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ABSTRACT
A growing body of research suggests that accounting for student-
specific variability in educational data can improve modeling 
accuracy and may have implications for individualizing 
instruction. The Additive Factors Model (AFM), a logistic 
regression model used to fit educational data and discover/refine 
skill models of learning, contains a parameter that individualizes 
for overall student ability but not for student learning rate. Here, 
we show that adding a per-student learning rate parameter to AFM 
overall does not improve predictive accuracy. In contrast, 
classifying students into three “learning rate” groups using 
residual error patterns, and adding a per-group learning rate 
parameter to AFM, substantially and consistently improves 
predictive accuracy across 8 datasets spanning the domains of 
Geometry, Algebra, English grammar, and Statistics. In a subset 
of datasets for which there are pre- and post-test data, we observe 
a systematic relationship between learning rate group and pre-to-
post-test gains. This suggests there is both predictive power and 
external validity in modeling these distinct learning rate groups. 

Keywords
Student learning rate, learning curves, Additive Factors Model 

1. INTRODUCTION
A growing body of research suggests that accounting for student-
specific variability in statistical models of educational data can 
yield prediction improvements and may potentially inform 
instruction. The majority of work investigating the effects of 
student-specific parameters [6, 10, 11, 15] has been done in the 
context of a class of models called Bayesian Knowledge Tracing 
(BKT), a special case of using Hidden Markov Models to model 
student knowledge as a latent variable. 

Logistic regression is another popular method for modeling 
educational data. The Additive Factors Model (AFM) [4] is one 
instantiation of logistic regression that was developed with the 
primary intention of evaluating, discovering, and refining 
knowledge component (KC) models (also referred to as Q-
matrices). In contrast to statistical models of educational data, KC 
models define the knowledge components  (e.g., skills, concepts, 
facts) on which estimates of students’ knowledge are based. AFM 
has parameters modeling KC difficulty, KC learning rate, and 
individual student ability, but it does not have a parameter for 
individual student learning rate. 

Recent work extending BKT models [15] suggests that better 
predictive accuracy is achieved by adding parameters that 
accommodate different learning rates for different students. Here, 
we investigate two different extensions of AFM that model 
student learning rate variability. The first model (AFM+StudRate) 
adds a per-student learning rate parameter to AFM, dramatically 
increasing the number of parameters in the model. We find some 
evidence that this model overfits the training data. For the second 

model (AFM+GroupRate), we introduce a method of classifying 
students into learning rate groups. We then add a per-group, rather 
than per-student, learning rate parameter to AFM and show that 
this model significantly outperforms regular AFM in predictive 
accuracy across 8 datasets spanning various domains. 

Importantly, we move beyond simply evaluating the models in 
terms of their predictive accuracy to assess the external validity of 
the additional parameters. We show that they relate significantly 
to post-test outcomes. Validation and interpretation of statistical 
model parameter fits are a critical step towards successfully 
bridging EDM, the science of learning, and instruction. 

1.1 The Additive Factors Model 
AFM is a logistic regression model that extends item response 
theory by incorporating a growth or learning term. This statistical 
model (Equation 1) gives the probability 𝑝!" that a student i will 
get a problem step j correct based on the student’s baseline ability 
(𝜃!), the baseline difficulty (𝛽!) of the required knowledge 
components or KCs on that problem step (𝑄!"), and the 
improvement (𝛾!) in each of the required KCs with each 
additional practice opportunity multiplied by the number of 
practice opportunities (𝑇!") the student has had with that KC prior 
to the current problem step [4]. 

ln !!"
!!!!"

= 𝜃! + 𝑄!"(𝛽!!∈!"# + 𝛾!𝑇!")       (1) 

AFM accommodates some individualization with the student 
ability parameter but makes the simplifying assumption that 
students learn at the same rate, since the original purpose of AFM 
was to refine KC models [4]. Here, we investigate whether 
extensions of AFM can accommodate variability in student 
learning rates and provide meaningful information about learning 
rate differences. 

2. IDENTIFYING AND MODELING
LEARNING RATE VARIATION 
To explore adding learning rate variation to AFM, we created two 
new models extending AFM. The first model (AFM+StudRate) 
adds a per-student learning rate parameter, and the second model 
(AFM+GroupRate) adds a per-group learning rate parameter 
whereby membership among the three groups is determined using 
the method described in Section 2.1. 

2.1 Student classification method 
To classify students, we sought to identify those who improve—
with each practice opportunity—more (or less) so than would be 
predicted by traditional AFM, which has a per-KC rate parameter 
that already accounts for the learning rate variability that is 
predicted by the KCs present at each opportunity. To do so, we 
examined the patterns in residual errors across opportunity counts 
after the data are fit with traditional AFM. A student whose 
learning curve is steeper than that predicted by AFM will exhibit 
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systematically increasing residual errors; i.e., residuals will 
correlate positively with opportunity count. Conversely, a student 
whose performance consistently increases less per opportunity 
than AFM predicts will exhibit a negative correlation between 
residual error and opportunity count. 

To leverage this feature of residual error to classify students, we 
first fit the baseline AFM model to a full dataset (all students and 
KCs). Then, for each individual student, deviance residuals were 
computed, comparing the AFM model prediction against the 
actual data. Correlation coefficient cut-offs were set for each 
dataset at r > 0.1 for the “steep” learning-curve group and r < -0.1 
for the “flat/declining” learning-curve group. Based on 
exploratory analyses, we selected the most stringent cut-off that 
yielded reasonable group sizes (approximately 50% students 
classified into either the steep or flat groups). The remaining 
students, whose learning curves were reasonably captured by the 
per-KC learning rates specified in AFM, were classified into a 
third “regular” group. 

2.2 AFM+StudRate and AFM+GroupRate 
The model that extends AFM by adding a per-student learning 
rate (AFM+StudRate) is given in Equation 2. It contains the 
parameters of traditional AFM with an additional parameter 
capturing the improvement (𝛿!) by each student with every 
additional practice opportunity. Here, 𝑇!" represents the practice 
opportunity count of a given KC required for a problem step j. 

ln !!"
!!!!"

= 𝜃! + 𝑄!"(𝛽!!∈!"# + 𝛾!𝑇!" + 𝛿!𝑇!")   (2) 

The model that extends AFM by adding a per-group learning rate 
(AFM+GroupRate) is given in Equation 3.  

ln !!"
!!!!"

= 𝜃! + 𝑄!"(𝛽!!∈!"# + 𝛾!𝑇!" + 𝛿!𝑆!"𝑇!")   (3) 

It uses the same parameters as AFM+StudRate except that each 
student’s improvement rate with each additional practice 
opportunity (𝛿!) is derived from a per-group rate (and thus can 
only take on one of three different values). Each student’s group 
membership is specified by 𝑆!", which takes on a value of 1 when 
the student i belongs to group c and a value of 0 otherwise. 

3. EVALUATING MODELS FOR FIT AND
PREDICTIVE ACCURACY 
3.1 Datasets 
To test these statistical models on real educational data and to 
compare their predictive accuracies, we applied them across 8 
datasets from DataShop [8]: Geometry Area 96-97, Cog Model 
Discovery Experiment Spring 2010, Cog Model Discovery 
Experiment Spring 2011, Cog Model Discovery Experiment Fall 
2011, Assistments Math 2008-2009 Symb-DFA, Self Explanation 
sch_a3329ee9 Winter 2008 CL, IWT Self-Explanation Study 1 
Spring 2009, and Statistical Reasoning and Practice - Fall 2009. 
These span a variety of content domains: Geometry, Equation 
solving, Story problems, English grammar, and Statistics. All of 
these datasets are publicly available at http://pslcdatashop.org. 
We selected datasets that had already undergone significant KC 
model refinement via both manual and automated methods [9]. 

3.2 Methods 
Each dataset was pre-processed based on the single-skilled KC 
model that achieved the best item-stratified CV performance 
according to values reported on DataShop. Table 1 lists the names 
of the KC models used and the number of KCs in each model. The 
three AFM models were implemented in R with student ability 

(θi), KC difficulty (βk), and all learning rate parameters modeled 
as random effects, since many datasets used here were 
characterized by non-uniform sparsity in student-KC pairings, due 
to the mastery-based adaptive nature of the tutors from which the 
data originate. Modeling the parameters as random effects also 
reduces the likelihood of over-fitting the data by keeping their 
estimates close to zero. 

The sparsity found in mastery-based datasets is particularly 
extreme at high opportunity counts, and this introduces noise to 
our classification method, which is dependent on good resolution 
across opportunity counts. Thus, we employed a conservative and 
systematic opportunity count cut-off method prior to analyses. 
The number of observations at each opportunity count was totaled 
for each student. Counts at which the average observations per 
student was less than 1 and the number of observations for any 
single student was 1 or fewer were excluded. In other words, at 
the excluded opportunity counts, no student had more than 1 total 
observation, and the majority of students did not have any. This 
excluded a very small percentage of total observations; the 
percent of observations retained are reported in the “Opp Cut-off” 
column of Table 1. In addition, our grouping technique required at 
least 5 observations in order to run the residual-by-opportunity 
correlations, so students who performed fewer than 5 total 
problem steps were excluded from the analyses. The left-most 
column of Table 1 reports the number of students included (with 
the original N in parentheses). 
Models were evaluated for each dataset using Akaike Information 
Criterion (AIC), Bayesian Information Criterion (BIC), and cross-
validation measures. Two types of cross-validation (CV) were 
assessed: item-stratified CV, in which different random folds 
contain different problem steps, and student-stratified CV, in 
which different random folds contain different students (i.e., the 
model is tested on “unseen” students). Due to the random nature 
of the folding process, we repeated ten runs of each type of 10-
fold CV, and the mean RMSEs across each run were used to 
compute the overall means and standard errors (in parentheses) 
reported in Table 2. Any CV results in which AFM+StudRate or 
AFM+GroupRate significantly outperforms regular AFM (as 
assessed by p<0.05 in a paired t-test between mean RMSEs across 
the 10 runs) are denoted with stars. 

3.3 Results 
The results of fitting the three statistical models to all 8 datasets 
are summarized in the right-most columns of Table 1. 

AFM with a per-student learning rate fails to perform consistently 
better than regular AFM either across metrics within any dataset 
or across datasets. With an extra parameter per student, 
AFM+StudRate naturally fits training data better, but the 
evaluation metrics indicate over-fitting that is likely idiosyncratic 
(i.e., resulting in parameter estimates that will not generalize well 
to “unseen” items or students). Even for the AIC metric, which 
incorporates a smaller penalty for extra parameters than BIC, 
AFM+StudRate is better than regular AFM for only half of the 
datasets and only slightly so. By BIC, it is better than regular 
AFM in only one dataset. Cross-validation reveals that 
AFM+StudRate fails to achieve significantly lower RMSEs than 
regular AFM in 14 of 16 cases. 

In contrast, AFM+GroupRate performs best on all 8 datasets by 
AIC, BIC, and item-stratified CV measures. It also performs the 
best on the majority of datasets (6 out of 8) by student-stratified 
CV. The superior performance according to student-stratified CV 
is particularly notable, because the predictions are made on data 
from “unseen” students. That is, no student information (not even 
group membership) is available for the data in the test set. The 
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fact that AFM+GroupRate performs better than regular AFM 
implies that this model is successfully capturing some student-
level variability that produces better, cleaner KC parameters. This 
is not true for AFM+StudRate, which did not achieve significantly 
better student-stratified CV for any dataset. 

4. RELATIONSHIP TO PRE-POST GAINS
Predictive accuracy is often used as a proxy for quality in EDM 
models. Assessing the validity of these student groups beyond 
relevance to model-fitting is equally, if not more, important. To 
do so, we investigated the relationship between group 
membership and post-test outcomes. Four of the datasets tested in 
Section 3 contained pre/post-test data that were accessible via 
DataShop: the three geometry Cog Discovery datasets and the 
IWT 1 dataset. 

For each dataset we ran a simple regression with both pre-test 
score and per-group coefficients (from fitting AFM+GroupRate) 
as predictors of post-test score. Even after taking into account the 
variance explained by pre-test scores, learning rate group 

membership predicts post-test scores significantly for Cog 
Discovery Spring 2010 (p<0.001), Cog Discovery Fall 2011 
(p=0.016), and Cog Discovery Spring 2011 (p<0.001), and 
marginally significantly for IWT 1 (p=0.077). These results 
suggest that group classification predicts unique variance in post-
test outcomes and is thus a valid and interpretable construct. 

5. DISCUSSION
5.1 Conclusions and implications 
In the present work, we investigated two extensions of AFM that 
incorporated learning rate variation: adding a per-student learning 
rate parameter (AFM+StudRate) and adding a per-group learning 
rate parameter (AFM+GroupRate). AFM+StudRate overall did 
not significantly improve upon regular AFM, according to 
predictive accuracy metrics. In contrast, the residual-based student 
grouping method we developed seems to capture meaningful 
differences in learning rate variations. The groups have internal 
validity: adding a per-group learning rate to AFM improved 
predictive accuracy across all datasets based on the vast majority 
of fit metrics. They also have external validity: per-group rate 

Dataset [Domain] 
# Students 

KC Model 
 (# KCs) 

Opp 
Cut-off 

Statistical 
Model AIC BIC Item-Strat 

CV RMSE 
Student-Strat 

CV RMSE 
Geometry 
1996-97 

[Geometry] 
N = 56 (of 59) 

LFASearchAIC 
WholeModel3 (18) 

27 
(99.22%) 

AFM 5039.7 5072.4 .3996 (.0003) .4063 (.001) 

+StudRate 5043.8 5080.5 .3991 (.0004) .4063 (.001) 

+GroupRate 4999.2 5038.4 .3975 (.0003)* .4068 (.001) 

Cog Discovery 
Spring 2010 
[Geometry] 

N = 123 (of 123) 

KTskills.Mcontext.s
ingle.sep.ind.areas 

(42) 

80 
(99.72%) 

AFM 29208.5 29251.7 .3238 (.00003) .3319 (.0001) 

+StudRate 29160.8 29221.3 .3232 (.00002)* .3318 (.0001) 

+GroupRate 29030.1 29081.9 .3230 (.00002)* .3317 (.0001)* 

Cog Discovery 
Spring 2011 
[Geometry] 

N = 65 (of 69) 

KTracedSkills.matc
hed.Fall2011 (7) 

30 
(99.3%) 

AFM 4099.7 4131.5 .3877 (.0002) .4025 (.0004) 

+StudRate 4101.4 4146.0 .3879 (.0002) .4025 (.0004) 

+GroupRate 4077.3 4115.3 .3856 (.0002)* .4017 (.0004)* 

Cog Discovery 
Fall 2011 

[Geometry] 
N = 103 (of 103) 

KTracedSkills.Conc
atenated (15) 26 

(97.87%) 

AFM 3175.9 3208.2 .3104 (.0003) .3194 (.0003) 

+StudRate 3177.8 3223.0 .3108 (.0003) .3198 (.0003) 

+GroupRate 3155.6 3194.3 .3090 (.0002)* .3198 (.0003) 

Assistments 
Symb-DFA 

[Story Problems] 
N = 318 (of 318) 

Main.LFASearch 
Model0 (4) 

11 
(98.81%) 

AFM 6013.1 6046.0 .4265 (.0006) .47008 (.0001) 

+StudRate 6016.9 6062.9 .4267 (.0006) .47008 (.0001) 

+GroupRate 5793.2 5832.7 .4166 (.0006)* .47005 (.0001) 

Self-Explanation 
Winter 2008 

[Equation Solving] 
N = 70 (of 71) 

LFASearchAIC 
Model.r2 (19) 

49 
(98.78%) 

AFM 6201.8 6235.6 .3905 (.0002) .4140 (.0005) 

+StudRate 6201.4 6248.8 .3906 (.0002) .4141 (.0006) 

+GroupRate 6158.9 6199.5 .3889 (.0002)* .4127 (.0005)* 

IWT 1 
Spring 2009 

[English Grammar] 
N = 120 (of 120) 

LFASearchAIC 
WholeModel1 (26) 

11 
(98.64%) 

AFM 6820.8 6854.7 .4134 (.0003) .4392 (.0002) 

+StudRate 6815.2 6862.7 .4128 (.0003)* .4392 (.0002) 

+GroupRate 6752.9 6793.6 .4099 (.0002)* .4389 (.0002)* 

Statistics 
Fall 2009 
[Statistics] 

N = 52 (of 52) 

LFASearchAIC 
Model0 (16) 

30 
(99.81%) 

AFM 2967.8 2999.4 .3090 (.0032) .3250 (.0003) 

+StudRate 2965.5 3009.8 .3105 (.0031) .3250 (.0004) 

+GroupRate 2935.5 2973.5 .3085 (.0029)* .3248 (.0003)* 

Table 1. Dataset details and predictive accuracy metrics for each of the three statistical models fit to datasets. The percent of 
observations retained for analyses are shown in parentheses underneath opportunity cut-off values. Item- and student-stratified CV 
values are mean RMSEs over 10 separate runs of 10-fold cross validation, with standard errors in parentheses. Stars denote models with 
significantly better cross-validation performance (at p<0.05 in paired t-tests of RMSE values across CV runs) than regular AFM. The 
best-performing models by each metric are bolded. 
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coefficients significantly predict each group’s post-test outcomes, 
controlling for pre-test. 

Despite the focus of the AFM+GroupRate model on student-level 
differences, adding the per-group rate parameter produces more 
accurate estimates of KC parameters, based on the model’s 
superior performance in student-stratified CV for the vast majority 
of datasets. The only information the model gets for fitting test 
data in student-stratified CV (“unseen” students whom the model 
has no information about with respect to ability, learning rate, or 
group) are the KC parameters. For this reason, AFM+GroupRate 
may be useful for data-driven refinement of KC parameters, 
which in turn has implications for instruction (e.g., parameter-
setting in Knowledge Tracing based cognitive tutors [14]). 

Compared to other statistical models extending AFM 
(Performance Factors Analysis [12], Instructional Factors 
Analysis [5], Recent Performance Factors Analysis [7]), 
AFM+GroupRate adds relatively few parameters (only three) to 
AFM but achieves consistent and substantive improvements in 
prediction. These three parameters’ coefficient estimates are 
consistently interpretable (the per-group learning rates are ordered 
according to intuitions about each group’s learning curve 
steepness), and the model avoids overloading on the interpretation 
of parameters. 

We conducted extensive post-hoc analyses to interpret what the 
three learning groups actually reveal about student behavior and 
did not find evidence that the groups detect learning speed as an 
inherent trait, per se. For example, high ability students did not 
tend to be in the “steep” group, and low ability students did not 
tend to be in the “flat” group. Rather, the amount of improvement 
per opportunity seems to differ, more generally, depending on 
where the learner is on his/her true learning curve for any given 
skill. That is, the improvement per opportunity may be different 
for the earliest opportunities on a skill than for much later 
opportunities on a skill. Different students’ learning curves within 
cognitive tutor data may vary because they start using the 
cognitive tutor at different points of their true learning curves for 
any given skill, depending on their experience with that skill prior 
to tutor use. We found evidence supporting this notion in post-hoc 
analyses. Considered in conjunction with the lack of evidence for 
a per-student learning rate, our findings contradict the intuitive 
notion that some students naturally learn faster than others. 

5.2 Limitations and future work 
The present results somewhat conflict with a finding from [15] 
that adding a per-student learning rate parameter to BKT yields 
substantial improvements in model fit, though we note that that 
report did not provide an interpretation nor any external validity 
evidence. We did not observe a benefit when adding a per-student 
learning rate parameter to AFM. Further work to compare these 
per-student parameter estimates across AFM and BKT and to 
externally validate the estimates from individualized BKT will 
provide insight into this issue. 

Based on our post-hoc analyses, classification into the 
“flat/declining” group seems to capture high-ability students who 
descend into noisy performance at late opportunity counts 
(indicating boredom and/or “gaming the system” [2]) and low-
ability students who never seem to improve (“wheel spinners” 
[1]). It would be interesting to validate this by seeing whether the 
detectors in [1] and [2] yield the same students when tested within 
the present datasets. 

Another avenue for future investigation is to assess the degree to 
which different learning rate groups would benefit optimally from 
different KC models, via KC model search (as in [13]). 
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