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Abstract Body 
 

Background / Context:  
 Randomized experiments are commonly used to evaluate the effectiveness of educational 
interventions. The main focus in randomized experiments is often on the average treatment effect 
across all participants in the study, yet when the effectiveness of an intervention varies, a single 
summary effect may be of limited utility. Instead, understanding what works for whom, when, 
and where matters. The questions of this conference – regarding the optimal age for an 
intervention and the effect of the intervention on outcomes at different time points – are 
inherently questions of this type. Questions regarding moderation can be addressed in several 
different ways: 1) through the inclusion of multiple cohorts of students (e.g., K and 3rd graders) 
or through longitudinal designs (e.g., outcomes at 1, 2, and 3 years) within individual 
experiments; 2) through the accumulation of evidence across studies, synthesized using meta-
analysis. This paper focuses on this second approach, which we argue is particularly important 
because individual studies are rarely powered adequately to detect treatment effect interactions.  
 Over the past 30 years, meta-analysis has been widely used in education research. A 
recent innovation in meta-analysis is the introduction of a robust variance estimator (RVE) that 
allows for the inclusion of multiple, correlated effect sizes in a meta-analysis (Hedges, Tipton, 
and Johnson, 2010); to date, this method has been used in over 50 meta-analyses in as diverse 
fields as ecology, education, psychology, and intervention studies. An advantageous feature of 
RVE is that it does not require information on the true correlation structure of the estimates 
within a given study, which are rarely reported in practice.  
 The statistical theory behind the robust variance estimation method is asymptotic; in 
large-enough samples, it has been shown to be an unbiased estimator of the true sampling 
variance. In small samples, however, the estimator can be biased and the Type I error rate of tests 
based upon the RVE method can be much too liberal (Hedges et al, 2010; Tipton, 2013). This 
represents a serious limitation, given that as many as half of recent meta-analyses in education 
contained fewer than 40 studies (Ahn, Ames, & Myers, 2012). To address this shortcoming, 
Tipton (2014) proposed small-sample corrections for hypothesis tests of single meta-regression 
coefficients (i.e., t-tests), which have close to nominal Type-I error even when the number of 
studies is small.  
 
Purpose / Objective / Research Question / Focus of Study: 

The goal of the present investigation is to develop small-sample corrections for multiple 
contrast hypothesis tests (i.e., F-tests) such as the omnibus test of meta-regression fit or a test for 
equality of three or more levels of a categorical moderator. For example, studies might be 
conducted on students of different ages, resulting in a covariate grade-level with three levels: 
“elementary”, “middle”, or “high” school. In order to answer the questions “Does the 
effectiveness of this intervention vary in relation to age?” an F-test would need to be conducted. 
Currently, it is not possible to conduct F-tests of this type in RVE. Lacking valid testing 
methods, researchers are left to either rely on asymptotic approximations, which can be seriously 
in error, or to cobble together ad-hoc methods, such as using RVE with all effect sizes to conduct 
t-tests, but ANOVA with study-aggregated effect sizes to conduct F-tests.  

 
Significance / Novelty of study: 
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Drawing on work that addresses related, simpler problems and special cases of cluster-
robust variance estimation, we develop three small-sample tests based on different 
approximations to the distribution of a robust Wald test statistic. In the remainder, we describe 
our modeling assumptions, proposed tests, and some initial simulation result. These 
approximations are drawn from a wide array of areas within statistics, ranging from 
econometrics to survey sampling. The paper presents both new analytic work describing these 
small-sample corrected test statistics and the results of a large simulation study that compares 
these potential solutions, as well as a discussion of the implications of our findings for practice.  
 
Statistical, Measurement, or Econometric Model:  

We develop the methods under the general meta-regression model 
 i i i= +Xy β ε   

where yi is a vector of ki effect size estimates from study i, Xi is an ki × p matrix of covariates, 
and εi is a vector of (potentially correlated) errors with ( )Var i i=ε Σ . Importantly, the structure 
of Σi is typically unknown, and may involve a combination of several correlation structures.  

Let Wi be a ki × ki weighting matrix based on a “working” covariance model (see Tipton, 
2014 for a discussion of how to choose the working model). The WLS estimator of β is  
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Note that if the working model is correct, as is typically assumed in univariate meta-analysis, 
then 1

i i
−=W Σ  for i = 1,…, m and ( )Var =b M . Following Tipton (2014), we employ an 

unbiased form of the robust variance estimator developed by McCaffrey, Bell, and Botts (2001), 
given by  
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where i i i= −ye X b. The ki × ki matrices Ai are chosen such that if the weights are truly inverse-

variance (i.e. 1
i i

−=W Σ ), then the variance estimator is exactly unbiased: ( )E R =V M . Note that 
Tipton (2014) derives the appropriate Ai for the two commonly used models in RVE – 
hierarchical and correlated effects.  
 In this paper, we are interested in testing the null hypothesis H0: =Cβ 0 for the q × p 
contrast matrix C. For example, an omnibus test might be written H0: β1 = β2 = … = βp-1 = 0, or a 
test of a categorical variable with three levels might be written H0: β1 = β2 = 0.  A Wald-type test 
statistic for the multi-parameter hypothesis H0 is given by  

( ) 1T T R TQ
−

= b CVC C Cb  = zTD-1z,  

where ( ) 1/2T −
=z CMC Cb  and ( ) ( )1/2 1/2T R T T− −

=D CMC CV C CMC . As m increases, the 
distribution of Q approaches that of a chi-squared random variate with q degrees of freedom 
(Wooldridge, 2002). However, the asymptotic distribution may provide a very poor 
approximation when m is small, leading to actual type I error rates far in excess of the nominal 
level. Furthermore, it is often unclear when one has a sufficient sample of studies to trust the 
asymptotic test; as Tipton (2014) shows with t-tests, the degrees of freedom for the associated 
tests depend not only on the number of studies (m), but also on features of the covariates.  
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Methods 

In this paper, we consider three adjusted tests for H0 that have improved type I error rates. 
All three tests are based on quantities derived from the variances and covariances of the entries 
in the matrix D under a working covariance structure. Let dst denote the (s,t)th entry in D. Under 
the working covariance model and assuming that the errors are normally distributed, we can 
obtain expressions for ( )Var std   and ( )Cov ,st uvd d  based on the fact that dst is a quadratic form. 
(We omit the expressions here due to space constraints.)  

Approximate Satterthwaite correction. The first test employs a Satterthwaite-type 
correction, wherein we find a multiplier δ and degrees of freedom η such that the first two 
moments of δQ approximately match those of an F(q, η) distribution. We can show that  
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T2 approximation. An alternative test can be derived by approximating the distribution 
of D with a Wishart distribution. This approach has been considered previously for special cases 
of cluster-robust variance estimation, including one-way heteroskedastic ANOVA (Zhang, 2013) 
and the multivariate Behrens-Fisher problem (Krishnamoorthy & Yu, 2004), but never in the 
general case. Following Zhang (2013), we derive the approximation by matching the expectation 
and total variance of D to those of a Wishart distribution with ν degrees of freedom. 
Approximating the distribution of D by a Wishart implies that Q approximately follows 
Hotelling’s T2 distribution when H0 is true. From the properties of the T2 distribution, it then 
follows that 

 
ν − q +1

νq
Q !~ F q,ν − q +1( ) ,   

which can be used to test H0. For a one-dimensional contrast (q = 1), the approximation is 
exactly equivalent to the Satterthwaite approximation studied by Tipton (2014). 

 
Spectral decomposition and transformation (SDT). Whereas the previous two tests 

sought approximations to the distribution of Q, the final test involves altering its internal 
structure, using an approach very similar to one developed by Alexander and Govern (1994) for 
heteroskedastic one-way ANOVA and by Cai and Hayes (2008) for heteroskedasticity-robust 
variance estimation (both of which are simpler cases than the cluster-robust variance estimation 
methods considered here). The SDT test entails first expressing Q as a sum of q squared t-
variates, then applying a normalizing transformation to each variate, yielding a test statistic that 
is closer to chi-square distributed.   
 
Research Design: Simulation Study 
 In order to evaluate these potential small-sample corrections, as well as to determine 
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when the methods are needed (i.e., the line between “small” and “large”), we conducted a 
simulation study. The simulation follows a structure similar to the second study reported in 
Tipton (2014). This design included a single meta-regression model with 5 covariates – of these, 
two are constant at the study level (a common feature in meta-analyses) and 3 vary at the effect 
size level; additionally, one of the covariates has high leverage and another has large imbalances 
(two conditions that Tipton found have large effects on performance). We simulated correlated 
standardized mean difference effect sizes, as might be found in randomized experiments that 
report treatment effects on multiple outcome measures. We used a diagonal weight matrix for the 
working covariance model; conditions with non-zero correlation between outcomes or non-zero 
between-study variability therefore represent varying degrees of model misspecification. We 
considered hypothesis tests for each of the 26 possible subsets of two or more covariates, 
including the omnibus test of model fit H0: β1 = β2 = β3 = β4 = β5 = 0. Table 1 summarizes the 
design of the simulation. For each combination of factor levels, we simulated 5,000 meta-
analyses.  
 
Findings / Results: Results of Simulation Study 
 Due to space constraints, we describe the results only for the nominal α = .05 level. 
Furthermore, here we focus on the results in relation to the number of studies in the meta-
analysis (m); in the paper, we also investigate the role of the degrees of freedom. Figure 1 
summarizes the range of Type-I error rates for the conventional Wald test across the various 
combinations of simulation factors; each panel displays the results for the hypothesis tests of the 
same dimension (q). The error rates of the Wald test far exceed the nominal level, particularly for 
higher q. Even at the largest sample size considered, the Wald test has unacceptably inaccurate 
error rates. Figure 2 plots the range of Type-I error rates for each of the tests described above. 
All three corrected tests are more accurate than the Wald test. The T2 test is generally 
conservative, with error rates that seldom exceed the nominal level. The error rates of the 
Satterthwaite test sometimes exceed .05, but are mostly quite accurate when m is 30 or larger. 
The error rates of the SDT test tend to exceed .05 and are more variable than those of the 
Satterthwaite test. In the paper, we further elucidate the conditions under which the Satterthwaite 
and T2 tests are most appropriate, including a discussion of power.  
 
Usefulness / Applicability of Method:  
In order to illustrate the usefulness of the method, we include an example based on a meta-
analysis by Tanner-Smith and Lipsey (2013). This meta-analysis combined results of 
randomized-experiments evaluating the effectiveness of brief alcohol interventions on subjects of 
different ages (i.e., adolescents and young adults) and over multiple time points and waves.   
 
Conclusions: 
The results of the simulation study indicate that the asymptotic chi-squared test does not perform 
well unless the number of studies (m) is very large relative to the dimension of the test (q). In this 
paper, we investigated several small sample corrections and found two that performed best, in 
terms of both Type I and II error. Finally, while this paper focuses on the RVE context, we 
expect that these same techniques will have use in other contexts, including analysis of cluster-
randomized trials (using hierarchical linear models) and econometric analysis of panel data.  
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Appendices 
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Appendix B. Tables and Figures 
 
 
Table 1. Simulation study design 
Factor Levels 
Independent studies (m) 10, 15, 20, 30, 40 – 200 (in units of 20) 
Effect sizes per study (k1,…,km) constant at 10 or varied, ranging from 1 to 10 
Sample size per study constant at 30 or varied, ranging from 32 to 

130 
Correlation between the outcome measures .0, .5, .8 
Between-study variability in true effect sizes 
as a proportion of total variation (I2) 

.00, .33, .50 
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Figure 1. Type-I error rates of conventional Wald test by sample size (m) and test 
dimension (q)  
for nominal α = .05 
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Figure 2. Type-I error rates of Wald, T2, Satterthwaite, and SDT tests by sample size (m)  
for nominal α = .05 
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