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Alternative Statistical Frameworks for Student Growth
Percentile Estimation

J. R. LOCKWOOD and Katherine E. CASTELLANO

This article suggests two alternative statistical approaches for estimating student growth percentiles (SGP). The first is to estimate percentile
ranks of current test scores conditional on past test scores directly, by modeling the conditional cumulative distribution functions, rather
than indirectly through quantile regressions. This would remove the need for post hoc procedures required to ensure monotonicity of the
estimated quantile functions, and for inversion of those functions to obtain SGP. We provide a brief empirical example demonstrating this
approach and its potential benefits for handling discreteness of the observed test scores. The second suggestion is to estimate SGP directly
from longitudinal item-level data, using multidimensional item response theory models, rather than from test scale scores. This leads to an
isomorphism between using item-level data from one test to make inferences about latent student achievement, and using item-level data
from multiple tests administered over time to make inferences about latent SGP. This framework can be used to solve the bias problems for
current SGP methods caused by measurement error in both the current and past test scores, and provides straightforward assessments of
uncertainty in SGP. We note practical problems that need to be addressed to implement our suggestions.

KEY WORDS: Conditional distribution function; Deconvolution; Measurement error; Multidimensional item response theory; Teacher
value-added.

1. INTRODUCTION

Student growth percentiles (SGP; Betebenner 2008, 2009,
2011; Castellano and Ho 2013) are currently being considered
or used in more than half of the states in the country to gauge
the academic progress of both individual students and groups
of students. The widespread interest in SGP is in part due to
their conceptual simplicity: each student’s current test score is
expressed as a percentile rank in the distribution of current test
scores among students who had the same past test scores. For
example, an SGP of 70 for a student conveys that the student
scored higher on the current test than 70% of his or her peers
who had scored similarly in the past. SGP are commonly inter-
preted as a measure of relative growth or conditional status in
achievement (Castellano and Ho 2013), and they do not require
vertically scaled scores (Betebenner 2009) or assume that the
test score scales have interval properties (Briggs and Beteben-
ner 2009). Another appealing aspect of SGP is that they provide
a student-level statistic that can be aggregated to higher levels
(e.g., teachers or schools) to provide summaries of performance
of groups of students sharing educational experiences. Typically,
either the median or mean SGP is used as the group-level mea-
sure, and we use “MGP” to refer to either the mean or the median
SGP of a group of students (Betebenner 2008; Castellano and
Ho 2014). The MGP are interpreted by some stakeholders as
measures of relative performance of different educational units
and are being used as part of teacher and/or leader evaluations
(e.g., Colorado Department of Education 2013; Georgia Depart-
ment of Education 2014).

The articles by Guarino et al. (2014) and Walsh and Isenberg
(2014) in this issue both provide valuable information about how
MGP and teacher value-added measures differ. Walsh and Isen-
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berg (2014) summarized existing literature on the comparison
of the measures, and compared the two methods in a real teacher
evaluation context in Washington, DC. They found that the two
methods provide systematically different performance measures
for teachers teaching students with different background char-
acteristics, but which measure favors certain teachers depends
on the choice of background characteristics examined. Guarino
et al. used simulation to demonstrate that MGP are less able
to recover true teacher impacts on student achievement than
certain value-added methods, and presumably the differences
between the estimators are correlated with the characteristics
of the students in the simulated classrooms. They also demon-
strated evidence that the circumstances required to cause the
two types of measures to have systematic differences may exist
in real data. Both articles note that the relative behavior of the
measures may be influenced by the extent to which differen-
tially effective teachers systematically teach different types of
students, and that MGP will generally provide biased estimates
of educator performance when teachers of different effective-
ness systematically teach students of different prior achievement
levels.

Both articles answer questions about the relative behavior of
the performance measures using SGP as currently implemented
in the freely available R (R Development Core Team 2013) pack-
age “SGP” (Betebenner et al. 2014), and we refer to that method
as the “standard SGP approach.” An equally important question
is whether the standard SGP approach is the optimal way to
estimate the percentile rank of a student’s performance among
peers with a similar achievement history. Researchers and pol-
icymakers studying and using SGP and MGP measures have
tended to take the statistical procedures used by the standard
SGP approach at face value. We argue here that some alterna-
tive frameworks for estimating SGP are possible and might be
advantageous.
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Our first suggestion is to estimate percentile ranks of current
test scores conditional on past test scores directly, by model-
ing the conditional cumulative distribution functions (CDFs),
rather than indirectly through quantile regressions. This would
remove the need for procedures required to ensure monotonicity
of the estimated quantile functions and for inversion of those
functions to obtain SGP. Both of these aspects of the standard
SGP approach make it difficult to determine properties of SGP
estimators such as standard errors, whereas directly modeling
the conditional CDFs moves the estimation into a well-studied
statistical framework where estimators with known properties
are available and where the discreteness of the observed test
scores can be addressed more easily.

Our second suggestion is to estimate SGP directly from lon-
gitudinal item-level data, using multidimensional item response
theory (MIRT) models (Haberman, von Davier, and Lee 2008;
Reckase 2009), rather than from scale scores. This leads to an
isomorphism between using item-level data from one test to
make inferences about latent student achievement, and using
item-level data from multiple tests administered over time to
make inferences about latent SGP. This framework defines SGP
in terms of latent achievement traits and their distributions in
the target population, in contrast to defining SGP in terms of
observed test scores and their distributions. If the MIRT model
is appropriate for the data, this framework can be used to solve
the bias problems for SGP caused by measurement error in both
the current and past test scores, which has proven to be diffi-
cult to solve for the standard SGP approach. It also provides
several candidate estimators for the latent SGP, which have cor-
responding estimates of variability, leading to straightforward
assessments of uncertainty in SGP.

We discuss these suggestions in turn in the following sections.
For each, we first discuss potential issues that may arise with
the standard SGP approach, and suggest alternatives that may
address these issues. We note some additional issues that these
alternatives may introduce. We provide an empirical illustra-
tion of one of our suggestions but leave simulation studies and
deeper empirical applications of our suggestions as future work
given that our interest here is to open the discussion about alter-
native approaches to estimating SGP. We conclude with a brief
discussion regarding limitations of SGP that exist regardless of
how they are estimated.

2. ESTIMATION BY DIRECTLY MODELING
CONDITIONAL CDFS

Because we will later be discussing issues with test score mea-
surement error, we follow the notation of Carroll et al. (2006)
by using W1 to denote the observed current test score and W0 to
denote the observed prior test score. For clarity, we focus on the
case where there is only a single prior test score, although both
of our suggestions can be implemented when multiple past test
scores are included in the conditioning. To simplify notation,
we also do not use subscripts for individual students.

We first consider a simplified case in which observed test
scores are modeled as continuous random variables, and later
discuss the case where the discreteness of observed test scores
is taken into account. In the continuous case, the SGP based on

observed test scores is defined as

ρ(W0,W1) := FW1|W0 (W1|W0) =
∫ W1

−∞
pW1|W0 (u|W0)du, (1)

where pW1|W0 is the conditional density of W1 given W0 and
FW1|W0 is the corresponding conditional CDF. These distribu-
tions and the resulting SGP are defined with respect to some
target population of students, such as all students tested at a
given grade level in a state. The practical challenge is that the
distributions are unknown and must be estimated from the lon-
gitudinal student-level data. We ignore the distinction between
defining the SGP in terms of discrete percentile ranks, reported
on a 0–100 scale, and the conditional CDF.

2.1 Potential Issues With the Standard Approach

Although FW1|W0 (W1|W0) is the estimand of interest for
SGP, the standard approach estimates it indirectly. Rather than
modeling FW1|W0 (W1|W0), it models the conditional quantile
functions F−1

W1|W0
(τ |W0) for selected percentile points τ , typ-

ically from 0.005 to 0.995 in increments of 0.01 (Beteben-
ner et al. 2014). This introduces two related complications.
The first is that while the true quantile functions must sat-
isfy F−1

W1|W0
(τ |W0) ≤ F−1

W1|W0
(τ ∗|W0) for τ ≤ τ ∗, the estimated

quantile functions will not generally satisfy these monotonicity
constraints. The quantile function for each τ is estimated sepa-
rately using quantile regression (Koenker 2005) parameterized
using B-splines to provide flexibility in the conditional distri-
butions (Betebenner 2009). The estimated functions are then
manipulated post hoc to enforce the monotonicity constraints.
1

The second related complication introduced by the indirect
estimation of FW1|W0 (W1|W0) through quantile functions is that
calculating the SGP for each student requires manually invert-
ing the estimated quantile functions. Specifically, the SGP for
a student is calculated by identifying the maximum predicted
conditional quantile the current score is strictly greater than,
rounding the corresponding percentile point up (to the hun-
dredths place), and multiplying by 100. For instance, if a stu-
dent’s current score lies between the τ = 0.595 and τ = 0.605
predicted quantiles, 0.595 is the maximum percentile point the
student’s score is strictly greater than, making this student’s SGP
0.60 × 100 = 60 (Betebenner et al. 2014). This is a discontinu-
ous function of the current score for each W0.

Both of these complications make it difficult to evaluate prop-
erties of the SGP estimators from the standard approach. The
approach estimates separate flexible quantile regressions for
each percentile point, manipulates the estimated functions post
hoc to ensure monotonicity, and then calculates the SGP as a
discontinuous function of the estimated quantiles. The SGP es-
timator is thus defined implicitly by an algorithm rather than

1The technical descriptions of SGP (e.g., Betebenner 2008, 2009) do not men-
tion how monotonicity is ensured, but the documentation of the SGP package
(Betebenner et al. 2014) states that monotonicity constraints are enforced using
the methods of Dette and Volgushev (2008). However, it was difficult to recon-
cile those methods with what is implemented in the SGP package, which appears
to be for each student, simply resorting the 100 estimated conditional quantiles
so that they are nondecreasing. This is more consistent with the suggestions
of Chernozhukov, Fernandez-Val, and Galichon (2009, 2010) than with those
of Dette and Volgushev (2008), as confirmed by personal communication with
Damian Betebenner on July 14, 2014.
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explicitly by a statistical model. This makes it difficult to assess
to what extent SGP estimators are unbiased and what their sam-
pling error might be so that standard errors can be estimated.
The algorithmic approach to SGP calculations also makes it
virtually impossible to implement corrections to SGP estima-
tors for test score measurement error other than simulation-
extrapolation (SIMEX; Cook and Stefanksi 1994; Carroll et al.
2006), in which additional measurement error is added to data
to establish a functional relationship between the measurement
error variance and a parameter estimate. This relationship is then
projected backward to produce a parameter estimate intended
to reflect what the estimate would have been had the data con-
tained no measurement error. The potential value of SIMEX in
the context of SGP is investigated by Shang (2012) and Shang,
Van Iwaarden, and Betebenner (2014).

2.2 Potential Improvements

Because the conditional CDF FW1|W0 (W1|W0) is of interest in
the SGP estimation problem, we suggest it might be advanta-
geous to model it directly rather than indirectly through quantile
regressions that must be inverted. Estimating conditional CDFs
has a long history in statistical modeling, with key innovations
developed in the context of survival analysis by the Cox pro-
portional hazards regression model (Cox 1972, 1975). Although
the advances were made in the context of survival analysis, the
methods can be applied more generally to the estimation of con-
ditional CDFs and thus could be applied to the SGP problem. For
example, one could estimate a Cox regression model for W1 as a
function of W0, and then recover the estimated conditional CDFs
using established methods such as those suggested by Breslow
(1972) or Kalbfleisch and Prentice (1973). This would lead to
SGP estimators that have established statistical properties. Op-
tions for dealing with covariate measurement error in the context
of these models were discussed by Carroll et al. (2006). A down-
side of this approach is that a basic Cox regression model might
be too restrictive for test score data. The proportional hazards as-
sumption does not hold for the multivariate normal distribution
and therefore to the extent that test scores in the target student
population are approximately multivariate normal, simple ap-
plications of Cox regression may be inadequate. Exploration is
needed to determine whether monotone transformations of the
test score scale or fitting the model separately by strata of prior
test scores would lead to acceptable model fit.

Alternatively, there have been approaches recently developed
for estimating conditional CDFs that require minimal distribu-
tional or functional form assumptions (Hall, Wolff, and Yao
1999; Hansen 2004; Li and Racine 2007, 2008; Brunel, Comte,
and Lacour 2010; Li, Lin, and Racine 2013). Most of these
methods use nonparametric kernel smoothing estimators of the
conditional CDF and result in estimated functions that satisfy
the required monotonicity constraints and for which asymptotic
properties can be determined.

Modeling the conditional CDFs directly rather than indirectly
through quantile functions could help to overcome an additional
issue with the standard SGP approach, which is that the discrete-
ness of the observed test scores is not directly acknowledged.
Reported test scores commonly take values in a discrete set of
possible scale scores determined by the number of test items.

This means that generally both the covariates (prior test scores)
and the outcome (current test score) in SGP estimation are dis-
crete, which may cause estimated conditional quantile functions
to demonstrate odd behavior for some percentile points. There
are several approaches available for modeling the conditional
CDFs while accounting for the discreteness of either the out-
come alone, or both the outcome and covariates. These include
methods used in discrete time survival analysis (Cox 1972; Pren-
tice and Gloeckler 1978; Kalbfleisch and Prentice 2011) as well
as those used more generally for modeling categorical data such
as log-linear models and related methods that also account for
the ordinal nature of the test score data (Haberman 1979; McCul-
lagh 1980; Agresti 1990). For example, to deal with discreteness
of the outcome score alone, it is straightforward to treat it as an
ordered categorical response and to model the cumulative prob-
abilities of reaching successively higher scores as functions of
the prior scores. A simple application is provided in the follow-
ing section. Exploration of these models would be required to
determine the functional forms and link functions that are most
appropriate for the longitudinal test score data. Less parametric
models for the conditional CDF of a discrete variable given both
continuous and categorical covariates were discussed by Li, Lin,
and Racine (2013) and Li and Racine (2008).

2.3 Empirical Illustration of Direct CDF Modeling

We use data from three large suburban school districts in
the same state to demonstrate direct modeling of the condi-
tional CDFs and how such modeling compares to the standard
SGP approach. Data are from 18,280 grade 7 students in the
2010–2011 school year. For simplicity, we focus on calculating
SGP for grade 7 (“current year”) scores on the state mathematics
accountability exam conditional on the grade 6 (“prior year”)
mathematics scores. The sample was selected so that all students
have both test scores. In practice, multiple prior test scores are
often used in the model, and it is possible that some of the issues
we note here would be mitigated in such cases.

Figure 1 provides a scatterplot of current year versus prior
year test scores for the students in our sample. The upper tails of
the distributions exhibit the “stretching” commonly seen with
scale scores in which raw scores for high-performing students
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Figure 1. Scatterplot (with jitter) of current year versus prior year
mathematics test scores for empirical example.
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convert to a few, spread out scale scores at the upper end of the
scale. There are 55 unique values of the prior score, 54 unique
values of the current score, and 1485 unique observed combi-
nations of these prior and current scores. The data demonstrate
relatively mild ceiling effects, with less than 0.5% of students
reaching the highest possible prior year score, and about 1.6%
of students reaching the highest possible current year score.

We consider three approaches to estimating the conditional
CDFs and SGP. The first simply calculates the empirical CDF
(ECDF) of the current score conditional on each possible prior
score, and defines the “empirical SGP” to be the standard per-
centile rank of the current score in this conditional distribution,
equal to the percentage of students scoring strictly less than a
given student plus one half of the percentage of students scoring
the same as the given student (Crocker and Algina 1986). 2 This
definition ensures that the mean empirical SGP is exactly 50 for
each possible prior score, and thus the marginal mean SGP is
also exactly 50.

For the second estimation approach, we treated the outcome
score as an ordered categorical variable with 54 levels and mod-
eled the conditional probabilities as a function of the prior score
using an ordered logit model. The model was implemented with
the polr function in the MASS package for R. We used spline
functions of the prior score in the model and used the Akaike
information criterion (AIC) and likelihood ratio tests to choose
the complexity. Both criteria suggested that a cubic spline with
6 degrees of freedom fit better than simpler models and was also
preferred to a cubic spline with 7 degrees of freedom. The chosen
model has a total of 59 parameters (6 for the coefficients on the
spline basis for the prior score and 53 for the 54 ordered levels
of the outcome). Analogous to the empirical SGP, we define the
“logit SGP” as the estimated percentile rank of each student’s
score given their prior score, which for each possible outcome
score is the model-based estimate of the conditional probability
of scoring strictly less than the observed score, plus one half the
conditional probability of scoring exactly the observed score,
all times 100.

Our third estimation approach used the studentGrowth
Percentiles function in the SGP package3 for R based on
100 percentile cuts ranging from 0.5 to 99.5. The implied con-
ditional CDFs from the model fit were calculated by manually
inverting the estimated quantile functions, and the “standard
SGP” is taken to be that returned by the function, calculated by
comparing the current score for each student to the sequence of
monotonized percentile cut points. The standard SGP approach
here has a total of 800 parameters (7 for the coefficients on the
spline basis for the prior score plus one for the intercept, times
100 quantile functions).

We first considered how well the estimated conditional CDFs
from the ordered logit model and standard SGP approach re-
covered the conditional ECDFs, which in large samples would
converge to the population conditional CDFs and thus would be
appropriate for calculating SGP. Overall, the ordered logit model

2This formula for percentile ranks is used more broadly in educational measure-
ment applications, including in equipercentile equating or linking; Kolen and
Brennan 2004, pp. 38–39.
3The SGP package was version 1.2-0.0 (Betebenner et al. 2014) for R version
3.0.2 running on i386 Linux.
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Logit KS= 0.027

Figure 2. Estimated conditional CDFs (ECDF = black, logit
model = blue, standard SGP approach = orange) for 502 students
with prior score equal to 802. Kolmogorov–Smirnov (KS) statistics
versus the ECDF are given in the legend.

did a better job of recovering the ECDFs, which is not surprising
because that model explicitly acknowledges the discreteness of
the outcome. The two approaches performed similarly for the
lower and middle parts of the prior score distribution, but the
standard SGP approach started to do systematically worse in
the upper part of the prior score distribution, where the outcome
tended to take on fewer possible values.

Figures 2 and 3 provide representative plots for two of
the 55 unique prior scores. Each plot provides the estimated
conditional CDFs from the three approaches, along with the
Kolmogorov–Smirnov statistics (maximum absolute difference
between CDFs) comparing the conditional CDFs from the
ordered logit model and standard SGP approach to the con-
ditional ECDFs. In Figure 2, corresponding to a prior score
at approximately the 25th percentile, the conditional CDF
estimated from the standard SGP approach (orange) is a very
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Standard KS= 0.076
Logit KS= 0.021

Figure 3. Estimated conditional CDFs (ECDF = black, logit
model = blue, standard SGP approach = orange) for 354 students
with prior score equal to 890. Kolmogorov–Smirnov (KS) statistics
versus the ECDF are given in the legend.
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Figure 4. Kolmogorov–Smirnov (KS) statistics for the standard
SGP approach (orange) and logit model (blue) versus the ECDF as
a function of the prior score, for prior score values with at least 50
students.

good approximation to the ECDF (black) because the sizes
of the jumps in the conditional ECDF are relatively small.
In Figure 3, for a prior score at about the 95th percentile,
the impact of not directly dealing with the discreteness of
the outcome distribution is more pronounced. The standard
approach starts to exhibit flat spots, but they do not align as
well with the conditional ECDF as the logit model (blue) does.

Figure 4 provides the Kolmogorov–Smirnov statistics of the
conditional CDFs from the standard SGP approach (orange) and
logit model (blue) relative to the conditional ECDFs, for each
prior score with at least 50 students. For higher prior scores, the
conditional CDFs for the standard SGP approach show consis-
tently larger deviations from the conditional ECDFs than those
from the logit model do, despite the fact that the conditional
CDFs in the standard SGP approach are parameterized with sig-
nificantly more parameters than the logit model. This behavior
is probably not specific to our example and would not go away
as the number of students becomes very large. It is likely that a
model acknowledging the discreteness of the outcome—either
standard ordered categorical models such as the logit model,
or the less parametric conditional CDF approaches previously
referenced—will tend to do a better job of recovering the condi-
tional ECDFs than the standard SGP approach, particularly for
outcome tests that have relatively few possible scale scores.

This does not directly address how the estimated SGP will
behave under different approaches. The SGP from the three dif-
ferent approaches have pairwise correlations exceeding 0.997,
so at a gross level, the choice of model has negligible impact
on estimated SGP. However, important differences can arise for
subpopulations of students, and these differences can manifest
at the teacher level when SGP are aggregated to MGP. The pri-
mary difference among the different approaches with respect
to estimated SGP is in how ties in the outcome score are han-
dled. There is no unambiguously correct choice. The percentile
rank definition we used for the empirical and logit SGP has
the property that in all circumstances, it gives students credit
for exceeding the performance of half the students who share
the same scale score. In other words, this percentile rank def-

inition awards students “half credit” for students they tie. It is
unclear whether this decision is correct or desirable, but it has
the benefits of being a consistent convention and leading to SGP
that will tend to have mean 50 regardless of how discrete the
conditional distribution of the outcome is in a given compari-
son group. In contrast, the standard SGP is less uniform in its
treatment of ties because the specific SGP values that it assigns
depend on how the estimated quantile functions behave as the
conditional distributions become more discrete in the extremes
of the prior score distribution, where resolving individual quan-
tiles becomes difficult. The exact behavior is difficult to predict
given the complexity of the spline-based quantile regression
models, and the deviations from “half credit” could be more or
less pronounced in different circumstances.

As an extreme example from our data, 89 students had the
highest possible prior score. Thirty-eight (43%) of these stu-
dents also had the highest possible current score. Each of these
students had a standard SGP of 59, but empirical and logit SGP
of approximately 79. The standard SGP gave these students ef-
fectively no credit for the students they tied. The behavior of
the standard SGP in our data, which may be peculiar to these
data, is to give students progressively less credit for ties as the
prior score increases. That is, for students near the high end of
the prior score distribution, the standard SGP tends to be sys-
tematically smaller than either the empirical or logit SGP. This
implies that teachers teaching classrooms of very high achieving
students will tend to receive MGP from the standard approach
that are systematically smaller than what would be assigned
from the other approaches.

Figure 5 displays the magnitudes of these differences in our
data. Our data contained links of students to their grade 7 mathe-
matics teachers, and we calculated MGP for each teacher by av-
eraging the SGP for his/her linked students. The figure plots the
difference between the standard and empirical MGP (black tri-
angles) and the difference between the logit and empirical MGP
(gray circles) versus the average prior score of each teacher’s
students, for the 268 teachers with at least 10 students. As the
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Figure 5. Difference between the standard and empirical MGP
(black triangles) and the difference between the logit and empirical
MGP (gray circles) versus the average prior score of each teacher’s
students, for teachers with at least 10 students.
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average prior score of a teacher’s students increases, the stan-
dard MGP becomes systematically smaller than the empirical
MGP, whereas the difference between the logit and empirical
MGP appears to have no systematic relationship to the average
prior score. The absolute differences are modest, but having any
systematic differences as a result of an essentially arbitrary de-
cision about how ties are handled may be viewed as problematic
by stakeholders. Some teachers will be affected by the decision,
and the amount individual teachers are affected will be related
to the background characteristics of the students they teach.

Ties in the outcome score present a nuisance that transcends
which statistical approach is used to estimate SGP. The primary
advantage of directly modeling the conditional CDFs compared
to the standard approach is that it is more straightforward to
adopt a rule regarding ties and apply it uniformly to all students.
This may be desirable given that one of the appeals of SGP and
MGP approaches is simplicity and transparency.

An important limitation of our example is that because it was
designed only to illustrate the ideas, we did not rigorously test
the assumptions made by the ordinal logit model. It is possible
that less rigid assumptions are more appropriate for either our
data, or more generally. A key benefit of the standard SGP ap-
proach is that it makes minimal assumptions about the relation-
ships among test scores, and that flexibility could be beneficial
in some settings. It is also plausible that more flexible CDF
modeling approaches, such as those noted previously, would
provide a better framework for handling the peculiarities that
can arise in joint distributions of longitudinal state testing data.

3. ESTIMATION FROM ITEM-LEVEL DATA

SGP from the standard approach and the CDF modeling ap-
proaches discussed in the previous section use distributions of
observed test scores in a target population of students. How-
ever, observed test scores are error-prone measures of latent
achievement (Lord 1980). Although SGP are formally only a
descriptive statistic, in practice, they are interpreted as relative
growth in achievement, and thus it is likely that the inference
desired by consumers of SGP is more closely aligned with latent
achievement than with observed test scores. For the remainder,
we assume that the target SGP estimand involves the latent, true
scores and their distributions rather than the observed scores
and their distributions. We refer to this target SGP as the “latent
SGP” to make explicit its definition in terms of the latent scores.

We let (X0, X1) be the latent achievement attributes measured
with error by the observed test scores (W0,W1). We are defining
(X0, X1) as hypothetical scores that result from letting the num-
ber of test items become large for the same tests administered
at the same time to the same students as the actual tests. In this
sense, the only source of measurement error we are addressing
is that caused by the finite number of test items and the im-
perfect information about latent achievement provided by each
item. We define the latent SGP as

π (X0, X1) := FX1|X0 (X1|X0) =
∫ X1

−∞
pX1|X0 (u|X0)du. (2)

Comparing Equation (2) to (1) shows that the definitions are
parallel, but one is defined in terms of latent scores and distri-
butions (Equation (2)) and the other in terms of observed scores

and distributions (Equation (1)). We denote the latent SGP as
π (X0, X1) and the “observed SGP” as ρ(W0,W1).

3.1 Potential Issues With the Standard Approach

Due to the nonlinearity of the steps used to compute SGP,
it is generally the case that a student’s observed SGP is a
biased estimator of his or her latent SGP, even if each test
score used in the calculation is an unbiased estimate of the la-
tent achievement construct it is intended to measure. That is,
E[ρ(W0,W1)|X0, X1] is not generally equal to π (X0, X1). In
fact, even if the SGP could be calculated using the latent val-
ues of past achievement, measurement error in the current year
score alone would be sufficient to cause bias in the SGP due to
the nonlinear functions used to calculate SGP. For example, if
the measurement error variance in the current score was very
large, the observed SGP would be dominated by measurement
error and would have mean near 50 (i.e., the median percentile
rank) regardless of the true SGP.

The potential for bias in inferences from SGP stemming from
test measurement error may be exacerbated for school or teacher
MGP. Because students in different schools and different teach-
ers’ classes are likely to differ with respect to latent achievement,
errors in student SGP caused by test score measurement error
that are systematically related to latent achievement will not
cancel when aggregated. This can result in systematic errors
in MGP for teachers or schools that are correlated with the stu-
dents’ background characteristics. Because MGP are sometimes
interpreted as indicators of relative effectiveness of schools or
teachers, this can lead to certain teachers or schools being chron-
ically advantaged or disadvantaged by the evaluation metrics
depending on the types of students they serve. The potential
for such systematic error has been raised and studied in the
broader literature on teacher value-added for more than a decade
(McCaffrey et al. 2003; Rothstein 2010; Harris 2011; Kane et al.
2013). This was also a major issue with MGP noted by both the
Guarino et al. and Walsh and Isenberg articles.

Dealing with test measurement error in the standard SGP
approach is very difficult. As noted previously, the algorith-
mic computation of SGP makes it unclear how to apply any
standard measurement error correction approaches. Shang, Van
Iwaarden, and Betebenner (2014) provided an initial attempt to
address measurement error in the conditioning scores used in
SGP by using SIMEX. However, the methods in that study are
insufficient to fully correct for bias in SGP induced by mea-
surement error. Also, there have been no methods proposed to
address the bias in SGP due to measurement error in the current
(outcome) test score.

3.2 Potential Improvements

Correcting SGP (and thus MGP) for measurement error in
both past and current scores, that is, developing estimators for
the latent SGP π (X0, X1) in Equation (2), would be relatively
straightforward if the SGP estimation process started with the
item-level data. States have access to such item-level data, and
standard methods based on MIRT exist for the steps required to
go from longitudinal item-level data to latent SGP estimators.

The estimation problem parallels that faced by testing pro-
grams in using item-level data from a single test to estimate each
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student’s latent achievement. However, the SGP case presents
two specific challenges: (i) the target parameter π (X0, X1) in-
volves two latent achievement values and (ii) the target parame-
ter is a nonlinear function of those latent achievement values that
is defined only in reference to the distribution of latent achieve-
ment in some target population, which itself must be estimated
from the observed data. These problems have been studied in
the literature in other contexts than SGP, and we next discuss
how those solutions could be applied to the estimation of SGP.

3.2.1 Estimating Latent Score Distributions. The first chal-
lenge to estimating π (X0, X1) is that it requires estimating the
conditional distributions of the latent scores in the target popu-
lation from the observed item response data. These conditional
distributions would follow directly from an estimate of the joint
distribution pX0,X1 (x0, x1) in the target population. This is the
well-studied problem of deconvolution of a latent distribution
given error-prone measures (Laird 1978; Mislevy 1984; Roeder,
Carroll, and Lindsay 1996; Rabe-Hesketh, Pickles, and Skron-
dal 2003; Carroll et al. 2006; Lockwood and McCaffrey 2014).
Deconvolution methods use the fact that the item response the-
ory model (IRT; see, e.g., van der Linden and Hambleton 1996 or
Holland 1990) defines the probability structure of the observed
item responses conditional on the latent scores, and therefore
the observed item response distributions can be used to infer the
latent score distributions.

We propose that states could use the longitudinal item re-
sponse data on individual students to estimate bivariate IRT
models that would provide an estimate of pX0,X1 (x0, x1) in the
target population. The target population would be restricted to
a subset of the full student population having some minimum
threshold of longitudinal data; in the simplest case, the esti-
mation would be restricted to students having two consecu-
tive years of test scores. Software available for MIRT, such as
flexMIRT (Cai 2012), the mdltm program for multidimensional
discrete latent trait models (von Davier 2005), the MIRT rou-
tines by Haberman (2013) or Glas (2010), or packages available
in R such as mirt (Chalmers, Pritikin, and Zoltak 2014), could
be used to perform the estimation under different assumptions
about pX0,X1 (x0, x1).

These assumptions range from highly parametric to nonpara-
metric, and the key question for the SGP application is how
much parametric structure is required to estimate pX0,X1 (x0, x1)
in such a way that the conditional distributions are reasonably
smooth and well identified from the available data. Fully non-
parametric approaches to deconvolution (Roeder, Carroll, and
Lindsay 1996; Rabe-Hesketh, Pickles, and Skrondal 2003) tend
to result in distributions that are not smooth and may not pro-
vide consistent estimators for IRT models depending on the
complexity of the item response function (Haberman 2005a).
Therefore, parametric assumptions will likely be required in
practice to obtain well-behaved estimates of the latent bivariate
distribution. It is possible that the standard MIRT assumption
of bivariate normality of (X0, X1) would fit the data sufficiently
well, because much of the evident deviation of observed scores
from bivariate normality is likely due to heteroscedastic mea-
surement error present in the observed scores but not the latent
scores. Parametric extensions of the multivariate normal family
that allow for skewness are also available (Azzalini and Dalla

Valle 1996) and could be tested against the standard normality
assumption, as could mixtures of normal distributions. Latent
class models that assume a discrete latent distribution are also
possible and may provide good approximations to an underly-
ing continuous distribution (Haberman 2005b; Haberman, von
Davier, and Lee 2008; Xu and von Davier 2008). Empirical
investigations with test score data from state testing programs
would be needed to strike the right balance between being flexi-
ble enough to capture the real structure but being parameterized
enough to provide reasonable distribution estimates.

3.2.2 Estimating Individual SGP. Given an estimate
p̂X0,X1 (x0, x1), there is still the problem of how to estimate the
SGP for each student given his or her item responses (I0, I1) on
the two tests. This problem is isomorphic to how item responses
from a single test are used to estimate the latent achievement
for that test. Different estimators have different advantages and
disadvantages, and here we highlight only a few key issues.

If the item parameters of the MIRT model were known, each
student’s (X0, X1) can be estimated by maximum likelihood
(MLE) given (I0, I1). The MLE SGP would follow from plug-
ging these estimates into the π function from Equation (2) if
the latent achievement distribution was also known. In practice,
both the item parameters and the latent achievement distribu-
tion would be estimated from the observed data, typically by
marginal maximum likelihood (Bock and Aitkin 1981; Baker
and Kim 2004). The MLEs of the achievement attributes would
then be calculated conditional on the estimated item parameters,
and the MLE SGP would be based on the π̂ function determined
from p̂X0,X1 (x0, x1). The MLE SGP h(I0, I1) would be approx-
imately unbiased for large numbers of items and students in
the sense that a student with latent achievement (X0, X1) would
have E[h(I0, I1)|X0, X1] ≈ π (X0, X1), where the expectation
is over the distribution of item responses conditional on latent
achievement. The primary limitations of the MLE SGP are that
it is not defined for students responding to all of the questions
either correctly or incorrectly on one or both of the tests, and it
has small-sample bias related to the number of test items. It may
be possible to remedy both issues by using weighted likelihood
estimation (WLE; Warm 1989; Wang 2014), but further study
would be required to determine whether plugging the WLE es-
timate for each test into π̂ would achieve the bias reduction that
WLE provides for each individual latent attribute, or whether an
alternative WLE approach specifically tailored to the estimation
of the latent SGP would be required.

The fact that the MLE does not always exist can also be
avoided by using empirical Bayes’ estimation of π (X0, X1)
given (I0, I1). Again, in practice, marginal maximum likelihood
would commonly be used to estimate both the item param-
eters and the latent achievement distribution, which directly
provide the empirical Bayes’ posterior of π (X0, X1) given
(I0, I1). The posterior mean or expected a posteriori (EAP)
SGP E[π (X0, X1)|I0, I1] would be an obvious choice for a
point estimator and does not suffer the same existence prob-
lems as the MLE SGP. This estimator would not be unbiased,
but would be calibrated in the sense that students with a given
value of E[π (X0, X1)|I0, I1] would, on average over their corre-
sponding distributions of latent scores, have latent SGP equal to
E[π (X0, X1)|I0, I1]. The main downside of the EAP SGP is that
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it is a shrunken estimate and therefore is underdispersed relative
to the true SGP distribution. Because schools or teachers are not
accounted for during the SGP estimation, the MGP estimators
for schools or teachers created by aggregating the EAP SGP will
be biased toward 50, which might be viewed as undesirable by
some stakeholders. Therefore choosing among MLE, EAP, or
other estimation approaches for individual SGP when item-level
data are modeled directly requires further scrutiny.

One of the main advantages of estimating SGP using the item-
level data is that the different candidate estimators have corre-
sponding measures of uncertainty that can be calculated using
standard methods. The impact of uncertainty in the estimated
latent population distribution and its conditional distributions,
as well as in the item parameters from the MIRT model, would
be most straightforwardly addressed in a fully Bayesian analy-
sis where the latent distribution was parameterized or otherwise
given a prior distribution along with the item parameters (Patz
and Junker 1999). In this case, the posterior distribution of the
SGP would simultaneously account for uncertainty about the
population distribution of latent achievement, item parameters,
and each student’s latent achievement. However, given that SGP
applications typically will use an entire state’s worth of data,
uncertainty in the estimated population distribution and item
parameters may contribute negligibly to the uncertainty in SGP,
making empirical Bayesian approaches potentially satisfactory.

4. CONCLUDING REMARKS

Due to their intuitive appeal and minimal reliance on scale
assumptions, SGP are positioned to grow as part of education
research, practice, and reporting. The ideas presented here may
help to avoid the nuisances to the standard estimation approach
caused by test measurement error and the discreteness of the
observed scores. Both of our suggested alternative approaches
would need substantial development and would need to be care-
fully compared against the standard approach with real data to
fully understand the costs and benefits. Such research is begin-
ning to emerge; as this article was going to press, a report by
Monroe, Cai and Choi (2014) was released that conducts em-
pirical and simulated evaluations of SGP estimators based on
MIRT models.

It is important to note that our suggestions do not address
some of the key limitations of SGP that exist regardless of how
they are estimated. The first is that SGP are intrinsically nor-
mative, and thus do not provide information about achievement
progress in absolute terms. Both the standard SGP approach and
our suggested alternatives place students on a continuum of rela-
tive achievement status conditional on past achievement without
regard to whether the progress of a typical student is adequate,
or otherwise meets expectations of the education system. Thus,
SGP or MGP alone, regardless of how they are estimated, are
insufficient to gauge whether students are learning what they
are expected to learn.4

Another major concern is that SGP are inherently limited by
a lack of reliability. Given the generally high correlations of test

4We note that Betebenner (2009) extended SGP to percentile growth trajectories
to afford criterion-referenced growth-to-standard interpretations, but SGP in
and of themselves do not afford such interpretations, and this extension involves
further assumptions that may be problematic.

scores within students over time and the measurement error in
each test used in the SGP calculation, much of the observed
variation across students in SGP will be due to measurement
error, regardless of how SGP are calculated. Correcting the bias
in SGP due to test measurement error does not fix this problem.
Confidence intervals or other measures of uncertainty in indi-
vidual SGP are likely to cover a large portion of the percentile
rank range for many students, and precision is not likely to be
markedly improved even with statistical approaches tuned to the
SGP estimation problem, such as those discussed here. It is thus
unclear whether SGP, or any other student-level growth statistic
based on typical test scores, is sufficiently reliable to support
consequential decision making for individual students.

The lack of reliability of SGP at the student level is mitigated
when aggregating to higher levels with MGP. However, as noted
by Guarino et al. (2014) and Walsh and Isenberg (2014) among
others, MGP will generally provide biased estimates of educator
performance when teachers of different effectiveness systemat-
ically teach students of different prior achievement levels. This
bias is a consequence of the fact that teachers and schools are
not accounted for during SGP estimation. Neither of the sug-
gestions made here address this issue, although modifications
to those approaches or to the standard approach to address the
issue are possible. For example, indicator variables for individ-
ual schools or teachers could be included in conditional CDF
models, in quantile regression models, or in ordered categori-
cal models. They could also be included in the latent structure
specified inside MIRT models (i.e., latent regression), analo-
gous to the approach used in the National Assessment of Ed-
ucational Progress (Mislevy, Johnson, and Muraki 1992). This
could mitigate the bias problem for MGP but further blurs the
line between MGP and value-added methods, and damages the
conceptual simplicity of SGP methods that provide an inter-
pretable student-level statistic that can be aggregated transpar-
ently to higher levels. It remains an open question whether a
procedure can be developed that satisfies the goals of minimal
reliance on scaling assumptions, transparency, and simplicity of
explanation to nontechnical audiences, and approximately un-
biased estimates of both relative student growth and educator
performance.
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