

Clustering k τ
2
 ρ n dtrue dnaive 

0.10 10 0 0.05 20 0.957 0.956 

    

100 0.955 0.945 

   

0.20 20 0.957 0.948 

    

100 0.960 0.947 

       

  

0.05 0.05 20 0.907 0.906 

    

100 0.904 0.903 

   

0.20 20 0.904 0.903 

    

100 0.905 0.905 

       

 

60 0 0.05 20 0.955 0.951 

    

100 0.957 0.949 

   

0.20 20 0.956 0.940 

    

100 0.959 0.945 

       

  

0.05 0.05 20 0.943 0.943 

    

100 0.941 0.941 

   

0.20 20 0.944 0.945 

    

100 0.943 0.943 

       

0.90 10 0 0.05 20 0.958 0.931 

    

100 0.958 0.898 

   

0.20 20 0.960 0.898 

    

100 0.954 0.885 

       

  

0.05 0.05 20 0.905 0.905 

    

100 0.906 0.907 

   

0.20 20 0.909 0.905 

    

100 0.906 0.901 

       

 

60 0 0.05 20 0.954 0.938 

    

100 0.957 0.925 

   

0.20 20 0.954 0.861 

    

100 0.961 0.840 

       

  

0.05 0.05 20 0.944 0.945 

    

100 0.947 0.947 

   

0.20 20 0.945 0.932 

    

100 0.944 0.931 

Note:  N
C
 = N

T
 = nm, where m = 30 is constant. 
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Table 2.  Bias results for the random-effects mean 

 

Clustering k τ
2
 ρ n dtrue dnaive 

0.10 10 0 0.05 20 0.0002 0.0005 

    

100 0.0000 0.0003 

   

0.20 20 -0.0005 0.0006 

    

100 -0.0001 0.0011 

       

  

0.05 0.05 20 -0.0008 -0.0005 

    

100 0.0010 0.0012 

   

0.20 20 -0.0015 -0.0003 

    

100 -0.0002 0.0010 

       

 

60 0 0.05 20 -0.0002 0.0000 

    

100 0.0000 0.0002 

   

0.20 20 -0.0002 0.0009 

    

100 0.0000 0.0012 

       

  

0.05 0.05 20 -0.0003 0.0000 

    

100 -0.0001 0.0001 

   

0.20 20 0.0007 0.0018 

    

100 0.0006 0.0017 

       

0.90 10 0 0.05 20 0.0001 0.0025 

    

100 -0.0001 0.0023 

   

0.20 20 0.0004 0.0106 

    

100 0.0001 0.0104 

       

  

0.05 0.05 20 0.0008 0.0032 

    

100 0.0005 0.0028 

   

0.20 20 -0.0002 0.0099 

    

100 0.0011 0.0113 

       

 

60 0 0.05 20 0.0002 0.0025 

    

100 0.0000 0.0024 

   

0.20 20 0.0002 0.0103 

    

100 0.0001 0.0103 

       

  

0.05 0.05 20 0.0001 0.0024 

    

100 -0.0001 0.0023 

   

0.20 20 -0.0003 0.0098 

    

100 0.0003 0.0104 

Note:  N
C
 = N

T
 = nm, where m = 30 is constant. 
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Table 3.  RMSE results for the random-effects mean 

 

Clustering k τ
2
 ρ n dtrue dnaive 

0.10 10 0 0.05 20 0.019 0.019 

    

100 0.009 0.009 

   

0.20 20 0.019 0.020 

    

100 0.009 0.012 

       

  

0.05 0.05 20 0.073 0.073 

    

100 0.071 0.071 

   

0.20 20 0.073 0.073 

    

100 0.072 0.072 

       

 

60 0 0.05 20 0.008 0.008 

    

100 0.003 0.004 

   

0.20 20 0.008 0.008 

    

100 0.003 0.005 

       

  

0.05 0.05 20 0.030 0.030 

    

100 0.029 0.029 

   

0.20 20 0.030 0.030 

    

100 0.029 0.029 

       

0.90 10 0 0.05 20 0.022 0.022 

    

100 0.014 0.015 

   

0.20 20 0.028 0.033 

    

100 0.021 0.029 

       

  

0.05 0.05 20 0.073 0.074 

    

100 0.071 0.072 

   

0.20 20 0.073 0.077 

    

100 0.072 0.077 

       

 

60 0 0.05 20 0.009 0.009 

    

100 0.006 0.006 

   

0.20 20 0.012 0.016 

    

100 0.008 0.015 

       

  

0.05 0.05 20 0.030 0.030 

    

100 0.029 0.029 

   

0.20 20 0.030 0.033 

    

100 0.029 0.032 

Note:  N
C
 = N

T
 = nm, where m = 30 is constant. 
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Table 4.  Coverage rates of 95% confidence intervals for the fixed-effects mean 

 

Clustering k ρ n dtrue dnaive 

0.10 10 0.05 20 0.953 0.948 

   

100 0.949 0.921 

  

0.20 20 0.952 0.926 

   

100 0.948 0.825 

      

 

60 0.05 20 0.952 0.946 

   

100 0.956 0.923 

  

0.20 20 0.953 0.926 

   

100 0.955 0.821 

      

0.90 10 0.05 20 0.951 0.898 

   

100 0.952 0.726 

  

0.20 20 0.949 0.717 

   

100 0.951 0.429 

      

 

60 0.05 20 0.951 0.883 

   

100 0.952 0.697 

  

0.20 20 0.950 0.619 

   

100 0.951 0.326 

 

Note:  N
C
 = N

T
 = nm, where m = 30 is constant. 
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Table 5.  Bias results for the fixed-effects mean 

 

Clustering k ρ n dtrue dnaive 

0.10 10 0.05 20 0.0004 0.0006 

   

100 -0.0002 0.0001 

  

0.20 20 0.0004 0.0014 

   

100 -0.0002 0.0009 

      

 

60 0.05 20 -0.0001 0.0002 

   

100 -0.0001 0.0002 

  

0.20 20 -0.0001 0.0011 

   

100 -0.0001 0.0010 

      

0.90 10 0.05 20 0.0002 0.0025 

   

100 -0.0001 0.0022 

  

0.20 20 0.0002 0.0101 

   

100 -0.0001 0.0096 

      

 

60 0.05 20 -0.0001 0.0022 

   

100 -0.0001 0.0023 

  

0.20 20 -0.0002 0.0098 

   

100 -0.0001 0.0098 

 

Note:  N
C
 = N

T
 = nm, where m = 30 is constant. 
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Table 6.  RMSE results for the fixed-effects mean 

 

Clustering k ρ n dtrue dnaive 

0.10 10 0.05 20 0.019 0.019 

   

100 0.009 0.009 

  

0.20 20 0.019 0.020 

   

100 0.009 0.012 

      

 

60 0.05 20 0.008 0.008 

   

100 0.003 0.004 

  

0.20 20 0.008 0.008 

   

100 0.003 0.005 

      

0.90 10 0.05 20 0.022 0.022 

   

100 0.013 0.015 

  

0.20 20 0.028 0.033 

   

100 0.019 0.028 

      

 

60 0.05 20 0.009 0.009 

   

100 0.005 0.006 

  

0.20 20 0.012 0.016 

   

100 0.008 0.015 

 

Note:  N
C
 = N

T
 = nm, where m = 30 is constant. 

 

 



 

SREE Fall 2013 Conference Abstract Template B-7 

Table 7.  Heterogeneity diagnostics for the fixed-effects model 

 

          Q-test p-value   I
2
   H 

Clustering k ρ n   dtrue dnaive   dtrue dnaive   dtrue dnaive 

0.10 10 0.05 20 

 

0.504 0.478 

 

11.291 12.879 

 

0.970 0.992 

   

100 

 

0.493 0.387 

 

11.890 19.985 

 

0.978 1.087 

  

0.20 20 

 

0.504 0.408 

 

11.257 18.127 

 

0.970 1.063 

   

100 

 

0.494 0.253 

 

11.848 36.057 

 

0.978 1.361 

             

 

60 0.05 20 

 

0.501 0.431 

 

5.978 8.177 

 

0.996 1.019 

   

100 

 

0.502 0.220 

 

5.870 18.468 

 

0.995 1.112 

  

0.20 20 

 

0.501 0.250 

 

5.975 16.574 

 

0.995 1.095 

   

100 

 

0.501 0.026 

 

5.916 47.402 

 

0.996 1.433 

             

0.90 10 0.05 20 

 

0.496 0.295 

 

11.561 26.070 

 

0.978 1.172 

   

100 

 

0.494 0.049 

 

11.578 61.560 

 

0.976 1.763 

  

0.20 20 

 

0.495 0.061 

 

11.386 57.573 

 

0.977 1.664 

   

100 

 

0.496 0.001 

 

11.555 87.971 

 

0.975 3.211 

             

 

60 0.05 20 

 

0.493 0.081 

 

6.059 28.606 

 

0.998 1.196 

   

100 

 

0.505 0.000 

 

5.752 68.246 

 

0.994 1.799 

  

0.20 20 

 

0.488 0.000 

 

6.237 64.533 

 

0.999 1.702 

   

100   0.506 0.000   5.757 90.436   0.994 3.280 

 

Note:  N
C
 = N

T
 = nm, where m = 30 is constant. 

 


