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ABSTRACT 
Inquiry skills are an important part of science education standards. 
There has been particular interest in verifying that these skills can 
transfer across domains and instructional contexts [4,15,16]. In 
this paper, we study transfer of inquiry skills, and the effects of 
prior practice of inquiry skills, using data from over 2000 middle 
school students using an open-ended immersive virtual 
environment called Virtual Performance Assessments (VPAs) that 
aims to assess science inquiry skills in multiple virtual scenarios. 
To this end, we assessed and compared student performance and 
behavior within VPA between two groups: novice students who 
had not used VPA previously, and experienced students who had 
previously completed a different VPA scenario. Our findings 
suggest that previous experience in a different scenario prepared 
students to transfer inquiry skills to a new one, leading these 
experienced students to be more successful at identifying a correct 
final conclusion to a scientific question, and at designing causal 
explanations about these conclusions, compared to novice 
students. On the other hand, a positive effect of novelty was found 
for motivation. To better understand these results, we examine the 
differences in student patterns of behavior over time, between 
novice and experienced students. 
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1. INTRODUCTION 
One of the important goals for science education is to help 
students develop the scientific knowledge and practices needed to 
actively and effectively engage in science inquiry. As such, 
science inquiry skills have been a critical component of the K-12 
science curriculum standards [18]. It is particularly crucial that 
students acquire inquiry skills which are not specific to a domain 
or instructional context, but which can transfer broadly, preparing 
students for using science and understanding science in their 
future schooling, and in their lives [4, 15, 16]. 

With the increasing popularity of online learning systems that 
engage learners in science inquiry activities [e.g., 7, 21], 

Educational Data Mining (EDM) techniques have proven 
effective in automatically assessing science inquiry skills. Sao 
Pedro et al. demonstrated that science inquiry skills can be 
assessed within online learning activities using EDM, predicting 
future performance not only within the same domain [21], but also 
across domains [22]. 

Many studies of student inquiry behavior have been conducted 
within open-ended online learning environments, such as virtual 
environments, in which users have the freedom to decide their 
own inquiry behaviors. This, combined with the fact that these 
open-ended environments are typically more loosely-scaffolded 
and coarser-grained than more tightly-scaffolded systems such as 
intelligent tutoring systems or simulations [e.g., 21], makes the 
assessment of science inquiry in these contexts challenging. 
Sequential Pattern Mining [1], a methodology that has been 
extensively used in EDM [23], has shown potential in discovering 
complicated patterns of learning behavior within open-ended 
learning environments. For example, Kinnebrew and colleagues 
[13] applied sequential pattern mining techniques to log data 
produced by students engaging in activities within Betty’s Brain, 
an open-ended learning environment for science learning. This 
allowed them to study the differences in students’ productive and 
unproductive learning behaviors by identifying frequent 
sequential patterns related to the use of concept maps and 
determining which sequential patterns were characteristic of high-
performing students as compared to low-performing students. 
Differential pattern mining was also used by Sabourin and 
colleagues [20] to analyze the differences in inquiry behaviors 
utilized by learners depending on their level of self-regulation 
within a virtual environment. In another study, Gutierrez-Santos et 
al. [10] conducted analysis of student actions to detect repetitive 
sequences in an open-ended learning environment. 

Another EDM approach that has proven useful for the study of 
inquiry behaviors in open-ended contexts involves in-depth 
analysis of features distilled from log data. For instance, Baker 
and Clarke-Midura [2] distilled a set of features related to inquiry 
behavior from log data in Virtual Performance Assessments 
(VPAs), an open-ended immersive virtual environment used in the 
current study, to develop predictive models of student success on 
two inquiry tasks. The current study combines both sequential 
pattern mining and analysis of features related to science inquiry 
to study transfer of inquiry skills. In doing so, we also analyze 
differences in inquiry behavior between novice students and 
experienced students.  

The degree of student experience with an environment can also be 
hypothesized to have important impact on their inquiry. Clark [6] 
argued that novelty effect occurs when new computer programs 

 

 

Proceedings of the 8th International Conference on Educational Data Mining 136



are introduced. In those cases, the novel computer programs 
initially attract student attention, leading to increased efforts 
invested, persistence, motivation, and achievement gains. 
Previous studies [e.g., 8, 12, 24] indicated that students showed 
greater initial enthusiasm and motivation in classrooms when 
novel educational technologies were introduced. This enthusiasm 
gradually diminished as students were more familiar with the 
technologies and the initial novelty effect wore off. Therefore, in 
our study, we investigate whether relative novelty created by the 
introduction of a new 3D virtual environment will lead to 
differences in motivation and learning between novice students 
and experienced students. We also study the relationship between 
the potential novelty effect and inquiry skills. 

To research these questions, we assess and compare student 
performance and behavior within VPA between two groups: 
novice students who had not used VPA previously, and more 
experienced students who had previously spent one class session 
completing a different VPA scenario. We compare student 
performance on two inquiry skills – identifying a correct final 
claim and designing causal explanations. We also compare 
student responses to a motivation survey between the two groups. 
Finally, we analyze the difference in student behavior between the 
two groups using differential sequence mining. 

2. VIRTUAL PERFORMANCE 
ASSESSMENTS 
This study was conducted within the context of Virtual 
Performance Assessments (VPAs; see http://vpa.gse.harvard.edu). 
VPAs are online 3D immersive virtual environments, designed 
using the Unity game development engine [26] that assess middle 
school students’ science inquiry skills, in line with state and 
national standards for science content and inquiry processes. 
Within VPAs, whose interface is similar to that of video games, 
students engage in authentic inquiry activities and solve scientific 
problems by navigating around the virtual environment as an 
avatar, making observations, interacting with non-player 
characters (NPCs), gathering data, and conducting laboratory 
experiments. VPAs enable automated and non-intrusive collection 
of process data (logged actions and behaviors) and product data 
(student final claims), facilitating the capture and assessment of 
science inquiry in situ. 

Multiple VPA assessment scenarios have been developed. In this 
study, two scenarios were used, the frog scenario and the bee 
scenario. In the frog scenario (see Figure 1), students are 
presented with a six-legged frog in the virtual environment and 
have to collect and reason through evidence to determine what is 
causing the frog’s mutation, selecting from a set of possible causal 
factors including parasites (the correct causal explanation), 
pesticides, pollution, genetic mutation, and space aliens. In this 
scenario, students can talk with NPCs from four virtual farms who 
provide conflicting opinions, collect items such as frogs, tadpoles, 
and water samples at each farm, run laboratory experiments on 
water quality, frog blood and DNA, and read informational pages 
from a research kiosk. Once students think that they have 
sufficient data, they submit a final conclusion on the causal factor 
resulting in the mutation, and justify their final claim with 
supporting evidence. In the bee scenario, students must determine 
what causes the death of a local bee population. Similar to the 
frog scenario, they can talk with NPCs from four different farms, 
read informational pages at the research kiosk, and conduct tests 
(e.g., nectar test, protein test, genetic test) on the items they have 
collected at the farms (e.g., nectar samples, bees, larvae). By the 

end of the assessment, students choose a final claim about the 
cause of the bee deaths from possible hypotheses including 
genetic mutation (the correct causal factor), parasites, pesticides, 
pollution, and space aliens, and support their final claim with 
evidence. The activities in each VPA scenario are deliberately 
similar, allowing researchers to assess performance of the same 
inquiry practices in different contexts. 

 
Figure 1. Screenshots of the VPA frog scenario. 

3. DATA SET 
Data for this study was composed of action logs produced by 
middle school students who used Virtual Performance 
Assessments within their science classes at the end of the 2011-
2012 school year. A total of 2,431 students in grades 7-8 (12-14 
years old) from 138 science classrooms (40 teachers) participated 
in this study. These students were from a diverse range of school 
districts in the Northeastern and Midwestern United States, and 
Western Canada. A total of 1,985 students completed the frog 
scenario and 2,023 students completed the bee scenario, with 
1,579 students completing both scenarios. Overall, students 
completed 423,616 actions within the frog scenario and 396,863 
actions within the bee scenario. They spent an average of 30 
minutes and 47 seconds (SD = 14 minutes, 6 seconds) in the frog 
scenario and an average of 26 minutes and 5 seconds (SD = 12 
minutes, 27 seconds) in the bee scenario. 

The 2,431 students were randomly assigned to begin with either 
the frog scenario or the bee scenario. Two weeks later, they were 
assigned to complete the other scenario. Therefore, within each 
scenario, participants could be put into two groups – novice users 
who were using VPA for the first time (novice group), and 
experienced users who had previously experienced the other VPA 
scenario (experienced group). Accordingly, among the 1,985 
students who completed the frog scenario, 1,232 completed the 
frog scenario as their first scenario (frog-novice) and 753 had 
previous experience in the bee scenario (frog-experienced). 
Among the students who completed the bee scenario, 1,198 
students had no previous experience in the frog scenario (bee-
novice), whereas 825 had previous experience in the frog scenario 
(bee-experienced). Student actions and performance in the virtual 
environment were logged as they worked within each VPA 
scenario and used for later analyses. 

4. OVERALL ANALYSIS 
In this section, we compare student performance on identifying a 
correct final claim and constructing causal explanations, the 
amount of time spent on VPA, and students’ motivation level, 
between the novice group and the experienced group, within each 
VPA scenario. 

4.1 CFC and DCE Performance 
To explore the transfer of student science inquiry skills between 
scenarios, two measures of student performance within the VPAs 
were collected and compared between the two groups of students 
within each scenario: 1) the correctness of the student’s final 
claim (CFC) on the cause of the six-legged frog or the death of the 

Proceedings of the 8th International Conference on Educational Data Mining 137



bees; and 2) student’s success in designing causal explanations 
(DCE) for why that claim is correct. 

In each VPA, students submitted a final claim by choosing from 
five possible causal factors. A student’s final claim was 
considered correct if the student concluded that the mutation of 
the six-legged frog was caused by parasites (correct causal factor), 
or that the bee deaths were caused by genetic mutation (correct 
choice). Otherwise, if the student selected the other potential 
hypotheses, the student’s final claim was considered incorrect. 
Overall, 29.6% of students correctly concluded that parasites led 
the frog to have six legs, and 28.3% of students made a correct 
claim on what was killing the bee population. In this paper, a chi-
square test was conducted to compare student CFC performance 
between the two groups in each scenario. 

In the bee scenario, 34.8% of experienced students who had 
previously used the frog scenario identified correctly that genetic 
mutation was killing the bees, while 23.9% of novice students 
(without prior experience in the frog scenario) made the correct 
final conclusion. This difference was statistically significant 
according to a chi-square test, 𝜒!(1,𝑁 = 2023)  = 28.67, 
p < .001. Logistic regression results revealed that the odds of 
making a correct final claim for experienced students (0.533) was 
statistically significantly larger than the odds for novice students 
(0.314) by 70%. This suggested that the students transferred what 
they learned about how to make a correct final claim from the frog 
scenario to the bee scenario. 

Similarly, in the frog scenario, a statistically significantly higher 
percentage of experienced students (33.2%) made a correct final 
claim than the percentage of novice students (27.5%) who made a 
correct conclusion, 𝜒! 1,𝑁 = 1985  = 7.45, p = .006. Logistic 
regression results indicated that previous experience in the bee 
scenario significantly improved the odds of making a correct final 
claim in the frog scenario by 31.5% (odds = 0.378 for novice 
group and 0.497 for experienced group). 

The DCE measure evaluates student ability in supporting final 
conclusions with evidence. By the end of the assessment in each 
scenario, students needed to select the evidence that supported 
their claims from the data they had collected within the virtual 
world and the results of laboratory tests they had conducted. They 
were then presented with all possible data (including data that the 
students did not collect/conduct) and asked to identify the 
evidence supporting their claim. In each VPA scenario, most 
evidence was consistent with the correct causal claim. However, 
for the incorrect claims, there was often evidence consistent with 
those claims along with counter-evidence that conclusively 
disproved those hypotheses. Therefore, even if students were 
unsuccessful in identifying the correct final conclusion, partial 
credit would be awarded to them for the quality and quantity of 
the causal evidence they identified in support of their claim from 
the non-causal data and results. Student success in selecting 
evidence and constructing causal explanations were aggregated 
into a single composite DCE measure that ranges from 0 to 100%, 
by averaging across the use of each piece of evidence. The mean 
DCE score for the frog scenario was 50.0% (SD = 23.3%), and the 
average DCE score for the bee scenario was 46.1% (SD = 21.4%). 
A two-tailed Mann-Whitney U test, a nonparametric alternative to 
t-test, was then conducted to compare student ability in designing 
causal explanations between the two groups in each scenario. 

Results of the Mann-Whitney U test comparing the DCE score 
between the two groups in the bee scenario suggested that the 
experienced group had a significantly higher average DCE score 

(M = 48.9%, SD = 19.3%) than the novice group (M = 44.2%, 
SD = 23.8%), U = 453873, Z = -3.12, p = .002. Further analyses 
revealed that the difference in DCE performance was dependent 
on the correctness of final claims. Among students who made a 
correct final claim in the bee scenario, the experienced group 
achieved significantly higher DCE scores (M = 75.1%, 
SD = 18.3%) than the novice group (M = 68.1%, SD = 20.5%), 
U = 32448.5, Z = -4.34, p < .001. However, among students who 
did not make a correct final claim, the novice group showed 
higher DCE scores (M = 36.7%, SD = 11.2%) than the 
experienced group (M = 34.9%, SD = 11.4%), U = 223797, 
Z = -2.80, p = .005. 

In the frog scenario, student performance in designing causal 
explanations for the novice group (M = 49.7%, SD = 22.7%) was 
not statistically significantly different from the experienced group 
(M = 50.6%, SD = 24.3%), U = 454398, Z = -.76, p = .446. 

4.2 Time 
As each VPA scenario logged the timing of each student starting 
and exiting the virtual environment, we also compared the total 
amount of time students spent within VPA recorded by the log 
data between the novice group and the experienced group, by 
employing one-way ANOVA. 

An analysis of variance showed that, on average, novice students 
without previous experience in the frog scenario spent 
significantly more time in the bee scenario (M = 27 minutes, 43 
seconds, SD = 11 minutes, 56 seconds) than experienced students 
who had used the frog scenario (M = 23 minutes, 43 seconds, 
SD = 12 minutes, 48 seconds), F (1, 2021) = 51.64, p < .001. On 
the other hand, the total amount of time spent in the frog scenario 
by novice students (M = 30 minutes, 56 seconds, SD = 14 
minutes, 24 seconds) and experienced students (M = 30 minutes, 
33 seconds, SD = 13 minutes, 35 seconds) was not statistically 
significantly different (F (1, 1983) = .36, p = .548). 

4.3 Motivation 
In this study, students completed an online motivation survey 
shortly after they finished the VPA assessment for each scenario. 
Student responses to the survey were analyzed to better 
understand the impact of experience with the environment on 
learning and motivation. The survey was adapted from the 
Intrinsic Motivation Inventory [IMI; 27] and the Player 
Experience of Need Satisfaction [PENS; 19] survey and was 
comprised of 27 six-point Likert-type items that aimed to measure 
seven components related to student motivation, autonomy, and 
in-game immersion: interest/enjoyment, perceived competence, 
effort/importance, pressure/tension, value/usefulness, 
presence/immersion, and autonomy. Items were slightly modified 
to fit the specific activity in this game-like environment. Student 
subscale scores were calculated by averaging across all items on 
each subscale. One-way ANOVA was applied to assess whether 
there were any systematic differences in student motivation 
between the novice group and the experienced group within each 
VPA scenario. Given the substantial number of statistical tests, we 
controlled for the proportion of false positives by applying 
Storey’s q-value method [25] (calculated using the QVALUE 
package for R). 

Analyses of motivational survey results (see Table 1) indicated 
that, on average, novice students scored significantly higher on 
the interest/enjoyment subscale than experienced students in both 
scenarios (F(1, 1800) = 50.02, q < .001 for the frog scenario; F(1, 
1740) = 27.67, q < .001 for the bee scenario). Similarly, students 
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in the novice group had a significantly higher level of perceived 
effort invested to the VPA activity and perceived importance of 
the activity than students in the experienced group (F(1, 
1800) = 25.41, q < .001 for the frog scenario; F(1, 1740) = 18.94, 
q < .001 for the bee scenario). Novice students also regarded the 
VPA activity as more useful and valuable than experienced 
students, F(1, 1800) = 19.37, q < .001 for the frog scenario; F(1, 
1740) = 4.66, q = .019 for the bee scenario. Finally, novice 
students also had significantly higher presence/immersion, 
autonomy, and tension/pressure subscale scores than the 
experienced students, indicating that they were more immersed in 
the virtual environment, and felt a higher sense of autonomy and a 
higher level of tension/pressure than experienced students. These 
corresponded to previous findings on novelty effect [8, 12]. 

Table 1. Average subscale scores on the motivational survey 
(standard deviations in parentheses) by condition. Differences 
that are sig. after post-hoc controls (q < 0.05) are marked by *. 

Subscale 
Frog-
N 

Frog-
E 

F (q) Bee-N Bee-E F (q) 

int/enj 4.47 
(1.32) 

3.98 
(1.55) 

50.02* 
(<.001) 

4.26 
(1.42) 

3.87 
(1.56) 

27.67* 
(<.001) 

comp 4.28 
(1.21) 

4.23 
(1.37) 

0.73 
(.213) 

4.13 
(1.27) 

4.14 
(1.37) 

0.006 
(.473) 

eff/imp 4.38 
(1.19) 

4.06 
(1.44) 

25.41* 
(<.001) 

4.21 
(1.30) 

3.91 
(1.49) 

18.94* 
(<.001) 

val/use 4.07 
(1.41) 

3.74 
(1.62) 

19.37* 
(<.001) 

3.84 
(1.51) 

3.67 
(1.64) 

4.66* 
(.019) 

pres/ten 1.86 
(1.25) 

1.72 
(1.39) 

4.62* 
(.019) 

1.85 
(1.29) 

1.69 
(1.38) 

5.86* 
(.011) 

pres/imm 3.51 
(1.36) 

3.16 
(1.53) 

24.72* 
(<.001) 

3.36 
(1.42) 

3.13 
(1.53) 

10.14* 
(.001) 

auto 4.26 
(1.29) 

3.82 
(1.55) 

41.12* 
(<.001) 

4.01 
(1.41) 

3.76 
(1.56) 

11.42* 
(.001) 

Note. Frog-N = frog-novice, Frog-E = frog-experienced, Bee-N = 
bee-novice, Bee-E = bee-experienced. Int/enj=interest/enjoyment, 
comp=perceived competence, eff/imp=effort/importance, 
pres/ten=pressure/tension, val/use=value/usefulness, 
pres/imm=presence/immersion, auto= autonomy. 

5. USAGE ANALYSIS 
In the previous section, differences were found in motivation and 
learning outcomes between novice and experienced students. In 
the current section, we aim to go beyond just looking at whether 
previous experience in VPA improved student inquiry 
performance, and instead look into whether more experienced 
students used VPAs differently than less experienced students. 

For example, this will allow us to determine whether the higher 
success for experienced students within VPAs was related to the 
acquisition and transfer of science inquiry skills, or whether it was 
merely the result of increased familiarity and proficiency with 
using the system and tools than novice users. 

We studied these questions by investigating the prevalence of 
specific behaviors between groups, and by applying sequential 
pattern mining to identify and compare the frequent sequential 
patterns of student actions between groups. 

5.1 Comparing Behaviors Between Groups 
In order to understand student behavior, and how it differed 
between groups, a set of 30 semantically meaningful features of 
student behavior thought to potentially differ between groups 
were distilled from raw interaction data and were compared 
between the novice and experienced groups in each scenario. 
These features were a subset of the 48 features that were used to 
build models predicting a student’s CFC and DCE performance 
within the frog scenario in [2]. Examples of these features will be 
given in the following paragraphs. 

After distilling the 30 features from each student’s interaction 
logs, t-tests were conducted to compare the value of each feature 
between the experienced and novice groups, within each scenario. 
Storey’s q-values [25] were calculated to control for multiple 
comparisons. Table 2 presents the average values of 10 features 
that strongly differentiated between groups. 

According to the results, features representing the maximum or 
average fullness of a student’s backpack in the frog scenario, both 
including repeats (e.g. picking up two green frogs counts as two 
objects), and not including repeats (e.g. two green frogs counts as 
one object), had significantly higher value for the novice group 
than the experienced group. Similar results were found in terms of 
the number of times a student went to the lab to run tests, the 
number of different (types of) non-sick frogs that the student took 
to the lab at the same time, the number of times that lab water was 
taken to the lab, and the percentage of time the student spent at 
farms to collect evidence in the frog scenario. Similarly, novice 
students in the bee scenario had higher values on all these features 
than experienced students. This suggested that novice students 
collected significantly more data for testing and spent a larger 
proportion of time on collecting evidence in farms than the 
experienced students in both scenarios. This finding was 
consistent with the higher motivation level of novice students (in 
both scenarios) and the longer time they spent working on VPA 

Table 2. Comparisons of features between novice group and experienced group. Sig. differences (q<0.05) are marked by *. 

Feature Frog-
N 

Frog-
E 

t q Bee-
N 

Bee-
E 

t q 

The number of times student went to the lab 6.66 5.14 6.81 <.001* 16.37 12.71 8.97 <.001* 
Maximum number of items (including repeats) in backpack 7.48 6.69 11.25 <.001* 6.03 4.76 11.57 <.001* 
Maximum number of items (not including repeats) in 
backpack 

7.45 6.65 11.68 <.001* 8.54 7.28 12.27 <.001* 

Average number of items (including repeats) in backpack 4.77 4.02 11.39 <.001* 3.86 3.06 11.91 <.001* 
Average number of items (not including repeats) in backpack 4.75 4.00 11.50 <.001* 6.17 5.14 11.61 <.001* 
Number of times that lab water/nectar was taken to the lab 0.42 0.38 2.11 .022* 1.69 0.93 8.31 <.001* 
Number of different (types of) non-sick frogs/bees student 
took to the lab at the same time 

1.87 1.70 2.34 .014* 4.32 3.90 4.09 <.001* 

How long, on average, did students spend reading information 
pages? (average per read) 

15.28 17.17 -0.72 .146 11.93 13.93 -2.07 .027* 

How long, in total, did student spend reading information 
page on correct hypothesis? 

32.33 35.13 -0.70 .146 23.45 27.46 -2.20 .021* 

Percentage of time student spent at farms 0.29 0.26 4.43 <.001* 0.34 0.31 5.46 <.001* 
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(in the bee scenario). 

Despite the fact that the novices collected more data and spent 
more total time within the VPA bee scenario, they spent 
significantly less time on reading an information page at the 
research kiosk each time they accessed the page (M = 11.93 
seconds, SD = 17.69 seconds) than experienced students 
(M = 13.93 seconds, SD = 25.48 seconds), t (2021) = -2.07, 
q = 0.027, Cohen’s D = 0.15. In specific, experienced students 
spent more time in total reading the information page on the 
correct hypothesis – genetic mutation (M = 27.46 seconds, 
SD = 46.51 seconds) compared to novice students (M = 23.45 
seconds, SD = 35.46 seconds), t (2021) = -2.20, q = 0.021, 
Cohen’s D = 0.11. Gaining more information about the correct 
hypothesis might have contributed to the students’ domain-
specific knowledge base, which had been found to be crucial for 
problem solving and the development of expertise [5]. However, 
the corresponding pattern was not statistically significant for the 
frog scenario, probably due to higher standard deviations. 

5.2 Sequential Pattern Mining 
In this section, we investigate patterns in behavior by the two 
groups, over time. Prior to performing sequential pattern mining, 
detailed raw action log data were transformed into more abstract 
sequences. This involved three steps. First, a set of actions related 
to science inquiry were identified from the log files, including 
picking up and inspecting objects (e.g., frogs, tadpoles, bees, 
larvae, water sample, nectar sample) within VPA  (inspect), 
talking with NPCs (talk), saving objects to backpack (save), 
discarding objects (discard), opening and reading informational 
pages at the research kiosks (read), running laboratory tests 
(blood/protein test, water/nectar sample test, genetic test), 
reviewing and looking at test results (look), starting to answer 
final questions (start final questions), and submitting a final claim 
(final claim). Some actions that were irrelevant to the inquiry 
process, such as selecting an avatar, closing the scratchpad, and 
entering/exiting a specific area were filtered out from the raw 
interaction data. Second, as in [13], repeated actions that occurred 
more than once in succession were distinguished from a single 
action and were labeled as the “action” followed by the “-MULT” 
suffix. This adjustment prevents frequent patterns from being 
overlooked merely due to differences in how many times the 
action is repeated. Last, the actions were represented as sequences 
of actions for each student in each group. 

Simple two-action sequential patterns were identified using the 
arules package [11] within the statistical software program R. 
Arules was used to determine the most frequent short sequences 
of two actions by selecting the temporal associations of one 
specific action and a subsequent action with the highest support 
and confidence. In this study, sequential patterns of consecutive 
actions were selected with the cut-off thresholds of 
support = 0.0005 and confidence = 0.1. 

In the frog scenario, a total of 51 short sequential patterns 
(length = 2) were identified that met the minimum support and 
confidence constraints within the novice group; 54 patterns were 
identified within the experienced group. In the bee scenario, 55 
short sequential patterns met the minimum constraints within the 
novice group; 59 were selected within the experienced group. 
These patterns were similar across the 4 conditions, and most had 
support and confidence considerably higher than the threshold. 
They were then ordered according to their Jaccard similarity 
coefficient – a measure of the patterns' interestingness [17] that 
was found to be the most highly correlated with human judgments 
[3] – to find interesting sequential patterns. According to [3], 
lower Jaccard measures indicated higher interestingness. 

To facilitate the comparison of the frequency measures between 
the novice group and the experienced group, the support and 
confidence for each pattern were calculated separately for each 
student. Mann-Whitney U tests that controlled for multiple 
comparisons were then conducted to compare the metric values 
between two groups in each scenario.  

Table 3 presents the comparison of the support and confidence 
levels of 9 frequent sequential patterns with low Jaccard measure 
(indicating high interestingness) across conditions that were 
considered as meaningful due to the nature of the actions they 
contained. The sequential patterns with the lowest Jaccard 
included patterns related to making final claims (final claim) or 
starting to answer final questions (start final questions) and 
reading informational pages (read), such as “final claim → read-
MULT”, “final claim → read”, “read-MULT → final claim”, 
“start final questions → read-MULT”, and “start final questions 
→ read”. These patterns indicated that students tended to review 
research and read informational pages as resources to assist with 
their decision-making before submitting a final claim, or that they 
used the research information to check and monitor the claims 
they had just made. All these 5 patterns appeared to have higher 
support for experienced students than novice students within each 

Table 3.  Comparison of the support and confidence of 9 frequent sequential patterns between novice and experienced conditions. 
Average support/confidence values, and post-hoc controlled sig. of tests are presented. Sig. differences (q<0.05) are marked by *. 

 support confidence support confidence 

Pattern Frog-
N 

Frog
-E 

q Frog
-N 

Frog-
E 

q  Bee-
N 

Bee-
E 

q Bee-
N 

Bee
-E 

q 

final claim → read-MULT .0033 .0043 .420 .296  .313  .594 .0030 .0036 .619 .326 .298 .420 

read-MULT → final claim .0061 .0074 .584 .114 .109 .619 .0055 .0064 .675 .101 .109 .594 

final claim → read .0020 .0026 .675 .164 .158 .675 .0014 .0024 .018* .142 .193 .107 

start final questions→ read-MULT .0046 .0047 .594 .282 .261 .594 .0044 .0049 .675 .274 .257 .594 

start final questions → read .0029 .0033 .682 .160 .167 .675 .0025 .0027 .675 .147 .142 .675 

look-MULT → read-MULT .0027 .0032 .718 .143 .176 .517 .0028 .0030 .594 .141 .189 .309 

look → read .0025 .0028 .711 .103 .142 .214 .0017 .0021 .675 .080 .107 .361 

look → read-MULT .0027 .0033 .675 .113 .158 .073 .0019 .0027 .594 .105 .155 .018* 

look-MULT → read .0021 .0021 .594 .104 .117 .675 .0021 .0017 .018* .106 .101 .420 
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scenario, but most of the differences were not statistically 
significant. In the bee scenario, the pattern final claim → read 
showed significantly higher support and marginally significantly 
higher confidence for the experienced group than the novice 
group (for support, Ms = 0.024 and 0.014, U = 474169.5, 
Z = -3.03, q = 0.018; for confidence, Ms = 0.193 and 0.142, 
U = 46833.5, Z = -2.32, q = 0.107). This finding indicated that 
experienced students who had previously used the frog scenario 
were more likely to review research and read information, 
possibly to monitor their answers and reflect on previous steps [cf. 
15], after submitting a final claim in the bee scenario than novice 
students. However, this trend was not replicated in the frog 
scenario (for support, Ms = 0.0026 and 0.0020, U = 462294.5, 
Z = -.23, q = .675; for confidence, Ms = 0.158 and 0.164, 
U = 58423.5, Z = -.32, q = .675). 

Another four interesting sequential patterns corresponded to 
looking at laboratory test results (once or repeatedly), followed by 
reading informational pages (once or repeatedly) (i.e., look-MULT 
→ read-MULT, look → read, look → read-MULT, look-MULT → 
read). For three out of the four patterns, both the support and the 
confidence for the experienced group were higher than those for 
the novice group in both scenarios. For the pattern look → read-
MULT, the confidence for the experienced group was statistically 
significantly higher than that for the novice group in the bee 
scenario and marginally higher than confidence for the novice 
group in the frog scenario (in bee scenario, Ms = 0.105 and 0.155, 
U = 94500.5, Z = -3.09, q = .018; in frog scenario, Ms = 0.113 and 
0.158, U = 111697.5, Z = -2.53, q = .073). That is, experienced 
students were more likely to read multiple research information 
pages on possible causal factors immediately after looking at the 
results of lab tests. This is consistent with results from previous 
studies on the development of expertise, where experts were 
found to be more opportunistic in using resources and exploit 
more available sources of information than novices [9]. The 
higher relative frequency of reading research information, which 
might help experienced students interpret laboratory test results 

and facilitate the acquisition of domain-specific knowledge [4], 
might have contributed to their higher success on making correct 
final claims than novice students. 

In addition to two-action patterns, a differential sequence mining 
technique developed by Kinnebrew and colleagues [13] was 
utilized for identifying longer sequential patterns (length > 2) that 
occurred with significantly different frequencies between the two 
groups. This methodology used sequence support (s-support) and 
instance support (i-support) as frequency measures. S-support is 
defined as the percentage of sequences in which the pattern occurs 
[13]. It is different from the standard metric support in that s-
support measures the percentage of students whose action 
sequence contained the specific pattern, regardless of the 
frequency of occurrence within each sequence for each student. 
The i-support corresponds to the number of times a given pattern 
occurs, without overlap, within a student's sequence of actions. A 
set of most frequent sequential patterns that met the s-support 
threshold was identified within each group by employing 
Kinnebrew et al.’s sequential pattern mining algorithm [13]. The 
i-support value of each pre-identified pattern was then calculated 
for each sequence in each group, after which t-tests comparing the 
mean i-support between the groups were conducted and q-value 
post-hoc control [25] was applied to select significantly 
differentially frequent patterns. 

The 25 most differentially frequent long patterns with at least 
three consecutive actions were identified in the frog scenario and 
the 32 differentially frequent long patterns were identified in the 
bee scenario by employing a cutoff s-support of 50% and a cutoff 
q-value of 0.05 for comparison of pattern usage between two 
groups. 14 out of the 25 long patterns in the frog scenario and 16 
out of 32 long patterns in the bee scenario were common (i.e., met 
the 50% s-support threshold) for both groups, with relatively 
higher usage in the novice group. 11 long patterns in frog scenario 
and 16 in the bee scenario were frequently used only by students 
in the novice group. All differentially frequent long patterns had a 

Table 4. Top differentially frequent patterns between the novice group (nov) and the experienced group (exp). 

Scenario Pattern 
s-support i-support 

Frequent nov exp nov exp q 

Frog 

talk-MULT → inspect → save → inspect → save 0.58 0.36 0.78 0.45 <.001 nov 
talk-MULT → inspect → save → inspect 0.59 0.37 0.79 0.46 <.001 nov 
save → discard → inspect → save 0.53 0.36 0.74 0.48 <.001 nov 
inspect → save → discard → inspect 0.53 0.36 0.75 0.49 <.001 nov 
inspect → save → discard → inspect → save 0.53 0.36 0.74 0.48 <.001 nov 
talk-MULT → inspect → save 0.78 0.53 1.25 0.70 <.001 both 
inspect → save → talk 0.78 0.60 1.50 0.99 <.001 both 
discard → inspect → save 0.82 0.62 1.97 1.31 <.001 both 
inspect → save → discard 0.78 0.60 1.74 1.19 <.001 both 
talk → inspect → save 0.78 0.63 1.56 1.10 <.001 both 

Bee 

talk-MULT → inspect → save → inspect → save → inspect 0.59 0.27 0.72 0.32 <.001 nov 
talk-MULT → inspect → save → inspect → save → inspect → save 0.59 0.27 0.71 0.32 <.001 nov 
talk-MULT → inspect → save → inspect → save 0.74 0.45 0.99 0.57 <.001 nov 
talk-MULT → inspect → save → inspect 0.74 0.45 0.99 0.57 <.001 nov 
start assessment → talk-MULT → inspect 0.51 0.26 0.51 0.26 <.001 nov 
talk-MULT → inspect → save 0.85 0.62 1.30 0.87 <.001 both 
inspect → save → inspect → save → inspect 0.82 0.60 1.83 1.18 <.001 both 
save → inspect → save → inspect → save 0.82 0.60 1.82 1.18 <.001 both 
inspect → save → inspect → save → inspect → save 0.82 0.59 1.81 1.17 <.001 both 
save → inspect → save → inspect 0.83 0.60 1.99 1.31 <.001 both 
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higher s-support and a significantly higher average i-support for 
novice students than experienced students.  

Table 4 presents the top five differentially frequent long patterns 
that were common to both groups and the top five that were 
frequently used only by the novice group within each scenario. 
Most of these long sequential patterns entailed the repetition and 
combination of actions including inspecting objects, saving 
objects to backpack, discarding objects, and talking with NPCs. It 
seemed that novice students who had not used VPA before 
executed more sequences comprised of exploratory behaviors 
such as talking with NPCs and collecting data, while more 
experienced students focused primarily on what was necessary to 
answer the core inquiry question. 

6. DISCUSSION AND CONCLUSION 
This paper investigates the transfer of student science inquiry 
skills across two Virtual Performance Assessment scenarios, and 
the impact of the novelty of the immersive virtual environment on 
motivation and learning. We do so by comparing performance and 
behaviors between novice students and experienced students. A 
novelty effect was found as novice students who engaged in VPA 
for the first time showed significantly higher scores on 
motivational survey subscales such as interest/enjoyment, 
effort/importance, pressure/tension, value/usefulness, 
presence/immersion, and autonomy than more experienced 
students. As these students were first introduced to the novel 3D 
virtual environment, the initial attraction and attention led to 
higher enjoyment, greater effort invested in the tasks, a higher 
sense of immersion and a higher sense of autonomy. These 
measures tended to decline when students became relatively 
experienced and familiar with the environment, consistent with 
previous findings on the novelty effect [8, 12]. Sequential pattern 
mining and comparison of overall behavior prevalence using 
student action log data indicated that novice students engaged in 
more exploratory behaviors -- they collected more data in the 
environment and had higher frequency of long sequences 
comprised of exploratory actions such as talking with NPCs, 
manipulating objects, and collecting data, as compared to more 
experienced students. This, again, might be attributed to the 
novelty effect [cf. 14]. That is, the higher attention of novice 
students resulted in higher interest and efforts in exploring the 
new learning environment than students who were more 
experienced with VPA. 

However, another possibility is that the experienced students 
focused more on the goal at hand, than on the environment they 
were researching this issue on, leading to less exploration and 
more attention directly to the information most likely to be useful. 
This itself may reflect the fact that novelty is wearing off, but may 
be a positive aspect of the disappearance of the novelty effect. 
Indeed, despite the experienced students’ relatively lower 
motivation and fewer exploratory behaviors, they outperformed 
the novice students in identifying a correct final claim in both 
scenarios and in designing causal explanations (in one scenario). 
Experienced students generally showed more effective problem 
solving. They not only tended to read research information pages 
more often immediately after submitting a final claim or 
reviewing laboratory test results, but also spent more time reading 
the information each time they accessed a new page. As such, 
even after just a half hour completing the first assessment, 
students demonstrated more expert-like science inquiry behaviors 
-- they made more use of the research information available as 
resources [cf. 9], in order to either interpret results, or to monitor 
and reflect on their final claims [cf. 15]. The information from the 

pages may also have added to the domain-specific knowledge 
base of experienced students, which have been found to be crucial 
for problem solving and expertise development [5]. This 
corresponds to earlier findings that the transfer of domain-general 
inquiry strategy has the potential to facilitate the acquisition of 
domain-specific knowledge [4]. In conclusion, the experienced 
students successfully consolidated and transferred science inquiry 
skills they had learned from the first scenario during the 
approximately 30-minute engagement to the second scenario. 

The current study contributes to research on the assessment of the 
transfer of science inquiry skills by proposing the application of a 
combination of educational data mining techniques such as 
sequential pattern mining as supplements to the traditional 
analysis of success between conditions. One limitation of this 
study is that the comparison conducted here involved virtual 
scenarios within the same VPA architecture. The fact that the two 
scenarios were highly structurally similar might have facilitated 
transfer. Future work may involve exploring whether far transfer 
of science inquiry occurs from VPA to assessments outside the 
system (e.g., other computer-based learning environments with 
different domain and interaction design). 
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