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ABSTRACT
Vocabulary knowledge is crucial to literacy development and 
academic success. Previous research has shown learning the 
meaning of a word requires encountering it in diverse informative 
contexts. In this work, we try to identify “nutritious” contexts for 
a word – contexts that help students build a rich mental 
representation of the word’s meaning. Using crowdsourced ratings 
of vocabulary contexts retrieved from the web, AVER learns 
models to score unseen contexts for unseen words.  We specify 
the features used in the models, measure their individual 
informativeness, evaluate AVER’s cross-validated accuracy in 
scoring contexts for unseen words, and compare its agreement 
with the human ratings against the humans’ agreement with each 
other.  The automated scores are not good enough to replace 
human ratings, but should reduce human effort by identifying 
contexts likely to be worth rating by hand, subject to a tradeoff 
between the number of contexts inspected by hand, and how many 
of them a human judge will consider nutritious.

Keywords
Vocabulary learning, crowdsourcing, automated scoring, 
regression models.

1. INTRODUCTION
Years of research on vocabulary learning have found that 
vocabulary is a bottleneck to comprehension [1], shown that 
vocabulary instruction benefits students’ word learning and text 
comprehension [2-5], and identified several principles of effective 
vocabulary instruction [6-12].  The principle relevant here is that 
vocabulary learning requires exposure to diverse informative 
example contexts in order to develop a rich mental representations
of word meanings and their relations to other words.

This paper describes AVER (“Automatic Vocabulary Example 
Rater”), an attempt to automatically identify “nutritious” contexts 
– example uses of a word that should help in learning its meaning. 
(Aver is itself a vocabulary word that means assert.) This work is 
part of a larger project that supplied our training and test data in 
the form of target vocabulary words, example contexts in which 
they occur, and human ratings of their nutritiousness.  The 

contexts were retrieved from the web by DictionarySquared.com,
an online high school vocabulary tutor that searches the web for a 
given target word in order to find candidate contexts that contain 
it.  DictionarySquared aims to pick contexts a few dozen words
long, preferring to start and end at boundaries between sentences, 
paragraphs, or HTML blocks. 

This paper describes how AVER trains and evaluate models to 
predict the nutritiousness of such contexts, based on human 
ratings crowdsourced using Amazon Mechanical Turk.

Ideally AVER would identify a set of examples that maximizes 
the amount of actual student learning from a given number of 
contexts, taking into account the diversity of multiple contexts for 
the same word, and possibly even their relation to example 
contexts for other target vocabulary words to learn. However, this
paper focuses on the initial problem of predicting the suitability of 
individual contexts, using crowdsourced human estimates instead 
of students’ subjective ratings of contexts, or objective measures 
of their actual learning gains.

1.1 Relation to Prior Work
Some previous work has addressed the problem of finding 
suitable example contexts to support vocabulary learning, but 
differed in one or more respects from the work reported here.  
REAP [13] selected examples from an already-vetted corpus, 
based on specified selection criteria such as student interests.  
VEGEMATIC [14] constructed 9-word contexts centered on a 
given target vocabulary word by concatenating overlapping 5-
grams from the Google n-gram corpus, based on heuristic 
constraints and preferences; only some of them were good enough 
to use, but hand-vetting them was faster than composing good 
examples by hand.  Follow-on work [15] extended VEGEMATIC 
to generate contexts for a particular sense of a target word.  
AVER also seeks to identify example contexts suitable for 
vocabulary learning, but addresses a different goal than both these 
projects:  instead of applying explicit hand-crafted heuristics, 
AVER learns to predict crowdsourced ratings by human judges.

The rest of the paper is organized as follows. First we describe our 
data set.  Then we describe the features we used, tried but 
dropped, or identified but didn’t implement.  Next we describe 
and evaluate how AVER rates contexts.  Finally we conclude.

2. DATA SET
The data for this work consists of a vocabulary word and a context 
that contains at least one instance of the vocabulary word and that 
illustrates usage of the vocabulary word.  The overall data set 
includes 75,844 contexts for 1,000 vocabulary words, comprising 
100 words from each of 10 difficulty bands based on their 
Standardized Frequency Index [16], a measure of log frequency in 
a text corpus, adjusted by dispersion across multiple domains.
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Dr. Margaret G. McKeown, an international expert on vocabulary 
learning and instruction, rated 93 contexts based on three criteria 
– the typicality of the usage of the vocabulary word in the context, 
the degree to which the context constrains the meaning of the 
vocabulary word, and the comprehensibility of the context for 
students.  Thus the expert provided three ratings of each context, 
one on each criterion, ranging from 1 (very poor) to 5 (very good).  
These data helped in developing a rating scale.  However, it 
would have been infeasible to obtain expert ratings of enough 
contexts to train good models.

Therefore, using Amazon Mechanical Turk, 13,270 contexts were 
each rated by 10 amateur raters who passed a brief test of their 
performance on this task: “Based on context, rate how helpful the 
text is for helping a high school student understand the meaning 
of the target word.  A helpful context is one that reinforces a 
word's meaning and is understandable to high school students.”
Contexts ranged in length from 18 to 137 words, with median 63.

Raters differed in how many contexts they rated, ranging from 
several to hundreds.  They rated contexts on a 5-point scale: 

4 = Very Helpful: After reading the context, a student 
will have a very good idea of what this word means.

3 = Somewhat Helpful

2 = Neutral:  The context neither helps nor hinders a 
student's understanding of the word's meaning.

1 = Bad: The context is misleading or too difficult.

0 = Otherwise inappropriate for high school students. 

We used the mean of their 10 ratings to label our training and 
testing data.  Inter-rater standard deviation averaged 0.81, so 
standard error averaged 0.27.  We labeled the 4107 contexts with 
mean rating at or above 3 as “good,” and the 9150 contexts with
mean rating below 3 as “bad.”

3. FEATURES USED
The remaining 62,574 contexts were not rated by humans.  To rate 
their nutritiousness automatically, AVER uses the human-labeled 
data to train and test regression models to predict the ratings of 
unseen contexts for unseen words, or to predict the probability 
that a context is “good,” i.e., its rating is greater than or equal to 3.

To train these models, we extract features of the vocabulary word 
and context we consider likely to be informative in predicting its 
human rating. We normalize every feature as a z-score by 
subtracting the mean value for that feature and dividing by its 
standard deviation.  By translating all feature values onto a 
common scale, normalization makes their regression coefficients 
comparable.  Normalization does not affect a feature’s correlation 
with Turker ratings or other features because correlation is 
invariant under constant addition or multiplication.  We assign a 
z-score of zero to features with undefined values, so that they 
have no impact on model output.

To describe various types of features, illustrate their values, 
explain their meaning, and discuss the intuition underlying them, 
we will use the following example context for the vocabulary 
word alleviate, with mean Turker rating = 3.7, i.e. quite good:

It is ironic that students are pressured to do well in 
school in order to continue participating in 
extracurricular activities, yet these after school activities 
are just what they need to relieve stress. Sports clubs and 

even being involved in student government can help 
alleviate stress. They allow us to get away from school 
pressure and enjoy ourselves.

3.1 Comprehensibility
Our goal is to help students learn the typical usage of a vocabulary 
word by providing them with example contexts. If the example 
contexts are too difficult to understand, they will not be very 
helpful to students. Thus indicators of comprehensibility are 
useful features in predicting the rating of a context.

Rarer words are typically harder.  The log frequency of alleviate,
i.e., the log of its unigram count (1,596,620) divided by the total 
number of tokens (1,024,908,267,229) in the Google n-grams
corpus, is –13.4 (z-score = –0.090), placing it in the third most 
common of 10 word bands (z-score = 0.150). This feature of the 
target word is the same for all its contexts, but helps control for 
target word frequency in general models to predict context ratings. 

The more and longer the words in a context, the harder it is to 
understand.  The example context has 58 words (z-score = –0.235,
which on average are 5.1 letters long (z-score = 0.358), not 
counting spaces or punctuation.

Flesch-Kincaid scores for reading ease and grade level are widely 
used to assess readability, and we compute them for contexts:

Reading ease =  . . ×   . ×   
Grade level =. ×   + . ×   .
A higher reading ease score characterizes text as easier to read 
and understand. The reading ease score ranges from 0 to 100.  The 
reading ease score for our example context is 47.18, indicating 
that it is moderately difficult (z-score = –0.015). Flesch-Kincaid 
scores depend on how syllables, words, and sentences are 
counted, and hence differ from one implementation to another, but 
not by much.  Thus Microsoft Word reports a reading ease of 48.6 
for this paragraph.

A higher grade level score indicates a context that is more 
difficult to read and understand. The grade level roughly translates 
to the number of years of education required to understand the 
context.   The grade level score for our example context is 11.48
(z-score = –0.217), compared to 11.2 in Microsoft Word. 

Mean human ratings correlated 0.009 with log of target frequency, 
0.023 with word band, –0.082 with context length, –0.039 with 
average word length, 0.043 with reading ease, and –0.030 with 
grade level.

3.2 Local Predictability
AVER extracts local predictability features from a 9-word context 
centered on the target word (e.g. student government can help 
alleviate stress . They allow). They estimate the probability of the 
target word given a local context containing the target word.  Five 
of these local contexts are 5 words long, four are 4 words long, 
three are 3 words long, two are 2 words long, and the target itself 
can be considered a 1-word context, so there are 15 probabilities.
The submitted version of this paper used all 15 of these 
probabilities as features.
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To estimate these probabilities, AVER uses the Google n-grams
tables [16] based on over a trillion words from the web.  These 
tables specify the frequency of every word unigram, bigram, 
trigram, 4-gram, and 5-gram with at least 40 occurrences.  Thus 
AVER can use them to estimate such conditional probabilities up 
to a context length of 5 words.  For example, it would estimate the 
conditional probability of alleviate given the 5-word local context 
government can help ____ stress as a fraction whose numerator is 
the frequency of the 5-gram government can help alleviate stress
and whose denominator is the summed counts of all 5-grams of 
the form government can help * stress.

AVER log-transforms the probability estimates to reduce their 
enormous dynamic range, and normalizes the log probabilities as 
z-scores, which it uses as features to measure local predictability. 

If the numerator is zero, AVER smoothes it to 1. The numerator 
is zero for 88% to 93% of the 5-word contexts, varying by the 
position of the target word.  E.g., help alleviate stress . They is 
not in the 5-gram table. The numerator is zero for 68% to 78% of 
the 4-word contexts, 33% to 44% of the 3-word contexts, and 8% 
to 9% of the 2-word contexts.

What if the denominator is zero (e.g. no 5-grams of the form 
government can help * stress are listed in the 5-gram table)?  The
denominator is zero for 82% to 86% of our 5-word contexts that 
contain the target word; the percentage varies by its position in the 
context.  Likewise, the denominator is zero for 47% to 57% of the 
4-word contexts, and 33% to 44% of the 3-word contexts.  

In the submitted version of this paper, we translated the resulting 
undefined probability into a z-score of zero, so that it would 
neither increase nor decrease the output of our predictive models.  
However, the effect was that some features, especially for 5-
grams, were mostly zero in the training data.  Could we do better?

Inspired by a reviewer comment, we implemented a new version, 
called AVER.b (b for “backoff”) based on an idea from statistical 
language modeling:  in the absence of data about a particular n-
gram, back off to successively shorter n-grams. For instance, if 
the denominator is zero because no 5-grams of the form 
government can help * stress are in the 5-gram table, AVER.b 
looks for 4-grams of the form government can help * or can help 
* stress.  If AVER.b finds both, it backs off to whichever yields a 
higher probability for the target word, on the assumption that it is 
more informative. If it finds neither, it backs off to trigrams, then 
bigrams, then finally the unigram alleviate. 

For our example, 5-word contexts of the form can help * stress .
are the only ones listed in the 5-gram table, with frequency 109 
for alleviate, 455 for reduce, 329 for relieve, and 49 for with.  The 
numerator 109 and denominator 942 yield log probability –2.16.
For the other 4 positions, AVER.b backs off to 4-grams.  Its 4-
gram table yields non-zero denominators for 4-word contexts of 
the form help * stress . (4829), can help * stress (6484), and 
government can help * (6765).  It yields non-zero numerators for 
help alleviate stress . (330) and can help alleviate stress (325) but 
zero for government can help alleviate, which it smoothes to 1, 
yielding respective log probabilities of –2.68, –2.99, and –8.82.
AVER.b finds no 4-grams of the form * stress . They, so it backs 
off to 3-grams, using the count of alleviate stress . (2120) as
numerator and the number of 3-grams of the form * stress .
(1599767) as denominator, yielding log probability -6.63. 

To speed up such computations, we had years earlier indexed each 
table by various sequences of n-gram positions designed to 

quickly retrieve all rows matching the values specified for any 
subset of positions.  Table 1 lists these indexes, which took weeks 
of computer time to build because the tables have so many rows. 

Table 1:  Indexes constructed for Google n-grams tables

Table: # rows: Indexed by:

unigram 13,588,391 1, frequency

bigram 314,843,401 12, 21

trigram 977,069,902 123, 312, 23

4-gram 1,313,818,354 1234, 234, 314, 412, 24, 34

5-gram 1,176,470,663 12345, 5432, 3145, 2541, 1523, 432

For instance, to look up the count of the 5-gram government can 
help alleviate stress efficiently, both versions of AVER use the 
index 12345.  This count is the numerator for estimating the 
probability of alleviate at word 4 given a 5-word context.  To find 
all 5-grams of the form government can help * stress, AVER uses 
the index 1523.  If it finds any, it sums their frequencies as the 
denominator.  If not, AVER.b backs off as described above.  It 
then uses the index 1234 to look up the 4-grams government can 
help alleviate and can help alleviate stress as well as 4-grams of 
the form government can help *.  AVER uses the index 412 to 
find 4-grams of the form can help * stress. 

This method if necessary estimates the conditional probability of 
alleviate given the local bigram context help ____ as the bigram 
frequency of help alleviate divided by the summed frequency of 
all bigrams of the form help *. However, there are 28,578 
bigrams of this form, and it takes non-trivial time to retrieve them 
in order to compute their summed frequency of 270,480,813.  
Instead, both versions of AVER would approximate this sum as 
the unigram frequency of help, namely 271,840,666, which it can 
retrieve quickly from a single row of the Google unigram table.  
This over-estimate includes all bigrams of the form help * that 
occurred fewer than 40 times in the Google n-grams corpus and 
hence do not appear in the Google bigrams table. This 
approximation is possible only if the blank falls at the start or end 
of the n-gram.  Thus it can approximate the number of trigrams of 
the form can help * or * stress ., but not help * stress.  The
approximation was not necessary for 4- or 5-grams because they 
typically have many fewer rows in the n-gram table.

A target word can occur at n different positions in a word window 
of size n, with a separate probability for each window size and 
position within the window, represented as a log probability. 
Consequently, original AVER’s local predictability features 
consist of 1 + 2 + 3 + 4 + 5 = 15 different log probabilities. For 
our example context, their respective z-scores are –0.090; –0.120,
0.740; 0.431, 1.340, –6.775; 0, 0.972, 0.909, –0.351; and 0, 0, 
0.603, 0, 0.  The z-scores of zero reflect the sparsity of n-grams as 
n increases.

The relative weights of these 15 z-scores reflect the overall local 
predictability of the target word alleviate in the local context
student government can help alleviate stress . They allow.
AVER sets these weights empirically as part of optimizing the 
weights for all our features, not just these 15. Correlations of the 
15 features with human ratings range from 0.138 for logP(target 
w1 | ___ w1) to –0.009 for logP(target w1 w2 w3 w4 | ___ w1 w2 
w3 w4).  I.e., before stress, alleviate is likelier to occur, but before 
stress . They allow, the word alleviate is a bit less likely to occur.
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In contrast, AVER.b uses just five local predictability features, 
one for each position in a 5-word context. In our example, their 
respective z-scores are 0.071, 1.006, 1.157, 0.944, and –0.457.  
The third value is largest, i.e. can help __ stress . is the 5-word 
context that most strongly predicts alleviate.  The five features 
correlate with mean Turker ratings at 0.055, 0.038, 0.065, 0.042, 
and 0.062.  

To estimate the probability of the target word at word i given a 5-
word window, AVER.b uses n-grams whose length ni varies by 
the amount of backoff. To reflect the relative specificity of the 
evidence for each estimated probability, we tried weighting it by

but it made model fit slightly worse, so we decided not to weight 
by n-gram length.  Perhaps weighting it differently would help.

3.3 Topicality
Topicality features measure relatedness of the target vocabulary 
word to other content words in the context. The intuition behind 
using such features is that a context containing a typical usage of 
the target vocabulary word is likely to contain other content words 
that co-occur frequently with the target vocabulary word or are 
distributionally similar to it, i.e. tend to co-occur with the same 
words that the target word co-occurs with.  The DISCO tool [17]
at www.linguatools.de measures the co-occurrence of two words 
within 3 words of each other (“S1”) and their distributional 
similarity (“S2”) in a specified corpus, such as the British 
National Corpus (BNC), which contains 119 million tokens and
122,000 unique content words in “samples of written and spoken 
language from a wide range of sources, designed to represent a 
wide cross-section of British English, both spoken and written, 
from the late twentieth century” [18]. AVER uses DISCO to 
compute co-occurrence and distributional similarity between the 
target vocabulary word and each content word in the context.

To score the overall topicality of a context for the target word, we 
must aggregate the relatedness scores for the individual context 
words.  Typically only a few of the context words are strongly 
related to the target word.  Consequently, the overall average 
relatedness of the context dilutes their influence.  Instead, AVER 
averages relatedness over just the most related k words of the 
context.  In informal tests of different values of k, the average of 
the top 5 relatedness scores did best at predicting human ratings.

Thus AVER computes two topicality scores for a context.  The 
co-occurrence z-score for our example context is 5.063.  Context 
words that tend to co-occur with the target vocabulary word
‘alleviate’ include ‘pressure’ and ‘stress’.  The distributional 
similarity z-score for our example context is 1.497.  The context 
word with the highest distributional similarity to ‘alleviate’ is 
‘relieve’. DISCO’s S1 and S2 scores based on BNC correlated 
with mean human context ratings at 0.060 and 0.025, respectively. 

4. FEATURES TRIED BUT ABANDONED
We now discuss several features that we experimented with but do 
not use in AVER, either because they hurt predictive accuracy in 
informal small experiments, or because they were too complex to 
compute efficiently.

4.1 Topicality Based on Google N-grams 
As explained above, AVER computes context typicality using 
DISCO co-occurrence and similarity scores based on the British 
National Corpus.  These scores suffer from data sparsity in the 

case of less-frequent words.  In contrast, the Google n-grams
corpus is based on over 10,000 times as much text, namely a 
trillion words of Web text.  Not only is this corpus four orders of 
magnitude larger than BNC, it is also more relevant to the 
example contexts because they too consist of Web text.

Although the Google n-grams corpus is already in the form of n-
grams rather than the text they are based on, its size makes it 
computationally expensive to compute similarity scores from it,
so in previous work we had precomputed and indexed a table of 
the number of n-grams containing a given pair of words at a 
distance of 1, 2, 3, or 4 words, and those n-grams’ summed 
frequency.  However, this table has 921,643,327 rows.  Despite 
efficient indexing, a target word’s co-occurrences take 
considerable time to look up – over 30 seconds for alleviate.  To 
compute distributional similarity with reasonable speed, we 
therefore estimated it from the first few hundred rows.  
Unfortunately, the resulting feature harmed rather than helped 
model accuracy.  To compute more predictive estimates of co-
occurrence and distributional similarity based on Google n-grams, 
it might help to sample them more judiciously, and to adjust better
for differences among target words to make estimates comparable.

4.2 Language Model Probability
To quantify the likelihood of a given context occurring in English,
we used a language model trained on English text using the 
NLTK language model package at www.nltk.org. The motivation 
for this feature was to penalize contexts that contain ill-formed or 
incomplete sentences.  We dropped this feature because it did not 
improve predictive accuracy, but maybe other variants of it might.

4.3 Weighted Human Ratings 
Apart from different features that we tried out but did not include 
in the final model, we also investigated methods to improve the 
accuracy of the labels computed by averaging 10 raters’ ratings of 
each context.  These methods weighted the average based on each 
rater’s degree of agreement with expert ratings of other contexts.  
The more closely the rater agreed with the expert on the contexts 
they both rated, the more accurately we expected the rater to rate 
contexts that the expert did not rate.

However, most raters did not overlap with the expert in terms of 
which contexts they rated.  We therefore extended the method 
transitively to rate such raters based on their degree of agreement 
with raters who had non-zero overlap with the expert, and on how 
closely those raters agreed with the expert on the contexts they 
both rated.

We also used the overlapping contexts to train a model to predict 
a rater’s expected degree of agreement with the expert, based on 
features of the rater such as the total number of contexts he or she 
had rated.  We hoped to use this model to predict agreement with 
the expert even for raters with zero overlap.  However, the expert 
rated only 93 contexts, so very few raters overlapped with the 
expert.  Even they overlapped too little to accurately estimate the 
rater’s agreement with the expert.  We therefore abandoned the 
approach of rating raters by their actual or expected agreement 
with the expert, and using it to weight the individual ratings 
averaged to rate a given context.  Rating raters might be effective 
given a larger sample of expert ratings, and greater overlap of the 
raters with the expert. 

5. FEATURES FOUND BUT NOT USED
Based on expert linguistic analysis of over 200 contexts whose 
human and automated ratings differed drastically, we identified 
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some syntactic and semantic features not exploited by the current 
models, and likely to improve them.

5.1 Syntactic Features
Additional syntactic features of a context could be computed by 
parsing it with the Stanford parser, and extracting them from the 
parse tree with Tsurgeon and Tregex, using the tools at 
nlp.stanford.edu/software/corenlp.shtml [19].
commondatastorage.googleapis.com/books/syntactic-
ngrams/index.html [20] is a corpus of syntactic n-grams that 
provides counts of dependency tree fragments, which could be 
used to rate the plausibility of the parse and to infer likely 
dependency relations among context words.  If for some reason 
part-of-speech tagging the context is feasible but parsing it is not, 
its dependency relations could be inferred from its part-of-speech 
n-grams [21]. 

Informative syntactic features include the direct object of a target 
verb, e.g. abdicate in Edward abdicated the throne, and the 
objects of prepositions following a target word, e.g. keen in They 
are very keen on education.  Another syntactic feature comes 
from coordinate constructions, e.g., it is characterized by 
inconsistency and vagary.  The coordinated conjuncts are likely 
to be semantically similar or even synonymous.

It might also be useful to incorporate syntactic information into 
the current n-gram features.  In particular, disaggregating n-gram
features by the target word’s part of speech in the context would 
exploit systematic statistical differences between parts of speech.  
For instance, if the target word is a verb, its subject is likely to 
precede it, and shed semantic light on what sorts of agents can 
perform the verb.  Conversely, if the target word is an adjective, 
the noun phrase after it illustrates what the adjective can modify.

5.2 Semantic Features
Our analysis of misrated contexts found that spuriously low 
similarity ratings are often caused by lack of co-occurrences due 
to sparse data for less-frequent words.  This deficiency might be 
addressed by augmenting BNC data with definitions, Wordnet 
gloss examples, and Google n-grams, provided the computational 
issues discussed earlier are satisfactorily addressed.  For example, 
if we use Google n-gram features only where BNC data is too 
sparse, they might not pose such computational bottlenecks.  
Likewise, we could complement DISCO metrics of semantic 
similarity with features based on WordNet links from a target 
word to any of its synonyms, antonyms, hypernyms, and 
hyponyms that occur in the context.

6. AUTOMATED RATING OF CONTEXTS
AVER and AVER.b use the features described above in two types 
of models to rate contexts automatically for a given target word.  
The linear regression model predicts the mean human rating of a 
context.  The logistic regression model is a binary classifier:  it 
predicts whether a context is “good” (rated 3 or above) or “bad” 
(below 3).

We could run these models on all 75,844 contexts, but we can 
evaluate the models only on the 13,270 contexts rated by humans. 
To estimate the performance of both models on unseen data, we 
therefore use 5-fold cross-validation: We split the target words 
randomly into 5 equal subsets so as to partition the contexts into 5 
subsets (“folds”) with no overlap in target words between folds.  
For each fold we train both models on the other 4 folds, measure
their performance on the held-out fold, and average over the held-

out folds to estimate predictive accuracy on unseen target words – 
including the 62,574 unrated contexts, assuming they’re similar.

To estimate performance fairly on unseen target words, it is
essential to avoid overlap in target words between folds.
Otherwise even if contexts do not overlap across folds, overlap in 
target words causes overfitting and inflates estimated performance 
on unseen data, especially if the training and test sets contain very 
similar contexts.  Our initial results suffered from this problem 
before we eliminated overlap in target words across folds.

For the original AVER, the correlation between predicted and 
actual mean human ratings is 0.180 for the linear model and 0.178
for the logistic model. The Area Under Curve (AUC) for the 
original AVER is 0.600, significantly better than the 0.5 expected 
from a random baseline.

The linear model predicts mean human ratings, so it optimizes the 
correlation of predicted to actual ratings. The logistic model 
classifies contexts as good or bad, so it optimizes the number of 
misclassified contexts.  Consequently correlation is higher for the 
linear model, whereas AUC is higher for the logistic model.

Unfortunately, AVER.b fared considerably worse.  Its predictions 
correlated with actual ratings at only .093, with AUC only 0.563.  
Accordingly we focus on the results for the original AVER.

Table 2 shows the original AVER linear model’s coefficients for 
each normalized feature.  According to this analysis, the features 
in boldface are reliable at p < .05 (*), .005 (**), or .0005 (***).

Table 2: Coefficients of linear model for (original) AVER

Feature Coefficient
WordBand –.5691
Flesch-Kincaid Reading Ease ***   .1220
Flesch-Kincaid Grade ***   .0627
Average word length ***   .0520
Unigram logP(t) * –1.017
Bigram logP(t w1 | __ w1) ***   .0621
Bigram logP(w1 t | w1 __) **   .0188
Trigram logP(t w1 w2 | __ w1 w2) *** –.0394
Trigram logP(w1 t w2 | w1 __ w2) .0070
Trigram logP(w1 w2 t | w1 w2 __) *** –.0053
4gram logP(t w1 w2 w3 | __ w1 w2 w3) .0088
4gram logP(w1 t w2 w3 | w1 __ w2 w3) .0213
4gram logP(w1 w2 t w3 | w1 w2 __ w3) –.0109
4gram logP(w1 w2 w3 t | w1 w2 w3 __) ***   .0398
5gram logP(t w1 w2 w3 w4 | __ w1 w2 w3 w4) * –.0297
5gram logP(w1 t w2 w3 w4 | w1 __ w2 w3 w4) –.0002
5gram logP(w1 w2 t w3 w4 | w1 w2 __ w3 w4) .0193
5gram logP(w1w2w3 t w4 | w1 w2 w3 __ w4) * –.0283 
5gram logP(w1 w2 w3 w4 t | w1 w2 w3 w4 __) .0017
Co-occurrence (DISCO S1) ***   .0340
Distributional Similarity (DISCO S2) ***   .0674
Intercept *** 2.5079

As Table 2 shows, unigram log probability of the target word was
by far the strongest predictor of human ratings, and negative:  
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contexts for rarer words get lower ratings, which may reflect that 
the less frequently the target word appears in the Google n-grams
corpus, the less likely it is to have good example contexts on the 
web.  As expected, Reading Ease is a positive predictor:  readable 
example contexts are likelier to help students.  Surprisingly, the 
coefficients for word length and grade level are positive even 
though in isolation they correlate negatively with ratings.  Perhaps 
they reflect positive effects exposed after other predictors account 
for the negative effects, or are simply artifacts of including 
correlated predictors in the model.  Several n-gram based metrics 
of local predictability in the form of conditional probability of the 
target given the surrounding context are significant, but it is not 
clear why some are positive and others are negative. Fewer 
features based on longer n-grams are significant, presumably due 
to sparseness in the corpus.  Finally, both topicality indicators are 
significant positive predictors:  contexts relevant to a target word 
are likelier to be nutritious for learning it.

Although AVER.b’s results were worse, they are easier to 
interpret, and differ from the original AVER. Table 3 shows 
AVER.b linear model’s coefficients for each normalized feature.  
According to this analysis, the features in boldface are reliable at 
p < .05 (*) or .0005 (***); one feature is suggestive at p < .1 (.).

Table 3:  Coefficients of linear model for AVER.b

Feature Coefficient

WordBand *** 0.0508

Flesch-Kincaid Reading Ease *** 0.0567

Flesch-Kincaid Grade * 0.0328

Average word length * -0.0199

Unigram logP(t) 0.0052

logP(t w1 w2 w3 w4 | __ w1 w2 w3 w4) *** 0.0241

logP(w1 t w2 w3 w4 | w1 __ w2 w3 w4) -0.0039

logP(w1 w2 t w3 w4 | w1 w2 __ w3 w4) *** 0.0415

logP(w1w2w3 t w4 | w1 w2 w3 __ w4) . -0.0152

logP(w1 w2 w3 w4 t | w1 w2 w3 w4 __) *** 0.0321

Co-occurrence (DISCO S1) *** 0.0483
Distributional Similarity (DISCO S2) 0.0031

Intercept *** 2.5823
For AVER.b, WordBand is significant and Unigram is not, just 
the opposite of the original AVER.  One reason may be that the 
AVER.b’s context probabilities back off to unigram probability 
for the 8%-9% of 2-word contexts not listed in the bigram table. 
Reading Ease, Grade, and Word Length are significantly positive
in both models.  The five context probabilities show a striking 
pattern: the first, middle, and last positions in a 5-word context 
are highly predictive, whereas the other two are not.  One 
candidate explanation is that target words tend to be adjacent to
function words that provide much less specific information about 
them. However, the five features have similar correlations with 
Turker ratings, ranging from 0.038 to 0.065.  A simpler 
explanation is that successive contexts make correlated 
predictions, and regression assigns the shared variance to just one.

Finally, DISCO S1 was highly significant in both models, but 
DISCO S2 was significant in the original AVER but not AVER.b.  
It is not obvious how to explain this difference based on the 

difference in representation of local context features, i.e., how 
backoff would steal variance from distributional similarity.

To compare the cross-validation results for the original AVER to 
a random baseline, Figure 1 shows the ROC for the percentage of 
good contexts (rated 3 or above) accepted against the percentage 
of bad (rated below 3) contexts accepted, as the acceptance 
threshold on the logistic model’s output probability varies.

Figure 1:  ROC curve for % good vs. % bad contexts accepted
Figure 2 plots the percentages of all the good and bad contexts 
accepted as the probability threshold decreases from 0.8.

Figure 2:  % of contexts accepted vs. probability threshold
As Figure 3 shows, the difference in percentages peaks at 15.2%:  

Figure 3:  % good – % bad vs. probability threshold
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However, bad contexts outnumber good ones, so even when the 
percentage accepted out of all the good contexts exceeds the 
percentage accepted out of all the bad contexts, the accepted 
contexts contains a higher percentage of bad than good contexts, 
and this imbalance worsens as the threshold decreases, as Figure 4 
shows.  

Figure 4:  # of contexts accepted vs. probability threshold

As Figure 5 shows, at a threshold of 0.476, the ratio of good to 
bad contexts reaches a local peak of 0.911 – over twice as high as 
0.449, the overall baseline ratio of good contexts to bad contexts.  
However, at such a high threshold, only 4.4% of the contexts are 
accepted: 278 (6.8%) of the 4107 good contexts and 305 (3.3%) 
of the 9150 bad contexts.  Thus there is a tradeoff between the 
number and quality (% good) of the accepted contexts.

Figure 5:  Ratio of good to bad contexts accepted
Visualizing the accuracy of the predicted ratings requires a 
different type of plot because predicting ratings is not a 
classification task. Accordingly, Figure 6 shows the distribution 
of errors in rating good and bad contexts as a histogram of 

predicted minus actual ratings, binned to the nearest 0.1.  Figure 6 
reflects the fact that there are many more bad than good contexts.  
It shows that almost all the errors in ratings are less than 1 in size.

Figure 6:  Histogram of errors in rating contexts

7. CONCLUSION
This paper presented and evaluated two models for predicting 
human ratings of example contexts for learning vocabulary. In 
contrast to prior work that used manually specified, explicitly 
operationalized criteria to evaluate contexts, both models 
approximate the implicit criteria underlying human judgments.  
Given the wide range of phenomena in language, the diversity of 
criteria that affect the nutritiousness of example contexts, and 
humans’ limited ability to articulate these criteria explicitly and 
operationalize them precisely, models trained on human ratings 
have the potential to surpass hand-crafted models, just as machine 
learning has surpassed hand-crafted classifiers in other domains.

The AVER system reported here is just an initial step toward this 
goal:  it rates contexts reliably more accurately than chance, but 
not by very much.  Its features are shallow, based on local or bag-
of-words statistics rather than deeper linguistic structures such as 
dependency graphs.  Future work should develop more 
sophisticated features.  Our analysis of example contexts with 
large discrepancies between actual and predicted ratings exposed 
some promising syntactic and semantic features, informed by 
human understanding of what makes particular contexts useful to 
learners or not.

Second, supervised learning from labeled data is only as good as 
the quality of the labels.  The larger project of which this work is 
a part has already revised the training and selection of raters. 
However, even expert labels are only a proxy for what actually 
helps real students.  Definitive labels should be grounded 
empirically in data on how much different students learn about 
different words from different example contexts.  To be practical,
this approach will require considerable amounts of data – even 
more so if it tries to model individual differences among students, 
not just what works well overall on average.
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Third, we rated example contexts in isolation, but learning a 
word’s meaning requires encountering it in diverse contexts, not 
just repeated encounters in the same context, because students 
learn different aspects from different contexts.  Optimizing the 
entire sequence of encounters will require identifying what those 
different aspects are, what sorts of contexts help in learning which 
aspects, and how learning is affected by their order and how they 
are related.

Besides accelerating the practical task of selecting good example 
contexts to teach vocabulary, machine-learned models may 
eventually shed new light on what properties make example 
contexts nutritious for learning vocabulary, thereby improving our 
understanding of human vocabulary learning and instruction. 
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