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ABSTRACT 
College students enrolled in online courses lack many of the 
supports available to students in traditional face-to-face classes on 
a campus such as meeting the instructor, having a set class time, 
discussing topics in-person during class, meeting peers and having 
the option to speak with them outside of class, being able to visit 
faculty during office hours, and so on. Instructors also lack these 
interactions, which typically provide meaningful indications of 
how students are doing individually and as a cohort. Further, 
online instructors typically carry a heavier teaching load, making 
it even more important for them to find quick, reliable, and easily 
understandable indicators of student progress, so that they can 
prioritize their interventions based on which students are most in 
need.  In this paper, we study very early predictors of student 
success and failure. Our data is based on student activity, and is 
drawn from courses offered online by a large private university. 
Our data source is the Soomo Learning Environment, which hosts 
the course content as well as extensive formative assessment. We 
find that students who access the resources early, continue 
accessing the resources throughout the early weeks of the course, 
and perform well on formative activities are more likely to 
succeed. Through use of these indicators in early weeks, it is 
possible to derive actionable, understandable, and reasonably 
reliable predictions of student success and failure.  
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1. INTRODUCTION 
Students enrolled in online courses lack many of the supports 
available to students in traditional face-to-face classes on campus 
[13]. Drop rates are typically higher for online courses than 
traditional courses (see review in [8]), and procrastination is often 
a major problem in online courses [10]. Part of the reason for the 
lower success seen in online courses comes from the fact that 
faculty have less direct contact with students [5, 19] and as a 
result have fewer indicators of how students are doing, outside of 
formal assessment. This makes intervention for at-risk students 
more difficult than in campus-based learning settings. 

As a result, many universities and providers of online courseware 
have moved to models that can automatically identify when 
students are at risk. These models identify indicators of potential 
student failure (or lower success). A comprehensive review of 
work in this area can be found in [10].  In one example of the 
creation and study of such a model, Barber and Sharkey [4] 
predicted course failure using a mixture of data from student 
finances, student performance in previous classes, student forum 
posting, and assignment performance. In a second example, 
Whitmer [17] predicted final course grade from student LMS 

usage activity, including the number of times a student accessed 
any content, the number of times a student read or posted to the 
forum, and the number of times a student accessed or submitted 
an assignment. In a third example, Romero and colleagues [15] 
predicted final course grade from activity and performance on 
assignments, including time taken by the student; this work was 
followed up by additional work, where the same group studied a 
more extensive set of interaction variables within the Moodle 
platform [14]. In a fourth example, Andergassen and colleagues 
[1] predicted final exam score from completion of online learning 
activities, including when in the semester students engaged those 
activities, and the total span of time between a student’s first and 
last activities in the online resource. 

An area of particular importance is early prediction, as 
recommended by Dekker and colleagues [7]. Being able to make 
predictions early in the semester, using the data available from 
initial student participation in the course, allows for timely 
intervention. There have been projects that have been successful 
in identifying at-risk students early in the semester. For example, 
Ming and Ming [12] developed models that could predict student 
course success from the first week of course participation, based 
on the topics students posted on the online discussion forum. In 
another example, Jiang and colleagues [11] predicted MOOC 
course completion from grades and discussion forum social 
network centrality, at the conclusion of the first course week.  

Models that can predict student success early in a course, from 
course participation data, may be more or less useful depending 
on the features the models are based upon. If models are based on 
indicators which are interpretable and meaningful to course staff, 
these models can then provide instructors with data on which 
students are at-risk along with information on why those specific 
students are at risk. Systems of this nature have been successfully 
embedded within intervention practices and had positive impacts 
on student outcomes. For example, the Course Signals project at 
Purdue University provides predictions to instructors along with 
suggested interventions for specific students, in the form of 
recommended emails to send the students [2]. In one evaluation, 
Course Signals was associated with better student grades and 
better retention [3]. Another project, the Open Academic Support 
Environment, was associated with better student grades [10].  

The attributes of a desirable predictive model are tightly 
connected to the potential uses of that model. For example, highly 
complex “black box” indicators are hard for instructors to use in 
interventions, even if they might be perfectly suitable for 
automated interventions. Beyond this, demographic variables 
(such as race and financial need) can be predictive [17, 18], but 
are less immediately useful for instructors wishing to intervene.  

In this paper, we study early predictors of student success based 
on student activity, with the goal of giving faculty immediately  
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However, if the goal is to provide high-cost interventions to the 
students who are very likely to perform poorly, the logistic 
regression model is not an optimal choice. The logistic regression 
model cannot achieve very high precision, even through adjusting 
thresholds, as shown in Figure 6. However, an alternate approach 
can be adopted, through using a different predictor algorithm, step 
regression. This algorithm obtains more precise prediction than 
logistic regression, with precision of 69.7% and recall of 35.3% 
for standard thresholds.   

Importantly, these measures are based upon interpretable features. 
They are based upon features that instructors identified as 
meaningful and having the potential for intervention. The 
combination of individual-feature models and a comprehensive 
model enables us to identify which students are at risk, and then to 
provide instructors with information about which students are at 
risk, and why. We can specifically identify that a student is at risk 
because he/she has failed to access the resources, or because 
he/she has failed to complete the assignments on time, or because 
he/she has scored poorly on the assignments. With this 
information, automatically distilled and placed in a user interface 
within the Soomo platform, faculty will have a means of finding 
students who most need support and a basis for encouraging them 
to access the text, do the assigned work, and take the time to do it 
well.  

The first area of future work planned is to enhance the analytics 
already offered to instructors by Soomo, based on the findings 
presented here. The success of these interventions, both in terms 
of improved student grades and improved student retention, will 
be evaluated in an experiment or quasi-experiment (the final study 
design will depend upon negotiation with the university which 
partnered on the analyses discussed in this paper).  

However, beyond testing interventions based on the model 
presented here, there is considerable future work to extend, 
improve, and study the generalizability of these models. For 
example, it will be valuable to study what characterizes the 
students for whom this model functions less effectively. Can 
additional features, like how much time students spend on 
assignments, improve overall prediction? And how well will the 
features identified here apply for different courses, and for 
different universities, an issue explored by Jayaprakash et al. [10], 
among others. By answering these questions, we can improve the 
models, verify their broad applicability, and move to using the 
models within intervention strategies that can achieve broad 
positive impact on learners.  
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