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ABSTRACT 

This paper reports the results from a sensor-free detector of mind 

wandering during an online reading task. Features consisted of 

reading behaviors (e.g., reading time) and textual features (e.g., 

level of difficulty) extracted from self-paced reading log files. 

Supervised machine learning was applied to two datasets in order 

to predict if participants were mind wandering as they navigated 

from one screen of text to the next. Mind wandering was detected 

with an accuracy of 20% above chance (Cohen’s kappa = .207; 

AUC = .609), which was obtained via leave-one-participant-out 

cross-validation. Similar to actual rates of mind wandering, 

predicted rates of mind wandering were negatively related to 

posttest performance, thus providing some evidence for the 

predictive validity of the detector. Applications of the detector to 

attention-aware educational interfaces are discussed. 
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1. INTRODUCTION 
It is not uncommon to experience looking up from a book only to 

realize you have no idea what you just read. In fact, it has been 

documented that people can read up to 17 words of gibberish 

before even realizing that they have zoned out [32]. Since students 

often have trouble realizing when they have zoned out themselves, 

it can be especially difficult to determine when someone is not 

paying attention through observation. For example, a student who 

is deeply engaged in learning can often look quite similar to 

another student who is thinking about something else completely.  

This phenomenon, known as mind wandering, is an involuntary 

shift in attention away from the external task towards task-

unrelated thoughts [36]. Mind wandering is detrimental during 

learning, as learning requires consolidating external information 

into mental structures. During episodes of mind wandering, 

however, students are unable to integrate external information 

with their existing internal representations.  Thus, missed 

information is not processed and mental models are not updated, 

limiting overall understanding. Given the negative impact of mind 

wandering on learning [14, 30, 32, 33], it is important to develop 

systems that can reorient attention when students mind wander in 

order to facilitate engagement and learning. Building detectors of 

mind wandering is an essential first step towards this goal and is 

the focus of the present paper. 

1.1 Related Work 
One of the first known studies related to mind wandering 

detection was conducted by Drummond and Litman [13]. In their 

study, students read a paragraph about biology aloud then 

performed a learning task (i.e., paraphrase or self-explanation). 

Students periodically self-reported how frequently they were 

thinking about off-task thoughts on a scale from 1 (all the time) to 

7 (not at all). Supervised machine learning trained on acoustic-

prosodic features was used to classify whether students were 

“high” in zoning out (1-3 on the scale) versus “low” in zoning out 

(5-7 on the scale). Results indicated an accuracy of 64% in 

discriminating “low” versus “high” zone outs. This pivotal study 

on mind wandering was innovative with respect to automatically 

detecting zone outs during a learning task. However, they used a 

leave-one-instance-out cross-validation method (rather than a 

leave-one-participant-out cross-validation method), so 

generalizability of the detector to new students is unclear. 

Recent research has also attempted to detect mind wandering 

during online reading using both gaze [5] and peripheral 

physiology [6]. In both of these studies, mind wandering was 

collected via thought probes that occurred on pseudo-random 

pages (i.e., computer screens) during reading. Students responded 

either “yes” or “no” about whether they were mind wandering at 

the time of the probe. In the first study, a detector of mind 

wandering achieved an accuracy of 72% (Cohen’s kappa = .28) 

using features extracted from gaze data collected with a Tobii eye 

tracker [5]. In the second study, a detector of mind wandering 

built using physiological features (i.e., skin conductance and 

temperature) achieved an accuracy of 74% (Cohen’s kappa = .22). 

Both of these detectors used a leave-several-subjects-out 

validation method to ensure generalizability to new students. 

These detectors display impressive results given the elusive nature 

of mind wandering. However, the equipment and sensors required 

for eye-gaze and physiology tracking might impair scalability.  In 

particular, one issue faced by online learning environments is that 

sensors are not readily available. For example, students using an 

ITS deployed online from their home computer would not have 

access to an eye tracker or a way to measure skin conductance at 

their convenience. A key question then is how to detect mind 

wandering based on information that is readily available, for 

example, in interaction log files. Along these lines, the aim of the 

current study is to identify a set of features that 1) are theoretically 
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related to mind wandering, and 2) can be extracted from log files 

during online learning. 

Interaction-based detectors trained from interaction log files have 

been used to successfully build detectors of other “off-task” states, 

such as gaming the system and off-task conversation [4, 7–9]. 

While mind wandering is related to other forms of “off-task” 

states, such as boredom, behavioral disengagement, and 

distractions [1, 3, 4, 8, 9, 26, 42], it is inherently distinct because 

it is involuntary and involves internal thoughts rather than overt 

expressive behaviors. The involuntary, unconscious nature of 

mind wandering makes detection particularly difficult. First, 

whereas other off-task states often involve some behavioral 

markers to denote disengagement, mind wandering is a 

completely internal state that can look similar to on-task states. 

Second, the onset and duration of mind wandering episodes 

cannot be precisely measured because people are often unaware 

their attention has been directed away from the external task. 

Thus, finding features that will pick up on subtle differences in 

attention is extremely difficult. 

To date, one study has attempted sensor-free mind wandering 

detection (see Table 1 for a summary of mind wandering 

detectors). Franklin et al. [15] attempted to classify if readers were 

“mindlessly reading” using two criterion: (1) difficulty and (2) 

reading time. For the first criterion, readers could only be 

classified as “mind wandering” while reading difficult text. To 

establish the level of difficulty, each word was assigned a 

difficulty score based on the average of three binary ratings: (1) 

length (at least four letters = 1, less than four letters = 0), (2) 

syllables (at least two syllables = 1, under two syllables = 0), and 

(3) familiarity (based on a psycholinguistic database where above 

average = 1, below average = 0). Then, the average difficulty 

across a running window of 10 words had to be above a threshold 

set at .45 for a reader to be classified as “mindless reading.” The 

second criterion was based on reading time. Participants read one 

word on a screen at a time. Using a running window of 10 words, 

a specific threshold (based on pilot data) was applied to determine 

when readers were reading either too fast or too slow. 

Table 1. Overview of Previous Mind Wandering Detectors 

 

Key 

Features 

Classification 

Accuracy 

Validation 

Method 

Bixler et al. 

(2014) 

 

 

Eye Gaze 

 

 

 

72% correct 

 

 

 

 

leave-several- 

subjects-out 

 

 

Blanchard et al. 

(2014) 

 

Physiology 

 

 

74% correct 

 

 

leave-several- 

subjects-out 

 

Drummond et 

al.  (2010) 

 

Prosodic/ 

Lexical 

 

64% correct 

 

 

leave-one-

instance-out 

 

Franklin et al. 

(2011)  

 

 

Difficulty/ 

Reading 

Time 

 

72% correct 

 

 

 

 

thresholds 

derived from 

pilot data 

 

 

This study provided some evidence that reading time, combined 

with textual features such as difficulty, might be indicative of 

mind wandering (accuracy = 72%). However, since reading times 

were collected by presenting one word on the screen at a time, 

their methods and predetermined thresholds for fast and slow 

reading may not be generalizable to other, more natural, reading 

contexts. Additionally, mind wandering was never predicted to 

occur during “easy” portions of the text, which may not accurately 

reflect the real-life occurrence of this phenomenon. For example, 

mind wandering still occurs around 20% during easy texts [27], 

even though it is more frequent during difficult texts. 

Furthermore, their method relied on a number of pre-set 

thresholds with little information on how these thresholds were 

established, thereby complicating attempts to replicate their 

results. 

1.2 Current Study 
This paper reports a person-independent detector of mind 

wandering during a more natural, computerized self-paced reading 

task using basic information that can be extracted from reading 

logs. In an attempt to provide a foundation for an easily-scalable 

way to capture when mind wandering occurs, the detector is 

completely sensor-free.  

The mind wandering detector was trained on two unpublished 

datasets in which participants attempted to learn about scientific 

research methods by reading texts presented online. Participants 

completed a posttest after reading in order to assess learning. 

Importantly, these datasets include diversity with respect to 

population, methods, and level of text difficulty. For example, 

dataset 1 was collected via Mechanical Turk, a validated online 

data collection platform [23], and had an average age of 35 years. 

Dataset 2 was collected from a Midwestern university subject 

pool and had an average age of 19 years. Therefore, building a 

detector of mind wandering using more than one dataset with 

varying conditions will increase our confidence in its relative 

generalizability.   

2. DATASETS 
The datasets were originally collected to investigate mind 

wandering under various conditions, such as varying levels of 

difficulty and text presentations. In addition, a posttest was 

completed after reading in order to assess how mind wandering 

relates to learning. In both datasets, participants were instructed to 

read the text carefully and notified that they would be asked to 

answer questions about content from the text after reading. 

Dataset 1 (N = 177) was collected on Amazon’s Mechanical Turk, 

an online data collection platform that has been validated for high 

quality data [23, 28]. Participants were compensated $2.50 after 

completing the experiment. Dataset 2 (N = 141) was collected via 

an online subject pool at a Midwestern university in the United 

States. Participants received class credit after completing the 

study.  

Table 2 provides an overview of the experimental designs and 

manipulations used in each dataset. The Text Difficulty 

manipulation involved participants reading texts that were 

experimentally manipulated to be either “easy” or “difficult” (see 

section 2.1 for manipulation details). The Text Presentation 

manipulation involved participants reading either one sentence or 

one paragraph at a time on the screen. 

2.1 Reading Materials 
The two texts used in the existing datasets were adapted from 

texts used in the serious game, Operation ARA! [25]. Each text 

focused on a concept related to research methods: (1) the 

dependent variable and (2) making causal claims, both of which 

are key concepts relevant to understanding the scientific method. 

In the existing datasets, easy and difficult versions of each text 
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were used in order to investigate the effect of text difficulty on 

mind wandering.  

Easy versions of the text were more narrative in nature, and 

consisted of shorter sentences and fewer low frequency words 

(average Flesh-Kincaid Grade Level = 9). Difficult versions of the 

text consisted of  longer, more complex sentences with more low 

frequency words (average Flesh-Kincaid Grade Level = 13). Both 

versions had the same conceptual content and were approximately 

1500 words in length. An example of an easy sentence is, “People 

who know about the scientific method do not fall for unsupported 

claims like this one.” The difficult version of the same sentence 

was, “So many citizens fall for these dubious claims, but people 

who comprehend the scientific method are not victimized by these 

unsupported claims.” 

2.2 Procedure 
Participants first completed an electronic consent form. They were 

then given instructions for the self-paced learning task. 

Participants pressed the space bar to move through each screen of 

the text. Texts were presented on screen either one sentence at a 

time or one paragraph at a time based on experimental 

manipulation (see Table 2).  

Mind wandering was tracked via auditory thought probes in both 

datasets. A standard description of mind wandering [36] was 

employed: “At some point during reading the texts, you may 

realize that you have no idea what you just read. Not only were 

you not thinking about the text, you were thinking about 

something else altogether.” The probe consisted of an auditory 

beep that occurred on pseudo-random screens throughout each 

text. Probes were triggered when participants pressed the space 

bar to advance to the next portion of the text. Participants were 

instructed to press the “Y” key if they were mind wandering or the 

“N” key if they were not. Participants were not able to advance to 

the next screen until they had responded to the mind wandering 

probe. A total of six auditory mind wandering probes were 

inserted in each text. Probes were placed in an identical location 

with respect to content within each text. That is, regardless of 

whether the text was presented one sentence or paragraph at a 

time, the probe would occur after reading identical content.  

Table 2. Overview of Two Datasets 

  
Dataset 1 Dataset 2 

Sample 
Mechanical 

Turk 

University  subject  

pool 

# Texts  1 2 

# Participants 177 141 

   

Manipulations: 
  

Text Difficulty Easy/Difficult Difficult only 

Text Presentation Par/Sen Par/Sen 

Notes. Par = Paragraph-by-paragraph; Sen = sentence-by-sentence 

 

Participants completed a posttest after reading each topic. 

Posttests consisted of four-alternative multiple-choice questions 

that tapped two levels of comprehension: (1) surface level, and (2) 

inference level. Surface level questions were based on factual or 

text level characteristics of the text. Inference questions were 

designed to elicit patterns of reasoning and require participants to 

use inference or apply a learned concept to a novel example in 

order to answer the question correctly [19]. For dataset 2, 

participants answered an 18-item posttest that covered both topics, 

which included six inference and 12 surface level multiple-choice 

questions. Since only one text was read during dataset 1, the 

posttest was limited to the 9 corresponding questions (3 inference 

and 6 surface level questions). 

2.3 Mind Wandering Reports 
Every screen of text where a probe was triggered was classified as 

either “Mind Wandering” or “Not Mind Wandering” based on 

participants’ response to the probe. The two datasets were pooled 

in order to maximize training and validation data. In total, there 

were 2754 probe screens that were used to build the models. 

Participants indicated they were mind wandering in response to 

31.3% of all the probes. Thus, our data set contained 861 

instances of Mind Wandering and 1893 instances of Not Mind 

Wandering. 

3. MODEL BUILDING 

3.1 Feature Engineering 
A considerable amount of empirical research has been dedicated 

to understanding mind wandering through experimental 

manipulations, such as comparing mind wandering across various 

conditions. Other studies have focused on explaining the 

behavioral correlates and temporal patterns of mind wandering 

[14, 16, 16, 27, 34, 38, 40]. The features in the current research 

were informed by the following discoveries about mind 

wandering: First, mind wandering is affected by the difficulty of a 

task [14, 27]. Second, mind wandering is related to response times 

and lexical features [15, 29]. Third, mind wandering rates vary as 

a function of time on task [30, 40]. In line with these findings, a 

total of 13 features were computed based on information that can 

found in log files. The 13 features can be subdivided into three 

categories: (1) Reading Behavior Features (2 features), (2) 

Textual Features (8 features), and (3) Context Features (3 

features).  

Reading Time Features. Participants’ reading time (i.e. how long 

they spent on each screen) was collected during the reading task. 

Importantly, the thought-probe was triggered as participants 

attempted to move on to the next screen. Therefore, we can use 

reading behaviors from the current screen of text (screen K) to 

detect whether they are mind wandering or not before they moved 

on to the next screen (K+1). 

The first reading behavior feature was Reading Time, which was 

simply the amount of time spent reading a given paragraph before 

pressing the space bar to advance onto the next screen. Reading 

Time was computed at the paragraph level in order to account for 

differences in reading times across the Text Presentation 

manipulation. When texts were presented one paragraph at a time, 

Reading Time was simply how long they spent on the screen 

leading up to the thought-probe. When texts were presented one 

sentence at a time, sentences were aligned with the content from 

the paragraph presentation condition. Thus, Reading Time was 

calculated as the amount of time spent reading identical content 

before the thought-probe regardless of presentation style.  

The second reading behavior feature was called Decoupling [41]. 

Decoupling is a theoretically-driven metric based on the idea that 

reading times should increase with more complex text 

characteristics, such as sentence length and other discourse 

features [18]. If participants are not appropriately allocating 

resources (i.e., increasing reading times when text complexity 

increases) to meet the current task demands, then we might expect 

deviation from this linear relationship thus indicating decoupling 
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from the reading task. Decoupling was computed on the alignment 

(or misalignment) of reading times and text complexity. Text 

complexity was assessed using Flesh-Kincaid Grade Level 

(FKGL; [22]). The formula used to calculate decoupling was: |z-

score standardized reading times – z-score standardized FKGL|. It 

is important to point out that decoupling was computed using the 

absolute value of the difference between reading time and text 

complexity, such that higher values would occur both when 

reading times were both over and under appropriated relative to 

text complexity. Thus, we are primarily interested in how well the 

overall magnitude of deviation in the relationship between reading 

time and text complexity can predict mind wandering. 

Textual features. Eight textual features were computed in total. 

The first feature was simply the Number of Characters in the 

current paragraph. The second feature was the Number of Words 

in the current paragraph. Both features were used because they 

may differ notably between easy and difficult conditions, as easy 

texts were specifically manipulated to contain shorter words. 

Regardless of whether the screen was being presented one 

paragraph at a time or one sentence at a time, these features were 

used to represent the length of the current unit of text being 

processed. Longer paragraphs may require increased cognitive 

resources (related to mind wandering [24]) when a single idea 

must be kept in working memory across larger amounts of text. 

The third feature was FKGL [22], an indicator of reading level 

that is derived from the number of syllables and word length in a 

sentence. The current FKGL was also computed based on the 

current paragraph being read, as this metric is not reliable for 

extremely small portions of text, such as a single sentence. 

The remaining five textual features were computed using Coh-

Metrix, a program that analyzes texts across multiple levels of 

cognition and comprehension [17, 18]. We used five different 

features from Coh-Metrix: (1) Narrativity, (2) Deep Cohesion, (3) 

Referential Cohesion, (4) Syntactic Simplicity, and (5) Word 

Concreteness. Narrativity is computed based on how well the text 

aligns with the narrative genre, by conveying a story, procedure, 

or sequence of actions. Deep Cohesion is computed based on how 

well different ideas in the text are cohesively tied together in order 

to signify causality or intentionality. Referential Cohesion is 

based on how words and ideas are connected to each other across 

the span of the story or text. Syntactic Simplicity is computed 

based on the simplicity of the syntactic structures in the text. 

Lastly, Word Concreteness is based on the degree to which 

context words evoke concrete mental images, rather than abstract 

or conceptual representations. 

Context features. Three context features were also computed 

based on the context of the reading task. Current Paragraph 

Number is the number of paragraphs read from the beginning of 

the text. Current Difficulty is whether the text was experimentally 

manipulated as easy or difficult. Current Presentation is whether 

the text was being presented one sentence at a time or one 

paragraph at a time. 

3.2 Supervised Classification and Validation 
We used supervised machine learning to build detectors of mind 

wandering for each screen that included a thought-probe. The goal 

of the paper was to create a detector that would accurately predict 

whether participants responded “yes” or “no” to the mind 

wandering probes. RapidMiner, a popular machine learning tool, 

was used to train binary classifiers to make this distinction. In 

total, four binary classifiers provided in RapidMiner were used, 

including Naïve Bayes, Bayes Net, RIPPER (JRip 

implementation), and C4.5 (J48 implementation). Down-sampling 

was used to create equal classes for the training data only. This 

was achieved by randomly selecting 45.4% of the Not Mind 

Wandering instances and 100% percent of the Mind Wandering 

instances for training. The original distributions were not changed 

in the testing data to preserve the validity of the results.  

Manual feature selection was applied by removing one feature at a 

time and assessing performance on held-out testing data (see 

below). If model performance decreased after a feature was 

removed, it was preserved for the final model1.  

All models were evaluated using leave-one-participant-out cross-

validation, in which k-1 participants are used in the training data 

set. The model was then tested on the participant who was not 

used in the training data. This process was repeated k times until 

every participant was used as the testing set once. Cross-

validating at the participant level increases confidence that models 

will be more generalizable when applied to new participants 

because the testing and training sets are independent. 

Classification accuracy was evaluated using two metrics: (1) Area 

Under the ROC Curve (AUC), and (2) Cohen’s kappa. AUC is 

statistically similar to Aʹ [21] and ranges from 0 to 1, where 0.5 is 

chance level of accuracy and 1 is perfect accuracy. Cohen’s kappa  

[10] indicates the degree to which the model is better than chance 

(kappa of 0) at correctly predicting Mind Wandering or Not Mind 

Wandering. A kappa of 1 indicates the detector performs 

perfectly. We also report percent correctly classified (accuracy), 

but note that this should be interpreted cautiously since class 

imbalance tends to inflate accuracy. 

4. RESULTS  

4.1 Classification Accuracy 
Four classification algorithms (J48, JRIP, Naïve Bayes, and Bayes 

Net) were applied to the two combined datasets. The final models 

reported in this section were selected based on the highest AUC 

achieved after testing all four classification algorithms. A final 

combined feature model (combined model) was achieved with the 

J48 decision tree classifier using six features from the feature 

subtypes: Reading Time, Decoupling, Number of Characters, 

Number of Words, FKGL, and Referential Cohesion. Importantly, 

the combined model performed at rates above chance (AUC = 

.609; kappa = .207; accuracy = 63%). Despite using information 

solely obtained from log files and text characteristics, these 

accuracy rates are only slightly lower than the sensor-based 

detectors of mind wandering reported in Table 1.   

We also examined the confusion matrix for the final combined 

model (see Table 3). The model had a relatively high rate of 

misses (.427), where actual instances of Mind Wandering were 

predicted as Not Mind Wandering. However, the model also 

displayed more correct rejections (.653), such that Not Mind 

Wandering instances were accurately classified as Not Mind 

Wandering. This was complemented by a low rate of false alarms 

as well (.347). 

We were also interested in exploring how each of the three feature 

subtypes (i.e., reading behaviors, textual, and context features) 

were able to predict mind wandering independently. Each group 

of feature subtypes was therefore tested independently using the 

same four classification algorithms (J48, JRIP, Naïve Bayes, and 

Bayes Net). A summary of the classification accuracies for the 

                                                                 

1 We also tested models using all 13 features, which exhibited lower 
performance (assessed via AUC) than the combined model using feature 

selection. 
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best performing models (selected based on highest AUC) can be 

found in Table 4.  

Table 3. Confusion Matrices of Combined Model 

 
Pred. MW Pred. Not MW Priors 

Actual MW .573 (hit) .427 (miss) .313 

Actual Not MW 
.347 (false 

alarm) 

.653 (correct 

rejection) 
.687 

Note. Pred. = Predicted; MW = Mind Wandering 

 

All three models built from the feature subtypes performed above 

chance levels (AUC > .5). However, none of these models 

performed as well as the combined model. For example, the 

Textual Features Only model did not perform as well in the 

absence of reading time behaviors and vice versa. This suggests 

that using a range of feature types might help with classification 

accuracies rather than a subset of features. 

Based on the confusion matrices, it appears that the three feature 

subtype models exhibited different patterns of classification (see 

Table 5). Although the Reading Behaviors Only model (Reading 

Time and Decoupling) displayed the lowest hit rates (.439), this 

model also had the highest rate of correct rejections. Conversely, 

the Textual Features Only (five Coh-Metrix dimensions, Number 

of Characters, and Number of Words) and the Context Features 

Only (Current Presentation, Current Difficulty, and Current 

Paragraph Number) models had similar higher hit rates, but fewer 

correct rejections compared to the Reading Behaviors Only 

Model.  

Table 4. Performance Metrics 

Features in model AUC Kappa Classifier 

Combined Model  .609 .207 J48 

Reading Behaviors Only .560 .122 J48 

Textual Features Only .591 .115 Bayes Net 

Context Features Only .542 .104 JRIP 

 

It is important to point out that the combined model’s confusion 

matrix also shared some similarities with the feature subtype 

models. The Reading Behavior Only model had the highest 

correct rejections (.687), which were on par with the combined 

model (.653). Similarly, the Textual Features Only and Context 

Features Only models had the best hit rates (.554 and .557), which 

were also on par with the hit rates in the combined model (.573). 

Thus, the combined model appears to strike a balance between 

hits and correct rejection, which is why it yields the highest AUC 

compared to the individual models.  

4.2 Feature Analysis 
Since our features were modeled after empirically-supported 

relationships of mind wandering (see Section 3.1), we explored 

how our features related to the model’s predictions of mind 

wandering. For each participant, we computed the mean of each 

feature as well as the proportion of predicted mind wandering 

(based on the combined model’s predictions). As an additional 

step, the averages were z-score standardized across the two 

datasets to account for the differences in methods. Predicted mind 

wandering was then regressed on each of the six features included 

in the combined model, F(6,317) = 35.5, p < .001, R2
adjusted = .395. 

The regression allowed us to examine the relationship between 

each of the features and predicted mind wandering while 

controlling for the other features in the model. Table 6 presents a 

summary of the features used the combined model, as well as the 

standardized regression coefficient (β) for each feature.  

Table 5. Confusion Matrices for Each Feature Set Separately 

Reading Behavior  Pred. MW Pred. Not MW 

Actual MW .439 (hit) .561 (miss) 

Actual Not MW 
.313 (false 

alarm) 

.687 (correct 

rejection) 

  
  

Textual Features  Pred. MW Pred. Not MW 

Actual MW .554 (hit) .446 (miss) 

Actual Not MW 
.424 (false 

alarm) 

.576 (correct 

rejection) 

   

Context Features  Pred. MW Pred. Not MW 

Actual MW .557 (hit) .443 (miss) 

Actual Not MW 
.432 (false 

alarm) 

.568 (correct 

rejection) 

Note. Pred. = Predicted; MW = Mind Wandering 

 

Reading Time was negatively related to predicted mind 

wandering, indicating that mind wandering predictions were 

associated with faster reading times. The second reading behavior 

feature, Decoupling, was positively related to predicted mind 

wandering. Mind wandering was more likely to be predicted when 

decoupling scores were higher, since higher decoupling scores 

indicate a misalignment between reading times compared to text 

complexity. 

Number of Characters and Number of Words were both positively 

related to predicted mind wandering, suggesting that more content 

in general is associated with greater predictions of mind 

wandering. This is also related to the idea that longer paragraphs 

may have demanded increased cognitive resources, which is 

theoretically related to episodes of mind wandering [24]. 

Table 6. Standardized coefficients for regressing predicted 

mind wandering on features in the combined model (β)  

Features Included in Combined 

Model 

Standardized 

Coefficient (β) 

Reading Behavior Features  

Reading Time -.750 

Decoupling .493 

  

Textual Features  

Number of Characters .139 

Number Words .099 

Referential Cohesion -.139 

FKGL .239 

Notes. Bold = significant at p < .05; FKGL = Flesch Kincaid 

Grade Level. 

Referential Cohesion was also negatively related to predicted 

mind wandering. This relationship is theoretically plausible, as 
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breakdowns in Referential Cohesion are indicative of increased 

difficulty [20]. Indeed, difficulty has been found to be related to 

mind wandering during reading [14, 27].  

None of the Context features were included in the combined 

model. This was an unexpected result, since time on task has 

previous been correlated to mind wandering [40] and the previous 

detectors of mind wandering have utilized context features [5, 6]. 

It is possible that one of the Context Features, Current Difficulty, 

may not have been useful in the combined model due, in part, to 

the fact that the textual features were essentially more sensitive 

measures of difficulty. For example, FKGL and Referential 

Cohesion may be more sensitive measures of Current Difficulty. 

4.3 Predictive Validity 
In order to establish predictive validity for the detector, we 

ascertained if predicted mind wandering relates to learning similar 

to actual (self-reported) mind wandering rates?  Based on 

previous research, we expect a negative relationship between 

actual mind wandering and learning [11, 32, 39]. To address this 

question, posttest performance was first correlated with actual 

rates of mind wandering (i.e., responses to the thought probes). 

Participants’ posttest performance was calculated as the 

proportion of correct responses for the surface- and inference- 

level questions separately. The variables were standardized across 

the two datasets to account for any differences in populations. 

Indeed, actual mind wandering was negatively related to both 

surface (Spearman’s rho = -.338, p < .001) and inference level 

(rho = -.288, p < .001) comprehension on the posttest.  

To establish the predictive validity of the detector, we ascertained 

if predicted mind wandering was related to posttest performance 

similar to actual mind wandering. Predicted mind wandering rates 

(from the combined detector) was negatively correlated with 

surface level (rho = -.294, p < .001) as well as inference level 

performance on the posttest (rho = -.193, p = .008). The negative 

correlations with both types of posttest performance gives us 

some confidence in our model’s predictive validity, since 

predicted mind wandering shows similar relationships with 

learning as actual self-reported mind wandering. This finding is 

notable since the model predicted mind wandering correctly 

around 20% above chance (kappa = .207), yet predicted mind 

wandering related almost as well to posttest scores as actual rates 

of mind wandering. 

5. GENERAL DISCUSSION 
Mind wandering is a ubiquitous phenomenon that is negatively 

related to learning [11, 32, 39]. Mind wandering can have a 

detrimental impact on comprehension when pieces of information 

are not accurately integrated into a learner’s mental model of the 

instructional texts. Over time, information missed during episodes 

of mind wandering can accumulate, leaving deficits in the 

learner’s overall understanding of a text. The development of 

attention-aware systems may provide opportunities to restore 

learners’ attention in real-time to facilitate learning. However, we 

must first be able to detect mind wandering in order to respond to 

its occurrence.  

We attempted to address this issue by developing a participant-

independent detector of mind wandering through analyzing log 

files and textual characteristics collected during an online reading 

task. Two diverse datasets were used to ensure further 

generalizability. The detector was able to accurately classify mind 

wandering 20% above chance (kappa = .207; AUC = .609). Given 

that mind wandering is an elusive internal state of attention and 

we used completely sensor-free data, modest classification 

accuracies are to be expected. Additionally, the classification 

accuracy found in this study (63%) is only slightly lower than 

those reported for previous detectors built using sensor-based 

approaches including eye gaze and physiology (See Table 1; [5, 

6].  

Three types of features were used to build the mind wandering 

detector: (1) reading behaviors, (2) textual features, and (3) 

context features. An independent model was built for each 

subtype of features, which allowed us to better understand how 

the subtypes of feature perform independently. Each set of 

features was able to correctly classify mind wandering 

independently at levels above chance, though performance varied 

across models. None of these models outperformed the combined 

model, so we conclude that combining different types of features 

was optimal in the current detector. Thus, future research may 

consider using one or more of these subtypes of features, as they 

are relatively easy to extract from log files. 

Many of the features were included based on previous 

psychological and educational research on mind wandering. The 

relationships between the features and predicted rates of mind 

wandering were revealing in a number of ways. For example, a 

negative relationship between Referential Cohesion and predicted 

mind wandering directly supports the situation model view of text 

comprehension [14, 35]. This view posits that reading involves 

the construction of a situation model, which is a constantly-

updated mental representation of a text’s meaning [18, 43]. 

Situation models are harder to construct during difficult texts due 

to inconsistencies or lack of cohesion. Poorly constructed 

situation models consume fewer attentional resources, leaving 

extra resources available for off-task thoughts. Therefore, this 

theory would predict a negative relationship between mind 

wandering Referential Cohesion, which is what we find.   

Response times as well as reading time information have been 

utilized in previous detectors of off-task states like disengagement 

[4, 7, 8]. Thus, it is not surprising that both reading time behavior 

features were related to predicted mind wandering. A negative 

relationship with Reading Time indicates that shorter reading 

times were indicative of increased mind wandering predictions. It 

is also worth noting that Decoupling, which is derived from a 

theoretically-supported relationship between reading time and text 

complexity, was positively related to predicting mind wandering. 

Indeed, these relationships suggest features based on reading 

times may be used a behavioral indices of attention during 

reading. 

Our detector also showed some evidence for predictive validity. 

Predicted mind wandering was negatively related to posttest 

performance, similar to actual mind wandering. Future work 

should explore other avenues of establishing validity using other 

online measures of engagement and comprehension.  Similar to 

[15], another method of validation would be to trigger thought 

probes on the pages where mind wandering is predicted in real-

time. We could then evaluate responses to the predicted episodes 

of mind wandering in order to determine how accurate the model 

performs in a real-time detection setting. 

It is important to note that these models are not without 

limitations. First, these models were built in the context of an 

instructional reading task, which may not generalize to other 

learning environments. Second, although two independent 

datasets were used, our results cannot currently be generalized 

beyond the current sample. Third, although self-reports of mind 

wandering using a thought-probe method have been validated in 

previous studies [35, 36], they depend on participants accurate 
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and honest responses. Additionally, given the internal nature of 

mind wandering, external coders are not a viable option. 

Therefore, future work may consider using a different method of 

probing, where participants might self-monitor and report 

instances of mind wandering at any point during reading [31] (as 

opposed to only at times when thought-probes occur). Finally, 

there is no known research establishing a way to determine the 

onset of mind wandering in real-time [37]. Thus, while detectors 

to date are able to predict instances of self-reported mind 

wandering (which is inherently realized), no method has been 

established to indicate how long the episode lasts or when it 

began. 

Future work may include attempts to improve these models using 

additional features. For example, additional sensor-free features, 

such as trait-based features like prior knowledge and interest 

might further improve prediction rates. In addition, combining 

features developed here with previous detectors of mind 

wandering may also improve prediction rates (e.g., eye gaze). It is 

possible that combining multiple channels of data may have an 

additive effect to improve prediction rates.  

In summary, this paper provides some initial evidence for a 

sensor-free detector of mind wandering during online instructional 

reading. A sensor-free detector of mind wandering may open up 

new avenues for interventions and instructional designs in order to 

facilitate attention. Previous detectors for disengagement 

behaviors, such as gaming the system and Gaze Tutor, have been 

used in the design of  interventions, such as reintroducing the 

content that is missed due to gaming [2] and providing engaging 

dialogue to redirect students’ attention [12]. The detector 

presented in this paper is an initial step for interventions that can 

occur when the mind wanders away from the current task. We 

believe further development of these types of models is promising 

for creating an attention-aware system that can respond in real-

time. 
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