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ABSTRACT
Certain stereotypes can be associated with people from dif-
ferent countries. For example, the Italians are expected
to be emotional, the Germans functional, and the Chinese
hard-working. In this study, we cluster all 15-year-old stu-
dents representing the 68 different nations and territories
that participated in the latest Programme for International
Student Assessment (PISA 2012). The hypothesis is that
the students will start to form their own country groups
when clustered according to the scale indices that summa-
rize many of the students’ characteristics. In order to meet
PISA data analysis requirements, we use a novel combina-
tion of our previously published algorithmic components to
realize a weighted sparse data clustering approach. This
enables us to work with around half a million observations
with large number of missing values, which represent the
population of more than 24 million students globally. Three
internal cluster indices suitable for sparse data are used to
determine the number of clusters and the whole procedure
is repeated recursively to end up with a set of clusters on
three different refinement levels. The results show that our
final clusters can indeed be explained by the actual student
performance but only to a marginal degree by the country.
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1. INTRODUCTION
Certain stereotypes seem to be associated with people from
different countries. The French and Italians, for example,
are expected to be emotional, while Germany has mainly a
functional country stereotype [4], and the Chinese are com-
monly perceived as hard-working [3]. According to the Hof-
stede Model [6], national cultures can be characterized along
six dimensions: power distance, individualism, masculinity,
uncertainty avoidance, pragmatism, and indulgence. The

hypothesis in this study is that also the population of 15-
year-old students worldwide will start to form their own na-
tional groups, i.e., show similar characteristics to their coun-
try peers, when clustered according to their attributes and
attitudes towards education.

PISA (Programme for International Student Assessment) is
a worldwide triannual survey conducted by the Organisa-
tion for Economic Co-operation and Development (OECD),
assessing the proficiency of 15-year-old students from dif-
ferent countries and economies in three domains: reading,
mathematics, and science. Besides evaluating student per-
formances, PISA is also one of the largest public databases1

of students’ demographic and contextual data, such as their
attitudes and behaviours towards various aspects of educa-
tion.

In order to test our hypothesis, we utilize the 15 PISA scale
indices (explicitly detailed in [14]), a set of derived variables
that readily summarize the background of the students in-
cluding their characteristics and attitudes. In particular,
the escs index measures the students’ economic, social and
cultural status and is known to account for most variance in
performance [9]. Additionally, 5 scale indices (belong, atschl,
attlnact, persev, openps) are generally associated with per-
formance on a student-level, while 9 further ones (failmat,
intmat, instmot, matheff, anxmat, scmat, mathbeh, matintfc,
subnorm) are directly related to attitudes towards mathe-
matics, the main assessment area in the most recent survey
(PISA 2012). However, since the assessment material ex-
ceeds the time that is allocated for the test, each student is
administered solely a fraction of the whole set of cognitive
items and only one of the three background questionnaires.
Because of this rotated design, 33.24% of the PISA scale
indices values are missing.

Moreover, PISA data are an important example of large data
sets that include weights. Only some students from each
country are sampled for the study, but multiplied with their
respective weights they should represent the whole 15-year-
old student population. The sample data of the latest PISA
assessment, i.e., the data we are working with, consists of
485490 students which, taking the weights into account, rep-
resent more than 24 million 15-year-old students in the 68
different territories that participated in PISA 2012.

1See http://www.oecd.org/pisa/pisaproducts/.

Proceedings of the 8th International Conference on Educational Data Mining 156

http://www.oecd.org/pisa/pisaproducts/


The content of this paper is as follows. First, we describe the
clustering algorithm that allows us to work with the large,
sparse and weighted data (Sec. 2). Second, we present the
clustering results (Sec. 3) and their relevance to our hypoth-
esis, i.e., how the clusters on the different levels can be char-
acterized and to what extent they form their own country
groups. Finally, in Sec. 4, we conclude our study and discuss
directions for further research.

2. THE CLUSTERING APPROACH
Sparsity of PISA data must be taken into account when
selecting or developing a data mining technique. With miss-
ing values one faces difficulties in justifying assumptions on
data or error normality [14, 15], which underlie the classical
second-order statistics. Hence, the data mining techniques
here are based on the so-called nonparametric, robust statis-
tics [5]. A robust, weighted clustering approach suitable for
data sets with a large portion of missing values, non-normal
error distribution, and given alignment between a sample
and the population through weights, was introduced and
tested in [16]. Here, we apply a similar method with slight
modifications, along the lines of [7] for sampled initialization
and [17] for hierarchical application. All computations were
implemented and realized in Matlab R2014a.

2.1 Basic method
Denote by N the number of observations and by n the
dimension of an observation of the data matrix X; and
let {wi}, i = 1, . . . , N be the positive sample-population-
alignment weights. Further, let {pi}, i = 1, . . . , N , be the
projection vectors that define the pattern of the available
values [10, 1, 14, 15]. The weighted spatial median s with
the so-called available data strategy can be obtained as the
solution of the projected Weber problem

min
v∈Rn

J (v), J (v) =

N∑
i=1

wi‖Diag{pi}(xi − v)‖, (1)

where Diag{pi} denotes the diagonal matrix corresponding
to the given vector pi. As described in [8], this optimiza-
tion problem is nonsmooth, i.e., it is not classically differen-
tiable. However, an accurate approximation for the solution
of the nonsmooth problem can be obtained by solving the

regularized equation (see [1])
∑N
i=1

wiDiag{pi}(s−xi)
max{‖Diag{pi}(s−xi)‖,δ}

=

0 for δ > 0. This is solved using the SOR (Sequential
Overrelaxation) algorithm [1] with the overrelaxation pa-
rameter ω = 1.5. We choose δ =

√
ε for ε representing the

machine precision.

In case of clustering with K prototypes, i.e., the centroids
that represent the K clusters, one determines these by solv-
ing the nonsmooth problem min{ck}Kk=1

J ({ck}), where all

ck ∈ Rn and

J ({ck}) =

K∑
k=1

∑
i∈Ik

wi‖Diag{pi}(xi − ck)‖. (2)

Hereby, Ik determines the subset of data being closest to the
kth prototype ck. The main body of the so-called iterative
relocation algorithm for minimizing (2), which is referred as
weighted k-spatialmedians, consists of successive application
of the two main steps: i) find the closest prototype for each
observation, and ii) recompute all prototypes ck using the

attached subset of data. For the latter part, we compute the
weighted spatial median as described above. Note that the
first step of finding the closest prototype of the ith observa-
tion, mink ‖Diag{pi}(xi − ck)‖, does not need to take the
positive weight wi in (2) into account.

The next issues for the proposed method are the determina-
tion of the number of clusters K and the initialization of the
clustering algorithm for a given k. Basically, the quality of
a cluster can be defined by minimal within-cluster distances
and maximal between-cluster distances. Therefore, for the
first purpose, we use the approach suggested in [16] and
apply three internal cluster indices, namely Ray-Turi (RT)
[13], Davies-Bouldin (DB) [2], and Davies-Bouldin∗ (DB∗)
[11]. All these indices take both aspects of clustering qual-
ity into account: In essence, the clustering error (2), i.e., the
sum of the within-cluster distances, to be as small as pos-
sible, is divided with the distance between the prototypes
(minimum distance for RT and different variants of average
distance for DB and DB∗), to be as large as possible. When
testing a number of possible numbers of prototypes from
k = 2 into Kmax, we stop this enlargement when all three
cluster indices start to increase.

Concerning the initialization, again partly similarly as in
[16], we use a weighted k-means++ algorithm in the ini-
tialization of the spatial median based clustering with the
weights

√
wi. A rigorous argument for such an alignment

was given in [9] where the relation between variance (weigh-
ted k-means) and standard deviation (weighted k-spatialme-
dians) was established. Because of local character, the ini-
tialization and the search are repeated Ns = 10 times and
the solution corresponding to the smallest clustering error
in (2) is selected. Furthermore, the weighted k-means++ is
applied in the ten initializations with ten different, disjoint
data samples (10% of the whole data) that were created us-
ing the so-called Distribution Optimally Balanced, Stratified
Folding as proposed in [12], with the modified implementa-
tion given in [7]. Such sampling, by placing a random ob-
servation from class j and its Ns− 1 nearest class neighbors
into different folds, is able to approximate both classwise
densities and class frequencies in all the created data sam-
ples. Here, we use the 68 country labels as class indicators
in stratification.

2.2 Hierarchical application
Because a prototype-based clustering algorithm always works
with distances for the whole data, the detection of clusters
of different size, especially hierarchically on different scales
or levels of abstraction, can be challenging. This is illus-
trated with the whole PISA data set in Fig. 1, which shows
the values of the three cluster indices for k = 1, . . . , 68. For
illustration purposes, also the clustering error as defined in
(2), denoted as ‘Elbow’, is provided. All indices have their
minimum at k = 2 which suggest the division of the PISA
data to only two clusters. Note that the geometrical den-
sity and low separability of the PISA scale indices might be
related to their standardization to have zero mean and unit
variance over the OECD countries.

Hierarchical application of the k-spatialmedians algorithm
was suggested in [17]. The idea is simple: Similarly to the
divisive clustering methods, apply the algorithm recursively
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Figure 1: Cluster indices and error slope for the whole sparse PISA data scaled into range [0, 1].

to the cluster data sets that have been determined using
the basic approach. For the PISA data here, we realized a
recursive search of the weighted k-spatialmedians with the
depth of three levels, ending up altogether with 2 (level 1),
4 + 4 (level 2), and 6 + 12 + 10 + 6 & 2 + 8 + 3 + 6 clusters
(level 3). The wall-clock time for each individual clustering
problem was several hours.

3. RESULTS
As discussed in Sec. 1, we use the 15 PISA scale indices
that readily summarize most of the students’ background as
data input for our clustering algorithm. By following the
mixture of the partitional/hierarchical clustering approach
as described above, we first of all, provide the results of the
weighted sparse data clustering algorithm when applied to
the whole PISA data (first level). Then, recursively, the
results of the algorithm for the newly obtained clusters at
the second and third level of refinement are given. For all
the clusters at each level, we compute the relative share of
students from each country, i.e., the weighted number of
students in the cluster in relation to the whole number of
15-year-old students in the country. Moreover, in order to
reveal the deviating characteristics of the appearing clusters,
we visualize and interpret (i.e., characterize) the cluster pro-
totypes in comparison to the overall behavior of the entire
15-year-old student population in the 68 countries by always
subtracting the weighted spatial median of the whole data
from the obtained prototypes.

3.1 First Level
Since, as pointed out in Sec. 2.2, all the sparse cluster in-
dices suggest two, we first run our weighted sparse clustering
algorithm for K = 2. The clustering result on the first level
is shown in Fig. 2. The division of these clusters is unam-
biguous: All scale indices that are associated with high per-
formance in mathematics have a positive value for Cluster 2
and a negative value for Cluster 1. Likewise, those two scale
indices that are associated with low performance in mathe-
matics, i.e., the self-responsibility for failing in mathematics
(failmat) and the anxiety towards mathematics (anxmat),
show a positive value for Cluster 1 and a negative value for
Cluster 2. As can be expected by these profiles, the mean
mathematics performance of Cluster 1 is much lower than
the mean math performance of Cluster 2 (see Table 1).

When we consider the relative number of students from dif-

Table 1: Characteristics of global/first level clusters
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂
1 13399687 (52%) 445 442 449
2 11321033 (48%) 468 461 475
all 24720720 (50%) 456 451 461

ferent countries, we see that every country has students in
both clusters. In fact, the distribution of the 15-year-old
student population between the two clusters is quite equal
in each country. For Cluster 1, the mean percentage of stu-
dents from a country is 55% while for Cluster 2, the mean
is 45%, and both have the standard deviation of 10. In all
of the in PISA participating countries and territories, there
are higher and lower performing students and it seems that
they share the same characteristics. Additionally, the dis-
tribution between girls and boys is quite equal, although
somewhat in favor of boys: Only 48% of the students in the
cluster with the scale indices that are associated with high
performance in mathematics are girls. Moreover, the aver-
age math score of the boys is in both clusters higher than
the average math score of the girls (see Table 1).

3.2 Second Level
Following the approach as described above, we run the clus-
tering algorithm again, but this time for each of the two
global clusters obtained in the first level separately. Accord-
ing to the same rule given in Sec. 2.1, i.e., stop enlarging k
during the search when all the cluster indices are increasing,
we get for both of the global clusters K = 4 as a number for
their subclusters.

3.2.1 Subclusters of Cluster 1

Table 2: Characteristics of subclusters of Cluster 1
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂
1-1 2792046 (56%) 439 438 440
1-2 3873035 (52%) 391 388 394
1-3 3072064 (58%) 466 464 468
1-4 3662542 (45%) 491 489 492

The subclusters of the global Cluster 1 are visualized in
Fig. 3 and characterized in Table 2. If we set the threshold
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Figure 2: Characterization of the two global clusters.

Figure 3: Characterization of the four subclusters of Cluster 1.

of how many students should at least be from one country to
21%, we obtain the following countries for the subclusters:
Cluster 1-1 (i.e., subcluster 1 of Cluster 1) contains at most
students from East Asia with the exception of China: More
than 30% of Japan’s 15-year-old student population belongs
to this cluster, 26% of Korea’s and and 25% of Taiwan’s.
The remaining students represent a mixture from many dif-
ferent countries which, however, are only represented by less
21% of their 15-year-old student population.

Cluster 1-2 contains almost entirely students from develop-
ing countries. Hereby, students from Vietnam form with
49% the majority. Moreover, Indonesia, Thailand (both
> 30%) and Brazil, Colombia, Peru, Tunisia, and Turkey
(all > 25%) are represented by this cluster. The cluster is,
as can be seen from Fig. 3, most notably characterized by a
very low economic, social and cultural status (escs). That
means that the students in this cluster - as a subset of the
global Cluster 1 which already represented the more disad-
vantaged students (see Fig. 2) - are the most disadvantaged.

Cluster 1-3 consists in the majority of students from Eastern
Europe: Serbia, Montenegro, Hungary, Slovak Republic (all
> 23%) and Romania (almost 22%) constitute the majority.
As we can see from Fig. 3, this cluster is the only one in the
group of subclusters of the global Cluster 1, that generally
was characterized by negative attitudes and perceptions (see
Fig. 2), which actually can be distinguished by positive at-
titudes towards school (attlnact). Moreover, it is the cluster
with mainly girls in it.

Cluster 1-4 accommodates mainly students from Western

and Central Europe. Most of the 15-year-old student pop-
ulation from the Netherlands (39%) are in this cluster, fol-
lowed by Belgium with 29%, and the Czech Republic with
27%. This cluster is characterized by the highest escs among
the students of the global Cluster 1. Furthermore, although
they have negative values in most of the scale indices, they
have a higher self-concept in math, and also much higher in-
tentions to use mathematics later in life in comparison with
their peers.

3.2.2 Subclusters of global Cluster 2

Table 3: Characteristics of subclusters of Cluster 2
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂
2-1 3127958 (43%) 526 523 528
2-2 2739481 (54%) 457 457 458
2-3 3521092 (50%) 400 397 403
2-4 1932502 (44%) 515 506 523

The subclusters of the global Cluster 2 are characterized in
Fig. 4 and summarized in Table 3. Again, we search for
clusters that mostly deviate from the others. Cluster 2-1 is
such a cluster: The students in this cluster have the highest
average math score (see Table 3), the highest intentions to
pursue a mathematics related career but a sense of belong-
ing to school (belong) and subjective norms in mathematics
(subnorm) that are only about the same as the average of
the whole 15-year-old student population (see Fig. 4). The
subjective norms in mathematics measure how people im-
portant to the students, such as their friends and parents,
view mathematics. In the global Cluster 2, those students
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Figure 4: Characterization of subclusters of Cluster 2.

who had high positive values in the other scale indices asso-
ciated with high performance in mathematics, also thought
that their friends and family view mathematics as impor-
tant (their subnorm value is very high, see Fig. 2). Students
in this cluster, however, seem not to be influenced or af-
fected by what people close to them think. It appears to be
a rather strong cluster that also has the highest percentage
of boys in it. For this cluster, we again compute the rel-
ative number of students from each country. And indeed,
it shows a very clear country-profile. The highest percent-
age of students come from the English-speaking and Nordic
countries: Denmark (more than 30%), Iceland and Sweden
(both > 26%) have the highest percentages of their 15-year-
old student population in this cluster. Followed by the two
highest performing districts in the USA, namely Connecti-
cut and Massachusetts, with both more than 25%. Besides
these countries and territories, the cluster has also a high
share of students from Norway, Finland, Great Britain, Aus-
tralia, and Canada (almost 22% or more). Additionally, the
USA has with more than 21% still a relatively high share of
students in this cluster. According to the Hofstede Model
(see Sec. 1), all of these countries are characterized by high
individualism.

Also Cluster 2-3 shows an explicit country profile: 36% of the
15-year-old student population from India are in this clus-
ter. Moreover, the cluster consists of students from Peru and
Thailand (both 30%), Turkey (27%) and Vietnam (26%).
Altogether, we find here the most disadvantaged students
(indicated by the very negative escs) among the subgroups
of the global Cluster 2 and the largest share of students
come from the developing countries. However, these stu-
dents have very positive attitudes towards education and
show relatively high values in all scale indices that are asso-
ciated with high performance in mathematics.

To this end, Cluster 2-2 and Cluster 2-4 have less obvious
country affiliations. Cluster 2-2 can at best be described as
containing mostly countries with Islamic culture. Most of
the students are from the United Arab Emirates and Albania
(both 21%), Kazakhstan and Jordan (both 19%). According
to the Hofstede Model, these countries are similar in that
way that they all show very high power distance. Cluster
2-4 has with 25% the highest share of students also from
Kazakhstan, but the remaining countries in this cluster (all
have less than 17% of their 15-year-old students population
in it) are widely mixed.

Altogether, among the clusters at the second level, Cluster
2-1 appears to be the most interesting one, i.e., the most
distinct group with the clearest country profiles.

3.3 Third Level
Recursively, we repeat the same approach on the next level,
i.e., for the subclusters of the eight clusters identified in
Sec. 3.2. For all the new subclusters, the best number of clus-
ters as determined by the cluster indices are as follows: 6,
12, 10, and 6 for the four subclusters of the first global clus-
ter, and 2, 8, 3, and 6 for the four subclusters of the second
global cluster. This means that we have 53 different clusters
on this level - almost as many as different countries/territo-
ries in the whole PISA 2012 data. If our hypothesis is true,
we should be able to find clusters that clearly contain more
students from certain countries. Exactly as in Sec. 3.2, we
first of all compute the basic facts of each cluster. Note,
however, that the deeper we go in the hierarchy the more
clusters we encounter and the more difficult it becomes to
define clear rules and thresholds to distinguish significant
characterizations of clusters.

3.3.1 Subclusters of Cluster 1-3

Table 4: Characteristics of subclusters of Cluster 1-3
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂

1-3-1 335240 (61%) 493 492 495
1-3-2 262779 (48%) 539 540 538
1-3-3 368591 (51%) 461 460 462
1-3-4 273629 (66%) 492 491 492
1-3-5 359721(56%) 427 428 426
1-3-6 275513 (63%) 437 436 438
1-3-7 264017 (63%) 443 441 447
1-3-8 318607 (63%) 460 457 464
1-3-9 216704 (60%) 421 418 424
1-3-10 397263 (56%) 481 482 480

The first interesting cluster appears in the 1-3 group. Clus-
ter 1-3-8 accommodates mainly students from South West
Europe: Austria, Liechtenstein, Spain, France, and Italy.
According to the Hofstede Model, all of these countries are
depicted by high avoidance of uncertainty.

3.3.2 Subclusters of Cluster 1-4
The characterization of the subclusters in the 1-4 group are
provided in Fig. 6, and summarized in Table 5. Also here,
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Figure 5: Characterization of subclusters of Cluster 1-3.

Figure 6: Characterization of the subclusters of Cluster 1-4.

Table 5: Characteristics of subclusters of Cluster 1-4
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂

1-4-1 485599 (48%) 481 480 482
1-4-2 520763 (38%) 556 558 555
1-4-3 771799 (53%) 494 494 495
1-4-4 489528 (43%) 497 491 501
1-4-5 754515 (48%) 470 467 473
1-4-6 640338 (38%) 461 465 458’

we are searching for explicit country clusters. This search is
realized by looking at the histograms and identifying those
clusters that for some countries have a considerably higher
share of their 15-year-old student population in it than for
the remaining countries. The histogram in Fig. 7 shows one
example of this for Cluster 1-4-2: In this cluster, the por-
tion of students in it deviates significantly from the others
for exactly one country with 10% of its 15-year-old student
population. This country is the Netherlands. For all other
countries, the share of their 15-year-old student population
in this cluster is less than 6% (see Fig. 7). As can be seen
from Fig. 6, this ‘Netherlands Cluster’ is characterized by
having the highest math self-efficacy amongst its group.

Cluster 1-4-1 is again a mixture of Nordic and English-
speaking countries. The highest share of students in this
cluster come from the United Kingdom, Ireland, Norway,
New Zealand, and Sweden. As these two country profiles
were already detected to be in the same cluster on the higher
cluster level (see Sec. 3.2.1), it really seems that students
from these countries share many similar characteristics.

Figure 7: Histogram of the distribution of countries
from the students in Cluster 1-4-2.

Cluster 1-4-4 has the highest share of East Asian countries
including two of the three districts of China that partici-
pated in PISA 2012. Most of the students in this cluster
come from Japan, followed by Taiwan, Macao-China and
Hong Kong-China. One of the most distinct feature of this
cluster is, as can be seen from Fig. 6, the high self-concept
in mathematics (scmat). According to the Hofstede Model
(see Sec. 1), all of these countries show high pragmatism.

3.3.3 Subclusters of Cluster 2-1

Table 6: Characteristics of subclusters of Cluster 2-1
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂

2-1-1 1346930 (40%) 562 557 566
2-1-2 1781028 (45%) 498 500 497

From Sec. 3.2, we concluded that Cluster 2-1 was the most
interesting one. Moreover, Cluster 2-1 was the cluster that
had the highest share of two country profiles in it: On the
one hand, the English-speaking countries, and, on the other
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Figure 8: Characterization of subclusters of Cluster 2-1.

hand, the Nordic countries. Interestingly, the cluster indices
also suggest to divide this cluster into two further countries.
However, when we look again at those countries that have
the highest percentages of their 15-year-old students, the
two clusters still contain mostly students from both country
profiles. For example, 15% of the Danish 15-year-old stu-
dent population are in Cluster 2-1-1, and 14% are in Cluster
2-1-2. Similarly, 14% of the 15-year-old student population
from Connecticut are in Cluster 2-1-1, and 11% in Cluster 2-
1-2. Apparently, this cluster does not divide any further be-
tween Nordic and English-speaking countries. It only divides
the high-performing students from these countries into two
types: On the one hand, the type that has a very high self-
efficacy (matheff ) as well as self-concept (scmat) in math,
i.e., the students that have a very high belief in their own
ability, and, on the other hand, the type that has very high
intentions to pursue a math related career (matintfc).

However, also a new clear group of countries appears. Clus-
ter 2-1-1 has a very high share of German-speaking countries
in it: More than 12% of Germany’s and Switzerland’s 15-
year-old student population, and 10% of Austria’s can be
found in this cluster. None of these countries appear in the
sibling Cluster 2-1-2 when the threshold is set to 9%. It
seems that high-performing German-speaking students feel
very confident in solving mathematical tasks but only show
a moderate positive value in the intentions to use mathe-
matics later in life, a characteristic that one would associate
the most with the traditional functional German stereotype
(see Sec. 1) that is expected to attach great importance to
utilitarianism [4]. According to the Hofstede Model, all of
these three German-speaking countries are considered to be
highly masculine.

3.3.4 Subclusters of Cluster 2-4

Table 7: Characteristics of subclusters of Cluster 2-4
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂

2-4-1 186107 (37%) 533 528 536
2-4-2 430729 (40%) 582 575 588
2-4-3 261838 (45%) 440 436 443
2-4-4 378120 (50%) 477 468 486
2-4-5 430105 (47%) 520 519 521
2-4-6 245603 (40%) 516 500 526

The subclusters of Cluster 2-4 are summarized in Table 7
and characterized in Fig. 9. The clearest country profile
among this group is 2-4-6: It consists to the highest share of
students from high-performing Asian countries: Shanghai-
China and Singapore. As we can see from Fig. 9, similarly to
Cluster 1-4-4 (see Sec. 3.3.2) that also contained a high share
of East Asian students, this cluster is characterized as well
by a high self-concept in mathematics (scmat). The students
in this cluster believe that mathematics is one of their best
subjects, and that they understand even the most difficult
work. Furthermore, as already found for Cluster 1-4-4, also
for this cluster the main countries show high pragmatism
according to the Hofstede Model.

4. CONCLUSIONS
In this article, we have introduced a clustering approach
that has both partitional and hierarchical components in it.
Moreover, the algorithm takes weights, aligning a sample
with its population into account and is suitable for large
data sets in which many missing values are present.

The hypothesis in our study was that the different clus-
ters determined by the algorithm, when all students with
their attitudes and behaviors towards education are given
as input, could be explained by the country of the students
in particular clusters. Our overall results on the first level
showed that in each cluster students from all countries exist
and that the actual test performance (as well as a simple
division in positive and negative attitudes towards educa-
tion) explain the clusters much better than the country from
which the students in the particular cluster come from.

However, on the next two levels many clusters were de-
tected that obviously had a much higher share of students
from certain countries. For example, an Eastern Europe,
a German-speaking, an East Asia, and a developing coun-
tries cluster were identified. On the second level, also a very
clear cluster that consisted to a high portion of Nordic and
English-speaking countries appeared. This cluster did not
split further on the next level to fully separate these two
distinct country profiles. Instead, the cluster was divided
into two student types, of which both the Nordic as well as
the English-speaking countries seem to have an almost equal
share of their students from.

Summing up, we conclude that groups of similar countries,
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Figure 9: Characterization of subclusters of Cluster 2-4.

e.g., by means of geographical location, culture, stage of de-
velopment, and dimensions according to the Hofstede Model,
can be found by clustering PISA scale indices but the actual
country stereotypes exist only to a very marginal extent.
However, in a further work the rules how to find relevant
clusters could be improved and more variables than the 15
scale indices utilized here could be included to the algorithm.
The PISA scale indices are linked to math performance and
in every country there are higher and lower performing stu-
dents who share similar overall characteristics. Neverthe-
less, we think that the overall results presented here show
a very promising behavior already, and we expect that the
resulting clusters of our algorithm could be explained even
clearer by the country of the students if additional informa-
tion such as the students’ temperament would be available
for the clustering algorithm.
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