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Abstract Body 
Limit 4 pages single-spaced. 

 
Background / Context:  
 

There is an increasing number of datasets with many participants, variables, or both, in 
education and other fields that often deal with large, multilevel data structures. Keeping with the 
topic of the spring 2015 SREE conference, the term “multilevel” in this context can refer to 
either cross-sectional data structures, such as children nested within classrooms, or longitudinal 
data structures, such as repeated-measures nested within participants. Once initial confirmatory 
hypotheses are exhausted, it can be difficult to determine how best to explore the dataset to 
discover hidden relationships that could help to inform future research. Naturally, this practice is 
often done “by hand.” That is, the researcher in question will run multiple tests with different 
combinations of predictors to help identify important variables related to the outcome.  

From an implementation perspective, this approach can be quite difficult and time-
consuming as every analysis will require different analytic considerations, such as potential 
variable transformations, methods of handling missing data, different software packages to use, 
etc. Additionally, even though each analysis might be grounded in scientific theory, this 
approach is still rife with statistical issues, such as blurring the lines between exploratory and 
confirmatory research (Wagenmakers, Wetzels, Borsboom, van der Maas, & Kievit, 2012) and 
capitalizing on chance discoveries resulting in an increased number false positive results 
(Nelson, Simmons, & Simonsohn, 2011), among others. 

What is needed, then, is a method that can: 1) efficiently search a large parameter space 
of potential predictor variables while controlling for the potential for detecting false positives; 2) 
output a variable importance metric to identify potential variables related to the outcome that 
might have been overlooked in previous research; 3) adequately describe potential non-linear 
relationships or higher-order interactions that might not have been considered without explicit 
specification by the user; and 4) handle missing data in a straightforward way. These four 
desirable characteristics can all be accomplished with a non-parametric data mining approach 
called Random Forests.  

 
Purpose / Objective / Research Question / Focus of Study: 

 
While recent research has begun to investigate Random Forests in a multilevel context 

(e.g., Hajjem, Bellavance, & Laroque, 2011; Sela & Simonoff, 2012) this research tends to focus 
solely on predictive accuracy and fails to provide solutions to common problems that would arise 
if this method were to be applied to an educational domain. As such, the purpose of this study is 
to examine the feasibility of applying Random Forests to efficiently explore large, multilevel 
datasets commonly found in educational research.  
 
Significance / Novelty of study: 
 

The majority of research examining recursive partitioning methods in the presence of 
multilevel data has been performed in the last few years in Data Mining community focusing on 
predictive accuracy. For example, both Sela & Simonoff (2012) and Hajjem, Bellavance, & 
Laroque (2011) independently proposed the same method to incorporate a given random effects 
structure in a recursive algorithm, called RE-EM trees and mixed-effects regression trees, 
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respectively. Both approaches operate on the same algorithm, namely one that uses a variant of 
the EM algorithm to estimate a set of random effects to encompass an entire tree. Because of the 
ability to add random effects after filtering through the tree structure, both methods show 
increased predictive accuracy compared to either a traditional multilevel model or a decision tree 
without random effects.  

However, while these recently developed methods are certainly improvements, they do 
have issues. For example, the algorithm these methods are based on is biased toward categorical 
variables with many levels and continuous variables with wide ranges (Hothorn, Hornik, & 
Zeileis, 2006). Because of this, variable importance measures are biased towards these variables 
(Strobl, Boulesteix, Zeileis, & Hothorn, 2007), leading to erroneous discoveries. Additionally, 
these methods have no method of calculating variable importance when missing data are present 
(Hapfelmeier, Hothorn, Ulm, & Strobl, 2014), which commonly occurs in educational research. 
This study looks to examine the performance of Random Forests and potential corrections to 
these problems that were recently proposed (Hapfelmeier et al, 2014), focusing specifically on 
multilevel contexts.  
 
Statistical, Measurement, or Econometric Model:  
 

A Random Forest is a popular, non-parametric data mining method that creates 
ensembles of simple decision trees (see Breiman, 2001 and Strobl, Malley, & Tutz, 2009, for a 
review). A decision tree is a method that recursively partitions the predictor space to create 
homogenous sub-groups based on a given outcome, which can be either categorical (resulting in 
a classification tree) or continuous (resulting in a regression tree). Splitting rules depend entirely 
on the specific algorithm chosen. The following steps outlines the general algorithm: 

 
1) Search all variables for potential splits 
2) Identify the best split by some criterion 
3) Split the sample on this threshold, resulting in two child nodes 
4) Repeat step 1-3 on the resulting sub-groups (nodes) until reaching a stopping criterion 
 
To help illustrate a simple decision tree in practice, I will be using an educational dataset 

(N = 160) with math achievement as the outcome that is publicly available using the nlme 
package in R. To keep this example simple and avoid the multilevel structure of the data, the 
data was aggregated to the school level. This resulted in eight variables: percentage of students 
who are in a minority group (isMinority), percentage of students who are male (isMale), school 
size (Size), whether the school was a Catholic school (isCatholic), percentage of students on an 
“academic track” (PRACAD), a measure of discrimination climate (DISCLIM), and the average 
socio-economic status of the school (MEANSES). Note that while it is important to run the same 
tree on a separate test set or employ some kind of cross-validation technique to avoid overfitting, 
a discussion of these methodological issues is beyond the scope of this introduction.  

See Figure 1 for the decision tree. The first split occurs on mean socio-economic status, 
with schools with values lower than -0.284 filter to the left child node, while schools with values 
higher than -0.284 filter to the right child node. This binary decision process then continues 
through each inner node, until the final split is reached, resulting in a terminal node. As evident 
in the graph, school socio-economic status, as well as percentage of students on an “academic 
track,” seem to be related the most with overall school math achievement.  
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A Random Forest, then, is just a logical extension of a simple decision tree. The general 
algorithm follows the following steps: 
 

1) Draw a bootstrap sample (i.e., sample with replacement) from the original dataset 
2) Draw a sample of m (typically the square root of the total number of variables) from the 

original dataset 
3) Create a decision tree 
4) Repeat steps 1-3 to create a specified number of trees (typically around 500) 

 
New observations are then filtered through each individual tree, and the resulting 

predictions are aggregated together to create on overall prediction. Because this method creates 
many trees by taking a bootstrap sample of observations and a sample of variables, Random 
Forests are less likely to make mistakes commonly found in decision trees, such as being 
susceptible to minor shifts in the data, or having only a few important variables mask the effects 
of others. However, while Random Forests are better predictors than simple decision trees, they 
inevitably become less interpretable due to the large number of single trees that are aggregated 
together. Thus, this poster will highlight two main techniques to help with the interpretation of 
Random Forests: variable importance and partial dependence plots.  

Variable importance refers to a value assigned to each variable that determines how 
important that variable is to predicting the outcome. Creating such a measure involves a simple, 
three-step process. First, the predictive accuracy of a dataset is calculated using the aggregation 
mentioned above. Then, the same dataset is permuted with respect to a given variable in order to 
break that variable’s link with the outcome, and the predictive accuracy of the overall forest is 
measured again. Finally, variables are assigned a value that corresponds to the difference in the 
original predictive accuracy and the permuted predictive accuracy. If the difference is large, then 
this indicates that the particular variable plays an important role in predicting the outcome. 
Otherwise, if the predictive accuracy does not change very much, this variable is concluded to 
have no relationship with the outcome. See Figure 2 for the variable importance plot for the math 
achievement example. This plot seems to confirm what was found in the simple decision tree: 
socio-economic status and percentage of students on an “academic track” seem to be the most 
important for predicting math achievement.  
 Partial dependence plots are graphical visualizations of the marginal effect of a given 
variable (or multiple variables) on an outcome. While partial dependence plots are useful for 
help examine main effects and potential interactions, they are restricted to only two or three 
variables due to the limits of human perception. See Figure 3 for an example of such a plot, 
which only includes the top five predictors discovered from the Random Forest. As evidenced in 
the plot, all five predictors seem to follow a linear pattern. 
 
Usefulness / Applicability of Method:  
 

This method has the potential to increase the ability for researchers to perform efficient 
exploratory data analysis without the common pitfalls and methodological challenges that were 
mentioned earlier. It is important to note that because this method is non-parametric, there is no 
need to explicitly model random effects to account for nesting (as there are no standard errors). 
However, the algorithm does need to be slightly altered in its splitting and re-sampling procedure 
to ensure error estimates are accurate. The poster to be presented at SREE will both provide the 
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necessary correction for this technique to be applied to multilevel contexts and will apply the 
technique to a simulated dataset. This application will be also annotated with sample code and 
include a referral to a walkthrough existing on the first author’s website with the goal of giving 
applied researchers the necessary information needed to use this tool effectively in their own 
multilevel research.  
 
Conclusions:  
 

While more in-depth simulation work is currently underway to investigate the use of 
Random Forest at varying levels of non-independence, it seems that this method is both a 
feasible and relatively easy-to-understand statistical tool for applied researchers to effectively 
explore their data to help uncover potential hidden relationships and identify variables that might 
have been overlooked in the confirmatory hypothesis testing phase.  Additionally, consistent 
with the theme of the spring 2015 SREE conference, these methods are not simply limited to 
cross-sectional multilevel data structures, but can also be applied to longitudinal (i.e., repeated-
measures nested within individuals) to identify potential non-linear trajectories in individual 
growth trajectories as well as detect potential interactions between growth patterns and additional 
covariates. 
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Appendices 
Not included in page count. 
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Appendix B. Tables and Figures 
Not included in page count. 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
Figure 1. A simple decision tree of the math achievement dataset aggregated to the school level. 
Box plots reflect the distribution of each terminal node.  
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Figure 2. A Variable Importance plot for a Random Forest using the math achievement 
dataset. Larger values correspond to higher variable importance.  
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Figure 3. A partial dependence plot for the top five predictors discovered in the Random 
Forest for the math achievement data. 


