
Personalized Education; Solving a Group Formation and
Scheduling Problem for Educational Content

Sanaz Bahargam, Dóra Erdős, Azer Bestavros, Evimaria Terzi
Computer Science Department, Boston University, Boston MA

[bahargam, edori, best, evimaria]@cs.bu.edu

ABSTRACT
Wether teaching in a classroom or a Massive Online Open
Course it is crucial to present the material in a way that
benefits the audience as a whole. We identify two important
tasks to solve towards this objective; (1.) group students so
that they can maximally benefit from peer interaction and
(2.) find an optimal schedule of the educational material
for each group. Thus, in this paper we solve the problem of
team formation and content scheduling for education. Given
a time frame d, a set of students S with their required need
to learn different activities T and given k as the number of
desired groups, we study the problem of finding k group of
students. The goal is to teach students within time frame d
such that their potential for learning is maximized and find
the best schedule for each group. We show this problem to
be NP-hard and develop a polynomial algorithm for it. We
show our algorithm to be effective both on synthetic as well
as a real data set. For our experiments we use real data
on students’ grades in a Computer Science department. As
part of our contribution we release a semi-synthetic dataset
that mimics the properties of the real data.

Keywords
Team Formation; Clustering; Partitioning; Teams; MOOC

1. INTRODUCTION
Many work has been dedicated on how to improve students’
learning outcome. We recognize two substantial conclusions;
first, the use of personalized education. By shaping the con-
tent and delivery of the lessons to the individual ability and
need of each student we can enhance their performance([6,
11, 12]. Second, grouping students; working in teams with
their peers helps students to access the material from a dif-
ferent viewpoint as well [7, 4, 13, 1]. In this paper we study
the problem of creating personalized educational material
for teams of students by taking a computational perspec-
tive. To the best of our knowledge we are the first to for-
mally define and study the two problems of team formation

and personalized scheduling for teams in the context of ed-
ucation. We present a formal definition for these problems,
study their computational complexity and design algorithms
for solving them. In addition, we also apply our algorithms
to a real dataset obtained from real students. We make
our semi-synthetic dataset BUCSSynth, generated to faith-
fully mimic the real student data available on our website.

Related Work: Besides the work on improving students
learning outcome, related problems have also been studied in
computer science. Topics of interest are team formation [2,
3, 9, 10] and scheduling theory, see [5] for an overview.

2. PRELIMINARIES
We model a student’s learning process by a sequence of top-
ics that she learns about. In this sequence topics may ap-
pear multiple times, and repetitions of a topic may count
with different weights towards the overall benefit of the stu-
dent. Let S = {s1, s2, . . . , sn} be a set of students and
T = {t1, t2, . . . , tm} be a set of topics. We assign topics
to d timeslots,a schedule A is a collision free assignment of
topics to the timeslots. A can be thought of as an ordered
list of (possible multiple occurrences) of the topics. For a
topic t ∈ T the tuple 〈t, i〉 denotes the ith occurrence of t
in a schedule. The notation A[r] = 〈t, i〉 refers to the tuple
〈t, i〉 that is assigned to timeslot r in A.

For student s ∈ S and topic t ∈ T the requirement req(s, t)
is an integer depicting the number of times s needs to learn
about t to master its content. We assume that for the first
req(s, t) repetitions of t there is some benefit to s from every
repetition of t, but for any further repetition there is no
additional benefit to s. We call b(s, 〈t, i〉) (Equation (1))
the benefit of s from hearing about t for the ith time.

b(s, 〈t, i〉) =

{
1

req(s.t)
if i ≤ req(s, t)

0 otherwise
(1)

Note that for ease of exposition, we assume that all repeti-
tions of t before req(s, t) carry equal benefit to s. However,
the definition and all of our later algorithms could easily be
extended to use some other function b′(s, 〈t, i〉).

Given the benefits b(s, 〈t, i〉) there is a natural extension
to define the benefit B(s,A) that s gains from schedule A.
This benefit is simply a summation over all timeslots in A,

B(s,A) =

d∑
r=1

b(s,A[r]) (2)

Proceedings of the 8th International Conference on Educational Data Mining 488

3. THE GROUP SCHEDULE PROBLEM
Given a group of students P ⊆ S our first task is to find
an optimal schedule for P . That is, find a schedule to max-
imize the group benefit B(P,A) that group P has from A
(Equation (3)).

B(P,A) =
∑
s∈P

d∑
r=1

b(s,A[r]) (3)

We call this the group schedule problem (problem 1).

Problem 1 (group schedule). Let P ⊆ S be a group
of students and T be a set of topics. For every s ∈ S and
t ∈ T let req(s, t) be the requirement of s on t given for every
student-topic pair. Find a schedule AP , such that B(P,AP)
is maximized for a deadline d.

The Schedule algorithm. We first give a simple poly-
nomial time algorithm, Schedule(P, d) (Algorithm 1), to
solve problem 1. Schedule is a greedy algorithm that as-
signs to every timeslot an instance of the topic with the
largest marginal benefit. We say that the marginal benefit,
m(P, 〈t, i〉), from the ith repetition of t (thus 〈t, i〉) to P is
the increase in the group benefit if 〈t, i〉 is added to A. The
marginal benefit can be computed as the sum of benefits
over all students in P as given in Equation (4).

m(P, 〈t, i〉) =
∑
s∈P

b(s, 〈t, i〉) (4)

The Schedule algorithm is an iterative algorithm with d iter-
ations that in every iteration appends a topic to the schedule
AP . We maintain an array B in which values are marginal
benefit of topics t, and an array R that contains a counter
for every topic in AP . In every iteration Schedule selects
the topic ut with the largest marginal benefit from B and
adds it to AP (Lines 5 and 6) . Then it updates marginal
benefit of ut, B[ut] (Lines 7- 8). It is easy to see that Algo-
rithm 1 yields an optimal schedule for a group P and runs
in O(d(|P |+ log|T|)).

Algorithm 1 Schedule algorithm for computing an opti-
mal schedule AP for a group P .

Input: requirements req(s, t) for every s ∈ P and every
topic t ∈ T, deadline d.
Output: schedule AP .

1: AP ← []
2: B ← [m(P, 〈t, 1〉)] for t ∈ T
3: R← [0] for all t ∈ T
4: while |AP | < d do
5: Find topic ut with maximum marginal benefit in B
6: AP ← 〈ut, R[ut]〉
7: R[ut] + +
8: Update B[ut] to m(P, 〈t, R[ut]〉)
9: end while

4. THE COHORT SELECTION PROBLEM
The next natural question is, that given a certain teaching
capacity K (i.e., there are K teachers or K classrooms avail-
able), how to divide students into K groups so that each stu-
dent benefits the most possible from this arrangement. At a

high level we solve an instance of a partition problem; find a
K-part partition P = P1 ∪∗ P2 ∪∗ . . .∪∗ PK of students into
groups, so that the sum of the group benefits over all groups
is maximized. This is the Cohort Selection Problem .

Problem 2 (Cohort Selection). Let S be a set of
students and T be a set of topics. For every s ∈ S and t ∈ T
let req(s, t) be the requirement of s on t that is given. Find
a partition P of students into K groups, such that

B(P, d) =
∑
P∈P

B(P,AP) (5)

is maximized, where AP = Schedule(P, d) for every group.

The Cohort Selection (Problem 2) is NP-hard as the
Catalog Segmentation problem [8] can be reduced to it.

4.1 Partition algorithms.
In this section we introduce CohPart (Algorithm 3) as our
solution to the Cohort Selection problem. The input
to Algorithm 3 are the requirements req(s, t), number of
groups K and length of the schedule d. The output is a
partition P = {P1,P2, . . . ,PK} of the students and corre-
sponding schedules {A1,A2, . . .AK} for each group.

CohPart first assigns every student to one of the groups in P
at random (Line 3) and an initial optimal schedule for every
group is computed (Line 5). Then in every iteration of the
algorithm first every student is assigned to the group with
the highest benefit schedule for the student (Line 9) and
then the group schedules are recomputed (Line 12). The
runtime of each iteration is O(k|S||T|). In our experiments
we observed that our algorithm converges really fast, less
than a few tens of iterations.

Algorithm 2 Benefit algorithm to compute the benefit
for student s from schedule A

Input: requirements req(s, t) for a student s ∈ P and
every topic t ∈ T and a single schedule A
Output: Benefit(s,A) Benefit of s from schedule A.

1: Benefit(s,A) = 0
2: for all topics t ∈ T do

3: Benefit(s,A) = Benefit(s,A) + min(req(s,t),A[t])
A[t]

4: end for

5. EXPERIMENTS
The goal of these experiments is to gain an understanding
of how our clustering algorithm works in terms of perfor-
mance (objective function) and runtime. Furthermore, we
want to understand how the deadline parameter impacts
our algorithm. We used a real world dataset, semi synthetic
and synthetic datasets. The semi synthetic dataset and the
source code to generate it are available in our website. 1 We
first explain different datasets and then show how well our
algorithm is doing on each dataset.

5.1 Algorithms
We compare CohPart to two baseline algorithms.

1http://cs-people.bu.edu/bahargam/edm/

Proceedings of the 8th International Conference on Educational Data Mining 489

Algorithm 3 CohPart for computing the partition P based
on the benefit of students from schedules.

Input: requirement req(s, t) for every s ∈ S and t ∈ T,
number of timeslots d, number of groups K.
Output: partition P.

1: A = {A1,A2, . . . ,AK}
2: P = {P1, P2, . . . , PK}
3: i ∈R [1, 2, . . . ,K], Pi ← s for every s ∈ S
4: for i = 1, . . . ,K do
5: Ai = Schedule(Pi, d)
6: end for
7: while convergence is achieved do
8: for all students s ∈ S do
9: Pi ← s, i = argmaxj=1,...,k Benefit(s,Aj)

10: end for
11: for i = 1, . . . ,K do
12: Ai = Schedule(Pi, d)
13: end for
14: end while

RandPart: Partition S at random.

K_means: We represent each student s by the |T |-dimensional
vector

(
req(s, t1), req(s, t2), . . . , req(s, t|T |)

)
containing its

requirements for each topic. We assign students to groups
based on the K_means clustering performed on the space of
the requirement vectors using Eucledian distance.

CohPart_S: We also investigate a speedup version of Coh-

Part. We pick a subset of n′ << n students S′ ⊂ S at ran-
dom. We compute the optimal group schedulesA′1,A′2, . . .A′K
for S′ using CohPart and then assign each student s ∈ S to
the group that maximizes Benefit(s,A′i).

5.2 Datasets
BUCS data. This dataset consists of grades of real stu-
dents who majored in CS at Boston University. The data
consists of 398 students and 41 courses. Here the courses
correspond to topics and letter grades were converted to
the requirement of students. That is, grades A – F were
converted to req(s, t) such that A = 5 and F = 50. We
assumed the number of requirement to master a course for
the smartest student is 5 (base parameter). As the abil-
ity drops, number of requirement goes up (step parameter).
To compute missing requiements, i.e., fill values for missing
(student, course) pairs, we used Graded Response Model
(GRM). First, using GRM we obtain the ability and diffi-
culty parameters for all students and all courses. Then for
each pair of (student, course) in which student s did not
take course c, we used the ability of s and difficulty of c to
predict the grade of course c for that student.

BUCSSynth data. In order to see how well our algo-
rithm scales to larger datasets, we generated a synthetic
data, based on the obtained parameters from GRM. We call
this dataset BUCSSynth. From BUCS dataset, we observed
that the ability of students follows a normal distribution
with µ = 1.13 and σ = 1.41. Applying GRM to BUCS, we
obtained difficulty parameters for 41 courses. In order to
obtain difficulties for 100 courses, we used the following:
1. Choose one of the 41 courses at random.
2. Use density estimation, smoothing and then get the

CDF of the difficulties.
3. Randomly sample from the CDF to get the difficulties

for a new course.
Using these parameters, we generated grades for 2000 stu-
dents and 100 courses and we transformed grades to number
of requirements similar to what we did for BUCS dataset.

Synthetic data. In ground truth dataset we had gener-
ated 10 groups of students, each group containing 40 stu-
dents. For each group we selected 5 courses and assigned
requirement randomly to those 5 courses such that the sum
of requirement will be equal to the deadline. Then for the
remaining 35 courses, we filled number of requirements with
random numbers taken from a normal distribution with µ =
deadline

5
and σ = 3. We refer to this dataset as GroundTruth.

We have also generated the requirements for 400 students
and 40 courses using Pareto (α = 2), Normal (µ = 30 and
σ = 5) and Uniform (in the range of [5,100]) distributions.
We refer to this datastes as pareto, normal and uniform.

5.3 Results
All algorithms are implemented in Python 2.7 and all the ex-
periments are run single threaded on a Macbook Air (OS-X
10.9.4, 4GB RAM). We compare our algorithm with Rand-

Partand the K_meansalgorithm, the built in k-means func-
tion in Scipy library. Each experiment was repeated 5 times
and the average results are reported in this section. For
sample size in CohPart_S algorithm, we set parameter c (ex-
plained earlier) to 4 in all experiments.

5.3.1 Results on Real World Datasets
BUCS. The result on the BUSC data is depicted in Fig-
ure 1e where each point shows the benefit of all students
when partitioning them into K groups. As we see the Rand-

Part has the lowest benefit and our algorithm has the best
benefit. As the number of clusters increases (having hence
fewer students in each cluster), the benefit also increases,
means the schedule for those students is more personalized
and closer to their individual schedule. In Figure 1f we show
that the greater the deadline is, the closer K_means gets to
our algorithm. But in real life, we do not have enough time
to repeat (or teach) all of the courses (for e.g. for prepa-
ration before SAT exam). Figure 1f illustrates the case
when deadline is equal to the average sum of need vectors
for different students.

BUCSBase. We tried different values for base and step
parameters (explained earlier) and the result is depicted in
Figure 1g when the base and step are equal to 1. The
larger is the value of base and step parameter, the better
our algorithm performs.

BUCSSynth dataset. We ran our algorithms on on BUC-
SSynth dataset to see how well our algorithm scales for large
number of students. The result is depicted in Figure 1h.

5.3.2 Results on Synthetic Datasets
The result on synthetic data is illustrated in Figure 1a. As
we see CohPart and CohPart_S both are performing well. For
all of the courses the mean requirement is close to 10 with
standard deviation 3. We expect that students in the same

Proceedings of the 8th International Conference on Educational Data Mining 490

(a) Ground Truth (b) Random (c) pareto (d) normal

(e) BUCS (f) BUCSdeadline (g) BUCSBase (h) BUCSSynth

Figure 1: Total benefit achieved by different algorithms as a function of the number of groups of students.

group (when generating the data) should be placed in the
same cluster after running our algorithm and the schedule
should include the selected courses in each group. Students
have different requirement values for the selected courses in
each group, but the sum of these selected courses is equal to
the deadline and our algorithm realized this structure and
only considered these selected courses to obtain the schedule.
But K_means lacked this ability to find the hidden structure.
The next studied datasets were uniform, pareto and nor-

mal datasets and the results are depicted in Figure 1b, 1c
and 1d respectively. For these datasets also our algorithm
outperformed K_means and RandPart .

6. CONCLUSION
In this paper, we highlighted the importance of team for-
mation and scheduling educational materials for students.
We suggested a novel clustering algorithm to form different
teams and teach the team members based on their abilities.
The results we obtained shows that our proposed solution is
effective and suggest that we have to consider personalized
teaching for students and form more efficient teams.

7. ACKNOWLEDGMENTS
This work was partially supported by NSF Grants: #1430145,
#1414119, #1347522, #1239021, #1012798, #1218437,
#1253393, #1320542, #1421759.

8. REFERENCES
[1] Data mining for providing a personalized learning

path in creativity: An application of decision trees.
Computers & Education, 68(0):199 – 210, 2013.

[2] R. Agrawal, B. Golshan, and E. Terzi. Grouping
students in educational settings. In ACM SIGKDD,
pages 1017–1026, 2014.

[3] A. Anagnostopoulos, L. Becchetti, C. Castillo,
A. Gionis, and S. Leonardi. Power in unity: Forming

teams in large-scale community systems. In ACM
International Conference on Information and
Knowledge Management, pages 599–608, 2010.

[4] A. Ashman and R. Gillies. Cooperative Learning: The
Social and Intellectual Outcomes of Learning in
Groups. Taylor & Francis, 2003.

[5] P. Brucker. Scheduling Algorithms. Springer-Verlag
New York, Inc., 3rd edition, 2001.

[6] R. F. Bruner. Repetition is the first principle of all
learning. Social Science Research Network, 2001.

[7] D. Esposito. Homogeneous and heterogeneous ability
grouping: Principal findings and implications for
evaluating and designing more effective educational
environments. Review of Educational Research,
43(2):163–179, 1973.

[8] J. Kleinberg, C. Papadimitriou, and P. Raghavan.
Segmentation problems. J. ACM, pages 263–280, 2004.

[9] T. Lappas, K. Liu, and E. Terzi. Finding a team of
experts in social networks. In ACM SIGKDD, pages
467–476, 2009.

[10] A. Majumder, S. Datta, and K. Naidu. Capacitated
team formation problem on social networks. In ACM
SIGKDD, pages 1005–1013, 2012.

[11] T. P. Novikoff, J. M. Kleinberg, and S. H. Strogatz.
Education of a model student. Proceedings of the
National Academy of Sciences, 109(6):1868–1873,
2012.

[12] A. Segal, Z. Katzir, K. Gal, G. Shani, and B. Shapira.
Edurank: A collaborative filtering approach to
personalization in e-learning. 2014.

[13] R. E. Slavin. Ability Grouping and Student
Achievement in Elementary Schools: A Best-Evidence
Synthesis. Review of Educational Research,
57(3):293–336, 1987.

Proceedings of the 8th International Conference on Educational Data Mining 491

