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ABSTRACT
Classification evaluation metrics are often used to evalu-
ate adaptive tutoring systems— programs that teach and
adapt to humans. Unfortunately, it is not clear how in-
tuitive these metrics are for practitioners with little ma-
chine learning background. Moreover, our experiments sug-
gest that existing convention for evaluating tutoring systems
may lead to suboptimal decisions. We propose the Learner
Effort-Outcomes Paradigm (Leopard), a new framework to
evaluate adaptive tutoring. We introduce Teal and White,
novel automatic metrics that apply Leopard and quantify
the amount of effort required to achieve a learning outcome.
Our experiments suggest that our metrics are a better alter-
native for evaluating adaptive tutoring.
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1. INTRODUCTION
A fundamental part of the scientific and engineering pro-
cess is testability— the property of evaluating whether a
hypothesis or method can be supported or falsified by data
of actual experience. For example, in educational data min-
ing, we formulate testable hypotheses that claim that the
methods we engineer improve the outcomes of learners. In
this manuscript, we study how to verify learner outcome
hypotheses.

We focus on evaluating a popular type of educational method
called adaptive intelligent tutoring system. Adaptive sys-
tems teach and adapt to humans; their promise is to im-
prove education by optimizing the subset of items presented
to students, according to their historical performance [5],
and on features extracted from their activities [10]. In this
context, items are questions, problems, or tasks that can be
graded individually.

Evaluation metrics are important because they quantify the
extent of whether an educational system helps learners. For
example, a practitioner may use an evaluation method to
choose which of the alternative adaptive tutoring systems
to deploy in a classroom, or school district. On the other
hand, a researcher may be interested in quantifying the im-
provements of her system compared to previous technology.

Our main contributions are proposing a novel evaluation
paradigm for assessing adaptive tutoring and examples of
when traditional evaluation techniques are misleading. This
paper is organized as follows: § 2 reviews related methods
for evaluating adaptive systems; § 3 describes the paradigm
we propose for automatic evaluation of tutoring systems;
§ 4 provides a meta-evaluation of our novel evaluation tech-
niques; and, § 5 provides some concluding remarks.

2. BACKGROUND
Adaptive tutoring is often implemented as a complex sys-
tem with many components, such as a student model, con-
tent pool, and a cognitive model. Adaptive tutoring may
be evaluated with randomized control trials. For example,
in a seminal study [5] that focused on earlier adaptive tu-
tors, a controlled trial measured the time students spent on
tutoring and their performance on post-tests. The study re-
ported that the tutoring system enabled significantly faster
teaching, while students maintained the same or better per-
formance on post-tests

Unfortunately, controlled trials can become extremely ex-
pensive and time consuming to conduct: they require insti-
tutional review board approvals, experimental design by an
expert, recruiting (and often payment!) of enough partici-
pants to achieve statistical power, and data analysis. Au-
tomatic evaluation metrics improve the engineering process
because they enable less expensive and faster comparisons
between alternative systems. Fields that have agreed on
automatic evaluation have seen an accelerated pace of tech-
nological progress. For example, the widespread adoption
of the Bleu metric [15] in the machine translation commu-
nity has lowered the cost of development and evaluation of
translation systems. At the same time, it has enabled ma-
chine translation competitions that result in great advances
of translation quality. Similarly, the Rouge metric [13] has
helped the automatic summarization community transition
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from expensive user studies of human judgments that may
take thousands of hours to conduct, to an automatic metric
that can be computed very quickly.

The adaptive tutoring community has tacitly adopted con-
ventions for evaluating tutoring systems [6, 16, 18]. Re-
searchers often evaluate their models with classification eval-
uation metrics that assess the student model component of
the tutoring system— student models are the subsystems
that forecast whether a learner will answer the next item
correctly. Popular classification evaluation metrics include
accuracy, log-likelihood, Area Under the Curve (AUC) of
the Receiver Operating Characteristic curve, and, strangely
for classifiers, the Root Mean Square Error. However, au-
tomatic evaluation metrics are intended to measure an out-
come of the end user. For example, the PARADISE [22]
metric used in spoken dialogue systems correlates to user
satisfaction scores. Not only is there no evidence that sup-
ports that classification metrics correlate with learning out-
comes; but, prior work [2] has identified serious problems
with them. For example, classification metrics ignore that
an adaptive system may not help learners— which could
happen with a student model with a flat or decreasing learn-
ing curve [1, 20]. A decreasing learning curve implies that
student performance decreases with practice; this curve is
usually interpreted as a modeling problem, because it op-
erationalizes that learners are better off with no teaching.
Therefore, an adaptive tutor with a student model with a
decreasing learning curve does not teach students.

Surprisingly, in spite of all of the evidence against using clas-
sification evaluation metrics, their use is still very widespread
in the adaptive literature [6, 16, 18]. Moreover, there is very
little research on alternative evaluation techniques. A no-
ticeable exception is recent work on individualizing student
models [12]. The authors evaluated their approach using a
method called ExpOppNeed, which calculates the expected
number of practice opportunities that learners require to
master the content of the tutoring curriculum. Though their
evaluation methodology is extremely interesting and promis-
ing, it was not intended to be generalizable. In the next
section we extend on prior work and present a novel general
paradigm for evaluating adaptive systems.

3. LEOPARD EVALUATION
Adaptive tutoring implies making a trade-off between min-
imizing the amount of student effort, by carefully personal-
izing the curriculum, and maximizing student outcomes [4].
For example, repeated practice on a skill may improve stu-
dent proficiency, at the cost of a missed opportunity for
teaching new material. Adequate values for student effort
and outcomes respond to external expectations from the so-
cial context. For example, it is not acceptable for a tutor
to minimize effort by not teaching any content at all, or to
maximize outcomes by taking twenty years to teach a sim-
ple concept. The right trade off is defined by subject matter
experts.

We propose the novel Learner Effort-Outcomes Paradigm
(Leopard) for automatic evaluation of adaptive tutoring. At
its core, Leopard quantifies the effort and outcomes of stu-
dents in adaptive tutoring. Even though measuring effort
and outcomes is not novel by itself, our contribution is mea-

suring both without a randomized control trial.

• Effort: Quantifies how much practice the adaptive tu-
tor gives to students. In this paper we focus on count-
ing the number of items assigned to students but, al-
ternatively, amount of time could be considered.

• Outcome: Quantifies the performance of students after
adaptive tutoring. For simplicity, we operationalize
performance as the percentage of items that students
are able to solve after tutoring. We assume that the
performance on solving items is aligned to the long-
term interest of learners.

We argue that Leopard is more intuitive than classification
metrics because the effort and outcome resonate to educa-
tional principles. We now describe two novel metrics that
apply the Leopard philosophy. In § 3.1, we describe Teal, a
metric that calculates the theoretical expected behavior of
students when interacting with a family of student models;
and in § 3.2, we describe White1 a metric that uses empirical
data that may have not been collected on a control trial.

3.1 Theoretical Evaluation of Adaptive Learn-
ing Systems (Teal)

We formulate Theoretical Evaluation of Adaptive Learning
Systems (Teal) to evaluate adaptive tutoring from the ex-
pected behavior of their student model. Teal focuses on
models of the Knowledge Tracing Family— a very popular
set of student models [10].

To use Teal on data collected from students, we first train a
model using an algorithm from the Knowledge Tracing fam-
ily (§ 3.1.1), then we use the learned parameters to calculate
the effort (§ 3.1.2) and outcome (§ 3.1.3) for each skill. We
discuss how to use Teal on models that use features (§ 3.1.4)
and our design decisions (§ 3.1.5).

3.1.1 Knowledge Tracing Family
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Figure 1: Knowledge Tracing plate diagram. The color of
the circles represent whether the variable is latent (white), or
observed in training (light), and plates represent repetition.

Figure 1 describes the Knowledge Tracing [5] model, the
most simple member of the family. Knowledge Tracing re-
quires a mapping of items to skills, often built by subject
matter experts, although automatic approaches exist [8].
These skill mappings are also called cognitive models, or Q-
matrices. Knowledge Tracing uses a Hidden Markov Model
(HMM) per skill to model the student’s knowledge as latent
variables. The binary observation variable yqu,t represents

1Tradition names metrics like colors! E.g., Rouge, Bleu.
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whether the student u applies the tth practice opportunity
of skill q correctly. The latent variable kqu,t models the latent
student proficiency, which is often modeled with a binary
variable to indicated mastery of the skill. To declutter nota-
tion, we may not explicitly write the indices q and u. There
are two conventions for naming the skill-specific parameters
of Knowledge Tracing. In the HMM tradition, the parame-
ters are simply named transition or learning (L), and emis-
sion (E). In the educational tradition when using two latent
states the parameters are called initial knowledge (l0 ), learn-
ing (l ), forgetting (f ), guess (g) and slip (s). The Knowl-
edge Tracing family includes models that parameterize the
emission probabilities, transition probabilities, or both. For
example, in Knowledge Tracing, the emission probability of
emitting an answer y when the student has knowledge k is:

Ey,k = p(y|k) (1)

Which is simply a binomial probability. To allow features
in the emissions, we replace the binomial with a logistic
regression [10]:

Ey,k(β,Xt) = p(y|k;β,Xt) (2)

=
1

1 + exp(−βᵀ ·Xt)
(3)

Here Xt is the feature vector extracted at time t, and β is
the regression coefficient vector. The feature may indicate,
for example, if the student requested a hint.

3.1.2 Effort
Teal calculates the expected number of practice that an
adaptive tutor gives to students. We assume a policy that
the tutor stops teaching a skill once the student is very likely
to answer the next item correctly according to a model from
the Knowledge Tracing Family. For notational convenience,
we define the probability of answering the next item cor-
rectly as:

ct+1(y1, . . . ,yT ) ≡ p(yt+1 = correct|y1, . . . ,yt; L,E) (4)

Here L and E are the parameters of the Knowledge Trac-
ing Family model. We can estimate ct+1 using conventional
inference techniques for HMMs [19], such as the Forward-
Backward algorithm.

The adaptive tutor teaches an additional item if two condi-
tions hold: (i) it is likely that the student will get the next
item wrong— in other words, the probability of answering
correctly the next item is below a threshold R; and (ii) the
tutor has not decided to stop instruction already. More for-
mally, the tutor keeps teaching if:

teach(y1, . . . ,yt, R) ≡

{
1 if ∀

t′<t
ct′+1(y1, . . . ,yt′) < R

0 otherwise

(5)

We now can calculate at which practice opportunity the tu-
tor should stop instruction. For simplicity, we assume all
sequences are of length T . We simply count all of the times
the tutor decides to teach a new item:

costR(y1, . . . ,yT ) ≡
T∑

t=1

teach(y1, . . . ,yt, R) (6)

Note that if the probability of answering correctly the next
item has not reached the threshold in T time steps, the cost
is defined as T . Teal defines effort as the expected value of
the number of practice opportunities a tutor gives. This is:

effort(R) ≡ E (costR(YT )) (7)

=
∑

y1,...,yT∈YT

costR(y1, . . . , ,yT )︸ ︷︷ ︸
amount of practice

· p(y1, . . . ,yT )︸ ︷︷ ︸
sequence likelihood

(8)

Here, YT is the set of all sequences of length T . When we
have binary student outcomes (correct or not), the cardi-
nality of this set is 2T , which makes Teal only tractable for
sequences of a few dozens of observations. In our experience,
the sequences of adaptive tutoring systems are often in this
range. In a companion paper [9] we give an alternative for-
mulation of Teal that allows approximate calculations. The
likelihood of the sequence can be efficiently estimated using
the Forward-Backward algorithm.

3.1.3 Outcome
We define the outcome of a student as the mean performance
after the tutor should stop instruction. For a particular
sequence with student cost k = costR(y1, . . . ,yT ), this is:

outcome(y1, . . . ,yT , k) ≡

{
mean(yk . . . yT ) if k < T

impute value otherwise

(9)
We map the correct and incorrect student responses yt into 1
or 1, respectively. If the student sequence does not reach the
performance threshold, we impute the value of the outcome.
In this paper, we set the imputation value to 0. We define
the score as the expected value of the outcome:

score(R) ≡ E(outcome(YT , k)) (10)

=
∑

y1,...,yT∈YT

outcome(y1, . . . ,yT , R) · p(y1, . . . ,yT )

(11)

3.1.4 Usage on Models With Features
For models that parameterize emission or transitions we first
must build a counterfactual feature vector X, and use it to
calculate model parameters that do not depend on features.
For example, consider a model that uses a binary feature
vector that encodes students in different conditions. Condi-
tions can be any feature of interest of the tutoring system,
such as the ability to display multimedia content. We can
use Teal to calculate the effort of students in each of the
specific conditions.

For example, consider a feature vector X = (f1, f2, . . . , fn).
Feature f1 is 1 iff the student is using condition 1 (e.g., mul-
timedia content is available), feature f2 is 1, iff the student is
using condition 2, etc. The vector is all zeros if the student
is in the control condition. If we activate feature f1, we can
calculate the effort or score of students in the treatment 1.
To apply Teal we first estimate counterfactual slip and guess
parameters using Equation 3. We can use the counterfactual
parameters with Teal.
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For some models with features, Teal may require that stu-
dents are assigned randomly to feature activation condi-
tions, so that the regression coefficients can be interpreted
as causal effects. Teal may not be appropriate if – for ex-
ample – the features have reverse causality, or if there are
omitted variables in the model.

3.1.5 Design Discussion
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Figure 2: Expected and empirical student performance for
a skill (l0 = 0.3, l = 0.25, g = 0.3, s = 0.3, f = 0).

Teal extends the ExpOppNeed algorithm discussed on § 2.
We compare both approaches to justify our design decisions.

1. When to stop tutoring. Teal expects tutoring to
stop once the student is very likely to apply the skill
correctly. On the other hand, ExpOppNeed relies on
stopping tutoring once the posterior probability of the
latent variable for knowledge is above a threshold. Fig-
ure 2 compares both approaches for some Knowledge
Tracing parameters. The solid lines represent the ex-
pected values derived theoretically2 for both strategies.
To illustrate what actual student behavior may look
like, we plotted dotted lines for 50 synthetic students
sampled from a HMM. Although individual students
vary, their average behavior is close to theoretical.

In the figure, with 15 practice opportunities the stu-
dents have close to 100% probability of skill mastery,
while they only have 65% probability of applying the
skill correctly. This big gap between the probability
of mastery and probability of correct (the two solid
lines) implies that the model is defining mastery as a
state when students have low probability of applying
the skill correctly. Low probability of answering cor-
rectly in a mastery state can occur due to a number of
problems, for example, an incorrect item-to-skill map-
ping, or confusing tutoring content. We argue that an
evaluation metric should penalize such models to be
consistent with the Mastery Learning Theory [3].

Moreover, prior work [1] has demonstrated that some
ill-defined models have probability of correct decreas-
ing with practice opportunities, at the same time that
the probability of mastery increases. ExpOppNeed
does not penalize such ill-defined models, but Teal
does.

2Prior work derived [21]: p(yt = correct) = 1− s −Aβt.
Here, β = (1− l ), and A = (1− s − g) · (1− l0 )

Algorithm 1 Single-Skill White

Require: performance sequences yu,q,t, student model pre-
dictions ĉu,q,t (the subscripts index students, skills, and
practice opportunities), threshold R

1: function White(yu,q,t, ĉu,q,t, R)
2: for each student u do
3: for each skill q do
4: . Select data for student u and skill q only:
5: y′, ĉ′ ← filter(y, ĉ, u, q)
6: effort(q, u)← 0
7: for each practice opportunity t in y′ do:
8: if ĉ′t+1 ≥ R then
9: score(q, u)← mean(yt+1, . . . , yT )

10: next skill q
11: else if last(t) then
12: score(q, u)← impute

13: effort(q, u)← effort(q, u) + 1
return effort, score

2. What to measure. ExpOppNeed does not calculate
expected outcome of students. Teal considers both stu-
dent outcome and effort because it is trivial to optimize
one of the metrics if the other one is ignored.

3. Precision of the results Both ExpOppNeed and
Teal have exponential computational complexity. How-
ever, ExpOppNeed uses a heuristic to prune sequences
with low probability. Unfortunately, if the effort is
very high (or infinite), the likelihood of the individual
sequences becomes very low, and ExpOppNeed prunes
the sequences too soon and therefore it may underes-
timate the effort. Teal improves on ExpOppNeed by
defining effort on fixed-length sequences and not doing
pruning.

We now summarize some limitations of our approach. Teal
assumes that the model parameters are correct, and does
not take into account potential modeling problems— such
as misspecification, or over-fitting. By design, Teal only is
able to evaluate models in the Knowledge Tracing Family.
We now present a novel evaluation method that addresses
these limitations.

3.2 Whole Intelligent Tutoring System Empir-
ical Evaluation (White)

We propose Whole Intelligent Tutoring System Evaluation
(White), a novel automatic method that evaluates the rec-
ommendations of an adaptive system using data. White
does not assume the student data is generated by a Knowl-
edge Tracing model; instead, it relies on counterfactual sim-
ulations. White reproduces the decisions that the tutoring
system would have made given the input data on the test
set, by counting how many items the adaptive tutor would
ask students to solve, and what is the mean student perfor-
mance after tutoring.

Algorithm 1 describes White for a tutoring system that as-
sumes an item is assigned to exactly one skill. We leave more
complex tutors for future work. The input of White is the
student performance sequences y, the predictions of answer-
ing correctly ĉ, and a threshold R that defines what is the
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Figure 3: Example of White calculating counterfactual score
and effort using empirical data (R = 0.6).

target probability of correct. White assumes that the stu-
dents are a random sample of the student population. The
predictions are calculated by the student model component
of the adaptive tutoring. For a data-driven student model,
the predictions can be informed with the history preceding
the current time step. For instance, to predict on the third
time step, the student model may use the data up to the
second time step. For example, for Knowledge Tracing:

ĉt = p̂(yt = correct|y1, . . . ,yt−1) (12)

Figure 3 shows example data of how White works for a 60%
threshold (R = 0.6). For each student and skill in the test
set, White estimates their counterfactual effort— how many
items the student would have solved using the tutoring sys-
tem. In our example, Alice does not get to practice the
skill because the student model believes that she is likely to
already know it (effort =0), but Bob is given one practice op-
portunity (effort=1). After Bob answers correctly the item,
he is not given any more practice. White also calculates a
counterfactual score to represent the student learning. It is
the percentage of correct answers after the instruction would
have stopped. The score is related to an existing classifica-
tion evaluation metric called precision. Precision aggregates
the entire dataset, while score is computed by students and
skills. Although superficially it may sound as a small dif-
ference, our strategy allows us to avoid a special case of the
Simpson’s Paradox. In § 4.1.1 we discuss the issue more.

In this paper, when we report results with White, we impute
the score of students that do not reach the threshold with
their average performance. This is deliberately a different
imputation strategy that we use with Teal, which assigns a
score of zero to students that do not reach the threshold.

4. META-EVALUATION
In this section we meta-evaluate Leopard. We experiment
with data from students (§ 4.1) and simulations (§ 4.2).

We compare these sets of metrics:

• Conventional metrics. We use classification evalu-
ation metrics to evaluate how the student models pre-
dict future student performance. For this, we allow
student models to use the history preceding the time
step we want to predict.

• Leopard metrics. We use the score and effort as
calculated by White and Teal. For simplicity we report
the average scores across skills, and the sum of the
mean effort. For U students and Q skills, this is:

dataset score(R) =
1

Q · U

Q∑
q

U∑
u

score(q, u) (13)

dataset effort(R) =
1

U

Q∑
q

U∑
u

effort(q, u) (14)

4.1 Real Student Data
We use data collected from a commercial non-adaptive tu-
toring system for middle school Math. Our dataset includes
only the first part of the entire curriculum, and contains stu-
dents from the same grade from multiple schools. It contains
approximately 1.2 million observations from 25,000 students.
We randomly split the dataset into three sets of students.
The training and test set have 60% and 20% of the students,
respectively. The remainder of the data is reserved for future
experiments not described in this paper. The item bank was
mapped to skills in three different ways— the coarse defini-
tion maps the items into 27 skills, the fine definition into 90
skills, and the proprietary one is not reported.

4.1.1 Are predictive models always useful?
Assessing an evaluation metric with real student data is dif-
ficult because we often do not know the ground truth. To
get around this, we now describe a strategy to select a sub-
set of the dataset that we know the behavior of. Our main
insight is that for adaptive tutoring to be able to optimize
when to stop instruction, the student performance should in-
crease with repeated practice (the learning curve should be
increasing). Our strategy consists on selecting the subset of
the data where student modeling may fail, because student
performance remains flat or decreases with practice.

We first train a simplified Performance Factors Analysis [17]
(PFA) model. We use a logistic regression for each skill:

p(yqu,t) =
1

1 + exp(βq ·Xq))
(15)

The dimensions of Xq are the count of prior correct re-
sponses of the student and an intercept. We learn the pa-
rameters of the model βq using constrained optimization—
the regression coefficient for the effect of prior correct re-
sponses has to be non-negative.

We only use data from the skills that have zero regression
coefficient for the effect of prior correct responses (flat or
decreasing learning curve). Such skills are not suitable for
an adaptive tutor because the PFA student model believes
that practice does not influence student performance. More
concretely, this PFA model would give infinite practice to
difficult skills, or no practice to easy skills. Table 1 compares
the results of using White and two conventional metrics on
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the test set of the selected skills. We compare with a ma-
jority class model that always predicts students answers as
correct. The conventional metrics we report are the AUC,
because of it’s popularity, and the F-metric, because in ex-
periments we report later correlates highly with White. For
White we use a threshold of 60%. We cannot report on Teal
because PFA is not part of the Knowledge Tracing Family.

Table 1: Evaluation metric comparison.

White conventional
score effort F AUC

Performance Factors Analysis .18 10.1 .79 .85
Majority Class .18 11.2 0 .50

The AUC and F-metric results are arguably very high, in-
dicating that the PFA model is highly predictive— yet by
construction, we know that the model is not useful for adap-
tivity. The high prediction power of PFA is explained only
by the intercepts of the model. That is, the predictions are
based on the skill difficulty, independently of the student
performance. We argue that White communicates better
the unfavorable nature of the model because it reports a
very low score, and only a small improvement of effort when
compared to a baseline.

The problem with metrics that aggregate over the entire
dataset, like the AUC and the F-metric, can be explained
by Simpson’s paradox— a trend that appears in different
groups of data that disappears or reverses when the groups
are combined. Because adaptive tutors learn a model from
each skill independently, it is effectively a group of models.
White and Teal evaluate each skill independently and are
not susceptible to this problem. Consider the alternatives:

• Reporting as a baseline the difficulty classifier— a clas-
sifier that only considers the fraction of correct answers
of each skill in the training set. For example, in Ta-
ble 1, the PFA model has an AUC of 0.8, the same as
the difficulty classifier. Because PFA did not outper-
form this baseline, it suggests the student model has
a problem. However, simulations [8] provide evidence
that useful student models may have predictive per-
formance similar to the difficulty classifier. Therefore,
the difficulty classifier baseline may reject some useful
student models. Moreover, convention expects classi-
fiers to have an AUC of higher than 0.5 to be useful,
and this new baseline would break this interpretation.

• Calculating classification metrics over skills indepen-
dently. This would only be useful when the skills are
known beforehand, and not discovered with data [8].
We now provide evidence that suggests that classifica-
tion metrics may be misleading, even when they are
not affected by the Simpson’s paradox.

4.1.2 Do traditional metrics lead to good decisions?
We now compare Leopard and traditional metrics for choos-
ing an item-to-skill mapping. We train a PFA model using
our Math dataset. Table 2 compares the results of White
(R = 0.6) and AUC.

If we were to choose the best skill mapping by AUC alone, we

Table 2: Comparisons of item-to-skill definitions.

White
score effort AUC

coarse .41 55.7 .69
fine .36 88.1 .74

would choose the finer item-to-skill mapping, while White
selects the coarser one. Why do they disagree? The fine
skill mapping has almost three times the number of skills (90
skills) than the coarse mapping (27 skills). This means that
for the effort to be the same on both models, the finer model
should give a third of the practice of the coarser model. Even
though the finer model is slightly more predictive, we argue
that the coarser model is better suited for adaptive tutoring.

4.1.3 Case Study
For completeness, Table 3 demonstrates using different stu-
dent modeling techniques with the coarse item-to-skill map-
ping. For Knowledge Tracing, we show both the White es-
timates, and the Teal estimates (in parenthesis). We use
the average sequence length for each skill because Teal re-
quires a sequence length as an input. The estimates of
Teal and White for effort are very similar, but their scores
mismatch— possibly due to the differences in imputation
for skills that don’t reach the threshold. The low score met-
rics are indicative of students not reaching the performance
threshold. This suggests that further inspection is necessary,
because the learning curves may be decreasing or some some
skills may have high slip probabilities. One of the advantages
of White is that it can be used to evaluate non-probabilistic
student models. For example, we use White to evaluate the
student model that gives practice of a skill until the student
gets three correct answers in the skill.

Table 3: Student model comparison using Leopard

Leopard
score effort AUC

.39 49.5
Knowledge Tracing

(.18) (50.9)
.70

Performance Factor Analysis .41 55.7 .69
Three Correct .39 59.1 n/a
Majority Class .41 65.6 .50

4.2 Simulations
With real data, we do not know the extent that the parame-
ters are learned correctly, or affected by modeling problems—
such as misspecification. We now use synthetic data to eval-
uate different metrics and compare them to a ground truth.
Given that we know the Knowledge Tracing parameters that
were used to generate the synthetic datasets, we can use Teal
to calculate exactly the student effort and outcomes.

We sample 500 different datasets using random Knowledge
Tracing parameters. In none of the datasets we allow forget-
ting, but we do not impose any other constraint (not even
that students improve with practice). Each dataset has only
a single skill, and has 200 students with 10 practice oppor-
tunities. We do not learn parameters from the synthetic
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dataset, so we do not cross-validate.

4.2.1 Which metrics correlate best with the truth?
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Figure 4: Correlation matrix of Leopard and conventional
metrics. The size of the circles indicate the magnitude of
the Pearson ρ correlation coefficient.

Figure 4 shows the pairwise Pearson-ρ correlations across
500 synthetic datasets on Teal (score), Teal (effort), White
(effort), White (score), F-metric, Log-likelihood, RMSE, AUC,
and Accuracy.

The metrics that correlate the most with the ground truth
are White and the F-metric. Interestingly, the ground truth
effort and score have low correlation with all the conven-
tional metrics, except the F-metric, but the conventional
metrics have relatively high correlation among each other
(except the F-metric). In other words, most conventional
metrics seem to be exchangeable.

We now investigate the effect of the imputation strategy of
White. We are mindful that all of the synthetic students
have 10 practice opportunities. Therefore, if White reports
an effort of 10 for a dataset, it is likely that the dataset is
not suitable for adaptivity, and that White may be imputing
missing data to calculate the score. Figure 5 compares the
324 datasets that White reports effort lower than 9.99. Each
dot in the scatterplot represents a different dataset. We see
that effort computed with White has an almost perfect cor-
relation with the ground truth (ρ = 1.00, p<0.05). On the
other hand, the score computed with White is affected by
our imputation strategy, but still has near perfect correlation
(ρ = 0.98, p<0.05) with the ground truth. The correlation
of the F-metric with the ground truth effort (ρ = −0.47) and
score (ρ = 0.89) is relatively lower than White’s. E.g., when
the ground truth effort is 0, the F-metric ranges from very
bad (0.2) to very good (1.0) predictive power, but White’s
effort is close to 0. Moreover, we speculate that score and
effort may be more relatable to practitioners with little back-
ground of machine learning than the F-metric.

4.2.2 Does White Converge to True Values?
We now investigate whether White converges to the true val-
ues calculated by Teal. We use the same parameters used to
plot Figure 2, and we manipulate the number of synthetic
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Figure 5: Comparison between F-metric and White to the
ground truth.

students, each student with 20 practice opportunities, Fig-
ure 6 shows that with little data, White converges to the
true value computed by Teal. Future work may provide a
formal argument of when and how much data White requires
to convergence.
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Figure 6: Example of White converging to Teal.

5. DISCUSSION
Our main contribution is the Leopard framework that auto-
matically assesses adaptive tutoring systems in dimensions
that relate to learner effort and outcomes. These dimen-
sions were previously measured only in randomized control
trials. We present Teal and White, two novel metrics that
apply Leopard and are useful to evaluate adaptive tutoring
systems. Secondary contributions include a novel method-
ology to assess evaluation metrics, the insight of Simpson’s
paradox affecting adaptive tutoring evaluation, and the im-
plementation of the techniques we propose in this paper3.

Classification evaluation metrics are very widespread in many
disciplines, and their use in education is very important.

3http://josepablogonzalez.com
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For example, for Computer-Adaptive Testing (CAT), classi-
fication metrics provide very useful insights to psychometric
models. Leopard is not intended to replace classification
metrics, randomized control trials, automatic experimenta-
tion [14], or visualization approaches [7, 11]. Leopard is
a complementary approach to existing techniques, and we
claim that it is specially useful when in vivo and online ex-
perimentation is not feasible.

We argue against the de facto standard of evaluating adap-
tive tutoring solely on classification metrics. Our experi-
ments on real and synthetic data reveal that it is possible
to have student models that are very predictive (as mea-
sured by traditional classification metrics), yet provide little
to no value to the learner. Moreover, when we compare
alternative tutoring systems with classification metrics, we
discover that they may favor tutoring systems that require
higher student effort with no evidence that students learn
more. That is, when comparing two alternative systems,
classification metrics may prefer a suboptimal system.

An interesting future direction may be to relax Teal’s as-
sumption that all sequences have fixed-length. Future work
may provide more rigorous theoretical analysis on conver-
gence, confidence intervals, validate our metrics with ran-
domized control trials, or derive White for policies with mul-
tiple skills per item.

We are excited to see future work in adaptive tutoring sys-
tems reporting their contributions in terms of learner effort
and outcomes. Besides the technical contributions of our
evaluation metrics, we hope that our work contributes to
the mission of driving the student modeling community to
have a more learner-centric perspective.
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