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Preface 

The 8th International Conference on Educational Data Mining (EDM 2015) is held under auspices of the 
International Educational Data Mining Society at UNED, the National University for Distance Education in Spain. 
The conference held in Madrid, Spain, July 26-29, 2015, follows the seven previous editions (London 2014, 
Memphis 2013, Chania 2012, Eindhoven 2011, Pittsburgh 2010, Cordoba 2009 and Montreal 2008). 

The EDM conference is a leading international forum for high-quality research that mines large data sets in order to 
answer educational research questions that shed light on the learning processes. These data sets may come from the 
traces that students leave when they interact with learning management systems, interactive learning environments, 
intelligent tutoring systems, educational games or when they participate in a data-rich learning context. The types of 
data therefore range from raw log files to eye-tracking devices and other sensor data. 

This year’s conference features three invited talks by Luis von Ahn and Matt Streeter (Duolingo), George Siemens, 
Ryan Baker and Dragan Gasevic (Athabasca University, Columbia University and University of Edinburgh 
respectively) and Pekka Räsänen (Niilo Mäki Institute). To facilitate further discussion of the increasingly important 
research issues, three interactive panels have been organized; on grand challenges in EDM, ethics and privacy 
considerations in EDM, and practical applications of EDM at scale. This year, together with the Journal of 
Educational Data Mining (JEDM), we started the JEDM Track with the intention to accommodate researchers who 
want to contribute a more substantial contribution than space allows in the conference proceedings, and yet to 
present their work to a live conference audience. The papers submitted to the track followed the regular JEDM peer 
review process; 4 paper have been accepted to the track and will be presented at the conference. The abstracts of the 
invited talks, panels and accepted JEDM Track papers can be found in these proceedings. 

The main conference calls for papers invited contributions to the Research Track and Industry Track. We received 
121 full and 59 short paper submissions, each of which was reviewed by three experts in the field, resulting in 43 
full (41 research and 2 industry), and 50 short (46 research and 4 industry) papers accepted for presentation at the 
conference (some of the full paper submissions have been accepted as short paper). From a separate call for posters 
we also accepted 39 poster and 3 demo papers. All accepted submissions appear in these proceedings.  

The EDM conference traditionally provides opportunities for young researchers, and particularly for PhD students, 
to present their research ideas and receive feedback from the peers and more senior researchers. This year, the 
organized Doctoral Consortium will feature 12 presentations. 

Besides the main conference program, the participants are program conference also includes 3 workshops (Graph-
based Educational Data Mining, SMLIR: Workshop on Tools and Technologies in Statistics, Machine Learning and 
Information Retrieval for Educational Data Mining, and International Workshop on Affect, Meta-Affect, Data and 
Learning) and 2 tutorials (Using Natural Language Processing Tools in Educational Data Mining, and Student 
Modeling Applications, Recent Developments & Toolkits).  

We would like to thank UNED for the sponsorship and hosting of EDM’2015. We would like to thank the 
commercial sponsors (MARi, Pearson and duoLingo), student support sponsors (NSF and Professor Ram Kumar 
Memorial Foundation) and academic support (UNED). We also want to acknowledge the amazing work of the 
program committee members and additional reviewers, who with their enthusiastic contributions gave us invaluable 
support in putting this conference together. Our special thanks to ConferenceNavigator – a social system for 
conference attendees that provided services for personal scheduling, social linking and personalized 
recommendations of papers. Last but not least we would like to thank the local organizing team. 

June 2015 
Cristobal Romero and Mykola Pechenizkiy – Program Chairs 
Jesus G. Boticario and Olga C. Santos – Conference Chairs  
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Behind the Scenes of Duolingo

Luis Von Ahn
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ABSTRACT
With over 100 million users, Duolingo is the most popular
education app in the world in Android and iOS. In the first
part of this talk, we will describe the motivation for creating
Duolingo, its philosophy, and some of the basic techniques
used to successfully teach languages and keep users engaged.
The second part will focus on the machine learning and nat-
ural language processing algorithms we use to model student
learning.

Proceedings of the 8th International Conference on Educational Data Mining 3



Proceedings of the 8th International Conference on Educational Data Mining 4



Personal Knowledge/Learning Graph
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ABSTRACT
Educational data mining and learning analytics have to date
largely focused on specific research questions that provide
insight into granular interactions. These insights have been
abstracted to include the development of predictive models,
intelligent tutors, and adaptive learning. While there are
several domains where holistic or systems models have pro-
vided additional explanatory power, work around learning
has not created holistic models with the level of concrete-
ness or richness required. The need for both granular and
integrated high-level view of learning is further influenced
by distributed, life long, multi-spaced learning that today
defines education. Drawing on social and knowledge graph
theory, we propose the development of a Personal Knowl-
edge/Learning Graph (PKLG) - an open and learner-owned
profile that addresses cognitive, affective, and related ele-
ments that reflect what a learner knows, is able to do, and
processes through which she learns best. This talk will in-
troduce PKLG, detail required technical infrastructure, and
articulate how it would interact with established learning
software.
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Educational Neuroscience as a Tool to Understand
Learning and Learning Disabilities in Mathematics

Pekka Räsänen
Niilo Mäki Institute
Jyväskylä, Finland

pekka.rasanen@nmi.fi

ABSTRACT
Becoming numerate is considered as one of the fundamental
skills needed in the modern technology-driven society. The
latest OECD (2013) report states that âĂIJThe way we live

and work has changed profoundly âĂŞ and so has the set
of skills we need to participate fully in and benefit from our
hyper-connected societies and increasingly knowledge-based
economies.âĂIJ The societies invest a lot on education with
varying results. For some reasons there still are persons do
not reach even a basic level of skills in numeracy or literacy
irrespective of the recent advances in education, educational
research and educational technologies.

Persons who fail in learning numeracy, even though they
have had an opportunity to learn and who, based on their
other skills, should have learnt, we call as having specific
learning disabilities (SLD), developmental dyscalculia (DD).
This discrepancy between learning opportunities, general
skills and poor performance in mathematics, has intrigued
researchers now more than a century. From the early begin-
ning of the research there has been ideas that it has some-
thing to do how the brain of these persons have organized,
failed to develop or damaged.

The recent developments in research methodologies, espe-
cially in brain imaging and statistical technologies, have
opened new windows to analyze these brain related hypothe-
ses. In my presentation I will open some of these windows
with examples from functional brain imaging to longitudinal
studies based on multivariate statistical analysis.

The new windows show different views from the DD. From
one perspective the DD looks like a unitary construct with
very specific symptoms in numerical processing. This view
has been more typical within the brain imaging research.
The other views show a complex where myriad of factors
from genetic to learning experiences each contribute with
a small share to the large variation of the individual skills.
This view has been more typical in behavioural and cog-

nitive studies, especially in longitudinal research. Whether
a common ground can be reached, and what it needed for
that, is discussed.
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ABSTRACT
This mixed panel of different professionals working in EDM
will be a conversation about increasing the connection be-
tween research and real-world applications. What’s going on
now to scale techniques for use ”out there”in the field? What
should researchers, funders, regulators, publishers, trainers,
schools/universities and others be doing to get ready for
practical work? What’s in the way that we can usefully
start work to address? We’ll ask the audience to engage
in this conversation as well - what’s in your way to moving
work from research environments to practically help learners
at scale - and to generate more useable data at scale?
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ABSTRACT
Educational data mining is inherently falls into the category
of the so-called secondary data analysis. It is common that
data that have been collected for administrative or some
other purposes at some point is considered as valuable for
other (research) purpose. Collection of the student gener-
ated, student behavior and student performance related data
on a massive scale in MOOCs, ITSs, LMS and other learning
platforms raises various ethical and privacy concerns among
researches, policy makers and the general public. This panel
is aimed to discuss major challenges in ethics and privacy
in EDM and how they are addressed now or should be ad-
dressed in the future to prevent any possible harm to the
learners. Several experts are invited to discuss the potential
and challenges of privacy-preserving EDM, ethics-aware pre-
dictive learning analytics, and availability of public bench-
mark datasets for EDM among others.
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ABSTRACT
Educational data mining (EDM) and Learning analytics are
still rather young research areas. The goal of this panel is
to share different views on what major challenges researches
need to address in EDM, learning analytics and related re-
search areas including but not limited to User modeling, AI
in Education, and Learning Sciences. The representatives of
the corresponding communities are invited to discuss what
grand challenges we should aim to address for the next five
years, and which of these challenges are old and which are
new, which of them peculiar to one distinct research area
and which of them are shared across two or more research
areas.
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Metrics for Evaluation of Student Models

Radek Pelánek
Masaryk University Brno
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ABSTRACT
Researchers use many different metrics for evaluation of per-
formance of student models. The aim of this paper is to pro-
vide an overview of commonly used metrics, to discuss prop-
erties, advantages, and disadvantages of different metrics, to
summarize current practice in educational data mining, and
to provide guidance for evaluation of student models. In the
discussion we mention the relation of metrics to parameter
fitting, the impact of student models on student practice
(over-practice, under-practice), and point out connections
to related work on evaluation of probability forecasters in
other domains. We also provide an empirical comparison
of metrics. One of the conclusion of the paper is that some
commonly used metrics should not be used (MAE) or should
be used more critically (AUC).
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ABSTRACT
We present an approach to Intelligent Tutoring Systems
which adaptively personalizes sequences of learning activ-
ities to maximize skills acquired by students, taking into
account the limited time and motivational resources. At a
given point in time, the system proposes to the students the
activity which makes them progress faster. We introduce
two algorithms that rely on the empirical estimation of the
learning progress, RiARiT that uses information about the
difficulty of each exercise and ZPDES that uses much less
knowledge about the problem.

The system is based on the combination of three approaches.
First, it leverages recent models of intrinsically motivated
learning by transposing them to active teaching, relying on
empirical estimation of learning progress provided by spe-
cific activities to particular students. Second, it uses state-
of-the-art Multi-Arm Bandit (MAB) techniques to efficiently
manage the exploration/exploitation challenge of this op-
timization process. Third, it leverages expert knowledge
to constrain and bootstrap initial exploration of the MAB,
while requiring only coarse guidance information of the ex-
pert and allowing the system to deal with didactic gaps in
its knowledge. The system is evaluated in a scenario where
7–8 year old schoolchildren learn how to decompose numbers
while manipulating money. Systematic experiments are pre-
sented with simulated students, followed by results of a user
study across a population of 400 school children.
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ABSTRACT
Interactive learning environments can provide learners with
opportunities to explore rich, real-world problem spaces,
but the nature of these problem spaces can make assessing
learner progress difficult. Such assessment can be useful for
providing formative and summative feedback to the learn-
ers, to educators, and to the designers of the environments.
This work adds to a growing body of research that is apply-
ing EDM techniques to more open-ended problem spaces.

The open-ended problem space under study here is an en-
vironmental science simulation. Learners were confronted
with the real-world challenge of effectively placing green in-
frastructure in an urban neighborhood to reduce surface
flooding. Learners could try out different spatial arrange-
ments of green infrastructure and use the simulation to test
each solution’s impact on flooding. The learners’ solutions
and the solutions’ performances were logged during a con-
trolled experiment with different user interface designs for
the simulation. As with many open-problem spaces, analyz-
ing this data was difficult due to the large state space, many
good solutions, and many alternate paths to those good so-
lutions.

This work proposes a procedure for reducing the state space
of solutions defined by spatial patterns while maintaining
their critical spatial properties. Spatial reasoning problems
are a problem class not yet examined by EDM, so this work
sets the stage for further research in this area. This work also
details a procedure for discovering effective spatial strategies
and solution paths, and demonstrates how this information
can be used to give formative feedback to the designers of
the interactive learning environment.
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ABSTRACT
In educational technology and learning sciences, there are
multiple uses for a predictive model of whether a student
will perform a task correctly or not. For example, an in-
telligent tutoring system may use such a model to estimate
whether or not a student has mastered a skill. We analyze
the significance of data recency in making such predictions,
i.e., asking whether relatively more recent observations of
a student’s performance matter more than relatively older
observations. We investigate several representations of re-
cency, such as the count of prior practice in the AFM model,
and the proportion of recent successes with exponential and
box kernels. We find that an exponential decay of a pro-
portion of successes provides the summary of recent practice
with the highest predictive accuracy over alternative models.
As a secondary contribution, we develop a new logistic re-
gression model, Recent-Performance Factors Analysis, that
leverages this representation of recent performance, and has
higher predictive accuracy than existing logistic regression
models.
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ABSTRACT
The problem of mapping items to skills is gaining interest
with the emergence of recent techniques that can use data
for both defining this mapping, and for refining mappings
given by experts. We investigate the problem of refining
mapping from an expert by combining the output of dif-
ferent techniques. The combination is based on a partition
tree that combines the suggested refinements of three known
techniques from the literature. Each technique is given as
input a Q-matrix, that maps items to skills, and student test
outcome data, and outputs a modified Q-matrix that consti-
tutes suggested improvements. We test the accuracy of the
partition tree combination techniques over both synthetic
and real data. The results over synthetic data show a high
improvement over the best single technique with a 86% error
reduction on average for four different Q-matrices. For real
data, the error reduction is 55%. In addition to the substan-
tial error reduction, the partition tree refinements provide
a much more stable performance than any single technique.
These results suggest that the partition tree is a valuable
refinement combination approach that can effectively take
advantage of the complementarity of the Q-matrix refine-
ment techniques. It brings the goal of using a data driven
approach to refine the item to skill mapping closer to real
applications, although challenges remain and are discussed.

1. INTRODUCTION
Defining which skills are involved in a task is non trivial.
Whereas task outcome is observable, skills are not. This
layer of opacity leaves a world of possibilities to define which
skills are behind task performance, and no obvious evidence
to know if the proposed definition is correct or not. Means to
provide such feedback would be highly valuable to teachers
and designers of learning environments, and we find numer-
ous recent efforts towards this end in the last few years.
They are reviewed in section 2.

We developed an approach that takes the outpout of a com-
bination of techniques to detect likely errors of task to skills

mappings given by experts. We investigate the combination
of three data-driven techniques [3, 2, 7] based on a partition
tree algorithm that creates binary partitions. See also [6]
for a more detailed comparison of the performance of these
thee techniques.

The performance of the partition tree approach is tested
over synthetic and real data. But even in the case of real
data, the approach to grow the partition tree trains on syn-
thetic performance data generated from a set of Q-matrices
that are similar to the Q-matrix to refine. This procedure is
chosen because only synthetic data provides a large enough
training set, and because it also provides ground truth la-
belling of latent variables.

In the rest of this text we use the term items to refer to ques-
tions or tasks that can be part of a formative or summative
assessment, or exercises within an e-learning environment.
Skills can be the mastery of concepts, factual knowledge, or
any ability involved in item outcome success. However, the
models reviewed here assume a static student skills state,
as opposed to the Knowledge Tracing model and its deriva-
tives [11], for example, which rely on dynamic data. We
return to this limitation in the Discussion.

The different techniques to validate a Q-matrix are first de-
scribed, followed by the description of the approach, the
experiments, and the results.

2. Q-MATRICES AND TECHNIQUES TO
VALIDATE THEM FROM DATA

Q-matrix QM-1

Skill
Item 1 2 3

1 1 1 0
2 1 0 1
3 1 0 1
4 1 0 0
5 1 1 0
6 1 1 0
7 1 0 1
8 1 0 1
9 1 0 0

10 1 0 0
11 1 1 0

A mapping of item to skills is
termed a Q-matrix. An exam-
ple of a 11 items and 3 skills
Q-matrix is given beside. It
corresponds to the Q-matrix la-
belled QM 1 in the results sec-
tion below. From this exam-
ple, item 4 requires skill 1 only,
whereas item 11 requires skills 1
and 2. If all specified skills are
required to succeed the item, the
Q-matrix is labeled conjunc-
tive. If a any of the required
skill is sufficient to the item’s
success, then it is labeled dis-
junctive. The compensatory
version corresponds to the case
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where each required item increases the chances of success in
some way. Conjunctive Q-matrices the most common and
all matrices of the experiments here are of this type.

The conjunctive/disjunctive distinction is also referred to as
AND/OR gates. Skills models such as DINA (Deterministic
Input Noisy AND) and DINO (Deterministic Input Noisy
Or) make reference to this AND/OR gates terminology.

The DINA model [10] defines the probability of success to
an item as a function of whether the skills required are mas-
tered, and of two parameters, the slip and guess factors.
Mastery is a binary value based on the conjunctive frame-
work: if all required skills are mastered then the value is 1,
else it is 0. Slip and guess parameters are values that gen-
erally vary on a [0, 0.2] scale. The probability of success to
an item j by a student i is thereby defined as:

P (Xij =1 | ξij) = (1− sj)ξijg
1−ξij
j

where ξij is 1 if student i masters all required skills of item j,
0 otherwise. sj and gj are the slip and guess factors.

Two techniques for Q-matrix validation surveyed here rely
on the DINA model, whereas the third one relies on a ma-
trix factorization technique called ALS (Alternative Least
Squares), or more precisely ALSC for the conjunctive version
of the technique. We briefly review each technique below.

2.1 Technique 1: MinRSS
Chiu defines a method that minimizes the residual sum of
square (RSS) between the real responses and the ideal re-
sponses that follow from a given Q-matrix [2] under the
DINA model. The algorithm adjusts the Q-matrix by first
estimating the mastery of each student, then choosing the
item with the worst RSS over to the data, and replacing it
with a q-vector that has the lowest RSS, and iterates until
convergence. We refer to this technique as MinRSS .

2.2 Technique 2: MaxDiff
The method defined by de la Torre [3] searches for a Q-
matrix that maximizes the difference in the probabilities of
a correct response to an item between examinees who pos-
sess all the skills required for a correct response to that item
and examinees who do not. It also relies on the DINA model
to determine item outcome probability, and on an EM algo-
rithm to estimate the slip and guess parameters. Probabil-
ity differences represents an item discrimination index: the
greater the difference between the probability of a correct
response given the skills required and the probability given
missing skills, the greater the item is discriminant. As such,
we can consider that the method finds a Q-matrix that max-
imizes item discrimination over all items. We refer to this
technique as MaxDiff .

2.3 Technique 3: Conjunctive alternate
Least-Square Factorization (ALSC)

The Conjunctive alternate Least-Square Factorization (ALSC)
method is defined in [7]. Contrary to the other two meth-
ods, it does not rely on the DINA model as it has no slip
and guess parameters. ALSC decomposes the results matrix
Rm×n of m items by n students as the inner product two

smaller matrices:

¬R = Q¬S (1)

where ¬R is the negation of the results matrix (m items by
n students), Q is the m items by k skills Q-matrix, and ¬S is
negation of the the mastery matrix of k skills by n students
(normalized for rows columns to sum to 1). By negation, we
mean the 0-values are transformed to 1, and non-0-values
to 0. Negation is necessary for a conjunctive Q-matrix.

The factorization consists of alternating between estimates
of S and Q until convergence. Starting with the initial ex-
pert defined Q-matrix, Q0, a least-squares estimate of S is
obtained:

¬Ŝ0 = (QT
0 Q0)−1 QT

0 ¬R (2)

Then, a new estimate of the Q-matrix, Q̂1, is again obtained
by the least-squares estimate:

Q̂1 = ¬R¬ŜT
0 (¬Ŝ0 ¬ŜT

0 )−1 (3)

And so on until convergence. Alternating between equa-
tions (2) and (3) yields progressive refinements of the ma-

trices Q̂i and Ŝi that more closely approximate R in equa-
tion (1). The final Q̂i is rounded to yield a binary matrix.

Note that (¬QT
i ¬Qi) or (¬Ŝi ¬ŜT

i )i may not be invert-
ible, for example in the case where the matrix Qi is not
column full-rank, or the matrix Si is not row full-rank. This
is resolved by adding a very small Gaussian noise before
attempting the matrix inverse.

2.4 Other techniques
We chose the three techniques described above as the can-
didates to combine refinements that can potentially provide
more accurate suggestions than any of the individual ones,
but any other equivalent technique could also be combined in
the same fashion instead of the three chosen ones here. Po-
tential candidates could be, for example, a technique based
on a Bayesian approach by DeCarlo et al. [5], and recent
techniques that rely on time information [13, 12]. Yet an-
other recent approach relies item text [8] to establish the
mapping of items to skills.

Although the results obtained through a combination of
techniques may vary as a function of the specific techniques
chosen, the general principle remains valid for all possible
combinations. And there is no reason to believe that the par-
ticular combination of the current study is better or worse
than other potential combinations.

2.5 General validation principle
The general idea behind the validation of Q-matrices is to
introduce a perturbation to a matrix and run a refinement
technique that takes the perturbed matrix and test data
as input, and outputs a set of refinements. In all, 8 cases
can occur and they are listed in table 1. The 8 cases are
a combination of the original cell value, perturbation, and
value proposed (2× 2× 2).

The outcome of a proposed value from the refinement tech-
nique is considered correct if it corresponds to the original
value before the perturbation, and incorrect otherwise. We
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Table 1: Refinement outcomes

Perturbation Refinement

Value Value Value Outcome
before after proposed

Perturbed cell
(1) 0 1 0 correct (TP)
(2) 1 0 1 correct (TP)
(3) 0 1 1 wrong (FN)
(4) 1 0 0 wrong (FN)

Non Perturbed cell
(5) 0 0 0 correct (TN)
(6) 1 1 1 correct (TN)
(7) 0 0 1 wrong (FP)
(8) 1 1 0 wrong (FP)

also refer to the signal detection terminology with respect to
perturbations to introduce further classification of the error
types:

• True Positives (TP): perturbed cell that was cor-
rectly changed
• True Negatives (TN): non perturbed cell left un-

changed
• False Positives (FP): non perturbed cell incorrectly

changed
• False Negatives (FN): perturbed cell left unchanged

3. COMBINING TECHNIQUES WITH A
PARTITION TREE

Each of the technique described above uses a different al-
gorithm to provide a potentially improved Q-matrix. In
that respect, their respective outcome may be complemen-
tary, and their combined outcome can be more reliable than
any single one. This is the first hypothesis and objective
of our study. Furthermore, some algorithms are more effec-
tive in general, but may not be the best performer in all
context. Identifying in which context an algorithm provides
the most reliable outcome is another objective of combin-
ing these techniques. We will see that the first hypothesis
is confirmed in the results of the partition tree labeled (1)
and the second is also confirmed by the results of partition
tree (3).

3.1 Partitioning tree
To implement the partition tree combination of the three
techniques, we chose the rpart package for this purpose [19].

The rpart package builds classification models that can be
represented as binary trees. The tree is constructed in a
top-down recursive divide and conquer approach. At each
node in the tree, cases are split into two groups based on
their attribute value.

3.1.1 Tree building
Attribute selection is done on the basis of Gini index in
rpart. The Gini index [16] can be calculated as :

Gini(D) = 1−
n∑
j=1

p2
j

where n is the number of classes and pj is the relative fre-
quency of class j in dataset D. If attribute A is chosen to
be a split on dataset D into two subset D1 and D2, then the
Gini index for attribute A is defined as:

GiniA(D) =
|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2)

Once we get the Gini index to add attributes we can calcu-
late a Delta reduction for each attribute:

4Gini(A) = Gini(D)−GiniA(D)

The attribute that creates the largest reduction can be cho-
sen as a splitting point in the decision tree.

3.1.2 Classification with the tree
In our case, attributes are sometimes numeric, such as fac-
tors, and sometimes binary, such as cell values in the Q-
matrix. And the class is binary since it is also a Q-matrix
cell value. At each point of decision from the root node of
the tree to a leaf node, a choice is made to go left or right
based on the splitting point of each node. The nodes in the
partition trees of this experiment are the output of the tech-
niques (suggested values) and the factors considered (they
are described in the next section).

Once a leaf node is reached, classification is based on the
majority vote of the cases that fall under that leaf node: if
the training set contained more case labeled ’0’, this is the
proposed value, else it is a ’1’.

3.2 Factors considered
The partition tree relies on each technique’s output, the Q-
matrix refinement proposition, and on a number of factors
that may provide information about the most reliable tech-
nique refinement in a given context. The factors considered
to be relevant are the following:

• Skills per row. Items can require one or more skills.
The skills per row indicates the number of skills re-
quired.

• Skills per column. The sum of the skills per columns
is an indicator of how often this skill is measured by
the different items of the Q-matrix.

• Stickiness. If a technique systematically proposes a
change to a cell of the Q-matrix, no matter what the
perturbation is, this is an indication that this particu-
lar change to the original Q-matrix is an artifact of the
structure of the Q-matrix and the algorithm. We call
this property the stickiness of a cell of the matrix and
it is measured by the proportion of times the value of
the cell is incorrectly changed over all perturbations.

Recall that we train the partition tree over synthetic
data for which the ground truth is known. We can
therefore reliably identify incorrect changes. This is
detailed below.
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3.3 Training of the partition tree
The partition tree is trained on data that contains the fol-
lowing set of attributes:

• original(j,k): value of cell (j, k) in the original matrix.
This is the target class of the partition tree and it
corresponds to “Value before” in table 1.
• MaxDiff (j,k), MinRSS (j,k), ALSC(j,k): the three values

proposed as refinements by the respective technique in
place of the original value. For every record, at least
one of these must be different from the original one, or
else it is a perturbated cell record. This corresponds
to “Value proposed” in table 1, one for each refinement
technique.
• RSQi,j , CSQi,k: the number of skills per row and column

attributes (see section 3.2). These factors are per Q-
matrix, Qi, and per row j and column k.
• SFMaxDiff(Qi,j,k), SFMinRSS(Qi,j,k),
SFALSC(Qi,j,k): the stickiness factors of the cell, one for
each matrix and technique.

The training data is generated through a perturbation pro-
cess. Each cell of a Q-matrix is perturbated, in turn and
one at a time, to create a new training record containing
the above attributes. However, non perturbated cells that
are left unchanged by all refinements techniques, cases (5)
and (6) in table 1, are left out of the training data because
they were assumed to be uninformative.

The size of the data set to train the partition trees over
is very large. For the permutations of a single Q-matrix,
the number of perturbated and non perturbated cells ranges
from approximately 50,000 to 250,000.

Training of the partition tree for expert Q-matrices with
synthetic data. Whereas for synthetic data, we can gen-
erate a large array of Q-matrices and ample training and
testing data, real data poses a challenge in that respect.
Typically, for a single data set, we have only a few ex-
pert Q-matrices, and often a single one is available. For a
3 skills × 11 items matrix, only 33 single perturbations are
possible to train a partition tree. Furthermore, and unlike
synthetic data, we do not know what are the valid refine-
ments in the Q-matrix. A “sticky” cell might be a valid
refinement, and so can some of the perturbations that are
presumed incorrect.

To get around these issues, the training of the partition tree
is conducted over synthetic data where the ground truth is
know and where we can use a large span of matrices similar
to the expert one. Similarity to the Q-matrix to refine is
achieved by random permutations the cells of the original
Q-matrix. For each Q-matrix, a total of 1000 Q-matrices
are generated through this permutation process. Item out-
come data for 400 simulated students is also generated. The
R package CDM and the sim.din function [15] is used for
generating synthetic student item outcome data, using 0.2
slip and guess factors.

4. REAL DATA AND Q-MATRICES
The primary source of real data for our study, from which the
synthetic data is also mimicked, is the well known data set

Table 2: Four Q-matrices over 11 items of Tatsuoka’s
data set on student item outcome

Number of
Description

skills items cases

QM 1 3 11 536 Expert driven.
Skill 1 shared by all
items. From [9]

QM 2 5 11 536 Expert driven.
From [3]

QM 3 3 11 536 Expert driven.
Single skill per
item. [15]

QM 4 3 11 536 Data driven,
SVD-based.

on fraction algebra problems from Tatsuoka [17] (see table 1
in [4] for a description of the problems and of the skills).
The data contains complete answers of 536 students to 20
questions items, but only a subset of 11 items are used by the
Q-matrices in the current study. It corresponds to the set of
common items to the different Q-matrices of the experiment.

The original Q-matrix of this data set contains 8 skills and,
as mentioned, 20 items. However, a number of variations of
this matrix have been proposed and studied with a smaller
number of skills and items [9, 3, 15]. We also chose to focus
on this smaller skills set since they offer three very differ-
ent expert-defined Q-matrices over the same set of items.
Moreover, a smaller set of skills allows us to better establish
the validity of the approach on a simpler problem, leaving
for later the demonstration of whether it scales correctly to
larger sets. The Q-matrices are described below.

Four Q-matrices are considered. Three of them have been
studied in the literature and one is defined by ourselves.
Their main attributes are reported in table 2 and the actual
Q-matrices are shown in figure 1 (except for QM 1 which is
introduced in section 2).

Skills of
QM 2 QM 3 QM 4

Item 1 2 3 4 5 1 2 3 1 2 3
1 1 1 1 1 0 0 1 0 1 1 0
2 1 1 1 1 1 0 0 1 1 0 1
3 0 0 1 0 0 0 0 1 0 1 0
4 1 1 1 1 0 1 0 0 1 0 0
5 1 1 1 1 0 0 1 0 1 0 0
6 1 1 0 0 0 0 1 0 0 0 1
7 1 0 1 1 1 0 0 1 1 0 1
8 1 0 1 0 0 0 0 1 0 1 1
9 1 0 1 1 0 1 0 0 1 0 0

10 1 1 1 1 0 1 0 0 1 0 1
11 1 1 1 1 0 0 1 0 1 0 0

Figure 1: Q-matrices 2, 3, and 4.

As mentioned, all Q-matrices are derivatives of the Tat-
suoka [17] 20 item set. QM-1, QM-2 and QM-3 are available
from the CDM package. All data sets have 3 skills, except
for data set 2 which has 5 skills. Data set 3 is the only one
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with a single skill per item. Matrix QM 4 was created for the
purpose of this study, using the three largest singular values
and the items to skills V matrix of the SVD decomposition
of the Tatsuoka data mentioned above.

Therefore, while these four Q-matrices all share the same
11 items, they vary by the number of skills, item monoticity
or not, whether a skill is common to all items, and whether
they are driven from data or driven from expert analysis of
item skills involved.

5. GENERAL PROCEDURE SUMMARY
AND METHODOLOGICAL NOTES

To ease the understanding of the general process of the ex-
periments, and at the expense of introducing some redun-
dancy, figure 2 summarizes the main steps and dependencies.
The top greyed box illustrates the process to generate the
data for partition trees training, and the synthetic data for
performance evaluation. The bottom greyed box illustrates
the two test procedures for real and synthetic data. We
explain the figure below and fill in some details as well.

Data generation. For each of the four Q-matrices (QMi),
the data generation process (1) 1000 permutations (2). Du-
plicates are kept if any. For each permutation, synthetic test
outcome data of 400 simulated students is created with the
CDM utility sim.din (3). Finally, each QM is perturbated,
and that Q-matrix is fed to each of the three techniques
to generate training data for the partition tree described in
section 3.3 (4).

Test over real data. The experiment to assess the perfor-
mance over real data takes three sources of input: the Q-
matrices (1), the fraction algebra data set of Tatsuoka as
described in 4 (6), and finally a partition tree (5) trained
from data generated (4). It outputs a set of refinements
from the different partition trees and for each of the three
techniques as well (7). Finally, the refinements are compared
with the original Q-matrices in (1).

Test over synthetic data. For assessing the performance
over synthetic data (9), the process is similar, with the main
difference that refinements are based on the synthetic test
outcome data generated in (3) instead of real data. And the
comparison is not done over the Q-matrices in (1), but in-
stead over the permuted Q-matrices in (2), which constitute
the ground truth as they are used to generate the data.

5.1 Data set size, cross-validation, and the
assumption of correctness of expert
Q-matrices

As shown in figure 2, synthetic test outcome data (3) is used
for both the training of the partition trees and testing over
synthetic data. This large data set (see sect. 3.3) leaves little
space for over fitting of the partition trees, and therefore the
cross-validations bring very small differences in performance:
accuracy/RSS error reduction is the same between a cross-
validated and a non cross-validated performance assessment

Data generation

Test Synthetic

Test Real

2. Permutated QMs
(ground truth)

3. Synthetic test outcome data 
 with DINA model 

 (400 records)

10. Comparison 
 with ground truth

5. Partition trees
(3 types)

provides 
 ground truth 

 labels for 
 learning trees

Perturbations
(one per cell)

4. Refinements with 
 three techniques

9. Refinements with 
 partition trees and 

 the three techniques 

7. Refinements with 
 partition trees and 

 the three techniques 

8. Comparison 
 with original QMi

6. Fraction data set

Perturbations
(one per cell)

1. QMi

Permutations
(1000)

Figure 2: General validation procedure for each Q-
matrix (QMi). See section 5 for details.

at the 0.01 level reported in the results below.

However, for real data, the size of the testing data set is
much smaller. It varies between 366 (QM-2) and 561 (QM-
3), because the test data is based solely on the permutations
of the four Q-matrices. But because the test procedure uses
partition trees trained from synthetic data, there are no bias
issues and cross validation is not required here.

Note also that, for real data, the expert-defined Q-matrix is
not necessarily consistent with the (unknown) ground truth.
Nevertheless, we consider this Q-matrix as valid and the
evaluation of the proposed refinements are made by compar-
ing refinements with expert-defined Q-matrices, as though
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Table 3: Results for synthetic data

QM
Technique Partition tree

MinRSS MaxDiff ALSC (1) (2) (3)

Accuracy of perturbated cells

1 0.81 0.47 0.82 0.81 0.88 0.95
2 0.07 0.26 0.36 0.52 0.53 0.83
3 0.96 0.49 0.95 0.99 1.00 1.00
4 0.90 0.49 0.85 0.90 0.92 0.96

X 0.69 0.43 0.75 0.81 0.83 0.93

Accuracy of non perturbated cells

1 0.97 0.56 0.44 0.97 0.91 0.99
2 0.99 0.53 0.50 0.99 0.99 0.99
3 0.95 0.26 0.74 0.95 0.94 0.99
4 0.97 0.56 0.44 0.97 0.97 1.00

X 0.97 0.48 0.53 0.97 0.95 0.99

F-score

1 0.88 0.51 0.58 0.88 0.90 0.97
2 0.13 0.35 0.42 0.68 0.69 0.90
3 0.96 0.34 0.83 0.97 0.97 1.00
4 0.93 0.52 0.58 0.93 0.94 0.98

X 0.72 0.43 0.60 0.87 0.87 0.96

they were the ground truth. We should keep in mind that
the performance score may be negatively biased if this as-
sumption was false, but for the purpose of comparing the
relative techniques performance among themselves, and if
we assume that all techniques are equally affected by this
bias, then it makes no difference to our relative results.

6. PERFORMANCE MEASURES
To measure the performance of the proposed refinements,
we use the difference between the original Q-matrix and the
proposed refinement of a technique. We use the classification
of correct and incorrect refinements introduced in table 1.
Cells that are neither perturbated nor incorrectly suggested
as refinements by any of the technique are ignored in the
analysis (the true negatives of table 1, TN). This is the case
of the large majority and it also is consistent with the train-
ing of the partition tree for which they are also filtered out.

Recovery of a perturbated cell to its original value can be
considered as a recall measure, whereas the non perturbated
cells that are left unchanged can be considered as a precision
measure. In that respect, we define a performance measure
that combines precision and recall of the refinement tech-
nique into a single F-score measure:

F-score = 2× precision× recall

precision + recall

= 2× Acc¬P ×AccP
Acc¬P + AccP

where AccP and Acc¬P are respectively the accuracy mea-
sure of the proposed refinements for the perturbated and
non perturbated cells. This measure gives equal weight to
both types of accuracies and avoids a bias in favour of the
accuracy of the non perturbated cells which can considerably

Table 4: Results for real data

QM
Technique Partition tree

MinRSS MaxDiff ALSC (1) (2) (3)

Accuracy of perturbated cells

1 0.39 0.17 0.52 0.39 0.36 0.67
2 0.35 0.09 0.56 0.60 0.62 0.64
3 0.27 0.09 0.36 0.61 1.00 0.88
4 0.42 0.11 0.58 0.42 0.48 0.61

X 0.36 0.12 0.51 0.51 0.62 0.70

Accuracy of non perturbated cells

1 0.45 0.68 0.56 0.45 0.38 0.60
2 0.93 0.93 0.28 0.94 0.94 0.97
3 0.64 0.83 0.42 0.69 0.76 0.78
4 0.55 0.89 0.32 0.55 0.52 0.51

X 0.52 0.68 0.32 0.62 0.62 0.68

F-score

1 0.42 0.27 0.54 0.42 0.37 0.63
2 0.50 0.17 0.37 0.73 0.74 0.77
3 0.38 0.16 0.39 0.64 0.86 0.83
4 0.48 0.20 0.42 0.48 0.50 0.56

X 0.45 0.20 0.43 0.57 0.62 0.70

outweigh in number the single perturbated cell, even after
filtering out non-perturbated cells that are left unchanged.

7. RESULTS
The results are reported in tables 3 and 4. The format of
these tables first described below.

7.1 Description
The respective results of the four Q-matrices (column QM)
in table 2 are reported. They correspond to a single run
(real data can vary a few percentage points by run, but it is
practically stable for synthetic data due to the large number
of cases). The accuracy of refinement for perturbated and
non perturbated cells are reported separately, followed by
the F-score which combines both types of accuracy. The
averages of the four matrices for each of these these three
performance measures is also reported as X.

The accuracy and F-score of each individual technique is
reported under columns MinRSS , MaxDiff , and ALSC.

The three columns under Partition tree correspond to the
performance as a function of different factors used for build-
ing the tree:

(1) MinRSS + MaxDiff + ALSC. Only the output of
the three refinement techniques is considered.

(2) MinRSS + MaxDiff + ALSC + SR + SC. The
number of skills per row (SR) and skills per column
(SC) of the target cell are taken into account in ad-
dition to the output of each technique. If some tech-
nique performs better under some combination of SR
and SC, this tree will be able to take these factor into
account.
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(3) MinRSS + MaxDiff + ALSC + SR + SC +
Stickiness.MinRSS + Stickiness.MaxDiff + Stick-
iness.ALSC. The tendency of a cell to be a false pos-
itive for the MinRSS and ALSC methods are added.
The Stickiness factor with MaxDiff is omitted here be-
cause it did not yield improvements.

7.2 Synthetic data
The results for synthetic data in 3 show large differences be-
tween the different matrices and across the individual tech-
niques.

The MinRSS method is clearly superior in terms of gen-
eral accuracy, except for the 5-skills Q-matrix where it can
only identify the perturbated cell 7% of the time, and which
brings its average below the ALSC technique. However,
because it introduces fewer false positives (incorrect refine-
ments) than other techniques, it outperform the other two
methods on the F-Score.

On average, the ALSC technique is good at identifying the
perturbated cell with a 75% average, but it also tends to
introduce more false positives and consequently obtains a
lower global F-score than MinRSS .

Another noticeable result is that the results for QM 3 are
very good, in particular for the partition trees which have
perfect performance (rounding at the second decimal). This
is likely attributed to the fact that it defines a single-skill
mapping.

Turning to the main questions addressed in this study, the
results of partition tree (1), which uses only the three tech-
niques’ output, is equal or better on all scores than any
individual one. This confirms the initial hypothesis for syn-
thetic data. Furthermore, the inclusion of factors (partition
trees (2) and (3)) also substantially improves all scores, con-
firming the other hypothesis that some techniques perform
better under a combination of factors and that the partition
tree is effectively able to take advantage of this information.
The stickyness factor is by far the most effective.

7.3 Real data
The results over the real data reported in table 4 show the
same trends as the synthetic data, but bring less pronounced
improvements. They also support both hypothesis.

We do find an exception with the non perturbated cells
where the MaxDiff accuracy is above the partition trees (1)
and (2) and close to (3). This is mainly due to the fact
that more “false positives” are generated by the MinRSS
and ALSC techniques for real data than for synthetic data,
whereas the MaxDiff technique outputs very few changes
in both contexts. That observation is consistent with the
results in [6].

The balance between true positives and true negatives il-
lustrates why the F-score should be the reference: a perfect
score could be obtained over the accuracy of non perturbated
cells if no changes are always suggested, but that would make
such refinement technique useless.

Therefore, turning to the F-scores, the tendencies are highly

consistent with the synthetic data. The F-score of the best
performer, 0.41 of MinRSS , is improved to 0.55 with the
combination of the three techniques, and to 0.66 when all
factors are included in the partition tree.

8. DISCUSSION
The results of the above experiments show that the combi-
nation of Q-matrix refinement techniques using a partition
tree can bring substantial improvements over the best per-
formance of the individual techniques. For synthetic data
the average best F-score of the MinRSS technique, 0.72, is
improved to 0.96, and for real data it is raised from 0.41
to 0.66. These results represent a 86% and 55% error re-
duction for the F-score of the synthetic and the real data
respectively (error reduction = 1− (1− F ′)/(1− F ), where
F is the initial F-score and F ′ is the improved F-score).

In practical terms, if the best technique finds an error in
a Q-matrix 5 out of 10 times, an error reduction of 40%
represents an increase from 5, to 7 out of 10 times, and
the same ratio applies to false errors reduction. And these
figures rest on the assumption that we would know which
technique is the best, whereas according to table 4’s results
the best technique varies across Q-matrices.

Another positive note on the results is that the partition tree
F-scores are more stable across Q-matrices and are system-
atically better than any individual technique when all factors
are taken into account (partition tree 3). This regularity in-
curs that, at least in the space of Q-matrices surveyed, one
can safely choose partition tree refinements without con-
cerns that, maybe, another technique could deliver better
refinements for a specific Q-matrix.

In spite of these encouraging results, limitations and issues
remain.

One limit is that the results are from a single 11 items set,
and from a single domain. We can reasonably believe that
the results vary across contexts and more investigation is
required to assess this variability.

Another limitation is the models investigated in the current
study use static student data: they assume that skill mas-
tery does not change for a single student. This assumption
is false for most data gathered in learning environments,
where students take on exercises as they learn and are being
assessed throughout the learning process. This type of data
can be labeled as dynamic item outcome data because a stu-
dent will be in different states of skills mastery as learning
occurs.

In order to effectively use the existing techniques of Q-matrix
refinement, we would need to be able to detect the moment
when the state of skill mastery changed. Failure do do so
would create noise in the data and impair the effectiveness
of these techniques. Fortunately, substantial progress has
been done in the recent decade or two towards detecting
the moment of learning, such as the large body of work
on Bayesian Knowledge Tracing and Tensor factorization
(for eg. [1, 18]). We can also cite the work of [14] who
refer to a time-varying skills matrix for students and test
their approach on synthetic data. But apart from this recent
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contribution, little work has been done on using this type of
data for refining a Q-matrix, and we can only expect existing
techniques to under perform with dynamic student data.
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ABSTRACT
Modeling student knowledge is a fundamental task of an in-
telligent tutoring system. A popular approach for modeling
the acquisition of knowledge is Bayesian Knowledge Trac-
ing (BKT). Various extensions to the original BKT model
have been proposed, among them two novel models that
unify BKT and Item Response Theory (IRT). Latent Fac-
tor Knowledge Tracing (LFKT) and Feature Aware Student
knowledge Tracing (FAST) exhibit state of the art predic-
tion accuracy. However, only few studies have analyzed the
characteristics of these different models. In this paper, we
therefore evaluate and compare properties of the models us-
ing synthetic data sets. We sample from a combined stu-
dent model that encompasses all four models. Based on the
true parameters of the data generating process, we assess
model performance characteristics for over 66’000 parame-
ter configurations and identify best and worst case perfor-
mance. Using regression we analyze the influence of different
sampling parameters on the performance of the models and
study their robustness under different model assumption vi-
olations.

Keywords
Knowledge Tracing, Item Response Theory, synthetic data,
predictive performance, robustness

1. INTRODUCTION
A fundamental part of an intelligent tutoring system (ITS)
is the student model. Task selection and evaluation of the
student’s learning progress are based on this model, and
therefore it influences the learning experience and the learn-
ing outcome of a student. Thus, accurately modeling and
predicting student knowledge is essential.

Approaches for student modeling are usually based on two
popular techniques: Item Response Theory (IRT) [36] and
Bayesian Knowledge Tracing (BKT) [9]. The concept of
IRT assumes that that the probability of a correct response
to an item is a mathematical function of student and item
parameters. The Additive Factors Model (AFM) [7, 8] fits
a learning curve to the data by applying a logistic regres-
sion. Another technique called Performance Factors Analy-
sis (PFA) [27] is based on the Rasch item response model [12].
BKT models student knowledge as a binary variable that can
be inferred by binary observations. Performance of the orig-
inal BKT model has been improved by using individualiza-
tion techniques such as modeling the parameters by student
and skill [23, 35, 39] or per school class [34]. Clustering ap-
proaches [25] have also proven successful in improving the
prediction accuracy of BKT. Furthermore, hybrid models
combining the approaches of IRT and BKT have been pro-
posed. In [17] a dynamic mixture model has been presented
to trace performance and affect simultaneously. The KT-
IDEM model extends BKT by introducing item difficulty
parameters [22]. Other work focused on individualizing the
initial mastery probability of BKT by using IRT [38]. Logis-
tic regression has also been used to integrate subskills into
BKT [37]. Recently, two models have been introduced which
synthesize IRT and BKT. Latent Factor Knowledge Tracing
(LFKT) [18] individualizes the guess and slip probabilities
of BKT based on student ability and item difficulty. Feature
Aware Student Knowledge Tracing (FAST) [14] generalizes
the individualized guess and slip probabilities to arbitrary
features.

Lately, the analysis of properties of BKT has gained increas-
ing attention. It has been shown [5] that learning BKT
models exhibits fundamental identifiability problems, i.e.,
different model parameter estimates may lead to identical
predictions about student performance. This problem was
addressed by using an approach that biases the model search
by Dirichlet priors to get statistically reliable improvements
in predictive performance. [33] extended this work by per-
forming a fixed point analysis of the solutions of the BKT
learning task and by deriving constraints on the range of
parameters that lead to unique solutions. Furthermore, it
has been shown that the parameter space of BKT models
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can be reduced using clustering [30]. Other research focused
on analyzing convergence properties [24] of the expectation
maximization algorithm (EM) for learning BKT models and
exploring parameter estimates produced by EM [15]. It has
been shown that convergence in the log likelihood space does
not necessarily mean convergence in the parameter space.
[11] have studied how good BKT is at predicting the moment
of mastery. Different thresholds to assess mastery and their
corresponding lag, i.e., the number of tasks that BKT needs
to assess mastery (after mastery has already been achieved),
have been investigated. Using multiple model fitting pro-
cedures, BKT has been compared to PFA [13]. While no
differences in predictive accuracy between the models have
been reported, it has been shown that for knowledge tracing
EM achieves significantly higher predictive accuracy than
Brute Force. Findings from other studies, however, suggest
the opposite [1, 2]. In [4], upper bounds on the predictive
performance have been investigated by employing various
cheating models. It has been concluded that BKT and PFA
perform close to these limits, suggesting that other factors
such as robust learning or optimal waiting intervals should
be considered to improve tutorial decision making. The pre-
dictive performance of LFKT and FAST has been compared
to KT and IRT models in [19]. The evaluation is based on
data from different intelligent tutoring systems.

In this work, we are interested in the properties of hybrid
approaches combining latent factor and knowledge tracing
models. In extension to previous work and especially to [19],
we empirically evaluate the performance characteristics of
the two recent hybrid models LFKT and FAST on synthetic
data and compare them to the underlying approaches of
BKT and IRT. We sample from a combined student model
that encompasses all four models. By using synthetic data
generated from the combined model, we show the robust-
ness of the models under breaking model assumptions. By
evaluating the models on 66’000 different parameter configu-
rations we are able to rigorously explore the parameter space
to demonstrate the relative performance gain between mod-
els for various regions of the parameter space. Our findings
show that for the generated data sets FAST significantly out-
performs all other methods for predicting the task outcome
and that BKT is significantly better than FAST and LFKT
at predicting the latent knowledge state. Furthermore we
are able to identify the influence of different properties of a
data set on model performance using regression and show
best and worst case performances of the models.

2. INVESTIGATED MODELS
In an intelligent tutoring system a student is typically pre-
sented with a set of tasks to learn a specific skill. For each
student n the system chooses at time t an item i from a set
of items corresponding to a particular skill. The system then
observes the answer yn,t of the student, which is assumed to
be binary in this work. In the following, we briefly present
four common techniques to model various latent states of
the student and the tutoring environment.

BKT. Bayesian Knowledge Tracing (BKT) [9] models the
knowledge acquisition of a single skill and is a special case
of a Hidden Markov Model (HMM) [29]. BKT uses two
latent states (known and unknown) to model if a student
n has mastered a particular skill kn,t at time t, and two

observable states (correct and incorrect) to represent the
outcome of a particular task. Therefore, the probabilistic
model can be fully described by a set of five probabilities.
The initial probability of knowing a skill a-priori p(kn,0) is
denoted by pI . The transition from one knowledge state
kn,t−1 to the next state kn,t is described by the probability
pL of transitioning from the unknown latent state to the
known state and the probability pF of transitioning from
the known to the unknown state:

p(kn,t) = kn,t−1(1− pF ) + (1− kn,t−1)pL. (1)

In the case of BKT, pF is fixed at 0. Finally, the task out-
comes yn,t are modeled as

p(yn,t) = kn,t(1− pS) + (1− kn,t)pG, (2)

where pS denotes the slip probability, which is the probability
of solving a task incorrectly despite knowing the skill, and
pG is the guess probability, which is the probability of cor-
rectly answering a task without having mastered the skill.
Learning the parameters for a BKT model is done using
maximum likelihood estimation (MLE).

IRT. Item Response Theory (IRT) [36] models the response
of a student to an item as a function of latent student abil-
ities θn and latent item difficulties di. The simplest form of
an IRT model is the Rasch model, where each student n and
each item i are treated independently. The outcome yn,t at
time t is modeled using the logistic function

p(yn,t) =
(

1 + e−(θn−di)
)−1

. (3)

A student with an ability of θn = di has a 50% chance of
getting item i correct. In contrast to BKT, IRT does not
model knowledge acquisition. The model parameters for the
Rasch model are learned using EM.

LFKT. The Latent Factor Knowledge Tracing (LFKT) [18]
model combines BKT and IRT using a hierarchical Bayesian
model. On the basis of the BKT model, slip and guess prob-
abilities are individualized based on student ability and item
difficulty as

pGn,t =
(

1 + e−(di−θn+γG)
)−1

(4)

pSn,t =
(

1 + e−(θn−di+γS)
)−1

, (5)

where γG and γS are offsets for the guess and slip proba-
bilities. The model is fit by calculating Bayesian parameter
posteriors using Markov Chain Monte Carlo.

FAST. Feature Aware Student Knowledge Tracing (FAST)
[14] allows for unification of BKT and IRT as well, but gen-
eralizes the individualized slip and guess probabilities to ar-
bitrary features. Given a vector of features fn,t for a student
n at time t the adapted emission probability reads as

p(yn,t) =
(

1 + e−(ωT fn,t)
)−1

, (6)

where ω is a vector of learned feature weights. If a set of
binary indicator functions for the items and the students are
used, FAST is able to represent the item difficulties di and
student abilities θn from the IRT model. The parameters
are fit using a variant of EM [6].
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3. SYNTHETIC DATA GENERATION
Synthetic data is needed to have ground truth about the
underlying data generating model, which enables the exper-
imental evaluation of various properties of a model.

The sampling procedure starts by generating N student abil-
ities θn from a normal distribution N(0, σ). Then, it gener-
ates I item difficulties di from a uniform distribution U(−δ, δ).
Based on the initial probability pI and the learn probabil-
ity pL a sequence of knowledge states kn,0, kn,1, . . . , kn,T is
sampled based on (1) and we therefore simulate data from
only one skill. The time t∗ at which kn,t∗ = 1 for the first
time is considered as the moment of mastery. The number
of sampled knowledge states is then given as T = t∗ + L,
where L denotes the lag of the simulated mastery learning
system. For each student we generate a random sequence of
items, i.e., item indices i. Arbitrary features from the train-
ing environment, such as answer times, help calls, problem
solving strategy, engagement state of the student and gam-
ing attempts, can have an influence on the performance of a
student. To simulate those influences in a principled way, a
single feature f is added to the data generating model with
a varying feature weight ω (and thus varying correlation to
the task outcomes yn,t).

Based on these quantities, we sample the observations yn,t
from a Bernoulli distribution with probability

p(yn,t) =
(

1 + e−(θn−di−log γn,t+ωfn,t)
)−1

, (7)

where

γn,t = (kn,t(1− pS) + (1− kn,t)pG)−1 − 1.

Figure 1 gives a graphical overview of the described sam-
pling procedure. Our sampling model has the following
nine parameters: pI , pL, pS , pG, δ, σ, ω, I,N . The described
sampling procedure allows sampling of data that exactly
matches the model assumptions of all four models. To sam-
ple BKT data we set δ = σ = ω = 0 and (7) simplifies to
the standard BKT formulation. By setting pS = pG = 0.5
and ω = 0 we can sample from an IRT model. To sample
from an LFKT model we set ω = 0 and for FAST none of
the parameters are restricted.

4. EXPERIMENTAL SETUP
Parameter space. We generated a vast number of pa-
rameter configurations in order to analyze the four models.
The set of parameter configurations has been carefully de-
signed to match real world conditions. The BKT parameters
(pI , pG, pS , pL) are based on the parameter clusters found
on real world data [30]. Using a normal distribution with
a standard deviation of 0.02, we sampled up to 30 points
(depending on the cluster size) around each cluster mean.
According to common practice [16] we scaled the student
abilities θn to have a mean of 0 and a variance of 1 and
therefore σ = 1. We sampled the parameter δ (determining
the range of the item difficulties) uniformly from [0, 3] (ac-
cording to [16]). Despite simulating only one skill, we varied
the item difficulties to account for the fact that skill models
tend to be imperfect in practice [7, 32, 20]. In accordance
to the item difficulties, the feature weight ω was varied uni-
formly across [0, 1.5]. Feature values fn,t were sampled from
the uniform distribution U(−1, 1).

𝑑𝑖

𝑘𝑛,𝑡

𝑓𝑛,𝑡

𝜃𝑛𝑦𝑛,𝑡

time steps 𝑻

students 𝑵

items 𝑰

Figure 1: Combined student model used for syn-
thetic data generation. The model corresponds to
LFKT with the addition of a single feature. The
relative dependencies of the observable nodes (blue)
and the latent nodes (white) are shown. kn,s denotes
the latent knowledge state, di the item difficulty, θn
the student ability, yn,t the observation, and fn,t the
feature value.

For every parameter configuration we generated five folds
with N = 300 simulated students. Each fold was randomly
split up into two parts of equal number of students. The
first part was used as training data and the second part
for testing. Therefore, the training data did contain unseen
students only. As we simulated data from a mastery learning
environment the number of tasks simulated for each student
was determined by the moment of mastery. Based on the
results presented by [11], we set the lag of the simulated
system to L = 4 tasks from the moment of mastery. We
simulated I = 15 different items with random item order.

In total, we generated 66′000 parameter configurations for
pI , pG, pS , pL, δ, ω, this amounts total evaluation time (train-
ing and test) of 1’280 hours and 1’351 hours for LFKT and
FAST respectively. The evaluation time for the BKT was 99
minutes and all configurations were evaluated in 58 minutes
for the IRT model.

Implementation. To train BKT models we used our cus-
tom code that trains BKT using the Nelder-Mead simplex al-
gorithm minimizing the log-likelihood. We thoroughly tested
our implementation against the BKT implementation of [39].
The IRT models were fit by joint maximum likelihood es-
timation [21] implemented in the psychometrics library1.
FAST using IRT features was shown to be equivalent to
LFKT except for the parameter estimation procedure [19].
As this work did not investigate different parameter esti-
mation techniques, both models were trained and evaluated
using the publicly available FAST student modeling toolkit2.

5. RESULTS AND DISCUSSION
Using the generated data, we investigated the performance
characteristics of the four models and evaluated their pre-
dictive power and robustness under varying parameter con-
figurations. For our results we generated 66′000 parameter

1An open source Java library for measurement, available at
https://github.com/meyerjp3/psychometrics.
2http://ml-smores.github.io/fast/
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configurations, and for each of them we generated synthetic
data for 1′500 students. Note that there are many ways to
characterize performance differences among student models
and we only cover a subset of these possibilities.

5.1 Error Metrics
The right choice of error metrics when evaluating student
models has recently gained increased interest in the EDM
community. In [28] some of the common error metric choices
are discussed, highlighting possible issues with the accuracy
and area under the ROC curve (AUC) measure. Correla-
tions between various performance metrics and the accuracy
of predicting the moment of mastering a skill has been inves-
tigated in [26], showing that the F-measure (equaling to the
harmonic mean of precision and recall) and the recall are two
metrics with a high correlation to the accuracy of knowledge
estimation. The root mean squared error (RMSE) and log-
likelihood, on the other hand, are well suited if one wants
to recover the true learning parameters. Similarly, [10] con-
cluded from results of 26 synthetic data sets that RMSE is
better at fitting parameters than the log-likelihood.

In line with this previous work we investigated correlations
between accuracy, RMSE and F-measure across all four mod-
els. For this, all models were trained and evaluated on data
using 66′000 different parameter configurations. All metrics
are strongly correlated |ρ| > 0.75, p � 0.001. Our inspec-
tions of the metric correlations revealed no significant differ-
ences in the metric correlations among the different models.
Thus, to a large extent the measures capture equal char-
acteristics for the models we considered in this work. In
the following, we therefore focus our analysis on the RMSE
measure.

5.2 Model Comparison
Overall Performance. In a first step we investigated the
overall performance of the models. For every parameter con-
figuration, we calculated the average RMSE over the five
generated folds. Table 1 summarizes the parameters for the
best and worst data set for every model when model assump-
tions are met (see Section 3). Results show that all models
that model a knowledge state (all except IRT) perform best
if the slip probability is low and the guess probability is
high. This leads to a data set that exhibits a high ratio of
correct observations. IRT performs best on data that has
very distinguished item difficulties (δ is high). Notably the
best performance of FAST is achieved on a data set with-
out features (ω = 0). We assume that this is due to the
decreased complexity of the data set, compared to one that
exhibits high ω. Consistently, worst case data sets exhibit
high symmetric values for guess and slip probabilities. In
the case of LFTK and FAST worst case data sets addition-
ally do not distinguish between items (difficulty range δ = 0)
and for FAST the feature weights are low.

We then performed the non-parametric Friedman test over
all parameter configurations to assess performance differ-
ences between the models. We found that there is a statisti-
cally significant difference in the performance of the models
(χ2(3) = 13′065, p < 0.0001). Performing a post-hoc anal-
ysis using Scheffe’s S procedure [31] shows all model differ-
ences to be significant at p < 0.0001 with mean ranks of
1.7156, 2.3017, 2.6898 and 3.2929 for FAST, LFKT, BKT,

Table 1: Parameters of best and worst case data sets
for each model. We only considered data sets that
meet the model assumptions. Parameters denoted
with * are fixed according to the model assumptions
(see Section 3).

Model δ pI pL pS pG ω RMSE

BKT

Best 0.00* 0.71 0.41 0.01 0.47 0.00* 0.25

Worst 0.00* 0.10 0.12 0.50 0.49 0.00* 0.48

IRT

Best 3.00 0.10 0.08 0.50* 0.50* 0.00* 0.42

Worst 0.00 0.10 0.10 0.50* 0.50* 0.00* 0.50

LFKT

Best 0.75 0.69 0.40 0.01 0.46 0.00* 0.25

Worst 0.00 0.53 0.16 0.28 0.29 0.00* 0.51

FAST

Best 0.75 0.67 0.40 0.01 0.46 0.00 0.25

Worst 0.00 0.56 0.16 0.28 0.28 0.00 0.51

and IRT, respectively. FAST therefore significantly outper-
forms the other methods on our synthetic data sets. In [19]
IRT performed not significantly worse than LFKT and FAST
on four different data sets. The good performance of IRT
was attributed to the deterministic item ordering that al-
lows IRT to infer knowledge acquisition confounded with
item difficulty. Our results support this hypothesis as in our
synthetic data set the items are in random order and IRT
exhibits the worst overall performance.

Parameter Space Investigation. To gain a better under-
standing of the performance characteristics of the different
models, we analyzed their performances across the parame-
ter space. For every pair of parameters pi and pj , we divided
the parameter configurations into bins with similar values
for pi and pj . We used five bins for each parameter (pi
and pj) resulting in a total of 25 bins. Performance of each
model was assessed by calculating the mean RMSE for each
bin. Significance of the observed performance differences
was computed using the Friedman test and p < 0.05.

Figure 2a shows the relative performance of the best model
for each parameter pair. The models are color-coded: BKT
is shown in red, IRT in green, LFKT in yellow, and FAST in
blue. The color gradient indicates the relative improvement
of the winning model over the second best model, where
darker colors indicate higher values. White-colored areas
indicate that there is no significant difference between the
models. The plot shows that FAST is robust to parameter
variations and outperforms the other models in large parts of
the parameter space. In parts with low feature weights, i.e.,
where the feature f shows only a low correlation with task
outcomes, LFKT outperforms FAST. When the variance δ
of item difficulties di is low, BKT is the best model. A
low variance in di implies a good skill model, with all tasks
having approximately the same difficulty.

In contrast to Figure 2a, where we assessed the prediction
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(a) Relative improvement in task outcome prediction (RMSE).

di
ffi

cu
lty

 r
an

ge
 δ

learn
0.1 1.0

0.0

3.0
0.0 0.5

0.0

3.0
0.1 0.5

0.0

3.0
0.0 1.5

0.0

3.0
0.1 0.9

0.0

3.0

le
ar

n

slip
0.0 0.5

0.1

1.0
0.1 0.5

0.1

1.0
0.0 1.5

0.1

1.0
0.1 0.9

0.1

1.0

sl
ip

guess
0.1 0.5

0.0

0.5
0.0 1.5

0.0

0.5
0.1 0.9

0.0

0.5

gu
es

s

feature weight ω
0.0 1.5

0.1

0.5
0.1 0.9

0.1

0.5

fe
at

ur
e 

w
ei

gh
t ω

initial
0.1 0.9

0.0

1.5

(b) Relative improvement in knowledge state prediction (RMSE).

Figure 2: Best performing models (RMSE) regarding prediction of task outcomes (a) and knowledge state
prediction (b). The color for each bin indicates the best performing model, averaged over all other parameters.
We investigated BKT (red), IRT (green), LFKT(yellow), and FAST(blue). White-colored bins exhibit no
significant difference in model performance. The color brightness indicates the relative improvement of the
best performing model over competing models, with dark colors referring to higher values. FAST is robust to
parameter variations and outperforms the other models in large parts of the parameter space when predicting
task outcomes (a). BKT is the best model if the variance of the item difficulty is low (a). BKT is superior
to the other models in large parts of the parameter space when predicting knowledge states (b).
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of task outcomes, we analyzed the quality of the prediction
of knowledge states kn,t using the RMSE in Figure 2b. Ulti-
mately, we want to predict whether a student has mastered a
skill or not [26, 3]. The plot uses the same parameter pairs
and color codings as Figure 2a. Interestingly, LFKT and
FAST are not superior to BKT when it comes to prediction
of the latent state. The additional parameters that LFKT
and FAST use have a direct influence on the predicted task
outcomes and therefore improve performance when predict-
ing task outcomes. They have, however, no direct influence
on the latent state kn,t of the model.

Robustness. Next, we tested the robustness of the dif-
ferent models against each other. We generated ideal data
(meeting the model assumptions) for all the models and then
interpolated the parameter values between these ideal cases.
The classes of data sets that meet the model assumptions
for the four models are described in Section 3. From every
class of data sets, we selected the extreme case with the least
amount of noise. In the following, we describe these cases.

For BKT, data is generated using δ = ω = 0, assuming
a perfect skill model (all tasks with same difficulty) and
setting the influence of additional (not captured) features
to 0. Furthermore, we removed the randomness by setting
pG = pS = 0. For IRT, the extreme case data was generated
using pG, pS = 0.5, ω = 0 and by additionally setting δ = 3.
As LFKT is a combination of IRT and BKT, we set the pa-
rameters to pG, pS = 0.25 and δ = 1.5. Furthermore, we
set ω = 0, again assuming no influence of not captured fea-
tures. For FAST we used the same parameters as for LFKT,
but additionally introduced a feature influence by setting
ω = 1.5. We linearly interpolated the parameter space in-
between these extreme cases to asses model robustness when
model assumptions are violated. Figure 3 displays the model
with best RMSE in this subspace that contains the extreme
(ideal) cases, where pL and pI are averaged over the BKT
parameter clusters presented in [30]. From these results, we
can see that BKT tends to be robust to increased feature
influence as long as pG, pS ≤ 0.15. If the feature weight
ω > 0.75, FAST outperforms all the other classifiers. For
large differences in item difficulties and large guess and slip
probabilities, LFKT has a slight advantage over IRT.

5.3 Parameter Influence
To analyze the influence of the model parameters on the per-
formance of the student models, we used linear regression to
predict the RMSE based on the parameters of the sampling
model. This allowed us to identify statistically significant
correlations between the sampling parameters and the per-
formance of the models despite the high dimensionality of
the parameter space.

The sampling parameters have a direct influence on the ra-
tio of correct observations in the data, e.g., a high learning
probability with low guess and slip parameters leads to a
high ratio of correct observations. Further, if the parame-
ters model fast learners then the average number of tasks
tends to be low since we are simulating a mastery learn-
ing environment. The three models IRT, LFKT and FAST
which explicitly model items are sensitive to this kind of
lacking data, as by having fewer observed items per student
the estimation of item difficulty becomes more difficult. To
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Figure 3: Relative model performance on ideal data
sets generated by linearly interpolating between pa-
rameters. The colors refer to the models BKT (red),
IRT (green), LFKT (yellow) and FAST (blue). The
color gradient indicates the relative performance as
in Figure 2a. BKT and FAST are more robust to
the invalid assumptions of our experiment than IRT
and LFKT.

investigate the effect of both factors, we added the two vari-
ables correct ratio and average number of tasks as predic-
tors to the regression model. In order to make correlation
coefficients comparable, all sampling parameters have been
normalized to have mean 0 and standard deviation 1.

Figure 4 shows the regression coefficients for all four models,
with red and green denoting statistically significant and not
significant coefficients, respectively. The variables correct
ratio and average number of tasks have the largest influence
on the RMSE. Both effects are significant and positive (re-
ducing the RMSE). A larger range of item difficulties δ has a
positive influence on the performance of all models except for
the BKT model. This is expected as BKT does not account
for variations in item difficulty and thus larger variations in
item difficulties are treated as noise by BKT, which makes
prediction harder. IRT, LFKT and FAST, on the other
hand, benefit from larger variations. We assume that this is
due to the better identifiability of the effects of the different
items. Interestingly, increasing the feature range ω has no
significant negative effect for the models that do not take
features into account (BKT, IRT, LFKT), but has a posi-
tive effect for FAST. The initial probability and the learning
probability have a small negative and small positive effect
on performance, respectively. While these coefficients are
partially significant they have very small magnitude. The
positive effect of the slip probability pS for all models ex-
cept BKT (the effect is not significant) is rather surprising.
However, the effect of a high slip probability in our sampling
model is that it weakens the influence of the latent knowl-
edge state on the task outcomes. This could explain the
positive influence for models that estimate item difficulty,
since the difficulty estimates are less convoluted with effects
from the knowledge state. Further work is needed to prove
this effect.
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Regressing RMSE of FAST
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Figure 4: Regression coefficients to predict RMSE based on the sampling parameter values for the models
BKT, IRT, LFKT and FAST. Parameters with positive coefficients have a negative effect on the performance
and vice versa. Red denotes significant coefficients with p < 0.001, green coefficients are not significant.

6. CONCLUSIONS
In this work, we investigated the performance characteristics
of latent factor and knowledge tracing models by exploring
their parameter space. To do so, we generated a vast amount
of 66’000 synthetic data sets for different parameter config-
urations containing data for 1’500 students each. Synthetic
data allowed us to study the model performances under dif-
ferent parameter settings, and to test the robustness of the
models against violations of specific model assumptions.

We showed best and worst case performances for all the
models and investigated the relative performance gain in
various regions of the parameter space. Our results showed
that the two recently developed models LFKT and FAST,
which synthesize item response theory and knowledge trac-
ing, perform better than BKT and IRT. FAST even signif-
icantly outperformed LFKT if reasonable features can be
extracted from the learning environment. Interestingly, IRT
exhibited the worst performance, which supports the hy-
pothesis by [19] that random item ordering has a negative
influence on the performance of IRT models. However, more
analyses are needed to investigate this effect thoroughly.
Further, we investigated the models’ abilities to predict the
latent knowledge state and demonstrated that LFKT and
FAST are outperformed by BKT. This raises the question
of how to adjust the two recent methods LFKT and FAST if
the aim is to predict knowledge states; we leave this explo-
ration for future work. The analysis of the model robustness
revealed that BKT is robust to increased feature influence
for small guess and slip probabilities. For larger guess and
slip, FAST outperformed the other methods.

While all sampling parameters have been carefully chosen
to match real world conditions, we expect real world data
to exhibit more noise and additional effects not covered by
our synthetic data. Thus, the achieved performance can be
considered an upper bound on the performance achievable
in real world settings. The performance of BKT depends
on the quality of the underlying skill model. We have simu-
lated imperfect skill models by introducing item effects, but
we did not take other sources for imperfect skill models into
account. Furthermore, the simulated data consisted of a
fixed set of items. For tutoring systems offering many varia-
tions of tasks, reliable estimation of item effects is challeng-
ing, which in turn influences the performance of IRT, LFKT
and FAST. Moreover, the performance of FAST is driven by
feature quality, which may vary between different tutoring
systems.

Finally, it remains questionable whether and how the perfor-
mance of the investigated techniques influences the learning
outcome of students in a tutoring system. We show rela-
tive improvements in RMSE between models of up to 6%.
However, the effect of small-scale improvements in the ac-
curacy of student models on the learning outcome has been
discussed controversially [4, 39].
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ABSTRACT

We show that student learning can be accurately modeled
using a mixture of learning curves, each of which specifies
error probability as a function of time. This approach gener-
alizes Knowledge Tracing [7], which can be viewed as a mix-
ture model in which the learning curves are step functions.
We show that this generality yields order-of-magnitude im-
provements in prediction accuracy on real data. Further-
more, examination of the learning curves provides actionable
insights into how different segments of the student popula-
tion are learning.

To make our mixture model more expressive, we allow the
learning curves to be defined by generalized linear models
with arbitrary features. This approach generalizes Additive
Factor Models [4] and Performance Factors Analysis [16],
and outperforms them on a large, real world dataset.

1. INTRODUCTION

In the mid-1980s, a now-famous study demonstrated the po-
tential impact of adaptive, personalized education: students
tutored one-on-one outperformed those taught in a conven-
tional classroom by two standard deviations [3]. Remark-
ably, subsequent research has achieved similar gains using
interactive, computerized tutors that maintain an accurate
model of the student’s knowledge and skills [6]. In the past
few years, widespread access to smartphones and the web
has allowed such systems to be deployed on an unprece-
dented scale. Duolingo’s personalized language courses have
enrolled over 90 million students, more than the total num-
ber of students in all U.S. elementary and secondary schools
combined.

A central component of an intelligent tutoring system is
the student model, which infers a student’s latent skills and
knowledge from observed data. To make accurate inferences
from the limited data available for a particular student, one
must make assumptions about how students learn. How do
students differ in their learning of a particular skill or con-
cept? Is the primary difference in the initial error rate, the
rate at which error decreases with time, the shape of the
learning curve, or something else? The answers to these
questions have implications for the choice of model class
(e.g., Hidden Markov Model, logistic regression), as well as
the choice of model parameters.

Previous approaches to student modeling typically make
strong assumptions about the shape of each student’s learn-
ing curve (i.e., the error rate as a function of the num-
ber of trials). Additive Factor Models [4] use the student
and the number of trials as features in a logistic regression
model, which implies a sigmoidal learning curve with the
same steepness for each student, but different horizontal off-
set. Knowledge Tracing [7] is a two-state Hidden Markov
Model where, conditioned on the trial t at which the student
first transitions from not knowing the skill to mastering it,
the learning curve is a step function.

In empirical studies, it has been observed that aggregate
learning curves often follow a power law, a phenomenon
so ubiquitous it has been called the power law of practice
[13]. Later work suggested that, although error rates fol-
low a power law when averaged over an entire population,
individual learning curves are more accurately modeled by
exponentials [10]. That is, the power law curve observed in
aggregate data is actually a mixture of exponentials, with
each student’s data coming from one component of the mix-
ture.

These observations led us to seek out a more general ap-
proach to student modeling, in which individual learning
curves could be teased apart from aggregate data, without
making strong assumptions about the shape of the curves.
Such an approach has the potential not only to make the
student model more accurate, but also to explain and sum-
marize the data in a way that can produce actionable in-
sights into the behavior of different subsets of the student
population.

This work makes several contributions to student modeling.
First, we present models of student learning that generalize
several prominent existing models and that outperform them
on real-world datasets from Duolingo. Second, we show how
our models can be used to visualize student performance in
a way that gives insights into how well an intelligent tu-
toring system “works”, improving upon the population-level
learning curve analysis that is typically used for this pur-
pose [11]. Finally, by demonstrating that relatively simple
mixture models can deliver these benefits, we hope to in-
spire further work on more sophisticated approaches that
use mixture models as a building block.
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1.1 Related Work
The problem of modeling student learning is multifaceted.
In full generality it entails modeling a student’s latent abil-
ities, modeling how latent abilities relate to observed per-
formance, and modeling how abilities change over time as a
result of learning and forgetting. For an overview of various
approaches to student modeling, see [5, 8].

This work focuses on the important subproblem of modeling
error probability as a function of trial number for a particu-
lar task. Following the influential work of Corbett and An-
derson [7], Knowledge Tracing has been used to solve this
problem in many intelligent tutoring systems. Recent work
has sought to overcome two limitations of the basic Knowl-
edge Tracing model: its assumption that each observed data
point requires the use of a single skill, and its assumption
that model parameters are the same for all students. To
address the first limitation, Additive Factor Models [4] and
Performance Factors Analysis [16] use logistic regressions
that include parameters for each skill involved in some trial.
The second limitation has been addressed by adapting the
basic Knowledge Tracing model to individual students, for
example by fitting per-student odds multipliers [7], or by
learning per-student initial mastery probabilities [14].

Our work seeks to address a third limitation of Knowledge
Tracing: its strong assumptions about the shape of the
learning curve. Following Knowledge Tracing, we first at-
tempt to model performance on a task that requires only a
single skill. In §4, we generalize this approach to obtain a
mixture model that includes both Additive Factor Models
and Performance Factors Analysis as special cases, and that
outperforms both on a large, real-world dataset.

2. SINGLE-TASK MIXTURE MODEL

In this section we present a simple mixture model that is ap-
propriate for use on datasets with a single task. This model
is a viable alternative to the basic (non-individualized) ver-
sion of Knowledge Tracing, and is useful for exploratory data
analysis. In §4, we generalize this model to handle datasets
with multiple tasks.

2.1 The Probabilistic Model
A student’s performance on a task after T trials can be rep-
resented as an error vector v ∈ {0, 1}T , where vt = 1 if
the student made an error on trial t and is 0 otherwise.
Thus a task, together with a distribution over students, de-
fines a distribution over binary error vectors. In this work,
we model this distribution as a mixture of K distributions,
where each component of the mixture is a learning curve,
or equivalently a product of Bernoulli distributions (one for
each trial).

To formally define this model, define the probability of ob-
serving outcome o ∈ {0, 1} when sampling from a Bernoulli
distribution with parameter p as

B(p, o) =

{
p o = 1

1− p o = 0 .

A learning curve q ∈ [0, 1]∞ specifies, for each trial t, the

probability qt that the student makes an error on trial t.
The probability of the error vector v according to learning
curve q is

∏
t B(qt, vt). A K-component mixture over learn-

ing curves is a set q1, q2, . . . , qK of learning curves, together
with prior probabilities p1, p2, . . . , pK . The probability of an
error vector v ∈ {0, 1}T according to the mixture model is

K∑
j=1

pj
T∏
t=1

B(qjt , vt) .

Inference in a mixture model consists of applying Bayes’ rule
to compute a posterior distribution over the K components
of the mixture, given an observed error vector. The model
parameters can be fit from data using the EM algorithm,
pseudo code for which is given in Algorithm 1.

Algorithm 1 EM Algorithm for single-task mixture model

Parameters: number of components K, error vector vs

for each student s, prior parameters α ≥ 1, β ≥ 1.
Initialize pj ← 1

k
∀j, and qjt ← Rand(0, 1) ∀j, t.

while not converged do
Ls,j ← pj

∏T
t=1 B(qjt , v

s
t ) ∀s, j

zs,j ← Ls,j∑
j′ Ls,j′

∀s, j

qjt ←
α−1+

∑
s zs,jv

s
j

α+β−2+
∑

s zs,j
∀j, t

pj ←
∑

s zs,j∑
s

∑
j′ zs,j′

∀j
end while

To make Algorithm 1 perform well when data is sparse, it
is useful to place a Bayesian prior over the set of possible
learning curves. In this work we use a product of Beta distri-
butions for the prior: P[q] =

∏
t Beta(α, β)(qt). This choice

of prior gives a simple closed form for the maximization step
of the EM algorithm, which can be thought of computing
the maximum-likelihood estimate of qjt after “hallucinating”
α− 1 correct responses and β − 1 errors (see pseudo code).

2.2 Knowledge Tracing as a Mixture Model
Knowledge Tracing is typically presented as a two-state Hid-
den Markov Model, where the student’s state indicates whether
or not they have mastered a particular skill. In this section,
we show that if the maximum number of trials is T , Knowl-
edge Tracing can also be thought of as a mixture model with
T + 1 components, each of which is a step function. Thus,
Knowledge Tracing can be viewed as a constrained mixture
model, in contrast to the unconstrained model discussed in
the previous section.

To see this relationship, recall that in a Knowledge Tracing
model, the student makes an error with slip probability ps
if they have mastered the skill, and with probability 1− pg
otherwise, where pg is the probability of a correct guess. The
probability of mastery is p0 initially, and after each trial, a
student who has not yet mastered the skill transitions to the
mastered state with probability pT .

Let V be an error vector, so Vt = 1 if the student makes an
error on trial t and is 0 otherwise, and let M be the state
vector: Mt = 1 if the student has mastered the skill at the
beginning of trial t and is 0 otherwise. The distribution over
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Figure 1: Mixture model representation of a Knowl-
edge Tracing model with guess probability pg = 0.2,
slip probability ps = 0.1, transition probability pT =
0.5, and initial mastery probability p0 = 0.

error vectors defined by Knowledge Tracing is given by

P[V = v] =
∑
m

P[M = m]P[V = v|M = m] .

Because the student never leaves the mastered state after
reaching it, there are only T + 1 possibilities for the state
vector M . Letting mj be the jth possibility (mj

t = 0 if t < j,
1 otherwise), and letting pj = P[M = mj ], we have

P[V = v] =

T+1∑
j=1

pj · P[V = v|M = mj ] .

Because the components of V are conditionally independent
given M ,

P[V = v|M = mj ] =

T∏
t=1

B(qjt , vt)

where

qjt =

{
1− pg t < j

ps t ≥ j .

Putting these facts together, we see that the probability of a
particular error vector under Knowledge Tracing is the same
as under a mixture model with T+1 components, where each
learning curve qj is a step function with the same initial and
final height but a different horizontal offset (see Figure 1).

Because the HMM and the mixture model are both gen-
erative models that specify the same distribution over bi-
nary vectors, the conditional distributions over binary vec-
tors given a sequence of observations are also the same, and
Bayesian inference yields exactly the same predictions when
performed on either model.

Viewing Knowledge Tracing in this way, it is natural to con-
sider generalizations that remove some of the constraints, for
example allowing the step functions to have different initial
or final heights (perhaps students who master the skill ear-
lier are less likely to slip later on). In the model presented
in §2.1 we simply remove all the constraints, allowing us to
fit a mixture model over learning curves of arbitrary shape.

We note that later work on Knowledge Tracing allowed for
the possibility of forgetting (transitioning from the mastered

to unmastered state). This version can still be modeled as a
mixture model, but with 2T rather than T + 1 components.

2.3 Statistical Consistency
A model is statistically consistent if, given enough data, it
converges to the ground truth. In this section we show that
the “hard” version of EM algorithm 1 is consistent, provided
the number of components in the mixture model grows with
the amount of available data (the hard EM algorithm is the
same as algorithm 1, except that it sets zs,j = 1 for the j
that maximizes Ls,j , and zs,j = 0 otherwise). For simplicity
we assume the number of trials T is the same for all students,
but this is not essential. Also, though the data requirements
suggested by this analysis are exponential T , in practice we
find that near-optimal predictions are obtained using a much
smaller number of components.

Theorem 1. Consider the “hard” version of EM algo-
rithm 1, and suppose that the number of trials is T for all
students. This algorithm is statistically consistent, provided
the number of curves K in the mixture model grows as a
function of the number of data points n.

Proof. Recall that an event occurs with high probability
(whp) if, as n→∞, the probability of the event approaches
1. The idea of the proof is to show that, whp, each of the
2T possible error vectors will be placed into its own cluster
on the first iteration of the EM algorithm. This will imply
that the EM algorithm converges on the first iteration to a
mixture model that is close to the true distribution.

Consider a particular error vector vs ∈ {0, 1}T , and let j be
the index of the likelihood-maximizing curve on the first iter-
ation of the algorithm (i.e., zs,j = 1). If Q ∈ [0, 1]T is a ran-

dom curve, the probability that
∏T
t=1 B(Qt, v

s
t ) >

1
2

is pos-
itive. Thus, as K → ∞, whp at least one of the K random
curves will satisfy this inequality, and in particular for the
likelihood-maximizing curve qj we have

∏T
t=1 B(qjt , v

s
t ) >

1
2
,

which implies B(qjt , v
s
t ) >

1
2

for all t. For any error vector

vs
′
6= vs, there must be some t such that vst 6= vs

′
t , which

implies B(qjt , v
s′
t ) < 1

2
. This means that whp, qj cannot be

the likelihood-maximizing curve for vs
′
, and so each binary

vector will have a unique likelihood-maximizing curve.

If each binary vector v has a unique likelihood-maximizing
curve qj , then the M step of the algorithm will simply set
qj ← v, and will set pj to the empirical frequency of v within
the dataset. As n→∞, this empirical frequency approaches
the true probability, which shows that the algorithm is con-
sistent.

In the worst case, statistical consistency requires a constant
amount of data for every possible error vector, hence the
data requirements grow exponentially with T . However,
this is not as bad as it may seem. In intelligent tutoring
systems, it is often the case that T is small enough that
even in the worst case we can guarantee near-optimal per-
formance. Furthermore, as we show experimentally in §3.2,
near-optimal performance can often be achieved with a much
smaller number of components in practice.
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2.4 Use in an Intelligent Tutoring System
How should the predictions of a mixture model be used
to schedule practice within an intelligent tutoring system?
When using Knowledge Tracing, a typical approach is to
schedule practice for a skill until the inferred probability
of having mastered it exceeds some threshold such as 0.95.
With a mixture model, we can no longer take this approach
since we don’t make explicit predictions about whether the
student has mastered a skill. Nevertheless, we can define
a reasonable practice scheduling rule in terms of predicted
future performance.

In particular, note that another way of formulating the schedul-
ing rule typically used in Knowledge Tracing is to say that
we stop practice once we are 95% confident that performance
has reached an asymptote. With a mixture model, it is un-
likely that the marginal value of practice will be exactly 0,
so this precise rule is unlikely to work well (it would simply
schedule indefinite practice). However, we can compute the
expected marginal benefit of practice (in terms of reduction
in error rate), and stop scheduling practice once this drops
below some threshold.

Note that when practice scheduling is defined in terms of
expected marginal benefit, the practice schedule is a function
of the predicted distribution over error vectors, so mixture
models that make the same predictions will result in the
same practice schedule even if the model parameters are
different. This is in contrast to Knowledge Tracing, where
multiple globally optimal models (in terms of likelihood) can
lead to very different practice schedules, because the inferred
probability of mastery can be different even for two models
that make identical predictions [2].

2.5 Identifiability
A statistical model is identifiable if there is a unique set of
parameters that maximize likelihood. Our mixture model is
not identifiable, since in general there are many ways to ex-
press a given distribution over binary vectors as a mixture of
learning curves. However, as we argued in the previous sec-
tion, non-identifiability does not pose a problem for practice
scheduling if the schedule is defined in terms of the model’s
predictions rather than its parameters.

3. EXPERIMENTS WITH SINGLE-TASK
MODEL

In this section we evaluate the single-task mixture model
of §2 on data from Duolingo. These experiments serve two
purposes. First, they show that the mixture model can give
much more accurate predictions than Knowledge Tracing
on real data. Second, inspection of the learning curves pro-
duced by the mixture model reveals interesting facts about
the student population that are not apparent from conven-
tional learning curve analysis. In §4 we present a more gen-
eral mixture model that is appropriate for datasets with mul-
tiple skills.

3.1 The Duolingo Dataset
We collected log data from Duolingo, a free language learn-
ing application with over 90 million students. Students who

use Duolingo progress through a sequence of lessons, each
of which takes a few minutes to complete and teaches cer-
tain words and grammatical concepts. Within each lesson,
the student is asked to solve a sequence of self-contained
challenges, which can be of various types. For example, a
student learning Spanish may be asked to translate a Span-
ish sentence into English, or to determine which of several
possible translations of an English sentence into Spanish is
correct.

For these experiments, we focus on listen challenges, in which
the student listens to a recording of a sentence spoken in
the language they are learning, then types what they hear.
Listen challenges are attractive because, unlike challenges
which involve translating a sentence, there is only one cor-
rect answer, which simplifies error attribution. For these
experiments we use a simple bag-of-words knowledge com-
ponent (KC) model. There is one KC for each word in the
correct answer, and a KC is marked correct if it appears
among the words the student typed. For example, if a stu-
dent learning English hears the spoken sentence “I have a
business card” and types “I have a business car”, we would
mark the KC card as incorrect, while marking the KCs for
the other four words correct. This approach is not perfect
because it ignores word order as well as the effects of context
(students may be able to infer which word is being said from
context clues, even if they cannot in general recognize the
word when spoken). However, the learning curves generated
by this KC model are smooth and monotonically decreasing,
suggesting that it performs reasonably well.

Our experiments use data from the Spanish course for En-
glish speakers, one of the most popular courses on Duolingo.
In this section, we focus on modeling acquisition of a single
skill, using data for the KC una (the feminine version of the
indefinite article “a”). In §4 we consider more general mix-
ture models, and in §5 we evaluate them on datasets with
multiple KCs. The full dataset has roughly 700,000 data
points (there is one data point for each combination of stu-
dent, trial, and KC), while the una dataset contains around
15,000.

3.2 Prediction Accuracy
To evaluate the mixture model’s prediction accuracy, we di-
vided the Duolingo dataset into equal-sized training and test
sets by assigning each student to one of the two groups at
random. We then ran the EM algorithm on the training data
to fit mixture models with various numbers of components,
as well as a Knowledge Tracing model, and computed the
predictions of these models on the test data. We evaluate
prediction accuracy using two commonly-used metrics.

1. Average log-likelihood. Log-likelihood measures how
probable the test data is according to the model. Specif-
ically, if the dataset D consists of n independent data
points D1, D2, . . . , Dn (each data point is the binary
performance of a particular student on a particular
trial), and pi = P[Di|M ] is the conditional probabil-
ity of the ith data point Di given the model M , then
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Figure 2: Optimality gaps for log likelihood (left) and AUC (right) as a function of number of components
in the mixture model, compared to Knowledge Tracing (horizontal lines). The optimality gap is the absolute
difference between the model’s accuracy and the maximum possible accuracy on the dataset.
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Figure 3: Learning curves for recognizing the Spanish word una in a Duolingo listen challenge. The population
curve (left) suggests a reasonable rate of learning in aggregate, but the mixture model (right) reveals large
differences among different clusters of students.

average log-likelihood is

1

n
log P[D|M ] =

1

n
log

n∏
i=1

pi =
1

n

n∑
i=1

log pi .

Because both the mixture model and Knowledge Trac-
ing are fit using maximum likelihood, it is natural to
compare them in terms of this objective function.

2. AUC. AUC evaluates the accuracy of the model’s pre-
dictions when they are converted from probabilities
to binary values by applying a threshold. It can be
defined as the probability that p > q, where p is the
model’s prediction for a randomly-selected positive ex-
ample and q is the model’s prediction for a randomly-
selected negative example. This is equivalent to the
area under the ROC curve, which plots true positive
rate against false positive rate (both of which vary as
a function of the chosen threshold).

Figure 2 presents accuracy on the una dataset as a function
of the number of components in the mixture model, both on
training and held-out test data. To make relative improve-
ments clearer, we plot the optimality gap rather than the
raw value of the prediction accuracy metric. For example,
the optimality gap for test set log likelihood is the difference
between the optimal log likelihood on the test data (which
can be computed in closed form) and the model’s log likeli-
hood on the test data.

For both AUC and log-likelihood, the improvement in ac-
curacy is largest when going from one component to two,
and there are diminishing returns to additional components,

particularly in terms of performance on held-out test data.
With more than 5 components, log-likelihood on test data
gets slightly worse due to overfitting, while performance on
training data improves slightly. In practice, the number of
components can be selected using cross-validation.

For both metrics, Knowledge Tracing is similar to the one-
component model but significantly worse than the two com-
ponent model in terms of accuracy, both on training and test
data. Furthermore, all mixture models with two or more
components outperform Knowledge Tracing by an order of
magnitude in terms of the optimality gap for log-likelihood
and AUC, both on training and on held-out test data. We
observed very similar results for datasets based on other
Spanish words, such as come (eat), mujer (woman), and
hombre (man).

3.3 Learning Curve Mixture Analysis
In this section we examine the learning curves that make up
the components of the mixture model fit to Duolingo data.
This analysis can be viewed as a more general version of
learning curve analysis [11], which examines the population
learning curve (this is equivalent to the curve for a one-
component mixture model).

Figure 3 presents learning curves for the una dataset. The
left pane of the figure shows the aggregate learning curve,
while the right pane shows the curves for a 3-component
mixture model fit using the EM algorithm. Examining the
right pane, we see that the mixture model clusters students
into three quite different groups.
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• Around two-thirds of the students belong to a cluster
that in aggregate has an error probability around 5%
on the first trial, and this error rate does not change
with increased trials.

• A second, smaller cluster contains 30% of the students.
These students, in aggregate, have an initial error rate
of 33% which decreases to around 11% after 7 trials.

• The third cluster contains only 3% of students. These
students have a very high initial error rate of 96%,
which declines to about 65% after 7 trials.

The existence of this third, high-error-rate cluster surprised
us, so we went back to the log data to examine the behavior
of students in this cluster in more detail. It turned out that
almost all of these students were simply giving up when
presented with a listen challenge (although they correctly
answered other types of challenges). Further examination of
the log data revealed that some of these students skipped
all listen challenges, while others would skip all listen chal-
lenges for long stretches of time, then at other times would
correctly answer listen challenges. We conjecture that the
former set of students are either hearing-impaired or do not
have working speakers, while the latter do not want to turn
their speakers on at certain times, for example because they
are in a public place. Duolingo attempts to accommodate
such students by offering a setting that disables listen chal-
lenges, but not all students realize this is available. As a
result of these insights, Duolingo is now exploring user in-
terface changes that will actively detect students that fall
into this cluster and make it easier for them to temporarily
disable listen challenges.

This analysis shows how mixture modeling can produce valu-
able insights that are not apparent from examination of the
population learning curve alone. We hope this will inspire
the use of mixture modeling more broadly as a general-
purpose diagnostic tool for intelligent tutoring systems.

4. GENERAL MIXTURE MODEL

The single-task model is appropriate for datasets where there
is a single knowledge component (KC) and many students.
In an actual intelligent tutoring system, a student will learn
many KCs, and prediction accuracy can improved by using
student performance on one KC to help predict performance
on other, not yet seen KCs. In this section we present a more
general mixture model that accomplishes this.

In this more general model, student performance is again
modeled as a mixture of K learning curves. However, in-
stead of treating each point on the learning curve as a sepa-
rate parameter, we let it be the output of a generalized linear
model with features that depend on the student, task, and
trial number. In particular, for a student s and task i, the
probability of a performance vector v1, v2, . . . , vT is

k∑
j=1

pj
T∏
t=1

B(qj(s, i, t;βj), vt)

where

qj(s, i, t;βj) = g−1(φs,i,t · βj),

where φs,i,t is the feature vector for student s, task i, trial
t, and g is the link function for the generalized linear model
[12]. Our experiments use logistic regression, for which the
link function is g(p) = logit(p).

Note that this model generalizes the single-task mixture
model presented in §2. In particular, the single-task model
with curve qj(t) is recovered by setting φs,i,t = et, an indi-
cator vector for trial t, and setting βjt = g(qj(t)).

As with the single-task model, we can estimate the param-
eters of this model using the EM algorithm. The main dif-
ference is that the maximization step no longer has a closed
form solution. However, it is a convex optimization and can
still be solved exactly using a number of algorithms, for ex-
ample stochastic gradient descent.

To define the EM algorithm, first define the likelihood func-
tion

Ljs,i(β) =

T∏
t=1

B(qj(s, i, t;β), vt) .

For the E step, we define hidden variables zjs,i, which give
the probability that the data for student s and task i follows
curve j.

zjs,i =
pjLjs,i∑

j′ p
j′Lj

′
s,i(β)

.

For the M step, we optimize the coefficient vector for each
component j so as to maximize expected log-likelihood.

βj = argmaxβ

{∑
s

∑
i

zjs,i log(Ljs,i(β))

}
.

When performing inference for a new student, we solve a
similar optimization problem, but we only update the coef-
ficients for that particular student.

4.1 Relationship to Other Models
This mixture model is quite general, and with appropri-
ate choices for the feature function φ can recover many
previously-studied models. In particular, any modeling ap-
proach that is based on a logistic regression using features
that depend only on the student, task, and trial number can
be recovered by using a single component (K = 1), choosing
g = logit, and defining φ to include the appropriate fea-
tures. This includes both Additive Factor Models [4] and
Performance Factors Analysis [16]. By choosing a larger
K, we immediately obtain generalizations of each of these
methods that have the potential to more accurately model
the behavior of individual clusters of students. Because the
trial number (together with the student and task) identifies
a unique learning event, we can also include features that de-
pend on the trial type, elapsed time, and previous learning
history, as in learning decomposition [1].

Note that for the mixture model to add value over a sim-
ple regression, we must define “task” in such a way that we
observe multiple trials for a given (student, task) pair. For
datasets where each item requires the use of multiple KCs,
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Figure 4: Performance of a mixture of Additive Factor Models on training data (left) and test data (right),
as a function of the number of components in the mixture model.

Table 1: Performance on Duolingo dataset
Method Training log loss Test log loss Training AUC loss Test AUC loss
Knowledge Tracing 0.3429 0.3441 0.3406 0.3460
Performance Factors Analysis 0.3248 0.3285 0.2774 0.2865
Additive Factor Model 0.2869 0.3250 0.1629 0.2789
A.F.M. Mixture (3 components) 0.2818 0.3220 0.1598 0.2760

this entails either (a) defining a task for each combination
of KCs, or (b) using error attribution to create a dataset in
which each example involves only a single KC, and having
one task per KC. We use the latter approach in our exper-
iments in §5. This approach is different from the one taken
by algorithms such as LR-DBN [17], which make predictions
on multiple-KC items directly.

4.2 Parameter Sharing
To make more efficient use of available data when fitting this
generalized mixture model, it can be useful for certain coef-
ficient values to be shared across components of the mixture
model. To illustrate this issue, consider fitting a mixture
of Additive Factor Models. In this case, φ includes an in-
dicator feature for each student. If we fit a K component
mixture, we must estimate K separate coefficient values for
each student, which increases the variance of the estimates
compared to the basic Additive Factor Model. For students
for whom we do not yet have much data, this can result in
larger values of K giving worse performance.

To overcome this difficulty, we allow certain coefficients to
be shared across all components of the mixture model, while
others have a separate value for each component. This re-
quires only minor changes to the M step of the EM algo-
rithm. Instead of solving K separate optimization problems,
we solve a single larger optimization problem of the form:

argmaxβ1,β2,...,βj

{∑
j

∑
s

∑
i

Zjs,i log(Ljs,i(β
j))

}

subject to

β1
z = β2

z = . . . = βjz for all shared z.

Again, for g = logit, this is a weighted logistic regression
problem that can be solved using a variety of standard al-
gorithms.

5. EXPERIMENTS WITH GENERALIZED
MODEL

In this section, we demonstrate the potential of the gen-
eralized mixture model by using it to learn a mixture of
Additive Factor Models which models student performance
on Duolingo listen challenges.

For these experiments, we use the same Duolingo dataset de-
scribed in §3.1, but with all knowledge components included
(i.e., every time student s completes a listen challenge, there
is an example for each word w in the challenge, and the la-
bel for the example indicates whether the student included
word w in their response). Each KC (i.e., each word) is
considered a separate task. Note that although each listen
challenge involves multiple KCs, we are using error attribu-
tion to create a dataset in which each example involves only
a single KC. There is nothing about our methodology that
requires this, but it mirrors the problem we wish to solve
at Duolingo, and also allows for a cleaner comparison with
Knowledge Tracing.

When splitting the data into training and test sets, we put
each (student, KC) pair into one of the two groups uniformly
at random. When fitting a mixture of Additive Factor Mod-
els, we use parameter sharing (see §4.2) for the student and
KC indicator features, while allowing the times-seen feature
to vary across components.

Figure 4 shows how performance on training and test data
varies as a function of the number of components in the
mixture model. The leftmost point (K = 1) corresponds to
a regular Additive Factor Model, which can be fit by run-
ning a single logistic regression. Other points correspond to
mixture models fit using the EM algorithm, in which each
iteration entails solving a weighted logistic regression prob-
lem. As can be seen, using more than one component in
the mixture model improves accuracy on both training and
held-out test data.

Table 1 compares the performance of the Additive Factor
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Model, the 3-component mixture of Additive Factor Models,
Knowledge Tracing, and Performance Factors Analysis [16]
on the same dataset. In this table, we present accuracy in
terms of losses (log loss is -1 times log-likelihood, while AUC
loss is one minus AUC), so lower values are better. As can be
seen, the 3-component mixture gives the best performance
of all the methods we considered in terms of both metrics,
both on training and test data.

6. CONCLUSIONS

In this work we explored the use of mixture models to predict
how students’ error rates change as they learn. This led to
order-of-magnitude improvements over Knowledge Tracing
in terms of prediction accuracy on single-task datasets from
Duolingo, as measured by the optimality gaps for both log-
likelihood and AUC. Furthermore, examining the curves in
the mixture model led us to uncover surprising facts about
different groups of students.

We then generalized this mixture model to the multi-task
setting, by learning a mixture of generalized linear mod-
els. This generalized mixture model offered state of the
art performance on a large Duolingo dataset, outperform-
ing Performance Factors Analysis, Additive Factor Models,
and Knowledge Tracing on the same data.

There are several ways in which this work could be extended:

1. Finding a good prior over learning curves. In the single-
task setting, we simply placed a Beta prior over each
point on each learning curve. Though this worked well
on the Duolingo dataset we considered (which con-
tained around 15,000 data points), it may not give
the best bias/variance tradeoff for smaller datasets.
A natural way to constrain the algorithm would be
to require error probability to be non-increasing as a
function of trial number. Restricting to a particular
family of curves such as exponentials or APEX func-
tions [10], which generalize power laws and exponen-
tials, may also be reasonable.

2. Accounting for forgetting. We have assumed that per-
formance depends only on the trial number, and not on
the amount of time elapsed since a particular knowl-
edge component was last seen. For this reason, our
model has no way to capture the benefit of spaced rep-
etition [9] over massed practice, which is important for
practice scheduling in the context of language learning
[15].

3. Feature exploration in the multi-task setting. The gen-
eralized mixture model from §4 can be used with any
set of features φ, but our experiments in §4 considered
only a few possible choices. It would be interesting
to explore other feature sets, and to see whether the
features that work best in the usual regression setting
(K = 1) are also best for larger K.
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ABSTRACT
Additive Factors Model (AFM) and Performance Factors
Analysis (PFA) are two popular models of student learning
that employ logistic regression to estimate parameters and
predict performance. This is in contrast to Bayesian Knowl-
edge Tracing (BKT) which uses a Hidden Markov Model
formalism. While all three models tend to make similar
predictions, they differ in their parameterization of student
learning. One key difference is that BKT has parameters
for the slipping rates of learned skills, whereas the logis-
tic models do not. Thus, the logistic models assume that
as students get more practice their probability of correctly
answering monotonically converges to 100%, whereas BKT
allows monotonic convergence to lower probabilities. In this
paper, we present a novel modification of logistic regression
that allows it to account for situations resulting in false neg-
ative student actions (e.g., slipping on known skills). We
apply this new regression approach to create two new meth-
ods AFM+Slip and PFA+Slip and compare the performance
of these new models to traditional AFM, PFA, and BKT.
We find that across five datasets the new slipping models
have the highest accuracy on 10-fold cross validation. We
also find evidence that the slip parameters better enable the
logistic models to fit steep learning rates, rather than better
fitting the tail of learning curves as we expected. Lastly, we
explore the use of high slip values as an indicator of skills
that might benefit from skill label refinement. We find that
after refining the skill model for one dataset using this ap-
proach the traditional model fit improved to be on par with
the slip model.

Keywords
Cognitive Modeling, Statistical Models of Learning, Addi-
tive Factors Model, Performance Factors Analysis, Knowl-
edge Tracing

1. INTRODUCTION
Statistical models of student learning make it possible for In-
telligent Tutoring Systems [18] to be adaptive. These models
estimate students’ latent skill knowledge, so that tutors can
use these estimates to intelligently select problems that give
students more practice on skills that need it. Prior work has
shown that even minor improvements in the predictive fit of
latent knowledge models can result in less “wasted” student
time, with more time on effective practice [22].

Two popular models of student learning are the Additive
Factors Model (AFM) [4] and Performance Factors Analy-
sis (PFA) [16]. Both are extensions of traditional Item Re-
sponse Theory models [8]. While the two models differ in
their parameterization of student learning, they both utilize
logistic regression to estimate parameters and predict stu-
dent performance. These models stand in contrast to other
popular approaches like Bayesian Knowledge Tracing (BKT)
[7], which uses Hidden Markov Modeling.

The BKT model is used both for “online” knowledge estima-
tion within Intelligent Tutoring Systems (e.g., in Carnegie
Learning’s Cognitive tutor) to adaptively selecting practice
items and for “offline” educational data modeling. The logis-
tic models, on the other hand, have mainly been used in the
context of offline data modeling. For example, DataShop,
the largest open repository of educational data [12], uses
AFM to fit student performance within existing datasets and
to generate predicted learning curves. Data-driven cognitive
task analyses, i.e., discovering and testing new mappings of
tutor items to skills (or knowledge components), have used
AFM as the core statistical model [17]. Novel knowledge
component models can be discovered, evaluated in conjunc-
tion with AFM as a statistical model, validated on novel
datasets [14], and used to guide tutor redesign efforts [13].

Despite the success of approaches like AFM, its lack of slip
parameters has been emphasized as a key reason for favoring
knowledge tracing over logistic models [10]. But knowledge
tracing models tend to suffer from identifiability problems [1,
2]; e.g., the same performance data can be fit equally well
by different parameters values, with different implications
for system behavior. Furthermore, the actual effect of slip
parameters on model predictions is complicated. The guess
and slip parameters in BKT serve the dual purpose of mod-
eling both noise, and the upper and lower bounds, in student
performance. Without slip parameters, if a student gets an
answer wrong, then BKT must assume that the student has
not yet learned the skill. In contrast, the logistic models just
model noise in the observations, so as long as the average
student success rate converges to 100% then both models
should perform similarly (assuming all other parameters are
comparable across models). These approaches should only
differ in situations where student performance converges to
lower probabilities at higher opportunities; i.e., where false
negatives such as slipping are actually occurring.
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To investigate false negative phenomena, we augmented the
logistic regression formalism to support slipping parameters.
Using this new approach, which we call Bounded Logistic
Regression, we produce two new student learning models:
Additive Factors Model + Slip (AFM+Slip) and Perfor-
mance Factors Analysis + Slip (PFA+Slip). These models
are identical to their traditional counterparts but have addi-
tional parameters to model the false negative rates for each
skill. We compare these models to their traditional coun-
terparts and to BKT on five datasets across the domains
of Geometry, Equation Solving, Writing, and Number Line
Estimation. In all cases, the slip models have higher predic-
tive accuracy (based on 10-fold cross validation) than their
traditional counterparts.

We then move beyond comparing the predictive accuracies
of the models to investigate how these parameters affect the
predictions of the models and why these models are more
accurate. Our analyses suggest that slipping parameters are
not used to capture actual student ”slipping” behavior (i.e.,
non-zero base rates for true student errors) but, rather, make
the logistic models more flexible and allow better modeling
of steeper learning rates while still predicting performance
accurately at high opportunity counts (in the learning curve
tail).

Lastly, we use AFM+Slip to perform data-driven refinement
of the knowledge component (KC) model for a Geometry
dataset. We identified a KC with a high false negative, or
slip, rate and searched for ways to refine it. Using domain
expertise, we refined the underlying KC model and showed
that the traditional model (AFM) with the new KC model
performed as well as the comparable slip model (AFM+Slip)
did with the original KC model. This suggests that slip
parameters allow the model to compensate for, and identify,
an underspecified KC model.

2. STATISTICAL MODELS OF LEARNING
2.1 Logistic Models
The models in this class use logistic regression to estimate
student and item parameters and to predict student perfor-
mance. Thus, they model the probability that a student will
get an step i correct using the following logistic function:

pi =
1

1 + e−zi

where zi is some linear function of student and item param-
eters for step i. The likelihood function for these models has
been shown to be convex (i.e., no local maximums), so opti-
mal parameter values can be efficiently computed and issues
of identifiability only occur when there are limited amounts
of data for each parameter. There are many possible logistic
student learning models; in fact, most Item Response The-
ory models are in this class. For this paper, we will focus on
two popular models in the educational data mining commu-
nity: Additive Factors Model [4] and Performance Factors
Analysis [16].

2.1.1 Additive Factors Model
This model utilizes individual parameters for each student’s
baseline ability level, each knowledge component’s baseline
difficulty, and the learning rate for each knowledge com-

ponent (i.e., how much improvement occurs with each addi-
tional practice opportunity). The standard equation for this
model is shown here:

zi = αstudent(i) +
∑

k∈KCs(i)

(βk + γk × opp(k, i))

where αstudent(i) represents the prior knowledge of the stu-
dent performing step i, the βs and γs represents the diffi-
culty and learning rate of the KCs needed to solve step i,
and opp(k, i) represents the number of prior opportunities a
student has had to practice skill k before step i. In the tra-
ditional formulation, the learning rates (γs) are bounded to
be positive, so practicing KCs never decreases performance.
To prevent the model from overfitting, the student param-
eters (αs) are typically L2 regularized; i.e., they are given
a normal prior with mean 0. Regularization decreases the
model fit to the training data (i.e., the log-likelihood, AIC,
and BIC) but improves the predictive accuracy on unseen
data. Thus, when comparing regularized models to other
approaches it should primarily be compared on measures
that use held out data, such as cross validation.

2.1.2 Performance Factors Analysis
There are two key differences between this model and AFM.
First, PFA does not have individual student parameters [16]
(later variants have explored the addition of student param-
eters [6], but we base our current analysis on the original
formulation). This usually substantially reduces the number
of parameters of the model relative to AFM, particularly in
datasets with a large number of unique students. Second,
the model takes into account students’ actual performance
(not just opportunities completed) by splitting the learning
rate for each skill into two learning rates: a rate for suc-
cessful practice and a rate for unsuccessful practice. The
standard equation based on these changes is the following:

zi =
∑

k∈KCs(i)

(βk + γksuccess(i, k) + ρkfailure(i, k))

where the βs represent the difficulty of the KCs, γs and ρs
represent the learning rates for successful and unsuccessful
practice on the KCs, success(i, k) represents the number of
successful applications of a skill k for the given student prior
to step i, and failure(i, k) represents the number of unsuc-
cessful applications of a skill k for the given student prior to
step i. Similar to AFM it is typical to restrict the learning
rates (i.e., γs and ρs) to be positive [9]. One complication
when comparing this model to other approaches using held
out data (i.e., cross validation) is that the success and failure
counts potentially contain additional information about the
test data (i.e., performance on held out practice opportuni-
ties). Thus, we argue that comparing AFM to PFA using
cross validation is usually not a fair comparison. Bearing
this in mind, in the current analysis we were more interested
in comparing AFM+Slip and PFA+Slip to their respective
baseline models than to each other. To this end, we uti-
lized cross validation as the primary measure of predictive
accuracy for reasons previously discussed.

2.2 Bayesian Knowledge Tracing
There are many different models in the knowledge tracing
family [10], but for this paper we focus on traditional 4-
parameter BKT [7]. In contrast to the logistic approaches,

Proceedings of the 8th International Conference on Educational Data Mining 54



BKT utilizes a Hidden Markov Model to estimate latent
parameters and predict student performance. This model
has four parameters for each skill: the initial probability
that the skill is known p(L0), the probability that the skill
will transition from an unlearned to a learned state p(T ),
the probability of an error given that the skill is learned
p(Slip), and the probability of a success when the skill is
not learned p(Guess). Unlike the logistic models, the esti-
mation of these parameters can sometimes be difficult due
to issues of identifiability [2] (e.g., there are many parameter
values that yield the same likelihood) so these parameters
are typically bounded to be within reasonable ranges; e.g.,
guess is typically bounded to be between 0 and 0.3 and slip
is bounded to be between 0 and 0.1 [1]. Prior research has
produced toolkits that can efficiently estimate these param-
eters using different approaches. For the comparisons in this
paper we use the toolkit created by Yudelson et al. [23] and
we use the gradient descent method.

One of the core differences between the logistic models and
BKT is how they parameterize false negative student actions
(i.e., slipping behavior). The logistic models do not have
slip parameters and so they model student success as con-
verging monotonically to 100% success (i.e., learning rates
are bounded to be positive). In contrast, the BKT model
explicitly models false negatives and allows monotonic con-
vergence (under the typical assumption that the probability
of forgetting is zero) to lower success rates. The slip param-
eters in BKT also serve the purpose of accounting for noise
in student performance, and it is unclear whether these pa-
rameters account for true slipping behavior (i.e., non-zero
base rate error) or just general noise in the student actions.
Since the logistic models can already handle noise in the
data, it remains to be seen what would happen if slip pa-
rameters were added to these models. That is the focus of
this papers’ investigation.

3. BOUNDED LOGISTIC REGRESSION
There is no trivial approach to incorporating explicit slip pa-
rameters into the logistic models; e.g., the prediction prob-
ability cannot be bounded by an additional linear term to
the logistic function. In order to add these parameters we
modified the underlying logistic model to have the following
form:

pi =
1

1 + e−si
× 1

1 + e−zi

where zi is the same as that used in standard logistic re-
gression and si is a linear function of the parameters that
impose an upper bound on the success probability for the
step i. For modeling a slip rate for each skill we use the
following equation:

si = τ +
∑

k∈KCs(i)

δk

where τ is the parameter corresponding to the average slip
rate across all items and students and δk is the change in the
average slip rate for each skill k. We also apply an L2 regu-
larization to the δ parameters to prevent overfitting. To fit
the parameters we used the sequential quadratic program-
ming package in Octave, which uses an approach similar to
Newton-Raphson but properly accounts for parameter con-

straints (e.g., positive learning rates). For details on param-
eter estimation see Appendix A.

This formulation is a generalization of Item Response The-
ory approaches that model item slip (e.g., [21]). In particu-
lar, it supports slipping with multiple KC labels per an item
by using a logistic function to map the sum of slip param-
eters to a value between 0 and 1. For items with a single
KC label, the 1

1+e−si
term reduces to the slip probability

for that KC. For multi-KC items, this term models slipping
as the linear combination of the individual KC slipping pa-
rameters in logit space. This approach mirrors that taken
by AFM and PFA for modeling KC difficulty and learning
rates in situations with multiple KC labels. In these situ-
ations, prior work has shown that the logit approach gives
a good approximations of both conjunctive and disjunctive
KC behavior [4].

During early model exploration we used Markov Chain Monte
Carlo methods to compare this formulation with a more
complex formulation that had parameters for both guess-
ing and slipping. Our preliminary results showed that AFM
with slip parameters outperformed the guess-and-slip vari-
ation for the ’Geometry Area (1996-97)’ [11] and the ’Self
Explanation sch a3329ee9 Winter 2008 (CL)’ [3] datasets
(accessed via DataShop [12]) in terms of deviance informa-
tion criterion (a generalization of AIC for sampled data).
Further analysis showed that there was little data to esti-
mate the guessing portion of the logistic curve. This is be-
cause the average student error rate in these datasets starts
off at less than 50% and only gets lower with practice. This
is typical of many of the available tutor datasets, so for our
Bounded Logistic Regression approach we decided it would
be sufficient to model the slipping parameters.

4. EVALUATION
4.1 Method
We used bounded logistic regression to add slip parameters
to AFM and PFA, thus creating two new student learning
models: AFM + Slip and PFA + Slip. We were interested in
how these approaches compared with their traditional coun-
terparts and to Bayesian Knowledge Tracing, which param-
eterizes guess and slip. Furthermore, we were interested
in how these different approaches compared across different
datasets spanning distinct domains. To perform this evalu-
ation we fit each of the five models to five datasets we down-
loaded from DataShop [12]: Geometry Area (1996-97) [11],
Self Explanation sch a3329ee9 Winter 2008 (CL)[3], IWT
Self-Explanation Study 1 (Spring 2009) (tutors only) [19],
IWT Self-Explanation Study 2 (Fall 2009) (tutors only) [20],
and Digital Games for Improving Number Sense - Study 1
[15]. These datasets cover the domains of geometry, equa-
tion solving, writing, and number line estimation. We se-
lected these datasets because they have undergone exten-
sive KC model refinement, including both manually created
models by domain experts and automatically-refined mod-
els using Learning Factors Analysis [5]. For all datasets we
used the best fitting KC model, based on unstratified cross
validation.

In addition to comparing the different statistical models’
predictive accuracies, we were interested in understanding
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Table 1: In all five datasets the slip models outperform their non-slip counterparts in terms of log-likelihood
and cross validation. In four out of the five datasets, the PFA+Slip model outperforms the AFM+Slip model
in terms of log-likelihood and cross validation performance. In this table “Par.” represents the number of
parameters in the model and the CV RMSE values are the averages of 10 runs of 10-fold un-stratified cross
validation.

Dataset Model Par. LL AIC BIC CV RMSE
Geometry

AFM 95 -2399.7 4989.4 5610.5 0.396
AFM+Slip 114 -2377.0 4982.0 5727.3 0.395
PFA 54 -2374.9 4857.8 5210.8 0.389
PFA+Slip 73 -2298.3 4742.6 5219.8 0.383
BKT 72 -2460.8 5065.7 5536.5 0.396

Equation Solving
AFM 106 3011.6 6235.2 6953.9 0.390
AFM+Slip 125 -2992.5 6235.0 7082.54 0.388
PFA 48 -3205.2 6506.4 6831.8 0.400
PFA+Slip 67 -3088.9 6311.8 6766.0 0.392
BKT 72 -3202.7 6549.5 7037.7 0.426

Writing 1
AFM 169 -3214.6 6767.2 7916.1 0.406
AFM+Slip 196 -3214.6 6821.2 8153.6 0.406
PFA 72 -3212.0 6568.0 7057.4 0.401
PFA+Slip 99 -3158.0 6514.0 7187.0 0.398
BKT 104 -3480.2 7168.5 7875.6 0.419

Writing 2
AFM 129 -2976.4 6210.8 7096.6 0.375
AFM+Slip 145 -2962.8 6215.6 7211.3 0.373
PFA 45 -2994.7 6079.4 6388.4 0.373
PFA+Slip 61 2965.7 6053.4 6472.2 0.371
BKT 60 -3177.1 6474.2 6886.2 0.384

Number Line
AFM 93 -2352.7 4891.4 5484.0 0.433
AFM+Slip 115 -2356.3 4942.6 5675.4 0.432
PFA 62 -2337.5 4799.0 5194.1 0.430
PFA+Slip 84 -2318.9 4805.8 5341.1 0.428
BKT 84 -2548.7 5265.4 5800.7 0.451

and interpreting the situations in which slip parameters im-
prove model fit. Prior to analysis we hypothesized that slip-
ping parameters might have three potential effects on the
model fit: (1) enabling the model to capture true student
slipping behavior; i.e., KCs that have a non-zero base-rate
error, (2) enabling the model to fit steeper initial learning
rates while still making correct predictions at higher oppor-
tunity counts, and (3) enabling the model to compensate
for an underspecified knowledge component model. We fo-
cused in on one dataset, Geometry Area (1996-97), to ex-
plore these possibilities. Within this dataset we conducted
a residual analysis to explore possibilities (1) and (2). We
then refined the geometry KC model for a specific KC that
the slip model identified as having a high false negative rate
(i.e., slip value) to explore possibility (3). For brevity we
only show the results of AFM and AFM+Slip in these anal-
yses, but similar trends hold for PFA and PFA+Slip.

4.2 Results
4.2.1 Model Fits for Five Datasets

We fit each of the five models to the five datasets. Table 1
shows the resulting model fit statistics and the number of
parameters used in each model. AFM has 1 parameter per
student and 2 parameters per skill, PFA has 3 parameters

for each skill, and BKT has 4 parameters for each skill. The
slip variations have an additional parameter for each skill,
plus a parameter for the average slip rate. When using the
PFA models in practice many of the KCs never had any un-
successful practice (i.e., their failure count was always 0).
In these situations we removed the parameters for the fail-
ure learning rates because they have no effect on the model
behavior. Thus, in some situations, the number of param-
eters in each model might differ from the general trends.
All of the cross validation results are the average of 10 runs
of 10-fold unstratified cross validation, where the cross vali-
dated RMSE was computed using the predicted probability
of a correct response (rather than discrete correct/incorrect
predictions).

All of the slip models have better log-likelihood and cross
validation performance than their respective baseline mod-
els (AFM and PFM). Furthermore, in four out of the five
datasets, PFA+Slip has better cross validation performance
than AFM+Slip, even though it does not have individual
student parameters. Finally, all of the logistic models out-
performed traditional four-parameter BKT. Based on prior
work [16] we expected this last result, but we included BKT
as a comparison model that supports slipping. In particular,
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Figure 1: The AFM+Slip model better fits the
steeper learning rate of the Geometry dataset than
the AFM model, but both models fit the tail of the
learning curve reasonably well and the actual stu-
dent error appears to be converging to 0%. The
shaded regions denote the 95% confidence intervals
for the respective values.

Figure 3 shows an example of how the AFM+Slip model fits
the data more like the BKT model than the AFM model for
a KC with a high slip rate.

4.2.2 Residual Analysis
To investigate how the predictions of the slip models differ
from that of the traditional models we analyzed the resid-
uals for the AFM and AFM+Slip models on the Geometry
dataset. Figure 1 shows the actual and predicted error rates
for the two models on this dataset and Figure 2 shows the
model residuals plotted by opportunity count. Investigat-
ing patterns in residual error across opportunity counts is a
useful way of assessing systematic discrepancies between a
given model’s predicted learning curves and students’ actual
learning curves.

Although both models fit the data reasonably well, the slip
model better models the steepness at the beginning of the
learning curve. At low opportunity counts, AFM without
slip typically predicts a substantially flatter learning curve
compared to the actual data. The residual plot mirrors this
finding; the 95% confidence interval for the AFM residu-
als does not include zero for earlier opportunities and the
model flips from over-predicting success to under-predicting
it. The AFM+Slip model, in contrast, better models the
initial steepness of the learning curve. The 95% confidence
interval for the AFM+Slip model residuals always includes
zero. Finally, we see no evidence of actual slipping behavior
in the tail of the learning curve: the 95% confidence in-
tervals for residuals in both models include zero for higher
opportunity counts. If true student slipping were occurring,
we would expect the traditional AFM model to overpredict
success in the tail, but we do not observe this.

Figure 2: The 95% confidence intervals (shaded re-
gions) for the residuals of the AFM model do not in-
clude zero for lower opportunity counts, the model
first overpredicts and then underpredicts success. In
contrast the 95% confidence intervals for residuals of
the AFM+Slip model always include zero indicating
a better model fit.

4.2.3 KC Refinement Based on False Negatives
In order to explore the hypothesis that a high false neg-
ative, or slip, rate on a skill is indicative of a underspec-
ified knowledge component model, we analyzed a KC on
which the slip parameter was high and on which AFM and
AFM+Slip differed substantially in their predictions. One
KC, “geometry*compose-by-multiplication,” fit this criteria.
Figure 3 shows the learning curve with model predictions
for this KC. AFM+Slip makes predictions that are nearly
identical to BKT and seems to better fit the actual stu-
dent learning curve. Upon further investigation, we found
that many of the items labeled with this skill were on the
same problems. Within these problems, we noticed that
the later problem steps (items) might actually have been
solved by applying the “arithmetic” skill to the result of an
earlier application of the “compose-by-multiplication” skill.
We generated a new knowledge component model to reflect
these findings and re-fit the model using AFM. The pre-
dictions of this new model (AFM-New-KC) are also shown
in Figure 3. For the AFM-New-KC plot, we plotted the
observations with the opportunity counts from the original
KC model (x-axis) but with predicted errors from the new
KC model (y-axis). This was necessary for the purposes
of comparison to the original KC model predictions. Once
the knowledge component model was refined based on the
insights provided by fitting AFM+Slip, standard AFM im-
proved. Furthermore, based on this change the overall AFM
model fit improved to be on par with AFM+Slip in terms
of log-likelihood, AIC, and cross validation (LL = -2378.8,
AIC = 4947.6, BIC = 5568.6, and CV RMSE = 0.395).

5. DISCUSSION
Our model fit results show that the slip models have better
predictive accuracy (i.e., cross validation performance) and
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Figure 3: AFM+Slip looks much more like BKT for
this KC and seems to model the data better (the
overlapping purple and green lines). We took the
high false negative rate (i.e., the sharp floor in the
predicted error at approx. 11%) as an indicator that
the KC model might benefit from refinement. Re-
fitting the regular AFM model with a refined KC
model (AFM-new-KC) shows a better fit to the ac-
tual data. Shaded regions denote the 95% confi-
dence intervals for the respective values.

log-likelihood fits than their traditional counterparts across
all five datasets. Furthermore, the AIC scores generally mir-
ror this finding. These results suggest that the addition of
the slip parameters to the logistic model formalism results
in an improved model fit and an increased ability to predict
behavior on unseen data.

In four of the five datasets, PFA + Slip best fit the data
in terms of both log-likelihood and cross validation. In one
sense, its superior cross-validation performance is surpris-
ing because the PFA models (as implemented here) have no
student intercept parameters. However, they have an ad-
vantage for the cross validation statistic because they get
success and failure counts that include information about
performance on held out data, essentially giving these mod-
els an advantage over the other models. The better log-
likelihood (and often AIC) scores are indicative of a better
ability to fit the data that doesn’t suffer from this discrep-
ancy. However, PFA models have an advantage over AFM
for this statistic because AFM uses regularization, which in-
tentionally worsens the fit of the model to the data in an
effort to improve predictive accuracy. To test if regularizing
student parameters was causing PFA and PFA + Slip to out-
perform AFM and AFM + Slip we refit the AFM models to
the Geometry dataset with student parameter regularization
disabled and found that, at least for the Geometry dataset,
the PFA models still outperforms the AFM models in terms
of log-likelihood, AIC, BIC, and CV RMSE. These findings
suggest that the PFA models better fits the data than the
AFM models, but more work is needed to explore how best
to compare these two approaches and to determine when

one approach is preferable to another.

Lastly, the logistic models consistently outperform tradi-
tional four-parameter BKT. This is somewhat unsurprising
because BKT does not have individual student parameters
or separate learning rates for success and failure. However,
we still included traditional BKT as a baseline model that is
widely used and has explicit parameters for guess and slip.
In particular, Figure 3 shows that for a KCs with high slip
rate the AFM+Slip model performs more like BKT than
AFM, suggesting that the new model is able to fit slipping
and other false negative student behavior.

Given the finding that the slip models have better predictive
accuracy and log-likelihood fits than their traditional coun-
terparts, we investigated how the addition of slip parameters
changed the model predictions. Residual analyses on the Ge-
ometry dataset showed that both AFM and AFM+Slip had
similar fits to the data, but AFM+Slip better fit the initial
steepness of the learning curve while maintaining a good
fit in the tail. This intuition is confirmed in the residual
by opportunity plot, which shows that the 95% confidence
intervals for the residuals from AFM exclude zero at low op-
portunity counts, first overpredicting success and then un-
derpredicting it. In contrast, the 95% confidence interval
for the residuals from AFM+Slip include zero at these same
low opportunity counts. This evidence supports the hypoth-
esis that adding slip parameters enables the model to better
accommodate steeper learning rates. In contrast, we find
no evidence to support the hypothesis that adding slipping
parameters enables the model to better fit non-zero base
rate error; i.e., true student slipping. If this were the case,
then we would expect AFM to overpredict success in the tail
(i.e., for the residuals to be non-zero at higher opportunity
counts), but we found no evidence that this occurred.

Finally, we demonstrated that high false negative, or slip,
rates can serve as detectors of KCs that might benefit from
further refinement. We identified a KC in the Geometry
dataset that had a high slip rate and that differed from the
traditional model: the“geometry*compose-by-multiplication”
KC. We found that this KC could be further refined and
showed that AFM with the refined KC model performed
on par with AFM+Slip in terms of log-likelihood and cross
validation. This suggests that adding slip parameters to a
model can enable it to compensate for an underspecified KC
model but, more importantly, can help identify these poorly
specified KCs. The newly discovered KC model better fit the
student data than the previous best model, which was the
result of years of hand and automated KC model refinement.

6. CONCLUSIONS
Logistic models of learning, such as AFM and PFA, are pop-
ular approaches for modeling educational data. However,
unlike models in the knowledge tracing family, they do not
have the ability to explicitly model guessing and slipping
rates on KCs. In this work we augmented traditional logis-
tic regression to support slipping rates using an approach
that we call Bounded Logistic Regression. We then used
this approach to create two new student models: AFM +
Slip and PFA + Slip. We then compared the performance
of these new models in relation to their traditional coun-
terparts. Furthermore, for AFM we explored how the addi-
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tion of slip parameters changed the predictions made by the
model. We explored three possibilities: (1) they might en-
able the model to capture true student slipping behavior (i.e,
non-zero base-rate error), (2) they might enable the model
to accommodate steeper learning rates while still effectively
predicting performance at higher opportunity counts, and
(3) they might enable the model to compensate for an un-
derspecified knowledge component model.

To explore the first two possibilities, we conducted a residual
analysis and found that the slip parameters appear to help
the model fit steeper learning rates, rather than improving
model fit in the tail. To explore the third possibility, we used
a high false negative, or slip, rate as an indicator of where the
given KC model might benefit from refinement. We found
that after refining a KC model using this approach AFM
performance (e.g., CV, LL, AIC) improved to be on par with
AFM-Slip. This suggests that the slip parameters enable
the model to compensate for underspecified KC models and
that high slip values can be used to identify KCs that might
benefit from further KC label refinement.

7. LIMITATIONS AND FUTURE WORK
One key limitation of the current work is that we did not
explore issues of identifiability in the Bounded Logistic Re-
gression model. In particular, we have not yet demonstrated
that the log-likelihood for models using this formalism are
convex. In the current formulation we only model slip pa-
rameters (not guess parameters), so we expect identifiability
to be less of an issues. In line with this intuition we found
that the current approach returned reasonable parameter
values and consistently improved model fit across the five
data sets we explored. However, we recognize that the model
would benefit from a more rigorous analysis of the quality of
estimated parameters and acknowledge that this would be
an important direction for future work.

Finally, the current work focuses on comparing the slip mod-
els to their traditional counterparts, but future work might
explore how different models (e.g., AFM+Slip, PFA+Slip,
and BKT) compare to one another. In the current work we
purposefully avoided making conclusions about how these
models compare because there is some ambiguity in how
different approaches are evaluated. For example, Yudelson’s
Bayesian Knowledge Tracing toolkit [23] performs incremen-
tal prediction during cross validation (i.e., predicting stu-
dent performance on a step and then “showing” the model
the actual performance before moving on to the next step).
While this approach aligns well with the actual use of the
BKT model it gives an unfair advantage when comparing it
to cross validated AFM, which gets no information about
test data when making predictions. A similar complication
exists for PFA, which gets information about the perfor-
mance of unseen steps from the success and failure counts.
A more equivalent comparison would be to perform an incre-
mental prediction using AFM and PFA, but this was beyond
the scope of the current paper and represents an open area
for future work.
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APPENDIX
A. PARAMETER ESTIMATION
Similar to standard logistic regression we assume the data
follows a binomial distribution. Thus, the likelihood and
log-likelihood are as follows:

Likelihood(data) =

n∏
i=1

pyii (1 − pi)
(1−yi)

ll(data) =

n∑
i=1

yilog(pi) + (1 − yi)log(1 − pi)

where yi is 0 or 1 depending on if the given step i was correct.
As mentioned earlier, pi is defined as:

pi =
1

1 + e−si
× 1

1 + e−zi

where si is the linear combination of the slip parameters
and zi is the linear combination of the student and item
parameters.

To estimate the parameters values for bounded logistic re-
gression, we maximize the conditional maximum likelihood
of the data using sequential quadratic programming (specif-
ically the sqp package in Octave). This approach reduces
to applying the Newton-Raphson method, but properly ac-
counts for situations when the parameter values are con-
strained, such as the positive bound for the learning rates in
AFM and PFA. To apply this method, we needed to com-
pute the gradient and hessian for the likelihood of the data
given the model.

To compute the gradient we took the derivative with re-
spect to the student and item parameters (w’s) and slip
parameters (sp’s). For the student and item parameters the
gradient is the following:

dll

dwa
=

n∑
i=1

xia
1 + ezi

(yi − pi)

(1 − pi)

where xia is the value of the student or item feature that is
being weighted by parameter wa for step i.

Similarly, for the slip parameters the gradient is the follow-
ing:

dll

dspa
=

n∑
i=1

qia
1 + esi

(yi − pi)

(1 − pi)

where qia is the value of the slip feature (in AFM and PFA
these are the 0 or 1 entries from the Q-matrix) that is being
weighted by parameter spa for step i.

Given these gradients we have a hessian matrix with val-
ues for the interactions of the ws with each other, the ws
with the sps, and the sps with each other. These values are
defined as the following:

d2ll

dwadwb
=

n∑
i=1

xiaxib
(1 + ezi)2(1 − pi)2

[pi(yi − 1)

+ezi(pi − yi)(1 − pi)]

d2ll

dspadspb
=

n∑
i=1

qiaqib
(1 + esi)2(1 − pi)2

[pi(yi − 1)

+esi(pi − yi)(1 − pi)]

d2ll

dwadspb
=

n∑
i=1

xia
1 + ezi

[
(pi − 1) + (yi − pi)

(1 − pi)2

]

Finally, in our formulation we applied an L2 regularization
to all of the parameter values (i.e., a normal prior with mean
0), where the λ parameter of the regularization could be set
individually for each model parameter. For the AFM models
we set λ to 1 for the student parameters. For all of the slip
models we λ to 1 for the KC slip parameters (i.e., δs). For
all other parameters we turned regularization off (λ = 0).
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ABSTRACT 
Studies comparing virtual and physical manipulative environ-
ments (VME and PME) in inquiry-based science learning have 
mostly focused on students’ learning outcomes but not on the 
actual processes they engage in during the learning activities. In 
this paper, we examined experimentation strategies in an inquiry 
activity and their relation to conceptual learning outcomes. We 
assigned college students to either use VME or PME for a goal-
directed physics inquiry task on mass-spring systems. Our 
analysis showed that the best predictors of learning outcomes 
were experimental manipulations that followed a control of 
variable (CV) strategy, with a delay between manipulations 
(“systematic inquiry”). Cluster analysis of the prevalence of these 
manipulations per participant revealed two distinct clusters of 
participants, systematic inquiry or not. The systematic inquiry 
cluster had significantly higher learning outcomes than the less 
systematic one. Furthermore, the majority of the participants using 
the PME belonged to the more systematic cluster, while most of 
the participants using the VME fell into the non-systematic 
cluster, likely because of the specific affordances of the real and 
virtual equipment they were using. However, beyond this impact 
on inquiry process, condition had little effect. In light of these 
results, we argue that investigating processes displayed during 
learning activities, in addition to outcomes, enables us to properly 
evaluate the strengths and weaknesses of different learning 
environments for inquiry-based learning.  

Keywords 
Science Discovery Learning, Computer Simulations, Real 
Laboratories, Inquiry Learning, Cluster Analysis, Virtual and 
Physical Science Laboratories 

1. Introduction 
Over the past decades, the science teaching community has 
adopted the view that “students cannot fully understand scientific 
and engineering ideas without engaging in the practices of inquiry 
and the discourses by which such ideas are developed and 
refined” (NRC, 2012, p.218). Inquiry-based instruction requires 
students to model the practices of scientific inquiry to actively 
develop their conceptual understanding [1,2]. While physical 
laboratories were the traditional environments for such inquiry-
based learning, there is accumulating evidence that virtual 
laboratories are similarly well suited to meet the goals of science 
investigation [3,4]. In particular, they are considered to be at least 
equally conducive to active manipulations for experimentation 
[2,3], which is seen as the crucial aspect of inquiry learning 
[5,6,7].  

A major limitation of the research comparing physical and virtual 
manipulative environments (PME and VME) for science learning 
was the predominant focus on the learning outcomes rather than 
the learning processes when students engage in inquiry activities. 

This has not changed with recent work that shifted from treating 
the environments as two competing entities to examining how to 
best combine them for increased learning benefits [4]. We argue 
that research on how learners engage with these manipulative 
environments could provide a more comprehensive understanding 
of how the interaction of a learner with an environment impacts 
the learners’ construction of knowledge, and in turn what design 
features of these environments foster desired manipulative 
behaviors in the context of science inquiry learning.  

The present study lies at the intersection of research on learning 
environments and research on inquiry behaviors in order to study 
the characteristics of productive experimentation strategies in 
open-ended science investigation tasks, and how such strategy use 
might be influenced by the different affordances of the learning 
environments. For this purpose we encoded the actual 
experiments students ran, which allows us to basically replay their 
processes. This allows us to explore customized 
operationalizations of inquiry behaviors of interest. This approach 
integrates data-driven methods with relevant theoretical concepts. 
As a result, we found a robust characterization of experimentation 
strategies that meaningfully predicts learning outcomes, and show 
how participants’ strategy use differs between the learning 
environments. This study is part of a larger research project with 
the goal of developing automated detectors of systematic inquiry 
in open-ended science investigation activities for formative 
assessment and for the design of productive learning 
environments. 
 

2. Inquiry Behaviors 
2.1. Control of Variable Strategy 
Scientific learning through self-directed inquiry activities depends 
on the actual inquiry behaviors employed [8,9]. In particular, 
adequate experimentation strategies are required that result in 
interpretable observations, i.e. evidence that facilitates drawing 
valid inferences. Research has particularly focused on the abilities 
to systematically combine variables and to design unconfounded 
experiments, i.e. experiments that modify variables such that 
competing hypothesis can be ruled out. The design of 
unconfounded experiments requires the ability to employ the 
control of variables strategy (CVS), that is, to create experiments 
with a single contrast between experimental conditions [10]. This 
is in contrast to inadequate strategies such as changing multiple 
variables at the same time, which hampers valid inferences and 
subsequent knowledge [11]. 
Previous research has examined a host of individual and 
contextual factors of strategy use [8]. However, only a very small 
number of studies have explicitly examined the impact of 
affordances of learning environments on strategy use in 
experimentation activities [2,12]. While Triona & Klahr [2] 
focused on the impact of physicality of manipulatives alone on 
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learning outcomes, Renken & Nunez [12] had students engage in 
an inquiry activity on pendulum motion using either a PME or a 
VME that differed in both ease of manipulation and freedom of 
choice: while the PME provided participants with only three 
different levels for either pendulum length or mass, the VME 
allowed participants to modify the variables smoothly by means 
of continuous valued sliders. Even if there was no difference in 
conceptual understanding between the VME and PME conditions, 
participants using the computer simulation ran more trials and 
were less likely to control variables. Renken and Nunez [12] 
argued that the additional flexibility and breadth of choice in 
experimentation in VME was detrimental to participants’ use of 
adequate experimentation strategy. 

While this study suggests that indeed strategy use in inquiry-based 
learning activities is influenced by affordances of the learning 
environments, it is difficult to generalize these results to less 
structured and scaffolded inquiry activities.  
 

2.2. Operationalization of Inquiry 
Strategies 
As most studies cited mainly focused on CV strategy, they used 
highly structured tasks where either variables were dichotomous, 
or there was only one outcome variable, or the activity was 
restricted. In order to develop a more nuanced characterization of 
inquiry strategies, we need more complex inquiry tasks. Data 
mining techniques employed in such contexts have been 
successful at discovering groups of similar users [13,14,15]. Most 
of these data-mined systems are based on the user interaction logs 
[16]. While they achieve good predictive power, such machine-
learned detectors of interaction behaviors often come at the cost of 
interpretability [17]. However, it is crucial to develop data-mined 
models of inquiry strategies that are interpretable in order to 
advance our understanding of learning processes through inquiry 
activities. We apply a different approach, where we do not use 
labelled action logs but code the actual experiment configurations 
of each participant. Based on video data, we extract each 
configuration a participant tried and feed it into a database of 
experiments of all participants. This allows us to quickly extract 
and explore relevant variables of inquiry, such as the number of 
spring-only or mass-only changes, the number of unique 
configurations, repetitions, etc. That way, we can integrate 
relevant theoretical concepts into the operationalization of inquiry 
behaviors. 

In the context of this study, we focused on experimentation 
strategies only. We collected data on the number of experiment 
trials, the experiment configurations, and the time between 
manipulations, and coded the type of manipulation per 
experiment. Particular focus is given to “control of variable” 
manipulations, “deliberate” manipulations, and “deliberate 
control” of variable manipulations. Deliberate manipulations 
(DM) are manipulations into which a participant has put some 
thought, as measured by dwell time between two consecutive 
manipulations. We assume that participants who are cognitively 
engaged – reflecting on evidence from a preceding manipulation, 
trying to make sense of it in the context of previous observations, 
or taking notes or planning the next manipulation(s) – will spend 
more time before executing the next change than those who are 
cognitively less engaged.  

For this reason, we include the third category of manipulations 
that lies at the intersection of the prior two categories, deliberate 
control of variable manipulations (DCVM). As prior research on 

experimentation strategies in inquiry-based activities 
characterized them as solely CVS or not, activities were designed 
such that controlling variables in an experiment had to be a 
deliberate choice of participants [19,20,21]. However, in less 
structured, open-ended inquiry like those used in this study, it is 
possible in some cases to manipulate variables according to a CV 
strategy without the deliberate intention to do so. For example in 
the computer simulation for our mass & spring activity, one could 
change the value of the spring constant continuously by means of 
a slider, without having to interrupt an ongoing experiment. 
Inherently, this corresponds to a control of variable manipulation 
(CVM) but not necessarily to a deliberate control of variable 
manipulation (DCVM). 
 

3. Present Study 
The study reported here was part of a larger study examining 
participants’ inquiry behaviors in different scientific domains 
using either PME or VME as learning environments. Participants 
engaged in two activities; the first one was on mass and spring 
oscillation (see Figure 1), and the second one on basic electric 
circuits. The current paper presents analysis of the first inquiry 
activity. During the first activity, participants were either asked to 
simply think-aloud while engaging in the inquiry or were trained 
to implement the Predict-Observe-Explain framework (POE) [18]. 
The training session of the POE framework was highly structured 
and guided: During the entire activity, before each intended 
manipulation, participants were asked to predict its result, then 
observe the actual results of the manipulation, and finally explain 
their observation in light of the initial prediction. On the other 
hand, the think-aloud group did not receive any scaffolds or 
guidance by the experimenter. Therefore, for the purposes of this 
paper, we report only data for the participants in the think-aloud 
condition, as the difference in guidance might have altered the 
nature of the activity, and masked the effect of medium on inquiry 
processes of the participants. 

The main research questions that guided the present study were: 
• How can we operationalize inquiry strategies in less well-

structured and more complex activities? 

• What inquiry strategies are related to better learning outcomes? 

• How does strategy use differ between participants using either 
the physical or the simulation environment?  
 

3.1. Sample 
For Mass and spring activity in think-aloud condition, we had 36 
community college students (24 female, 12 male, average 
age=20.5, SD=3.6).  
 

3.2. Design 
The study reported here is a between subject design with two 
levels. We randomly assigned participants to use either physical 
(PHY) or computer simulation (SIM) to engage in an inquiry-
based activity on mass and spring oscillation (nPHY=18, nSIM=18). 
The task was to discover how the mass and the spring constant 
affect both the amplitude and the frequency of oscillation of a 
mass-spring system. We administrated a conceptual test before 
and after the activity. The post-test scores were the dependent 
measures of the experiment, while the pre-test scores were used as 
covariates in the corresponding statistical analyses. The relevant 
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behavioral measures were treated as independent within-subject 
variables since they were expected to predict learning outcomes. 
 

3.3. Materials 
3.3.1. Learning Environment  
Physical Learning Environment. The physical toolkit consisted 
of the PASCO1 Demonstration Spring Set and Mass and Hanger 
Set. There are four pairs of springs, each with a spring constant 
between 4 N/m and 14 N/m. The masses consist of hangers to 
which slices of weights can be attached, ranging from 5 to 20 g. 
The environment consisted of two hooks, each being able to hold 
one spring, see Figure 1. For measuring extensions and duration, 
we provided a measuring tape and a stopwatch.  
Simulation Learning Environment. The computer simulation 
we used was created by PhET [22], see Figure 1. It consists of 
three springs, two of which have a fixed and equal spring 
constant. The spring constant of the third spring can be changed 
continuously by means of a slider. It further entails seven weights, 
four of which are 50g, 100g, 100g and 250g respectively. The 
other three have no indication of their actual weight. The weights 
can be attached to and removed from the springs by simple drag-
and-drop. The simulation comes with a displaceable measuring 
tape as well as a stopwatch.  
Differences in Learning Environment. Instead of designing the 
learning environments ourselves, we selected the ones that we 
considered as state of the art of their respective domains. This 
prevented us from setting up the necessary control of the 
differences in affordances of the environments for making causal 
claims about the relation of learning environment and 
experimentation strategies. However, we can reason about the 
potentially relevant differences based on the specific user 
interfaces and interaction designs. The main differences are the 
following ones: 1. The VME allows participants to use up to three 
                                                
1 PASCO scientific, 10101 Foothills Boulevard, P O Box 619011, 
Roseville, Ca 95678-9011, USA.Web: http://www.pasco.com. E-
mail: sales@pasco.com. National representatives of PASCO can 
be reached through the USA office. 

springs, compared to two in the PME; 
2. In the PME, participants could 
change the spring constant of both 
springs if needed, while the VME 
allowed to change the spring constant 
of only the third spring; 3. In the 
VME, manipulating the spring 
constant is easier as it requires only 
changing the value of a continuous 
valued slider. Participants could 
change its value on the fly, without 
interrupting an ongoing experiment. 
In order to change the spring 
constants in the PME, participants 
had to stop an experiment, and 
physically replace a spring with 
another one. 
 

3.3.2. Subject Knowledge 
Assessment Questionnaire 
The pre-test and the post-test consisted 

of four qualitative questions, each with two sub-questions. The 
first two questions addressed the impact of changing either the 
spring constant or the mass on the amplitude and frequency of 
oscillation. The third question targeted the understanding of force 
and speed in an oscillating spring-mass system. The fourth 
question was a near-transfer question inspired by the 
generalization questions of Renken & Nunez [12].  

3.3.3. Procedure.  
Students participated individually in the study. They were 
assigned randomly to either the PHY or the SIM condition. Prior 
to taking the pre-test, each participant was introduced to the 
nature and goal of the activity, and to definitions of relevant 
variables. Possible experiments were restricted only by the given 
set of weights and springs. The definition sheet contained basic 
definitions, both verbal and visual, of relevant concepts of 
harmonic oscillation of mass-spring systems. After the pre-test, 
the experimenter explained how to manipulate the variables and 
how to perform measurements, depending on condition using 
either the physical toolkit or the computer simulation. Participants 
were instructed to adjust only the settings related to the two 
variables of interest. They were further asked to think-aloud 
during the activity. The maximal duration of the inquiry task was 
10 minutes. Participants then completed the post-test. Both pre-
test and post-test took 5 minutes each. 
 

3.4. Coding 
3.4.1. Conceptual Tests 
Pre-test and post-test items received a score of 1 if they were 
correctly answered, and 0 otherwise. Questions that required 
participants to explain their reasoning were given 0.5 for partially 
correct answers. The maximum score was 8. Besides the overall 
aggregate score, we calculated also sub-scores for the two 
conceptual categories, spring constant (two items) and mass 
dependence (two items).  

3.4.2. Inquiry Behaviors 
In a first pass, we extracted every experiment a participant ran 
from the corresponding video records of the experiment. This was 
done manually. Once the database was established, we could code 
every experiment computationally based on customized rules for 

Figure 1. Experimental Setup: Left: Physical toolkit in action: The first hook is just next to the 
measure tape. Right: Computer Simulation: Participants were only allowed to change the 
“softness spring 3”. 
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extracting relevant variables such as number of manipulated 
objects, etc. Even if the initial step was done by hand, the 
extraction procedure was operationalized such that we can 
automatize this process for future iterations: An experiment was 
characterized by the state of each relevant variable. A new 
experiment started when either one or more variables of the 
system were manipulated, or when a current experimental setup 
was re-initiated, either by touching a mass-spring system with the 
hand or with the mouse. The type of performed manipulation was 
then extracted from the contrast between two experiments. All 
variables representing inquiry behaviors are coded proportionally, 
relative to the total number of experiments run per activity. 

An experiment consisted of the number of springs used, their 
spring constants, and the weights attached to the springs. The 
possible manipulations were (1) change of the spring constant, (2) 
change of the weight, (3) change both, (4) repeat an experiment, 
and (5) start a new experiment by changing the number of springs 
used. Changing either the mass only or the spring only 
corresponded to a control of variables manipulation (CVM), 
while a confounded manipulation referred to changing both 
variables at the same time. In cases participants used only one 
mass-spring configuration, we defined an experimental 
comparison through the contrast set up by the configurations in 
two consecutive runs. When two configurations were used 
simultaneously, the experimental comparison was defined by the 
contrast of those two sets of masses and springs. When 
participants in the SIM condition used all three springs, we 
defined the experimental comparison by the most optimal contrast 
out of the three possible pairwise combinations (optimal being the 
mass-spring configurations that differ only in one independent 
variable).  
  

Note: Standard error are in parentheses; † (p ≤ 0.1), * (p ≤ 0.05),  
** (p ≤ 0.01) ), *** (p ≤ 0.001); each model regresses post-test  
scores on the given independent variables. 

As explained before, just looking at whether an experiment was 
unconfounded or not misses out on other relevant aspects. In 
particular, such a perspective does not provide any insights into 
how deliberately or considered participants executed and reflected 
on an experiment. Therefore, we additionally captured the 
duration of each experiment as the dwell time between two 
succeeding experimental manipulations. Based on the dwell time, 
we developed a measure of deliberateness; any manipulation that 
had a dwell time bigger than first quartile of all dwell times of all 
participants was coded as a deliberate manipulation.  
 

3.5. Data Analysis. 
3.5.1. Analysis of Learning Outcomes 
In order to analyze the relation between inquiry behaviors and 
learning outcomes, we ran multiple linear regressions on post-test 
scores, with condition as independent factor, pre-test scores as 
covariate, and the corresponding measures of inquiry behavior as 
independent variables. For pairwise comparisons between 
variables within the same category that violated the normality 
assumptions, we report results from the nonparametric Mann-
Whitney-Wilcoxon test.  

3.5.2. Analysis of Inquiry Behaviors 
We applied a cluster method on all experimental manipulation 
variables to group participants by their inquiry behaviors. We 
used portioning around medoids (PAM) as the clustering 
algorithm, which is a more robust version of the standard k-means 
clustering algorithm, as it minimizes a sum of dissimilarities 
instead of a sum of squared Euclidian distances [23]. The quality 
of the clustering result was evaluated based on the silhouette score 
[24], a measure of similarity between points and the clusters they 
are assigned to. The larger the silhouette value, the better the 
clustering. However, instead of selecting the clusters that 
maximize the silhouette score, we have to make a trade-off 
between silhouette score and number of clusters in order to have 
theoretically relevant results. Ideally, we could set the number of 
clusters to 2, as we were interested in analysis of behaviors with 
respect to condition.  
 

4. Results 
4.1. Baseline Knowledge 
Participants in the two conditions did not differ significantly in 
pre-test scores, t(32) = 1.49, p = 0.15 (PHY: M = 3.53, SD = 1.59; 
SIM: M = 4.23, SD = 1.15). However, the high overall pre-test 
score average of about 52.5% of the maximal possible score 
indicates that participants had relevant prior knowledge with 
regards to the subject. We excluded two participants who scored 
perfectly on the pre-test. In terms of prior knowledge related to 
impact of the spring constant versus the mass on harmonic 
oscillations, there were no significant differences in pre-test 
scores on the corresponding subcategories (Spring constant: M = 
41.2%, SD = 31.3%; Mass: M = 52.9%, SD = 30.0%), paired  
t(33) = -1.54, d = 0.38, p = 0.13. However, as the trend in data 
nevertheless points in the expected direction, we classify 
experiments that involve spring manipulations as less familiar 
than those involving mass manipulations.   
 

4.2. Effect of Condition on Learning Gain 
The two conditions were not significantly different in terms of 
average learning outcomes as condition was not a significant 

Variables / Models 1 2 3 4 5 

(Intercept) 3.79*** 3.12**  

 

1.09 

 

2.07* 

 

2.01* 

 
  (0.68) (0.24) (1.38) 

 

(0.16) 

 

(0.96) 

 
Pre-test Scores 0.32† 0.32† 0.29† 0.32† 0.34* 
 (0.17) (0.17) (0.16) (0.16) (0.16) 
Condition 0.33 0.49 -0.05 

 

0.38 0.36 

 
 (0.33) (0.44) 

 

(0.35) 

 

(0.37) 

 

(0.37) 

 
% Control of Variable  0.89 

 

   
  (1.60) 

 

   
% Confounded  1.28 

 

   
  (2.17) 

 

   
% Delib. Manip.   3.33* 

 

  
   (1.50) 

 

  
% Delib. CV    

 

3.17*  
    (1.44)  

% Delib. Confounded    3.21 3.29 
    (2.09) (2.06) 
% Delib. Spring-Only     

 

3.95** 
     

 

(1.52) 
% Delib. Mass-Only     1.46 

 
     (1.86) 

 
R2 0.113 0.127 0.238 

 

0.254 

 

0.304 

 
adj. R2 0.056 0.007 0.162 0.151 0.179 
N 34 34 34 34 34 

Table 1. Regression Models of Post-Test Scores 
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factor for post-test scores, controlling for pre-test scores, β = 0.33, 
t(32) =  1.01, p = 0.32,  ηp

2 = 0.03 (see Figure 2.B.). 
 

4.3. Learning Outcome by Inquiry 
Behaviors 
We examined how various measures of inquiry behaviors related 
to learning outcomes by multiple linear regression analysis. The 
baseline variables of each regression model were condition as 
independent factor, and pre-test score as covariate. All the 
corresponding regression models are shown in Table 1.  

4.3.1. Time on Task and Number of Experiments  
While time on task was the same across conditions, t(32) = 0.28, p 
> 0.5, the total number of experiments per participant was higher 
for the SIM condition (M = 18.7, SD = 8.3) than for the PHY 
condition (M = 13.7, SD = 7.3), d = 0.64, t(32) = 1.87, p = 0.07. 
Additionally, pre-test scores were not correlated with number of 
experiments, r(32) = -0.05, p >0.5. An ANCOVA suggests that 
the number of experiments was not a significant factor for post-
test scores, controlling for pre-test scores, F(1, 30) = 0.02, p > 0.5, 
ηP

2 < 0.01. Overall, participants performed 533 different experi-
ments, based on which we built the database. 

4.3.2. Control of Variables Manipulations 
We did not find a significant effect for overall CVM on post-test 
scores, β = 0.89, t(31) = 0.33, p > 0.5 (see model 2 in Table 1). 
Even when looking at mass-only or spring-only manipulations, 
the respective regression coefficients are not significantly 
different from zero. These results indicate that performing control 
of variable manipulations of either the spring or the mass does not 
necessarily lead to better learning outcomes per se, which is in 
contrast to the prior literature [8]. We find that control of variable 
manipulations alone cannot explain the variability in learning 
outcomes both within and across conditions.  

4.3.3. Deliberate 
Manipulations 
We coded the deliberateness of an 
experimental manipulation by 
means of the time spend on an 
experiment. We extracted the 
duration between manipulations 
across all participants, and defined 
the cut-off value between a rapid 
and a deliberate manipulation as 
the 25th percentile of the duration 
histogram (Mdn = 20 seconds). 
This was at 11 seconds.  

Overall deliberate manipulations 
was a relevant positive predictor of 
post-test scores, β = 3.33, t(31) = 
2.21, p = 0.03, ηP

2 = 0.14 (model 3 
in Table 1). While CVM was not 
relevant for learning outcomes, 
deliberate control of variable 
manipulations (DCVM) was a 
significant factor in the regression 
model 4 in Table 1, β = 3.17, t(31) 
= 2.19, p = 0.04, ηP

2 =0.15. This 
effect was mainly driven by 
deliberate spring-only manipula-
tions (see model 5 in Table 1). On 
the other hand, deliberate 

confounded manipulations had a comparably high coefficient 
value, even if it was not significant. With an adjusted R2 = 0.18, 
F(5,28) = 2.44, p = 0.06, model 5 did not explain a higher 
proportion of variance than model 3, F(1,2) = 1.32, p = 0.28.  

None of the manipulation types correlated with pre-test scores (all 
correlation coefficients were lower than 0.1 in absolute value). 
The lack of correlation supports the claim that the manipulations 
were context-dependent variables of inquiry behavior. 
 

4.4. Inquiry Behavior by Condition 
4.4.1. Control of Variables Manipulations and 
Deliberate Manipulations 
The physical and the simulation condition did not differ in terms 
of control of variables manipulations, d = 0.14, t(32) = -0.08, p = 
0.94 (SIM: M = 0.51, SD = 0.13; PHY: M = 0.53, SD = 0.16). In 
contrast to that, the two conditions differed significantly in the 
amount of deliberate control variable manipulations (DCV), d = 
0.77, t(32) = 2.23, p = 0.033 (SIM: M = 0.35, SD = 0.15; PHY: M 
= 0.47, SD = 0.18). There is a significant drop in CV when 
considering the deliberate manipulations for the SIM condition 
only.  In line with the hypothesis that the simulation environment 
was easier to manipulate, there were significantly more rapid 
manipula-tions in the SIM condition (Mdn = 17.6%,  
CI.95 = ± 24.5%) than in the PHY condition (Mdn = 0% ,  
CI.95 = ± 12.9%), U = 219.5, r = 0.46, p = 0.007.  

4.4.2. Cluster Analysis of Inquiry Behaviors 
Overall, DCV manipulations were a significant predictor for 
learning outcomes, in particular the deliberate spring-only 
manipulations. However, even if there was a significant difference 
in the amount of these manipulations between the PHY and SIM 
conditions, learning outcomes did not differ significantly by 

Figure 2. A. Boxplot of proportions of deliberate spring-only (DSO), deliberate mass-only 
(DMO), deliberate confounded (DCo), and non-deliberate (NonD) manipulations, repetitions 
(REP) and start of new experiments (Start). B. Comparison of pre-test and post-test scores by 
cluster as well as condition. Bars indicate standard errors. 

A. B. 
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condition. It appears that individual differences in inquiry 
strategies of participants within each condition washed out the 
actual impact of the learning environment on average post-test 
scores. There might be people in the physical and the simulation 
condition that deviated from the average inquiry behaviors for the 
condition towards the other condition’s characteristics. We 
address this question by grouping all participants by considering 
all inquiry variables simultaneously instead of grouping them by 
condition, and then see how the groups distribute across the 
conditions. This can be done by means of cluster analysis.  

Clustering was performed on the 6 possible manipulation types 
(see Figure 2.A) of the entire sample, which resulted in 2 clusters 
with 17 participants in each cluster. The average silhouette score 
was 0.30. While this score is not high enough to exclude the 
possibility of artificial data structures, an examination of the 
clusters in terms of variables confirms the clusters reasonably 
distinguish people by the level of systematicity of their inquiry 
behaviors: Generally, the participants of Cluster 1 (“non-
systematic”) were less strategic and less deliberate in their 
manipulations than Cluster 2 (“systematic”) (see Figure 2.A). 
Cluster 2 had a higher proportion of deliberate spring-only 
manipulations than Cluster 1, U = 58, r = 0.51, p = 0.002, a lower 
proportion of non-deliberate manipulations than Cluster 1, U = 
262.5, r = 0.72, p < 0.001, and a lower proportion of confounded 
manipulations, U = 240.0, r = 0.57, p < 0.001. There was no 
significant difference in the other variables. Additionally, even if 
the clustering was not performed on overall DCV, there is a large 
difference between the clusters; participants in the systematic 
cluster proportionally performed significantly more DCV (Mdn = 
49.8%, CI.95 = ±16.3%) than in the non-systematic cluster (Mdn = 
30.7%, CI.95 = ±12.1%), d = 1.33, t(32) = 3.89, p < 0.001. 

The two clusters meaningfully differ in learning outcomes, as 
indicated by a regression of post-test scores on the cluster 
variable, with pre-test scores as covariates, which revealed a 
significant main effect of cluster, β = 1.03, t(31) = 2.39, p = 
0.015, ηP

2 =0.16. As expected, participants in the systematic 
scored higher than those in the non-systematic cluster (see Figure 
2.B). The regression model explained a significant proportion of 
variance, adjusted R2 = 0.18, F(2,31) = 4.55, p = 0.02. 

Table 2. Conditions distributed across clusters 

Condition 
Non-Systematic 

(n = 17) 

Systematic 

(n = 17) 

Physical     (n = 17) 3 (17.6%) 14 (82.4%) 

Simulation (n = 17) 14 (82.4%) 3 (17.6%) 

 
Finally, Table 2 shows that the majority of participants in the 
systematic cluster used the physical toolkit, while the majority of 
participants that belonged to the non-systematic cluster were in 
the simulation condition, as confirmed by a Fisher’s exact test, p < 
0.0001. 
 

5. DISCUSSION 
Considerable attention has been given separately to research on 
the impact of virtual and physical learning environment [4] and of 
inquiry behaviors on the learning outcomes in science discovery 
activities [8,9]. The aim of the present study was to link these two 
realms by (1) studying the relation of strategy use and learning 
outcomes, and (2) comparing strategy use between learning 

environments in order to shed light on how different affordances 
of the learning environments might influence strategy use.  
 

5.1. Nuanced View of Experimentation 
Strategies in Open-Ended Inquiry Tasks 
One main finding from this study was that one of the strongest 
predictors for learning outcomes when controlling for prior 
knowledge was the manipulation type that (a) created a single 
contrast in experiment conditions, (b) targeted the problem type 
that participants generally were less familiar with, and (c) was 
deliberate. In the context of the mass and spring activity, these 
were deliberate manipulations that changed only the spring 
constant from one mass-spring system to the other.  
Importantly, this further implies that the control of variables (CV) 
in experiment design was a necessary but not sufficient condition 
for developing conceptual understanding through 
experimentation. This is in contrast to prior research that has 
predominantly focused on the ability to design unconfounded 
experiments as the main factor of knowledge acquisition in 
inquiry learning [2,10,12]. Using control of variable strategy as an 
important factor for characterizing experimentation strategies 
works when the student has to make a conscious decision to 
actually apply this strategy. It fails if the affordances of the user 
interface do not require that.  In the computer simulation, one 
could change the spring constant continuously using a slider, even 
during an ongoing experiment. In the physical condition however, 
an experiment had to be interrupted in order to change either the 
mass or the spring, which required the participant to deliberately 
decide what to manipulate, but both changes are coded as CV 
manipulations. As a consequence, we not only found that there 
was no difference in CV manipulations between conditions, but 
also that these manipulations did not have predictive value for 
learning outcomes.  
This picture changed when accounting for the deliberateness of 
experimental manipulations. It turned out to that in contrast to CV 
manipulations, the percentage of deliberate CV manipulations 
significantly predicted learning outcomes, as well as differed 
between conditions. The drop from CV to deliberate CV 
manipulations was significant only for the SIM condition. This is 
in line with our reasoning that the user interface for the computer 
simulation did not make the control of variables a deliberate 
choice. Even by itself, deliberate manipulations were among the 
strongest predictor for post-test scores. We suggest that time 
between manipulations as a measure of deliberateness is not just 
reflective of the ease of manipulation in a learning environment, 
but also of the level of cognitive engagement of a participant with 
an experiment.  

Finally, only manipulations targeting the less familiar concept 
(spring) contributed to conceptual learning, while those targeting 
the more familiar one (mass) did not seem to impact the learning 
outcomes, which seems reasonable given that the participants 
tended to know less about the springs’ role in the harmonic 
oscillation. However, contrary to previous studies [12] that 
consider confounded manipulations as detrimental to developing 
conceptual understanding, we found a relatively large though 
insignificant positive regression coefficient for confounded 
manipulations on post-test scores. At this point, we can only 
speculate as to why this is the case; for example, it could be that 
people with low prior knowledge ran preliminary experiments to 
get a sense of the physical phenomenon. Further investigation is 
needed to understand this process.  
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5.2. Differences in Inquiry Behaviors by 
Learning Environment 
We found that conditions did not differ in terms of learning 
outcomes. In line with previous research that showed equal 
knowledge gains for virtual and physical manipulative 
environments [2, 3, 5, 7], we could have argued that there is no 
difference in benefits of learning environments for developing 
conceptual understanding in inquiry tasks on mass-spring systems. 
However, as indicated by the results of the cluster analysis of 
inquiry behaviors, this would have been the wrong conclusion. 
The cluster analysis revealed that participants across both 
conditions could be grouped into two clusters according to how 
systematic their inquiry behavior was, and that the more 
systematic cluster had significantly higher learning outcomes than 
the less systematic cluster. Importantly, almost all of the 
participants in the physical condition belonged to the more 
systematic cluster, while most of the participants in the simulation 
condition fell into the less systematic cluster. This suggests that 
the learning environments did differ in terms of benefits for 
developing conceptual understanding. It is important to note that 
this is not in contradiction to the multiple regression models that 
show no significant effect for condition. Both analyses show that 
inquiry strategies had a strong influence on learning outcomes. 
However, enough participants deviated from their peers in the 
same condition in terms of inquiry behaviors such that the overall 
differences in learning outcomes between conditions were 
canceled. By using more than one variable of inquiry behavior for 
grouping participants, cluster analysis better accounts for between 
subject differences in overall inquiry behaviour in each condition. 
Thus, at least for activities that span a short period of time, we 
think that measures of experimentation strategies have to be 
incorporated in studies of the impact of learning environments on 
learning outcomes in open-ended science inquiry learning. 
A possible explanation for these differences in experimental 
manipulations between conditions is that the ability to employ 
systematic experimentation strategies is not necessarily a stable 
domain-general skill but a context-dependent behavior. It is likely 
that specific affordances of the two learning environments are 
related to these differences in experimentation strategies, such as 
the need to pause the experiment to change the spring constant in 
the real but not virtual environment. While there is consensus on 
the impact of different affordances of virtual and physical 
environments on learning outcomes [4], we argue in light of these 
results that we also need to study the impact of these affordances 
on the experimentation processes during science inquiry activities. 
However, as we did not manipulate the specific affordances in the 
learning environments, we can currently only make educated 
guesses. 

For example, the fact that participants in the SIM condition ran 
more experiments than in PHY, while spending the same amount 
of time at the task, supports the claim that it was easier to 
manipulate variables in the computer simulation than in the 
physical setup. As argued by Renken and Nunez [12], it might be 
that systems that enable quick changes with various options 
prompt participants to get into “play” mode, in which they revert 
to simple heuristic methods such as trial-and-error and spend less 
effort on setting up valid experiments. This could explain why 
proportion of deliberate manipulations was higher for participants 
using the physical systems.  

Another difference in affordances is that in the computer 
simulation, participants could change the spring constant even as 
experiments were running, which led to short perturbations in the 

oscillations that were due to the change, and not necessarily due to 
the actual spring-mass configurations. Especially in cases “non-
deliberate” manipulations that were too short for the perturbations 
to vanish, participants might have wrongly interpreted these 
fluctuations.  
 

5.3. Limitations and Future Directions 
While the study provided evidence that an investigation of inquiry 
strategies is more informative than merely looking at outcomes, it 
only offered hints as to what determines the use of those 
strategies.  These appear to be influenced by the different 
affordances of a learning environment, but studies with longer 
interaction times, and a greater range and control of environments 
is needed to understand the characteristics of these relationships in 
more detail. Future studies should better control and match the 
virtual and physical environments in order to focus on one or two 
specific affordances. Studies that manipulate design features 
within a learning environment to assess its impact on inquiry 
processes are also needed. 

Further studies should incorporate the assessment of hypothesis 
generation and inference processes to examine the impact of 
affordances of learning environments not just on experimentation 
strategies, but on these other critical inquiry behaviors as well. 

We found that time between manipulations was an important 
correlate of learning outcomes; however, wit the current study, we 
can make only educated guesses as to what cognitive processes 
longer dwell times correspond to. Dwell time could signify the 
time spent on comparing the current with the prior experiment 
configuration, on reflecting on existing confusions, on planning 
the next steps to be taken, or it could just represent the time it 
takes to perform a manipulation in the learning environment. 
Additionally, the lack of difference on learning outcomes between 
media seems to contradict prior research on virtual versus 
physical learning environments in comparable inquiry tasks [12]. 
However, as the tendency of the data goes into the expected 
direction, we believe that a larger sample size would provide the 
required power to detect the learning outcome differences.  

We currently did not employ automated tracking of participants’ 
behaviors to extract their experiment configurations. However, 
novel computer vision algorithms, as well as logging systems 
would address this limitation. Our data organization scheme can 
be easily integrated with automatized tracking systems. 
 

6. CONCLUSION 
Drawing on work on scientific reasoning and inquiry, we 
developed a novel operationalization of systematic experi-
mentation strategies that predict learning outcomes in open-ended 
inquiry-based learning activities. We further showed that strategy 
use is context-dependent, in that participants using the physical 
system went about the inquiry activity differently than participants 
using the computer simulation.  

These findings suggest that we have to broaden the notion of what 
counts as “systematic experimentation” from mainly consisting of 
the design of unconfounded experiments and the performance of 
optimal heuristic search to a more comprehensive views that 
integrates contextual and cognitive factors (e.g. deliberateness). 
Data mining algorithms are particularly well suited for exploring 
such behaviors. However, it is crucial to develop data-mined 
models of inquiry strategies that are interpretable in order to 
advance our understanding of learning processes in more complex 
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inquiry activities. We suggest that any machine-learned model of 
inquiry behaviors should incorporate semantic representations of 
what participants’ actually explore in inquiry activities, in order to 
meaningfully extend the data from interaction logs of users 
engaging in the learning environment.  

A further implication of our results is that research on learning 
environments for science inquiry learning should focus on 
developing a broader framework that focuses on the affordances 
as relevant dimensions, irrespective of medium and examines how 
under what circumstances they benefit learning. 
 

7. ACKNOWLEDGEMENT 
We would like to thank Prof. Carl Wieman and Eric Kuo, PhD, 
for their guidance and strong support in this research, as well as 
members of the AAALab at the Stanford University for their 
insightful feedback.  
 

8. REFERENCES 
[1] van Joolingen, W., & Zacharia, Z. (2009). Developments in 

inquiry learning. In Technology-enhanced learning. 
Netherlands: Springer. 

[2] Triona, L., & Klahr, D. (2003). Point and click or grab and 
heft: Comparing the influence of physical and virtual 
instructional materials on elementary school students’ 
ability to design experiments. Cognition and Instruction, 21, 
149-173. 

[3] Zacharia, Z., & Olympiou, G. (2011). Physical versus 
virtual manipulative experimentation in physics learning. 
Learning and Instruction , 21, 317-331. 

[4] de Jong, T., Linn, M., & Zacharia, Z. (2013). Physical and 
virtual laboratories in science and engineering education. 
Science, 340, 305-308. 

[5] Klahr, D., Triona, L., & Williams, C. (2007). Hands on 
what? The relative effectiveness of physical versus virtual 
materials in an engineering design project by middle school 
children. Journal of Research in Science Teaching, 44, 183-
203. 

[6] Zacharia, Z., & Constantinou, C. (2008). Comparing the 
influence of physical and virtual manipulatives in the 
context of the physics by inquiry curriculum: The case of 
undergraduate students’ conceptual understanding of heat 
and temperature. American Journal of Physics, 76, 425-430. 

[7] Pyatt, K., & Sims, R. (2012). Virtual and physical 
experimentation in inquiry-based science labs: Attitudes, 
performance and access. Journal of Science Education and 
Technology, 21 (1), 133-147. 

[8] Zimmerman, C. (2000). The development of scientific 
reasoning skills. Developmental Review, 20, 99-149. 

[9] Zimmerman, C. (2007). The development of scientific 
thinking skills in elementary and middle school. 
Developmental Review, 27, 172-223. 

 
 
 
 

[10] Chen, Z., & Klahr, D. (1999). All other things being equal: 
Acquisition and transfer of the control of variables strategy. 
Child Development, 70, 1098-1120. 

[11] Klahr, D. (2000). Exploring science: The cognition and 
development of discovery processes. Cambridge: MIT Press. 

[12] Renken, M., & Nunez, N. (2013). Computer simulations and 
clear observations do not guarantee conceptual 
understanding. Learning and Instruction, 23, 10-23. 

[13] Shih, B., Koedinger, K., & Scheines, R. (2010). 
Unsupervised Discovery of Student Strategies. Proceedings 
of the 3rd Intl. Conf. on Educational Data Mining, (pp. 201-
210). 

[14] Kardan, S., & Conati, C. (2011). A Framework for 
Capturing Distinguishing User Interaction Behaviours in 
Novel Interfaces. Proceedings of the 4th Intl. Conf. on 
Educational Data Mining, (pp. 159-168). Eindhoven, the 
Netherlands. 

[15] Kardan, S., Roll, I., & Conati, C. (2014). The usefulness of 
log based clustering in a complex simulation environment. 
Intelligent Tutoring Systems (pp. 168-177). Springer 
International Publishing. 

[16] Sao Pedro, M., Baker, R., Gobert, J., Montalvo, O., & 
Nakama, A. (2013). Leveraging machine-learned detectors 
of systematic inquiry behavior to estimate and predict 
transfer of inquiry skill. User Modeling and User-Adapted 
Interaction, 23 (1), 1-39. 

[17] Sao Pedro, M., Baker, R., & Gobert, J. (2012). Improving 
construct validity yields better models of systematic inquiry, 
even with less information. User Modeling, Adaptation, and 
Personalization (pp. 249-260). Berlin Heidelberg: Springer. 

[18] Palmer, D. (1995). The POE in the primary school: An 
evaluation. Research in Science Education, 25 (3), 323-332. 

[19] Penner, D., & Klahr, D. (1996). The interaction of domain-
specific knowledge and domain-general discovery 
strategies: A study with sinking objects. Child Development, 
67, 2709-2727. 

[20] Schauble, L. (1996). The development of scientific 
reasoning in knowledge-rich contexts. Developmental 
Psychology , 32, 102-119. 

[21] Garcia-Mila, M., & Andersen, C. (2007). Developmental 
change in notetaking during scientific inquiry. International 
Journal of Science Education, 29 (8), 1035-1058. 

[22] Perkins, K., Adams, W., Dubson, M., Finkelstein, N., Reid, 
S., Wieman, C., & LeMaster, R. (2006). PhET: Interactive 
simulations for teaching and learning physics. The Physics 
Teacher, 44(1), 18-23. 

[23] Reynolds, A., Richards, G., de la Iglesia, B., & Rayward-
Smith, V. (1992, 5). Clustering rules: A comparison of 
partitioning and hierarchical clustering algorithms. Journal 
of Mathematical Modelling and Algorithms, 475-504. 

[24] Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the 
interpretation and validation of cluster analysis. Journal of 
computational and applied mathematics, 20, 53-65. 

  
 
 

 

Proceedings of the 8th International Conference on Educational Data Mining 68



Toward a Real-time (Day) Dreamcatcher: Sensor-Free 
Detection of Mind Wandering During Online Reading

Caitlin Mills 
University of Notre Dame 
Department of Psychology 

Notre Dame, IN 46556 

cmills4@nd.edu 

 

 

Sidney D’Mello 
University of Notre Dame 
Department of Psychology 

Department of Computer Science 
Notre Dame, IN 46556 

sdmello@nd.edu 

ABSTRACT 

This paper reports the results from a sensor-free detector of mind 

wandering during an online reading task. Features consisted of 

reading behaviors (e.g., reading time) and textual features (e.g., 

level of difficulty) extracted from self-paced reading log files. 

Supervised machine learning was applied to two datasets in order 

to predict if participants were mind wandering as they navigated 

from one screen of text to the next. Mind wandering was detected 

with an accuracy of 20% above chance (Cohen’s kappa = .207; 

AUC = .609), which was obtained via leave-one-participant-out 

cross-validation. Similar to actual rates of mind wandering, 

predicted rates of mind wandering were negatively related to 

posttest performance, thus providing some evidence for the 

predictive validity of the detector. Applications of the detector to 

attention-aware educational interfaces are discussed. 

Keywords 

Mind wandering, attention, machine learning, reading 

1. INTRODUCTION 
It is not uncommon to experience looking up from a book only to 

realize you have no idea what you just read. In fact, it has been 

documented that people can read up to 17 words of gibberish 

before even realizing that they have zoned out [32]. Since students 

often have trouble realizing when they have zoned out themselves, 

it can be especially difficult to determine when someone is not 

paying attention through observation. For example, a student who 

is deeply engaged in learning can often look quite similar to 

another student who is thinking about something else completely.  

This phenomenon, known as mind wandering, is an involuntary 

shift in attention away from the external task towards task-

unrelated thoughts [36]. Mind wandering is detrimental during 

learning, as learning requires consolidating external information 

into mental structures. During episodes of mind wandering, 

however, students are unable to integrate external information 

with their existing internal representations.  Thus, missed 

information is not processed and mental models are not updated, 

limiting overall understanding. Given the negative impact of mind 

wandering on learning [14, 30, 32, 33], it is important to develop 

systems that can reorient attention when students mind wander in 

order to facilitate engagement and learning. Building detectors of 

mind wandering is an essential first step towards this goal and is 

the focus of the present paper. 

1.1 Related Work 
One of the first known studies related to mind wandering 

detection was conducted by Drummond and Litman [13]. In their 

study, students read a paragraph about biology aloud then 

performed a learning task (i.e., paraphrase or self-explanation). 

Students periodically self-reported how frequently they were 

thinking about off-task thoughts on a scale from 1 (all the time) to 

7 (not at all). Supervised machine learning trained on acoustic-

prosodic features was used to classify whether students were 

“high” in zoning out (1-3 on the scale) versus “low” in zoning out 

(5-7 on the scale). Results indicated an accuracy of 64% in 

discriminating “low” versus “high” zone outs. This pivotal study 

on mind wandering was innovative with respect to automatically 

detecting zone outs during a learning task. However, they used a 

leave-one-instance-out cross-validation method (rather than a 

leave-one-participant-out cross-validation method), so 

generalizability of the detector to new students is unclear. 

Recent research has also attempted to detect mind wandering 

during online reading using both gaze [5] and peripheral 

physiology [6]. In both of these studies, mind wandering was 

collected via thought probes that occurred on pseudo-random 

pages (i.e., computer screens) during reading. Students responded 

either “yes” or “no” about whether they were mind wandering at 

the time of the probe. In the first study, a detector of mind 

wandering achieved an accuracy of 72% (Cohen’s kappa = .28) 

using features extracted from gaze data collected with a Tobii eye 

tracker [5]. In the second study, a detector of mind wandering 

built using physiological features (i.e., skin conductance and 

temperature) achieved an accuracy of 74% (Cohen’s kappa = .22). 

Both of these detectors used a leave-several-subjects-out 

validation method to ensure generalizability to new students. 

These detectors display impressive results given the elusive nature 

of mind wandering. However, the equipment and sensors required 

for eye-gaze and physiology tracking might impair scalability.  In 

particular, one issue faced by online learning environments is that 

sensors are not readily available. For example, students using an 

ITS deployed online from their home computer would not have 

access to an eye tracker or a way to measure skin conductance at 

their convenience. A key question then is how to detect mind 

wandering based on information that is readily available, for 

example, in interaction log files. Along these lines, the aim of the 

current study is to identify a set of features that 1) are theoretically 
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related to mind wandering, and 2) can be extracted from log files 

during online learning. 

Interaction-based detectors trained from interaction log files have 

been used to successfully build detectors of other “off-task” states, 

such as gaming the system and off-task conversation [4, 7–9]. 

While mind wandering is related to other forms of “off-task” 

states, such as boredom, behavioral disengagement, and 

distractions [1, 3, 4, 8, 9, 26, 42], it is inherently distinct because 

it is involuntary and involves internal thoughts rather than overt 

expressive behaviors. The involuntary, unconscious nature of 

mind wandering makes detection particularly difficult. First, 

whereas other off-task states often involve some behavioral 

markers to denote disengagement, mind wandering is a 

completely internal state that can look similar to on-task states. 

Second, the onset and duration of mind wandering episodes 

cannot be precisely measured because people are often unaware 

their attention has been directed away from the external task. 

Thus, finding features that will pick up on subtle differences in 

attention is extremely difficult. 

To date, one study has attempted sensor-free mind wandering 

detection (see Table 1 for a summary of mind wandering 

detectors). Franklin et al. [15] attempted to classify if readers were 

“mindlessly reading” using two criterion: (1) difficulty and (2) 

reading time. For the first criterion, readers could only be 

classified as “mind wandering” while reading difficult text. To 

establish the level of difficulty, each word was assigned a 

difficulty score based on the average of three binary ratings: (1) 

length (at least four letters = 1, less than four letters = 0), (2) 

syllables (at least two syllables = 1, under two syllables = 0), and 

(3) familiarity (based on a psycholinguistic database where above 

average = 1, below average = 0). Then, the average difficulty 

across a running window of 10 words had to be above a threshold 

set at .45 for a reader to be classified as “mindless reading.” The 

second criterion was based on reading time. Participants read one 

word on a screen at a time. Using a running window of 10 words, 

a specific threshold (based on pilot data) was applied to determine 

when readers were reading either too fast or too slow. 

Table 1. Overview of Previous Mind Wandering Detectors 

 

Key 

Features 

Classification 

Accuracy 

Validation 

Method 

Bixler et al. 

(2014) 

 

 

Eye Gaze 

 

 

 

72% correct 

 

 

 

 

leave-several- 

subjects-out 

 

 

Blanchard et al. 

(2014) 

 

Physiology 

 

 

74% correct 

 

 

leave-several- 

subjects-out 

 

Drummond et 

al.  (2010) 

 

Prosodic/ 

Lexical 

 

64% correct 

 

 

leave-one-

instance-out 

 

Franklin et al. 

(2011)  

 

 

Difficulty/ 

Reading 

Time 

 

72% correct 

 

 

 

 

thresholds 

derived from 

pilot data 

 

 

This study provided some evidence that reading time, combined 

with textual features such as difficulty, might be indicative of 

mind wandering (accuracy = 72%). However, since reading times 

were collected by presenting one word on the screen at a time, 

their methods and predetermined thresholds for fast and slow 

reading may not be generalizable to other, more natural, reading 

contexts. Additionally, mind wandering was never predicted to 

occur during “easy” portions of the text, which may not accurately 

reflect the real-life occurrence of this phenomenon. For example, 

mind wandering still occurs around 20% during easy texts [27], 

even though it is more frequent during difficult texts. 

Furthermore, their method relied on a number of pre-set 

thresholds with little information on how these thresholds were 

established, thereby complicating attempts to replicate their 

results. 

1.2 Current Study 
This paper reports a person-independent detector of mind 

wandering during a more natural, computerized self-paced reading 

task using basic information that can be extracted from reading 

logs. In an attempt to provide a foundation for an easily-scalable 

way to capture when mind wandering occurs, the detector is 

completely sensor-free.  

The mind wandering detector was trained on two unpublished 

datasets in which participants attempted to learn about scientific 

research methods by reading texts presented online. Participants 

completed a posttest after reading in order to assess learning. 

Importantly, these datasets include diversity with respect to 

population, methods, and level of text difficulty. For example, 

dataset 1 was collected via Mechanical Turk, a validated online 

data collection platform [23], and had an average age of 35 years. 

Dataset 2 was collected from a Midwestern university subject 

pool and had an average age of 19 years. Therefore, building a 

detector of mind wandering using more than one dataset with 

varying conditions will increase our confidence in its relative 

generalizability.   

2. DATASETS 
The datasets were originally collected to investigate mind 

wandering under various conditions, such as varying levels of 

difficulty and text presentations. In addition, a posttest was 

completed after reading in order to assess how mind wandering 

relates to learning. In both datasets, participants were instructed to 

read the text carefully and notified that they would be asked to 

answer questions about content from the text after reading. 

Dataset 1 (N = 177) was collected on Amazon’s Mechanical Turk, 

an online data collection platform that has been validated for high 

quality data [23, 28]. Participants were compensated $2.50 after 

completing the experiment. Dataset 2 (N = 141) was collected via 

an online subject pool at a Midwestern university in the United 

States. Participants received class credit after completing the 

study.  

Table 2 provides an overview of the experimental designs and 

manipulations used in each dataset. The Text Difficulty 

manipulation involved participants reading texts that were 

experimentally manipulated to be either “easy” or “difficult” (see 

section 2.1 for manipulation details). The Text Presentation 

manipulation involved participants reading either one sentence or 

one paragraph at a time on the screen. 

2.1 Reading Materials 
The two texts used in the existing datasets were adapted from 

texts used in the serious game, Operation ARA! [25]. Each text 

focused on a concept related to research methods: (1) the 

dependent variable and (2) making causal claims, both of which 

are key concepts relevant to understanding the scientific method. 

In the existing datasets, easy and difficult versions of each text 
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were used in order to investigate the effect of text difficulty on 

mind wandering.  

Easy versions of the text were more narrative in nature, and 

consisted of shorter sentences and fewer low frequency words 

(average Flesh-Kincaid Grade Level = 9). Difficult versions of the 

text consisted of  longer, more complex sentences with more low 

frequency words (average Flesh-Kincaid Grade Level = 13). Both 

versions had the same conceptual content and were approximately 

1500 words in length. An example of an easy sentence is, “People 

who know about the scientific method do not fall for unsupported 

claims like this one.” The difficult version of the same sentence 

was, “So many citizens fall for these dubious claims, but people 

who comprehend the scientific method are not victimized by these 

unsupported claims.” 

2.2 Procedure 
Participants first completed an electronic consent form. They were 

then given instructions for the self-paced learning task. 

Participants pressed the space bar to move through each screen of 

the text. Texts were presented on screen either one sentence at a 

time or one paragraph at a time based on experimental 

manipulation (see Table 2).  

Mind wandering was tracked via auditory thought probes in both 

datasets. A standard description of mind wandering [36] was 

employed: “At some point during reading the texts, you may 

realize that you have no idea what you just read. Not only were 

you not thinking about the text, you were thinking about 

something else altogether.” The probe consisted of an auditory 

beep that occurred on pseudo-random screens throughout each 

text. Probes were triggered when participants pressed the space 

bar to advance to the next portion of the text. Participants were 

instructed to press the “Y” key if they were mind wandering or the 

“N” key if they were not. Participants were not able to advance to 

the next screen until they had responded to the mind wandering 

probe. A total of six auditory mind wandering probes were 

inserted in each text. Probes were placed in an identical location 

with respect to content within each text. That is, regardless of 

whether the text was presented one sentence or paragraph at a 

time, the probe would occur after reading identical content.  

Table 2. Overview of Two Datasets 

  
Dataset 1 Dataset 2 

Sample 
Mechanical 

Turk 

University  subject  

pool 

# Texts  1 2 

# Participants 177 141 

   

Manipulations: 
  

Text Difficulty Easy/Difficult Difficult only 

Text Presentation Par/Sen Par/Sen 

Notes. Par = Paragraph-by-paragraph; Sen = sentence-by-sentence 

 

Participants completed a posttest after reading each topic. 

Posttests consisted of four-alternative multiple-choice questions 

that tapped two levels of comprehension: (1) surface level, and (2) 

inference level. Surface level questions were based on factual or 

text level characteristics of the text. Inference questions were 

designed to elicit patterns of reasoning and require participants to 

use inference or apply a learned concept to a novel example in 

order to answer the question correctly [19]. For dataset 2, 

participants answered an 18-item posttest that covered both topics, 

which included six inference and 12 surface level multiple-choice 

questions. Since only one text was read during dataset 1, the 

posttest was limited to the 9 corresponding questions (3 inference 

and 6 surface level questions). 

2.3 Mind Wandering Reports 
Every screen of text where a probe was triggered was classified as 

either “Mind Wandering” or “Not Mind Wandering” based on 

participants’ response to the probe. The two datasets were pooled 

in order to maximize training and validation data. In total, there 

were 2754 probe screens that were used to build the models. 

Participants indicated they were mind wandering in response to 

31.3% of all the probes. Thus, our data set contained 861 

instances of Mind Wandering and 1893 instances of Not Mind 

Wandering. 

3. MODEL BUILDING 

3.1 Feature Engineering 
A considerable amount of empirical research has been dedicated 

to understanding mind wandering through experimental 

manipulations, such as comparing mind wandering across various 

conditions. Other studies have focused on explaining the 

behavioral correlates and temporal patterns of mind wandering 

[14, 16, 16, 27, 34, 38, 40]. The features in the current research 

were informed by the following discoveries about mind 

wandering: First, mind wandering is affected by the difficulty of a 

task [14, 27]. Second, mind wandering is related to response times 

and lexical features [15, 29]. Third, mind wandering rates vary as 

a function of time on task [30, 40]. In line with these findings, a 

total of 13 features were computed based on information that can 

found in log files. The 13 features can be subdivided into three 

categories: (1) Reading Behavior Features (2 features), (2) 

Textual Features (8 features), and (3) Context Features (3 

features).  

Reading Time Features. Participants’ reading time (i.e. how long 

they spent on each screen) was collected during the reading task. 

Importantly, the thought-probe was triggered as participants 

attempted to move on to the next screen. Therefore, we can use 

reading behaviors from the current screen of text (screen K) to 

detect whether they are mind wandering or not before they moved 

on to the next screen (K+1). 

The first reading behavior feature was Reading Time, which was 

simply the amount of time spent reading a given paragraph before 

pressing the space bar to advance onto the next screen. Reading 

Time was computed at the paragraph level in order to account for 

differences in reading times across the Text Presentation 

manipulation. When texts were presented one paragraph at a time, 

Reading Time was simply how long they spent on the screen 

leading up to the thought-probe. When texts were presented one 

sentence at a time, sentences were aligned with the content from 

the paragraph presentation condition. Thus, Reading Time was 

calculated as the amount of time spent reading identical content 

before the thought-probe regardless of presentation style.  

The second reading behavior feature was called Decoupling [41]. 

Decoupling is a theoretically-driven metric based on the idea that 

reading times should increase with more complex text 

characteristics, such as sentence length and other discourse 

features [18]. If participants are not appropriately allocating 

resources (i.e., increasing reading times when text complexity 

increases) to meet the current task demands, then we might expect 

deviation from this linear relationship thus indicating decoupling 
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from the reading task. Decoupling was computed on the alignment 

(or misalignment) of reading times and text complexity. Text 

complexity was assessed using Flesh-Kincaid Grade Level 

(FKGL; [22]). The formula used to calculate decoupling was: |z-

score standardized reading times – z-score standardized FKGL|. It 

is important to point out that decoupling was computed using the 

absolute value of the difference between reading time and text 

complexity, such that higher values would occur both when 

reading times were both over and under appropriated relative to 

text complexity. Thus, we are primarily interested in how well the 

overall magnitude of deviation in the relationship between reading 

time and text complexity can predict mind wandering. 

Textual features. Eight textual features were computed in total. 

The first feature was simply the Number of Characters in the 

current paragraph. The second feature was the Number of Words 

in the current paragraph. Both features were used because they 

may differ notably between easy and difficult conditions, as easy 

texts were specifically manipulated to contain shorter words. 

Regardless of whether the screen was being presented one 

paragraph at a time or one sentence at a time, these features were 

used to represent the length of the current unit of text being 

processed. Longer paragraphs may require increased cognitive 

resources (related to mind wandering [24]) when a single idea 

must be kept in working memory across larger amounts of text. 

The third feature was FKGL [22], an indicator of reading level 

that is derived from the number of syllables and word length in a 

sentence. The current FKGL was also computed based on the 

current paragraph being read, as this metric is not reliable for 

extremely small portions of text, such as a single sentence. 

The remaining five textual features were computed using Coh-

Metrix, a program that analyzes texts across multiple levels of 

cognition and comprehension [17, 18]. We used five different 

features from Coh-Metrix: (1) Narrativity, (2) Deep Cohesion, (3) 

Referential Cohesion, (4) Syntactic Simplicity, and (5) Word 

Concreteness. Narrativity is computed based on how well the text 

aligns with the narrative genre, by conveying a story, procedure, 

or sequence of actions. Deep Cohesion is computed based on how 

well different ideas in the text are cohesively tied together in order 

to signify causality or intentionality. Referential Cohesion is 

based on how words and ideas are connected to each other across 

the span of the story or text. Syntactic Simplicity is computed 

based on the simplicity of the syntactic structures in the text. 

Lastly, Word Concreteness is based on the degree to which 

context words evoke concrete mental images, rather than abstract 

or conceptual representations. 

Context features. Three context features were also computed 

based on the context of the reading task. Current Paragraph 

Number is the number of paragraphs read from the beginning of 

the text. Current Difficulty is whether the text was experimentally 

manipulated as easy or difficult. Current Presentation is whether 

the text was being presented one sentence at a time or one 

paragraph at a time. 

3.2 Supervised Classification and Validation 
We used supervised machine learning to build detectors of mind 

wandering for each screen that included a thought-probe. The goal 

of the paper was to create a detector that would accurately predict 

whether participants responded “yes” or “no” to the mind 

wandering probes. RapidMiner, a popular machine learning tool, 

was used to train binary classifiers to make this distinction. In 

total, four binary classifiers provided in RapidMiner were used, 

including Naïve Bayes, Bayes Net, RIPPER (JRip 

implementation), and C4.5 (J48 implementation). Down-sampling 

was used to create equal classes for the training data only. This 

was achieved by randomly selecting 45.4% of the Not Mind 

Wandering instances and 100% percent of the Mind Wandering 

instances for training. The original distributions were not changed 

in the testing data to preserve the validity of the results.  

Manual feature selection was applied by removing one feature at a 

time and assessing performance on held-out testing data (see 

below). If model performance decreased after a feature was 

removed, it was preserved for the final model1.  

All models were evaluated using leave-one-participant-out cross-

validation, in which k-1 participants are used in the training data 

set. The model was then tested on the participant who was not 

used in the training data. This process was repeated k times until 

every participant was used as the testing set once. Cross-

validating at the participant level increases confidence that models 

will be more generalizable when applied to new participants 

because the testing and training sets are independent. 

Classification accuracy was evaluated using two metrics: (1) Area 

Under the ROC Curve (AUC), and (2) Cohen’s kappa. AUC is 

statistically similar to Aʹ [21] and ranges from 0 to 1, where 0.5 is 

chance level of accuracy and 1 is perfect accuracy. Cohen’s kappa  

[10] indicates the degree to which the model is better than chance 

(kappa of 0) at correctly predicting Mind Wandering or Not Mind 

Wandering. A kappa of 1 indicates the detector performs 

perfectly. We also report percent correctly classified (accuracy), 

but note that this should be interpreted cautiously since class 

imbalance tends to inflate accuracy. 

4. RESULTS  

4.1 Classification Accuracy 
Four classification algorithms (J48, JRIP, Naïve Bayes, and Bayes 

Net) were applied to the two combined datasets. The final models 

reported in this section were selected based on the highest AUC 

achieved after testing all four classification algorithms. A final 

combined feature model (combined model) was achieved with the 

J48 decision tree classifier using six features from the feature 

subtypes: Reading Time, Decoupling, Number of Characters, 

Number of Words, FKGL, and Referential Cohesion. Importantly, 

the combined model performed at rates above chance (AUC = 

.609; kappa = .207; accuracy = 63%). Despite using information 

solely obtained from log files and text characteristics, these 

accuracy rates are only slightly lower than the sensor-based 

detectors of mind wandering reported in Table 1.   

We also examined the confusion matrix for the final combined 

model (see Table 3). The model had a relatively high rate of 

misses (.427), where actual instances of Mind Wandering were 

predicted as Not Mind Wandering. However, the model also 

displayed more correct rejections (.653), such that Not Mind 

Wandering instances were accurately classified as Not Mind 

Wandering. This was complemented by a low rate of false alarms 

as well (.347). 

We were also interested in exploring how each of the three feature 

subtypes (i.e., reading behaviors, textual, and context features) 

were able to predict mind wandering independently. Each group 

of feature subtypes was therefore tested independently using the 

same four classification algorithms (J48, JRIP, Naïve Bayes, and 

Bayes Net). A summary of the classification accuracies for the 

                                                                 

1 We also tested models using all 13 features, which exhibited lower 
performance (assessed via AUC) than the combined model using feature 

selection. 
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best performing models (selected based on highest AUC) can be 

found in Table 4.  

Table 3. Confusion Matrices of Combined Model 

 
Pred. MW Pred. Not MW Priors 

Actual MW .573 (hit) .427 (miss) .313 

Actual Not MW 
.347 (false 

alarm) 

.653 (correct 

rejection) 
.687 

Note. Pred. = Predicted; MW = Mind Wandering 

 

All three models built from the feature subtypes performed above 

chance levels (AUC > .5). However, none of these models 

performed as well as the combined model. For example, the 

Textual Features Only model did not perform as well in the 

absence of reading time behaviors and vice versa. This suggests 

that using a range of feature types might help with classification 

accuracies rather than a subset of features. 

Based on the confusion matrices, it appears that the three feature 

subtype models exhibited different patterns of classification (see 

Table 5). Although the Reading Behaviors Only model (Reading 

Time and Decoupling) displayed the lowest hit rates (.439), this 

model also had the highest rate of correct rejections. Conversely, 

the Textual Features Only (five Coh-Metrix dimensions, Number 

of Characters, and Number of Words) and the Context Features 

Only (Current Presentation, Current Difficulty, and Current 

Paragraph Number) models had similar higher hit rates, but fewer 

correct rejections compared to the Reading Behaviors Only 

Model.  

Table 4. Performance Metrics 

Features in model AUC Kappa Classifier 

Combined Model  .609 .207 J48 

Reading Behaviors Only .560 .122 J48 

Textual Features Only .591 .115 Bayes Net 

Context Features Only .542 .104 JRIP 

 

It is important to point out that the combined model’s confusion 

matrix also shared some similarities with the feature subtype 

models. The Reading Behavior Only model had the highest 

correct rejections (.687), which were on par with the combined 

model (.653). Similarly, the Textual Features Only and Context 

Features Only models had the best hit rates (.554 and .557), which 

were also on par with the hit rates in the combined model (.573). 

Thus, the combined model appears to strike a balance between 

hits and correct rejection, which is why it yields the highest AUC 

compared to the individual models.  

4.2 Feature Analysis 
Since our features were modeled after empirically-supported 

relationships of mind wandering (see Section 3.1), we explored 

how our features related to the model’s predictions of mind 

wandering. For each participant, we computed the mean of each 

feature as well as the proportion of predicted mind wandering 

(based on the combined model’s predictions). As an additional 

step, the averages were z-score standardized across the two 

datasets to account for the differences in methods. Predicted mind 

wandering was then regressed on each of the six features included 

in the combined model, F(6,317) = 35.5, p < .001, R2
adjusted = .395. 

The regression allowed us to examine the relationship between 

each of the features and predicted mind wandering while 

controlling for the other features in the model. Table 6 presents a 

summary of the features used the combined model, as well as the 

standardized regression coefficient (β) for each feature.  

Table 5. Confusion Matrices for Each Feature Set Separately 

Reading Behavior  Pred. MW Pred. Not MW 

Actual MW .439 (hit) .561 (miss) 

Actual Not MW 
.313 (false 

alarm) 

.687 (correct 

rejection) 

  
  

Textual Features  Pred. MW Pred. Not MW 

Actual MW .554 (hit) .446 (miss) 

Actual Not MW 
.424 (false 

alarm) 

.576 (correct 

rejection) 

   

Context Features  Pred. MW Pred. Not MW 

Actual MW .557 (hit) .443 (miss) 

Actual Not MW 
.432 (false 

alarm) 

.568 (correct 

rejection) 

Note. Pred. = Predicted; MW = Mind Wandering 

 

Reading Time was negatively related to predicted mind 

wandering, indicating that mind wandering predictions were 

associated with faster reading times. The second reading behavior 

feature, Decoupling, was positively related to predicted mind 

wandering. Mind wandering was more likely to be predicted when 

decoupling scores were higher, since higher decoupling scores 

indicate a misalignment between reading times compared to text 

complexity. 

Number of Characters and Number of Words were both positively 

related to predicted mind wandering, suggesting that more content 

in general is associated with greater predictions of mind 

wandering. This is also related to the idea that longer paragraphs 

may have demanded increased cognitive resources, which is 

theoretically related to episodes of mind wandering [24]. 

Table 6. Standardized coefficients for regressing predicted 

mind wandering on features in the combined model (β)  

Features Included in Combined 

Model 

Standardized 

Coefficient (β) 

Reading Behavior Features  

Reading Time -.750 

Decoupling .493 

  

Textual Features  

Number of Characters .139 

Number Words .099 

Referential Cohesion -.139 

FKGL .239 

Notes. Bold = significant at p < .05; FKGL = Flesch Kincaid 

Grade Level. 

Referential Cohesion was also negatively related to predicted 

mind wandering. This relationship is theoretically plausible, as 
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breakdowns in Referential Cohesion are indicative of increased 

difficulty [20]. Indeed, difficulty has been found to be related to 

mind wandering during reading [14, 27].  

None of the Context features were included in the combined 

model. This was an unexpected result, since time on task has 

previous been correlated to mind wandering [40] and the previous 

detectors of mind wandering have utilized context features [5, 6]. 

It is possible that one of the Context Features, Current Difficulty, 

may not have been useful in the combined model due, in part, to 

the fact that the textual features were essentially more sensitive 

measures of difficulty. For example, FKGL and Referential 

Cohesion may be more sensitive measures of Current Difficulty. 

4.3 Predictive Validity 
In order to establish predictive validity for the detector, we 

ascertained if predicted mind wandering relates to learning similar 

to actual (self-reported) mind wandering rates?  Based on 

previous research, we expect a negative relationship between 

actual mind wandering and learning [11, 32, 39]. To address this 

question, posttest performance was first correlated with actual 

rates of mind wandering (i.e., responses to the thought probes). 

Participants’ posttest performance was calculated as the 

proportion of correct responses for the surface- and inference- 

level questions separately. The variables were standardized across 

the two datasets to account for any differences in populations. 

Indeed, actual mind wandering was negatively related to both 

surface (Spearman’s rho = -.338, p < .001) and inference level 

(rho = -.288, p < .001) comprehension on the posttest.  

To establish the predictive validity of the detector, we ascertained 

if predicted mind wandering was related to posttest performance 

similar to actual mind wandering. Predicted mind wandering rates 

(from the combined detector) was negatively correlated with 

surface level (rho = -.294, p < .001) as well as inference level 

performance on the posttest (rho = -.193, p = .008). The negative 

correlations with both types of posttest performance gives us 

some confidence in our model’s predictive validity, since 

predicted mind wandering shows similar relationships with 

learning as actual self-reported mind wandering. This finding is 

notable since the model predicted mind wandering correctly 

around 20% above chance (kappa = .207), yet predicted mind 

wandering related almost as well to posttest scores as actual rates 

of mind wandering. 

5. GENERAL DISCUSSION 
Mind wandering is a ubiquitous phenomenon that is negatively 

related to learning [11, 32, 39]. Mind wandering can have a 

detrimental impact on comprehension when pieces of information 

are not accurately integrated into a learner’s mental model of the 

instructional texts. Over time, information missed during episodes 

of mind wandering can accumulate, leaving deficits in the 

learner’s overall understanding of a text. The development of 

attention-aware systems may provide opportunities to restore 

learners’ attention in real-time to facilitate learning. However, we 

must first be able to detect mind wandering in order to respond to 

its occurrence.  

We attempted to address this issue by developing a participant-

independent detector of mind wandering through analyzing log 

files and textual characteristics collected during an online reading 

task. Two diverse datasets were used to ensure further 

generalizability. The detector was able to accurately classify mind 

wandering 20% above chance (kappa = .207; AUC = .609). Given 

that mind wandering is an elusive internal state of attention and 

we used completely sensor-free data, modest classification 

accuracies are to be expected. Additionally, the classification 

accuracy found in this study (63%) is only slightly lower than 

those reported for previous detectors built using sensor-based 

approaches including eye gaze and physiology (See Table 1; [5, 

6].  

Three types of features were used to build the mind wandering 

detector: (1) reading behaviors, (2) textual features, and (3) 

context features. An independent model was built for each 

subtype of features, which allowed us to better understand how 

the subtypes of feature perform independently. Each set of 

features was able to correctly classify mind wandering 

independently at levels above chance, though performance varied 

across models. None of these models outperformed the combined 

model, so we conclude that combining different types of features 

was optimal in the current detector. Thus, future research may 

consider using one or more of these subtypes of features, as they 

are relatively easy to extract from log files. 

Many of the features were included based on previous 

psychological and educational research on mind wandering. The 

relationships between the features and predicted rates of mind 

wandering were revealing in a number of ways. For example, a 

negative relationship between Referential Cohesion and predicted 

mind wandering directly supports the situation model view of text 

comprehension [14, 35]. This view posits that reading involves 

the construction of a situation model, which is a constantly-

updated mental representation of a text’s meaning [18, 43]. 

Situation models are harder to construct during difficult texts due 

to inconsistencies or lack of cohesion. Poorly constructed 

situation models consume fewer attentional resources, leaving 

extra resources available for off-task thoughts. Therefore, this 

theory would predict a negative relationship between mind 

wandering Referential Cohesion, which is what we find.   

Response times as well as reading time information have been 

utilized in previous detectors of off-task states like disengagement 

[4, 7, 8]. Thus, it is not surprising that both reading time behavior 

features were related to predicted mind wandering. A negative 

relationship with Reading Time indicates that shorter reading 

times were indicative of increased mind wandering predictions. It 

is also worth noting that Decoupling, which is derived from a 

theoretically-supported relationship between reading time and text 

complexity, was positively related to predicting mind wandering. 

Indeed, these relationships suggest features based on reading 

times may be used a behavioral indices of attention during 

reading. 

Our detector also showed some evidence for predictive validity. 

Predicted mind wandering was negatively related to posttest 

performance, similar to actual mind wandering. Future work 

should explore other avenues of establishing validity using other 

online measures of engagement and comprehension.  Similar to 

[15], another method of validation would be to trigger thought 

probes on the pages where mind wandering is predicted in real-

time. We could then evaluate responses to the predicted episodes 

of mind wandering in order to determine how accurate the model 

performs in a real-time detection setting. 

It is important to note that these models are not without 

limitations. First, these models were built in the context of an 

instructional reading task, which may not generalize to other 

learning environments. Second, although two independent 

datasets were used, our results cannot currently be generalized 

beyond the current sample. Third, although self-reports of mind 

wandering using a thought-probe method have been validated in 

previous studies [35, 36], they depend on participants accurate 
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and honest responses. Additionally, given the internal nature of 

mind wandering, external coders are not a viable option. 

Therefore, future work may consider using a different method of 

probing, where participants might self-monitor and report 

instances of mind wandering at any point during reading [31] (as 

opposed to only at times when thought-probes occur). Finally, 

there is no known research establishing a way to determine the 

onset of mind wandering in real-time [37]. Thus, while detectors 

to date are able to predict instances of self-reported mind 

wandering (which is inherently realized), no method has been 

established to indicate how long the episode lasts or when it 

began. 

Future work may include attempts to improve these models using 

additional features. For example, additional sensor-free features, 

such as trait-based features like prior knowledge and interest 

might further improve prediction rates. In addition, combining 

features developed here with previous detectors of mind 

wandering may also improve prediction rates (e.g., eye gaze). It is 

possible that combining multiple channels of data may have an 

additive effect to improve prediction rates.  

In summary, this paper provides some initial evidence for a 

sensor-free detector of mind wandering during online instructional 

reading. A sensor-free detector of mind wandering may open up 

new avenues for interventions and instructional designs in order to 

facilitate attention. Previous detectors for disengagement 

behaviors, such as gaming the system and Gaze Tutor, have been 

used in the design of  interventions, such as reintroducing the 

content that is missed due to gaming [2] and providing engaging 

dialogue to redirect students’ attention [12]. The detector 

presented in this paper is an initial step for interventions that can 

occur when the mind wanders away from the current task. We 

believe further development of these types of models is promising 

for creating an attention-aware system that can respond in real-

time. 
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ABSTRACT 
Increased attention to the relationships between affect and 
learning has led to the development of machine-learned models 
that are able to identify students’ affective states in computerized 
learning environments. Data for these affect detectors have been 
collected from multiple modalities including physical sensors, 
dialogue logs, and logs of students’ interactions with the learning 
environment. While researchers have successfully developed 
detectors based on each of these sources, little work has been done 
to compare the performance of these detectors. In this paper, we 
address this issue by comparing interaction-based and video-based 
affect detectors for a physics game called Physics Playground. 
Specifically, we report on the development and detection accuracy 
of two suites of affect and behavioral detectors. The first suite of 
detectors applies facial expression recognition to video data 
collected with webcams, while the second focuses on students’ 
interactions with the game as recorded in log-files.  Ground–truth 
affect and behavior annotations for both face- and interaction-
based detectors were obtained via live field observations during 
game-play. We first compare the performance of these detectors 
in predicting students’ affective states and off-task behaviors, and 
then proceed to outline the strengths and weakness of each 
approach.    

Keywords 
Video-based detectors, interaction-based detectors, affect, 
behavior, Physics Playground 

1. INTRODUCTION 
The development of models that can automatically detect student 
affect now constitutes a considerable body of research [12,31], 
particularly in computerized learning contexts [1,34,35], where 
researchers have successfully built affect-sensitive learning 
systems that aim to significantly enhance learning outcomes 
[4,21,30]. In general, researchers attempting to develop affect 
detectors have developed systems falling into two categories: 
interaction-based detectors [9] and physical sensor-based 
detectors [12]. Many successful efforts to detect student affect in 
intelligent tutoring systems have used visual, audio or 
physiological sensors, such as webcams, pressure sensitive seat or 

back pads, and pressure-sensing keyboards and mice [3,28,37,41]. 

The development of sensor-based detectors has progressed 
significantly over the last decade, but one limitation to this 
research is that much of it has taken place in laboratory 
conditions, which may not generalize well to real-world settings 
[9]. While efforts are being made to address this issue [4], there 
are often serious obstacles to using sensors in regular classrooms. 
For example, sensor equipment may be bulky or otherwise 
obtrusive, distracting students from their primary tasks (learning); 
sensors may also be expensive and prone to malfunction, making 
large-scale implementation impractical, particularly for schools 
that are already financially strained. On the other hand, because 
physical sensors are external to specific learning systems, their 
use in affect detection creates the opportunity for them to be 
applied to entirely new learning systems, though this possibility 
has yet to be empirically tested. 

Interaction-based detection [9] has also improved over the last 
decade. Unlike sensor-based detectors, which rely upon the 
physical reactions of the student, these detectors infer affective 
states from students’ interactions with computerized learning 
systems [5,7,9,14,29,30]. The fact that interaction-based affect 
detectors rely on student interactions makes it possible for them to 
run in the background in real time at no extra cost to a school that 
is using the learning system. Their unobtrusive and cost-efficient 
nature also makes it feasible to apply interaction-based detectors 
at scale, leading to a growing field of research regarding 
discovery with models [8]. For example, interaction-based affect 
detection has been useful in predicting student long-term 
outcomes, including standardized exam scores [30] and college 
attendance [36]. Basing affect detection on student interactions 
with the system, however, give rise to issues with generalizing 
such detectors across populations [26] and learning systems. 
Because interaction-based detectors are highly dependent on the 
computation of features that captures the student’s interactions 
with the specific learning platform, the type of features generated 
is contingent on the learning system itself, making it difficult to 
apply the same sets of features across different systems. 

It has become clear that each modeling approach has its own 
utility; researchers have thus begun to speculate on effectiveness 
across the various approaches and the possible applications of 
multimodal detectors. However, the body of research that 
addresses this question is currently quite limited. Arroyo and 
colleagues [4] applied sensor-based detectors in a classroom 
setting, and compared performances between interaction-only 
detectors and detectors using both interaction and sensor data, in 
predicting student affect. They found that the inclusion of sensor 
data in the detectors improved performance and accuracy in 
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identifying student affect. However, a direct comparison between 
the two types of detectors was not made. Furthermore, the sample 
size tested was relatively small (26-30 instances depending on 
model), and the data was not cross-validated. Comparisons 
between types of detectors were made in D’Mello and Graesser’s 
study [18], which compared interaction, sensor and face-based 
detectors in an automated tutor. They found face-based detectors 
to perform better than interaction and posture-based detectors at 
predicting spontaneous affective states. However, the study was 
conducted in a controlled laboratory setting, and the facial 
features recorded were manually annotated.   

In this paper, we build detectors of student affect in classroom 
settings, using both sensor-based and interaction-based 
approaches. For feasibility of scaling, we limit physical sensors to 
webcams. For feasibility of comparison, the two types of detectors 
are built in comparable fashions, using the same ground truth data 
obtained from field observations that were conducted during the 
study. We conduct this comparison in the context of 8th and 9th 
grade students playing an educational game, Physics Playground, 
in the Southeastern United States. Different approaches were used 
to build each suite of detectors in order to capitalize on the 
affordances of each modality. However, the methods and metrics 
to establish accuracy were held constant in order to render the 
comparison meaningful. 

2. PHYSICS PLAYGROUND 
Physics Playground (formerly, Newton’s Playground, see [39]) is 
a 2-dimensional physics game where students apply various 
Newtonian principles as they create and guide a ball to a red 
balloon placed on screen [38]. It offers an exploratory and open-
ended game-like interface that allows students to move at their 
own pace. Thus, Physics Playground encourages conceptual 
learning of the relevant physics concepts through experimentation 
and exploration. All objects in the game obey the basic laws of 
physics, (i.e., gravity and Newton’s basic laws of motion). 

 

 

Students can choose to enter one of seven different playgrounds, 
and then play any of the 10 or so levels within that playground. 
Each level consists of various obstacles scattered around the 
space, as well as a balloon positioned at different locations within 
the space (see Figure 1). Students can nudge the ball left and right, 
but will need to create simple machines (called “agents of force 
and motion” in the game) on-screen in order to solve the problems 
presented in the playgrounds. There are four possible agents that 
may be created: ramps, pendulums, levers and springboards. 
Students can also create fixed points along a line drawing to 
create pivots for the agents they create. Students use the mouse to 
draw agents that come to life after being drawn, and use them to 
propel the ball to the red balloon. Students control the weight and 

density of objects through their drawings, making an object 
denser, for example, by filling it with more lines. 

Each level allows multiple solutions, encouraging students to 
experiment with various methods to achieve the goal and guide 
the ball towards the balloon. Trophies are awarded both for 
achieving the goal objective and for solutions deemed particularly 
elegant or creative, encouraging students to attempt each 
playground more than once. This unstructured game-like 
environment provides us with a rich setting in which to examine 
the patterns of students’ affect and behavior as they interact with 
the game platform.   

3. DATA COLLECTION 
Students in the 8th and 9th grade were selected due to the 
alignment of the curriculum in Physics Playground to the state 
standards at those grade levels. The student sample consisted of 
137 students (57 male, 80 female) who were enrolled in a public 
school in the Southeastern U.S. Each group of about 20 students 
used Physics Playground during 55-minute class periods over the 
course of four days.  

An online physics pretest (administered at the start of day 1) and 
posttest (administered at the end of day 4), measured student 
knowledge and skills related to Newtonian physics. In this paper, 
our focus is on data collected during days 2 and 3, during which 
time students were participating in two full sessions of game play.   

The study was conducted in a computer-enabled classroom with 
30 desktop computers. Inexpensive webcams ($30 each) were 
affixed at the top of each computer monitor. At the beginning of 
each session, the webcam software displayed an interface that 
allowed students to position their faces in the center of the 
camera’s view by adjusting the camera angle up or down. This 
process was guided by on-screen instructions and verbal 
instructions from the experimenters, who were available to answer 
any additional questions and to troubleshoot any problems. 

3.1 Field Observations 
Students were observed by two BROMP-certified observers while 
using the Physics Playground software. The Baker Rodrigo 
Ocumpaugh Monitoring Protocol (BROMP 2.0) is a momentary 
time sampling system that has been used to study behavioral and 
affective indicators of student engagement in a number of learning 
environments [9]. BROMP coders observe each student 
individually, in a predetermined order. They record only the first 
predominant behavior and affect that the student displays, but they 
have up to 20 seconds to determine what that might be.    

In this study, BROMP coding was done by the 6th author and the 
4th author.  The 6th author, a co-developer of BROMP, has been 
validated to achieve acceptable inter-rater reliability 
(kappa >= 0.60) with over a dozen other BROMP-certified coders.  
The 4th author achieved sufficient inter-rater reliability 
(kappa >= 0.60) with the 6th author on the first day of this study. 

The coding process was implemented using the Human Affect 
Recording Tool (HART) application for Android devices [6], 
which enforces the protocol while facilitating data collection. The 
study used coding schema that had previously been used in 
several other studies of student engagement [e.g. 17], and 
included boredom, confusion, engaged concentration, and 
frustration (affective states) as well as on task, on-task 
conversation, and off-task (behavioral states). Consistent with 
previous BROMP research, “?” was recorded when a student 
could not be coded, when an observer was unable to identify the 

Figure 1: Screenshot of Physics Playground 
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student’s behavior or affective state, or when the affect/behavior 
of the student was clearly a construct outside of the coding 
scheme (such as anger).  

Modifications to the affective coding scheme were made on the 
third day of the study, with the addition of delight and dejection. 
Delight was defined as a state of strong positive affect, often 
indicated by broad smiling or a student bouncing in his/her chair. 
This affective state had been coded in previous studies (see [9]), 
and was used to construct detectors. Dejection, defined as a state 
of being saddened, distressed, or embarrassed by failure [9], is 
likely the affect that corresponds with the experience of stuck 
[11,20]. Because it had not been coded in previous research, and 
because it was still quite rare in Physics Playground, it was not 
modeled for this study. 

3.2 Affect and Behavior Incidence 
An initial number of 2,374 observations were made across all 137 
students during the course of the study, culminating in 17.3 
observations made per student across the second and third days of 
the study Only affect observations on the second and third days 
were used in the construction of the detectors, since the first and 
last days mostly consisted of pretests and posttests. Other 
observations were dropped as a result of two students who 
switched computers halfway through data collection, resulting in 
each student being logged under the other student’s ID for part of 
the study. The remaining 2,087 observations recorded during the 
second and third days were used in the construction of both 
detectors. An additional 214 were removed prior to the 
construction of the interaction-based detectors and 863 were 
removed prior to the construction of the video-based detectors. 
Because the criteria for these exclusions were methodologically 
based, further details are provided in the sections describing the 
construction of each detector. 

Within the field observations, the most common affective state 
observed was engaged concentration with 1293 instances 
(62.0%), followed by frustration with 235 instances (11.3%).  
Boredom and confusion were far less frequent despite being 
observed across both second and third days of observation: 66 
instances (3.2%) for boredom and 38 instances (1.8%) for 
confusion. Delight was only coded on the third day, and was also 
rare (45 instances), but it still comprised 2.2% of the total 
observations.  

The frequency of off-task behavior observations was 4.0% (84 
instances), which was unusually low compared to prior classroom 
research in the USA using the same method with other 
educational technologies [27,33]. On-task conversation was seen 
18.6% of the time (388 instances).  

4. INTERACTION-BASED DETECTORS 
To create interaction affect detectors, BROMP affect observations 
were synchronized to the log files of student interactions with the 
software. Features were then generated and a 10-fold student-level 
cross validation process was applied for machine learning, using 
five classification algorithms.  

4.1 Feature Engineering 
The feature engineering process for this study was based largely 
on previous research on student engagement, learning, and 
persistence. The initial set of features comprised 76 gameplay 
attributes that potentially contain evidence for specific affective 
states and behavior. Some attributes included:  

• The total number of springboard structures created in a level  

• The total number of freeform objects drawn in a level  

• The amount of time between start to end of a level  

• The average number of gold and silver trophies obtained in a 
level  

• The number of stacking events (gaming behavior) in a level  

Features created may be grouped into two broad categories. Time-
based features focus on the amount of time elapsed between 
specific student actions, such as starting and pausing a level, as 
well as the time it takes for a variety of events to occur within 
each playground level. Other features take into account the 
number of specific objects drawn or actions and events occurring 
during gameplay, given various conditions.   

Missing values were present at certain points in the dataset when a 
particular interaction was not logged. For example, a feature 
specifying the amount of time between the student beginning a 
level and his/her first restart of the level, would contain a missing 
value if the student manages to complete a level without having to 
restart it. A variety of data imputation approaches were used in 
these situations to fill in the missing values so that we could retain 
the full sample size. We used single, average and zero imputation 
methods to fill in the missing data, and ran the new datasets 
through the machine learning process to identify the best data 
imputation strategy for each affect detector. Zero imputations 
were performed where the missing values were replaced by the 
value 0, while average data imputations took place when the 
average value for the particular feature was computed, and the 
missing values replaced by this average value. In single data 
imputation, we used RapidMiner to build an M5' model [32], a 
tree-based decision model, to predict the values for each feature, 
and applied the model to compute a prediction of the missing 
value.  We also ran the original dataset without any imputation 
through any of the classification algorithms that allowed it.   

Of the 2087 BROMP field observations that were collected, 214 
instances were removed as most of these instances corresponded 
to times when the student was inactive. Additional instances were 
removed where the observer recorded a ?, the code used when 
BROMP observers cannot identify a specific affect or behavior or 
when students are not at their workstation. In total, 171 instances 
of affect and 63 instances of behavior were coded as ?. As a 
result, these instances did not contribute to the building of the 
respective affect and behavior detectors.  

4.2 Machine Learning 
Data collection was followed by a multi-step process to develop 
interaction-based detectors of each affect. A two-class approach 
was used for each affective state, where that affective state was 
discriminated from all others. For example, engaged concentration 
was discriminated from all frustrated, bored, delighted, and 
confused instances combined (referred to as “all other”). 
Behaviors were grouped into two classes: 1) off task, and 2) both 
on task behaviors and on task conversation related to the game.   

4.2.1 Resampling of Data 
Because observations of several of the constructs included in this 
study were infrequent, (< 5.0% of the total number of 
observations), there were large class imbalances in our data 
distributions. To correct for this, we used the cloning method for 
resampling, generating copies of respective positive affect on the 
training data, in order to make class frequency more balanced for 
detector development. 
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4.2.2 Feature Selection and Cross-Validation 
Correlation-based filtering was used to remove features that had 
very low correlation with the predicted affect and behavior 
constructs (correlation coefficient > 0.04) from the initial feature 
set. Feature selection for each detector was then conducted using 
forward selection. 

Detectors for each construct were built in the RapidMiner 5.3 
data-mining software, using common classification algorithms 
that have been previously shown to be successful in building 
affect detectors: JRip, J48 decision trees, KStar, Naïve-Bayes, 
step and logistic regression. Models were validated using 10-fold 
student-level batch cross-validation. The performance metric of A' 
was computed on the original, non-resampled, datasets.  

4.3 Selected Features 
From the forward selection process, a combination of features was 
selected in each of the affect and behavior detectors that provide 
some insight into the type of student interactions that predict the 
particular affective state or behavior.  

The features for boredom involve a student spending more time 
between actions on average. A bored student would also expend 
less effort to guide the ball object to move in the right direction, as 
indicated by fewer nudges made on the ball object to move it, and 
more ball objects being lost from the screen.   

The features that predict confusion are characterized by a student 
spending more time before his/her first nudge to make the ball 
object move, and drawing fewer objects in a playground level. A 
student who is confused may not have known how to draw and 
move the ball object towards the balloon, thus spending a long 
time within a certain level and resulting in a lower number of 
levels attempted in total.  

From the features selected, delight appears to ensue from some 
indicator of success, such as a student who is able to achieve a 
silver trophy earlier on during gameplay, and who completes more 
levels in total. We can also portray the student who experiences 
delight as someone who was able to achieve the objective without 
having to make multiple attempts to draw the relevant simple 
machines (such as springboards and pendulums).  

The features for engaged concentration would describe a student 
who is able to complete a level in fewer attempts but erases the 
ball object more often during each attempt, indicating that the 
student was putting in more effort to refine his/her strategies 
within a single attempt at the level. Engaged concentration would 
also depict a student who has experienced success during 
gameplay and achieved a silver trophy in a shorter than average 
time, perhaps because of his/her focused efforts during each 
attempt. 

Table 1. Features in the final interaction-based detectors 
of each construct  

Affect/ 
Behavior Selected features 

Boredom 

Time between actions within a level 

Total number of objects that were “lost” (i.e. 
Moved off the screen) 

Total number of nudges made on the ball 
object to move it 

Confusion Amount of time spent before the ball object 
was nudged to move 

Total number of levels attempted 

Total number of objects drawn within the level 

Delight 

Number of silver trophies achieved 

Consecutive number of pendulums and 
springboards created 

Total number of levels attempted 

Total number of levels completed successfully 

Engaged 
Concentration 

Total number of silver trophies achieved in 
under the average time 

Total number of level re-starts within a 
playground 

Total number of times a ball object was erased 
consecutively 

Frustration 

Total number of silver trophies achieved in 
under the average time 

Total number of level re-starts within a 
playground 

Total number of levels completed successfully 

Total number of levels attempted 

Off-task 
Behavior 

Time spent in between each student action 

Total number of pauses made within a level 

Total number of times a student quits a level 
without completing the objective and obtaining 
a trophy 

 
Unlike engaged concentration, a student who experiences 
frustration failed to achieve the objective and achieved fewer 
silver trophies within the average time taken. Student frustration, 
as seen in the features, would also result in the student having to 
make more attempts at a level due to repeated failure, thus 
resulting in fewer levels attempted in total.  

Lastly, behavior that is off-task involves a student who spends 
more time pausing the level or between actions as a whole. It is 
also apparent in a student who draws fewer objects and quits more 
levels without completing them, implying that he or she did not 
put in much effort to complete the playground levels.  

5. VIDEO-BASED DETECTORS 
The video-based detectors have been reported in a recent 
publication [10]. In the interest of completeness, the main 
approach is re-presented here. There are also small differences in 
the results reported here due to a different validation approach that 
was used to make meaningful comparisons with interaction-based 
detectors. 

Video-based affect detectors were constructed using FACET (no 
longer available as standalone software), a commercialized 
version of the Computer Expression Recognition Toolbox 
(CERT) software [25]. FACET is a computer vision tool used to 
automatically detect Action Units (AUs), which are labels for 
specific facial muscle activations (e.g. lowered brow). AUs 
provide a small set of features for use in affect detection efforts. A 
large database of AU-labeled data can be used to train AU 
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detectors, which can then be applied to new data to generate AU 
labels.   

5.1 Feature Engineering 
FACET provides estimates of the likelihood estimates for the 
presence of nineteen AUs as well as head pose (orientation) and 
position information detected from video. Data from FACET was 
temporally aligned with affect observations in small windows. We 
tested five different window sizes (3, 6, 9, 12, and 20 seconds) for 
creation of features. Features were created by aggregating values 
obtained from FACET (AUs, orientation and position of the face) 
in a window of time leading up to each observation using 
maximum, median, and standard deviation. For example, with a 
six-second window we created three features from the AU4 
channel (brow lowered) by taking the maximum, median, and 
standard deviation of AU4 likelihood within the six seconds 
leading up to an affect observation. In all there were 78 facial 
features. 

We used features computed from gross body movement present in 
the videos as well. Body movement was calculated by measuring 
the proportion of pixels in each video frame that differed from a 
continuously updated estimate of the background image generated 
from the four previous frames. Previous work has shown that 
features derived using this technique correlate with relevant 
affective states including boredom, confusion, and frustration 
[17]. We created three body movement features using the 
maximum, median, and standard deviation of the proportion of 
different pixels within the window of time leading up to an 
observation, similar to the method used to create FACET features. 
Of the initial 2087 instances available for us to train our video-
based detectors on, about a quarter (25%) were discarded because 
FACET was not able to register the face and thus could not 
estimate the presence of AUs and computation of features. Poor 
lighting, extreme head pose or position, occlusions from hand-to-
face gestures, and rapid movements can all cause face registration 
errors; these issues were not uncommon due to the game-like 
nature of the software and the active behaviors of the young 
students in this study. We also removed 9% of instances because 
the window of time leading up to the observation contained less 
than one second (13 frames) of data in which the face could be 
detected, culminating in 1224 instances where we had sufficient 
video data to train our affect models on.  

5.2 Machine Learning 
We also built separate detectors for each affective state similar to 
the interaction-based detectors. Building individual detectors for 
each state allows the parameters (e.g., window size, features used) 
to be optimized for that particular affective state.  

5.2.1 Resampling of Data 
Like the interaction-based detectors, there were large class 
imbalances in the affective and behavior distributions. Two 
sampling techniques, different from the one used in the building 
of interaction-based detectors, were used on the training data to 
compensate for this imbalance. These two techniques included 
downsampling (removal of random instances from the majority 
class) and synthetic oversampling (with SMOTE; [13]) to create 
equal class sizes. SMOTE creates synthetic training data by 
interpolating feature values between an instance and randomly 
chosen nearest neighbors. The distributions in the testing data 
were not changed, to preserve the validity of the results. 

5.2.2 Feature Selection and Cross-Validation 
We used tolerance analysis to eliminate features with high 
multicollinearity (variance inflation factor > 5) [2]) for video-
based detectors. Feature selection was then used to obtain a more 
diagnostic set of features for classification. RELIEF-F [24] was 
run on the training data in order to rank features. A proportion of 
the highest ranked features were then used in the models (.1, .2, 
.3, .4, .5, and .75 proportions were tested). A detailed analysis or 
table of the features selected for the video-based detectors is not 
included because of the large number of features utilized by these 
detectors.  

We then built classification models using 14 different classifiers 
including support vector machines, C4.5 trees, Bayesian 
classifiers, and others in the Waikato Environment for Knowledge 
Analysis (WEKA), a machine learning tool [23]. 

6. RESULTS 
We evaluated the extent to which the detectors for each construct 
are able to identify their respective affect. Both detectors were 
evaluated using a 10-fold student-level batch cross-validation. In 
this process, students in the training dataset are randomly divided 
into ten groups of approximately equal size. A detector is built 
using data from all possible combinations of 9 out of the overall 
10 groups, and finally tested on the last group. Cross-validation at 
this level increases the confidence that the affect and behavior 

Table 2. A’ performance values for affect and behavior using video-based and interaction-based detectors 

Affect/Behavior 
Construct 

Interaction-Based Detectors Video-Based Detectors 

Classifier 
Data 

Imputation 
Scheme 

A' No. 
Instances Classifier A' No. 

Instances 

Boredom Logistic 
regression Zero 0.629 1732 Classification via 

Clustering 0.617 1305 

Confusion Step regression Average 0.588 1732 Bayes Net 0.622 1293 

Delight Logistic 
regression None 0.679 1732 Updateable Naïve 

Bayes 0.860 1003 

Engaged 
Concentration Naïve Bayes Zero 0.586 1732 Bayes Net 0.658 1228 

Frustration Logistic 
regression Average 0.559 1732 Bayes Net 0.632 1132 

Off-Task 
behavior Step regression Zero 0.765 1829 Logistic Regression 0.780 1381 
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detectors will be more accurate for new students. To ensure 
comparability between the two sets of detectors, the cross-
validation process was carried out with the same randomly 
selected groups of students.   

Detector performance was assessed using A' values that were 
computed as the Wilcoxon statistic [22]. A' is the probability that 
the given algorithm will correctly identify whether an observation 
is an example of a specific affective state. A' can be approximated 
by the Wilcoxon statistic and is equivalent to the area under the 
Receiver Operating Characteristic (ROC) curve in signal detection 
theory. A detector with a performance of A' = 0.5 is performing at 
chance, while a model with a performance of A' = 1.0 is 
performing with perfect accuracy. 

Table 2 shows the performance of the two detector suites. Both 
interaction-based and video-based detectors’ performance over all 
six affective and behavior constructs was better than chance 
(A' = 0.50). On average, the interaction-based detectors yielded an 
A' of 0.634 while the video-based detectors had an average A' of 
0.695. This difference can be mainly attributed to the detection of 
delight, which was much more successful for the video-based 
detectors. Accuracy of the two detector suites was much more 
comparable for the other constructs, though the video-based 
detectors showed some advantages for engaged concentration and 
frustration, and were higher for 5 of the 6 constructs. 

The majority of the video-based detectors performed the best 
when using the Bayes Net classifier, except for boredom, delight 
and off-task behavior. In comparison, logistic and step regression 
composed the classifiers that produced the best performance for 
most of the interaction-based detectors, with the exception of 
engaged concentration.  

7. DISCUSSION 
Affect detection is becoming an important component in 
educational software, which aims to improve student outcomes by 
dynamically responding to student affect. Affect detectors have 
been successfully built and implemented via different modalities 
[3,16,41], and each have their own advantages and disadvantages 
when implemented in a noisy classroom environment. This study 
is an extension of previous research conducted on both video-
based and interaction-based detectors. Having been mostly built in 
controlled laboratory settings [12], we now test the performance 
for video-based detectors within an uncontrolled computer-
enabled classroom environment that is more representative of an 
authentic educational setting. Although interaction-based 
detectors have been built to some degree of success in whole 
classroom settings [5,7,29], we now test the performance of these 
affect detectors in an open-ended and exploratory educational 
game platform.   

In this paper, we compared the performances of six video-based 
and interaction-based detectors on student affect and behavior in 
the game-based software. We will discuss the implications of 
these comparisons in this section, as well as future work.  

7.1 Main Findings 
The performances of both detectors in the six affects and off-task 
behavior appear to be at similar levels above chance for five of the 
constructs, with video-based detectors performing slightly better 
than interaction-based detectors on the whole, and with video-
based detector showing a stronger advantage for delight. Several 
factors may have help to explain the relative performances.   

Performance of video detectors could be influenced by the 
uncontrolled whole-classroom setting in which video data is 
collected, where there are higher chances of video data being 
absent or compromised due to unpredictable student movement. 
While there were initially 2,087 instances of affect and behavior 
observed and coded, a moderate proportion of facial data 
instances were dropped from the final dataset when building the 
models. There were 44 instances of affect observation that were 
dropped either because the video was corrupted or incomplete, or 
because no video was recorded at all. In addition, there were 520 
instances where video was recorded, but facial data were not 
detected for some reason, perhaps because the student had left the 
workstation, or when the face could not be detected in the video. 
An additional 211 instances were removed even though facial data 
was detected, because the facial data recorded was present for less 
than 1 second, such that no features could be calculated.  

For interaction-based detectors, the exploratory and open-ended 
user-interface [40] constitutes a unique challenge in creating 
accurate models for student affect and behavior. The open-ended 
interface included multiple goals and several possible solutions 
that students could come up with to successfully complete each 
level. During gameplay, there are also multiple factors that could 
contribute to a student’s failure to complete a level, such as 
conceptual knowledge as well as implementation of appropriate 
objects. A student with accurate conceptual knowledge of simple 
machines and Newtonian physics may still fail the level because 
of problems implementing the actions needed to guide the ball to 
the target. On the other hand, a student with misconceptions about 
the relevant physics topics may nevertheless be able to complete 
the level successfully through systematic experimentation. The 
possible combinations of student actions that result in failure or 
success in a playground level would hence contribute to the lower 
accuracy of interaction-based detectors on identifying students’ 
affect based on their interactions with the software.  

Another issue with the Physics Playground software could be that 
there are fewer indicators of success per unit of time, as compared 
to other learning software that have been studied previously, such 
as the Cognitive Tutors [e.g. 5]. During gameplay, the system is 
able to recognize when combinations of objects the student draws 
forms an eligible agent. However, this indicator of success or 
failure is not apparent to the student until after he or she creates 
the ball object and applies a relevant force to trigger a simulation. 
Since students often spend at least several minutes building agents 
and ball objects, this results in coarser-grained indicators and 
evaluations of success and failure. This is in comparison to affect 
detectors created in previous studies for the Cognitive Tutor 
software, in which there was regular evaluation of each question 
attempted, thus resulting in more indicators of success over a 
given time period. The combination of open-endedness and lack 
of success indicators per unit of time consequently leads to greater 
difficulty translating the semantics of student-software 
interactions into accurate affect predictions.  

When comparing between the two sets of detectors, physical 
detectors make direct use of students’ facial features and bodily 
movements captured by webcams and constitute embodied 
representations of students’ affective states. On the other hand, 
interaction detectors were built based on student actions within 
the software, which serves as an indirect proxy of the students’ 
actual affective states. These detectors rely, therefore on the 
degree to which student interactions with the software are 
influenced (or not) by the affective states they experience. Perhaps 
not surprisingly, video-based detectors perform somewhat better 
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in predicting some affective states (e.g., delight, engaged 
concentration, and frustration). Although the video detectors are 
limited by missing data, interaction-based detectors can only 
detect something that causes students to change their behaviors 
within the software, which can be challenging given the issues 
arising from the open-ended game platform. Simply put, face-
based affect detectors appear to provide more accurate affect 
estimates but in fewer situations, while interaction-based affect 
detectors provide less accurate estimates, but are applicable in 
more situations. The two approaches thus appear to be quite 
complementary. 

7.2 Limitations 
In comparing the performances between interaction and video-
based detectors, there exist several limitations in ensuring an 
equivalent set of methods for a fair comparison to be made.  

Although both types of detectors were built based on the same 
ground truth data, varying sets of limitations exist that are unique 
to each set of detectors. A smaller proportion of instances were 
retained to build video-based detectors due to missing video data, 
which may influence performance comparison. Interaction-based 
detectors, on the other hand, are relatively more sensitive to the 
type of educational platform it is built upon, as compared to 
video-based detectors. The type of learning platform thus affects 
the variety of features that are relevant and useful in building the 
affect and behavior detectors, which in turn impacts its 
performance relative to previous work.  

For both detectors, the sample size available for some of the 
affective states was quite limited, which made it necessary to 
oversample the training data in order to compensate for the class 
imbalances. However, because each detector was built on 
different platforms, different methods were used in oversampling 
the datasets. The need to conduct data imputations was also 
unique to interaction-based detectors due to the nature of some of 
the computed features, and not required for video-based detectors. 
The difference in these methods may in turn affect performance 
comparison between the two types of detectors.  

7.3 Concluding Remarks 
Given the various advantages and limitations to each type of 
detector in accurately predicting student affect, it may be 
beneficial for affect detection strategies to include a combination 
of video-based and interaction-based detectors. While video-based 
detectors provide more direct measures of student affect, practical 
issues may lead to video data being absent or unusable in 
detecting affect, simply because there is no facial data available to 
detect affect in. These situations may be alleviated by the 
presence of interaction data that are recorded automatically during 
students’ use of the software. On the other hand, video-based 
facial data would be able to provide support to interaction data 
and boost the accuracy in which affective states are detected 
among students. This form of late-fusion or decision-level fusion 
can also be complemented by early-fusion or feature-level fusion, 
where features from both modalities are combined prior to 
classification. Whether this leads to improved accuracy, as 
routinely documented in the literature on multimodal affect 
detection [15,16] awaits future work. 
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ABSTRACT
There is increasing evidence that fine-grained aspects of student 
performance and interaction within educational software are 
predictive of long-term learning. Machine learning models have 
been used to provide assessments of affect, behavior, and 
cognition based on analyses of system log data, estimating the 
probability of a student’s particular affective state, behavior, and 
knowledge (cognition). These measures have (in aggregate)
successfully predicted outcomes such as performance on 
standardized exams. In this paper, we employ a different approach 
of relating interaction patterns to learning outcomes, using 
dynamical methods that assess patterns of fine-grained measures 
of affect, behavior, and knowledge as they occur across time. We 
use Hurst exponents and Entropy scores computed from 
assessments of affect, behavior, performance, and knowledge 
acquired from 1,376 middle school students who used a math 
tutoring system (ASSISTments), and analyze the relations of these 
dynamical measures to the students’ end-of-year state test 
(MCAS) performance. Our results show that fine-grained changes 
in affect, behavior, and knowledge are significantly related to and 
predictive of their eventual MCAS performance, providing a new 
lens on the dynamic and nuanced nature of student interaction 
within online learning platforms and how it affects achievement.

Keywords
Affect Detection, Knowledge Modeling, Educational Data 
Mining, Hurst, Entropy 

1. INTRODUCTION 
The increasing deployment of educational software in classrooms 
has provided new opportunities for studying a broad range of 
student modeling constructs. The ability of these systems to log 
student interaction in fine-grained detail has led to the 
development of automated detectors or models of student learning 
and engagement [1, 4, 5, 6, 10]. It has been demonstrated through 
discovery with models analyses [20] that detector assessments of 
engagement and learning can be used to predict long-term student 
outcomes such as performance in end-of-year standardized exams 
[24], college enrollment [31] and college major choice [33], even 
several years after the student engages in online learning. The 
fine-grained measures of learning and engagement at the action 
level are then aggregated at the student-level in forming a training 
dataset for the prediction of learning outcomes. However, these 
assessments often use simple aggregation methods such as 
student-level averages, whereas it is known that there are complex 

patterns in how affect develops over time (e.g. [14]). Hence these
simple methods of aggregation may miss fine-grained and 
nuanced patterns in affect or behaviors that manifest across time. 

Indeed, research has also shown that students’ learning behaviors 
are complex and dynamic in nature [19]. Recent work has begun 
to evaluate interaction patterns within learning tasks. This work 
has revealed that fine-grained pattern analysis can shed light upon 
various cognitive, behavioral, and learning outcomes [21, 22, 29, 
30, 37, 38]. For example, Lee and colleagues [21], and Liu and 
colleagues [22] evaluated how 3-step sequences of confusion [21, 
22] and frustration [22] correlate to learning outcomes. Rodrigo 
and colleagues [29] also found that 3-step sequences of affective 
states (boredom, engaged concentration, confusion, and delight) 
from fine-grained detectors correlated to differences in learning 
outcomes. Sabourin and colleagues [30] found that the impact of 
student behavior on learning outcomes depended in part on the 
affect that preceded the behavior. Results from these studies 
reveal that fluctuations in students’ affect and behavior over time 
(assessed through automated detectors) play important roles in 
learning outcomes.  

However, much of this work had the limitation of only 
considering changes over brief periods of time. In this paper, we 
address this limitation by employing dynamical methodologies to 
quantify nuanced patterns of student affect, behavior, and learning 
across time, specifically two academic school years. We utilize 
fine-grained measures of affect, behavior, and knowledge 
(cognition) from middle school students who used the 
ASSISTments systems, and compute dynamical measures (i.e., 
Hurst and Entropy) of these constructs for each student. These 
measures (see below for details) characterize the occurrence and 
type of behavior across time for the constructs of interest (affect, 
behavior, knowledge) for each student within the ASSISTments 
environment.   

We use two types of dynamical analysis techniques, Entropy and 
Hurst exponents. Entropy is a statistical measure used to assess 
the amount of predictability present within a time series [34]. 
Previously, Entropy has been used in EDM analyses by Snow and 
colleagues [38], to quantify the amount of randomness in
students’ interaction patterns within a game-based interface. 
Using this methodology they found that students who acted in
more controlled (and predictable) manners had significantly 
higher task performance compared to students who acted in more 
random (or unpredictable) fashions. Hurst exponents are similar to 
Entropy in that they categorize the amount of order present within
a system; however, unlike Entropy, Hurst exponents act as long-
term correlations that capture how each moment in a time series 
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relates to the others. Thus, Hurst provides an even finer-grained 
look at the emergence of patterns across long periods of time. 
Recently, Hurst exponents have been used to characterize 
students’ learning behaviors within game-based environments. 
For instance, Snow and colleagues [36] used this technique to 
examine nuanced fluctuations in students’ choice patterns across 
time. Using the Hurst exponent, Snow and colleagues again found 
that students who acted in more deterministic manners (i.e., 
controlled and planned) were more likely to demonstrate higher 
learning gains compared to students who acted in more random 
(or impetuous) manners.

In the current work, we evaluate the degree to which Entropy and 
Hurst exponent measures based on affect, behavior, and 
knowledge (cognition) predicts a longer-term outcome, students’ 
end-of-year state exam performance. This research was conducted
on a dataset of 1,376 students who used ASSISTments when they 
were in middle school during the school years of 2004-2005 to 
2005-2006 and took the standardized end-of-year state exams. We
investigate in particular, the following research questions: 

1) How are fluctuations in patterns of students’ affect, 
behavior, and knowledge related to their end-of-year 
state math achievement test scores?

2) Are dynamical measures of affect, behavior, and 
knowledge predictive of student performance outcomes 
(end-of-year test score, i.e., MCAS)? 

2. METHODOLOGY 
2.1 Data Source: The ASSISTments System 
This study explores students’ learning outcomes and their 
interaction patterns from their usage of the ASSISTments system 
[27], a web-based tutoring system for middle-school mathematics, 
provided to students for free by Worcester Polytechnic Institute 
(WPI). As of 2013, ASSISTments has been used by over 50,000 
students a year as part of their regular mathematics classes. 
ASSISTments assesses a student’s knowledge while assisting
them in learning, providing teachers with formative assessment of 
students as they progress in their acquisition of specific 
knowledge components.  

Within the system, each problem maps to one or more cognitive 
skills. When students who are working on an ASSISTments 
problem answer correctly, they proceed to the next problem. 
When they answer incorrectly (Figure 1), the system scaffolds 
instruction by dividing the problem into component parts, 
stepping students through each before returning them to the 
original problem (as in Figure 2). Once the correct answer to the 
original question is provided, the student is prompted to go to the 
next question. Teachers use ASSISTments in designing problem 
sets completed by students either during class time or as 
homework assignments. ASSISTments provides data on student 
performance that is used by teachers to track misconceptions and 
discuss them in class.

Figure 1. Example of an ASSISTments problem. 

Figure 2. Example of Scaffolding and Hints in an 
ASSISTments Problem. 
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2.2 Data 
2.2.1 State Exam Scores 
Students who used ASSISTments when they were in middle 
school also took the MCAS (Massachusetts Comprehensive 
Assessment System) state standardized test near the end of their 
school years. The test is composed of English Language Arts, 
Mathematics and Science, and Technology subjects. This study 
analyzes usage of a tutoring system in mathematics; consequently, 
we examined the relationship of performance to the MCAS test 
scores for the math portion. Raw scores for the math portion range 
from 0 to 54 and are later scaled by the state after all tests have 
been scored. The scaled scores can be categorized into four 
groups: Failing, Needs Improvement, Proficient, and Advanced. 
Students in Massachusetts are required to score above failing to be 
able to graduate from high school; if students score in the 
Advanced group, they automatically earn a scholarship to a state 
college.

2.2.2 ASSISTments Data 
Interaction log files from ASSISTments were obtained for 1,376 
students who used the system when they were in middle school 
ranging from school years 2004-2005 to 2005-2006 (these school 
years were used due to the availability of the state exam data for 
these particular cohorts). These students, diverse in terms of both 
ethnicity and socio-economic status, were drawn from middle 
schools in an urban district in New England who used the 
ASSISTments system systematically during the school years. The 
1,376 students generated a total of 830,167 actions within the 
system (an action may be answering a question, or requesting 
help), across around 3,700 original and scaffolding problems from 
ASSISTments, with an average of approximately 220 
ASSISTments problems per student. Affect, behavior, and
knowledge models were applied to this dataset to evaluate 
interaction patterns.  

2.3 Computing Interaction Features  
The interaction features used to compute dynamical assessments 
were generated using automated detectors of student engagement 
and learning previously developed and validated for 
ASSISTments. These included existing models of educationally-
relevant affective states (boredom, engaged concentration, 
confusion, frustration), disengaged behaviors (off-task behavior 
and gaming the system), and student knowledge. Each of the 
detectors was applied to every action in the existing data set, in 
the same fashion as in previous publications [24]. We also 
included in our feature set of interactions, information on student 
correctness over time within ASSISTments.  

2.3.1 Affect and Disengaged Behaviors  
To obtain assessments of affect and disengaged behaviors, we 
leveraged existing detectors of student affect and behavior within 
the ASSISTments system [24]. Detectors of four affective states 
were utilized: boredom, engaged concentration, confusion, and 
frustration. Detectors of two disengaged behaviors are utilized: 
off-task behavior and gaming the system. Because our sample of 
students came from urban middle schools, their respective data 
were labeled using models optimized for students in urban schools 
[23, 24].
The affect and behavior detectors were developed in a two-stage 
process: first, student affect labels were acquired from field 
observations conducted using the BROMP protocol and HART 
Android app (reported in [24]), and then those labels were 
synchronized with the log files generated by ASSISTments at the 

same time. This process resulted in automated detectors that can 
be applied to log files at scale, specifically the data set used in this 
project (interaction log files for the 1,376 students). The detectors 
were constructed using only log data from student actions within 
the software occurring at the same time as or before the 
observations. The models performed as well as or better than 
other published models of sensor-free affect detection in 
educational software [3, 11, 13, 30]. They were then applied to the 
data set used in this paper to produce confidence values for each 
construct over time, which were then used to create dynamical 
assessments of affect and behavior. 

2.3.2 Student Knowledge  
Corbett and Anderson’s [12] Bayesian Knowledge Tracing (BKT) 
model, a knowledge-estimation model that has been used in a 
considerable number of online learning systems, was applied to 
the data for this study. Models were fit by employing brute-force 
grid search (see [2]). BKT infers students’ latent knowledge from 
their performance on problems that exercise the same set of skills. 
Each time a student attempts a problem or problem step for the 
first time, BKT recalculates the estimates of that student’s 
knowledge for the skill (or knowledge component) involved in 
that problem. Estimations for each skill are made along four 
parameters: (1) LO, the initial probability that the student knows 
the skill, (2) T, the probability of learning the skill at each 
opportunity to use that skill, (3) G, the probability that the student 
will give the correct answer despite not knowing the skill, and (4) 
S, the probability that the student will give an incorrect answer 
despite knowing the skill. The estimates obtained via BKT were 
calculated based on the student’s first response to each problem, 
and were applied to each of the student’s subsequent attempts on 
that problem. 
We were able to distill interaction features –affect, behavior and 
knowledge using these models, as well as correctness – for each 
student action within the ASSISTments system. Affect and 
behavior features were initially computed at a 20-second grain-
size and then applied to all relevant actions. These action-level 
features values are then used to compute student-level dynamical 
measures of Hurst and Entropy scores. 

2.4 Dynamical Assessments of Student 
Interaction Features 
Variations in students’ interaction features (affect, behavior, 
knowledge, correctness) were assessed using two dynamical 
methodologies: Entropy analyses and Hurst exponents. These 
dynamic techniques are used to quantify (in standardized values)
variations in students’ interaction features and examine how these 
variations impacted students’ year-end standardized test scores 
(i.e., MCAS). A description and explanation of Entropy analyses 
and Hurst exponents are described below.

2.4.1 Entropy 
Entropy analyses were conducted to quantify the degree to which 
fluctuations in students’ affective states were ordered (i.e., 
predictable) or disordered (i.e., unpredictable). Entropy analysis is 
a statistical measure that quantifies the overall tendency (i.e., 
amount of predictability) of a time series [34]. Entropy has been 
used across a variety of domains to measure random and ordered 
processes [15, 17, 34, 35, 38]. In the current study, Entropy is 
used to gain a deeper understanding of how changes in students’ 
affective states across time may reflect ordered and disordered 
processes. To calculate Entropy, we applied the affect, behavior, 
and knowledge series produced from the models discussed above, 
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to data from school years 2004-2005 and 2005-2006. Entropy was 
then calculated using the following (standard) formula:  

H(x)= -

Within the Entropy equation, P(xi) represents the probability of a 
given affective state. For instance, the Entropy for student X is the 
additive inverse of the sum of products calculated by multiplying 
the probability of each affect state by the natural log of the 
probability of that state. This formula affords the ability to capture 
the degree to which fluctuations in students’ affect, behavior, 
knowledge, and correctness are ordered or disordered.  

2.4.2 Hurst 
While Entropy provides an overall quantification of a time series, 
it does not calculate how each moment in the time series may be 
related to the next. Thus, a more fine-grained analysis is needed to 
examine how fluctuations in students’ affect, behavior, 
knowledge, and correctness manifest and change across time. To 
classify the tendency of students’ affective states, Hurst exponents 
were calculated using Detrended Fluctuation Analysis (DFA) 
[26]. To calculate the Hurst exponent, the DFA integrates the 
normalized time series and then divides the series into equal 
intervals of length, n. Each interval is then fit with a least squares 
line and the integrated time series is detrended by subtracting the 
local predicted values (i.e., least square lines for each interval) 
from the integrated time series. The procedure is repeated for 
intervals of different lengths, increasing exponentially by the 
power of 2. Finally, each interval size is assigned a characteristic 
fluctuation, F(n), that is calculated as the root mean square 
deviation of the integrated time series from local least squares 
lines. Log2 F(n) is then regressed onto log2(n); which produces the 
slope of the regression line or Hurst exponent, H. Hurst exponents 
range from 0 to 1 and can be interpreted as follows: 0.5 <H ≤ 1 
indicates persistent (controlled) behavior, H = 0.5 signifies 
random (independent) behavior, and 0 ≤ H< 0.5 denotes anti-
persistent (reversion to the mean) behavior. 

2.5 Predictive Modeling of State Test Scores 
Prior work has shown that student usage choices while receiving 
tutoring in ASSISTments can predict as much of the variance in 
students’ end-of-year state test scores as student performance can 
on items designed to assess test-related knowledge [16, 28]. It has 
also been shown that machine-learned and fine-grained 
assessments of affect and behavior can improve predictions of test 
score performance [24]. We extend this further and explore the 
value of also understanding the role of the degree of 
order/disorder of interaction (through occurrences of affect, 
behavior, knowledge, and correctness) in predicting student 
learning outcomes as reflected by students’ end-of-year 
standardized examination scores.  
After obtaining the aggregate student-level Hurst and Entropy 
scores for each student’s patterns of affect, behavior, knowledge, 
and correctness, we examined how the degree of variation in the 
students’ interaction patterns within ASSISTments was related to 
their MCAS math performance. We further examined these 
relations by conducting linear regression analyses on the students’ 
MCAS math performance. We fit a cross-validated (6-fold, 
student-level) machine-learned model using linear regression with 
M5’ feature selection to examine how students’ dynamical
assessments of interaction were predictive of their MCAS math 
scores. We generated reduced linear regression models that used 
three feature sets: (1) Hurst scores of interaction only, (2) Entropy 

scores of interaction only, and (3) both Hurst and Entropy scores 
of interaction. We then compared their cross-validated model 
performances and evaluated the features in the model with best 
performance values. 

3. RESULTS 
3.1 Hurst, Entropy, and State Test Scores 
We first explore the relations between the MCAS scores for math 
and students’ interaction patterns (i.e., their Hurst and Entropy 
scores) by examining the graphs of student proficiency (from 
MCAS performance) and the corresponding trends in Hurst and 
Entropy values. We grouped the students according to their scaled 
score groupings of Failing, Needs Improvement, Proficient, and 
Advanced, then computed for the average values of their Hurst 
and Entropy scores for affect, behavior, knowledge, and 
correctness in ASSISTments.  
The graph of test proficiency and entropy measures (Figure 3) 
shows that low-achieving and high-achieving students experience 
fluctuations in affect, behavior, knowledge, and correctness while 
using ASSISTments in varying degrees. Students who have higher 
MCAS scores (i.e., Advanced) exhibited less fluctuation (lower 
entropy score) in their frustration (F(3,1372) = 56.009, p< 0.001,
adjusted  = 0.013), engaged concentration (F(3,1372) = 27.334, 
p< 0.001, adjusted  = 0.023), off-task behavior ( 2(3) = 64.089,
p< 0.001, adjusted  = 0.030), and gaming the system ( 2(3) = 
238.350, p< 0.001, adjusted  = 0.007), but more fluctuation 
(higher entropy score) for boredom ( 2(3) = 26.999, p< 0.001,
adjusted  = 0.040), confusion ( 2(3) = 29.759, p< 0.001, adjusted 

 = 0.033), correctness ( 2(3) = 185.310, p< 0.001, adjusted =
0.010), and knowledge ( 2(3) = 639.111, p< 0.001, adjusted =
0.003). [We used one-way ANOVA (F-test) for features with 
equal group variances, and Kruskal-Wallis test ( 2 test) for 
features with unequal group variances.] 

Figure 3. Entropy Scores by MCAS Test Score Category.
These trends suggest that students who performed better in MCAS 
showed overall consistency across time in exhibiting engaged 
concentration, frustration, off-task behaviors, and gaming the 
system, and an overall higher degree of variability across time in 
exhibiting boredom, confusion, correctness, and knowledge. It is 
possible that highly successful students may be more aware of 
their engaged concentration, frustration, off-task, and gaming 
behaviors within the system, compared to their awareness of the 
other constructs. Indeed, students who have achieved a higher 
level of proficiency or mastery of the material may also be more 
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efficient at controlling and maintaining the negative learning 
behaviors, and be more engaged. Interestingly, successful students 
show more variability, indicative of less control, in their boredom, 
confusion, correctness, and knowledge, possibly due to the nature 
of the learning task. These successful students may find some 
problems within ASSISTments too easy or too difficult with 
respect to their skills, causing them to experience varying degrees 
of boredom and confusion across time. In other words, the 
environment may be a major driver of the variability in these 
constructs. Another possibility comes from results in [24], where 
more successful students were more likely to be bored or confused 
when answering original problems, and less bored and confused 
when answering scaffolding problems. These successful students 
may also be overconfident in answering problems and become 
careless [32], exhibiting varying degrees of correctness and 
knowledge across time. 
These relationships suggest that students with higher year-end 
exam scores were able to control their engagement by becoming 
less off-task and more consistent in overcoming their frustration 
and avoiding gaming the system, and be more engaged during 
their time in ASSISTments. However, a relevant area of future 
work may be to investigate whether the fluctuations across time 
for our interaction features are more a function of students’ 
individual differences (e.g. proficiency) and their ability to control 
their learning behaviors [38], or a function of the learning task 
(e.g. type of problem, difficulty, etc.) and the learning behaviors it 
elicits from the students. 
While Figure 3 shows the intensity or strength of fluctuations of 
our constructs across the entirety of student usage of 
ASSISTments, it does not demonstrate behavior of these 
fluctuations in fine-grained moments (i.e., persistence or anti-
persistence of these constructs; how rapid were the fluctuations?). 
This is where looking at the Hurst measures of our constructs 
comes in useful. Figure 4 shows the graph of test proficiency and 
Hurst measures, where students who have higher MCAS scores 
achieved lower Hurst scores for engaged concentration ( 2(3) = 
134.719, p< 0.001, adjusted  = 0.017), frustration (F(3,1372)= 
27.543, p< 0.001, adjusted  = 0.020), off-task behavior ( 2(3) = 
70.736, p< 0.001, adjusted  = 0.027), and confusion (F(3,1372)= 
9.969, p< 0.001, adjusted  = 0.037), while higher Hurst scores 
for knowledge ( 2(3) = 23.935, p< 0.001, adjusted  = 0.043) and 
gaming the system ( 2(3) = 12.425, p= 0.006, adjusted =
0.047). 

Figure 4. Hurst Scores by MCAS Test Score Category. 

This trend in Hurst scores suggests that students who scored high 
on the MCAS had greater tendency to vary their behaviors,
indicative of their actively adapting their learning behaviors. They 
instead showed regulation strategies in their ability to bounce 
back from frustration, resolve their confusion, and to re-engage 
after going off-task. Interestingly, more successful students show 
more mean reversion in engaged concentration than less 
successful students. Thus, more successful students were more 
variable in their engaged concentration (higher probability of 
concentration at one moment, lower probability of concentration 
on the next). Along with the Hurst scores for confusion, off-task 
and frustration, this Hurst trend for engaged concentration may 
indicate that students who began to feel confused or frustrated 
switched their focus and went off-task. Conversely, the trend for 
more successful students showed less variability in their display 
of knowledge and gaming the system behavior, which would 
suggest their ability to maintain their high level of knowledge and 
to not game the system. An understanding of the differences of 
rate of momentary fluctuations provides a lens on how students 
who vary in proficiency are able to effectively manage and adjust 
their affect, behavior, and knowledge within a learning task. It
suggests that in the case of ASSISTments, it may be beneficial to 
teach less successful students strategies for quickly bouncing back 
from being off-task or ways to resolve their confusion and 
frustration.
We examine the significance of these differences in trends further 
by looking at the Pearson correlations between MCAS test scores 
and student Hurst and Entropy scores for affect, behavior, 
knowledge, and correctness (Table 1). We also utilize the 
Benjamini and Hochberg false discovery rate post-hoc correction 
to adjust the required alpha for significance and to reduce the 
occurrence of false positives, controlling for inflation of Type 1 
error [8].

Table 1. Correlations with MCAS State Test Scores                         
(** - significant, p < 0.01; * - significant, p < 0.05) 

Hurst and Entropy Features r p-value Adjusted 

Knowledge-Entropy .705** <0.001 0.003

Gaming-Entropy -.441** <0.001 0.007

Concentrating- Hurst -.324** <0.001 0.010

Frustration-Entropy -.314** <0.001 0.013

Correctness-Entropy .275** <0.001 0.017

Frustration- Hurst -.252** <0.001 0.020

Off-task-Entropy -.211** <0.001 0.023

Concentrating-Entropy -.206** <0.001 0.027

Off-task- Hurst -.183** <0.001 0.030

Confusion- Hurst -.160** <0.001 0.033

Bored-Entropy .139** <0.001 0.037

Bored-Hurst -.100** <0.001 0.040

Knowledge- Hurst .076** 0.005 0.043

Confusion-Entropy .076** 0.005 0.047

Gaming- Hurst .059* 0.029 0.050

Correctness-Hurst N/A N/A N/A
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Table 1 shows that there are statistically significant, and 
reasonably strong relations between MCAS performance and 
Entropy measures of boredom, engaged concentration, confusion, 
frustration, off-task, gaming behavior, knowledge and correctness,
and Hurst measures of boredom, engaged concentration, 
confusion, frustration, off-task, gaming behavior and knowledge.
Note that for correctness only an Entropy score was calculated as 
it was a dichotomous measure of a student’s answer (1 – correct, 0 
– incorrect), and Hurst was not calculated for correctness as Hurst 
becomes less accurate when the inputs in the time series are 
discrete rather than continuous (which our other features are). 

3.2 Prediction of State Test Scores  
To examine the relations of these dynamical measures to MCAS 
performance, we conducted regression analyses to evaluate the 
predictive power of these measures (Table 2). 

Table 2. State Test Score Model Performance Values Using 
Different Feature Sets (feature count is after feature selection)

Feature Set R R2 RMSE Number of 
Features

Hurst Features Only 0.400 0.160 11.251 5

Entropy Features Only 0.762 0.581 7.941 6

Both Hurst and Entropy 
Features

0.768 0.590 7.862 9

Combined, Hurst and Entropy assessments of affect, behavior, 
knowledge and correctness within ASSISTments are predictive of 
long-term performance (end-of-year state test score, MCAS) with 
reasonably high model performance. This finding shows that 
when our automated detectors of affect, behavior, and knowledge 
are applied at scale, the patterns generated are significantly related 
to learning outcomes. The specific patterns and contexts in which 
these interactions occur, however, remain to be further analyzed - 
for example using methods such as sequential pattern mining or 
recurrence analysis. Moreover, it is also worth noting that despite 
the interesting findings discussed above, the model created from 
dynamical assessments of machine-learned measures of 
interaction is not much better than a model created from just 
averaging our interaction features per student (for our sample, this 
model had a cross-validated R = 0.764) [24]. This suggests that 
averaging remains a good tool for predicting standardized exam 
scores, though it does not shed as much light on the phenomena of 
interest compared to the approach discussed here. 
Optimized for predictor significance and model performance, our 
final model (Table 3) consists of either Hurst or Entropy scores 
(or both) of boredom, engaged concentration, confusion, 
frustration, gaming the system, knowledge, and correctness being 
predictive of MCAS performance.  
Our final model leverages the relationships between MCAS and 
Hurst and entropy measures previously found. Stronger 
fluctuations across time for knowledge and correctness (positive 
coefficient for Entropy), and less persistence or quicker reversions 
in knowledge and engaged concentration (negative coefficient for 
Hurst), are associated with higher test scores for students. 
Furthermore, weaker fluctuations across time for boredom, 
confusion, gaming the system, and frustration (negative 
coefficient for Entropy), and more persistence or slow fluctuations 
for gaming the system (positive coefficient for Hurst), are 
associated with higher test scores for students. These relationships 
suggest that students with higher year-end exam scores were able 

to control their engagement by resolving their confusion, 
bouncing back from being bored, overcoming their frustration, 
and to show active learning, and be more consistent in not gaming 
the system during their time in ASSISTments.   
Table 3. Final Model of Hurst and Entropy Scores Predicting 

State Test Scores

Predictors B Std. 
Error t Sig

(Constant) 28.821 3.258 8.845 <0.001

Correctness-Entropy 39.566 4.672 8.469 <0.001

Concentrating-Hurst -34.185 10.738 -3.183 0.001

Gaming-Hurst 22.952 6.853 3.349 0.001

Knowledge-Hurst -22.935 4.579 -5.009 <0.001

Bored-Entropy -21.318 2.773 -7.687 <0.001

Frustration-Entropy -17.874 1.892 -9.447 <0.001

Knowledge-Entropy 17.463 0.723 24.169 <0.001

Gaming-Entropy -9.371 1.126 -8.320 <0.001

Confusion-Entropy -6.157 1.803 -3.416 0.001

4. DISCUSSION AND CONCLUSION 
In this paper, we utilized dynamical methodologies to investigate 
how nuanced patterns of affect, behavior, knowledge, and 
correctness were related to and predictive of students’ end-of-year 
exam scores. Fine-grained models of student affect (boredom, 
engaged concentration, confusion, frustration) behavior (off-task 
behavior, gaming the system), and knowledge were applied to 
data from 1,376 students who used an educational software in 
mathematics over the course of a year during their middle school 
to generate interaction features. We then utilized dynamical
measures of Hurst exponents and Entropy analysis to quantify the 
degree of randomness (or non-randomness) present within 
patterns of these interaction patterns. 

Our results show that these dynamical assessments of students’ 
interactions throughout the year (affect, behavior, knowledge, and 
correctness) are significantly associated with their end-of-year 
performance in a state test. Entropy scores of students for all of 
our interaction features showed significant differences between 
students in varied test proficiencies (as measured by the year-end 
exam). Across time, the more control a student demonstrated in 
frustration, engaged concentration, off-task behaviors, and gaming 
the system behaviors, as well as more flexibility in boredom, 
confusion, knowledge and correctness, the higher the student 
scored on the year-end exam. Students’ Hurst scores also showed 
significant relations with the learning outcome, where students 
with more occurrences of fluctuations for engaged concentration, 
confusion, frustration, and off-task behaviors, and more 
persistence for knowledge and gaming the system were likely to 
perform better. These relations were supported by these 
dynamical assessments being predictive of performance in the 
end-of-year state test. 

It is notable that most Hurst exponent values fell well below 0.5, 
indicating that overall, fine-grained machine-learned estimates of 
affect, behavior, knowledge in the system interaction of the 1,376 
students are not random, and according to students’ state or the 
learning task within the system, students show signs of switching 
between various degrees of affect, behavior, and knowledge over 
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time. In the future, it may be useful to examine sequential patterns 
of each interaction feature, looking also at the context and 
circumstances in the usage of the system that lead to students 
having increasing or decreasing occurrences (as well as points of 
inflection) in affect, behavior, and knowledge. The Hurst and 
Entropy may be able to be used in real-time to capture these 
affective changes and then provide feedback to a user model (or 
teacher) about the student. Less successful students may be made 
aware of their learning behaviors so they may more effectively 
regulate them, in particular for frustration, confusion, off-task-
behavior, and gaming the system. They may also be taught 
strategies to more quickly bounce back from being off-task or 
even resolve their frustration and confusion.  

Overall, these exploratory findings obtained when we dynamically 
assess the measures of interaction take a step further in evaluating 
how fine-grained machine-learned assessments of affect, 
behavior, and knowledge relate to learning outcomes. Looking at 
patterns using a combination of machine-learning techniques 
provides an avenue for observing the degree to which students 
regulate their actions in a learning task. Self-regulation research 
shows that when students are motivated to achieve learning goals 
they are more likely to regulate their behaviors [7]. This current 
study provides a preliminary lens on how dynamic measures of 
fine-grained series of distinctive affect (academic emotions) and 
behavior (engagement) are reflective of students’ emotional and 
motivational regulation within a learning environment [9, 18], as 
well as the roles of affect and behavior on self-regulated learning 
[25]. 
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ABSTRACT 

Computational models that automatically detect learners’ affective 

states are powerful tools for investigating the interplay of affect 

and learning. Over the past decade, affect detectors—which 

recognize learners’ affective states at run-time using behavior logs 

and sensor data—have advanced substantially across a range of 

K-12 and postsecondary education settings. Machine learning-

based affect detectors can be developed to utilize several types of 

data, including software logs, video/audio recordings, tutorial 

dialogues, and physical sensors. However, there has been limited 

research on how different data modalities combine and 

complement one another, particularly across different contexts, 

domains, and populations. In this paper, we describe work using 

the Generalized Intelligent Framework for Tutoring (GIFT) to 

build multi-channel affect detection models for a serious game on 

tactical combat casualty care. We compare the creation and 

predictive performance of models developed for two different data 

modalities: 1) software logs of learner interactions with the 

serious game, and 2) posture data from a Microsoft Kinect sensor. 

We find that interaction-based detectors outperform posture-based 

detectors for our population, but show high variability in 

predictive performance across different affect. Notably, our 

posture-based detectors largely utilize predictor features drawn 

from the research literature, but do not replicate prior findings that 

these features lead to accurate detectors of learner affect. 

Keywords 

Affect detection, multimodal interaction, posture, serious games. 

1. INTRODUCTION 
Affect is critical to understanding learning. However, the interplay 

between affect and learning is complex. Some affective states, 

such as boredom, have been shown to coincide with reduced 

learning outcomes ([25]). Other affective states, such as confusion 

and engaged concentration, have been found to serve beneficial 

roles ([14], [24]). The ability to detect a learner’s affective state 

while she interacts with an online learning environment is critical 

for adaptive learning technologies that aim to support and regulate 

learners’ affect ([26]).  

Research on affective computing has enabled the development of 

models that automatically detect learner affect using a wide 

variety of data modalities (see extensive review in [8]). Many 

researchers have focused on physical sensors, because of their 

capacity to capture physiological and behavioral manifestations of 

emotion, potentially regardless of what learning system is being 

used. Sensor-based detectors of affect have been developed using 

a range of physical indicators including facial expressions ([2], 

[7]), voice [35], posture ([11], [16]), physiological data [22] and 

EEG [1]. Despite this promise, deploying physical sensors in the 

classroom is challenging, and sometimes prohibitive [6], and 

efforts in this area are still ongoing, with some researchers 

arguing that this type of affect detection has not yet reached its 

full potential [13].  

In recent years, efforts have also been made towards the 

development of complementary affect detection techniques that 

recognize affect solely from logs of learner interactions with an 

online learning environment ([2], [3], [24]). Initial results in this 

area have shown considerable promise. As both sensor-based and 

interaction-based affect detectors continue to mature, efforts are 

needed to compare the relative advantages of each approach. An 

early comparison was seen in D’Mello et al. [15], but considerable 

progress has been made in the years since.  

In this paper, we compare the performance and the general 

process of developing models for affect detection using two 

different data modalities: learner interaction logs and posture data 
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from a Microsoft Kinect sensor. Ground-truth affect data for 

detector development was collected through field observation [23] 

of learners interacting with vMedic, a serious game on tactical 

combat casualty care, integrated into the General Intelligent 

Framework for Tutoring (GIFT) [32]. Findings suggest that 

interaction-based affect detectors outperform posture-based 

detectors for our population. However, interaction-based detectors 

show high variability in predictive performance across different 

emotions. Further, our posture-based detectors, which utilize 

many of the same predictor features found throughout the research 

literature, achieve predictive performance that is only slightly 

better than chance across a range of affective states, a finding that 

is contrary to prior work on sensor-based affect detection. 

2. DATA 
Three sources of data were used in this work: 1) log file data 

produced by learners using the vMedic (a.k.a. TC3Sim) serious 

game, 2) Kinect sensor log data, and 3) quantitative field 

observations of learner affect using the BROMP 1.0 protocol [23]. 

This section describes those sources of data, by providing 

information on the learning environment, study participants, and 

research study method. 

2.1 Learning System and Subjects 
We modeled learner affect within the context of vMedic, a serious 

game used to train US Army combat medics and lifesavers on 

tasks associated with dispensing tactical field care and care under 

fire (Figure 1). vMedic has been integrated with the Generalized 

Intelligent Framework for Tutoring (GIFT) [32], a software 

framework that includes a suite of tools, methods, and standards 

for research and development on intelligent tutoring systems and 

affective computing. 

Game-based learning environments, such as vMedic, enable 

learners to interact with virtual worlds, often through an avatar, 

and place fewer constraints on learner actions than many other 

types of computer-based learning environments ([3], [19], [24]). 

Some virtual environments place more constraints on learner 

behavior than others. For example, learning scenarios in vMedic 

are structured linearly, presenting a fixed series of events 

regardless of the learner’s actions. In contrast, game-based 

learning environments such as EcoMUVE [20] and Crystal Island 

[29] afford learners considerable freedom to explore the virtual 

world as they please. While vMedic supports a considerable 

amount of learner control, its training scenarios focus participants’ 

attention on the objectives of the game (e.g., administering care), 

implicitly guiding learner experiences toward key learning 

objectives.  

To investigate interaction-based and sensor-based affect detectors 

for vMedic, we utilize data from a study conducted at the United 

States Military Academy (USMA). There were 119 cadets who 

participated in the study (83% male, 17% female). The 

participants were predominantly first-year students. During the 

data collection, all participants completed the same training 

module. The training module focused on a subset of skills for 

tactical combat casualty care: care under fire, hemorrhage control, 

and tactical field care. The study materials, including pre-tests, 

training materials, and post-tests, were administered through 

GIFT. At the onset of each study session, learners completed a 

content pre-test on tactical combat casualty care. Afterward, 

participants were presented with a PowerPoint presentation about 

tactical combat casualty care. After completing the PowerPoint, 

participants completed a series of training scenarios in the vMedic 

serious game where they applied skills, procedures, and 

knowledge presented in the PowerPoint. In vMedic, the learner 

adopts the role of a combat medic faced with a situation where 

one (or several) of her fellow soldiers has been seriously injured. 

The learner is responsible for properly treating and evacuating the 

casualty, while following appropriate battlefield doctrine. After 

the vMedic training scenarios, participants completed a post-test, 

which included the same series of content assessment items as the 

pre-test. In addition, participants completed two questionnaires 

about their experiences in vMedic: the Intrinsic Motivation 

Inventory (IMI) [30] and Presence Questionnaire [34]. All 

combined study activities lasted approximately one hour. 

During the study, ten separate research stations were configured to 

collect data simultaneously; each station was used by one cadet at 

a time. Each station consisted of an Alienware laptop, a Microsoft 

Kinect for Windows sensor, and an Affectiva Q-Sensor, as well as 

a mouse and pair of headphones. The study room’s layout is 

shown in Figure 2. In the figure, participant stations are denoted 

as ovals. Red cones show the locations of Microsoft Kinect 

sensors, as well as the sensors’ approximate fields of view. The 

dashed line denotes the walking path for the field observers.  

Kinect sensors recorded participants’ physical behavior during the 

study, including head movements and posture shifts. Each Kinect 

sensor was mounted on a tripod and positioned in front of a 

participant (Figure 2). The Kinect integration with GIFT provided 

four data channels: skeleton tracking, face tracking, RGB (i.e., 

color), and depth data. The first two channels leveraged built-in 

tracking algorithms (which are included with the Microsoft Kinect 

for Windows SDK) for recognizing a user’s skeleton and face, 

each represented as a collection of 3D vertex coordinates. The 

RGB channel is a 640x480 color image stream comparable to a 

standard web camera. The depth channel is a 640x480 IR-based 

image stream depicting distances between objects and the sensor.  

Q-Sensors recorded participants’ physiological responses to 

events during the study. The Q-Sensor is a wearable arm bracelet 

that measures participants’ electrodermal activity (i.e., skin 

conductance), skin temperature, and its orientation through a 

built-in 3-axis accelerometer. However, Q-Sensor logs terminated 

prematurely for a large number of participants, necessitating 

additional work to determine the subset of field observations that 

are appropriate to predict with Q-Sensor-based features. Inducing 

Q-Sensor-based affect detectors will be an area of future work. 

 

Figure 1. vMedic learning environment. 
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Figure 2. Study room layout. 

2.2 Quantitative Field Observations (QFOs) 
We obtain ground-truth labels of affect using Quantitative Field 

Observations (QFOs), collected using the Baker-Rodrigo-

Ocumpaugh Monitoring Protocol (BROMP) [23]. This is a 

common practice for interaction-based detection of affect (e.g. 

[3], [24]).  Much of the work to date for video-based affect 

detection, by contrast, has focused on modeling emotion labels 

that are based on self-reports ([10], [16]), or labels obtained 

through retrospective judgments involving freeze-frame video 

analysis [11]. It has been argued that BROMP data is easier to 

obtain and maintain reliability for under real-world conditions 

than these alternate methods [23], being less disruptive than self-

report, and easier to gain full context than video data. 

To be considered BROMP-certified, a coder must achieve inter-

rater reliability of Kappa >= 0.6 with a previously BROMP-

certified coder. BROMP has been used for several years to study 

behavior and affect in educational settings ([3], [4], [27]), with 

around 150 BROMP-certified coders as of this writing, and has 

been used as the basis for successful automated detectors of affect 

([3], [24]). Observations in this study were conducted by two 

BROMP-certified coders, the 2nd and 6th authors of this paper. 

Within the BROMP protocol, behavior and affective states are 

coded separately but simultaneously using the Human Affect 

Recording Tool (HART), an application developed for the 

Android platform (and freely available as part of the GIFT 

distribution). HART enforces a strict coding order determined at 

the beginning of each session. Learners are coded individually, 

and coders are trained to rely on peripheral vision and side 

glances in order to minimize observer effects. The coder has up to 

20 seconds to categorize each trainee’s behavior and affect, but 

records only the first thing he or she sees. In situations where the 

trainee has left the room, the system has crashed, where his or her 

affect or behavior do not match any of the categories in the 

current coding scheme, or when the trainee can otherwise not be 

adequately observed, a ‘?’ is recorded, and that observation is 

eliminated from the training data used to construct automated 

detectors. 

In this study, the typical coding scheme used by BROMP was 

modified to accommodate the unique behaviors and affect that 

was manifest for this specific cadet population and domain. 

Affective states observed included frustration, confusion, engaged 

concentration, boredom, surprise and anxiety. Behavioral 

categories consisted of on-task, off-task behaviors, Without 

Thinking Fastidiously behavior [33], and intentional friendly fire 

(these last two categories will not be discussed in detail, as they 

were rare). 

In total, 3066 BROMP observations were collected by the two 

coders. Those observations were collected over the full length of 

the cadets’ participation in the study, including when they were 

answering questionnaires on self-efficacy, completing the pre and 

post-tests, reviewing PowerPoint presentations, and using vMedic. 

For this study, we used only the 755 observations that were 

collected while cadets were using vMedic. Of those 755 

observations, 735 (97.35%) were coded as the cadet being on-

task, 19 (2.52%) as off-task, 1 (0.13%) as Without Thinking 

Fastidiously, and 0 as intentional friendly fire. Similarly, 435 

(57.62%) of the affect labels were coded as concentrating, 174 

(23.05%) as confused, 73 (9.67%) as bored, 32 (4.24%) as 

frustrated, 29 (3.84%) as surprised and 12 (1.59%) as anxious. 

3. INTERACTION-BASED DETECTORS 
The BROMP observations collected while cadets were using 

vMedic were used to develop machine-learned models to 

automatically detect the cadet’s affective states. In this section, we 

discuss our work to develop affect detectors based on cadets’ 

vMedic interactions logs. 

3.1 Data Integration 
In order to generate training data for our interaction-based affect 

detectors, trainee actions within the software were synchronized 

to field observations collected using the HART application. 

During data collections, both the handheld computers and the 

GIFT server were synchronized to the same internet NTP time 

server. Timestamps from both the HART observations and the 

interaction data were used to associate each observation to the 

actions that occurred during the 20 seconds window prior to data 

entry by the observer. Those actions were considered as co-

occurring with the observation. 

3.2 Feature Distillation 
For each observation, we distilled a set of 38 features that 

summarized the actions that co-occurred with or preceded that 

observation. Those features included: changes in the casualty, 

both recent and since injury, such as changes in blood volume, 

bleed rate and heart rate; player states in terms of attacker, such as 

being under cover and being with the unit; the number of time 

specific actions, such as applying a tourniquet or requesting a 

security sweep, were executed; and time between actions. (see [5] 

for a more complete list of features.) 

3.3 Machine Learning Process 
Detectors were built separately for each affective state and 

behavioral constructs. For example a detector was used to 

distinguish observations of boredom from observations that were 

not boredom. It is worth noting that the construct of engaged 

concentration, was defined during modeling as a learner having 

the affect of concentration and not being off-task, since 

concentrating while being off-task reflects concentration with 

something other than learning within the vMedic game. Only 2 

such observations was found amongst the collected observations. 

Detectors were not developed for off-task behavior, Without 

Thinking Fastidiously behavior, and anxiety due to the low 

number of observations for those construct (19, 1 and 12 

respectively).  

Each detector was validated using 10-fold participant-level cross-

validation. In this process, the trainees are randomly separated 

into 10 groups of equal size and a detector is built using data for 
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each combination of 9 of the 10 groups before being tested on the 

10th group. By cross-validating at this level, we increase 

confidence that detectors will be accurate for new trainees. 

Oversampling (through cloning of minority class observations) 

was used to make the class frequency more balanced during 

detector development. However, performance calculations were 

made with reference to the original dataset. 

Detectors were fit in RapidMiner 5.3 [21] using six machine 

learning algorithms that have been successful for building similar 

detectors in the past ([3], [24]): J48, JRip, NaiveBayes, Step 

Regression, Logistic Regression and KStar. The detector with the 

best performance was selected for each affective state. Detector 

performance was evaluated using two metrics: Cohen’s Kappa [9] 

and A' computed as the Wilcoxon statistic [18]. Cohen’s Kappa 

assesses the degree to which the detector is better than chance at 

identifying the modeled construct. A Kappa of 0 indicates that the 

detector performs at chance, and a Kappa of 1 indicates that the 

detector performs perfectly. A' is the probability that the algorithm 

will correctly identify whether an observation is a positive or a 

negative example of the construct (e.g. is the learner bored or 

not?). A' is equivalent to the area under the ROC curve in signal 

detection theory [18]. A model with an A' of 0.5 performs at 

chance, and a model with an A' of 1.0 performs perfectly. A' was 

computed at the observation level. 

When fitting models, feature selection was performed using 

forward selection on the Kappa metric. Performance was 

evaluated by repeating the feature selection process on each fold 

of the trainee-level cross-validation in order to evaluate how well 

models created using this feature selection procedure perform on 

new and unseen test data. The final models were obtained by 

applying the feature selection to the complete dataset. 

4. POSTURE-BASED DETECTORS 
The second set of affect detectors we built were based on learner 

posture during interactions with vMedic. Kinect sensors produced 

data streams that were utilized to determine learner posture. Using 

machine learning algorithms, we trained models to recognize 

affective states based on postural features. 

4.1 Data Integration 
GIFT has a sensor module that is responsible for managing all 

connected sensors and associated data streams. This includes 

Kinect sensor data, which is comprised of four complementary 

data streams: face tracking, skeleton tracking, RGB channel, and 

depth channel data. Face- and skeleton-tracking data are written to 

disk in CSV format, with rows denoting time-stamped 

observations and columns denoting vertex coordinates. RGB and 

depth channel data are written to disk as compressed binary data 

files. To analyze data from the RGB and depth channels, one must 

utilize the GiftKinectDecoder, a standalone utility that is 

packaged with GIFT, to decompress and render the image data 

into a series of images with timestamp-based file names. Data 

from all four channels can be accessed and analyzed outside of 

GIFT. For the present study, we utilized only vertex data to 

analyze participants’ posture. Each observation in the vertex data 

consisted of a timestamp and a set of 3D coordinates for 91 

vertices, each tracking a key point on the learner’s face (aka face 

tracking) or upper body (aka skeletal tracking). The Kinect sensor 

sampled learners’ body position at a frequency of 10-12 Hz.  

It was necessary to clean the Kinect sensor data in order to 

remove anomalies from the face and skeletal tracking. Close 

examination of the Kinect data revealed periodic, and sudden, 

jumps in the coordinates of posture-related vertices across frames. 

These jumps were much larger than typically observed across 

successive frames, and they occurred due to an issue with the way 

GIFT logged tracked skeletons: recording the most recently 

detected skeleton, rather than the nearest detected skeleton. This 

approach to logging skeleton data caused GIFT to occasionally 

log bystanders standing in the Kinect’s field of view rather than 

the learner using vMedic. In our study, such a situation could 

occur when a field observer walked behind the trainee.  

To identify observations that corresponded to field observers 

rather than participants, Euclidean distances between subsequent 

observations of a central vertex were calculated. The distribution 

of Euclidean distances was plotted to inspect the distribution of 

between-frame movements of the vertex. If the Kinect tracked 

field observers, who were physically located several feet behind 

participants, the distribution was likely to be bimodal. In this case, 

one cluster would correspond to regular posture shifts of a 

participant between frames, and the other cluster corresponded to 

shifts between tracking participants and field observers. This 

distribution could be used to identify a distance threshold for 

determining which observations should be thrown out, as they 

were likely due to tracking field observers rather than participants. 

Although the filtering process was successful, the need for this 

process reveals a challenge to the use of BROMP for detectors 

eventually developed using Kinect or video data. 

In addition to cleaning the face and skeleton mesh data, we 

performed a filtering process to remove data that were 

unnecessary for the creation of posture-based affect detectors. A 

majority of the facial vertices recorded by the Kinect sensor were 

not necessary for investigating trainees’ posture. Of the 91 

vertices recorded by the Kinect sensor, only three were utilized 

for posture analysis: top_skull, head, and center_shoulder. These 

vertices were selected based on prior work investigating postural 

indicators of emotion with Kinect data [16]. 

Finally, HART observations were synchronized with the data 

collected from the Kinect sensor. As was the case for our 

interaction-based sensor, the Kinect data provided by GIFT was 

synchronized to the same NTP time server as the HART data. 

This allowed us to associate field observations with observations 

of face and skeleton data produced by the Kinect sensor. 

4.2 Feature Distillation 
We used the Kinect face and skeleton vertex data to compute a set 

of predictor features for each field observation. The engineered 

features were inspired by related work on posture sensors in the 

affective computing literature, including work with pressure-

sensitive chairs ([10], [11]) and, more recently, Kinect sensors 

[16]. Several research groups have converged on common sets of 

postural indicators of emotional states. For example, in several 

cases boredom has been found to be associated with leaning back, 

as well as increases in posture variance ([10], [11]). Conversely, 

confusion and flow have been found to be associated with 

forward-leaning behavior ([10], [11]). 

We computed a set of 73 posture-related features. The feature set 

was designed to emulate the posture-related features that had 

previously been utilized in the aforementioned posture-based 

affect detection work ([10], [11], [16], [17]). For each of three 

retained skeletal vertices tracked by the Kinect (head, 

center_shoulder, and top_skull), we calculated 18 features based 

on multiple time window durations. These features are analogous 

to those described in [16], and were previously found to predict 

learners’ retrospective self-reports of frustration and engagement: 

 Most recently observed distance 
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• Most recently observed depth (Z coordinate) 

• Minimum observed distance observed thus far 

• Maximum observed distance observed thus far 

• Median observed distance observed thus far 

• Variance in distance observed thus far 

• Minimum observed distance during past 5 seconds 

• Maximum observed distance during past 5 seconds 

• Median observed distance during past 5 seconds 

• Variance in distance during past 5 seconds 

• Minimum observed distance during past 10 seconds 

• Maximum observed distance during past 10 seconds 

• Median observed distance during past 10 seconds 

• Variance in distance during past 10 seconds 

• Minimum observed distance during past 20 seconds 

• Maximum observed distance during past 20 seconds 

• Median observed distance during past 20 seconds 

• Variance in distance during past 20 seconds 

We also induced several net_change features, which are 

analogous to those reported in [11] and [10] using pressure-

sensitive seat data: 

 

net_dist_change[t ] =

head_dist[t ]− head_dist[t −1]+

cen _ shldr _ dist[t ]− cen _ shldr _ dist[t −1]+

top _ skull _ dist[t]− top _ skull _dist[t −1]

    (1)
  

 

 

net_pos_change[t] =

head_pos[t] − head_pos[t −1]+

cen _ shldr _ pos[t] − cen _ shldr _ pos[t −1]+

top _ skull _ pos[t] − top _ skull _ pos[t −1]

    (2)
 

These features were calculated from Kinect vertex tracking data, 

as opposed to seat pressure data. Specifically, the net_dist_change 

feature was calculated as each vertex’s net change in distance 

(from the Kinect sensor) over a given time window, and then 

summed together. The net_pos_change feature was calculated as 

the Euclidean distance between each vertex’s change in position 

over a given time window, and then summed together. Both the 

net_dist_change feature and net_pos_change feature were 

calculated for 3 second and 20 second time windows. 

We also calculated several sit_forward, sit_back, and sit_mid 

features analogous to [10] and [17]. To compute these features, 

we first calculated the average median distance of participants’ 

head vertex from each Kinect sensor. This provided a median 

distance for each of the 10 study stations (see Figure 1). We also 

calculated the average standard deviation of head distance from 

each sensor. Then, based on the station-specific medians and 

standard deviations, we calculated the following features for each 

participant: 

 

sit_forward =

1 if  head_dist ≤ median_dist - st_dev

0 otherwise                                         









   (3)
  

 

 

sit_back =

1 if  head_dist ≥ median_dist + st_dev

0 otherwise                                         









   (4)
 

The sit_mid feature was the logical complement of sit_forward 

and sit_back; if a learner was neither sitting forward, nor sitting 

back, they were considered to be in the sit_mid state. We also 

computed predictor features that characterized the proportion of 

observations in which the learner was in a sit_forward, sit_back, 

or sit_mid state over a window of time. Specifically, we calculated 

these features for 5, 10, and 20 second time windows, as well as 

over the entire session to-date. 

4.3 Machine Learning 
Posture-based detectors of affect were built using a process 

analogous to the one used to build our interaction-based detectors. 

As such, separate detectors were, once again, built for each 

individual affective state and behavioral construct. All 

observations labeled as ‘?’ were removed from the training set as 

they represent observations where the cadet’s affective state or 

behavior could not be determined. 

Each detector was validated using 10-fold participant-level cross-

validation. Oversampling  was used to balance class frequency by 

cloning minority class instances, as was the case when training 

our interaction-based detectors. RapidMiner 5.3 was used to train 

the detectors using multiple different classification algorithms: 

J48 decision trees, naïve Bayes, support vector machines, logistic 

regression, and JRip. When fitting posture-based affect detection 

models, feature selection was, once again, performed through 

forward selection using a process analogous to the one used for 

our interaction-based detectors.  

5. RESULTS 
As discussed above, each of the interaction-based and posture-

based detectors of affect were cross-validated at the participant 

level (10 folds) and performance was evaluated using both Kappa 

and A'. Table 1 summarizes the performance achieved by each 

detector for both the Kappa and A' metrics. 

Performance of our interaction-based detectors was highly 

variable across affective states. The detector of boredom achieved, 

by far, the highest performance (Kappa = 0.469, A' = 0.848) while 

some of the other detectors achieved very low performance. This 

was the case for the confusion detector that performed barely 

above chance level (Kappa = 0.056, A' = 0.552). Detectors of 

Table 1. Performance of each of the interaction-based and posture-based detectors of affect 

Affect Interaction-Based Detectors Posture-Based Detectors 

 Classifier Kappa A’ Classifier Kappa A’ 

Boredom Logistic Regression 0.469 0.848 Logistic Regression 0.109 0.528 

Confusion Naïve Bayes 0.056 0.552 JRip 0.062 0.535 

Engaged Concentration Step Regression 0.156 0.590 J48 0.087 0.532 

Frustration Logistic Regression 0.105 0.692 Support Vec. Machine 0.061 0.518 

Surprise KStar 0.081 0.698 Logistic Regression -0.001 0.493 
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frustration and surprise achieved relatively low Kappa (0.105 and 

0.081 respectively), but good A' (0.692 and 0.698 respectively). 

Performance for engaged concentration achieved a Kappa closer 

to the average (0.156), but below average A' (0.590). 

In general, posture-based detectors performed only slightly better 

than chance, with the exception of the surprise detector, which 

actually performed worse than chance. The boredom detector, 

induced as a logistic regression model, achieved the highest 

predictive performance (Kappa = 0.109, A' = 0.528), induced as a 

logistic regression model. 

6. DISCUSSION 
Across affective states, the posture-based detectors achieved 

lower predictive performance than the interaction-based detectors. 

In fact, the posture-based detectors performed only slightly better 

than chance, and in the case of some algorithms and emotions, 

worse than chance. This finding is notable, given that our distilled 

posture features were inspired largely from the research literature, 

where these types of features have been shown to predict learner 

emotions effectively in other contexts ([10], [11], [16], [17]). For 

example, D’Mello and Graesser found machine-learned classifiers 

discriminating affective states from neutral yielded kappa values 

of 0.17, on average [10]. Their work utilized posture features 

distilled from pressure seat data, including several features 

analogous to those used in our work. Grafsgaard et al. found that 

Pearson correlation analyses with retrospective self-reports of 

affect revealed significant relationships between posture and 

emotion, including frustration, focused attention, involvement, 

and overall engagement. Reported correlation coefficients ranged 

in magnitude from 0.35 to 0.56, which are generally considered 

moderate to large effects [19]. Cooper et al. found that posture 

seat-based features were particularly effective for predicting 

excitement in stepwise regression analyses (R = 0.56), and 

provided predictive benefits beyond log-based models across a 

range of emotions [10]. While the methods employed in each of 

these studies differ from our own, and thus the empirical results 

are not directly comparable, the qualitative difference in the 

predictive value of postural features is notable. 

There are several possible explanations for why our posture-based 

predictors were not more effective. First, our use of BROMP to 

generate affect labels distinguishes our work from prior efforts, 

which used self-reports ([10], [16], [17]) or retrospective video 

freeze-frame analyses [11]. It is possible that BROMP-based 

labels of affect present distinct challenges for posture-based affect 

detection. BROMP labels are based on holistic judgments of 

affect, and pertain to 20-second intervals of time, which may be ill 

matched for methods that depend upon low-level postural features 

to predict emotion. Similarly, much of the work on posture-based 

affect detection has taken place in laboratory settings involving a 

single participant at a time [11], especially prior work using 

Kinect sensors ([16], [17]). In contrast, our study was performed 

with up to 10 simultaneous participants (see Figure 2), introducing 

potential variations in sensor positions and orientations. This 

variation may have introduced noise to our posture data, making 

the task of inducing population-general affect detectors more 

challenging than in settings where data is collected from a single 

sensor. If correct, this explanation underscores the challenges 

inherent in scaling and generalizing sensor-based affect detectors.  

The study room’s setup also limited how sensors could be 

positioned and oriented relative to participants. For example, it 

was not possible to orient Kinect cameras to the sides of 

participants, capturing participants’ profiles, which would have 

made it easier to detect forward-leaning and backward-leaning 

postures. This approach has shown promise in other work, but was 

not a viable option in our study [31]. Had the Kinect sensors been 

positioned in this manner, the video streams would have been 

disrupted by other participants’ presence in the cameras’ fields of 

view.  

Another possible explanation has to do with the population of 

learners that was involved in the study: U.S. Military Academy 

(USMA) cadets. Both BROMP observers noted that the 

population’s affective expressiveness was generally different in 

kind and magnitude than the K-12 and civilian academic 

populations they were more accustomed to studying. Specifically, 

they indicated that the USMA population’s facial and behavioral 

expressions of affect were relatively subdued, perhaps due to 

military cultural norms. As such, displays of affect via movement 

and body language may have been more difficult to recognize 

than would have otherwise been encountered in other populations. 

In general, we consider the study population, BROMP affect 

labels, and naturalistic research setup to be strengths of the study. 

Indeed, despite the difference in how military display affect 

compared to the K-12 and civilian academic population, human 

observers were able to achieve the inter-rater reliability required 

by BROMP (Kappa >= 0.6) [23]. Thus we do not have plans to 

change these components in future work. Instead, we will likely 

seek to revise and enhance the data mining techniques that we 

employ to recognize learner affect, as well as the predictor 

features engineered from raw posture data. In addition, we plan to 

explore the predictive utility of untapped data streams (e.g., Q-

Sensor data, video data). 

It is notable that our interaction-based detectors had a more varied 

performance than had been seen in prior studies using this 

methodology; the detectors were excellent for boredom, and 

varied from good to just above chance for other constructs. It is 

possible that this too is due to the population studied, but may also 

be due to the nature of the features that were distilled in order to 

build the models. For example, the high performance of our 

detector of boredom can be attributed to the fact that one feature, 

whether the student executed any meaningful actions in the 20 

second observation window, very closely matched the trainees' 

manifestation of this affective state. In fact, a logistic regression 

detector trained using this feature alone achieved higher 

performance than our detectors for any of the other affective state 

(Kappa = 0.362, A' = 0.680). It can be difficult to predict, a priori, 

which features will most contribute to the detection of a specific 

affective state. It is also possible that some of the affective states 

for which interaction-based detection was less effective (e.g., 

confusion) simply did not manifest consistently in the interactions 

with the learning environment across different trainees. It is thus 

difficult to determine whether poor performance of detectors for 

some constructs, such as our confusion detector, is due to 

insufficient feature engineering or inconsistent behaviors by the 

trainee. As such, the creation of interaction-based detectors is an 

iterative process, where features are engineered, and models are 

induced and refined, until performance reaches an acceptable 

level, or no improvement in performance is observed, despite 

repeated knowledge-engineering efforts.   

We aim to identify methods to improve the predictive accuracy of 

posture-based detectors in future work. One advantage they 

possess relative to interaction-based detectors is that posture-

based detectors may be more generalizable, since they pertain to 

aspects of learner behavior that are outside of the software itself. 

By contrast, much of the effort invested in the creation of 

interaction-based detectors is specific to the system for which the 
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detectors are created. Features are built to summarize the learner’s 

interaction in the learning environment and, as such, are  

dependent on the system’s user interface. Much of the creation of 

interaction-based detectors must hence be replicated for new 

learning environments, though there have been some attempts to 

build toolkits that can replicate features seen across many 

environments, such as unitizing the time between actions by the 

type of action or problem step (e.g. [28]). 

On the other hand, posture-based detectors are built upon a set of 

features that are more independent of the system for which the 

detectors are designed. The process of creating the features itself 

requires considerable effort when compared with building a set of 

features for interaction-based detectors, such as elaborate efforts 

to adequately clean the data, but at least in principle, it is only 

necessary to develop the methods for doing so once. The same 

data cleaning and feature distillation procedures can be repeated 

for subsequent systems. This is especially useful in the context of 

a generalized, multi-system tutoring framework such as GIFT 

[32]. Although different posture-based affect detectors might need 

to be created for different tutoring systems—due to differences in 

the postures associated with affect for different populations of 

learners, environments and contexts—the posture features we 

computed from the data provided by Kinect sensors will 

ultimately become available for re-use by any tutor created using 

GIFT. This has the potential to considerably reduce the time 

required to build future posture-based affect detectors for learning 

environments integrated with the GIFT architecture. 

7. CONCLUSION 
Interaction-based and posture-based detectors of affect show 

considerable promise for adaptive computer-based learning 

environments. We have investigated their creation and predictive 

performance in the context of military cadets using the vMedic 

serious game for tactical combat casualty care. Interaction-based 

and posture-based detectors capture distinct aspects of learners’ 

affect. Whereas interaction-based detectors capture the 

relationship between affect and its impact on the trainee’s action 

in the learning environment, posture-based detectors capture 

learners’ physical expressions of emotion. 

In our study, we found that interaction-based detectors achieved 

overall higher performance than posture-based detectors. We 

speculate that the relatively weak predictive performance of our 

posture-based affect detectors may be due to some combination of 

the following: the interplay of high-level BROMP affect labels 

and low-level postural features, the challenges inherent in running 

sensor-based affect studies with multiple simultaneous 

participants, and population-specific idiosyncrasies in USMA 

cadets’ affective expressiveness compared to other populations. 

The relative advantages and limitations of both interaction-based 

and posture-based detectors point toward the need for continued 

research on both types. Each type of detector captures different 

aspects of learners’ manifestations of affective state, and many 

open questions remain about feature engineering and the 

predictive ability of each type of detector. 

An important direction for future work will be the integration and 

combination of the two types of detectors presented here. In 

multiple cases, the combination of data modalities for the creation 

of affect detectors has been shown to produce detectors with 

better performance than single-modality detectors ([12], [13], 

[17]). As such, future work will focus on the study of how these 

two channels of information can be combined to produce more 

effective and robust detectors of affect.  

Further research on effective, generalizable predictor features for 

posture-based affect detectors is also needed, as shown by the 

relatively weak predictive performance of existing features 

observed in this study. Complementarily, investigating the 

application of other machine learning algorithms, including 

temporal models, is likely to prove important, given the complex 

temporal dynamics of affect during learning. These directions are 

essential for developing an enhanced understanding of the 

interplay between affect detector architectures, learning 

environments, student populations, and methods for determining 

ground truth affect labels. While significant progress has been 

made toward realizing the vision of robust, generalizable affect-

sensitive learning environments, these findings point toward the 

need for continued empirical research, as well as advances in 

educational data mining methods applicable to affective 

computing. 
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ABSTRACT 
How can we automatically determine which skills must be 
mastered for the successful completion of an online course? 
Large-scale online courses (e.g., MOOCs) often contain a broad 
range of contents frequently intended to be a semester’s worth of 
materials; this breadth often makes it difficult to articulate an 
accurate set of skills and knowledge (i.e., a skill model, or the Q-
Matrix).  We have developed an innovative method to discover 
skill models from the data of online courses. Our method assumes 
that online courses have a pre-defined skill map for which skills 
are associated with formative assessment items embedded 
throughout the online course.  Our method carefully exploits 
correlations between various parts of student performance, as well 
as in the text of assessment items, to build a superior statistical 
model that even outperforms human experts. To evaluate our 
method, we compare our method with existing methods (LFA) 
and human engineered skill models on three Open Learning 
Initiative (OLI) courses at Carnegie Mellon University.  The 
results show that (1) our method outperforms human-engineered 
skill models, (2) skill models discovered by our method are 
interpretable, and (3) our method is remarkably faster than 
existing methods. These results suggest that our method provides 
a significant contribution to the evidence-based, iterative 
refinement of online courses with a promising scalability.  

Keywords 

Online course refinement, skill model discovery, evidence-base 
course engineering, MOOC, Q-matrix 

1. INTRODUCTION 
When designing and implementing large-scale online courses (aka 
MOOCs), defining a set of skills to be learned and having 
individual skills associated with particular part of course contents 
often becomes quite challenging. Making an effective course with 
explicit associations between a necessary set of skills and course 
contents requires intensive cognitive task analysis and time-
consuming evidence-based iterative engineering [1]. Studies show 

how important it is to have data-analytics feedback for course 
improvement and theory development [2-5]. However, cognitive 
task analysis driven by human experts has an issue in its accuracy 
and scalability; applying it for a large-scale online course is often 
impractical.  

Research shows the potential for advanced technologies to 
automatically and semi-automatically discover a set of skills for 
online courses. Learning Factor Analysis (LFA), for example, 
semi-automatically refines a given skill set [6]. However, LFA 
works only when meaningful “features” are given, which 
(usually) requires cognitive task analysis by subject domain 
experts. Other studies apply matrix factorization methods for 
automatic skill set (aka Q-matrix) discovery from students’ 
response data [7, 8]. However, these methods often face the issue 
of interpretability—i.e., providing meaningful feedback to course 
designers and developers based on the machine-generated skill set 
is often troublesome.  

We developed an efficient, practical, and scalable method that we 
call eEPIPHANY, to fully and automatically discover skill sets 
from online course data, which are the combination of the 
assessment item text data (i.e., problem and feedback text 
sentences for assessment items) and student learning interaction 
data. eEPIPHANY is a collection of data-mining techniques to 
automatically refine (or rebuild) a human-crafted set of skills, 
initially given by course designers and developers.  

The most important goal of eEPIPHANY is to provide 
constructive feedback to online course designers and developers 
for iterative course improvement. We assume that our target 
online courses have occasional formative assessments to probe 
students’ competency towards learning objectives. We 
hypothesize that students’ response data and assessment item text 
data both reflect latent skills to be learned, and assessment items 
can be clustered based on those latent skills. To test these 
hypotheses, we implemented eEPIPANY as a combination of the 
matrix factorization to analyze students’ response data and bag-of-
words techniques to analyze course content data. 

The contributions of this work are the following: (1) A new 
problem formulation—We show how to integrate diversified 
information such as student performance and assessment item text 
data. (2) A new algorithm—Our solution, the eEPIPHANY 
algorithm, is scalable and effective for practical use for large-scale 
online course engineering. (3) Evaluation—eEPIPHANY 
outperforms past competitors, including human experts, on 
several, real online course datasets.  
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The goal of this paper is to introduce the eEPIPHANY method 
(section 3) and provide empirical evaluation for its effectiveness 
(section 4). We discuss implications for the application of 
eEPIPHANY to evidence-based online course refinement (section 
5.3). To begin, the next section provides a standard structure of 
our target online courses and various definitions for later 
discussions.  

2. SKILL MODEL FOR ONLINE COURSES 
We assume that our target online courses have occasional low-
stake assessments throughout the course—aka formative 
assessments—to assess students’ competency on target skills. We 
assume that each formative assessment has multiple assessment 
items (i.e., problems to answer), each of which is associated with 
one or more skills.  

We assume that online courses have a pre-defined skill map (often 
called Q-matrix [9, 10]) that shows one-to-many mapping 
between individual skills and one or more assessment items. In 
this paper a mapping between a single skill and multiple 
assessment items in the skill map is called a skill-item association.  

We call a set of skills a skill model. The terms “skill model” and 
“skill map” will be used interchangeably in this paper.  The pre-
defined skill model is therefore called the “default” skill model— 
a human-developed model that is initially guided by authors’ 
intuition in the absence of data, or a human-developed model that 
has been refined based on student data. 

The Open Learning Initiative (OLI) at Carnegie Mellon 
University [11] is an example of an online course platform that 
meets the above-mentioned criteria [12]. OLI courses all have a 
human-crafted “default” skill model that is often recognized as 
semi-optimal, and could always be improved.  

To improve skill models to refine online courses, it becomes 
crucial that the machine-discovered skill models have high 
interpretability so that course designers and developers can make 
sense of the proposed skill model improvements. Our proposed 
method, eEPHIPHANY, discovers accurate and interpretable skill 
models from learning data and assessment item text data.  The 
next section describes details of the eEPHIPHANY method.  

3. eEPIPHANY 
eEPIPHANY is a collection of data mining techniques for 
automatic discovery of skill models from online course data. The 
primary input to eEPIPHANY is a matrix representing a 
chronological record of students’ responses to assessment items, 
called an A-matrix (Figure 6-a). The A-matrix is a three-
dimensional matrix showing a history of attempts on individual 
assessment items made by individual students. Each attempt is a 
vector of binary values representing the correctness of a student’s 
response—0 indicates incorrect and 1 indicates correct.  The A-
matrix contains at most one correct response per student per 
assessment item.  

The goal of eEPIPHANY is to find a skill model (Q-matrix) that 
produces the best prediction of the A-matrix. The predictive 
power is measured by cross-validation. eEPIPHANY can either 
find a Q-matrix by itself or refine a given Q-matrix by the 
following steps: (1) clustering assessment items with latent 
features that would best characterize the similarity in the 
difficulties of assessment items (section 3.1), (2) proposing a new 
skill model by assuming that the above-mentioned cluster of 
assessment items provides a hint for new skills (section 3.2), and 

(3) searching for the best skill model by comparing multiple skill 
model candidates (section 3.3).   

3.1 Feature Extraction 
We have developed two latent-feature extraction strategies: (1) the 
Matrix Factorization (MF) strategy, and (2) the Bag-of-Words 
(BoW) strategy. The goal of feature extraction, regardless of the 
strategy difference, is to generate a two-dimensional matrix, the 
P-Matrix, showing a mapping between assessment items and 
“skill candidates” (Figure 6-d. Also see below).  

3.1.1 Matrix factorization (MF) strategy 
For the MF strategy, the A-matrix is first transformed into the 
difficulty matrix (D-matrix), which is a two-dimensional matrix 
representing an individual student’s difficulty for each assessment 
item. We hypothesize that the record of individual students’ 
performance on assessment items reflect their “difficulties” in 
answering assessment items, and that those students who show a 
similar distribution pattern of difficulties share a similar 
competency on latent skills.  

The item difficulty id, by definition, is computed as id = 1 – 1/d 
where d is the number of attempts made on an assessment item. 
We only include attempts until the first correct attempt is made, 
i.e., id is the length of the vector of attempts in the A-matrix 
(Figure 6-a). We hypothesize that students would more likely skip 
items that look too easy for them hence no difficulties at all. 
Therefore, we defined id as 0 for missing data in the A-Matrix 
(i.e., skipped items).  

The D-matrix is then factorized into U and V matrices (i.e., D = U 
× V) by the Non-Negative Matrix Factorization method [13]. The 
V-matrix is a two-dimensional (assessment item by latent feature) 
matrix. It is therefore a collection of feature vectors, each 
corresponding to an assessment item (Figure 6-b).  

Assessment items in the V-matrix are then clustered by the k-
means method [14], resulting in an F-matrix (Figure 6-c). We 
hypothesize that each cluster in the F-matrix represents a “skill 
candidate” that can be used to construct the P-Matrix (Figure 6-d).  

The P-Matrix is a two-dimensional binary matrix showing which 
assessment item belongs to which skill candidate. The P-matrix 
represents the association of each assessment item to a skill 
candidate. By its nature, in the current eEPIPHANY algorithm, 
each assessment item has an association to at most one skill 
candidate (if any). 

3.1.2 Bag-of-words (BoW) strategy 
The BoW strategy creates the F-matrix directly from a collection 
of item stems (i.e., assessment item text data showing problem and 
feedback texts) for assessment items.  That is, the assessment 
items are clustered by the bag-of-words method using item stems.  

We first transform each assessment item into a set of component 
words from a collection of item stems using a part-of-speech 
tagger, TreeTagger 1 .  We then apply the Latent Dirichlet 
Allocation model (LDA) [15] to cluster assessment items.  
Assessment items are clustered based on the probability of topic 
distribution—i.e., individual assessment items are assigned to the 
topic with the highest topic probability, which results into the F-
Matrix from which the P-Matrix is generated as mentioned above.  

                                                                    
1 www.cis.uni-muenchen.de/~schmid/tools/TreeTagger 
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3.2 Skill Model Construction  
eEPIPHANY refines a given “default” skill model by either 
modifying it or replacing it with a new skill model.  In either case, 
eEPIPHANY first proposes candidates for new skills, and then 
finds the best way to refine the default skill model in terms of the 
accuracy of the data fit.  This subsection describes the former step, 
whereas the latter step is described in section 3.3.  

Given a P-matrix, there are three strategies to refine the “default” 
skill model: (1) Replacing the entire “default” skill model with an 
entirely new skill model, (2) appending new skill-item 
associations to the “default” skill model, (3) splitting given a skill-
item association(s) in the “default” skill model into multiple skill-
item associations.  

3.2.1 Replace Strategy  
To replace the default skill model with an entirely new skill model, 
the P-matrix is straightforwardly converted into the Q-matrix. 
Namely, each skill candidate becomes a new skill. Assessment 
items that are associated with the skill candidate become members 
of the skill-item association for the newly defined skill.  

3.2.2 Append Strategy 
The append strategy adds more skill-item associations to the 
default skill model, while the original skill-item associations in 
the default skill model remain intact. Skill-item associations that 
are being newly added are the same set of skill-item associations 
proposed by the replace strategy. The following example 
illustrates this process (Figure 1): 

Assume that there is a skill-item association ai for a skill si with 
assessment items qi

1…qi
5 in the default skill model.  Also, assume 

that there is a skill candidate c1 and c2 in the P-matrix where c1 
has a skill-item association with assessment items qi

1, qi
2, and qi

3; 
and c2 has a skill-item association with assessment items qi

4 and 
qi

5. The append strategy enters two new skill-item associations, 
one for c1 and another one for c2 into the default skill model. As a 
consequence, the assessment item qi

1, for example, is now 
associated with two skills, si and c1. 

It is worth noting that the skill model produced by the replace 
strategy is the proper subset of the skill model produced by the 
append strategy. The number of skills in the skill model produced 
by the append strategy is the sum of the number of skills in the 
default skill model and the number of skills in the skill model 
produced by the replace strategy. 

3.2.3 Split Strategy 
The split strategy refines the default skill model by individually 
splitting skill-item associations into multiple new skill-item 
associations. These splits are based on skill-item associations in 

the P-Matrix. The following example illustrates this process 
(Figure 2): 

Assume the same situation as mentioned above for the append 
strategy. That is, there is a skill-item association ai for a skill si 
with assessment items qi

1…qi
5 in the default skill model.  Also, 

assume that there is a skill candidate c1 and c2 in the P-matrix 
where c1 has a skill-item association with qi

1, qi
2, and qi

3; and c2 
has a skill-item association with qi

4 and qi
5.  The split strategy 

then replaces the original skill-item association ai with two new 
skill associations ai-1 and ai-2, where ai-1 has c1 as a skill and qi

1, 
qi

2, and qi
3 as associated assessment-items, while ai-2 has c2 as a 

skill and qi
4 and qi

5 as associated assessment-items.  

3.3 Model Search 
We hypothesize that two different types of feature-extraction 
strategies (section 3.1) present pros and cons for our purposes. For 
example, the item stem (i.e., problem sentences and feedback 
messages) might reflect skills necessary to answer the assessment 
item correctly.  On the other hand, the student response data might 
reflect skills that students have actually acquired. The BoW 
strategy might provide better interpretability, but the student 
response data might provide more accurate skill models. The 
BoW strategy can be applied even before the course has been used 
(i.e., before student data is available).  

With the lack of a predictive theory of parameter selection to 
compute the best skill model, eEPIPHANY exhaustively searches 
for the best skill model by comparing all possible skill models 
with different combinations of the following four parameters. The 
comparison is done by the model fit using the Bayesian 
Knowledge Tracing as a predictor:  
(1) The number of components used for the Matrix Factorization 

(NC)—This determines a dimension of the V-matrix.  NC 
reflects the variance in the pattern of student competency over 
the latent features. Although, the greater NC value would result 
in the smaller reconstruction error (i.e., ||D-U*V||), it might 
also result in the over fit to the data (which is penalized in the 
AIC and BIC scores). Nc varies from 10 to the number of 
students, increased by 10 during the model search. 

(2) The number of clusters in k-means (Nk)—We hypothesize that 
each feature is shared by at least five assessment items.  
Therefore, Nk varies from 25 to NQ/5 where NQ is the number 
of assessment items; increased by 25 during the model search.  

(3) The number of topics used for LDA (section 3.1.2) to compute 
the bag-of-words clustering (NT)—Here again, applying the 
same hypotheses as for Nk. NT varies from 25 to NQ/5, 
increased by 25 during the model search.  

(4) The threshold used for the split strategy (β)—Assume that skill 
s is associated with n assessment items, qi,..,qn. Also assume 

 

Figure 1. The append strategy appends new skill-item associations 
to the default skill model 

 

Figure 2. The split strategy breaks given skill-item associations 
into new ones with newly discovered skills 
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that in the P-matrix, these n assessment items are associated 
with k skill candidates, C = <c1,…,ck>. The skill-item 
association for s will be split into new skill-item associations 
with skill candidate c in C, if the number of assessment items 
associate with the skill candidate c is greater than n×β.  β is set 
to 0.05, 0.25, and 0.5 in this order during the model search.   

3.4 Model Interpretation: The DoE Analysis 
The most important goal of the skill-model discovery and 
refinement proposed in the current paper is to improve online 
courses. Providing interpretable feedback based on a machine-
discovered skill model and model refinement is therefore crucial. 
We hypothesize that to achieve this goal, two subgoals must be 
met: (1) to identify what part of the default skill model has been 
improved the most, and (2) to understand the improvement from a 
domain perspective.  

To identify the part of the skill model that has been improved 
most, we analyze the degree of enhancement (DoE) of the 
proposed change in skill models. We hypothesize that the DoE 
would be maximized among a skill(s) for which the accuracy of 
students’ performance prediction improved the most [16]. The 
accuracy of student performance prediction is operationalized as 
the root mean squared error (RMSE) in cross-validation for the 
model-fit evaluation.  

Based on this hypothesis, we identify skills with the most DoE in 
the default skill model MD relative to a refined (i.e., machine-
discovered) skill model MR as follows: 

(1) For each skill si in the default skill model MD, let ID
i be a set 

of assessment items associated with si.  

(2) Find all skills ci
j (j=1,…,ni) in the refined skill model MR that 

are associated with any assessment items in ID
i. 

(3) Compute xID
i, the extended version of ID

i, by adding all 
assessment items associated with any of ci

j to ID
i. 

(4) Compute RMSEsi that is an RMSE in predicting student 
performance on assessment items in xIDi using corresponding 
si in MD as the predictor.  

(5) Compute RMSEci that is an RMSE in predicting student 
performance on assessment items in xIDi using corresponding 
ci

j in MR as a predictor.  

(6) Let di = RMSEsi – RMSEci be the DoE score of skill si 
relative to ci

j.  

(7) Find a skill s in MD with the largest DoE score. The skill s 
has the largest error reduction from MD to MR.  

Once the skill with the largest error reduction is found, the next 
step is to understand what the improvement is about, that is, to 
interpret the machine-discovered model refinement with the focus 
on the skill with the largest error reduction.  

To interpret the proposed model refinement, we use the bag-of-
words analysis in combination with manual inspection of the 
assessment item text.  For each skill-item association in the 
refined skill model, a set of keywords is extracted from the item 
stem (i.e., the combination of text sentences for the items and their 
feedback messages). The χ2 value is computed for individual word 
w appearing in the item stem for a skill-item association k as 
follows [17]:  χ2(k, w) = (aic(k, w) – aict(k, w))2 / aict(k, w) where 
aic(k, w) is the number of assessment items that contains w in k, 
and aict(k, w) is a theoretical implication for aic(k, w), i.e., aict(k, 
w) = aic(k, *) × aic(*, w) / aic(*,*).  The word w is considered as a 
keyword only when aict(k, w) < aic(k, w). 

4. EVALUATION 
To evaluate the efficiency and effectiveness of the eEPIPHANY 
method, we applied it to actual online course data.  

4.1 Data 
Three OLI courses—Computing@CarnegieMellon (C@CM), 
Biology, and Statistics—were used for evaluation. All three 
courses are actively used at Carnegie Mellon University and other 
educational institutions for registered, academic students and in 
open sections for independent learners. Table 1 shows the number 
of students, transactions (i.e., students’ responses to assessment 
items), and unique items; these datasets represent use in academic 
contexts. All these OLI data are available on DataShop [18]. It 
turned out that the C@CM data only contains randomly selected 
students’ data from a larger pool of the OLI data that contains 
more than 1300 academic students enrolled.  

4.2 Method 
For each of the three OLI datasets, we applied eEPIPHANY and 
had it search the best skill model by finding the optimal clustering 
parameters  (section 3.3). During the search we recorded the 
model-fit for three feature-extraction strategies (matrix 
factorization, bag-of-words, and their combination as described in 
section 3.1) crossed over three skill-model construction strategies 
(split, add, and replace as in section 3.2). The model-fit was 
computing by cross-validation using the Bayesian Knowledge 
Tracing technique.  

4.3 Results 
4.3.1 Comparison of feature extraction and 
refinement strategies 
Table 2 shows the best skill models, annotated with the strategies 
and parameters used to discover them. As the table shows, the 
matrix factorization (MF) strategy always outperformed the BoW 
strategy for the three datasets used in the study.  When the MF 
strategy is used, replacing the default skill model with a 
completely new skill model discovered by eEPIPHANY yielded the 
best skill model for all dataset.  

To understand how the size of cluster impacts the quality of the 
resultant skill model, we compared different skill models with 
different sizes measured as the number of skills. Figure 3 plots the 

Table 1. Three OLI datasets used for the evaluation 

 Statistics Biology C@CM 
#Students 1,013 481 100 

#Transactions 538,062 418,344 94,612 
#Unique Items 1,791 916 912 

 

Table 2. ePIPHANY always found better skill model than experts. 
FS: Feature Extraction Strategy, SC: Skill Construction Strategy, 

#S: Number of items 

FS SC #S AIC BIC RMSE 
Statistics     
MF Replace 63 307730 310731 0.447 
BoW Append 143 317808 323802 0.456 
Biology     
MF Replace 86 224944 228514 0.389 
BoW Split 187 228597 236360 0.393 
C@CM     
MF Replace 41 59497 60998 0.364 
BoW Split 137 61648 66661 0.371 

 

Proceedings of the 8th International Conference on Educational Data Mining 104



BIC (Y-axis) against a number of skills (X-axis). In the figure, 
two feature extraction strategies—MF and BoW—are crossed 
three skill-model construction strategies—replace, split, and 
append.   

As the figure shows, it turned out that for any strategy 
combination, the bigger the size of the model (i.e., the number of 
the clusters) the better the model. It can be also seen that the 
replace strategy is relatively better than other two skill-model 
construction strategies (as depicted by more dots towards the 
bottom).  

4.3.2 Comparison with other methods 
Table 3 shows the comparison of the model-fit between skill 
models discovered by LFA, an OLI course designer (OLI), and 
eEPIPHANY (eEPI) on the OLI Statistics course. In DataShop, 
skill models discovered by LFA and human expert only contain 
data from Unit 1.  Therefore, for this analysis, we applied 
eEPIPHANY only to the OLI data from Unit 1.  

The table shows the number of skills (#S) and the number of 
assessment items (Obs.). The model fit was evaluated by AIC, 
BIC, and RMSE scores computed by using Additive Factor Model 
(AFM) [19] and Bayesian Knowledge Tracing (BKT). As shown 
in the table, eEPHIPHANY outperformed human expert (OLI), 

and arguably tied with LFA. We will further discuss this result in 
section 5.3. 

4.3.3 Model interpretation  
Figure 5 shows the skill k153 with the largest DoE score (section 
3.4) in the OLI Biology course. In the figure, the skill k153 in the 
default skill model was associated with four assessment items.  In 
the discovered skill model, these 4 assessment items are 
associated with two skills—c31 and c3.  The newly constructed 
skills c31 and c3 have 16 and 19 assessment items associated 
respectively.  The RMSE is computed for those 35 steps using 
skills in the default skill model.  The RMSE is then re-computed 
using c31 and c3. According the DoE analysis, splitting skill k153 
into two skills c3 and c31 yields the biggest DoE score. This 
addressed the first subgoal of the model interpretation.  
To interpret model improvement, we investigated four assessment 
items associated with k153 in the default skill model to see why 
they were split into two groups. Table 4 shows four assessment 

 

 

Figure 3. MF-replace wins or ties with MF-append: Comparison 
of skill models with different size.  OLI Statistics (top) and 

Biology (bottom) 

Table 3. eEPIPHANY beats human expert on OLI Statistics. The 
analysis contains data only from Unit 1. 

Method #S Obs. AIC BIC RMSE 
AFM      
eEPI 22 75955 72125 80901 0.412 
LFA 28 75955 69108 77984 0.404 
OLI 19 75955 74787 83507 0.418 
BKT      
eEPI 22 75955 74560 75373 0.407 
LFA 28 75955 74343 75378 0.404 
OLI 19 75955 77405 78107 0.414 

 

Table 4. Assessment items involved in the most beneficial skill 
model refinement 

ID(Skill) Assessment item (item stem) 
Q881(c31) The ability or tendency of organisms and cells to 

maintain stable internal conditions is called 
homeostasis (value:A) metabolism (value:B) 
evolution (value:C) emergent property (value:D) 

Q885(c31) Why do organisms maintain fairly steady 
conditions within their cells and bodies? They 
need to keep conditions stable so that they can 
obtain food. (value: A) Organisms just change 
along with whatever is happening in the outside 
world, which is usually quite steady. (value: B) 
They must maintain stable conditions to keep 
their enzymes working and generally to enable 
the chemical reactions of life. (value: C) 
Unstable conditions will destroy the DNA in 
cells; this is the most important risk for a cell 
facing physical or chemical stress. (value: D) 

Q901(c31) An organism or cell exhibits _____ when it 
maintains steady internal conditions despite 
changes in the outer environment. homeostasis 
(value: A) evolution (value: B) natural selection 
(value: C) balance (value: D) 

Q717(c3) Humans maintain a blood pH between 7.35 and 
7.45. In order to maintain homeostasis, how will 
your body respond if your blood pH drops to 
7.0? If your blood pH is 7.0, your body will raise 
your pH. (value: A) If your blood pH is 7.0, your 
body will lower your pH. (value: B) A blood pH 
of 7.0 is close enough to 7.35. Your body won’t 
do anything. (value: C) 
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items and their skill association in the refined skill model. Table 5 
shows the bag-of-words associated with each skill cluster.  

In the default skill model, the skill k153 is to “Define homeostasis 
and explain its role in maintaining life.” All four assessment-items 
related to k153 in the default skill model mention “homeostasis” 
and “sustainable life.” However, a closer look shows that this skill 
is most appropriate for the three out of four assessment items—
Q881, Q885, and Q901.  In the refined skill model, these three 
assessment items are correctly tagged as one skill c31.  

Although the fourth assessment item Q717 relates to homeostasis, 
a closer look shows that learners are being asked to engage in a 
more sophisticated task—i.e., determine (or predict) necessary 
action to achieve homeostasis, which results in a separate 
association with skill c3.  
For those four rows, the machine-generated split is very coherent 
from a subject-matter expert’s perspective.  This satisfies the 
second subgoal of the model interpretation.  

4.3.4 Efficiency 
One of the notable strengths of the eEPIPHANY method is its 
efficiency.  As described in section 3.3, eEPIPHANY searches the 
best skill model by a brute-force search by merely changing the 
number of clusters, which takes linear time O(n). This linear 
computation must be repeated nine times for three different 
feature-extraction strategies crossed with three different skill-
model construction strategies, which still takes O(n).  

The Learning Factor Analysis (LFA) method [6] requires an 
intensive search for each skill (s) over multiple difficulty factors 
(d) that takes O(sd).  

During the evaluation study that used three real OLI course data, 
eEPIPHANY found the best model in 2 to 3 hours per dataset 
running on a single-core personal computer, showing its practical 
potential for actual application to large-scale online course 
improvement.  

5. DISCUSSION 
5.1 Strategy comparison 
Our study showed that using student response data (i.e., the 
number of attempts made on assessment items before a student 
finally made their first correct response) always yields a better 
skill model than using the bag-of-words with item stems. We also 
found that even only using the bag-of-words, eEPIPHANY always 
yields a better skill model than the default skill model that is 
hand-crafted by human experts.  

As for the skill-model construction strategy, the replace strategy 
always discovers the best skill model in our study, suggesting that 

the Matrix Factorization strategy efficiently discovers a latent 
skill model from the student learning data. On the other hand, the 
split strategy always resulted in producing an inferior skill model 
in our study; suggesting that the split strategy hardly improves on 
the human-crafted skill.  
The above observation also implies that eEPIPHANY can actually 
find a better skill model completely automatically without human 
interaction (which is what the replace strategy does) from real 
online course data.  

5.2 Interpretability 
To interpret skill models proposed by the Matrix Factorization 
(MF) strategy is to interpret clusters of assessment items, which is 
often quite challenging. For the purpose of course refinement 
however, interpretability becomes crucial.  
To overcome this issue, while still taking the advantage of the MF 
strategy to produce high-quality skill models, we applied the 
degree of enhancement (DoE) analysis to identify the instance of 
refinement that received the most benefit—i.e., identifying the 
skill that received the largest benefit from skill decomposition. 
We also combined the bag-of-words technique with manual 
inspection. Our study demonstrated that this hybrid technique 
allows course designers to make meaningful interpretations of the 
proposed refinements of the skill model.  
Yet the obvious limitation of the current technique is its 
dependence on manual inspection. We hypothesize that one idea 
to overcome this issue is to combine MF and BoW, namely, to 
expand the V-matrix (Figure 6-b) by adding the bag-of-words 
keyword information as a latent feature, and then applying k-mean 
clustering. The resulting clusters (i.e., the skill candidates) would 
have better interpretability supported by the bag-of-words 
keyword information. Testing this hypothesis is an important 
future study.  

5.3 Implication for evidence-based online 
course refinement 
Our study demonstrated that eEPIPHANY discovers skill models 
that reflect student learning more accurately than human-crafted 
skill models on all three OLI course data. Even though 
eEPIPHANY requires human labor to interpret the discovered 
skill models (with the aid of DoE), it is arguably still less time 
consuming than creating skill models by hand.  Figure 4 depicts 
this argument as a two-dimensional plot.   

We also argue that eEPIPHANY is less labor intensive than LFA, 
because LFA requires human experts to generate the P-Matrix, 
which usually requires time-consuming cognitive task analysis. 
The high demand on human labor might not practical and hence 
might not scale up to apply to large online courses such as OLI. In 
fact, as far as we know, there has been no actual application of 
LFA with human-crafted P-Matrix to OLI courses. In the 
comparison in Table 3, the data for LFA is taken from DataShop 
[18], but LFA for these skill models used other existing skill 
models as P-Matrix (personal communication), therefore, it is not 
actually a fair comparison—LFA shows in this paper does not use 
the P-Matrix created by human experts.  On the other hand, 
eEPHIPHANY automatically discover the P-Matrix from data.  

Nonetheless, as our study has shown, eEPIPHANY and LFA 
discovered equally accurate skill models. We also found that 
different evaluation criteria (i.e., AFM vs. BKT in Table 3) show 
different favors on different search algorithm. LFA uses AFM and 
ePIPHANY uses BKT as a search bias, and that might have 
affected the results.  We have yet to investigate this issue.  

Table 5. Bag of words for a skill (k153) split into two new skills 
(c31 and c3) 

Skill Bag of Words 
k153 homeostasis range internal maintain steady condition 

narrow tendency metabolism raise optimal entitiy 
exhibit sensitive balance chemistry drop world despite 
happening 

c31 steady homeostasis evolutionary stress valid theme 
progress favor module tree ancestor selection adapt 
internal evolution ancestry natural conclusion 
environmental whale 

c3 hazy fundamentally matter space play concept structo 
yet mass nutrient exchange determine sometimes 
dramatically biology rule ability quite period peanut 
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For our core goal—to provide evidence-based feedback for online 
course refinement—our study also suggests that eEPIPHANY can 
be used for a dual purposes with regard to skill model 
improvement: (1) When the online course is initially implemented, 
we should apply eEPIPHANY with the bag-of-words strategy. 
(2) When the online course is actually used and student learning 
data are collected, then we should apply eEPIPHANY with the 
student data to further improve the course.  

The above observations further suggest that authors of online 
courses would not need to create a default skill model at all—
eEPIPHANY can find the default model by itself using the bag-of-
words method.  This rather strong argument must be investigated 
as future research.  

6. CONCLUSION 
We found that eEPIPHANY is an efficient, practical, and quick 
method to automatically discover skill models from online course 
data without human interaction.  Our empirical study showed that 
eEPIPHANY always finds skill models that are better than 
human-crafted skill models used in actual online courses. We also 
demonstrated that eEPIPHANY-crafted skill models have 
reasonable interpretability with the added help of the text analysis 
technique.  

Creating effective online courses often requires intensive, iterative 
system engineering. Studying techniques for automatic skill 
model refinement and its application for evidence-based course 
refinement therefore is a critical research agenda for the 
successful future of online education.   
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Figure 4. eEPIPHANY discovers skill models better than human 

experts and quicker than LFA 
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Figure 5. eEPIPHANY agrees with intuition: Assessment items are plotted in a skill-item association. (a) In the default skill model 

(left), skill k153 are associated with assessment items Q881, Q885, and Q901 in the default skill model).  (b) In the refined skill 
model (right), these three assessment items are associated with two skills (c3 and c31) among others.   In the figure, those other 

skills plotted in the “default” skill model are the ones contained in xID
i (section 3.4).  

 

 
Figure 6. Overview of eEPIPHANY 
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ABSTRACT
Intelligent behavior of adaptive educational systems is based
on student models. Most research in student modeling fo-
cuses on student learning (acquisition of skills). We focus on
prior knowledge, which gets much less attention in model-
ing and yet can be highly varied and have important conse-
quences for the use of educational systems. We describe sev-
eral models for prior knowledge estimation – the Elo rating
system, its Bayesian extension, a hierarchical model, and a
networked model (multivariate Elo). We evaluate their per-
formance on data from application for learning geography,
which is a typical case with highly varied prior knowledge.
The result show that the basic Elo rating system provides
good prediction accuracy. More complex models do improve
predictions, but only slightly and their main purpose is in
additional information about students and a domain.

1. INTRODUCTION
Computerized adaptive practice [14, 22] aims at providing
students with practice in an adaptive way according to their
skill, i.e., to provide students with tasks that are most useful
to them. In this work we focus on the development of adap-
tive systems for learning of facts, particularly on modeling
of prior knowledge of facts.

In student modeling [6] most attention is usually paid to
modeling student learning (using models like Bayesian Knowl-
edge Tracing [4] or Performance Factors Analysis [24]). Mod-
eling of prior knowledge was also studied in prior work [22,
23], but it gets relatively little attention. It is, however, very
important, particularly in areas where students are expected
to have nontrivial and highly varying prior knowledge, e.g.,
in domains like geography, biology, human anatomy, or for-
eign language vocabulary. As a specific case study we use
application for learning geography, which we developed in
previous work [22]. The estimate of prior knowledge is used
in models of current knowledge (learning), i.e., it has im-
portant impact on the ability of the practice system to ask
suitable questions.

We consider several approaches to modeling prior knowledge
and explore their trade-offs. The basic approach (described
in previous work [22]) is based on a simplifying assumption
of homogeneity among students and items. The model uses a
global skill for students and a difficulty parameter for items;
the prior knowledge of a student for a particular item is
simply the difference between skill and difficulty. The model
is basically the Rasch model, where the parameter fitting is
done using a variant of the Elo rating system [9, 25] in order
to be applicable in an online system.

The first extension is to capture the uncertainty in parame-
ter estimates (student skill, item difficulty) by using Bayesian
modeling. We propose and evaluate a particle based method
for parameter estimation of the model. This approach is
further extended to include multiplicative factors (as in col-
laborative filtering [15]) which allows to better model the
heterogeneity among students and items.

The second extension is the hierarchical model which tries to
capture more nuances of the domain by dividing items into
disjoint subsets called concepts (or knowledge components).
The model then computes student skill for each of these
concepts. Since these concept skills are related, they are
still connected by a global skill. With this model we have
to choose an appropriate granularity of used concepts and
find an assignment of items to these concepts. We use both
manually determined concepts (e.g., “continents” in the case
of geography) and concepts learned automatically from the
data [19].

The third extension is a networked model, which bypasses
the choice of concepts by modeling relations directly on the
level of items. This model can be seen as a variation on
previously proposed multivariate Elo system [7]. For each
item we compute the most similar items (based on students’
answers), e.g., in the geography application, knowledge of
Northern European countries is correlated. Prior knowledge
of a student for a particular item is in this model estimated
based on previous answers to similar items (still using the
global skill to some degree).

Extended models are more detailed than the basic model and
can potentially capture student knowledge more faithfully.
They, however, contain more parameters and the parameter
estimation is more susceptible to the noise in data. We com-
pare the described models and analyze their performance on
a large data set from application for learning geography [22].
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The results show that the studied extensions do bring an im-
provement in predictive accuracy, but the basic Elo system
is surprisingly good. The main point of extension is thus
in their additional parameters, which bring an insight into
the studied domain. We provide several specific examples of
such insight.

2. MODELS
Although our focus is on modeling knowledge of facts, in
the description of models we use the common general ter-
minology used in student modeling, particularly the notions
of items and skills. In the context of geography applica-
tion (used for evaluation) items correspond to locations and
names of places and skill corresponds to knowledge of these
facts.

Our aim is to estimate the probability that a student s knows
an item i based on previous answers of students s to ques-
tions about different items and previous answers of other
students to questions about item i. As a simplification we
use only the first answer about each item for each student.

In all models we use the logistic function σ(x) = 1
1+e−x

as a link between a skill and a probability that a student
answers correctly. In the case of multiple-choice questions
the probability can be modeled by a shifted logistic function
σ(x, k) = 1/k + (1 − 1/k) 1

1+e−x , where k is the number of

options. We restrict our attention to online models (models
that are updated after each answer). Such models can adapt
to user behavior quickly and therefore are very useful in
adaptive practice systems.

2.1 Basic Model
The basic model (described in previous work [22] and cur-
rently used in the online application) uses a key assumption
that both students and studied facts are homogeneous. It
assumes that students’ prior knowledge in the domain can
be modeled by a one-dimensional parameter.

We model the prior knowledge by the Rasch model, i.e.,
we have a student parameter θs corresponding to the global
knowledge of a student s of a domain and an item parameter
di corresponding to the difficulty of an item i. The probabil-
ity that the student answers correctly is estimated using a
logistic function of a difference between the global skill and
the difficulty: P (correct |θs, di) = σ(θs − di).

A common approach to the parameter estimation for the
Rasch model is joint maximum likelihood estimation (JMLE).
This is an iterative approach that is slow for large data, par-
ticularly it is not suitable for an online application, where
we need to adjust estimates of parameters continuously.

In previous work [22, 25] we have shown that the parameter
estimation can be done effectively using a variant of the Elo
rating system [9]. The Elo rating system was originally de-
vised for chess rating, but we can use it in student modeling
by interpreting a student’s answer on an item as a “match”
between the student and the item. The skill and difficulty
estimates are updated as follows:

θs := θs +K · (correct − P (correct |θs, di))
di := di +K · (P (correct |θs, di)− correct)

where correct denotes whether the question was answered
correctly and K is a constant specifying sensitivity of the
estimate to the last attempt. An intuitive improvement,
which is used in most Elo extensions, is to use an “uncer-
tainty function” instead of a constant K – the update should
get smaller as we have more data about a student or an item.
We use an uncertainty function U(n) = α/(1+βn), where n
is the number of previous updates to the estimated param-
eters and α, β are meta-parameters.

2.2 Bayesian Model
In the basic model the uncertainty is modeled as a sim-
ple function of number of attempts. Such an approach is a
simplification since some answers are more informative than
others and thus the effect of answers on reduction of uncer-
tainty should be differentiated. This can be done by using a
Bayesian modeling approach. For this model we treat θs, di
and correct as random variables. We can use Bayes’ theorem
for updating our beliefs about skills and difficulties:

P (θs, di|correct) ∝ P (correct|θs, di) · P (θs, di)

We assume that the difficulty of an item is independent of
a skill of a student and thus P (θs, di) = P (θs) · P (di). The
updated beliefs can be expressed as marginals of the condi-
tional distribution, for example:

P (θs|correct) ∝ P (θs)·
∫ ∞

−∞
P (correct|θs, di = y)·P (di = y)dy

In the context of rating systems for games, the basic Elo
system has been extended in this direction, particularly in
the Glicko system [11]. It models prior skill by a normal
distribution and uses numerical approximation to represent
the posterior by a normal distribution and to perform the
update of the mean and standard deviation of the skill dis-
tribution using a closed form expressions. Another Bayesian
extension is TrueSkill [12], which further extends the system
to allow team competitions.

This approach is, however, difficult to modify for new sit-
uations, e.g., in our case we want to use the shifted logis-
tic function (for modeling answers to multiple-choice ques-
tions), which significantly complicates derivation of equa-
tions for numerical approximation. Therefore, we use a more
flexible particle based method to represent the skill distribu-
tion. The skill is represented by a skill vector θs, which gives
the values of skill particles, and probability vector ps, which
gives the probabilities of the skill particles (sums to 1). The
item difficulty is represented analogically by a difficulty vec-
tor di and a probability vector pi. In the following text the
notation psk stands for the k-th element of the vector ps.

The skill and difficulty vectors are initialized to contain val-
ues that are spread evenly in a specific interval around zero.
The probability vectors are initialized to proportionally re-
flect the probabilities of the particles in the selected prior
distribution. During updates, only the probability vectors
change, the vectors that contain the values of the particles
stay fixed. Particles are updated as follows:

psk := psk ·
n∑

l=1

P (correct|θs = θsk, di = dil) · pil

pil := pil ·
n∑

k=1

P (correct|θs = θsk, di = dil) · psk
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After the update, we must normalize the probability vectors
so that they sum to one. A reasonable simplification that
avoids summing over the particle values is:

psk := psk · P (correct|θs = θsk, di = E[di])
pil := pil · P (correct|θs = E[θs], di = dil)

where E[di] (E[θs]) is the expected difficulty (skill) particle
value (i.e. E[di] = di

T · pi). By setting the number of
particles we can trade off between precision on one hand
and speed and memory requirements on the other hand.

Using the described particle model in a real-world applica-
tion would require storing the probabilities for all the par-
ticles in a database. If we assume that our beliefs stay
normal-like even after many observations then we can ap-
proximate each of the posteriors by a normal distribution.
This approach is called assumed-density filtering [17]. Con-
sequently, each posterior can be represented by just two
numbers, the mean and the standard deviation. In this
simplified model, each update requires the generation of
new particles. We generate the particles in the interval
(µ − 6σ, µ + 6σ). Otherwise, the update stays the same
as before. After the update is performed, the mean and
the standard deviation are estimated in a standard way:
µθs := θs

T · ps, σθs := ∥θs − µθs∥2.

The model can be extended to include multiplicative factors
for items (qi) and students (rs), similarly to the Q-matrix
method [1] or collaborative filtering [15]. Let k be the num-
ber of factors, then x passed in to the likelihood function
σ(x) has the form: x = θs − di +

∑k
j=1 qi,j · rs,j . The up-

dates are similar, we only need to track more variables.

2.3 Hierarchical Model
In the next model, which we call ‘hierarchical’, we try to
capture the domain in more detail by relaxing the assump-
tion of homogeneity. Items are divided into disjoint sets –
usually called ‘concepts’ or ‘knowledge components’ (e.g.,
states into continents). In addition to the global skill θs
the model now uses also the concept skill θsc. We use an
extension of the Elo system to estimate the model parame-
ters. Predictions are done in the same way as in the basic
Elo system, we just correct the global skill by the concept
skill: P (correct |θs, θsc, di) = σ((θs + θsc)− di). The update
of parameters is also analogical (U is the uncertainty func-
tion and γ is a meta-parameter specifying sensitivity of the
model to concepts):

θs := θs + U(ns) · (correct − P (correct |θs, θsc, di))
θsc := θsc + γ · U(nsc) · (correct − P (correct |θs, θsc, di))
di := di + U(ni) · (P (correct |θs, θsc, di)− correct)

This proposed model is related to several student model-
ing approaches. It can be viewed as a simplified Bayesian
network model [3, 13, 16]. In a proper Bayesian network
model we would model skills by a probability distribution
and update the estimates using Bayes rule; equations in our
model correspond to a simplification of this computation us-
ing only point skill estimates. Bayesian network model can
also model more complex relationships (e.g., prerequisites),
which are not necessary for our case (fact learning). Other
related modeling approaches are the Q-matrix method [1],
which focuses on modeling mapping between skills and items

(mainly using N : M relations), and models based on knowl-
edge space theory [8]. Both these approaches are more com-
plex than the proposed model. Our aim here is to evaluate
whether even a simple concept based model is sensible for
modeling factual knowledge.

The advantage of the hierarchical model is that user skill is
represented in more detail and the model is thus less sen-
sitive to the assumption of homogeneity among students.
However, to use the hierarchical model, we need to deter-
mine concepts (mapping of items into groups). This can
be done in several ways. Concepts may be specified manu-
ally by a domain expert. In the case of geography learning
application some groupings are natural (continents, cities).
In other cases the construction of concepts is more diffi-
cult, e.g., in the case of foreign language vocabulary it is
not clear how to determine coherent groups of words. It is
also possible to create concepts automatically or to refine
expert provided concepts with the use of machine learning
techniques [5, 19].

To determine concepts automatically it is possible use clas-
sical clustering methods. For our experiments we used spec-
tral clustering method [27] with similarity of items i, j de-
fined as a Spearman’s correlation coefficient cij of correct-
ness of answers (represented as 0 or 1) of shared students
s (those who answered both items). To take into account
the use of multiple-choice questions we decrease the binary
representation of a response r by guess factor to r − 1/k (k
is the number of options). Disadvantages of the automatic
concept construction are unknown number of concept, which
is a next parameter to fit, and the fact that found concepts
are difficult to interpret.

It is also possible to combine the manual and the automatic
construction of concepts [19]. With this approach the man-
ually constructed concepts are used as item labels. Items
with these labels are used as a training set of a supervised
learning method (we used logistic regression with regular-
ization). For the item i, the vector of correlation with all
items cij is used as vector of features. Errors of the used
classification method are interpreted as “corrected” labels;
see [19, 20] for more details.

2.4 Networked Model
The hierarchical model enforces hard division of items into
groups. With the next model we bypass this division by
modeling directly relations among individual items, i.e., we
treat items as a network (and hence the name ‘networked
model’). For each item we have a local skill θsi. For each pair
of items we compute the degree to which they are correlated
cij . This is done from training data or – in the real system
– once a certain number of answers is collected. After the
answer to the item i all skill estimates for all other items j
are updated based on cij . The model still uses the global
skill θs and makes the final prediction based on the weighted
combination of global and local skill: P (correct |θs, θsi) =
σ(w1θs + w2θsi − di). Parameters are updated as follows:

θs := θs + U(ns) · (correct − P (correct |θs, θsi))
θsj := θsj + cij · U(ns) · (correct − P (correct |θs, θsi))

for all items j
di := di + U(ni) · (P (correct |θs, θsi)− correct)
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Figure 1: Illustration of the networked model on European countries. Only the most important edges for
each country are shown.

This model is closely related to multivariate Elo which was
previously proposed in the context of adaptive psychometric
experiments [7].

For illustration of the model, Figure 1 shows selection of the
most important correlations for European countries. Note
that this automatically generated figure contains some nat-
ural clusters as Balkan countries (right), Scandinavian coun-
tries (middle), and well-known1 countries (left).

3. EVALUATION
We provide evaluation of the above described models over
data from an adaptive application for learning facts.

3.1 The Used System and Data
For the analysis we use data from an online adaptive system
slepemapy.cz for practice of geography facts (e.g., names
and location of countries, cities, mountains). The system
estimates student knowledge and based on this estimate it
adaptively selects questions of suitable difficulty [22]. The
system uses a target success rate (e.g., 75 %) and adaptively
selects questions in such a way that the students’ achieved
performance is close to this target [21]. The system uses
open questions (“Where is France?”) and multiple-choice
questions (“What is the name of the highlighted country?”)
with 2 to 6 options. Students answer questions with the use
of an interactive ‘outline map’. Students can also access a
visualization of their knowledge using an open learner model.

Our aim is to model prior knowledge (not learning during
the use of the system), so we selected only the first answers
of students to every item. The used data set contains more
than 1.8 million answers of 43 thousand students. The sys-
tem was originally available only in Czech, currently it is
available in Czech, English, and Spanish, but students are
still mostly from Czech republic (> 85%) and Slovakia (>
10%). The data set was split into train set (30%) and test
set (70%) in a student-stratified manner. As a primary met-
ric for model comparison and parameter fitting we use root
mean square error (RMSE), since the application works with
absolute values of predictions [22] (see [26] for more details
on choice of a metric).

1By students using our system.

3.2 Model Parameters
The train set was used for finding the values of the meta-
parameters of individual models. Grid search was used to
search the best parameters of the uncertainty function U(n).
Left part of Figure 2 shows RMSE of the basic Elo model
on training data for various choices of α and β. We chose
α = 1 and β = 0.06 and we used these values also for derived
models which use the uncertainty function.

Figure 2: Grid searches for the best uncertainty
function parameters α, β (left) and the best parame-
ters w1, w2 of the networked model (right). As can be
seen from different scales, models are more sensitive
to α and β parameters.

Grid search (Figure 2 right) was used also to find the best
parameters w1 = 0.8, w2 = 1 of the networked model. The
train set was also used for computation of correlations. To
avoid spurious high correlations of two items i, j as conse-
quence of lack of common students we set all cij = 0 for
those pairs i, j with less than 200 common students. Corre-
lations computed by this method show stability with respect
to selection of train set. For two different randomly selected
train sets correlation values correlate well (> 0.95). As Fig-
ure 1 shows, the resulting correlations are interpretable.

For the particle-based Bayesian model we can tune the per-
formance by setting the number of particles it uses for es-
timating each distribution. We found out that increasing
the number of particles beyond 100 does not increase per-
formance. For the simplified version, only 10 particles are
sufficient. This is probably due to the way the algorithm
uses the particles (they are discarded after each step).
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Table 1: Comparison of models on the test set.

Model RMSE LL AUC

Elo (α = 1, β = 0.06) 0.4076 −643179 0.7479
Bayesian model 0.4080 −644362 0.7466
Bayesian model (3 skills) 0.4056 −637576 0.7533
Hierarchical model 0.4053 −636630 0.7552
Networked model 0.4053 −636407 0.7552

3.3 Accuracy of Predictions
All the reported models work online. Training of models
(parameters θs, di) continues on the test set but only pre-
dictions on this set are used to evaluate models.

Table 1 shows results of model comparison with respect
model performance metrics. In addition to RMSE we also
report log-likelihood (LL) and area under the ROC curve
(AUC); the main result are not dependent on the choice of
metric. In fact, predictions for individual answers are highly
correlated. For example for the basic Elo model and hier-
archical model most of the predictions (95%) differ by less
than 0.1.

The hierarchical model reported in Table 1 uses manually
determined concepts based on both location (e.g., conti-
nent) and type of place (e.g., country). Both the hierarchical
model and the networked model bring an improvement over
the basic Elo model. The improvement is statistically sig-
nificant (as determined by a t-test over results of repeated
cross-validation), but it is rather small. Curiously, the Par-
ticle Bayes model is slightly worse than the simple Elo sys-
tem, i.e., the more involved modeling of uncertainty does not
improve predictions. The performance improves only when
we use the multiple skill extension. We hypothesize that
the improvement of the hierarchical (resp. multiple skill)
extensions model be more significant for less homogeneous
populations of students. Each skill could then be used to
represent a different prior knowledge group.

RMSE is closely related to Brier score [26], which provides
decomposition [18] to uncertainty (measures the inherent
uncertainty in the observed data), reliability (measures how
close the predictions are to the true probabilities) and reso-
lution (measures how diverse the predictions are).

This decomposition can be also illustrated graphically. Fig-
ure 3 shows comparison of the basic Elo model and the hi-
erarchical model. Both calibration lines (which are near the
optimal one) reflect very good reliability. On the other hand,
histograms reflect the fact that the hierarchical model gives
more divergent predictions and thus has better resolution.

3.4 Using Models for Insight
In student modeling we are interested not just in predictions,
but also in getting insight into characteristics of the domain
or student learning. The advantage of more complex models
may lie in additional parameters, which bring or improve
such insight.

Figure 5 gives comparison of item difficulty for Elo model

Figure 3: Illustration of the Brier score decomposi-
tion for the basic model and the hierarchical model.
Top: reliability (calibration curves). Bottom: reso-
lution (histograms of predicted values).

and Particle Bayes. As we can see, the estimated values of
the difficulties are quite similar. The main difference be-
tween these models is in estimates of uncertainty. The un-
certainty function used in Elo converges to zero faster and
its shape is the same for all items. In Particle Bayes, the
uncertainty is represented by the standard deviation of the
normal distribution. This uncertainty can decrease differ-
ently for each item, depending on the amount of surprising
evidence the algorithm receives, as is shown in Figure 4. The
better grasp of uncertainty can be useful for visualization in
an open learner model [2, 10].

Other extensions (networked, hierarchical, Bayesian with
multiple skills) bring insight into the domain thanks to the
analysis of relations between items, e.g., by identifying most
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Figure 4: Evolution of uncertainties in the Bayes
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Figure 5: Difficulty of countries – the basic Elo model versus the Bayes model.

useful clusters of items. Such results can be used for improv-
ing the behavior of an adaptive educational system. For
example, the system can let the user practice items from
one concept and after reaching mastery move to the next
one. Another possible use of concepts is for automatic con-
struction of multiple-choice questions with good distractors
(falling under the same concept).

We performed evaluation of the hierarchical model with dif-
ferent concepts. We used several approaches for specifying
the concepts manually: based on type (e.g., countries, cities,
rivers), location (e.g., Europe, Africa, Asia) and combina-
tion of the two approaches (e.g, European countries, Euro-
pean cities, African countries). Since we have most students’
answers for European countries, we also considered a data
set containing only answers on European countries. For this
data set we used two sets of concepts. The first is the parti-
tion to Eastern, Western, Northwestern, Southern, Central
and Southeastern Europe, the second concept set is obtained
from the first one by union of Central, Western and Southern
Europe (countries from these regions are mostly well-known
by our Czech students) and union of Southeastern and East-
ern Europe.

We compared these manually specified concepts with auto-
matically corrected and entirely automatically constructed
concepts (as described in Section 2.3; ‘corrected’ concepts
are based on manually specified concepts and are revised
based on the data). The quality of concepts was evaluated
using prediction accuracy of the hierarchical model which
uses these concepts. Table 2 shows the results expressed as
RMSE improvement over the basic model. Note that the
differences in RMSE are necessarily small, since the used
models are very similar and differ only in the allocation of
items to concepts. For the whole data set (1368 items) a
larger number of concepts brings improvement of perfor-
mance. The best results are achieved by manually speci-
fied concepts (combination of location and type of place),
automatic correction does not lead to significantly different
performance. For the smaller data set of European countries
(39 items) a larger number of (both manual and automat-
ically determined) concepts brings worse performance – a

model with too small concepts suffers from a loss of informa-
tion. In this case the best result is achieved by a correction
of manually specified concepts. The analysis shows that the
corrections make intuitive sense, most of them are shifts of
well-known and easily recognizable countries as Russia or
Iceland to block of well-known countries (union of Central,
Western and Southern Europe).

Table 2: Comparison of manual, automatically cor-
rected manual, and automatic concepts. Quality of
concepts is expressed as RMSE improvement of the
hierarchical model with these concepts over the ba-
sic model.

number of RMSE
All items concepts improvement

manual – type 14 0.00132
corrected – type 14 0.00132
manual – location 22 0.00179
corrected – location 22 0.00167
manual – combination 56 0.00235
corrected – combination 56 0.00234
automatic 5 −0.00025
automatic 20 0.00039
automatic 50 0.00057

Europe

manual 3 0.00003
corrected 3 0.00011
manual 6 −0.00015
corrected 6 0.00003
automatic 2 0.00007
automatic 3 0.00004
automatic 5 −0.00019

Models with multiple skills bring some additional informa-
tion not just about the domain, but also about students.
Correlation of concept skills with the global skill range from
-0.1 to 0.5; the most correlated concepts are the ones with
large number of answers like European countries (0.48) or

Proceedings of the 8th International Conference on Educational Data Mining 114



1.5 1.0 0.5 0.0 0.5 1.0
factor 1

states in Germany

regions in Czech Republic

states in USA

South American countries

African countries

Asian countries

European countries

1.5 1.0 0.5 0.0 0.5 1.0
factor 2

1.0 0.5 0.0 0.5 1.0 1.5
factor 3

Figure 6: Boxplots of the item factor values from the Bayesian model (3 factors) grouped by some manually
created concepts.

Asian countries (0.4), since answers on items in these con-
cepts have also large influence on the global skill. Corre-
lation between two clusters skills typically range from -0.1
to 0.1. These low correlation values suggest that concept
skills hold interesting additional information about student
knowledge.

Another view of relations between items is provided by the
Bayesian model with multiplicative factors – this model does
not provide division of items into disjoint sets, but rather de-
termines for each item a strength of its relation to each factor
(based on the data). Figure 6 illustrates how the learned fac-
tors relate to some manually specified concepts. Note that
the results in Table 1 suggest that most of the improvement
in predictive accuracy can be achieved by just these three
automatically constructed factors. We can see that factor 3
discriminates well between countries in Europe and Africa
(Figure 7 provides a more detailed visualization). In the
case of geography the division of items to concepts can be
done in rather natural way and thus the potential applica-
tion of such automatically determined division is limited and
serves mainly as a verification of the method. For other do-
mains (e.g., vocabulary learning) such natural division may
not exist and this kind of model output can be very useful.

Also, note that Factor 2 differentiates between states in
USA and countries on other continents and Factors 1 and 2
have different values for regions in Czech republic and states
in Germany. This evidence supports an assumption that the
model may be able to recognize students with varied back-
ground.

4. DISCUSSION
We have described and compared several student models of
prior knowledge. The models were evaluated over exten-
sive data from application for learning geography. The de-
scribed models should be directly applicable to other online
systems for learning facts, e.g., in areas like biology, human
anatomy, or foreign language vocabulary. For application in
domains which require deeper understanding (e.g., mathe-
matics, physics) it may be necessary to develop extensions
of described models (e.g., to capture prerequisite relations
among concepts).

The results show that if we are concerned only with the ac-
curacy of predictions, the basic Elo model is a reasonable
choice. More complex models do improve predictions in sta-
tistically significant way, but the improvement is relatively

Figure 7: Visualization of the values of the third
factor in the Bayesian model with multiple skills.

small and evenly spread (i.e., individual predictions by dif-
ferent models are very similar).

The improvement in predictions by the hierarchical or net-
worked models may be more pronounced in less homoge-
neous domains or with less homogeneous populations. Nev-
ertheless, if the main aim of a student model is prediction of
future answers (e.g., applied for selection of question), then
the basic Elo model seems to be sufficient. Its performance
is good and it is very simple to apply. Thus, we believe that
it should be used more often both in implementations of
educational software and in evaluations of student models.

The more complex models may still be useful, since improved
accuracy is not the only purpose of student models. De-
scribed models have interpretable parameters – assignment
of items to concepts and better quantification of uncertainty
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of estimates of knowledge and difficulty. These parameters
may be useful by themselves. We can use them to guide the
adaptive behavior of educational systems, e.g., the choice
of questions can be done in such a way that it respects the
determined concepts or at the beginning of the session we
can prefer items with low uncertainty (to have high confi-
dence in choosing items with appropriate difficulty). The
uncertainty parameter is useful for visualization of student
knowledge in open learner models [2, 10]. Automatically
determined concepts may also provide useful feedback to
system developers, as they suggest potential improvements
in user interface, and also to teachers for whom they offer
insight into student’s (mis)understanding of target domain.
Given the small differences in predictive accuracy, future re-
search into extensions of basic models should probably focus
on these potential applications.
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ABSTRACT 

Estimating the prerequisite structure of skills is a crucial issue in 

domain modeling. Students usually learn skills in sequence since 

the preliminary skills need to be learned prior to the complex 

skills. The prerequisite relations between skills underlie the design 

of learning sequence and adaptation strategies for tutoring 

systems. The prerequisite structures of skills are usually studied 

by human experts, but they are seldom tested empirically. Due to 

plenty of educational data available, in this paper, we intend to 

discover the prerequisite structure of skills from student 

performance data. However, it is a challenging task since skills 

are latent variables. Uncertainty exists in inferring student 

knowledge of skills from performance data. Probabilistic 

Association Rules Mining proposed by Sun et al. (2010) is a novel 

technique to discover association rules from uncertain data. In this 

paper, we preprocess student performance data by an evidence 

model. Then the probabilistic knowledge states of students 

estimated by the evidence model are used by the probabilistic 

association rules mining to discover the prerequisite structure of 

skills. We adapt our method to the testing data and the log data 

with different evidence models. One simulated data set and two 

real data sets are used to validate our method. The discovered 

prerequisite structures can be provided to assist human experts in 

domain modeling or to validate the prerequisite structures of skills 

from human expertise. 

Keywords 

Probabilistic association rules mining, Skill structure, Prerequisite, 

DINA, BKT 

1. INTRODUCTION 
In most Intelligent Tutoring Systems (ITSs) and other educational 

environments, learning sequence is an important issue 

investigated by many educators and researchers. It is widely 

believed that students should be capable of solving the easier 

problems before the difficult ones are presented to them, and 

likewise, some preliminary skills should be learned prior to the 

learning of the complex skills. The prerequisite relations between 

problems and between skills underlie the adaptation strategies for 

tutoring and assessments. Furthermore, improving the accuracy of 

a student model with the prerequisite structure of skills has been 

exemplified by [1, 2]. The prerequisite structures of problems and 

skills are in accordance with the Knowledge Space Theory [3] and 

Competence-based Knowledge Space Theory [4]. A student’s 

knowledge state should comply with the prerequisite structure of 

skills. If a skill is mastered by a student, all the prerequisites of 

the skill should also be mastered by the student. If any 

prerequisite of a skill is not mastered by a student, it seems 

difficult for the student to learn the skill. Therefore, according to 

the knowledge states of students, we can uncover the prerequisite 

structure of skills. Most prerequisite structures of skills reported in 

the student modeling literature are studied by domain or cognition 

experts. It is a tough and time-consuming task since it is quite 

likely that the prerequisite structures from different experts on the 

same set of skills are difficult to come to an agreement. Moreover, 

the prerequisite structures from domain experts are seldom tested 

empirically. Nowadays, some prevalent data mining and machine 

learning techniques have been applied in cognition models, 

benefiting from large educational data available through online 

educational systems. Deriving the prerequisite structures of 

observable variables (e.g. problems) from data has been 

investigated by some researchers. However, discovering 

prerequisite structures of skills is still challenging since a 

student’s knowledge of a skill is a latent variable. Uncertainty 

exists in inferring student knowledge of skills from performance 

data. This paper aims to discover the prerequisite structures of 

skills from student performance data. 

2. RELATED WORK 
With the emerging educational data mining techniques, many 

works have investigated the discovery of the prerequisite 

structures within domain models from data. The Partial Order 

Knowledge Structures (POKS) learning algorithm is proposed by 

Desmarais and his colleagues [5] to learn the item to item 

knowledge structures (i.e. the prerequisite structure of problems) 

which are solely composed of the observable nodes, like answers 

to test questions. The results from the experiments over their three 

data sets show that the POKS algorithm outperforms the classic 

BN structure learning algorithms [6] on the predictive ability and 

the computational efficiency. Pavlik Jr. et al. [7] used the POKS 

algorithm to analyze the relationships between the observable 

item-type skills, and the results were used for the hierarchical 

agglomerative clustering to improve the skill model. Vuong et al. 

[8] proposed a method to determine the dependency relationships 

between units in a curriculum with the student performance data 

that are observed at the unit level (i.e. graduating from a unit or 

not). They used the statistic binominal test to look for a significant 

difference between the performance of students who used the 

potential prerequisite unit and the performance of students who 

did not. If a significant difference is found, the prerequisite 

relation is deemed to exist. All these methods above are proposed 
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to discover prerequisite structures of the observable variables. 

Tseng et al. [9] proposed to use the frequent association rules 

mining to discover concept maps. They constructed concept maps 

by mining frequent association rules on the data of the fuzzy 

grades from students’ testing. They used a deterministic method to 

transfer frequent association rules on questions to the prerequisite 

relations between concepts, without considering the uncertainty in 

the process of transferring students’ performance to their 

knowledge. Deriving the prerequisite structure of skills from 

noisy observations of student knowledge is considered in the 

approach of Brunskill [10]. In this approach, the log likelihood is 

computed for the precondition model and the flat model (skills are 

independent) on each skill pair to estimate which model better fits 

the observed student data. Scheines et al. [11] extended causal 

discovery algorithms to discover the prerequisite structure of 

skills by performing statistical tests on latent variables. In this 

paper, we propose to apply a data mining technique, namely the 

probabilistic association rules mining, to discover prerequisite 

structures of skills from student performance data. 

3. METHOD 
Association rules mining [12] is a well-known data mining 

technique for discovering the interesting association rules in a 

database. Let                be a set of attributes (called items) 

and                be a set of records (or transactions), i.e. a 

database. Each record contains the values for all the attributes in I. 

A pattern (called itemset) contains the values for some of the 

attributes in I. The support count of pattern X is the number of 

records in D that contain X, denoted by     . An association rule 

is an implication of the form    , where X and Y are related to 

the disjoint sets of attributes. Two measures are commonly used 

to discover the strong or interesting association rules: the support 

of rule     denoted by         , which is the percentage of 

records in D that contain    , i.e.       ; the confidence 

denoted by          , which is the percentage of records in D 

containing X that also contains Y, i.e.       . The rule     is 

considered strong or interesting if it satisfies the following 

condition: 

))((

))((

minconfYXConf

minsupYXSup




   (1) 

where minsup and minconf denote the minimum support threshold 

and the minimum confidence threshold. The support threshold is 

used to discover frequent patterns in a database, and the 

confidence threshold is used to discover the association rules 

within the frequent patterns. The support condition makes sure the 

coverage of the rule, that is, there are adequate records in the 

database to which the rule applies. The confidence condition 

guarantees the accuracy of applying the rule. The rules which do 

not satisfy the support threshold or the confidence threshold are 

discarded in consideration of the reliability. Consequently, the 

strong association rules could be selected by the two thresholds. 

To discover the skill structure, a database of students’ knowledge 

states is required. The knowledge state of a student is a record in 

the database and the mastery of a skill is a binary attribute with 

the values mastered (1) and non-mastered (0). If skill Si is a 

prerequisite of skill Sj, it is most likely that Si is mastered given 

that Sj is mastered, and that skill Sj is not mastered given that Si is 

not mastered. Thus this prerequisite relation corresponds with the 

two association rules:          and          . If both the 

association rules exist in a database, Si is deemed a prerequisite of 

Sj. To examine if both the association rules exist in a database, 

according to condition (1), the following conditions could be 

used: 
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When condition (2) is satisfied, the association rule           is 

deemed to exist in the database, and when the condition (3) is 

satisfied, the association rule           is deemed to exist in the 

database. Theoretically, if skill Si is a prerequisite of Sj, all the 

records in the database should comply with the two association 

rules. To be exact, the knowledge state              should be 

impossible, thereby               should be 0. According to the 

equations (4) and (5), the confidences of the rules in the equations 

should be 1.0. Since noise always exists in real situations, when 

the confidence of an association rule is greater than a threshold, 

the rule is considered to exist if the support condition is also 

satisfied. We cannot conclude that the prerequisite relation exists 

if one rule exists but the other not. For instance, the high 

confidence of the rule           might be caused by the high 

proportion         in the data. 
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The discovery of the association rules within a database depends 

on the support and confidence thresholds. When the support 

threshold is given a relatively low value, more skill pairs will be 

considered as frequent patterns. When the confidence threshold is 

given a relatively low value, the weak association rules within 

frequent patterns will be deemed to exist. As a result, the weak 

prerequisite relations will be discovered. It is reasonable that the 

confidence threshold should be higher than 0.5. The selection of 

the two thresholds requires human expertise. Given the data about 

the knowledge states of a sample of students, the frequent 

association rules mining can be used to discover the prerequisite 

relations between skills. 

However  a student’s knowledge state cannot be directly obtained 

since student knowledge of a skill is a latent variable. In common 

scenarios, we collect the performance data of students in 

assessments or tutoring systems and estimate their knowledge 

states according to the observed data. The evidence models that 

transfer the performance data of students to their knowledge states 

in consideration of the noise have been investigated for several 

decades. The psychometric models DINA (Deterministic Input 

Noisy AND) and NIDA (Noisy Input Deterministic AND) [13] 

have been used to infer the knowledge states of students from 

their response data on the multi-skill test items. The well-known 

Bayesian Knowledge Tracing (BKT) model [14] is a Hidden 

Markov model that has been used to update students’ knowledge 

states according to the log files of their learning in a tutoring 

system. A Q-matrix which represents the items to skills mapping 

is required in these models. The Q-matrix is usually created by 

domain experts, but recently some researchers [15, 16, 17] 

investigated to extract an optimal Q-matrix from data. Our method 
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assumes that an accurate Q-matrix is known, like the method in 

[11]. Since the noise (e.g. slipping and guessing) is considered in 

the evidence models, the likelihood that a skill is mastered by a 

student can be estimated. The estimated knowledge state of a 

student is probabilistic, which incorporates the probability of each 

skill mastered by the student. Table 1 shows an example of the 

database consisting of probabilistic knowledge states. For 

example, the probabilities that skills S1, S2 and S3 are mastered 

by student “st ” are  .9   .8 and  .9 respectively. 

We discover the prerequisite relations between skills from the 

probabilistic knowledge states of students that are estimated by an 

evidence model. The frequent association rules mining can no 

longer be used to discover the prerequisite relations between skills 

from a probabilistic database. Because any attribute value in a 

probabilistic database is associated with a probability. A 

probabilistic database can be interpreted as a set of deterministic 

instances (named possible worlds) [18], each of which is 

associated with a probability. We assume that the noise (e.g. 

slipping, guessing) causing the uncertainty for different skills is 

mutually independent. In addition, we assume that the knowledge 

states of different students are observed independently. Under 

these assumptions, the probability of a possible world in our 

database is the product of the probabilities of the attribute values 

over all the records in the possible world [18, 19, 20]. For 

example, a possible world for the database in Table 1 is that both 

the knowledge states of the students “st ” and “st2” are  S1=1, 

S2=0, S3=1}, whose probability is about 0.0233 (i.e. 

 .9  .2  .9  .2  .9  .8). The support count of a pattern in a 

probabilistic database should be computed with all the possible 

worlds. Thus the support count is no longer a deterministic 

number but a discrete random variable. Figure 1 depicts the 

probability mass function (pmf) of the support count of pattern 

{S1=1, S2=1} in the database of Table 1. For instance, the 

probability of                  is about 0.7112, which is the sum 

of the probabilities of all the possible worlds in which only one 

record contains the pattern {S1=1, S2=1}. Since there are an 

exponential number of possible worlds in a probabilistic database 

(e.g. 26 possible worlds in the database of Table 1), computing the 

support count of a pattern is expensive. The Dynamic-

Programming algorithm proposed by Sun et al. [20] is used to 

efficiently compute the support count pmf of a pattern. 

Table 1. A database of probabilistic knowledge states 

Student ID Probabilistic Knowledge State 

st1 {S1: 0.9, S2: 0.8, S3: 0.9} 

st2 {S1: 0.2, S2: 0.1, S3: 0.8} 

 

Figure 1. The support count pmf of the pattern {S1=1, S2=1} 

in the database of Table 1 

To discover the prerequisite relations between skills from the 

probabilistic knowledge states of students, the probabilistic 

association rules mining technique [20] is used in this paper, 

which is an extension of the frequent association rules mining to 

discover association rules from uncertain data. Since the support 

count of a pattern in a probabilistic database is a random variable, 

the conditions (2) and (3) are satisfied with a probability. Hence 

the association rules derived from a probabilistic database are also 

probabilistic. We use the formula proposed by [20] to compute the 

probability of an association rule satisfying the two thresholds. It 

can be also interpreted as the probability of a rule existing in a 

probabilistic database. For instance, the probability of the 

association rule           existing in a probabilistic database is 

the probability that the condition (2) is satisfied in the database: 
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           (6) 

where N is the number of records in the database and    denotes 

the support count pmf of pattern X, and  
 
             . 

The probability of the rule related to condition (3) is computed 

similarly. According to formula (6), the probability of an 

association rule changes with the support and confidence 

thresholds. Given the two thresholds, the probability of an 

association rule existing in a probabilistic database can be 

computed. And if the probability is very close to 1.0, the 

association rule is considered to exist in the database. If both the 

association rules related to a prerequisite relation are considered 

to exist, the prerequisite relation is considered to exist. We can 

use another threshold, the minimum probability threshold denoted 

by minprob, to select the most possible association rules. Thus, if 

both                      and                      are 

satisfied, Si is deemed a prerequisite of Sj. When a pair of skills 

are estimated to be the prerequisite of each other, the relation 

between them are symmetric. It means that the two skills are 

mastered or not mastered simultaneously. The skill models might 

be improved by merging the two skills with the symmetric 

relation between them. 

4. EVALUATION 
We use one simulated data set and two real data sets to validate 

our method. The prerequisite structure derived from the simulated 

data is compared with the presupposed structure that is used to 

generate the data, while the prerequisite structure derived from the 

real data is compared with the structure investigated by another 

research on the same dataset or the structure from human 

expertise. Moreover, we adapt our method to the testing data and 

the log data. Different evidence models are used to preprocess the 

two types of data to get the probabilistic knowledge states of 

students. The DINA model is used for the testing data, whereas 

the BKT model is used for the log data. 

4.1 Simulated Testing Data 
Data set. We use the data simulation tool available via the R 

package CDM [21] to generate the dichotomous response data 

according to a cognitive diagnosis model (the DINA model used 

here). The prerequisite structure of the four skills is presupposed 

as Figure 3(a). According to this structure, the knowledge space 

decreases to be composed of six knowledge states, that is ∅, {S1}, 

{S1, S2}, {S1, S3}, {S1, S2, S3}, {S1, S2, S3, S4}. The reduced 

knowledge space implies the prerequisite structure of the skills. 

The knowledge states of 1200 students are randomly generated 

from the reduced knowledge space restricting every knowledge 

state type in the same proportion (i.e. 200 students per type). The 
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simulated knowledge states are used as the input of the data 

simulation tool. There are 10 simulated testing questions, each of 

which requires one or two of the skills for the correct response. 

The slip and guess parameters for each question are restricted to 

be randomly selected in the range of 0.05 and 0.3. According to 

the DINA model with these specified parameters, the data 

simulation tool generates the response data. Using the simulated 

response data as the input of a flat DINA model, the slip and 

guess parameters of each question in the model are estimated and 

the probability of each student’s knowledge on each skill is 

computed. The tool for the parameter estimation of DINA model 

is also available through the R package CDM [21], which is 

performed by the Expectation Maximization algorithm to 

maximize the marginal likelihood of data. 

 

Figure 2. The probabilities of the association rules in the 

simulated data given different confidence or support 

thresholds 

Result. The estimated probabilistic knowledge states of the 

simulated students are used as the input data to discover the 

prerequisite relations between skills. For each skill pair, there are 

two prerequisite relation candidates. For each prerequisite relation 

candidate, we examine if the two corresponding association rules 

         and           exist in the database. The probability 

of an association rule existing in the database is computed 

according to formula (6), which is jointly affected by the selected 

support and confidence thresholds. For the sake of clarity, we look 

into the effect of one threshold leaving the other one unchanged. 

The joint effect of the two thresholds will be discussed in section 

4.4. Giving a small constant to one threshold that all the 

association rules satisfy (perhaps several trials are needed or 

simply assign 0.0), we can observe how the probabilities of the 

association rules change with different values of the other 

threshold. 

Figure 2 (a) and (b) describe how the probabilities of the 

corresponding association rules in the simulated data change with 

different confidence thresholds, where the support threshold is 

given as a constant (0.125 here). When the probability of a rule is 

close to 1.0, the rule is deemed to satisfy the thresholds. All the 

association rules satisfy the support threshold since their 

probabilities are almost 1.0 at first. The rules in the two figures 

corresponding to the same prerequisite relation candidate are 

depicted in the same color. In the figures, when the confidence 

threshold varies from 0.2 to 1.0, the probabilities of the different 

rules decrease from 1.0 to 0.0 in different intervals of threshold 

value. When we choose different threshold values, different sets 

of rules will be discovered. In each figure, there are five rules that 

can satisfy the significantly higher threshold. Given 

minconf=0.78, the probabilities of these rules are almost 1.0 

whereas others are almost 0.0. These rules are very likely to exist. 

Moreover, the discovered rules in the two figures correspond to 

the same set of prerequisite relation candidates. Accordingly, 

these prerequisite relations are very likely to exist. To make sure 

the coverage of the association rules satisfying the high 

confidence threshold, it is necessary to know the support 

distributions of these rules. Figure 2 (c) and (d) illustrate how the 

probabilities of the corresponding association rules change with 

different support thresholds. The confidence threshold is given as 

a constant 0.76, and five association rules in each figure satisfy 

this threshold. Only on these rules, the effect of different support 

thresholds can be observed. In each figure, the rules gather in two 

intervals of threshold value. For example, in Figure 2 (c), to select 

the rules corresponding to r3, r5 and r6, the highest value for the 

support threshold is roughly 0.17, while for the other two rules, it 

is 0.49. If both the confidence threshold and the support threshold 

are appropriately selected, the most possible association rules will 

be distinguished from others. As a result, the five prerequisite 

relations can be discovered in this experiment. 

 

Figure 3. (a) Presupposed prerequisite structure of the skills 

in the simulated data; (b) Probabilities of the association rules 

in the simulated data given minconf=0.76 and minsup=0.125, 

brown squares denoting impossible rules; (c) Discovered 

prerequisite structure 

Figure 3 (b) illustrates the probabilities of the corresponding 

association rules in the simulated data given minconf=0.76 and 

minsup=0.125. A square’s color indicates the probability of the 

corresponding rule. Five association rules in each of the figures 

whose probabilities are almost 1.0 are deemed to exist. And the 

prerequisite relations corresponding to the discovered rules are 

deemed to exist. To qualitatively construct the prerequisite 

structure of skills, every discovered prerequisite relation is 

represented by an arc. It should be noted that the arc representing 
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the relation that S1 is a prerequisite of S4 is not present in Figure 3 

(a) due to the transitivity of prerequisite relation. Consequently, 

the prerequisite structure discovered by our method which is 

shown in Figure 3 (c), is completely in accordance with the 

presupposed structure shown in Figure 3 (a). 

4.2 Real Testing Data 
Data set. The ECPE (Examination for the Certification of 

Proficiency in English) data set is available through the R package 

CDM [21], which comes from a test developed and scored by the 

English Language Institute of the University of Michigan [22]. A 

sample of 2933 examinees is tested by 28 items on 3 skills, i.e. 

Morphosyntactic rules (S1), Cohesive rules (S2), and Lexical rules 

(S3). The parameter estimation tool in the R package CDM [21] 

for DINA model is also used in this experiment to estimate the 

slip and guess parameters of items according to the student 

response data. And with the estimated slip and guess parameters, 

the probabilistic knowledge states of students are assessed 

according to the DINA model, which are the input data for 

discovering the prerequisite structure of skills. 

 

Figure 4. The probabilities of the association rules in the 

ECPE data given different confidence or support thresholds 

Result. The effect of different confidence thresholds on the 

association rules in the ECPE data is depicted in Figure 4 (a) and 

(b) given the support threshold as a constant (0.25 here). In each 

figure, there are three association rules that can satisfy a 

significantly higher confidence threshold than others. The 

maximum value of the confidence threshold for them is roughly 

0.82. And these rules in the two figures correspond to the same set 

of prerequisite relation candidates, that is, r4, r5 and r6. Thus 

these candidates are most likely to exist. It can be noticed that in 

Figure 4 (a) the rule           can satisfy a relatively high 

confidence threshold. The maximum threshold value that it can 

satisfy is roughly 0.74. However, its counterpart in Fig 4 (b), i.e. 

the rule          , cannot satisfy a confidence threshold higher 

than 0.6. When a strong prerequisite relation is required, the 

relation corresponding to the two rules cannot be selected. Only 

when both the two types of rules can satisfy a high confidence, the 

corresponding prerequisite relation is considered strong. Likewise, 

the effect of different support thresholds is shown in Figure 4 (c) 

and (d), where the confidence threshold is given as 0.80. And in 

each figure, only the three association rules which satisfy the 

confidence threshold are sensitive to different support thresholds. 

It can also be found that these rules are supported by a 

considerable proportion of the sample. Even when minsup=0.27, 

all the three rules in each figure satisfy it. According to the figures, 

when the support and confidence thresholds are appropriately 

selected, these rules can be distinguished from others. 

Consequently, the strong prerequisite relations can be discovered. 

Given the confidence and support thresholds as 0.80 and 0.25 

respectively, for instance, the probabilities of the corresponding 

association rules are illustrated in Figure 5 (b). The rules that 

satisfy the two thresholds (with a probability of almost 1.0) are 

deemed to exist, which are evidently distinguished from the rules 

that do not (with a probability of almost 0.0). Three prerequisite 

relations shown in Figure 5 (c) are found in terms of the 

discovered association rules. To validate the result, we compare it 

with the findings of another research on the same data set. The 

attribute hierarchy, namely the prerequisite structure of skills, in 

ECPE data has been investigated by Templin and Bradshaw [22] 

as Figure 5 (a). Our discovered prerequisite structure totally 

agrees with their findings. 

 

Figure 5. (a) Prerequisite structure of the skills in the ECPE 

data discovered by Templin and Bradshaw [22]; (b) 

Probabilities of the association rules in the ECPE data given 

minconf=0.80 and minsup=0.25, brown squares denoting 

impossible rules; (c) Discovered prerequisite structure 

4.3 Real Log Data 
Data set. We use the 2006-2007 school year data of the 

curriculum “Bridge to Algebra” [23] which incorporates the log 

files of 1146 students collected by Cognitive Tutor, an ITS for 

mathematics learning. The units in this curriculum involve distinct 

mathematical topics, while the sections in each unit involve 

distinct skills on the unit topic. A set of word problems is 

provided for each section skill. We use the sections in the units 

“equivalent fractions” and “fraction operations” as the skills (see 

Table 2). There are 560 students in the data set performing to 

learn one or several of the item-type skills in these units. The five 

skills discussed in our experiment are instructed in the given order 

in Table 2. A student’s knowledge of the prior skills has the 

potential to affect his learning of the new skill. Hence, it makes 

sense to estimate whether a skill trained prior to the new skill is a 
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prerequisite of it. If the prior skill Si is a prerequisite of skill Sj, 

students who have mastered skill Sj quite likely have previously 

mastered skill Si, and students not mastering the skill Si quite 

likely learn the skill Sj with great difficulty. Thus if both the rules 

          and           exist in the data, the prior skill Si is 

deemed a prerequisite of skill Sj. 

Table 2. Skills in the curriculum “Bridge to Algebra” 

Skill Example 

S1: Writing equivalent 

fractions 
Fill in the blank: 

63

2
 . 

S2: Simplifying fractions Write the fraction in 

simplest form: 


30

24 . 

S3: Comparing and 

ordering fractions 
Compare the fractions 

4

3  

and 
6

5 . 

S4: Adding and subtracting 

fractions with like 

denominators 


10

3

10

2  

S5: Adding and subtracting 

fractions with unlike 

denominators 


4

1

3

2  

To discover the prerequisite relations between skills, firstly we 

need to estimate the outcomes of student learning according to the 

log data. A student learns a skill by solving a set of problems that 

requires applying that skill. At each opportunity, student 

knowledge of a skill probably transitions from the unlearned to 

learned state. Thus their knowledge should be updated each time 

they go through a problem. The BKT model has been widely used 

to track the dynamic knowledge states of students according to 

their activities on ITSs. In the standard BKT, four parameters are 

specified for each skill [14]: P(L0) denoting the initial probability 

of knowing the skill a priori, P(T) denoting the probability of 

student’s knowledge of the skill transitioning from the unlearned 

to the learned state, P(S) and P(G) denoting the probabilities of 

slipping and guessing when applying the skill. We implemented 

the BKT model by using the Bayes Net Toolbox for Student 

modeling [24]. The parameter P(L0) is initialized to 0.5 while the 

other three parameters are initialized to 0.1. The four parameters 

are estimated according to the log data of students, and the 

probability of a skill to be mastered by a student is estimated each 

time the student performs to solve a problem on that skill. In the 

log data, students learned the section skills one by one and no 

student relearned a prior section skill. If a prior skill Si is a 

prerequisite of skill Sj, the knowledge state of Si after the last 

opportunity of learning it has an impact on learning Sj. We use the 

probabilities about students’ final knowledge state of Si and Sj to 

analyze whether a prerequisite relation exists between them. Thus 

students’ final knowledge states on each skill are used as the input 

data of our method. 

Result. The probabilities of the association rules in the log data 

changing with different confidence thresholds are illustrated in 

Figure 6 (a) and (b) given the support threshold as a small 

constant (0.05 here). In Figure 6 (a), compared with the rules 

          and          , all the other association rules can 

satisfy a significantly higher confidence, while in Figure 6 (b) if 

given minconf=0.6, only three rules satisfy it. The effect of 

different support thresholds on the probabilities of the association 

rules is depicted in Figure 6 (c) and (d) given the confidence 

threshold as a constant (0.3 here). All the association rules satisfy 

the confidence threshold as the probabilities of the rules are 

almost 1.0 at first. In Figure 6 (c), there are six rules that can 

satisfy a relatively higher support threshold (e.g. minsup=0.2). But 

in Figure 6 (d), even given minsup=0.14, only the rule 

          satisfy it, and the maximum value for the support 

threshold that all the rules can satisfy is roughly 0.07.  

 

Figure 6. The Probabilities of the association rules in the 

“Bridge to Algebra 2006-2007” data given different 

confidence or support thresholds 

Given the confidence and support thresholds as 0.6 and 0.1 

respectively, the probabilities of the association rules in the log 

data are depicted in Figure 7 (b). There are eight of the rules in the 

form of           (left) and three of the rules in the form of 

          (right) discovered, whose probabilities to satisfy the 

thresholds are almost 1.0. According to the result, only the three 

prerequisite relations shown in Figure 7 (c), whose corresponding 

rules both are discovered, are deemed to exist. Figure 7 (a) shows 

the prerequisite structure of the five skills from the human 

experts’ opinions. It makes sense that the skills S1 and S2 rather 

than skill S3 are required for learning the skills S4 and S5. This is 

supported by the chapter warm-up content in the student textbook 

of the course [25]. The discovered rules in the form of           

completely agree with the structure from human expertise. But the 

discovered rules in the form of           is inconsistent with it. 

The counterparts of a large part of the discovered rules 

          do not satisfy the confidence threshold. Even reducing 

the confidence threshold to the lowest value, i.e. 0.5, the rules 

          and           still do not satisfy it (see Figure 6 

(b)). It seems that the rules           are more reliable than 
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          since most of the former can satisfy a higher support 

threshold than the latter (see Figure 6 (c) and (d)). In addition, the 

log data is very likely to contain much noise. It is possible that 

some skills could be learned if students take sufficient training, 

even though some prerequisites are not previously mastered. In 

this case, the support count               would increase. Or 

perhaps students learned the prerequisite skills by solving the 

scaffolding questions in the process of learning new skills, even 

though they performed not mastering the prerequisite skills 

before. In this case, the observed values of               would be 

higher than the real values. According to the equations (4) and (5), 

if               increases, the confidence of the rules will 

decrease. And when the noise appears in the data, the confidences 

of the association rules which are supported by a small proportion 

of sample will be affected much more than those supported by a 

large proportion of sample. 

 

Figure 7. (a) Prerequisite structure from human expertise; (b) 

Probabilities of the association rules in the “Bridge to Algebra 

2006-2007” data given minconf=0.6 and minsup=0.1, brown 

squares denoting impossible rules; (c) Discovered prerequisite 

structure 

4.4 Joint Effect of thresholds 
We have discussed the effect of one threshold on the probability 

of association rules while eliminating the effect of the other one in 

the three experiments. To determine the values for the thresholds, 

we investigate how the two thresholds simultaneously affect the 

probability of an association rule. Figure 8 depicts how the 

probabilities of the association rules for the skill pair S2 and S3 in 

the ECPE data change with different support and confidence 

thresholds, where (a) and (c) involve one relation candidate while 

(b) and (d) involve the other one. The figures demonstrate that the 

probability of a rule decreases almost from 1.0 to 0.0 when the 

confidence and support thresholds vary from low to high. It can be 

found that the rules in the left figures can satisfy an evidently 

higher confidence threshold than those in the right figures, and 

have the same support distributions with them. If we set 

minconf=0.8 and minsup=0.25, only the rules in the left figures 

satisfy them. Suppose that a rule satisfy the thresholds if its 

probability is higher than 0.95, i.e. minprob=0.95. When we 

change the values of the confidence and support thresholds from 

0.0 to 1.0, for each rule, we can find a point whose coordinates 

consist of the maximum values of the confidence and support 

thresholds that the rule can satisfy. Finding the optimal point is 

hard and there are probably several feasible points. To simplify 

the computation, the thresholds are given by a sequence of 

discrete values from 0.0 to 1.0. We find the maximum value for 

each threshold when only one threshold affects the probability of 

the rule given the other as 0.0. And for each threshold, minprob is 

given as 0.97, roughly the square root of the original value. The 

found maximum values for the two thresholds are the coordinates 

of the point. The found point is actually an approximately optimal 

point. For convenience, the point is named maximum threshold 

point in this paper. The points for all the rules in the three data 

sets are found by our method as well as plotted in Figure 9 (some 

points overlap). When we set certain values to the thresholds, the 

points located in the upper right area satisfy them and the related 

rules are deemed to exist. For one prerequisite relation, a couple 

of related points should be verified. Only when both of them are 

located in the upper right area, they are considered eligible to 

uncover the prerequisite relation. The eligible points in Figure 8 

and Figure 9 are indicated given the thresholds. 

 

Figure 8. Probabilities of the association rules within the skill 

pair S2 and S3 in the ECPE data given different confidence 

and support thresholds, and their maximum threshold points 

which are eligible (green) or not (red) given minconf=0.8 and 

minsup=0.25 

 

Figure 9. Maximum threshold points for the association rules 

in our three experiments, where eligible points are indicated 

in green given the thresholds 

5. CONCLUSION AND DISCUSSION 
Discovering the prerequisite structure of skills from data is 

challenging in domain modeling since skills are the latent 

variables. In this paper, we propose to apply the probabilistic 

association rules mining technique to discover the prerequisite 

structure of skills from student performance data. Student 

performance data is preprocessed by an evidence model. And then 

the probabilistic knowledge states of students estimated by the 

evidence model are used as the input data of probabilistic 

association rules mining. Prerequisite relations between skills are 

discovered by estimating the corresponding association rules in 

the probabilistic database. The confidence condition of an 

association rule in our method is similar to the statistical 

hypotheses used in the POKS algorithm for determining the 

prerequisite relations between observable variables (see the details 

in [5]). But our method targets on the challenge of discovering the 

prerequisite relations between latent variables from the noisy 

observable data. In addition, our method takes the coverage into 

account (i.e. the support condition), which could strengthen the 

reliability of the discovered prerequisite relations. Determining 

the appropriate confidence and support thresholds is a crucial 

issue in our method. The effect of a single threshold and the joint 

effect of two thresholds on the probabilities of the rules are 
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discussed. The maximum threshold points of the probabilistic 

association rules are proposed for determining the thresholds. We 

adapt our method to two common types of data, the testing data 

and the log data, which are preprocessed by different evidence 

models, the DINA model and the BKT model. An accurate Q-

matrix is required for the evidence models, which is a limitation 

of our method. According to the results of the experiments in this 

paper, our method performs well to discover the prerequisite 

structures from a simulated testing data set and a real testing data 

set. However, applying our method in the log data still needs to be 

improved. Since much noise exist in the log data, the strategies to 

reduce the noise need to be applied. The prerequisite structures of 

skills discovered by our method can be applied to assist human 

experts in skill modeling or to validate the prerequisite structures 

of skills from human expertise.  
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ABSTRACT
The tremendous effectiveness of intelligent tutoring systems is due
in large part to their interactivity. However, when learners are free
to choose the extent to which they interact with a tutoring system,
not all learners do so actively. This paper examines a study with a
natural language tutorial dialogue system for computer science, in
which students interacted with the JavaTutor system through natural
language dialogue over the course of problem solving. We explore
the relationship between students’ level of dialogue interaction and
learner characteristics including personality profile and pre-existing
attitudes toward the learning task. The results show that these
learner characteristics are significant predictors of the extent to
which students engage in dialogue with the tutoring system, as
well as the number of task actions students make. By identifying
students who may not engage with tutoring systems as readily,
this work constitutes a step toward building adaptive systems that
successfully support a variety of students with different attitudes
and personalities.

Keywords
Learner characteristics, personality, disengagement, tutorial dia-
logue

1. INTRODUCTION
Tutorial dialogue systems effectively support learning through rich
natural language dialogue [7,8,14,19]. However, the effectiveness of
tutorial dialogue systems, like other adaptive learning environments,
depends in large part on students’ willingness to interact with them
[18]. Interaction varies tremendously across individual students and
student populations. We observe various types of disengagement
including lack of motivation or interest for the learning task [10], as
well as gaming an intelligent tutor by exploiting properties of the
learning environment [2, 4].

In addition to these factors, individual differences such as self-
reported interest in the task and confidence in learning have been
found to be strong predictors of engagement [6]. Similarly, students’
hidden attitudes toward learning [1] and motivation for the task

[3] may be highly influential. Boredom, which is associated with
reduced motivation to perform the activity [15], has been positively
correlated with attention problems and negatively correlated with
performance. Students’ participation in tutorial dialogue has also
been found to be associated with the students’ expectations [11], and
in human-human tutorial dialogue, student personality traits have
recently been found to be significant factors [16]. However, the field
is far from a full understanding of the factors that influence students’
choices to engage or interact with tutorial dialogue systems.

This paper presents an investigation into the relationship between
student characteristics and interactions with a tutorial dialogue sys-
tem. We hypothesized that students’ personality profile, for example
their tendencies toward extraversion or openness, would be sig-
nificantly associated with the level of natural language interaction
observed within a tutorial dialogue system. We also hypothesized
that students’ attitudes toward the learning task would be a sig-
nificant factor in their interactions with the system. We examine
these hypotheses within a data set of 51 university students inter-
acting with the JavaTutor tutorial dialogue system for introductory
computer science. Regression models were built that predict both
dialogue and task participation by the students, who have the choice
to interact with the dialogue system as little or as much as desired
over the course of the learning tasks. The models demonstrate that
students’ attitudes and personalities are significantly predictive of
their willingness to interact with the tutorial dialogue system. The
findings suggest that some learner characteristics may put students
at risk of low participation with a tutorial dialogue system, and
constitute a first step toward proactively adapting the systems to
benefit these learners.

2. TUTORING STUDY
The JavaTutor tutorial dialogue system (Figure 1) supports students
in solving introductory computer programming problems in the Java
programming language while interacting in textual natural language.
Students are provided with a series of learning tasks that build on
each other to guide the students through creation of a simple text-
based adventure game.1

The study reported here was conducted with the JavaTutor tutorial
dialogue system in 2014. The students (12 female; 39 male; mean
age = 21) were drawn from a university-level engineering class.
They interacted with the tutorial dialogue system for one session
lasting approximately 45 minutes.

1Implementation details of the system are beyond the scope of this
paper but are described in [9].
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Figure 1: Screenshot from the tutorial dialogue system.

Prior to interacting with JavaTutor, students took a pre-survey that
included validated items to measure goal orientation [17], general
self-efficacy [5], confidence in learning computer science and pro-
gramming [13], and personality profile using a concise version of
the Big Five Inventory [12]. Students also completed a pre-test and
posttest before and after their interaction with JavaTutor.

3. ANALYSIS
Students were instructed that they could make comments, pose
questions, and request feedback at any time through textual dialogue.
Overall, students interacting with JavaTutor achieved significant
learning gains from pre-test to posttest (average= 12%, median=
13.4%, stdev = 32%, p = 0.001). However, we observed that 58.8%
of students never made an utterance. For students who did engage
in dialogue with the tutor, the average number of utterances was 5.1
(stdev=7.36, median= 2). Regardless of the extent to which they
chose to engage in natural language dialogue, all students received
some tutorial dialogue utterances based upon the system’s model of
feedback for task events.

Our goal is to identify the factors that may be influential in students’
levels of interaction with the system. To this end, we built multiple
regression models. The remainder of this section describes the
analysis.

3.1 Response Variables
Based upon the logged interaction traces, we extracted dialogue
and task events and used them to compute a numeric representation
of the student’s level of interaction with the system. For dialogue
interaction we utilized the number of utterances written by each
student. The range of number of student utterances was between 0
and 33.

We extracted four features that represent interaction of students
with the system throughout tutoring. The first of these four features
is number of content changes which refers to the changes in the
student’s programming code, as the code they write is referred to as
content pane. We also computed the number of compile events and
number of run activities. The number of compile/run events ranges
from 4 to 224, whereas the number of content changes ranges from
88 to 1099 to complete the series of learning tasks.

Finally, we computed the number of tutor messages each student
received. The tutoring systems provided students with feedback.
The number of messages received is closely related to the number
of actions that triggered tutor feedback, which is also a measure of
participation. The minimum number of tutor messages provided to
any student was 8, whereas the largest number of tutor messages
to a student during a tutoring session was 121. We built separate
multiple regression models to predict level of dialogue interaction
and level of task interaction.

3.2 Predictor Variables
We hypothesized that several learner characteristics were signifi-
cantly associated with level of interaction in the system. We pro-
vided these variables for selection within the models (see Table 1).
All of the predictors were standardized to a common scale before
model building.

Predictor variable Example survey item/ Description
Computer science
confidence I am sure that I can learn programming.

Perceived computer
science usefulness

I’ll need programming for my future
work.

Motivation toward
computer science

Programming is enjoyable and
stimulating to me.

General
self-efficacy

I will be able to achieve most of the
goals that I have set for myself.

Learning goal
orientation

I often look for opportunities to develop
new skills and knowledge.

Performance
demonstration

I like to show that I can perform better
than my coworkers.

Failure avoidance
Avoiding a show of low ability is more
important to me than learning a new

skill.

Achievement goals It is important for me to do better than
other students.

Gender Male/female
Age Age of the student
University class
standing

The year that the student is in the
university

Perception of
student’s own
computer skill

How skilled are you with computers,
compared to the average person?

Extraversion I see myself as someone who is
talkative.

Agreeableness I see myself as someone who is helpful
and unselfish with others.

Conscientiousness I see myself as someone who does a
thorough job.

Neuroticism I see myself as someone who is
depressed, blue.

Openness I see myself as someone who is original,
comes up with new ideas.

Pre-test score Score showing the performance of the
student before tutoring session

Table 1: Predictor variables from pre-survey and pre-test.

3.3 Modeling Level of Participation
We built separate models for each of the response variables (number
of utterances, compile/run events, content changes, received tutor
messages). For each response variable we used the whole dataset
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and selected features via stepwise linear regression. Because the
goal was to investigate relationships between pre-measures (student
characteristics, attitudes) and level of participation, we conducted
descriptive analyses using the entire data set for model building.

The model for number of dialogue utterances (Table 2) revealed that
students’ failure avoidance characteristic is a significant predictor
of tutorial dialogue interactivity. Students who indicated that they
tend to avoid tasks in which they may have higher chance of failure
wrote fewer utterances to the system.

Number of utterances = Coefficient p
Failure Avoidance -0.3089 0.0274
~1 (intercept) 1

RMSE = 0.961
R2 = 0.0954

Table 2: Stepwise linear regression model for the number of utter-
ances.

The model for number of compile/run events during tutoring session
showed that students’ personality scores, particularly the binary
agreeableness score, was a significant predictor of participation from
a task-related perspective. The students who were more agreeable
(indicated as a 1 for the model, rather than a 0) made more task
interactions considering compile/run events as shown in Table 3.
The other regression model having the number of content changes
as a response variable did not produce significant results.

Number of compile/run = Coefficient p
Agreeableness (binarized) 0.2897 0.0392
~1 (intercept) 1

RMSE = 0.967
R2 = 0.0839

Table 3: Stepwise linear regression model for number of compile/run
events.

Another regression model that showed significant results was the
regression model that predicted the number of tutor messages stu-
dents received. Interestingly, both student perceptions (computer
science confidence and motivation) and personality (openness score
from Big Five Inventory) were selected by the model as shown in
Table 4. There was a negative correlation between computer science
confidence and tutor messages, however it was the opposite for com-
puter science motivation. The students who were more motivated to
study computer science interacted more with the system, triggering
more tutor messages. Also, the students who had low confidence to-
wards programming received less tutor feedback. Figure 2 shows the
scatter plots for both computer science motivation and confidence
measures.

Discussion. Understanding how student characteristics are asso-
ciated with tutorial dialogue interaction holds great promise for
identifying possible disengagement types and taking adaptive action
during tutoring sessions to further improve learning effectiveness.
The results of the models indicate that as hypothesized, student
characteristics such as personality profile were significantly predic-
tive of the student’s level of interactivity with the tutorial dialogue
system. We found that students’ attitudes and personalities have
significant relationships with their level of participation in terms of

Number of tutor messages = Coefficient p
Age 0.3802 0.0033
Computer science confidence * -0.5244 0.0008Openness
Computer science motivation 0.5317 0.00006Openness
~1 (intercept) 1

RMSE = 0.739
R2 = 0.52

Table 4: Stepwise linear regression model for number of tutor mes-
sages received.

both dialogue and task.

Another important finding was that although pre-test was present
in all regression models as an independent variable, it was not sig-
nificantly predictive of either the number of utterances or the task
activities. In other words, the level of participation was more cor-
related to student characteristics than to their incoming knowledge.
These results are important for understanding how to better foster
interaction with intelligent tutoring systems. If we can identify
students who tend to participate less or become disengaged, the
system can automatically adapt to these students with scaffolding.
For instance, when a student with low motivation toward the task
is identified, the tutorial dialogue system might put particular em-
phasis on moves that are part of “adjacency pairs,” such as asking
a question and awaiting a student response. Adapting the task may
also be appropriate in these cases. By utilizing information that we
can glean from quick pre-measures, we may be able to significantly
improve the effectiveness of the system.

4. CONCLUSION
Adapting to broader populations with varying characteristics is cru-
cial for increasing the use of intelligent tutoring systems and making
them more effective. A central challenge is determining the factors
that might affect level of participation with intelligent systems. The
current literature is far from totally understanding underlying rela-
tionships between student characteristics and how they affect system
interactions during tutoring. The findings presented here have iden-
tified student characteristics such as level of failure avoidance which
are particularly strongly associated with low interaction.

Several directions of future work are promising. First, incorporating
multiple sources of information such as multimodal features (e.g.,
posture, gesture, eye gaze) can help us better understand students
and respond in real time to engage them in more interactions. Each
of these types of features has been shown to contribute to modeling
student behavior. Additionally, customizing scaffolding to different
learner characteristics is very promising. Modifying the realized
utterances delivered to students based on their personality style,
gender, and skill are likely to improve interactions with the system.
It is important to devise and investigate strategies for learners of
all characteristics in order to better engage students and help them
learn more.
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ABSTRACT 

The phenomenon of wheel spinning refers to students attempting to 

solve problems on a particular skill, but becoming stuck due to an 

inability to learn the skill. Past research has found that students who 

do not master a skill quickly tend not to master it at all. One 

question is why do students wheel spin? A plausible hypothesis is 

that students become stuck on a skill because they do not 

understand the necessary prerequisite knowledge, and so are unable 

to learn the current skill. We analyzed data from the ASSISTments 

system, and determined the impact of how student performance on 

prerequisite skills influenced ability to learn postrequisite skills. 

We found a strong gradient with respect to knowledge of 

prerequisites: students in the bottom 20% of pre-required 

knowledge exhibited wheel spinning behavior 50% of the time, 

while those in the top 20% of pre-required knowledge exhibited 

wheel spinning behavior only 10% of the time. This information is 

a statistically reliable predictor, and considering it results in a 

modest improvement in our ability to detect wheel spinning 

behaviors: R2 improves from 0.264 to 0.268, and AUC improves 

from 0.884 to 0.888. 

Keywords 

Wheel Spinning; Prerequisite; Student Model. 

1. INTRODUCTION 
Many Intelligence Tutoring Systems (ITS) make use of a mastery 

learning framework where students continue practicing a skill until 

they master it.  However, some students are unable to achieve 

mastery despite having numerous opportunities to practice the skill.  

As a result, these students are stuck in the mastery learning cycle 

of the ITS and are given additional problems on a topic they are 

unable to master.  We refer to these students as “wheel spinning” 

on the skill. The term wheel spinning comes from a car that is stuck 

in snow or mud, and despite rapid movement of the wheels, the car 

is going nowhere.  As defined in [1], a student who takes 10 practice 

opportunities without mastering a skill is considered to be wheel 

spinning on this skill. Based on this definition, they also point out 

that about 31% student-skill pairs in CAT and 38% in 

ASSISTments are wheel spinning. This earlier work identified the 

students, but did not provide an explanation for why certain 

students become stuck.  Thus, the next question to address is to 

understand why students wheel spin in order to provide effective 

remediation to those students. 

Beck and Gong [1] developed a model, consisting of 8 features, to 

predict which students will wheel spin on a skill.  They found that 

there is a relationship between wheel spinning and gaming the 

system [12].  Beck and Rodrigo [2] constructed a causal model 

(using non-Western students) that situated wheel spinning in the 

face of affective factors. They found that wheel spinning and 

gaming were strongly related.  This work also presented a path 

model that found gaming was not causal of wheel spinning, but 

rather, wheel spinning was related to a lack of prior knowledge, 

which in turn led to gaming.  A more concrete wheel spinning 

model is developed in [3], in which three aspects of features are 

considered: student in-tutor performance, the seriousness of the 

learner, and general factors. However, these models do not provide 

actionable results for how to make a student less likely to wheel 

spin on a skill, or how to get an already wheel spinning student 

unstuck.   

A natural question is why are some students able to learn a skill and 

achieve mastery, while other students fail to do so?  One plausible 

hypothesis of what makes wheel-spinning students different from 

their peers is a difference in ability to learn the skill.  Students 

certainly differ in cognitive abilities, but addressing such would be 

beyond the scope of most interventions ITS developers can develop.  

Another plausible difference in ability to learn the skill is due to 

differences in student preparation.  For example, if students do not 

understand the concept of equivalent fractions, they will have great 

difficulty mastering the later skill of addition of fractions, which 

requires them to solve problems such as 1/3 + 1/4. 

We define a skill S’s prerequisite skills as those skills necessary to 

be mastered before studying skill S. This prerequisite structure has 

been used to improve different student models in many research 

works. For example, Carmona et al. [4] add a new prerequisite layer 

into student model based on Bayesian Networks. Their experiments 

suggest that the prerequisite relationships can improve the model’s 

efficiency in diagnosing students. Botelho et al. use prerequisite 

structure to estimate students’ initial knowledge for subsequent 

skills [5]. 

Therefore, in this paper, we incorporate the prerequisite structure 

into wheel spinning model, in order to check if prerequisite 

performance has impact in wheel spinning of post-skills. Although 

prior research has proposed automatic algorithms of adapting 

prerequisite structures [6] [7] [8], we instead use a prerequisite 

structure developed by a domain expert.   

As an overview, we abstract students’ prerequisite performance as 

a feature, and then add this feature into the wheel-spinning model 

[1]. Our main points include: 1) determine if there is connection 
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between the prerequisite performance and the wheel spinning of 

post-skill; 2) explore how prerequisite factor would affect wheel 

spinning model; 3) compare the prerequisite factor with another 

possible effect that could cause wheel spinning – students’ general 

learning ability.  The rest paper is organized as following: Section 

2 describes the wheel-spinning model; Section 3 introduces our 

method of how to represent prerequisite performance; results are 

shown in Section 4, and further discussion is in Section 5; 

conclusion and future works are made in Section 6. 

2. WHEEL SPINNING MODEL 
The wheel spinning model used in this work is mainly derived from 

the one in [1], but there are two differences between them, we will 

explain later. This model is fitted using logistic regression 

algorithm in SPSS on the following features: 

a) The number of prior correct responses by the student on this skill. 

This feature is proved useful in the Performance Factors 

Analysis model (PFA) [9]. 

b) The number of problems in a row correctly responded by the on 

the skill prior to the current problem. Since for this paper we are 

operationalizing mastery as 3 correct responses in a row1, the 

number of consecutive correct responses is an important factor.  

The value of this feature is from 0 to 2. 

c) The exponential mean Z-score of response times on this skill. 

The response time for each item is transferred into a Z-score, 

and then exponential mean is calculated for each student by: γ ∗
prior_average + (1 − γ) ∗ new_observation,  with γ = 0.7 

found to work well in practice in prior research, and so we have 

retained it here. 

d) The exponential mean count of rapid guessing. This measures 

how often the student was rapidly guessing. 

e) The exponential mean count of rapid response. This measures 

how often the student took a rapid response. This feature as well 

as the feature (d) reflects how serious the student is learning the 

skill through the tutoring system. Similar features related with 

“gaming” the system were used in gaming detectors as in [10] 

[11] [12].  

f) Count of bottom-out hint. The number of times the student 

reached a bottom-out hint on this skill prior to the current 

problem. 

g) The exponential mean count of 3 consecutive bottom-out-hints. 

This measures how often the student reached bottom out hints 

on 3 consecutive problems. 

h) Skill identification. 

i) Prior response count. 

As aforementioned, the model in our experiments is different from 

the Beck and Gong’s model [1] in two places: one is that we use 

one more feature in the model, the feature b) above; the other is that 

in some experiments, we treat the last feature – prior response count 

– as a covariate, not a factor like in their model. We found this 

parameter’s affect was approximately linear, and thus treating it as 

a covariate made more sense.  We call the model based on these 9 

features the baseline model, and compare it with a model that 

includes the prerequisite performance. 

                                                                 
1 We use this definition for consistency with prior work, and 

for ease of application across systems.  This mastery 

3. METHOD 

3.1 Computing Students’ Performance on 

Skills 
In this paper, our goal is to find the influence of students’ 

prerequisite performance on wheel spinning. So the first step is to 

choose which measure to represent students’ performance on each 

skill. In this work, we regard a student’s percentage of correct 

responses to questions involving a skill to be his performance on 

that skill.  

However, a student could answer correctly, by chance, even though 

this student does not understand the skill at all.  Similarly, a student 

could give the wrong answer through a careless mistake, as in the 

guess and slip parameters in the Knowledge Tracing model [13]. 

These two cases will deviate the student’s performance from 

his/her “true understanding” on the skill, especially if the student 

has very few practices. To deal with these cases, we balance the 

“accidental performance” with student’s overall performance on all 

skill. The formula for calculating a student’s performance on a skill 

𝑖 is: 

Pi =
1

2x
∗ R̅ ∗ Si + (1 −

1

2x) ∗ Ci 

 x: The number of practices on this skill; 

 Si: The percent correctness of skill i, Si =
#correct practices

#overall practices
 (over 

all students). This also reflects the hardness of skill Si. 

 Ci : The student’s percent correctness on skill i , Ci =
#correct practices

#overall practices
 (over the student st1). 

 Ri =
Ci

Si
: This represents how well the student st1 does on skill i 

comparing with the other students. 

 R̅ =
∑ Ri

m
i=1

m
: m is the number of the student’s started skills. 

Table 1. A small sample of students’ practices. 

Student Skill Problem Correct? 

st1 s1 p1 1 

st1 s1 p2 0 

st1 s2 p3 1 

st1 s3 p4 0 

st2 s1 p1 1 

st2 s1 p2 1 

st2 s3 p5 1 

 

Table 2. Calculated skills’ hardness and students’ 

performance according to the data in Table 1. 

Skill Correctness 

Student 

performance 

Normalized 

performance 

st1 st2 st1 st2 

s1 0.75 0.48 1.06 0.45 1 

s2 1.0 0.78 1.67 0.47 1 

s3 0.5 0.28 0.92 0.3 1 

 

criterion is fairly weak, and presumably underestimates the 

amount of wheel spinning. 
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Notice in the formula, the more practices on a skill, the more weight 

is assigned to the performance on this skill. Take the data in Table 

1 as an example. There are in total 4 trials for skill s1, of which 3 

are answered correctly, so its correctness is 0.75.  The correctness 

of the other two skills is: s2, 1.0; s3, 0.5. The student, st1, answered 

two problems of s1, getting one correct and the other incorrect. So 

this student’s correctness of s1 is 0.5, and R1(st1) =
0.5

0.75
= 0.67. 

We can also get that R2(st1) = 1.0, R3(st1) = 0, then R̅(st1) =
0.56. Hence, the student st1’s estimated understanding on the skill 

s1 is: 
1

22 ∗ 0.56 ∗ 0.75 + (1 −
1

22
) ∗ 0.5 = 0.48 . All the 

performance results are shown in Table 2.  Sometimes, a student’s 

adjusted performance is larger than 1, as the student st2’s 

performances on skill s1 and s2. This effect can occur by a student 

doing very well on a very difficult skill.  In this paper, we normalize 

the values to bring them in the range from 0 to 1. 

3.2 Computing Prerequisite Performance 
Once the normalized students’ performances have been computed, 

the next step is to think about how to represent prerequisite 

performances, and then incorporate it into the wheel-spinning 

model.  If a skill has only one pre-required skill, such a 

representation is straightforward:  the student’s adjusted 

performance on that pre-required skill. But what if a skill has 

multiple prerequisites? In our data set, 39 out of 128 skills have 

multiple prerequisites. There are a variety of approaches for 

handling multiple prerequisites.  We chose two different methods 

to compute the prerequisite performance: weakest link and 

weighted by hardness. 

3.2.1 Weakest Link 
This method is based on an assumption that learning a skill requires 

mastery of all its prerequisites. For example, lack knowledge of 

square or square root might not solve the Pythagorean equation. 

Therefore, this method regards the prerequisite skill with the worst 

performance, called weakest link, as the bottom boundary of 

estimation of prerequisite knowledge. 

In this paper, we use the lowest performance value in all 

prerequisite skills as the wheel-spinning model’s input for 

prerequisite performance. For example, in Table 1, if skill s1’s 

prerequisite skills are s2 and s3, then the prerequisite performance 

for student st1 on skill s1 is estimated as 0.3 (normalized).  

3.2.2 Weighted by Hardness 
This method assumes each prerequisite skill has different 

importance in affecting learning a post-skill, and this importance is 

determined by how hard the prerequisite skill is. Thus, we sum up 

a student’s prerequisite performances by assigning a corresponding 

weight to each prerequisite skill, according to the skill hardness. 

Here we define a skill’s hardness to be 1/𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠. Thus, for 

a skill, the representation for its prerequisites is calculated as: 

Pri =
∑ wjPj

n
j=1

∑ wj
n
j=1

 

 n: Number of prerequisites. 

 Pj: A student’s performance on the jth prerequisite. 

 wj =
1

Sj
: The weight assigned into the jth prerequisite. Sjis the 

correctness of this prerequisite. 

Suppose we also have the skill s1’s prerequisites are s2 and s3, then 

using the data from Table 1 the student st1’s prerequisite 

performance on skill s1 is:  

0.47 ∗
1

1
+ 0.3 ∗

1

0.5
1

1
+

1

0.5

= 0.36 

Respectively, the student st2’s prerequisite representation value for 

s1 is 1.  

3.3 Defining General Learning Ability 
Our approach is to construct a variable, which we refer to as 

General Learning Ability (GLA), that encapsulates some of the 

constructs like diligence, home support, raw ability, and so on.  

GLA refers to a student’s latent ability that affects his ability to 

learn new skill, similar in spirit to the unidimensional trait in Item 

Response Theory (IRT) [14]. In IRT, a student’s trait is assumed 

measurable; it is measured through a series of adaptive questions 

given by a tutoring system. 

To simplify our work, we measure student’s general learning ability 

as following steps: 

a) For each student-skill pair, randomly select the other two started 

skills. Here a started skill means the student has practiced at least 

one problem on it; 

b) Compute the performance values for the two skills, as described 

in Section 3.1; 

c) Take the average of those two performance values as the general 

learning ability for this student-skill pair. 

Our intuition in defining GLA in this manner is that if the reason 

for WH’s strong gradient with wheel spinning (Figure 3) is due to 

the knowledge of the prerequisite being important, we would 

expect GLA to perform poorly.  However, if the power of WH 

comes not from estimating a particular aspect of student knowledge, 

but rather than providing a proxy measurement for a student’s 

general ability and willingness to learn, we would expect estimating 

the student’s knowledge of two random skills would work as well.  

We chose to use two random skills since that was the average 

number of prerequisites, and we wanted to avoid issues with one 

measure having lower variability (and hence higher reliability) 

simply by being an aggregate of more skills. One potential 

drawback of our approach is that two skills is a small number, and 

in some cases will certainly provide an over- or under-estimate of 

knowledge for a particular student.  However, since our sample size 

is large enough, 48256 student-skill pairs in total, this approach is 

unlikely to produce skewed results.   

4. RESULTS 

4.1 Data Set 
The data in this work is from ASSISTments. We tracked all 

ASSISTments students when they used the system to practice Math 

problems for almost a full year from September 2010 to July 2011. 

This data set contains 7591 different students, and we randomly 

select 4976 of the students (about 2/3 of students) to form our 

training data set, while the other students comprise the testing data. 

There are 31301 student-skill pairs in the training set and 16955 in 

the testing set. In this work, we consider students who fail to 

achieve mastery within 10 practice opportunities for a skill 

(including indeterminate cases [1]) as wheel spinning, which 

results in 20.6% instances in the training set as wheel spinning and 

19.2% in the testing set. 
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Figure 1. Distribution of number of started prerequisite skills 

in training set and testing set. 

In the training data, there are 177713 problems solved by the 

students, while 97768 problems in testing data. These problems 

cover 128 different skills. In the training and testing set, students 

learn different skills. The maximum number of learned skills by a 

student is 61, and the average is 6.4. As aforementioned, the 

prerequisite-to-post skill structure is defined by domain expert as a 

recommended sequence of topics for instructors. Among the skills 

in our data set, 66 skills have at least one prerequisite. Some skills 

have multiple prerequisites, the max number of prerequisites is 8, 

and the average is 2.4. 

However, it is the teacher’s choice which skills and in which order 

to assign to students. Consequently, the majority of student-skill 

pairs do not have any started prerequisite skills in our data set, as 

shown in Figure 1. Apparently (and understandably), teachers are 

less likely to assign review material than to focus on new topics. 

The maximum number of started prerequisites is 4, and the average 

is only 0.37. Thus, our experiments will run over three different 

data sets: 

 D1: the whole data set, as depicted in Figure 1, which is splitted 

into training and testing set. 

 D2: the prerequisite data set. This data set excludes the skills 

that have no prerequisite skills, as identified by the domain 

expert, from D1. Thus, it is comprised of the points on the x-

axis in Figure 1 corresponding to 0, 1, 2, 3 and 4. It is also 

splitted into training and testing set, and its training set is 

constructed from the training set in D1 by removing the non-

prerequisite skills, while its testing set from testing set in D1 

respectively. 

 D3: the started prerequisite data set, and includes only student-

skill pairs where the student has at least begun one of the 

prerequisites.  This data set excludes the skills that have no 

started prerequisite skills from D2.  Thus, it is comprised of the 

points on the x-axis in Figure 1 corresponding to 1, 2, 3 and 4.  

Similarly, its training (testing) set is generated from training 

(testing) set in D2 by removing non-started-prerequsite skills. 

 

The reason for these three datasets is that they answer different 

research questions.  D1 enables us to investigate the impact of 

prerequisite performance on wheel spinning in an already-existing 

system in a real-world deployment.  That is, how much benefit 

would we see in the current usage context of the tutor.  

Unfortunately, that real-world deployment involves teachers 

assigning no work on most prerequisites, and thus no information 

about student prerequisite knowledge is available to the model.  D2 

enables us to examine where there is at least potential benefit.  D3 

enables us to answer questions about whether a system that had 

fuller information about prerequisite would perform better at 

detecting wheel spinning.  D3 lets us consider possible changes to 

policy where teachers are more willing to assign review work, or 

a system is better able to access past student performance to assess 

prior knowledge.   

 

4.2 Prerequisite Effect on Wheel Spinning 

4.2.1 The Gradient of the Wheel Spinning Ratio  
In order to determine how likely a student will be to wheel spin on 

a skill based on his corresponding prerequisite performance value, 

we focus on the training set of D3.  We separate D3 into 5 bins 

according to the prerequisite performance value, calculated by the 

method weighted by hardness. The wheel spinning ratio in each bin 

is shown in Figure 2, named WS Ratio - WH.  

As observed in the figure, there is a strong gradient with respect to 

the prerequisite performance: students in the bottom 20% of pre-

required knowledge exhibited wheel spinning behavior 50% of the 

time, while those in the top 20% of pre-required knowledge 

exhibited wheel spinning behavior only 10% of the time. This 

expresses strong evidence supporting our hypothesis that student’s 

wheel spinning on post-skill results from poor preparation for 

future learning in terms of prerequisite knowledge [15]. 

 

Figure 2. Wheel spinning ratio according with respect to 

prerequisite knowledge and general learning ability on D3. 

 

4.2.2 Changes in the Model 
To test the impact of prerequisite features, we integrated them into 

the wheel-spinning model described previously.  We compare the 

effects of different factors in the wheel spinning model, Weakest 

Link (WL), Weighted by Hardness (WH), and General Learning 

Ability (GLA).  Table 3 shows the results of training each model 

on the training test, and evaluating it on the test set.  

In this experiment, we use the Cox and Snell R square [15] and 

AUC (area under curve) to measure model fit. As we can see, the 

model does not appreciably change in the data set D1, due to the 

fact that the part of the data containing started prerequisite skills is 

such a small component of the data.  In D2 and D3, the model is 

improved slightly by integrating the prerequisite feature, WH or 

WL. This result supports that prerequisite performance is useful in 

determining students’ wheel spinning status in postrequisite-skills. 

We can also notice that the model with GLA has the similar results 

with the ones with WH and WL. 

Futhermore, to comare the difference between models, a paired t-

test is applied on the results at the student’s level of each pair of 

models, as shown in Table 4. The result shows that adding a 
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prerequisite factor – WH or WL – into the baseline model makes it 

performing significantly differently in all data sets, D1, D2, and D3. 

On the other hand, the model “Baseline+WH” and “Baseline+WL” 

have the similar results in those three data sets, which also implies 

these two prerequisite features have similar effect in the wheel 

spinning model. More interesting, the p-values indicate that the 

model with GLA is significantly different from the model with WH 

(or WL respectively) in D1 and D3, but not in D2, and significantly 

different from the Baseline model in D2, but not in D1 and D3.  

Table 3. Measurements of different models. 

Model 
R Square AUC 

D1 D2 D3 D1 D2 D3 

Baseline 0.285 0.301 0.264 0.879 0.888 0.884 

Baseline 

+WL 
0.285 0.302 0.268 0.879 0.889 0.887 

Baseline 

+WH 
0.285 0.302 0.268 0.879 0.889 0.888 

Baseline 

+GLA 
0.291 0.306 0.268 0.883 0.891 0.887 

 

Table 4. P-values of paired t-test. In each data set (D1, D2, and 

D3), we first compute the RMSE for each model predicting over 

each student. And then the t-test is applied on the RMSE results 

at the student’s level for each pair of models. The p-values in 

this table are shown in the order (D1, D2, D3). 

 Baseline Baseline+WL Baseline+WH 

Baseline 

+WL 

<0.01,<0.01, 

<0.01 
  

Baseline 

+WH 

<0.01,<0.01, 

<0.01 
0.62, 0.1, 0.27  

Baseline 

+GLA 

<0.01,<0.01, 

0.21 

<0.01,0.29, 

<0.01 

<0.01,0.3, 

<0.01 

 

4.2.3 Impact of Prerequisite Effect on the Predictive 

Model 
We now move to determining the impact of the prerequisite feature 

on the predictive model. In our intuition, the prerequisite factor 

might have strong effect in predicting wheel spinning when a 

student just starts learning a post-skill, and the effect weakens with 

time as the student solves problems on the postrequisite skill   

In the logistic regression algorithm, researchers typically use the 

odds ratio, exponential the coefficient, to represent effect of the 

corresponding feature [15]. Then the coefficient could be also used 

to represent the effect on the model. Therefore, in this work, we use 

the coefficient of prerequisite feature to reflect its effect in 

predicting students’ wheel spinning on post-skill. 

In this experiment, we group the D3 of training set by amount of 

practice on the skill, and construct a wheel spinning model for each 

group. The coefficients of prerequisite feature (for the WH model) 

in the corresponding models are shown in Figure 3. As we can see, 

the coefficient representing the impact of prerequisite knowledge 

has the highest value at the beginning, and it decreases in influence 

as students obtain more practice on the skill.  This result support 

our intuition that the prerequisite factor is a good predictor for 

wheel spinning only at the beginning stage of learning post-skill.  

Thus, prerequisite knowledge is useful for overcoming the cold 

start problem in student modeling.  When a student first starts 

working on a skill, his performance on that skill provides little basis 

with whether to classify him as likely to wheel spin or not.  In this 

situation, knowing how he performed on the prerequisite skills 

provides some information in his ability to master the current 

material.  As the system observes more and more performances on 

the skill, those performance provide a much more pertinent source 

of information about the student’s likely trajectory, and the relative 

importance of prerequisite skills diminishes.   

The decrease in in predictive performance for the WH coefficient 

is monotonic and roughly linear. From a standpoint of statistical 

significance, the WH coefficient is reliably different than 0 for 

practice opportunities 1 through 7 (p=0.026 at the 7th opportunity).  

At the 8th opportunity, the impact of the WH coefficient has p=0.51.   

 

Figure 3. The changes of coefficient with respect to number of 

practice opportunities on D3. 

4.3 Understanding What Prerequisite 

Performance Really Represents 
The performance of the WH feature raises an interesting question:  

to what does it owe its predictive power.  Although we refer to this 

feature as representing student’s prerequisite knowledge, it 

captures much more than just knowledge.  For example, if one 

student demonstrates strong performance on prerequisite skills and 

the other does not, those students probably differ in many 

dimensions beyond knowledge of the skill:  diligence in doing math 

homework, support at home, raw ability at learning new concepts, 

and perseverance when stuck.  Wrapping this bundle of constructs 

together and calling it “prerequisite knowledge” certainly 

simplifies discussion, but does a disservice to accuracy.  Therefore, 

we perform a baseline experiment to investigate what prerequisite 

knowledge represents.   

4.3.1 Compare GLA with WH 
Since the effects of two prerequisite features, WL and WH, are 

pretty much the same in the wheel spinning model. Therefore, we 

will compare only the WH with the GLA. These two features are 

compared though three different experiments. 

The first experiment is to construct wheel spinning ratio gradient 

for GLA. As we can see in Figure 2, there is the same broad trend 

for both GLA and WH.  For both measures, students with lower 

general learning ability are more likely to be wheel spinning, which 

is in accord with our common sense. By comparing the two wheel 

spinning ratio gradients, we notice that the ratio is the same when 

the WH and GLA values are high; that is, if a student’s performance 
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is relative high (> 0.6) for WH and GLA, then there is a similar 

chance the student will wheel spin.  However, in the lower range of 

0 to 0.6, students are more likely to be wheel spinning according to 

WH value than the students having the same GLA value. This result 

suggests that prerequisite factor has stronger correlation with wheel 

spinning than general learning ability, although general learning 

ability has strong overlap. 

The second experiment is to add the GLA into wheel spinning 

model and compare the model measurements. According to the 

results in Table 3, adding the GLA into the baseline model makes 

more improvement than adding the WH on the data set D1 and D2. 

This is because the student-skill pairs with pre-required knowledge 

are very rare in those data sets, while every student-skill pair is 

assigned with a computed GLA value based on that student’s 

performance on a pair of random skills. The model with GLA and 

the model with WH on the data set D3 have nearly identical 

performance. 

The third experiment is to compare the effect in the learning 

procedure. As seen in Figure 3, the GLA coefficient also decreases 

with respect to the number of practice. But in the first 5 practices, 

the slope of GLA coefficient is more moderate than the slope of 

WH coefficient, which defends the statement that the prerequisite 

factor is useful in predicting wheel spinning at early learning stage. 

By examine the GLA coefficient Wald statistic p-value, it is also 

statistically reliable (p<0.05) before the 7th practice. 

5. DISCUSSION AND FUTURE WORK 
It should be noticed that even though we found that prerequisite 

knowledge is related to wheel spinning on post-skills, the general 

learning ability also has the similar relation.  Therefore, it is hard 

to identify which factor has a stronger connection with wheel 

spinning in this data set. This is because of two possible reasons: 

improper prerequisite structure and indirect prerequisite-post 

relation. 

5.1 Prerequisite Structure 
As aforementioned, the prerequisite structure used in this work is 

defined by domain experts. Through this structure, the experts 

suggest a general curriculum over all grades, not specified in a 

single year or a single class.  It is certainly possible that our 

structure is in error either by missing some links and incorrectly 

creating others.  Such errors would impact the results.   

Moreover, in the method of computing prerequisite performance 

for a post-skill, we assume that the prerequisite skill with the worst 

performance (or the hardest prerequisite skill) has the strongest 

influence in learning post-skill. However, this assumption might be 

inappropriate here. Botelho [5] et al. also illustrate in their 

experiments that the prerequisite relation in some post-skills are not 

as stable as expected by domain experts. 

Therefore, there are two possible ways of improving our 

experiments. The first one is to construct a prerequisite structure 

specifically for the data. Previous works have been focused on this 

area. For example, Vuong et al. [8] introduce a method for finding 

prerequisite structure within a curriculum. Their method calculates 

the overall graduation rate for each unit, and regards Unit A as 

prerequisite knowledge for Unit B if the experience in Unit A 

promotes graduation rate in Unit B. 

The other possible way is to measure the correlation between each 

prerequisite skill and a post-skill, and then we can obtain which 

prerequisite skill is most effective in affecting learning post-skill. 

Vuong et al. also distinguish the prerequisite relationship between 

significant and non-significant in their work [8]. 

5.2 Prerequisite-post Relation 
Obviously, students’ general learning ability influences their 

performance in both prerequisites and post-skills. Therefore, one 

might argue that there is no direct causal prerequisite-post 

relationship. The student who is wheel spun on learning post-skill 

as well as lack of pre-required knowledge is mainly because he/she 

has weak learning ability, as shown in Figure 4.  In this view, GLA 

is the primary driver of both prerequisite and postrequisite 

performance. 

According to this argument, a consequent case would be: a student 

who is wheel spun on a skill, he/she will be wheel spun on every 

skill, due to the weak learning ability. However, in our data set, the 

wheel spinning ratio of the students who have at least one wheel 

spinning case is about 23%. Thus, the GLA is an effective factor in 

wheel spinning, but not a unique or crucial one.  Another drawback 

of this model is that, for low levels of performance, prerequisite 

knowledge is more strongly related to wheel spinning than GLA.  

Therefore, even if GLA is the primary driver, there is apparently 

some impact of prerequisite knowledge on postrequisite 

performance, represented by the dotted line in Figure 4. 

 

 

Figure 4. A structure to explain indirect prerequisite-post 

relationship.  

In order to validate the structure in Figure 4, a subtler model should 

be constructed, in which students’ GLA is finely measured. A 

proper way is to utilize the IRT model to estimate a student’s trait; 

this trait is regarded as the GLA value. And then it is used in 

predicting if the student will be wheel spinning or not. Meanwhile 

this trait is updated for each item practiced or for each skill learned. 

The similar work is in [16], the authors integrate temporal IRT into 

Knowledge Tracing model, in order to track students’ knowledge 

stage and predict next problem correctness. 

6. CONTRIBUTIONS AND CONCLUSION  
This work makes two contributions.  First, it examines the 

relationship between prerequisite performance and wheel spinning.  

One plausible hypothesis for why some students are stuck in the 

mastery learning cycle is due to inadequate preparation in the 

building block skills.  We found such an association, with students 

who performed less well on the prerequisite skills being more likely 

to wheel spin.  This work represents an advance over what is known 

about wheel spinning [1][2].   

The second contribution of this work is unpacking what is meant 

by knowledge of prerequisite skills, and discovering that it is not 

always related to relevant knowledge.  Specifically, by showing 

that two random skills work approximately as well as prerequisite 

performance, we show that, for this study, the impact is largely due 

to general properties of the student than the student’s knowledge 

about particular skills.  This reasoning is more than a semantic 

game, as it directly impacts the conclusions we can draw from our 

data.   

Given just the WH line in Figure 2, a reasonable interpretation is 

that we can reduce wheel spinning by increasing student 

GLA 

Prerequisite 

Post 
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prerequisite knowledge, and we could imagine interventions 

designed to target such.  Given the additional context of the results 

for GLA, we realize that most of the effect attributed to prior 

knowledge is really just how well the student learns math in general.  

Unfortunately, interventions to target diligence, grit, math ability, 

and home support are outside the scope of plausible interventions 

to deliver with an ITS.  However, the difference in the gradients of 

the two lines suggests there is some benefit from improving student 

knowledge to at least a moderate level to reduce wheel spinning.  

This analysis also raises the question of how much work reporting 

effects related to student prior knowledge is really talking about 

some other construct than knowledge.  Unless the difference in 

knowledge is caused by a randomized manipulation, differences in 

knowledge are a proxy for a collection of variables.  Hopefully this 

work will spur EDM researchers to more carefully investigate the 

meaning of the constructs they are reporting.   

In conclusion, this paper investigates the effect of prerequisite 

performance on wheel spinning and finds that they are related.  The 

addition of prerequisite or GLA features provides a small 

enhancement in predictive accuracy to our wheel spinning model, 

improving R2, on skills for which we have prerequisite data, from 

0.264 to 0.268, and AUC from 0.884 to 0.888.  The baseline model 

results are quite strong for ITS research, so third-decimal 

improvement in both metrics is fairly good.   

This work also found that prerequisite performance and GLA are 

both effective for overcoming the cold start problem in student 

modeling.  When students begin working on a skill, the tutor has 

little knowledge of the student’s capabilities on that skill.  We 

found that the new factors in our model had the greatest impact 

when students were first starting to work with a skill, and diminish 

in importance as we acquire additional data about his knowledge of 

the skill.   
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ABSTRACT 
Inquiry skills are an important part of science education standards. 
There has been particular interest in verifying that these skills can 
transfer across domains and instructional contexts [4,15,16]. In 
this paper, we study transfer of inquiry skills, and the effects of 
prior practice of inquiry skills, using data from over 2000 middle 
school students using an open-ended immersive virtual 
environment called Virtual Performance Assessments (VPAs) that 
aims to assess science inquiry skills in multiple virtual scenarios. 
To this end, we assessed and compared student performance and 
behavior within VPA between two groups: novice students who 
had not used VPA previously, and experienced students who had 
previously completed a different VPA scenario. Our findings 
suggest that previous experience in a different scenario prepared 
students to transfer inquiry skills to a new one, leading these 
experienced students to be more successful at identifying a correct 
final conclusion to a scientific question, and at designing causal 
explanations about these conclusions, compared to novice 
students. On the other hand, a positive effect of novelty was found 
for motivation. To better understand these results, we examine the 
differences in student patterns of behavior over time, between 
novice and experienced students. 

Keywords 

Virtual environment, science inquiry, educational data mining, 
sequential pattern mining, transfer, novelty effect. 

1. INTRODUCTION 
One of the important goals for science education is to help 
students develop the scientific knowledge and practices needed to 
actively and effectively engage in science inquiry. As such, 
science inquiry skills have been a critical component of the K-12 
science curriculum standards [18]. It is particularly crucial that 
students acquire inquiry skills which are not specific to a domain 
or instructional context, but which can transfer broadly, preparing 
students for using science and understanding science in their 
future schooling, and in their lives [4, 15, 16]. 

With the increasing popularity of online learning systems that 
engage learners in science inquiry activities [e.g., 7, 21], 

Educational Data Mining (EDM) techniques have proven 
effective in automatically assessing science inquiry skills. Sao 
Pedro et al. demonstrated that science inquiry skills can be 
assessed within online learning activities using EDM, predicting 
future performance not only within the same domain [21], but also 
across domains [22]. 

Many studies of student inquiry behavior have been conducted 
within open-ended online learning environments, such as virtual 
environments, in which users have the freedom to decide their 
own inquiry behaviors. This, combined with the fact that these 
open-ended environments are typically more loosely-scaffolded 
and coarser-grained than more tightly-scaffolded systems such as 
intelligent tutoring systems or simulations [e.g., 21], makes the 
assessment of science inquiry in these contexts challenging. 
Sequential Pattern Mining [1], a methodology that has been 
extensively used in EDM [23], has shown potential in discovering 
complicated patterns of learning behavior within open-ended 
learning environments. For example, Kinnebrew and colleagues 
[13] applied sequential pattern mining techniques to log data 
produced by students engaging in activities within Betty’s Brain, 
an open-ended learning environment for science learning. This 
allowed them to study the differences in students’ productive and 
unproductive learning behaviors by identifying frequent 
sequential patterns related to the use of concept maps and 
determining which sequential patterns were characteristic of high-
performing students as compared to low-performing students. 
Differential pattern mining was also used by Sabourin and 
colleagues [20] to analyze the differences in inquiry behaviors 
utilized by learners depending on their level of self-regulation 
within a virtual environment. In another study, Gutierrez-Santos et 
al. [10] conducted analysis of student actions to detect repetitive 
sequences in an open-ended learning environment. 

Another EDM approach that has proven useful for the study of 
inquiry behaviors in open-ended contexts involves in-depth 
analysis of features distilled from log data. For instance, Baker 
and Clarke-Midura [2] distilled a set of features related to inquiry 
behavior from log data in Virtual Performance Assessments 
(VPAs), an open-ended immersive virtual environment used in the 
current study, to develop predictive models of student success on 
two inquiry tasks. The current study combines both sequential 
pattern mining and analysis of features related to science inquiry 
to study transfer of inquiry skills. In doing so, we also analyze 
differences in inquiry behavior between novice students and 
experienced students.  

The degree of student experience with an environment can also be 
hypothesized to have important impact on their inquiry. Clark [6] 
argued that novelty effect occurs when new computer programs 
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are introduced. In those cases, the novel computer programs 
initially attract student attention, leading to increased efforts 
invested, persistence, motivation, and achievement gains. 
Previous studies [e.g., 8, 12, 24] indicated that students showed 
greater initial enthusiasm and motivation in classrooms when 
novel educational technologies were introduced. This enthusiasm 
gradually diminished as students were more familiar with the 
technologies and the initial novelty effect wore off. Therefore, in 
our study, we investigate whether relative novelty created by the 
introduction of a new 3D virtual environment will lead to 
differences in motivation and learning between novice students 
and experienced students. We also study the relationship between 
the potential novelty effect and inquiry skills. 

To research these questions, we assess and compare student 
performance and behavior within VPA between two groups: 
novice students who had not used VPA previously, and more 
experienced students who had previously spent one class session 
completing a different VPA scenario. We compare student 
performance on two inquiry skills – identifying a correct final 
claim and designing causal explanations. We also compare 
student responses to a motivation survey between the two groups. 
Finally, we analyze the difference in student behavior between the 
two groups using differential sequence mining. 

2. VIRTUAL PERFORMANCE 
ASSESSMENTS 
This study was conducted within the context of Virtual 
Performance Assessments (VPAs; see http://vpa.gse.harvard.edu). 
VPAs are online 3D immersive virtual environments, designed 
using the Unity game development engine [26] that assess middle 
school students’ science inquiry skills, in line with state and 
national standards for science content and inquiry processes. 
Within VPAs, whose interface is similar to that of video games, 
students engage in authentic inquiry activities and solve scientific 
problems by navigating around the virtual environment as an 
avatar, making observations, interacting with non-player 
characters (NPCs), gathering data, and conducting laboratory 
experiments. VPAs enable automated and non-intrusive collection 
of process data (logged actions and behaviors) and product data 
(student final claims), facilitating the capture and assessment of 
science inquiry in situ. 

Multiple VPA assessment scenarios have been developed. In this 
study, two scenarios were used, the frog scenario and the bee 
scenario. In the frog scenario (see Figure 1), students are 
presented with a six-legged frog in the virtual environment and 
have to collect and reason through evidence to determine what is 
causing the frog’s mutation, selecting from a set of possible causal 
factors including parasites (the correct causal explanation), 
pesticides, pollution, genetic mutation, and space aliens. In this 
scenario, students can talk with NPCs from four virtual farms who 
provide conflicting opinions, collect items such as frogs, tadpoles, 
and water samples at each farm, run laboratory experiments on 
water quality, frog blood and DNA, and read informational pages 
from a research kiosk. Once students think that they have 
sufficient data, they submit a final conclusion on the causal factor 
resulting in the mutation, and justify their final claim with 
supporting evidence. In the bee scenario, students must determine 
what causes the death of a local bee population. Similar to the 
frog scenario, they can talk with NPCs from four different farms, 
read informational pages at the research kiosk, and conduct tests 
(e.g., nectar test, protein test, genetic test) on the items they have 
collected at the farms (e.g., nectar samples, bees, larvae). By the 

end of the assessment, students choose a final claim about the 
cause of the bee deaths from possible hypotheses including 
genetic mutation (the correct causal factor), parasites, pesticides, 
pollution, and space aliens, and support their final claim with 
evidence. The activities in each VPA scenario are deliberately 
similar, allowing researchers to assess performance of the same 
inquiry practices in different contexts. 

 
Figure 1. Screenshots of the VPA frog scenario. 

3. DATA SET 
Data for this study was composed of action logs produced by 
middle school students who used Virtual Performance 
Assessments within their science classes at the end of the 2011-
2012 school year. A total of 2,431 students in grades 7-8 (12-14 
years old) from 138 science classrooms (40 teachers) participated 
in this study. These students were from a diverse range of school 
districts in the Northeastern and Midwestern United States, and 
Western Canada. A total of 1,985 students completed the frog 
scenario and 2,023 students completed the bee scenario, with 
1,579 students completing both scenarios. Overall, students 
completed 423,616 actions within the frog scenario and 396,863 
actions within the bee scenario. They spent an average of 30 
minutes and 47 seconds (SD = 14 minutes, 6 seconds) in the frog 
scenario and an average of 26 minutes and 5 seconds (SD = 12 
minutes, 27 seconds) in the bee scenario. 

The 2,431 students were randomly assigned to begin with either 
the frog scenario or the bee scenario. Two weeks later, they were 
assigned to complete the other scenario. Therefore, within each 
scenario, participants could be put into two groups – novice users 
who were using VPA for the first time (novice group), and 
experienced users who had previously experienced the other VPA 
scenario (experienced group). Accordingly, among the 1,985 
students who completed the frog scenario, 1,232 completed the 
frog scenario as their first scenario (frog-novice) and 753 had 
previous experience in the bee scenario (frog-experienced). 
Among the students who completed the bee scenario, 1,198 
students had no previous experience in the frog scenario (bee-
novice), whereas 825 had previous experience in the frog scenario 
(bee-experienced). Student actions and performance in the virtual 
environment were logged as they worked within each VPA 
scenario and used for later analyses. 

4. OVERALL ANALYSIS 
In this section, we compare student performance on identifying a 
correct final claim and constructing causal explanations, the 
amount of time spent on VPA, and students’ motivation level, 
between the novice group and the experienced group, within each 
VPA scenario. 

4.1 CFC and DCE Performance 
To explore the transfer of student science inquiry skills between 
scenarios, two measures of student performance within the VPAs 
were collected and compared between the two groups of students 
within each scenario: 1) the correctness of the student’s final 
claim (CFC) on the cause of the six-legged frog or the death of the 
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bees; and 2) student’s success in designing causal explanations 
(DCE) for why that claim is correct. 

In each VPA, students submitted a final claim by choosing from 
five possible causal factors. A student’s final claim was 
considered correct if the student concluded that the mutation of 
the six-legged frog was caused by parasites (correct causal factor), 
or that the bee deaths were caused by genetic mutation (correct 
choice). Otherwise, if the student selected the other potential 
hypotheses, the student’s final claim was considered incorrect. 
Overall, 29.6% of students correctly concluded that parasites led 
the frog to have six legs, and 28.3% of students made a correct 
claim on what was killing the bee population. In this paper, a chi-
square test was conducted to compare student CFC performance 
between the two groups in each scenario. 

In the bee scenario, 34.8% of experienced students who had 
previously used the frog scenario identified correctly that genetic 
mutation was killing the bees, while 23.9% of novice students 
(without prior experience in the frog scenario) made the correct 
final conclusion. This difference was statistically significant 
according to a chi-square test, 𝜒!(1,𝑁 = 2023)  = 28.67, 
p < .001. Logistic regression results revealed that the odds of 
making a correct final claim for experienced students (0.533) was 
statistically significantly larger than the odds for novice students 
(0.314) by 70%. This suggested that the students transferred what 
they learned about how to make a correct final claim from the frog 
scenario to the bee scenario. 

Similarly, in the frog scenario, a statistically significantly higher 
percentage of experienced students (33.2%) made a correct final 
claim than the percentage of novice students (27.5%) who made a 
correct conclusion, 𝜒! 1,𝑁 = 1985  = 7.45, p = .006. Logistic 
regression results indicated that previous experience in the bee 
scenario significantly improved the odds of making a correct final 
claim in the frog scenario by 31.5% (odds = 0.378 for novice 
group and 0.497 for experienced group). 

The DCE measure evaluates student ability in supporting final 
conclusions with evidence. By the end of the assessment in each 
scenario, students needed to select the evidence that supported 
their claims from the data they had collected within the virtual 
world and the results of laboratory tests they had conducted. They 
were then presented with all possible data (including data that the 
students did not collect/conduct) and asked to identify the 
evidence supporting their claim. In each VPA scenario, most 
evidence was consistent with the correct causal claim. However, 
for the incorrect claims, there was often evidence consistent with 
those claims along with counter-evidence that conclusively 
disproved those hypotheses. Therefore, even if students were 
unsuccessful in identifying the correct final conclusion, partial 
credit would be awarded to them for the quality and quantity of 
the causal evidence they identified in support of their claim from 
the non-causal data and results. Student success in selecting 
evidence and constructing causal explanations were aggregated 
into a single composite DCE measure that ranges from 0 to 100%, 
by averaging across the use of each piece of evidence. The mean 
DCE score for the frog scenario was 50.0% (SD = 23.3%), and the 
average DCE score for the bee scenario was 46.1% (SD = 21.4%). 
A two-tailed Mann-Whitney U test, a nonparametric alternative to 
t-test, was then conducted to compare student ability in designing 
causal explanations between the two groups in each scenario. 

Results of the Mann-Whitney U test comparing the DCE score 
between the two groups in the bee scenario suggested that the 
experienced group had a significantly higher average DCE score 

(M = 48.9%, SD = 19.3%) than the novice group (M = 44.2%, 
SD = 23.8%), U = 453873, Z = -3.12, p = .002. Further analyses 
revealed that the difference in DCE performance was dependent 
on the correctness of final claims. Among students who made a 
correct final claim in the bee scenario, the experienced group 
achieved significantly higher DCE scores (M = 75.1%, 
SD = 18.3%) than the novice group (M = 68.1%, SD = 20.5%), 
U = 32448.5, Z = -4.34, p < .001. However, among students who 
did not make a correct final claim, the novice group showed 
higher DCE scores (M = 36.7%, SD = 11.2%) than the 
experienced group (M = 34.9%, SD = 11.4%), U = 223797, 
Z = -2.80, p = .005. 

In the frog scenario, student performance in designing causal 
explanations for the novice group (M = 49.7%, SD = 22.7%) was 
not statistically significantly different from the experienced group 
(M = 50.6%, SD = 24.3%), U = 454398, Z = -.76, p = .446. 

4.2 Time 
As each VPA scenario logged the timing of each student starting 
and exiting the virtual environment, we also compared the total 
amount of time students spent within VPA recorded by the log 
data between the novice group and the experienced group, by 
employing one-way ANOVA. 

An analysis of variance showed that, on average, novice students 
without previous experience in the frog scenario spent 
significantly more time in the bee scenario (M = 27 minutes, 43 
seconds, SD = 11 minutes, 56 seconds) than experienced students 
who had used the frog scenario (M = 23 minutes, 43 seconds, 
SD = 12 minutes, 48 seconds), F (1, 2021) = 51.64, p < .001. On 
the other hand, the total amount of time spent in the frog scenario 
by novice students (M = 30 minutes, 56 seconds, SD = 14 
minutes, 24 seconds) and experienced students (M = 30 minutes, 
33 seconds, SD = 13 minutes, 35 seconds) was not statistically 
significantly different (F (1, 1983) = .36, p = .548). 

4.3 Motivation 
In this study, students completed an online motivation survey 
shortly after they finished the VPA assessment for each scenario. 
Student responses to the survey were analyzed to better 
understand the impact of experience with the environment on 
learning and motivation. The survey was adapted from the 
Intrinsic Motivation Inventory [IMI; 27] and the Player 
Experience of Need Satisfaction [PENS; 19] survey and was 
comprised of 27 six-point Likert-type items that aimed to measure 
seven components related to student motivation, autonomy, and 
in-game immersion: interest/enjoyment, perceived competence, 
effort/importance, pressure/tension, value/usefulness, 
presence/immersion, and autonomy. Items were slightly modified 
to fit the specific activity in this game-like environment. Student 
subscale scores were calculated by averaging across all items on 
each subscale. One-way ANOVA was applied to assess whether 
there were any systematic differences in student motivation 
between the novice group and the experienced group within each 
VPA scenario. Given the substantial number of statistical tests, we 
controlled for the proportion of false positives by applying 
Storey’s q-value method [25] (calculated using the QVALUE 
package for R). 

Analyses of motivational survey results (see Table 1) indicated 
that, on average, novice students scored significantly higher on 
the interest/enjoyment subscale than experienced students in both 
scenarios (F(1, 1800) = 50.02, q < .001 for the frog scenario; F(1, 
1740) = 27.67, q < .001 for the bee scenario). Similarly, students 
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in the novice group had a significantly higher level of perceived 
effort invested to the VPA activity and perceived importance of 
the activity than students in the experienced group (F(1, 
1800) = 25.41, q < .001 for the frog scenario; F(1, 1740) = 18.94, 
q < .001 for the bee scenario). Novice students also regarded the 
VPA activity as more useful and valuable than experienced 
students, F(1, 1800) = 19.37, q < .001 for the frog scenario; F(1, 
1740) = 4.66, q = .019 for the bee scenario. Finally, novice 
students also had significantly higher presence/immersion, 
autonomy, and tension/pressure subscale scores than the 
experienced students, indicating that they were more immersed in 
the virtual environment, and felt a higher sense of autonomy and a 
higher level of tension/pressure than experienced students. These 
corresponded to previous findings on novelty effect [8, 12]. 

Table 1. Average subscale scores on the motivational survey 
(standard deviations in parentheses) by condition. Differences 
that are sig. after post-hoc controls (q < 0.05) are marked by *. 

Subscale 
Frog-
N 

Frog-
E 

F (q) Bee-N Bee-E F (q) 

int/enj 4.47 
(1.32) 

3.98 
(1.55) 

50.02* 
(<.001) 

4.26 
(1.42) 

3.87 
(1.56) 

27.67* 
(<.001) 

comp 4.28 
(1.21) 

4.23 
(1.37) 

0.73 
(.213) 

4.13 
(1.27) 

4.14 
(1.37) 

0.006 
(.473) 

eff/imp 4.38 
(1.19) 

4.06 
(1.44) 

25.41* 
(<.001) 

4.21 
(1.30) 

3.91 
(1.49) 

18.94* 
(<.001) 

val/use 4.07 
(1.41) 

3.74 
(1.62) 

19.37* 
(<.001) 

3.84 
(1.51) 

3.67 
(1.64) 

4.66* 
(.019) 

pres/ten 1.86 
(1.25) 

1.72 
(1.39) 

4.62* 
(.019) 

1.85 
(1.29) 

1.69 
(1.38) 

5.86* 
(.011) 

pres/imm 3.51 
(1.36) 

3.16 
(1.53) 

24.72* 
(<.001) 

3.36 
(1.42) 

3.13 
(1.53) 

10.14* 
(.001) 

auto 4.26 
(1.29) 

3.82 
(1.55) 

41.12* 
(<.001) 

4.01 
(1.41) 

3.76 
(1.56) 

11.42* 
(.001) 

Note. Frog-N = frog-novice, Frog-E = frog-experienced, Bee-N = 
bee-novice, Bee-E = bee-experienced. Int/enj=interest/enjoyment, 
comp=perceived competence, eff/imp=effort/importance, 
pres/ten=pressure/tension, val/use=value/usefulness, 
pres/imm=presence/immersion, auto= autonomy. 

5. USAGE ANALYSIS 
In the previous section, differences were found in motivation and 
learning outcomes between novice and experienced students. In 
the current section, we aim to go beyond just looking at whether 
previous experience in VPA improved student inquiry 
performance, and instead look into whether more experienced 
students used VPAs differently than less experienced students. 

For example, this will allow us to determine whether the higher 
success for experienced students within VPAs was related to the 
acquisition and transfer of science inquiry skills, or whether it was 
merely the result of increased familiarity and proficiency with 
using the system and tools than novice users. 

We studied these questions by investigating the prevalence of 
specific behaviors between groups, and by applying sequential 
pattern mining to identify and compare the frequent sequential 
patterns of student actions between groups. 

5.1 Comparing Behaviors Between Groups 
In order to understand student behavior, and how it differed 
between groups, a set of 30 semantically meaningful features of 
student behavior thought to potentially differ between groups 
were distilled from raw interaction data and were compared 
between the novice and experienced groups in each scenario. 
These features were a subset of the 48 features that were used to 
build models predicting a student’s CFC and DCE performance 
within the frog scenario in [2]. Examples of these features will be 
given in the following paragraphs. 

After distilling the 30 features from each student’s interaction 
logs, t-tests were conducted to compare the value of each feature 
between the experienced and novice groups, within each scenario. 
Storey’s q-values [25] were calculated to control for multiple 
comparisons. Table 2 presents the average values of 10 features 
that strongly differentiated between groups. 

According to the results, features representing the maximum or 
average fullness of a student’s backpack in the frog scenario, both 
including repeats (e.g. picking up two green frogs counts as two 
objects), and not including repeats (e.g. two green frogs counts as 
one object), had significantly higher value for the novice group 
than the experienced group. Similar results were found in terms of 
the number of times a student went to the lab to run tests, the 
number of different (types of) non-sick frogs that the student took 
to the lab at the same time, the number of times that lab water was 
taken to the lab, and the percentage of time the student spent at 
farms to collect evidence in the frog scenario. Similarly, novice 
students in the bee scenario had higher values on all these features 
than experienced students. This suggested that novice students 
collected significantly more data for testing and spent a larger 
proportion of time on collecting evidence in farms than the 
experienced students in both scenarios. This finding was 
consistent with the higher motivation level of novice students (in 
both scenarios) and the longer time they spent working on VPA 

Table 2. Comparisons of features between novice group and experienced group. Sig. differences (q<0.05) are marked by *. 

Feature Frog-
N 

Frog-
E 

t q Bee-
N 

Bee-
E 

t q 

The number of times student went to the lab 6.66 5.14 6.81 <.001* 16.37 12.71 8.97 <.001* 
Maximum number of items (including repeats) in backpack 7.48 6.69 11.25 <.001* 6.03 4.76 11.57 <.001* 
Maximum number of items (not including repeats) in 
backpack 

7.45 6.65 11.68 <.001* 8.54 7.28 12.27 <.001* 

Average number of items (including repeats) in backpack 4.77 4.02 11.39 <.001* 3.86 3.06 11.91 <.001* 
Average number of items (not including repeats) in backpack 4.75 4.00 11.50 <.001* 6.17 5.14 11.61 <.001* 
Number of times that lab water/nectar was taken to the lab 0.42 0.38 2.11 .022* 1.69 0.93 8.31 <.001* 
Number of different (types of) non-sick frogs/bees student 
took to the lab at the same time 

1.87 1.70 2.34 .014* 4.32 3.90 4.09 <.001* 

How long, on average, did students spend reading information 
pages? (average per read) 

15.28 17.17 -0.72 .146 11.93 13.93 -2.07 .027* 

How long, in total, did student spend reading information 
page on correct hypothesis? 

32.33 35.13 -0.70 .146 23.45 27.46 -2.20 .021* 

Percentage of time student spent at farms 0.29 0.26 4.43 <.001* 0.34 0.31 5.46 <.001* 
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(in the bee scenario). 

Despite the fact that the novices collected more data and spent 
more total time within the VPA bee scenario, they spent 
significantly less time on reading an information page at the 
research kiosk each time they accessed the page (M = 11.93 
seconds, SD = 17.69 seconds) than experienced students 
(M = 13.93 seconds, SD = 25.48 seconds), t (2021) = -2.07, 
q = 0.027, Cohen’s D = 0.15. In specific, experienced students 
spent more time in total reading the information page on the 
correct hypothesis – genetic mutation (M = 27.46 seconds, 
SD = 46.51 seconds) compared to novice students (M = 23.45 
seconds, SD = 35.46 seconds), t (2021) = -2.20, q = 0.021, 
Cohen’s D = 0.11. Gaining more information about the correct 
hypothesis might have contributed to the students’ domain-
specific knowledge base, which had been found to be crucial for 
problem solving and the development of expertise [5]. However, 
the corresponding pattern was not statistically significant for the 
frog scenario, probably due to higher standard deviations. 

5.2 Sequential Pattern Mining 
In this section, we investigate patterns in behavior by the two 
groups, over time. Prior to performing sequential pattern mining, 
detailed raw action log data were transformed into more abstract 
sequences. This involved three steps. First, a set of actions related 
to science inquiry were identified from the log files, including 
picking up and inspecting objects (e.g., frogs, tadpoles, bees, 
larvae, water sample, nectar sample) within VPA  (inspect), 
talking with NPCs (talk), saving objects to backpack (save), 
discarding objects (discard), opening and reading informational 
pages at the research kiosks (read), running laboratory tests 
(blood/protein test, water/nectar sample test, genetic test), 
reviewing and looking at test results (look), starting to answer 
final questions (start final questions), and submitting a final claim 
(final claim). Some actions that were irrelevant to the inquiry 
process, such as selecting an avatar, closing the scratchpad, and 
entering/exiting a specific area were filtered out from the raw 
interaction data. Second, as in [13], repeated actions that occurred 
more than once in succession were distinguished from a single 
action and were labeled as the “action” followed by the “-MULT” 
suffix. This adjustment prevents frequent patterns from being 
overlooked merely due to differences in how many times the 
action is repeated. Last, the actions were represented as sequences 
of actions for each student in each group. 

Simple two-action sequential patterns were identified using the 
arules package [11] within the statistical software program R. 
Arules was used to determine the most frequent short sequences 
of two actions by selecting the temporal associations of one 
specific action and a subsequent action with the highest support 
and confidence. In this study, sequential patterns of consecutive 
actions were selected with the cut-off thresholds of 
support = 0.0005 and confidence = 0.1. 

In the frog scenario, a total of 51 short sequential patterns 
(length = 2) were identified that met the minimum support and 
confidence constraints within the novice group; 54 patterns were 
identified within the experienced group. In the bee scenario, 55 
short sequential patterns met the minimum constraints within the 
novice group; 59 were selected within the experienced group. 
These patterns were similar across the 4 conditions, and most had 
support and confidence considerably higher than the threshold. 
They were then ordered according to their Jaccard similarity 
coefficient – a measure of the patterns' interestingness [17] that 
was found to be the most highly correlated with human judgments 
[3] – to find interesting sequential patterns. According to [3], 
lower Jaccard measures indicated higher interestingness. 

To facilitate the comparison of the frequency measures between 
the novice group and the experienced group, the support and 
confidence for each pattern were calculated separately for each 
student. Mann-Whitney U tests that controlled for multiple 
comparisons were then conducted to compare the metric values 
between two groups in each scenario.  

Table 3 presents the comparison of the support and confidence 
levels of 9 frequent sequential patterns with low Jaccard measure 
(indicating high interestingness) across conditions that were 
considered as meaningful due to the nature of the actions they 
contained. The sequential patterns with the lowest Jaccard 
included patterns related to making final claims (final claim) or 
starting to answer final questions (start final questions) and 
reading informational pages (read), such as “final claim → read-
MULT”, “final claim → read”, “read-MULT → final claim”, 
“start final questions → read-MULT”, and “start final questions 
→ read”. These patterns indicated that students tended to review 
research and read informational pages as resources to assist with 
their decision-making before submitting a final claim, or that they 
used the research information to check and monitor the claims 
they had just made. All these 5 patterns appeared to have higher 
support for experienced students than novice students within each 

Table 3.  Comparison of the support and confidence of 9 frequent sequential patterns between novice and experienced conditions. 
Average support/confidence values, and post-hoc controlled sig. of tests are presented. Sig. differences (q<0.05) are marked by *. 

 support confidence support confidence 

Pattern Frog-
N 

Frog
-E 

q Frog
-N 

Frog-
E 

q  Bee-
N 

Bee-
E 

q Bee-
N 

Bee
-E 

q 

final claim → read-MULT .0033 .0043 .420 .296  .313  .594 .0030 .0036 .619 .326 .298 .420 

read-MULT → final claim .0061 .0074 .584 .114 .109 .619 .0055 .0064 .675 .101 .109 .594 

final claim → read .0020 .0026 .675 .164 .158 .675 .0014 .0024 .018* .142 .193 .107 

start final questions→ read-MULT .0046 .0047 .594 .282 .261 .594 .0044 .0049 .675 .274 .257 .594 

start final questions → read .0029 .0033 .682 .160 .167 .675 .0025 .0027 .675 .147 .142 .675 

look-MULT → read-MULT .0027 .0032 .718 .143 .176 .517 .0028 .0030 .594 .141 .189 .309 

look → read .0025 .0028 .711 .103 .142 .214 .0017 .0021 .675 .080 .107 .361 

look → read-MULT .0027 .0033 .675 .113 .158 .073 .0019 .0027 .594 .105 .155 .018* 

look-MULT → read .0021 .0021 .594 .104 .117 .675 .0021 .0017 .018* .106 .101 .420 
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scenario, but most of the differences were not statistically 
significant. In the bee scenario, the pattern final claim → read 
showed significantly higher support and marginally significantly 
higher confidence for the experienced group than the novice 
group (for support, Ms = 0.024 and 0.014, U = 474169.5, 
Z = -3.03, q = 0.018; for confidence, Ms = 0.193 and 0.142, 
U = 46833.5, Z = -2.32, q = 0.107). This finding indicated that 
experienced students who had previously used the frog scenario 
were more likely to review research and read information, 
possibly to monitor their answers and reflect on previous steps [cf. 
15], after submitting a final claim in the bee scenario than novice 
students. However, this trend was not replicated in the frog 
scenario (for support, Ms = 0.0026 and 0.0020, U = 462294.5, 
Z = -.23, q = .675; for confidence, Ms = 0.158 and 0.164, 
U = 58423.5, Z = -.32, q = .675). 

Another four interesting sequential patterns corresponded to 
looking at laboratory test results (once or repeatedly), followed by 
reading informational pages (once or repeatedly) (i.e., look-MULT 
→ read-MULT, look → read, look → read-MULT, look-MULT → 
read). For three out of the four patterns, both the support and the 
confidence for the experienced group were higher than those for 
the novice group in both scenarios. For the pattern look → read-
MULT, the confidence for the experienced group was statistically 
significantly higher than that for the novice group in the bee 
scenario and marginally higher than confidence for the novice 
group in the frog scenario (in bee scenario, Ms = 0.105 and 0.155, 
U = 94500.5, Z = -3.09, q = .018; in frog scenario, Ms = 0.113 and 
0.158, U = 111697.5, Z = -2.53, q = .073). That is, experienced 
students were more likely to read multiple research information 
pages on possible causal factors immediately after looking at the 
results of lab tests. This is consistent with results from previous 
studies on the development of expertise, where experts were 
found to be more opportunistic in using resources and exploit 
more available sources of information than novices [9]. The 
higher relative frequency of reading research information, which 
might help experienced students interpret laboratory test results 

and facilitate the acquisition of domain-specific knowledge [4], 
might have contributed to their higher success on making correct 
final claims than novice students. 

In addition to two-action patterns, a differential sequence mining 
technique developed by Kinnebrew and colleagues [13] was 
utilized for identifying longer sequential patterns (length > 2) that 
occurred with significantly different frequencies between the two 
groups. This methodology used sequence support (s-support) and 
instance support (i-support) as frequency measures. S-support is 
defined as the percentage of sequences in which the pattern occurs 
[13]. It is different from the standard metric support in that s-
support measures the percentage of students whose action 
sequence contained the specific pattern, regardless of the 
frequency of occurrence within each sequence for each student. 
The i-support corresponds to the number of times a given pattern 
occurs, without overlap, within a student's sequence of actions. A 
set of most frequent sequential patterns that met the s-support 
threshold was identified within each group by employing 
Kinnebrew et al.’s sequential pattern mining algorithm [13]. The 
i-support value of each pre-identified pattern was then calculated 
for each sequence in each group, after which t-tests comparing the 
mean i-support between the groups were conducted and q-value 
post-hoc control [25] was applied to select significantly 
differentially frequent patterns. 

The 25 most differentially frequent long patterns with at least 
three consecutive actions were identified in the frog scenario and 
the 32 differentially frequent long patterns were identified in the 
bee scenario by employing a cutoff s-support of 50% and a cutoff 
q-value of 0.05 for comparison of pattern usage between two 
groups. 14 out of the 25 long patterns in the frog scenario and 16 
out of 32 long patterns in the bee scenario were common (i.e., met 
the 50% s-support threshold) for both groups, with relatively 
higher usage in the novice group. 11 long patterns in frog scenario 
and 16 in the bee scenario were frequently used only by students 
in the novice group. All differentially frequent long patterns had a 

Table 4. Top differentially frequent patterns between the novice group (nov) and the experienced group (exp). 

Scenario Pattern 
s-support i-support 

Frequent nov exp nov exp q 

Frog 

talk-MULT → inspect → save → inspect → save 0.58 0.36 0.78 0.45 <.001 nov 
talk-MULT → inspect → save → inspect 0.59 0.37 0.79 0.46 <.001 nov 
save → discard → inspect → save 0.53 0.36 0.74 0.48 <.001 nov 
inspect → save → discard → inspect 0.53 0.36 0.75 0.49 <.001 nov 
inspect → save → discard → inspect → save 0.53 0.36 0.74 0.48 <.001 nov 
talk-MULT → inspect → save 0.78 0.53 1.25 0.70 <.001 both 
inspect → save → talk 0.78 0.60 1.50 0.99 <.001 both 
discard → inspect → save 0.82 0.62 1.97 1.31 <.001 both 
inspect → save → discard 0.78 0.60 1.74 1.19 <.001 both 
talk → inspect → save 0.78 0.63 1.56 1.10 <.001 both 

Bee 

talk-MULT → inspect → save → inspect → save → inspect 0.59 0.27 0.72 0.32 <.001 nov 
talk-MULT → inspect → save → inspect → save → inspect → save 0.59 0.27 0.71 0.32 <.001 nov 
talk-MULT → inspect → save → inspect → save 0.74 0.45 0.99 0.57 <.001 nov 
talk-MULT → inspect → save → inspect 0.74 0.45 0.99 0.57 <.001 nov 
start assessment → talk-MULT → inspect 0.51 0.26 0.51 0.26 <.001 nov 
talk-MULT → inspect → save 0.85 0.62 1.30 0.87 <.001 both 
inspect → save → inspect → save → inspect 0.82 0.60 1.83 1.18 <.001 both 
save → inspect → save → inspect → save 0.82 0.60 1.82 1.18 <.001 both 
inspect → save → inspect → save → inspect → save 0.82 0.59 1.81 1.17 <.001 both 
save → inspect → save → inspect 0.83 0.60 1.99 1.31 <.001 both 
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higher s-support and a significantly higher average i-support for 
novice students than experienced students.  

Table 4 presents the top five differentially frequent long patterns 
that were common to both groups and the top five that were 
frequently used only by the novice group within each scenario. 
Most of these long sequential patterns entailed the repetition and 
combination of actions including inspecting objects, saving 
objects to backpack, discarding objects, and talking with NPCs. It 
seemed that novice students who had not used VPA before 
executed more sequences comprised of exploratory behaviors 
such as talking with NPCs and collecting data, while more 
experienced students focused primarily on what was necessary to 
answer the core inquiry question. 

6. DISCUSSION AND CONCLUSION 
This paper investigates the transfer of student science inquiry 
skills across two Virtual Performance Assessment scenarios, and 
the impact of the novelty of the immersive virtual environment on 
motivation and learning. We do so by comparing performance and 
behaviors between novice students and experienced students. A 
novelty effect was found as novice students who engaged in VPA 
for the first time showed significantly higher scores on 
motivational survey subscales such as interest/enjoyment, 
effort/importance, pressure/tension, value/usefulness, 
presence/immersion, and autonomy than more experienced 
students. As these students were first introduced to the novel 3D 
virtual environment, the initial attraction and attention led to 
higher enjoyment, greater effort invested in the tasks, a higher 
sense of immersion and a higher sense of autonomy. These 
measures tended to decline when students became relatively 
experienced and familiar with the environment, consistent with 
previous findings on the novelty effect [8, 12]. Sequential pattern 
mining and comparison of overall behavior prevalence using 
student action log data indicated that novice students engaged in 
more exploratory behaviors -- they collected more data in the 
environment and had higher frequency of long sequences 
comprised of exploratory actions such as talking with NPCs, 
manipulating objects, and collecting data, as compared to more 
experienced students. This, again, might be attributed to the 
novelty effect [cf. 14]. That is, the higher attention of novice 
students resulted in higher interest and efforts in exploring the 
new learning environment than students who were more 
experienced with VPA. 

However, another possibility is that the experienced students 
focused more on the goal at hand, than on the environment they 
were researching this issue on, leading to less exploration and 
more attention directly to the information most likely to be useful. 
This itself may reflect the fact that novelty is wearing off, but may 
be a positive aspect of the disappearance of the novelty effect. 
Indeed, despite the experienced students’ relatively lower 
motivation and fewer exploratory behaviors, they outperformed 
the novice students in identifying a correct final claim in both 
scenarios and in designing causal explanations (in one scenario). 
Experienced students generally showed more effective problem 
solving. They not only tended to read research information pages 
more often immediately after submitting a final claim or 
reviewing laboratory test results, but also spent more time reading 
the information each time they accessed a new page. As such, 
even after just a half hour completing the first assessment, 
students demonstrated more expert-like science inquiry behaviors 
-- they made more use of the research information available as 
resources [cf. 9], in order to either interpret results, or to monitor 
and reflect on their final claims [cf. 15]. The information from the 

pages may also have added to the domain-specific knowledge 
base of experienced students, which have been found to be crucial 
for problem solving and expertise development [5]. This 
corresponds to earlier findings that the transfer of domain-general 
inquiry strategy has the potential to facilitate the acquisition of 
domain-specific knowledge [4]. In conclusion, the experienced 
students successfully consolidated and transferred science inquiry 
skills they had learned from the first scenario during the 
approximately 30-minute engagement to the second scenario. 

The current study contributes to research on the assessment of the 
transfer of science inquiry skills by proposing the application of a 
combination of educational data mining techniques such as 
sequential pattern mining as supplements to the traditional 
analysis of success between conditions. One limitation of this 
study is that the comparison conducted here involved virtual 
scenarios within the same VPA architecture. The fact that the two 
scenarios were highly structurally similar might have facilitated 
transfer. Future work may involve exploring whether far transfer 
of science inquiry occurs from VPA to assessments outside the 
system (e.g., other computer-based learning environments with 
different domain and interaction design). 
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ABSTRACT
For at least the last century researchers have advocated the use of 
student confidence as a form of educational assessment and the 
growth of online and mobile educational software has made the 
implementation of this measurement far easier. The following 
short paper discusses our first study of the dynamics of student 
confidence in an online math tutor. We used a randomized 
controlled trial to test whether asking students about their 
confidence while using an Intelligent Tutor altered their 
performance. We observe that (1) Asking students about their 
confidence has no statistically significant impact on any of several 
performance measures (2) Student confidence is more easily 
reduced by negative feedback (being incorrect) than increased by 
positive feedback (being correct) and (3) confidence accuracy 
may be a useful predictor of student behavior. This paper 
demonstrates how psychological ideas can be imported into 
Educational Data Mining and our findings point to the possibility 
of using student confidence to better predict performance and 
differentiate between students based on the way they approach 
items.  

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Psychology 

K.3.1 [Computers and Education]: Computer-Assisted 
Instruction (CAI) 

General Terms
Experimentation, Human Factors 

Keywords
Confidence, certainty, self-efficacy, cognitive tutor, confidence-
based assessment, ASSISTments 

1. INTRODUCTION
Interest in student confidence arose out of investigations into the 
mathematical formalization of subjective probability at the end of 
the 19th century [5]. At least since 1913 researchers sought to 
apply these theories of judgment to educational assessments [19]. 
The initial motivation from the educationalists' perspective was to 
determine if querying student confidence could provide useful 
additional information about student performance [4]. Over the 
last century the utility of confidence testing has been 
demonstrated in terms of test reliability [3, 11, 15], identifying 

guessing [18], separating students based on their level of 
understanding [7], increasing student understanding [4, 6, 14] and 
explaining answer changing [17]. Interest in student confidence 
has been further extended through work on self-efficacy – 
“students’ judgments of their capability to accomplish specific 
tasks” [1]. Self-efficacy studies have made extensive use of 
Likert-style questions about student confidence [12]. 

Despite the utility of student confidence it has not gained 
widespread use within educational assessment. This may be 
because experimental psychology largely views confidence as an 
unreliable measure, suggesting that humans generally tend to 
suffer from overconfidence bias [10]. Overconfidence bias implies 
that much of the variation in student confidence can be explained 
by an inclination for students to report that they are better at 
solving problems than they in fact are rather than explanatory 
variables that might improve learning [7].  

Another reason for the failure of student confidence to become a 
widespread measure may be that the cost and logistical difficulty 
in collecting, scoring and storing confidence data was historically 
high. The comparatively low cost and large scale of online 
assessment may be diminishing this issue substantially though. In 
a world of yearly or bi-yearly paper tests it is not feasible to 
collect and score confidence data, but in an online environment 
these burdens are lifted.  

Yet, there remain some lingering misgivings about the use of self-
reported confidence. Overconfidence bias may be an artifact of 
larger issues with the way that confidence data are collected. 
Indeed, the concern remains whether simply asking students about 
their confidence may in fact alter their performance [13]. If 
requiring students to report their confidence reduces their overall 
performance then any utility in the measure will be undermined, it 
is therefore important to study the impact of student confidence 
measurement within a real-life setting.   

The dynamics of student confidence are what concern this short 
paper. We were concerned primarily with the impact of asking 
Likert-style confidence questions on other aspects of student 
performance, and how students’ confidence changed as they 
navigated tasks within the ASSISTments Intelligent Tutoring 
System. We are in the beginning stages of mapping out how 
student confidence changes as students move through online math 
assessment. Our aim is to identify how student confidence might 
relate to student behavior with the goal of leveraging this 
information to increase student learning.  
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2. METHOD
2.1 Data 
The present study was conducted as a simple randomized 
controlled trial within ASSISTments, an adaptive mathematics 
tutor that serves as a free assistance and assessment tool to over 
50,000 users around the world [9].  Two problem sets were 
designed around the multiplication and division of fractions and 
mixed numbers, using a mastery learning based structure called a 
Skill Builder.  Skill Builder problem sets are unique in that 
students are randomly dealt questions from a skill bank until they 
are able to answer three consecutive questions accurately, thus 
‘mastering’ the assignment.   

Both problem sets were designed with two conditions: an 
experimental condition in which students were asked to self-
assess their confidence is solving similar problems, and a control 
condition in which students were asked filler questions to control 
for the effect of spaced assessment. Random assignment was 
performed by the ASSISTments tutor at the student 
level.  Throughout the course of each assignment, students were 
asked up to three self-assessment or survey questions.  At the start 
of each assignment, students who were randomly assigned to the 
experimental condition were introduced to the skill of self-
assessment, shown a set of problems isomorphic to those in the 
problem set, and asked to gauge their confidence in solving the 
problems using a Likert scale ranging from ‘I cannot solve these 
problems (0%)’ to ‘I can definitely solve these problems 
(100%)’.  Students who were randomly assigned to the control 
condition were polled on their current browser in an attempt to 
‘improve the ASSISTments tutor.’ Examples of the initial 
questions posed to each condition are presented in Figure 1 
below.   

Following these initial questions, students were given three 
mathematics questions.  If students solved each of these three 
questions accurately, the assignment was considered 
complete.  However, if students answered at least one of the 
problems incorrectly, they would reach another self-assessment or 
survey question before being given another set of three math 
questions to try to master the problem set.  This pattern happened 
a third time for students who were struggling with the content, 
until finally removing the self-assessment or survey element and 
simply providing back to back math questions until the student 
could solve three consecutive problems. Based on this design, 
high performing students were asked to gauge their confidence 
only a single time, while students struggling with the topic were 
asked to reassess their confidence up to two more times 
throughout the problem set.  The confidence question was always 
formatted using the same Likert scale, while the ‘ASSISTments’ 
improvement surveys changed slightly, polling students on 
various elements of accessibility.   

These Skill Builders were marked as ASSISTments Certified 
material and made publicly available to all users.  The sets were 
promoted as new content and received high usage over the course 
of approximately three months.  The tutor logged all student 
actions throughout the course of the experiment, and a dataset was 
obtained from the ASSISTments database for analysis.  The 
experiment is still actively running within ASSISTments, gaining 
sample size for additional analysis to be conducted at a later time. 

Figure 1. Initial Questions for Students in Experimental 
(Above) and Control (Below) Conditions 

The data set used for the present analysis consisted of 950 12-14 
year old students in the eighth grade, from a group of school 
districts in the North East the United States. Data included 10,770 
problem level records including rich details pertaining to student 
performance.  After working with the ASSISTments team to 
design and run this study, the lead author was provided the data 
set for primary analysis with all information that could lead to the 
identification of individual students removed, as set in the 
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protocol of an IRB exemption granted by the CUHS of Harvard 
University. 

3. RESULTS
3.1 Student Confidence  
3.1.1 Description of Confidence 

Figure 2. Histogram defining distribution of initial student 
confidence with the proportion of each group that was correct 

on the first item above the bar and shaded (gray:correct, 
black:incorrect). Most students have mid- to high-confidence. 
The initial distribution of student confidence was left skewed, 
with the majority of students reporting their initial confidence in 
the problems as being between 0.5 and 1.0 (M = 0.75; Figure 2). 
On subsequent confidence questions the distribution remains left 
skewed though the mean confidence shifts toward the center as 
highly confident students exit the system after mastery (M = 
0.56).  

The overall trend in students’ estimation of their own skill is that 
more of the confident students tend to be correct. However, the 
students at either extreme (not confident at all and 100% 
confident) do not meet their own expectations. Three of the eight 
students who estimated that they “cannot solve these problems” 
were able to solve the first problem and 66 out of the 105 students 
who estimated that they “can definitely solve these problems” 
were incorrect on the first problem.  

3.1.2 Learning Gains 
Overall learning gains were comparable between the experimental 
and control groups (Table 1). Though differences among different 
levels of confidence persisted. Highly confident students tended to 
be more accurate than the control group and continue to improve, 
while moderately to very unconfident students tended to be far 
less accurate than the control group, though they tended to 
improve, with the exception of the students with zero confidence. 
As occurred in the first question, those students who were “not 

confident” outperformed students who were “somewhat 
confident” on the second and third questions. 

Table 1. Learning paths for students in the experimental and 
control groups showing percentage of students who were 

correct on questions 1, 2 and 3. 

Confidence 
Treat Control 

0.0 0.25 0.5 0.75 1.0 

Q1 
Correct 

(%) 
37.5 42.9 35.4 52.3 61.4 51.3 45.4 

Q2 
Correct 

(%) 
62.5 60.7 55.2 68.5 76.6 68.1 70.7 

Q3 
Correct 

(%) 
37.5 64.3 59.4 73.2 78.4 71.0 70.7 

n 8 28 96 149 171 452 498 

3.2 The Impact of Measuring Confidence on 
Performance 
Since there is some evidence that question format can impact 
student performance we looked at whether there was a difference 
between students who were asked confidence style questions and 
those who were asked “dummy” survey questions. In all but one 
respect there seems to be no statistically significant effect of 
asking students what their confidence is within the ASSISTments 
system.  

There was no statistically significant difference with respect to 
accuracy between students who were asked confidence questions 
and those who were not (Control = 53% correct, Experimental = 
52% correct, χ2 = 5.7, p = 0.68). Students who were asked 
confidence questions did not use more or less hints (Control = 
0.89 hints/student, Experimental = 0.89 hints/student, χ2 = 37.1, p 
= 0.09) nor did they make more or fewer attempts (Control = 1.7 
attempts/student, Experimental = 1.6 attempts/student, χ2 = 46.4, p 
= 0.41). There was also no difference between students who were 
asked about their confidence and those who were not with respect 
to the number of questions they answered (Control = 5.1 
questions/student, Experimental = 5.2 questions/student, χ2 = 
169.7, p = 0.10). Nor did asking confidence questions impact the 
way that students behaved after being incorrect; there is no 
statistically significant tendency for students who were given 
confidence questions to ask for hints on the next question after 
being incorrect on the first question (Control = 8%, Experimental 
= 10%, χ2 = 0.11, p = 0.74).  

There is one case in which there is a statistically significant 
difference between the control and experimental groups though: 
of the students who were incorrect on the first question, more 
students in the experimental group were incorrect on the second 
question (χ2 = 4.63, p = 0.03: Table 2). This suggests that the act 
of asking confidence questions impairs students’ performance in 
some way. This effect disappears by the third question though (χ2 
= 0.61, p = 0.43). 
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Table 2. Students who were correct on Question 2 after being 
incorrect on Question 1 for control and experimental groups. 
Fewer students in the experimental group were correct on 
Question 2. 

Control Experimental 

Correct 
(%) 

171 
(34.3) 

125* 
(27.7) 

Incorrect 
(%) 

327 
(65.7) 

327 
(72.3) 

* Denotes a significant difference between control and
experimental p < 0.05. 

3.3 The Importance of Confidence 
3.3.1 Confidence as a Prediction of Future 
Performance 

If we consider confidence to be a student’s prediction of their 
future performance we can calculate an error measure of this 
prediction. For example, if a student has a confidence of 0.75 we 
would assume that they expected to get 75% of the next three 
questions correct. If they in fact got 100% of the answers correct 
then their error rate would 0.25 (confidence – percent correct). 

Error rates appear to correlate with several factors, including 
accuracy. Students who are better at predicting their score on the 
next three questions tend to be those who are more accurate at 
answering those three questions (r(452) = -0.54, p < .001; Figure 
3).  They also tend to utilize more hints (r(452) = 0.42, p < .001) 
and make more attempts r(452) = 0.31, p < .001). 

Figure 3. Boxplot representing the error associated with 
student confidence judgment (confidence – percent correct) 

vs. percent correct for first three questions. Students who are 
more accurate at judging their ability tend to get more 

answers correct. Line equals median, circle equals mean. 

3.3.2 Predicting Accuracy Based on Confidence 

We can also attempt to predict the outcome of a single question 
based on student confidence. We built a logistic regression model 
that predicted whether or not a student was correct on their third 
item using 1) student confidence, 2) whether the student was 
correct on previous items, 3) their percentage correct over all 
problem sets attempted, 4) how many problems they had 
attempted within the ASSISTments system, and 5) which problem 
set they were attempting. Of these predictors, the only significant 
variables were accuracy on previous questions and student 
confidence, which make up the most parsimonious model (Model 
IV; Table 3).  

There is a more substantial relationship between accuracy on the 
third item and student confidence than with accuracy on the 
previous two items. A change in student confidence from zero to 
100 is associated with the odds of being correct on the third 
question increasing by a factor of 3, whereas the odds of being 
correct on item 3 are increased by a factor of 2.3 with respect to 
being correct on the first item, and only 1.8 for being correct on 
the second item.

Table 3. Taxonomy of logistic regression models that display 
the fitted relationship between the log odds of being correct on 
the third item and student confidence, being correct on the 
first item, being correct on the second item, the prior percent 
correct, number of prior problems attempted and the problem 
set (n=452). Model IV is the most parsimonius. 

Model I Model II Model III Model IV 

Intercept 0.5688 -0.4254 -0.5359 -0.6684* 

Confidence 0.9974* 1.2248** 1.3163** 1.1234** 

Q1 
Correct 0.7896*** 0.9348*** 0.8294*** 

Q2 
Correct 0.6132** 0.7314*** 0.5662*** 

Prior 
percent 
correct 

-0.0001 

Prior 
problem 

count 
0.3542 

Problem 
set -0.0545 

AIC 517.75 518.3 526 514.15 

3.3.3 Changes in Confidence after Incorrect Answers 

The impact of incorrect answers on student confidence is clear 
from a breakdown of how confidence changes before and after 
completing questions (Figure 4). Students were asked for their 
confidence before the first and after the third problem. The 
decision tree below represents the 258 students who did not exit 
the system before they were asked this second round of 

0.00

0.25

0.50

0.75

1.00

0/3 1/3 2/3 3/3
Number of Correct Answers

Er
ro

r i
n 

C
on

fid
en

ce
 J

ud
gm

en
t

Proceedings of the 8th International Conference on Educational Data Mining 147



confidence questions. The tree is read top to bottom, in the first 
tier students are sorted based on how many of the three problems 
they got correct. In the second tier students are sorted based on 
how they changed their confidence, did they become less 
confident, more confident or stay the same.  

There are a few trends that can be drawn out from this map. The 
majority of students (85%) who get three questions incorrect in a 
row lose confidence, while only 47% of students who get three 
correct in a row increase their confidence or are already at the 
maximum confidence. Indeed, 28% of students revise their 
confidence down after getting three correct answers in a row! 
Only one student decided to increase their confidence despite 
getting three incorrect answers in a row.  

Figure 4. Changes in student confidence with respect to 
confidence levels at Question 1 and Question 5. 

4. DISCUSSION

Overall the current study illustrates the trade off between using a 
different question format and the impact of this format on student 
behavior. Confidence style questions may provide substantial new 
utility in predicting and understanding student behavior but this 
utility may also come at a cost. We want to ensure that we have 
weighed this cost against the benefits of confidence style 
questions before further pursuing the benefits they provide. 
Overall, it appears from the present study that the benefits indeed 
do outweigh the costs. 

4.1 Cost vs. Benefit 

Beyond the time-cost of adding confidence questions to the 
problem set we wanted to know if there was any detrimental or 
beneficial impact on students performance of answering this kind 
of question and whether the question generates useful 
information.  
The addition of Likert-style confidence questions appears not to 
impact many relevant behaviors within the ASSISTments system. 
This is somewhat surprising given methodological research on the 
impact of phrasing questions [16] and the substantial literatures on 
the impact of self-efficacy [12] and self-reflection [2] on student 
performance. However, in this study it seems to have had little 
discernable impact. The small impact that was detected however 
is of substantial concern. It appears that students who were given 
confidence style questions and who were incorrect on their first 
answer were slightly less likely to be correct on the second 
question they answered. We might imagine that asking students 

their confidence could have myriad effects on the way they 
answered, perhaps it made them more hesitant or more anxious 
resulting in poorer performance. In either case this is problematic 
as the aim of the system is to improve performance and learning.  

This is not a definitive finding however, as the effect was small 
and disappeared by the next question. There are also alternative 
interpretations. The dip in performance may not necessarily 
connote a failure to learn. Perhaps it denotes a student wrestling 
more substantially with the concepts in the problem set, which 
may result in longer lasting, more robust learning going forward. 
This hypothesis needs to be tested by looking at future student 
performance. We also need to test whether any impact diminishes 
with exposure to the format. 

Another reason why we may not want to use confidence style 
questions is that the information they generate is not useful 
because it is a poor estimate of student ability. We have 
substantial evidence of this conclusion. Students appear to be poor 
estimators of their own skill. For example, although unconfident 
students answer questions incorrectly more often than confident 
students, students at the extremes tend to exaggerate their 
predictions. Students with very low confidence tended to 
underestimate their ability and students with very high confidence 
tended to overestimate their ability. This trend may reflect how 
students approach confidence, although we have presented it as a 
continuous scale some students may be seeing it more as a binary; 
they are either confident of not. This would explain why very 
confident students get wrong answers and very unconfident 
students get correct answers and is in keeping with the 
psychological theory of extremeness [8]. In this theory people are 
thought to concentrate on the extremeness of options above all 
else. Therefore, students who maybe somewhat confident are 
drawn to concluding that they are either 0% or 100% confident. 
To conclude that there is no useful information in confidence 
because of this tendency would be a mistake though. There are 
two substantially useful characteristics that are worth pursuing 
within the ASSISTments system: error rate of student confidence 
and how confidence changes as students answer questions 
correctly or incorrectly. 

Although students are, on average, poor judges of their own 
accuracy those who are better at predicting their accuracy tend to 
be more correct. There seems to be a benefit in being a good 
predictor of your own performance. This suggests the skill to 
predict your own performance may be a worthwhile cultivating 
and therefore measuring. This prediction skill is also correlated 
with higher levels of engagement with the system when a student 
is incorrect; asking for more hints and making more attempts. 
This may indicate that students who are better predictors of their 
own performance are also more interested in learning. This may 
help in signaling those students who are not interested in learning 
for differentiated interventions. 

It is also worth thinking about how prediction accuracy is 
developed. The dynamics of confidence behavior can shed more 
light on this idea. Confidence seems to be very sensitive to 
accuracy in an interesting way. The vast majority of students who 
get incorrect answers tend to reduce their confidence, while a 
minority of students who get all answers correct seem to increase 
their confidence. Confidence, it would seem, is easier to lose than 
to gain. This may be related to another psychological principle, 
asymmetry. The asymmetry principle states that humans have a 
tendency to attribute greater weight to negative, rather than 
positive events. If this effect is cumulative it may explain why 
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students underestimate their ability at the low end of the 
confidence scale. Yet it doesn’t explain why students overestimate 
their ability at the other end. Clearly there is more to understand 
about how students revise their confidence and the rate at which 
they do it. If being accurate in the prediction of your own 
performance is important, perhaps we should be more sensitive in 
how we impact that through the delivery of incorrect/correct 
answers. Perhaps pushing students away from extreme values is a 
worthwhile pursuit.  

It would appear though that the benefits of studying confidence 
within this Intelligent Tutor far outweigh the possible cost of 
diminishing performance on one question. The ability to detect, 
and possibly increase, student engagement would be a highly 
useful addition. 

4.2 Conclusion

The aim of this work is to develop understanding that can improve 
learning outcomes. It is useful information to know that student 
confidence is easier to reduce than to build and that accuracy in 
predicting ones performance is related to engagement in the 
system and increased performance. This can inform the way that 
difficulty is used to drive instruction, possibly balancing the 
difficulty and timing of problems with respect to student 
tolerances. In future research we hope to draw on the conclusions 
we have outlined here and to utilize associations with student 
confidence. In particular, we wish to investigate whether it is 
possible to improve students’ estimates of their confidence and 
whether this translates into impact on their actions within the 
online tutor. We wish to know whether it is possible to increase 
persistence and increase the appropriate use of hints by targeting 
students’ ability to estimate their confidence. 
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ABSTRACT 
College students enrolled in online courses lack many of the 
supports available to students in traditional face-to-face classes on 
a campus such as meeting the instructor, having a set class time, 
discussing topics in-person during class, meeting peers and having 
the option to speak with them outside of class, being able to visit 
faculty during office hours, and so on. Instructors also lack these 
interactions, which typically provide meaningful indications of 
how students are doing individually and as a cohort. Further, 
online instructors typically carry a heavier teaching load, making 
it even more important for them to find quick, reliable, and easily 
understandable indicators of student progress, so that they can 
prioritize their interventions based on which students are most in 
need.  In this paper, we study very early predictors of student 
success and failure. Our data is based on student activity, and is 
drawn from courses offered online by a large private university. 
Our data source is the Soomo Learning Environment, which hosts 
the course content as well as extensive formative assessment. We 
find that students who access the resources early, continue 
accessing the resources throughout the early weeks of the course, 
and perform well on formative activities are more likely to 
succeed. Through use of these indicators in early weeks, it is 
possible to derive actionable, understandable, and reasonably 
reliable predictions of student success and failure.  

Keywords 

At-Risk Prediction, Prediction Modeling, Predictive Analytics, 
Activity Analytics, Online Course, Webtexts 

1. INTRODUCTION 
Students enrolled in online courses lack many of the supports 
available to students in traditional face-to-face classes on campus 
[13]. Drop rates are typically higher for online courses than 
traditional courses (see review in [8]), and procrastination is often 
a major problem in online courses [10]. Part of the reason for the 
lower success seen in online courses comes from the fact that 
faculty have less direct contact with students [5, 19] and as a 
result have fewer indicators of how students are doing, outside of 
formal assessment. This makes intervention for at-risk students 
more difficult than in campus-based learning settings. 

As a result, many universities and providers of online courseware 
have moved to models that can automatically identify when 
students are at risk. These models identify indicators of potential 
student failure (or lower success). A comprehensive review of 
work in this area can be found in [10].  In one example of the 
creation and study of such a model, Barber and Sharkey [4] 
predicted course failure using a mixture of data from student 
finances, student performance in previous classes, student forum 
posting, and assignment performance. In a second example, 
Whitmer [17] predicted final course grade from student LMS 

usage activity, including the number of times a student accessed 
any content, the number of times a student read or posted to the 
forum, and the number of times a student accessed or submitted 
an assignment. In a third example, Romero and colleagues [15] 
predicted final course grade from activity and performance on 
assignments, including time taken by the student; this work was 
followed up by additional work, where the same group studied a 
more extensive set of interaction variables within the Moodle 
platform [14]. In a fourth example, Andergassen and colleagues 
[1] predicted final exam score from completion of online learning 
activities, including when in the semester students engaged those 
activities, and the total span of time between a student’s first and 
last activities in the online resource. 

An area of particular importance is early prediction, as 
recommended by Dekker and colleagues [7]. Being able to make 
predictions early in the semester, using the data available from 
initial student participation in the course, allows for timely 
intervention. There have been projects that have been successful 
in identifying at-risk students early in the semester. For example, 
Ming and Ming [12] developed models that could predict student 
course success from the first week of course participation, based 
on the topics students posted on the online discussion forum. In 
another example, Jiang and colleagues [11] predicted MOOC 
course completion from grades and discussion forum social 
network centrality, at the conclusion of the first course week.  

Models that can predict student success early in a course, from 
course participation data, may be more or less useful depending 
on the features the models are based upon. If models are based on 
indicators which are interpretable and meaningful to course staff, 
these models can then provide instructors with data on which 
students are at-risk along with information on why those specific 
students are at risk. Systems of this nature have been successfully 
embedded within intervention practices and had positive impacts 
on student outcomes. For example, the Course Signals project at 
Purdue University provides predictions to instructors along with 
suggested interventions for specific students, in the form of 
recommended emails to send the students [2]. In one evaluation, 
Course Signals was associated with better student grades and 
better retention [3]. Another project, the Open Academic Support 
Environment, was associated with better student grades [10].  

The attributes of a desirable predictive model are tightly 
connected to the potential uses of that model. For example, highly 
complex “black box” indicators are hard for instructors to use in 
interventions, even if they might be perfectly suitable for 
automated interventions. Beyond this, demographic variables 
(such as race and financial need) can be predictive [17, 18], but 
are less immediately useful for instructors wishing to intervene.  

In this paper, we study early predictors of student success based 
on student activity, with the goal of giving faculty immediately  
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However, if the goal is to provide high-cost interventions to the 
students who are very likely to perform poorly, the logistic 
regression model is not an optimal choice. The logistic regression 
model cannot achieve very high precision, even through adjusting 
thresholds, as shown in Figure 6. However, an alternate approach 
can be adopted, through using a different predictor algorithm, step 
regression. This algorithm obtains more precise prediction than 
logistic regression, with precision of 69.7% and recall of 35.3% 
for standard thresholds.   

Importantly, these measures are based upon interpretable features. 
They are based upon features that instructors identified as 
meaningful and having the potential for intervention. The 
combination of individual-feature models and a comprehensive 
model enables us to identify which students are at risk, and then to 
provide instructors with information about which students are at 
risk, and why. We can specifically identify that a student is at risk 
because he/she has failed to access the resources, or because 
he/she has failed to complete the assignments on time, or because 
he/she has scored poorly on the assignments. With this 
information, automatically distilled and placed in a user interface 
within the Soomo platform, faculty will have a means of finding 
students who most need support and a basis for encouraging them 
to access the text, do the assigned work, and take the time to do it 
well.  

The first area of future work planned is to enhance the analytics 
already offered to instructors by Soomo, based on the findings 
presented here. The success of these interventions, both in terms 
of improved student grades and improved student retention, will 
be evaluated in an experiment or quasi-experiment (the final study 
design will depend upon negotiation with the university which 
partnered on the analyses discussed in this paper).  

However, beyond testing interventions based on the model 
presented here, there is considerable future work to extend, 
improve, and study the generalizability of these models. For 
example, it will be valuable to study what characterizes the 
students for whom this model functions less effectively. Can 
additional features, like how much time students spend on 
assignments, improve overall prediction? And how well will the 
features identified here apply for different courses, and for 
different universities, an issue explored by Jayaprakash et al. [10], 
among others. By answering these questions, we can improve the 
models, verify their broad applicability, and move to using the 
models within intervention strategies that can achieve broad 
positive impact on learners.  
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ABSTRACT
Certain stereotypes can be associated with people from dif-
ferent countries. For example, the Italians are expected
to be emotional, the Germans functional, and the Chinese
hard-working. In this study, we cluster all 15-year-old stu-
dents representing the 68 different nations and territories
that participated in the latest Programme for International
Student Assessment (PISA 2012). The hypothesis is that
the students will start to form their own country groups
when clustered according to the scale indices that summa-
rize many of the students’ characteristics. In order to meet
PISA data analysis requirements, we use a novel combina-
tion of our previously published algorithmic components to
realize a weighted sparse data clustering approach. This
enables us to work with around half a million observations
with large number of missing values, which represent the
population of more than 24 million students globally. Three
internal cluster indices suitable for sparse data are used to
determine the number of clusters and the whole procedure
is repeated recursively to end up with a set of clusters on
three different refinement levels. The results show that our
final clusters can indeed be explained by the actual student
performance but only to a marginal degree by the country.

Keywords
Weighted Clustering, PISA, Sparse Cluster Indices, Country
Stereotype

1. INTRODUCTION
Certain stereotypes seem to be associated with people from
different countries. The French and Italians, for example,
are expected to be emotional, while Germany has mainly a
functional country stereotype [4], and the Chinese are com-
monly perceived as hard-working [3]. According to the Hof-
stede Model [6], national cultures can be characterized along
six dimensions: power distance, individualism, masculinity,
uncertainty avoidance, pragmatism, and indulgence. The

hypothesis in this study is that also the population of 15-
year-old students worldwide will start to form their own na-
tional groups, i.e., show similar characteristics to their coun-
try peers, when clustered according to their attributes and
attitudes towards education.

PISA (Programme for International Student Assessment) is
a worldwide triannual survey conducted by the Organisa-
tion for Economic Co-operation and Development (OECD),
assessing the proficiency of 15-year-old students from dif-
ferent countries and economies in three domains: reading,
mathematics, and science. Besides evaluating student per-
formances, PISA is also one of the largest public databases1

of students’ demographic and contextual data, such as their
attitudes and behaviours towards various aspects of educa-
tion.

In order to test our hypothesis, we utilize the 15 PISA scale
indices (explicitly detailed in [14]), a set of derived variables
that readily summarize the background of the students in-
cluding their characteristics and attitudes. In particular,
the escs index measures the students’ economic, social and
cultural status and is known to account for most variance in
performance [9]. Additionally, 5 scale indices (belong, atschl,
attlnact, persev, openps) are generally associated with per-
formance on a student-level, while 9 further ones (failmat,
intmat, instmot, matheff, anxmat, scmat, mathbeh, matintfc,
subnorm) are directly related to attitudes towards mathe-
matics, the main assessment area in the most recent survey
(PISA 2012). However, since the assessment material ex-
ceeds the time that is allocated for the test, each student is
administered solely a fraction of the whole set of cognitive
items and only one of the three background questionnaires.
Because of this rotated design, 33.24% of the PISA scale
indices values are missing.

Moreover, PISA data are an important example of large data
sets that include weights. Only some students from each
country are sampled for the study, but multiplied with their
respective weights they should represent the whole 15-year-
old student population. The sample data of the latest PISA
assessment, i.e., the data we are working with, consists of
485490 students which, taking the weights into account, rep-
resent more than 24 million 15-year-old students in the 68
different territories that participated in PISA 2012.

1See http://www.oecd.org/pisa/pisaproducts/.
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The content of this paper is as follows. First, we describe the
clustering algorithm that allows us to work with the large,
sparse and weighted data (Sec. 2). Second, we present the
clustering results (Sec. 3) and their relevance to our hypoth-
esis, i.e., how the clusters on the different levels can be char-
acterized and to what extent they form their own country
groups. Finally, in Sec. 4, we conclude our study and discuss
directions for further research.

2. THE CLUSTERING APPROACH
Sparsity of PISA data must be taken into account when
selecting or developing a data mining technique. With miss-
ing values one faces difficulties in justifying assumptions on
data or error normality [14, 15], which underlie the classical
second-order statistics. Hence, the data mining techniques
here are based on the so-called nonparametric, robust statis-
tics [5]. A robust, weighted clustering approach suitable for
data sets with a large portion of missing values, non-normal
error distribution, and given alignment between a sample
and the population through weights, was introduced and
tested in [16]. Here, we apply a similar method with slight
modifications, along the lines of [7] for sampled initialization
and [17] for hierarchical application. All computations were
implemented and realized in Matlab R2014a.

2.1 Basic method
Denote by N the number of observations and by n the
dimension of an observation of the data matrix X; and
let {wi}, i = 1, . . . , N be the positive sample-population-
alignment weights. Further, let {pi}, i = 1, . . . , N , be the
projection vectors that define the pattern of the available
values [10, 1, 14, 15]. The weighted spatial median s with
the so-called available data strategy can be obtained as the
solution of the projected Weber problem

min
v∈Rn

J (v), J (v) =

N∑
i=1

wi‖Diag{pi}(xi − v)‖, (1)

where Diag{pi} denotes the diagonal matrix corresponding
to the given vector pi. As described in [8], this optimiza-
tion problem is nonsmooth, i.e., it is not classically differen-
tiable. However, an accurate approximation for the solution
of the nonsmooth problem can be obtained by solving the

regularized equation (see [1])
∑N
i=1

wiDiag{pi}(s−xi)
max{‖Diag{pi}(s−xi)‖,δ}

=

0 for δ > 0. This is solved using the SOR (Sequential
Overrelaxation) algorithm [1] with the overrelaxation pa-
rameter ω = 1.5. We choose δ =

√
ε for ε representing the

machine precision.

In case of clustering with K prototypes, i.e., the centroids
that represent the K clusters, one determines these by solv-
ing the nonsmooth problem min{ck}Kk=1

J ({ck}), where all

ck ∈ Rn and

J ({ck}) =

K∑
k=1

∑
i∈Ik

wi‖Diag{pi}(xi − ck)‖. (2)

Hereby, Ik determines the subset of data being closest to the
kth prototype ck. The main body of the so-called iterative
relocation algorithm for minimizing (2), which is referred as
weighted k-spatialmedians, consists of successive application
of the two main steps: i) find the closest prototype for each
observation, and ii) recompute all prototypes ck using the

attached subset of data. For the latter part, we compute the
weighted spatial median as described above. Note that the
first step of finding the closest prototype of the ith observa-
tion, mink ‖Diag{pi}(xi − ck)‖, does not need to take the
positive weight wi in (2) into account.

The next issues for the proposed method are the determina-
tion of the number of clusters K and the initialization of the
clustering algorithm for a given k. Basically, the quality of
a cluster can be defined by minimal within-cluster distances
and maximal between-cluster distances. Therefore, for the
first purpose, we use the approach suggested in [16] and
apply three internal cluster indices, namely Ray-Turi (RT)
[13], Davies-Bouldin (DB) [2], and Davies-Bouldin∗ (DB∗)
[11]. All these indices take both aspects of clustering qual-
ity into account: In essence, the clustering error (2), i.e., the
sum of the within-cluster distances, to be as small as pos-
sible, is divided with the distance between the prototypes
(minimum distance for RT and different variants of average
distance for DB and DB∗), to be as large as possible. When
testing a number of possible numbers of prototypes from
k = 2 into Kmax, we stop this enlargement when all three
cluster indices start to increase.

Concerning the initialization, again partly similarly as in
[16], we use a weighted k-means++ algorithm in the ini-
tialization of the spatial median based clustering with the
weights

√
wi. A rigorous argument for such an alignment

was given in [9] where the relation between variance (weigh-
ted k-means) and standard deviation (weighted k-spatialme-
dians) was established. Because of local character, the ini-
tialization and the search are repeated Ns = 10 times and
the solution corresponding to the smallest clustering error
in (2) is selected. Furthermore, the weighted k-means++ is
applied in the ten initializations with ten different, disjoint
data samples (10% of the whole data) that were created us-
ing the so-called Distribution Optimally Balanced, Stratified
Folding as proposed in [12], with the modified implementa-
tion given in [7]. Such sampling, by placing a random ob-
servation from class j and its Ns− 1 nearest class neighbors
into different folds, is able to approximate both classwise
densities and class frequencies in all the created data sam-
ples. Here, we use the 68 country labels as class indicators
in stratification.

2.2 Hierarchical application
Because a prototype-based clustering algorithm always works
with distances for the whole data, the detection of clusters
of different size, especially hierarchically on different scales
or levels of abstraction, can be challenging. This is illus-
trated with the whole PISA data set in Fig. 1, which shows
the values of the three cluster indices for k = 1, . . . , 68. For
illustration purposes, also the clustering error as defined in
(2), denoted as ‘Elbow’, is provided. All indices have their
minimum at k = 2 which suggest the division of the PISA
data to only two clusters. Note that the geometrical den-
sity and low separability of the PISA scale indices might be
related to their standardization to have zero mean and unit
variance over the OECD countries.

Hierarchical application of the k-spatialmedians algorithm
was suggested in [17]. The idea is simple: Similarly to the
divisive clustering methods, apply the algorithm recursively
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Figure 1: Cluster indices and error slope for the whole sparse PISA data scaled into range [0, 1].

to the cluster data sets that have been determined using
the basic approach. For the PISA data here, we realized a
recursive search of the weighted k-spatialmedians with the
depth of three levels, ending up altogether with 2 (level 1),
4 + 4 (level 2), and 6 + 12 + 10 + 6 & 2 + 8 + 3 + 6 clusters
(level 3). The wall-clock time for each individual clustering
problem was several hours.

3. RESULTS
As discussed in Sec. 1, we use the 15 PISA scale indices
that readily summarize most of the students’ background as
data input for our clustering algorithm. By following the
mixture of the partitional/hierarchical clustering approach
as described above, we first of all, provide the results of the
weighted sparse data clustering algorithm when applied to
the whole PISA data (first level). Then, recursively, the
results of the algorithm for the newly obtained clusters at
the second and third level of refinement are given. For all
the clusters at each level, we compute the relative share of
students from each country, i.e., the weighted number of
students in the cluster in relation to the whole number of
15-year-old students in the country. Moreover, in order to
reveal the deviating characteristics of the appearing clusters,
we visualize and interpret (i.e., characterize) the cluster pro-
totypes in comparison to the overall behavior of the entire
15-year-old student population in the 68 countries by always
subtracting the weighted spatial median of the whole data
from the obtained prototypes.

3.1 First Level
Since, as pointed out in Sec. 2.2, all the sparse cluster in-
dices suggest two, we first run our weighted sparse clustering
algorithm for K = 2. The clustering result on the first level
is shown in Fig. 2. The division of these clusters is unam-
biguous: All scale indices that are associated with high per-
formance in mathematics have a positive value for Cluster 2
and a negative value for Cluster 1. Likewise, those two scale
indices that are associated with low performance in mathe-
matics, i.e., the self-responsibility for failing in mathematics
(failmat) and the anxiety towards mathematics (anxmat),
show a positive value for Cluster 1 and a negative value for
Cluster 2. As can be expected by these profiles, the mean
mathematics performance of Cluster 1 is much lower than
the mean math performance of Cluster 2 (see Table 1).

When we consider the relative number of students from dif-

Table 1: Characteristics of global/first level clusters
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂
1 13399687 (52%) 445 442 449
2 11321033 (48%) 468 461 475
all 24720720 (50%) 456 451 461

ferent countries, we see that every country has students in
both clusters. In fact, the distribution of the 15-year-old
student population between the two clusters is quite equal
in each country. For Cluster 1, the mean percentage of stu-
dents from a country is 55% while for Cluster 2, the mean
is 45%, and both have the standard deviation of 10. In all
of the in PISA participating countries and territories, there
are higher and lower performing students and it seems that
they share the same characteristics. Additionally, the dis-
tribution between girls and boys is quite equal, although
somewhat in favor of boys: Only 48% of the students in the
cluster with the scale indices that are associated with high
performance in mathematics are girls. Moreover, the aver-
age math score of the boys is in both clusters higher than
the average math score of the girls (see Table 1).

3.2 Second Level
Following the approach as described above, we run the clus-
tering algorithm again, but this time for each of the two
global clusters obtained in the first level separately. Accord-
ing to the same rule given in Sec. 2.1, i.e., stop enlarging k
during the search when all the cluster indices are increasing,
we get for both of the global clusters K = 4 as a number for
their subclusters.

3.2.1 Subclusters of Cluster 1

Table 2: Characteristics of subclusters of Cluster 1
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂
1-1 2792046 (56%) 439 438 440
1-2 3873035 (52%) 391 388 394
1-3 3072064 (58%) 466 464 468
1-4 3662542 (45%) 491 489 492

The subclusters of the global Cluster 1 are visualized in
Fig. 3 and characterized in Table 2. If we set the threshold
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Figure 2: Characterization of the two global clusters.

Figure 3: Characterization of the four subclusters of Cluster 1.

of how many students should at least be from one country to
21%, we obtain the following countries for the subclusters:
Cluster 1-1 (i.e., subcluster 1 of Cluster 1) contains at most
students from East Asia with the exception of China: More
than 30% of Japan’s 15-year-old student population belongs
to this cluster, 26% of Korea’s and and 25% of Taiwan’s.
The remaining students represent a mixture from many dif-
ferent countries which, however, are only represented by less
21% of their 15-year-old student population.

Cluster 1-2 contains almost entirely students from develop-
ing countries. Hereby, students from Vietnam form with
49% the majority. Moreover, Indonesia, Thailand (both
> 30%) and Brazil, Colombia, Peru, Tunisia, and Turkey
(all > 25%) are represented by this cluster. The cluster is,
as can be seen from Fig. 3, most notably characterized by a
very low economic, social and cultural status (escs). That
means that the students in this cluster - as a subset of the
global Cluster 1 which already represented the more disad-
vantaged students (see Fig. 2) - are the most disadvantaged.

Cluster 1-3 consists in the majority of students from Eastern
Europe: Serbia, Montenegro, Hungary, Slovak Republic (all
> 23%) and Romania (almost 22%) constitute the majority.
As we can see from Fig. 3, this cluster is the only one in the
group of subclusters of the global Cluster 1, that generally
was characterized by negative attitudes and perceptions (see
Fig. 2), which actually can be distinguished by positive at-
titudes towards school (attlnact). Moreover, it is the cluster
with mainly girls in it.

Cluster 1-4 accommodates mainly students from Western

and Central Europe. Most of the 15-year-old student pop-
ulation from the Netherlands (39%) are in this cluster, fol-
lowed by Belgium with 29%, and the Czech Republic with
27%. This cluster is characterized by the highest escs among
the students of the global Cluster 1. Furthermore, although
they have negative values in most of the scale indices, they
have a higher self-concept in math, and also much higher in-
tentions to use mathematics later in life in comparison with
their peers.

3.2.2 Subclusters of global Cluster 2

Table 3: Characteristics of subclusters of Cluster 2
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂
2-1 3127958 (43%) 526 523 528
2-2 2739481 (54%) 457 457 458
2-3 3521092 (50%) 400 397 403
2-4 1932502 (44%) 515 506 523

The subclusters of the global Cluster 2 are characterized in
Fig. 4 and summarized in Table 3. Again, we search for
clusters that mostly deviate from the others. Cluster 2-1 is
such a cluster: The students in this cluster have the highest
average math score (see Table 3), the highest intentions to
pursue a mathematics related career but a sense of belong-
ing to school (belong) and subjective norms in mathematics
(subnorm) that are only about the same as the average of
the whole 15-year-old student population (see Fig. 4). The
subjective norms in mathematics measure how people im-
portant to the students, such as their friends and parents,
view mathematics. In the global Cluster 2, those students
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Figure 4: Characterization of subclusters of Cluster 2.

who had high positive values in the other scale indices asso-
ciated with high performance in mathematics, also thought
that their friends and family view mathematics as impor-
tant (their subnorm value is very high, see Fig. 2). Students
in this cluster, however, seem not to be influenced or af-
fected by what people close to them think. It appears to be
a rather strong cluster that also has the highest percentage
of boys in it. For this cluster, we again compute the rel-
ative number of students from each country. And indeed,
it shows a very clear country-profile. The highest percent-
age of students come from the English-speaking and Nordic
countries: Denmark (more than 30%), Iceland and Sweden
(both > 26%) have the highest percentages of their 15-year-
old student population in this cluster. Followed by the two
highest performing districts in the USA, namely Connecti-
cut and Massachusetts, with both more than 25%. Besides
these countries and territories, the cluster has also a high
share of students from Norway, Finland, Great Britain, Aus-
tralia, and Canada (almost 22% or more). Additionally, the
USA has with more than 21% still a relatively high share of
students in this cluster. According to the Hofstede Model
(see Sec. 1), all of these countries are characterized by high
individualism.

Also Cluster 2-3 shows an explicit country profile: 36% of the
15-year-old student population from India are in this clus-
ter. Moreover, the cluster consists of students from Peru and
Thailand (both 30%), Turkey (27%) and Vietnam (26%).
Altogether, we find here the most disadvantaged students
(indicated by the very negative escs) among the subgroups
of the global Cluster 2 and the largest share of students
come from the developing countries. However, these stu-
dents have very positive attitudes towards education and
show relatively high values in all scale indices that are asso-
ciated with high performance in mathematics.

To this end, Cluster 2-2 and Cluster 2-4 have less obvious
country affiliations. Cluster 2-2 can at best be described as
containing mostly countries with Islamic culture. Most of
the students are from the United Arab Emirates and Albania
(both 21%), Kazakhstan and Jordan (both 19%). According
to the Hofstede Model, these countries are similar in that
way that they all show very high power distance. Cluster
2-4 has with 25% the highest share of students also from
Kazakhstan, but the remaining countries in this cluster (all
have less than 17% of their 15-year-old students population
in it) are widely mixed.

Altogether, among the clusters at the second level, Cluster
2-1 appears to be the most interesting one, i.e., the most
distinct group with the clearest country profiles.

3.3 Third Level
Recursively, we repeat the same approach on the next level,
i.e., for the subclusters of the eight clusters identified in
Sec. 3.2. For all the new subclusters, the best number of clus-
ters as determined by the cluster indices are as follows: 6,
12, 10, and 6 for the four subclusters of the first global clus-
ter, and 2, 8, 3, and 6 for the four subclusters of the second
global cluster. This means that we have 53 different clusters
on this level - almost as many as different countries/territo-
ries in the whole PISA 2012 data. If our hypothesis is true,
we should be able to find clusters that clearly contain more
students from certain countries. Exactly as in Sec. 3.2, we
first of all compute the basic facts of each cluster. Note,
however, that the deeper we go in the hierarchy the more
clusters we encounter and the more difficult it becomes to
define clear rules and thresholds to distinguish significant
characterizations of clusters.

3.3.1 Subclusters of Cluster 1-3

Table 4: Characteristics of subclusters of Cluster 1-3
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂

1-3-1 335240 (61%) 493 492 495
1-3-2 262779 (48%) 539 540 538
1-3-3 368591 (51%) 461 460 462
1-3-4 273629 (66%) 492 491 492
1-3-5 359721(56%) 427 428 426
1-3-6 275513 (63%) 437 436 438
1-3-7 264017 (63%) 443 441 447
1-3-8 318607 (63%) 460 457 464
1-3-9 216704 (60%) 421 418 424
1-3-10 397263 (56%) 481 482 480

The first interesting cluster appears in the 1-3 group. Clus-
ter 1-3-8 accommodates mainly students from South West
Europe: Austria, Liechtenstein, Spain, France, and Italy.
According to the Hofstede Model, all of these countries are
depicted by high avoidance of uncertainty.

3.3.2 Subclusters of Cluster 1-4
The characterization of the subclusters in the 1-4 group are
provided in Fig. 6, and summarized in Table 5. Also here,
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Figure 5: Characterization of subclusters of Cluster 1-3.

Figure 6: Characterization of the subclusters of Cluster 1-4.

Table 5: Characteristics of subclusters of Cluster 1-4
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂

1-4-1 485599 (48%) 481 480 482
1-4-2 520763 (38%) 556 558 555
1-4-3 771799 (53%) 494 494 495
1-4-4 489528 (43%) 497 491 501
1-4-5 754515 (48%) 470 467 473
1-4-6 640338 (38%) 461 465 458’

we are searching for explicit country clusters. This search is
realized by looking at the histograms and identifying those
clusters that for some countries have a considerably higher
share of their 15-year-old student population in it than for
the remaining countries. The histogram in Fig. 7 shows one
example of this for Cluster 1-4-2: In this cluster, the por-
tion of students in it deviates significantly from the others
for exactly one country with 10% of its 15-year-old student
population. This country is the Netherlands. For all other
countries, the share of their 15-year-old student population
in this cluster is less than 6% (see Fig. 7). As can be seen
from Fig. 6, this ‘Netherlands Cluster’ is characterized by
having the highest math self-efficacy amongst its group.

Cluster 1-4-1 is again a mixture of Nordic and English-
speaking countries. The highest share of students in this
cluster come from the United Kingdom, Ireland, Norway,
New Zealand, and Sweden. As these two country profiles
were already detected to be in the same cluster on the higher
cluster level (see Sec. 3.2.1), it really seems that students
from these countries share many similar characteristics.

Figure 7: Histogram of the distribution of countries
from the students in Cluster 1-4-2.

Cluster 1-4-4 has the highest share of East Asian countries
including two of the three districts of China that partici-
pated in PISA 2012. Most of the students in this cluster
come from Japan, followed by Taiwan, Macao-China and
Hong Kong-China. One of the most distinct feature of this
cluster is, as can be seen from Fig. 6, the high self-concept
in mathematics (scmat). According to the Hofstede Model
(see Sec. 1), all of these countries show high pragmatism.

3.3.3 Subclusters of Cluster 2-1

Table 6: Characteristics of subclusters of Cluster 2-1
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂

2-1-1 1346930 (40%) 562 557 566
2-1-2 1781028 (45%) 498 500 497

From Sec. 3.2, we concluded that Cluster 2-1 was the most
interesting one. Moreover, Cluster 2-1 was the cluster that
had the highest share of two country profiles in it: On the
one hand, the English-speaking countries, and, on the other
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Figure 8: Characterization of subclusters of Cluster 2-1.

hand, the Nordic countries. Interestingly, the cluster indices
also suggest to divide this cluster into two further countries.
However, when we look again at those countries that have
the highest percentages of their 15-year-old students, the
two clusters still contain mostly students from both country
profiles. For example, 15% of the Danish 15-year-old stu-
dent population are in Cluster 2-1-1, and 14% are in Cluster
2-1-2. Similarly, 14% of the 15-year-old student population
from Connecticut are in Cluster 2-1-1, and 11% in Cluster 2-
1-2. Apparently, this cluster does not divide any further be-
tween Nordic and English-speaking countries. It only divides
the high-performing students from these countries into two
types: On the one hand, the type that has a very high self-
efficacy (matheff ) as well as self-concept (scmat) in math,
i.e., the students that have a very high belief in their own
ability, and, on the other hand, the type that has very high
intentions to pursue a math related career (matintfc).

However, also a new clear group of countries appears. Clus-
ter 2-1-1 has a very high share of German-speaking countries
in it: More than 12% of Germany’s and Switzerland’s 15-
year-old student population, and 10% of Austria’s can be
found in this cluster. None of these countries appear in the
sibling Cluster 2-1-2 when the threshold is set to 9%. It
seems that high-performing German-speaking students feel
very confident in solving mathematical tasks but only show
a moderate positive value in the intentions to use mathe-
matics later in life, a characteristic that one would associate
the most with the traditional functional German stereotype
(see Sec. 1) that is expected to attach great importance to
utilitarianism [4]. According to the Hofstede Model, all of
these three German-speaking countries are considered to be
highly masculine.

3.3.4 Subclusters of Cluster 2-4

Table 7: Characteristics of subclusters of Cluster 2-4
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂

2-4-1 186107 (37%) 533 528 536
2-4-2 430729 (40%) 582 575 588
2-4-3 261838 (45%) 440 436 443
2-4-4 378120 (50%) 477 468 486
2-4-5 430105 (47%) 520 519 521
2-4-6 245603 (40%) 516 500 526

The subclusters of Cluster 2-4 are summarized in Table 7
and characterized in Fig. 9. The clearest country profile
among this group is 2-4-6: It consists to the highest share of
students from high-performing Asian countries: Shanghai-
China and Singapore. As we can see from Fig. 9, similarly to
Cluster 1-4-4 (see Sec. 3.3.2) that also contained a high share
of East Asian students, this cluster is characterized as well
by a high self-concept in mathematics (scmat). The students
in this cluster believe that mathematics is one of their best
subjects, and that they understand even the most difficult
work. Furthermore, as already found for Cluster 1-4-4, also
for this cluster the main countries show high pragmatism
according to the Hofstede Model.

4. CONCLUSIONS
In this article, we have introduced a clustering approach
that has both partitional and hierarchical components in it.
Moreover, the algorithm takes weights, aligning a sample
with its population into account and is suitable for large
data sets in which many missing values are present.

The hypothesis in our study was that the different clus-
ters determined by the algorithm, when all students with
their attitudes and behaviors towards education are given
as input, could be explained by the country of the students
in particular clusters. Our overall results on the first level
showed that in each cluster students from all countries exist
and that the actual test performance (as well as a simple
division in positive and negative attitudes towards educa-
tion) explain the clusters much better than the country from
which the students in the particular cluster come from.

However, on the next two levels many clusters were de-
tected that obviously had a much higher share of students
from certain countries. For example, an Eastern Europe,
a German-speaking, an East Asia, and a developing coun-
tries cluster were identified. On the second level, also a very
clear cluster that consisted to a high portion of Nordic and
English-speaking countries appeared. This cluster did not
split further on the next level to fully separate these two
distinct country profiles. Instead, the cluster was divided
into two student types, of which both the Nordic as well as
the English-speaking countries seem to have an almost equal
share of their students from.

Summing up, we conclude that groups of similar countries,
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Figure 9: Characterization of subclusters of Cluster 2-4.

e.g., by means of geographical location, culture, stage of de-
velopment, and dimensions according to the Hofstede Model,
can be found by clustering PISA scale indices but the actual
country stereotypes exist only to a very marginal extent.
However, in a further work the rules how to find relevant
clusters could be improved and more variables than the 15
scale indices utilized here could be included to the algorithm.
The PISA scale indices are linked to math performance and
in every country there are higher and lower performing stu-
dents who share similar overall characteristics. Neverthe-
less, we think that the overall results presented here show
a very promising behavior already, and we expect that the
resulting clusters of our algorithm could be explained even
clearer by the country of the students if additional informa-
tion such as the students’ temperament would be available
for the clustering algorithm.
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Specific Knowledge from Finnish Basic Education using
PISA Scale Indices. In Proceedings of the 7th Interna-
tional Conference on Educational Data Mining, pages
60–68, 2014.

[15] M. Saarela and T. Kärkkäinen. Analysing Student Per-
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ABSTRACT 
While the field of educational data mining (EDM) has generated 

many innovations for improving educational software and student 

learning, the mining of student data has recently come under a great 

deal of scrutiny. Many stakeholder groups, including public  

officials, media outlets, and parents, have voiced concern over the 

privacy of student data and their efforts have garnered national 

attention. The momentum behind and scrutiny of student privacy 

has made it  increasingly difficult for EDM applications to transition 

from academia to industry. Based on experience as academic 

researchers transitioning into industry, we present three primary 

areas of concern related to student privacy in practice: policy, 

corporate social responsibility, and public opinion. Our discussion 

will describe the key challenges faced within these categories, 

strategies for overcoming them, and ways in which the academic 
EDM community can support the adoption of innovative 

technologies in large-scale production. 

Keywords 

Student privacy, student data, policy 

1. INTRODUCTION 
Educational data mining (EDM) is chiefly defined by the 

application of sophisticated data mining techniques to solving 

problems in education [1]. A powerful tool, EDM has been 

successfully incorporated into applications that optimize student 

learning in both research and commercial products. EDM’s proven 
effectiveness has led many—from the U.S. government to 

individual teachers—to recognize the ability of student data in 

guiding education and to support  the development and use of these 

technologies in schools. Consequently, applications utilizing EDM 

technologies have become more prevalent in school systems [2], 

[3]. 

However, the increase in EDM usage has raised public awareness 

of how much data is being collected about students. The 

applications and companies that collect  and use student  data are 

coming under scrutiny, as parents, advocates, and public officials 

grow concerned over student privacy. A recent cascade of events 

has focused attention on privacy concerns [4]. For example, there 

has been a rise in high-profile attacks on consumer data from online 

retailers and financial institutions. Large, well-trusted institutions 

have been targeted for using student data in undesirable ways [5]. 
Promising companies driven by student data have been brought 

down by public opinion with no evidence of wrong-doing. Calls for 

stricter policy from privacy advocates have led to more than 100 

bills being introduced in U.S. state legislatures to address issues of 

student privacy in 2014 [4]. In response, the White House has 

announced plans for federal legislation modeled after state policies 

[6]. 

Negative media attention and increased legislation threaten to stifle 

EDM, particularly in commercial settings. Public opinion may 

make organizations wary to invest in and use EDM techniques 

while legislation could make it  more difficult to collect and use 

student data in effective ways. We believe it  is an incredibly 

important time for the EDM community to be aware of the 

challenges being faced in industry. The rise of concern over student 

privacy has strong implications for how new EDM approaches can 
be integrated into wide-reaching applications as well as the amount 

of funding available to public and private entities wishing to 

innovate in this space. 

These issues are receiving rapidly increasing attention and driving 

action at the national level. It  is critical that the discussions around 

these issues include experts from the EDM community. This paper 

discusses the issues and implications faced by commercial 

applications of educat ional data mining because of recent focus on 

student privacy.  In this paper, we discuss the role of policy, 

corporate social responsibility, and public opinion in framing the 

work of and challenges to industry. We discuss strategies for 

overcoming these challenges and present opportunities for the 

EDM community to address rising concerns.  

 

2. EDM AND INDUSTRY 
The profile of the EDM community has risen in the past decade—

in research, commercial products, public attention—bolstered by 

three related shifts. First, educational technology has been more 

widely adopted. School systems are investing in laptops, mobile 

devices and other technologies in favor of static textbooks. These 

technologies offer opportunities for data collection that did not 
exist before. Student records are also increasingly digitized 

including test scores, attendance records, and bus schedules. These 

digitized records have generated a wealth of longitudinal data that 

was previously difficult and expensive to collect  [7].  

Second, there has been a dramatic rise in computational power and 

storage capacities. This storage allows for the collection and 

housing of large amounts of data, even data that is not presently 

known to be useful. The increased computational power has 
generated sophisticated algorithms that can mine large corpora of 

data to identify connections that would previously be impossible 

[8] and has even created the possibility for robust decision engines 

to operate in real t ime learning systems.  

Finally, public officials and industry experts are starting to 

recognize the power of educational data mining [9]. Government 

funding opportunities for data-driven education solutions are on the 
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rise, and reports estimate that educational data mining has the 
potential to provide meaningful economic impact worldwide [10]. 

There are many areas of EDM research, each with unique 

applications to industry. At the individual level, data on student 

behavior, from mouse clicks to eye tracking, provide insight on 

how students interact with educational technology. For example, 

EDM has produced models of help abuse [11], attention to hints 

[12], and conversational dynamics in online forums [13]. These 
insights and techniques can help commercial educational 

technology providers design better applications that support 

positive interactions with students while being user-friendly.  

Another key area of research at the individual level is assessment. 

EDM applications have been used to identify student mastery as 

well as knowledge gaps. Frequently, these models are based on 

student performance on relevant tasks but can go beyond measuring 

what students did correctly and incorrectly by modeling underlying 
knowledge [14]. Some assessments are cleverly hidden, called 

“stealth assessment,” in games or ot her non-threatening 

applications [15]. These systems develop robust models of student 

knowledge while avoiding the negative effects associated with test 

performance; in fact, students may not even knowing they are being 

tested. These techniques have import ant implications for 

educational technologies, ranging from the design of new systems 

that can revolutionize the way assessment is done in formal 

learning environments, to technologies that can identify gaps in 

student knowledge and recommend resources to help fill them. 

EDM technologies have also driven personalized learning beyond 

tailoring instruction to what students know, but also to how they 

learn based on needs and preferences. Systems can identify 

commonly used strategies by students and select which are most 

effective, for particular individuals, under specific circumstances 

[16]. EDM techniques have also supported technologies that guide 

students towards learning how to regulate their own learning, by 

helping them to recognize and overcome weaknesses in their 

current approaches [17]. These techniques are critical in creating 

applications that use the most effective techniques and support 

personalized learning. 

Finally, EDM research has examined mining data at higher levels, 

including schools and districts, for a variety of purposes such as 

exploring college readiness [18], identifying the best teachers [19], 

or driving district spending [7]. Commercial products are 

commonly used to house this level of data and communicate 

findings to necessary stakeholders. Data mining on this 

organizational or even regional level has allowed for the 

development of early warning systems to predict student drop-out 

before it  happens as well as identify holes in district -level education 

[7]. 

In essence, “educational data mining and learning analytics have 

the potential to make visible data that have heretofore gone unseen, 

unnoticed, and, therefore, unactionable” [9]. The approaches 

outlined in this section offer significant promise in helping to 

improve education delivery and outcomes, but their success is 

contingent on the collection, storage, and use of large amounts of 

quality student data. Companies who wish to collect and use student 

data must operate under increased public and governmental 

scrutiny, which can, and has, created barriers to the use of EDM in 
industry.  

3. STUDENT PRIVACY 
Privacy is chiefly a question of access. Unlike anonymity or 

confidentiality, peoples’ interest in privacy is about controlling the 

access of others to themselves [20]. How to safeguard a child’s 
privacy is a particularly complex question because of their 

vulnerability. Children are incapable of “protecting their own 

interests through negotiation for informed consent” because they 

are likely to misunderstand risks or be coerced int o participating 

[20].  

This need to protect has led to the formation of student privacy 

advocacy groups and driven the adoption of legislation. The 

restrictions required to comply with this legislation and maintain 

good public opinion have a significant impact on the adoption of 

data-based solutions in education.  

3.1 Policy 
In the U.S., we have established privacy protections for children by 
asking for consent from parents or guardians and implementing 

policies which hold organizations, both public and private, 

accountable for obtaining consent when collecting, storing or 

disclosing data, and ensuring proper usage. There are two federal 

acts that  address children’s privacy directly: the Federal Education 

Rights and Privacy Act (FERPA), and the Children’s Online 

Privacy Protection Act (COPPA).    

3.1.1 Federal Education Rights and Privacy Act 
Before the enactment of the Federal Education Rights and Privacy 

Act (FERPA) in 1974, parents and students had lit t le access to 

education records. Meanwhile, that same information was widely 

available to outside authorities without requiring the consent of 

parents or students [21]. FERPA applies to any school receiving 

federal funds and levies financial penalties for not following it. 

While complying with FERPA is a local responsibility [22], the 

way it  defines education records and regulates third party access to 

them matters to private companies. 

According to FERPA, education records contain information on 

student background, academic performance, grades, standardized 

test results, psychological evaluations, disability reports, and 

anecdotal remarks from teachers or school authorities regarding 

academic performance or student behavior (FERPA, 1974, 20 

U.S.C § 1232g (a)(1)(D)(3). Generally, schools looking to disclose 

information contained in these records must have written 

permission from a parent or eligible student, an individual who is 

18 or attending post -secondary school. Education record 

information is only shared with a third party on the assurance that 

that third party will not allow further outside access to requested 

information without additional written parental consent (FERPA, 

1974, 20 U.S.C § 1232g (b)(4)(B)). Some activities, however, do 
not require written consent. Under FERPA, third parties, including 

private companies, may use information within education records 

for official or contracted evaluation, audit, and compliance 

activities without parental or student consent but are barred from 

using that data for marketing [23]. 

FERPA is not without controversy. Some have argued that schools 

improperly apply FERPA in order to protect information that does 

not fall under its definition of an education record and that such 
denials of disclosure are in violation of state open record laws [24]. 

Others voice concern over contracted service providers’ use of data 

not covered by FERPA citing that the content of emails housed in 

cloud services, data from identification cards, or data collected by 

schools to outsource a service could, depending on the contract, be 

used or sold for marketing purposes [23].  

3.1.2 Children’s Online Privacy Protection Act 
While FERPA affects private interests, the Children’s Online 

Privacy Protection Act (COPPA) speaks more directly to 
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operations, particularly to online service providers that have direct 
or actual knowledge of users under 13 and collect information 

online. Made effective in 2000, COPPA “requires web hosts and 

content providers to seek parental consent to store data about 

children under age 13” [25]. To be fully compliant, parents must be 

given the opportunity to review terms of service and privacy 

policies of each commercial website where their child’s 

information may be stored. Parental consent is required before any 

information can be collected, and parents can retract this 

permission and request all data be deleted at any time. Technology 

providers are required to disclose what data is being collected about 

children and what it  is being used for. They are also expected to 

provide reasonable measures of security and discard of data once it  

is no longer needed. [25], [26]. Overall, COPPA seeks to encourage 

responsible business practice and reduce “imprudent disclosures of 

personal information by children” [27]. 

COPPA, too, has fallen under criticism. It  is difficult to enforce and 

there many ways in which companies can comply with the “letter 

of the law” without truly protecting student privacy. COPPA has 

also been criticized for not reflecting the changes in online 

technologies accessed by children. In an effort to stay current with 

technological advancement, COPPA underwent revisions in 2013 

to “address changes in the way children use and access the Internet, 

including the increased use of mobile devices and social 
networking” [28] by widening the definition of what constitutes 

children’s personal information to include cookies, geolocation, 

photos, videos, and audio recordings [28]. These updates bolstering 

safeguards for student data appear further scaffolded by actions 

from the White House.  

3.1.3 Student Digital Privacy 
Driven by concerns over the efficacy of national policies, state 

legislators have seen the introduction of a large number of policies 

aimed at protecting student data [4], [29]. New national legislation 

may also be on the horizon for protecting student privacy [30]. The 

proposed Student Digital Privacy Act, modeled after a California 

statute, prohibits companies from selling student data to third 

parties except for educational purposes [6]. While it  is unclear 

when, or if, this legislation will be enacted, it  has already drawn 

criticism. Parents and privacy advocates fear it  is too lenient while 

industry experts warn that increased legislation may limit 

development of important educational solutions [31].   

These industry experts point to the voluntary Student Privacy 

Pledge (http://studentprivacypledge.org/) as a means to achieve 

better management of student data without federal legislation [32]. 

At the time of writing, 108 companies have chosen to sign the 

pledge, vowing that they will not sell student data or use data for 
targeted advertisement , and will maintain transparency about how 

data is being collected and used. This pledge is an indication that 

commercial education technology providers are taking steps 

towards the corporate social responsibility that will garner respect 

among users and privacy advocates. 

3.1.4 Student Privacy: International Perspectives 
The United States has relied on a piecemeal approach to regulating 

privacy where legislat ion is sector driven and may be enacted at 

state and/or federal levels [33]. Conversely, the European Union 

enacted a comprehensive set of regulations in the Data Protection 

Directive under which student privacy issues are largely subsumed. 

This set of regulations requires unambiguous consent  of individuals 

before collecting or processing personal data as well as a 
prohibition on collecting sensitive information with few exceptions 

[34]. 

Canadian national privacy legislation is stipulated in the Personal 
Information Protection and Electronic Documents Act which, like 

COPPA, is focused on how commercial entities use personal 

information, as well as the Privacy Act which limits the collection, 

use, and disclosure of personal information by federal government 

entities. Meanwhile, similar to United States, Canadian provinces 

follow their own patchwork of student specific legislation. Ontario, 

for instance, follows the Education Act, the Municipal Freedom of 

Information and Protection of Privacy Act as well as the Personal 

Health Information Protection Act. The Canadian system is less 

comprehensive than the EU, but is perhaps more effective in 

safeguarding student interests than the US due to an “all-

encompassing and prescriptive nature” [34].   

3.2 Corporate Social Responsibility 
Corporate social responsibility refers to companies taking an active 

part ensuring they have a positive impact on social welfare. In the 

case of privacy, this means working to truly protect student data 

and collect and use it  responsibly. Design weaknesses and 

enforcement shortcomings in student privacy legislation can often 

allow companies to appear more responsible than they are. 

Organizations can legally comply, a potentially cumbersome 
process on its own, but do lit t le to actually ensure best practices are 

being followed and student interests are protected. 

This is a significant issue in markets of educational technologies 

designed for children under the age of 13, the population protected 

by COPPA. True compliance with the intents behind COPPA can 

be “both overwhelming and prohibitive” [35] which privacy 

scholar, Danah Boyd, believes has led to an apprehension to target 

users under thirteen.  Avoiding the issue is often seen as “easier and 

more cost effective than attempting to tackle COPPA compliance.” 

[35] 

Currently there are many websites, online services, and mobile 

apps that are widely used in classroom settings including those 

classrooms with younger students. For example, Google Apps for 

Education reportedly serves an estimated 40 million students, 

teachers, and administ rators. Similarly, over 47 million teachers 

have accounts with Edmodo, the “world’s largest K-12 social 
learning community”. Education technology is estimated to be an 8 

billion dollar industry [30] and technology providers are often 

trying to find their niche while maintaining competitive advantage. 

Issues arise when creating a product that will be useful to education, 

ensuring that student data is collected and managed responsibly, 

and managing profit  and competition are at conflict with one 

another. This balance of constraints is one of the strongest 

challenges faced by companies seeking to gather and use 

educational data responsibly. 

3.2.1 Supporting Shared-Device Settings 
Classroom constraints make the educational market particularly 

unique. While 1:1 schools (1 device per student) and Bring Your 

Own Device (BYOD) integrations are on the rise, many schools 

reflect a shared-device model (e.g., classroom sets, device carts). In 

order to achieve personalized learning in this setting, individual 

accounts are often necessary. Yet individual accounts raise several 

issues. 

The first is that secure account authentication can be troublesome. 

Expecting students, especially younger students, to remember their 

login credentials is unreasonable in many cases. Keeping up wit h 

login information is particularly challenging when classrooms 
attempt to take advantage of multiple systems each requiring their 

own unique username and password. In fact, a report by the 

National School Board Association notes “password reuse due to 
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lax controls (i.e., password written on a sticky note)” as a particular 
concern for using online educational services [36]. Some systems 

utilize password pictures or avatars for younger populations, which 

could be a viable option depending on the type of data; however, 

when sensitive data such as images, video, and performance 

evaluations are often protected behind account logins, it  is 

important to enable users to securely protect their data. 

Furthermore, for those companies without any interest in storing 

student data on servers, shared-device settings can unintentionally 

force this responsibility. In a 1:1 environment, user data can simply 

be stored on students’ devices as there is lit t le concern over other 

individuals gaining access to the data; thus, eliminating the need to 

device solutions for complying to privacy legislation and avoiding 

security breaches. Appealing to shared-device environments, on the 

other hand, necessitates such measures including cloud storage, a 

solution known to concern parents [37]. Moreover, when schools 
rely on online educational resources and mobile apps that utilize 

cloud storage, they often relinquish control of that student data, 

which is particularly alarming given the fact that FERPA 

“generally requires districts to have direct control of student 

information when disclosed to third-party service providers” [23]. 

A recent report by Fordham Law School on the issue of student 

privacy and cloud computing found “school district cloud service 

agreements generally do not provide for data security and even 

allow vendors to retain student information in perpetuity with 

alarming frequency” [23]. The report goes on to point out that 

“fewer than 25% of the agreements [pulled from a national sample 

and reviewed by the committee] specify t he purpose for disclosures 

of student information, fewer than 7% of the contracts restrict the 

sale or marketing of student information by vendors, and many 

agreements allow vendors to change the terms without notice.” In 

sum, supporting ubiquitous student  access through cloud 
computing necessitates a great deal of legal accommodations.  

3.2.2 Consent 
The process for simply creating an account can be cumbersome and 

time-consuming for two primary reasons: 1) companies cannot 

collect personal information from students under thirteen without 

parental consent, and 2) students under 18 cannot legally agree to 
the Terms of Service agreement accompanying many registration 

processes. In some cases, schools obtain a blanket agreement from 

parents at the beginning of the year allowing instructors to create 

accounts for students. Although, if teachers do not have legal 

consent from parents to create accounts on their students’ behalf, 

having to wait for parental approval can easily derail an entire 

lesson quickly making the resource obsolete to the instructor.  

Unfortunately, many companies find “restricting” users, even 

audiences for which the product is intended, streamlines the 

registration process by avoiding parental consent. Susan Fox of the 

Walt Disney Company articulates this concern by stating, 

“Operators are keenly aware that consumers will quickly move on 

if websites are slow to load, functionality is delayed, or registration-

type processes stand between users and their content.” [38] 

Furthermore, because virtual age verification is difficult and easily  

bypassed, compliance can still be met by adding statements such as 
“we do not knowingly collect data” from persons under thirteen in 

privacy policies. As a result, sidestepping the intentions of COPPA 

makes it  difficult for other companies to remain competitive and 

“discourage[s] startups from innovating for the under-thirteen 

market” [38]. 

3.2.3 Disclosure 
Parental consent and disclosure are two of the major tenants of 

COPPA compliance. Responsible adherence suggests that 

companies are forthcoming with informat ion and present details 

clearly to parents when asking consent. However, this can be 

troublesome and may serve to harm parental opinions of an 

application rather than help. For example, there is concern that 

anything requiring parental permission (e.g., PG-13 or R-rated 

movies) is somehow objectionable.  This misconception stems 

from the fact that “parents and youth believe that age requirements 

are designed to protect their safety, rather than their privacy.” [39] 

As a result, companies attempting to be compliant may be 

inadvertently penalized because of public opinion.  

Privacy policies are another form of disclosure that may be open to 
misinterpretation. Regulated by the FTC, privacy policies require 

companies to be upfront about the collection and use of user data. 

There is, however, much debate about their effectiveness. In a 

recent survey, over half of interviewed online Americans agreed 

with the statement, “When a company posts a privacy policy, it  

ensures that the company keeps confidential all the information it  

collects on users” and even fewer users read—or, in the case of 

these younger populations, can read and comprehend—them [40]. 

Others have proposed alternative solutions that more clearly 

convey the purposes of data collection [41] yet truly articulating the 

intricacies of EDM and personalized learning environments will 

take proofs of concept and time.  

3.3 Public Opinion 
One of the largest drivers behind the focus on privacy of student 

data is the vocal concern of parents and stakeholders in the media. 

The issue has been gaining a great deal of attention and has already 

had serious impacts on the landscape of educational technology 

providers. 

Perhaps one of the best examples of the power of backlash from 

parents and media is the demise of a well-funded nonprofit  

company based entirely on the promise of educational data mining 
[5]. Though it  was widely supported by districts, industry experts, 

and funding agencies, its efforts were undermined by parental 

protests and media frenzy. The company did not respond to rising 

concerns and failed to staunch fears over data misuse and 

protection. Though there was no evidence of any wrong-doing on 

the part of the company, parents and privacy advocates protested 

that the risk was too great. As the protest grew larger and more 

vocal districts began withdrawing participation in early 2014.  

While anecdotal, this example demonstrates the need for industries 

relying on student data to get ahead of the rising panic by 

demonstrating value (i.e. driving innovation and/or supporting 

student learning). While EDM has its proponents [2], [9], their 

beliefs do not propagate to the general public. Parents and privacy 

advocates do not believe the benefits to be gained by educational 

technologies driven by student dat a outweigh the risks. The top 

concerns for these individuals are varied, as are their levels of 
awareness with various issues. Commonly discussed areas of 

concern with regards to student data include marketing, security, 

decision-making, and the “unknown”.  

3.3.1 Marketing 
A primary purpose behind existing and proposed legislation is to 

limit the use of children’s data to drive targeted advertisements 
[42]. It  is, therefore, unsurprising that this is one of the top concerns 

of parents and school officials. However, much of this legislation 

and parental concern stems from children’s interactions with non-

educational sites and technologies. In this case, it  makes sense to 
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limit targeted advertising of toys, food items, and other commercial 
goods, especially when considering findings that children are 

mostly unable to distinguish advertisement from regular content 

[43]. 

However, it  is not clear that this protection is warranted in 

educational contexts. Much of the “advertisement” promoted by the 

EDM community centers around identifying gaps in a student’s 

understanding and surfacing the most effective and engaging ways 

to fill those gaps. These advertisements have strong potential to 

benefit  students, but some parents and other privacy advocates are 

only able to see that their children are being exploited for profit  

[2][3].  

3.3.2 Decision-Making 
Several EDM technologies provide a promise to support data-

driven decisions about how best to help students learn. This is seen 

regularly in tools that select problem sets, feedback, or lesson plans 

based on students’ prior interactions [44]. Data may also be 

presented to educators or administrators making decisions about 

whether a student needs additional attention or if they are college-

ready [18]. These types of decisions start drawing parental concern. 

While parents understand (though they may not agree with) data 

from high stakes examinations being used to drive decisions about 
their children’s education, data from private learning technologies 

is more unclear. Parents fear that undisclosed “stealth assessments” 

could negatively impact their children’s future – from academics 

through the work force [42].  

3.3.3 Security.  
In addition to concerns over what companies may do with the data 
they collect, many parents are also fearful over what may happen if 

that data enters the wrong hands. The news is rife with incidents of 

data breeches with individual financial and other personal data 

being accessed by malicious parties. Parents concerns over student 

data security is certainly valid, though experts think it  unlikely that 

this type of data would draw attack as it  is less obviously lucrative 

when compared with financial and other personal records [2]. 

Existing legislation does put restrictions on the collection and 

storage of personally identifiable information (PII) of minors and 

responsible companies do strive to ensure anonymization of data. 

However, the rapid increase in the quantity of data collect ed and 

the sophistication of data mining procedures increase the likelihood 

that data that does not seem like PII on the surface could be 

combined to identify individuals [8].  

3.3.4 The “Unknown”. 
Finally, many fears from parents and the media cannot be 

vocalized. There is something unsettling about the quantity of data 

being collected, stored, and mined about children, even if there is 

no real threat to safety or happiness. Much of this fear stems from 
the lack of transparency that surrounds the issues. Companies want 

to keep practices secret to avoid giving competitors an advantage.  

Privacy policies are often vague and uninformative to reduce the 

risk of drawing criticism or lawsuits. This is especially a concern 

as media tensions and attacks rise.  Parents know that large 

quantities of data are being collected about their children, and it  is 

unclear why it  is being collected, how it  is being used, and what it  

could be used for in the future. Rising distrust between parents, 

stakeholders and technology providers shuts down constructive 

conversation and only serves to exacerbate the issue. 

 

4. ROLE OF THE EDM COMMUNITY 
The barriers to industry applications of educational data mining 

techniques stem from several sources. Existing and proposed policy 

put restrictions on how data can be collected, stored and used. 

Companies can technically comply with legislation without  much 

impact on their product or processes. However, strictly adhering to 

policies and offering real privacy protection often makes accessing 

and using educational tools more difficult, giving less socially 

responsible companies a competitive advantage. Public opinion can 
lead to the destruction of companies with no unethical practices and 

can drive money away from investment in data-based educational 

technologies. The EDM community has an important role to play 

in keeping these challenges in check and allowing innovation to 

thrive (Table 1). 

4.1 Transparency 
A lack of clarity, rampant misunderstanding, and a high degree of 

uncertainty fuel sentiment against the collection and use of student 

data. The main concerns of many parents and privacy advocates are 

largely not reflective of actual practice.  

Consequently, the EDM community is unique positioned to 

advance public understanding for what student data is really being 

used. EDM professionals can better describe how data is being 
used, what innovations it  supports, explain the focus of current 

research, and portray likely research foci of the field. Parental 

concerns may be allayed knowing that people are not actively 

contributing to the outcomes they most fear. 

The community can also disseminate details about the effectiveness 

of these approaches beyond the research community. Showing the 

strengths of these techniques may help concerned individuals see 

the benefits that individual children and the education system as a 

whole stand to gain.  

As new approaches are developed, consider creating public-facing 

talking points that can be used to communicate with concerned 

parties. These points should describe what data is being used and 

Table 1. The role of the EDM community on the issue of student privacy.  

Point of Concern Proposed Solution Action Item 

Policy  Policy Activism  Remain abreast of proposed or approved policy changes. 

 Actively voice expert opinions to policy makers. 

Corporate Social 

Responsibility 
 Awareness of classroom 

constraints  

 Develop algorithms that minimize the amount of data needed 

to produce effective results where possible. 

 Avoid requirements for individual accounts when possible. 

Public Opinion  Understanding public opinion 

 Transparency 

 Actively work to correct misconceptions about student data 

and privacy concerns. 

 Set research agendas aimed at better understanding public 

understanding of privacy issues. 
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how it  can benefit  students. They should be written in a way that is 
clear and easy for non-experts to understand. 

4.2 Research Agendas 
The EDM community can also drive research towards areas that 

may help compliance with legislation and improve public opinion. 

Algorithms that minimize the amount of data needed to produce 

effective results would be beneficial to companies wishing to keep 

privacy concerns at bay. Researchers should consider the tradeoffs 

when developing new “big data” approaches. More data may lead 

to more effective techniques but it  also may represent an increased 

violation of privacy. Finding a balance can support widespread 

dissemination in commercial technologies 

It  is important that researchers understand the classroom constraints 
of commercial educational technologies, especially when it  comes 

to privacy. For a variety of reasons it  is often less feasible to 

guarantee that data comes from a specific individual. Approaches 

that are robust enough to take this into account  will allow 

educational technologies to be successful in more environments.  

An additional area of research that could benefit  from the 

involvement of the EDM community is research on the public 

understanding of privacy issues. The EDM community could be 

involved in cross-disciplinary research to ensure that 

communication surrounding EDM techniques is accurate and clear, 

and organizational privacy policies are widely understood. 

4.3 Policy Activism 
Finally, we encourage members of the EDM community to become 
active as policy debates grow. It  is important to stay up to date on 

proposed policy changes and to consider how these changes may 

impact research agendas and the commercial applicability of those 

findings. Policy changes may increase constraints in commercial 

applications that could drive shifts in funding made available to 

EDM research. The policy changes affect both communities.  

The discussion also needs more contributions from EDM experts. 

Consider voicing concerns to local officials and provide guidance 

on how policy should be directed. Too much of the current dialogue 

is based on a fear and misunderstanding. These voices are currently 

overpowering the experts who support the use of data in education.  

 

5. CONCLUSION 
Educational data mining offers significant  promise in improving 

student learning and education systems as a whole. However, these 

systems are often driven by the collection of large amounts of 

student data, which is a growing concern to many. Shifts in public 

opinion and policy have led to barriers to the adoption of EDM 

technologies in commercial applications and threaten to stifle 

future innovation. Several fundamental issues are driving this trend. 

The first is the role of trust, fear, and misunderstanding. It  is 
difficult to combat the fear associated with the unknown. 

Companies and experts in the field must work hard to both gain the 

trust of the public and communicate what is actually being done 

with student data. Trust must extend the other way as well.  

Companies need to trust that by being open about their practices 

they will not be attacked by concerned external stakeholders. Fear 

from companies about the reactions of privacy advocates 

encourages silence on their parts and serves to reduce overall 

transparency. Both parties must build trust to move towards an open 

and productive dialogue. 

Another recurring theme centers on legislation that has not yet had 

the desired effect. Privacy advocates view current legislation as too 

lenient and many companies are able to comply without actually 
protecting student data. In fact, the legislation may actually harm 

companies that do the most to protect student privacy. Voluntary 

pledges offer one solution, though they are not without problems; 

conflicts of interest often erode even the best self-policing 

strategies. Many, if not most, companies may support the spirit  of 

such pledges but be unable to sign due to any number various 

technicalities. Active involvement from all invested parties will be 

crucial to designing new legislation that will strike a balance 

between allowing data to be used for the good of education, while  

protecting the privacy of individual students. 

Finally, differing views on the appropriateness of private 

institutions delivering public goods underscore many of the issues 

discussed. If commercial vendors are going to be the major 

providers of educational technologies to school systems there needs 

to be a shift  in how the public perceives these companies. Stifling 
the success of these companies only serves to keep innovative 

learning technologies out of the classroom. Still, deference to 

privacy concerns is an important component of occupying a role in 

part characterized by public stewardship. Discussions about the 

ethical limits of financially profiting off of student data need to be 

addressed directly by corporate, research, and public interests with 

adequate emphasis on risk and potential system improvements.  

Overall, there are variety of issues contributing to concerns over 

student privacy and how these concerns impact industry 

applications of educational data mining. These issues are extremely 

prominent and are not expected to lose momentum soon. The EDM 

community stands to play an important role in how discussions and 

legislation around student privacy evolve in the coming years. The 

landscape of educational data and privacy will continue to shift, and 

we hope with increased involvement this shift  will be positive for 

researchers and industries interested in using educational data 
mining to support student learning.  
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ABSTRACT
High attrition rates in massive open online courses (MOOCs)
have motivated growing interest in the automatic detection
of student “stopout”. Stopout classifiers can be used to or-
chestrate an intervention before students quit, and to survey
students dynamically about why they ceased participation.
In this paper we expand on existing stop-out detection re-
search by (1) exploring important elements of classifier de-
sign such as generalizability to new courses; (2) developing
a novel framework inspired by control theory for how to
use a classifier’s outputs to make intelligent decisions; and
(3) presenting results from a “dynamic survey intervention”
conducted on 2 HarvardX MOOCs, containing over 40000
students, in early 2015. Our results suggest that surveying
students based on an automatic stopout classifier achieves
higher response rates compared to traditional post-course
surveys, and may boost students’ propensity to “come back”
into the course.

1. INTRODUCTION
Massive open online courses (MOOCs) enable students around
the world to learn from high-quality educational content
at low cost. One of the most prominent characteristics of
MOOCs is that, partly due to the low cost of enrollment,
many students may casually enroll in a course, browse a few
videos or discussion forums, and then cease participation
[12, 6, 10]. Some MOOCs offer the ability to receive a “cer-
tificate” by completing a minimum number of assignments
or earning enough points, and for the most part the num-
ber of students who certify in MOOCs is far lower than the
number of students who register. This is not necessarily a
problem – students may enroll for different reasons, not ev-
eryone cares about formal certification, and if students learn
anything from a MOOC, that is arguably an important gain.

On the other hand, the fact that most students who enroll in
a MOOC do not complete the course still warrants further

investigation. For example, there may be some students who
genuinely intended to complete a course when they enrolled
but, upon encountering the lecture materials, quiz problems,
or even other students, felt discouraged, frustrated, or bored,
and then stopped participating in the course. Indeed, Re-
ich [11] found that, of students who completed HarvardX
pre-course surveys and expressed the intent to complete the
course, only 22% of such students actually did so. A deeper
understanding of the reasons why students stop out of a
course could help course developers improve course content.

HarvardX, Harvard’s strategic initiative for online educa-
tion, is interested in understanding students’ learning ex-
periences in order to improve both online and residential
education. Some of the questions we are currently tack-
ling include who is enrolling in HarvardX courses, why are
they enrolling, and how can we improve their educational
experiences. In particular, we would like to know whether
students stop out of HarvardX courses for reasons exogenous
to their course experience – e.g., increased stress at work –
or whether they quit because they disliked something about
the course, especially things that course developers might
be able to improve. One step towards answering this ques-
tion, which we instituted starting in 2014, was to request
of every student who enrolled in a HarvardX course to an-
swer a post-course survey, which asks whether they liked the
course and how it could be improved. Unfortunately, this
effort was largely unsuccessful: response rates to these sur-
veys were very low (around 2% of all course registrants, and
less than 1% of students who had stopped out) and heavily
biased toward students who had already persisted through
weeks of voluntary challenges and were likely very satisfied
with the course. It seems that the traditional approach to
course evaluation – asking all students to evaluate a course
at its end – is unlikely to work in a MOOC context.

One possible reason for the low response rate from students
who stopped out is that such students quickly disengage af-
ter leaving the course, so that the likelihood of respond-
ing to a survey weeks or even months after they quit is
small. Indeed, we found (see Fig. 1) that the probability
of responding to (i.e., starting, but not necessarily complet-
ing) the post-course surveys decays rapidly as the time since
stopout increases. It is possible that higher response rates
could be achieved if students could be contacted, through
some automatic mechanism, in a more timely fashion. This
could potentially increase the amount of information that
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Figure 1: Mean probability (± std.err.) of respond-
ing to the post-course survey versus time-since-
stopout, over 6 HarvardX MOOCs.

HarvardX, and other MOOC providers, can glean from stu-
dents who choose not to complete their courses.

In January-April 2015, we pursued this idea of a dynamic
survey mechanism designed specifically to target students
who recently “stopped out”. In particular, we developed an
automatic classifier of whether a student s has “stopped
out” of a course by time t. Our definition of stopout de-
rives from the kinds of students we wish to survey: we say
a student s has stopped out by time t if and only if: s does
not subsequently earn a certificate and s takes no further
action between time t and the course-end date when certifi-
cates are issued. The rationale is that students who either
certify in a course or continue to participate in course ac-
tivities (watch videos, post to discussion forums, etc.) can
reasonably be assumed to be satisfied with the course; it
is the rest of the students whom we would like to query.
In addition to developing a stopout classifier, we developed
a survey controller that decides, based on the classifier’s
output, whether or not to query student s at time t; the
goal here is to maximize the rate of survey response while
maintaining a low spam rate, i.e., the fraction of students
who had not stopped out but were incorrectly classified as
having done so (false alarms). In our paper we describe our
approaches to developing the classifier and controller, as well
as our first experiences in querying students and analyzing
their feedback. To a modest extent, even just emailing stu-
dents with “Returning to course?” in the subject line (see
Sec. 6) constitutes a small “intervention”; the architecture
we develop for deciding which students to contact may be
useful for researchers developing automatic mechanisms for
preventing student stopout.

Contributions: (1) Most prior work on stopout detection
focuses on training detectors for a single MOOC, without ex-
amining generalization to new courses. For our purpose of
conducting dynamic surveys and interventions, generaliza-
tion to new MOOCs is critical. We thus focus our machine
learning efforts on developing features that predict stopout
over a wide variety of MOOCs and conduct analyses to mea-
sure cross-MOOC generalization accuracy. (2) While a vari-
ety of methods have been investigated for detecting stopout,

almost no prior research has explored how to use a stopout
detector to survey students or conduct an intervention. We
present a principled method, based on optimization via sim-
ulation, to choose a threshold on the classifier’s output so
as to maximize a performance criterion. Finally, (3) we con-
duct one of the first MOOC “survey interventions” using
an automatic stopout classifier (to our knowledge, the only
other work is [7]) and report initial findings.

2. STRUCTURE OF HARVARDX MOOCS
Most HarvardX MOOCs (all those which are analyzed in this
paper) are hosted on servers owned and managed by edX,
which is a non-profit multi-university consortium located in
Cambridge, Massachusetts. Student enrollment and event
data are stored at edX and then transferred periodically
(daily and weekly depending on the dataset) from edX to
HarvardX. Hence, there is a “time gap” between when stu-
dents generate events and when these event data are avail-
able at HarvardX.

Every HarvardX MOOC has a start date, i.e., the first day
when participation in the MOOC (e.g., viewing a lecture,
posting to the discussion forum) is possible. HarvardX MOOCs
also have an end date when certificates are issued. At the
end date, all students whose grade exceeds a minimum cer-
tification threshold G (which may differ for each course)
receive a certificate. HarvardX courses allow students to
register even after the course-end date, and they may view
lectures and read the discussion forums; in most MOOCs
these students cannot, however, earn a certificate. For the
analyses in this paper we normalize the start date for each
course to be 0 and denote the end date as Te.

3. RELATED WORK
Over the past 3 years, since MOOCs have proliferated and
the low proportion of students who complete them has be-
come apparent, researchers from a variety of fields, including
computer science, education, and economics, have begun de-
veloping quantitative models of when and why student stop
out from MOOCs. The motivation for such work varies –
some researchers are more interested in estimating the rel-
ative weight of different causes of stopout, whereas others
(including ourselves) are primarily interested in developing
automatic classifiers that could be used for real-time inter-
ventions. Work on stopout/dropout detection in MOOCs
varies along several dimensions, described below:

Definition of stopout/dropout: Some researchers treat a
student’s last“event”within a MOOC as the stopout/dropout
date, where “event” could be submitting an assignment or
quiz solution [14, 13], watching a video [13], posting to a dis-
cussion forum [17], or any event whatsoever [8, 1]. Others
define stopout as not earning a certificate within a course
[5, 2, 4]. Hybrid definitions, such as having watched fewer
than 50% of the course’s videos and having executed no ac-
tion during the last month [3], are also possible. Our own
“stopout” definition (see Introduction) is a hybrid of lack of
certification and last event.

Features used for prediction: The most commonly used
features are derived from clickstream data [4, 1, 8, 2, 3, 14, 7]
(e.g., when students play videos, post to discussion forums,
submit answers to quiz problems), grades [4, 5, 3, 14, 7]
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(e.g., average grade on quizzes), and social network analysis
[17, 5] (e.g., eigenvector centrality of a node in a discussion
forum graph). Biographical information (e.g., job, age) has
also been used [5, 13, 17].

Classification method: Most existing work uses standard
supervised learning methods such as support vector ma-
chines [8] and logistic regression [4, 5, 14, 7]; the latter has
the advantage of probabilistic semantics and readily inter-
pretable feature coefficients. Another approach is to use a
generative model such as a Hidden Markov Model [1]; this
could be useful for control-theoretic approaches to prevent-
ing stopout. Survival analysis techniques such as the Cox
proportional hazards model have also been used [17, 13].

Classification setting: A critical issue is whether a stopout
detector is highly tuned to an existing course that will never
be offered again; whether it could generalize to a future of-
fering of the same course; or whether it could generalize to
other courses. Detectors that are tuned to perform opti-
mally for only a single course are useful for exploring differ-
ent classification architectures and features, but their utility
for predicting stopout in new students is limited (since typ-
ically the entire course has ended before training even be-
gins). Most existing work focuses on a single MOOC (which
may or may not be offered again); to our knowledge, only
[7, 3] explore stopout detection across multiple courses.

To our knowledge, the only prior work that explores how to
use a stopout detector to conduct dynamic surveys is [7]. In
contrast to their work, we take a more formal optimization
approach to deciding how to use the classifier’s output to
make intelligent survey decisions (see Sec. 5).

4. STOPOUT DETECTOR
The first step toward developing our dynamic survey sys-
tem is to train a classifier of student stopout. In particular,
we wish to estimate the probability that a student s has
stopped out by time t, given the event history up to time t.
We focus on time invariant classifiers, i.e., classifiers whose
input/output relationship is the same for all t. (An alter-
native approach, which we discuss in Sec. 4.3, is to train a
separate classifier for each week, as was done in [14].) In
correspondance with the interventions that we conduct (see
Sec. 6), we vary t over T = {10, 17, 24, . . . , Te} days; these
days correspond to the timing of the survey interventions
that we conduct. In our classification paradigm, if a student
s stops out at time t = 16, then the label for s at t = 10
would be negative (since he/she had not yet stopped out),
and the labels for times 17, 24, . . . , Te would all be positive.
Note that, since students may enroll at different times dur-
ing the course (between 0 and Te), not all values of t are
represented for all students.

For classification we use multinomial logistic regression (MLR)
with an L2 ridge term (10−4) on every feature except the
“bias” term (which has no regularization). Prior to classi-
fier training, features are normalized to have mean 0 and
variance 1; the same normalization parameters (mean, stan-
dard deviation) are also applied to the testing set. For each
course, we assign each student to either the training (50%)
or testing (50%) group based on a hash of his/her username;
hence, students who belong to the testing set for one course

will belong to the testing set for all courses. For all exper-
iments, we include all students who enrolled in the MOOC
prior to the course-end date when certificates are issued.

As accuracy metric we use Area Under the Receiver Operat-
ing Characteristics Curve (AUC) statistic, which measures
the probability that a classifier can discriminate correctly
between two data points – one positive, and one negative
– in a two-alternative forced-choice task [15]. An AUC of
1 indicates perfect discrimination whereas 0.5 corresponds
to a classifier that guesses randomly. The AUC is threshold
independent because it averages over all possible thresholds
of the classifier’s output. For a control task in which we use
the classifier to make decisions, we face an additional hurdle
of how to select the threshold (see Sec. 5).

4.1 Features
Our focus is on finding features that are predictive of stopout
for a wide variety of MOOCs, rather than creating special-
ized features (via intensive feature engineering [14]) that are
tailored to a particular course. We extract these features
from two tables generated by edX: the “tracking log” table
(containing event data), and the “courseware student mod-
ule” table (containing grades). The features we extract and
the motivation for them are listed below:

1. The absolute time (in days, since course start) t, as
well as the relative time through the course (t/Te) – it
is possible that students who persist through most of
the course are unlikely to stop out.

2. The elapsed time between the last recorded event and
time t – recent activity is likely negatively correlated
with stopping out.

3. The total number of events of different types that were
triggered by the student up to time t, where event
types includes forum posts, video plays, etc.

4. 1-D temporally-local band-pass (Gabor [9]) filters (6
frequencies, 3 bandwidths) of all event times before
t. Temporal Gabor filters capture sinusoidal patterns
(with frequency F = 2f , f ∈ {−10,−9, . . . ,−5} days)
in the recent history of events by attenuating with a
Gaussian envelope (with bandwidth σ ∈ {14, 28, 56}
days); see Fig. 5 for examples. Gabor filters have been
used previously for automatic event detection (e.g.,
[16]), and it is possible that “regularity” in event logs
is predictive of whether a student stops out.

5. The student’s grade at time t relative to the certifica-
tion threshold (gt/G), as well as a binary feature en-
coding whether the student already has enough points
to certify (I[gt ≥ G]). If the latter feature equals 1,
then by definition the student has not stopped out.

See Appendix for more details. Including a “bias” feature
(constant 1), this amounts to 37 features.

4.2 Experiments
We investigated the following questions:
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Course ID Year Subject # students # certifiers # events # data # + data
AT1x 2014 Anatomy 971 60 384747 7588 5895
CB22x 2013 Greek Heroes 34615 1407 11017890 671894 555581
CB22.1x 2013 Greek Heroes 17465 731 5195716 250205 201836
ER22x 2013 Justice 71513 5430 16256478 1209515 926067
GSE2x 2014 Education 37382 3936 13474171 209097 159639
HDS1544.1x 2013 Religion 22638 1546 6837110 144233 108848
PH525x 2014 Public Health 18812 652 5567125 124592 96836
SW12x 2013 Chinese History 18016 3068 7638660 78821 50431
SW12.2x 2014 Chinese History 9265 2137 3544666 25885 15741
USW30x 2014 History 14357 1089 2171359 107789 86043

Table 1: MOOCs for which we trained stopout classifiers, along with # students who enrolled up till the
course-end date, # students who earned a certificate, # events generated by students up till the course-end
date, # data points (summed over all students and all times t when classification was performed) for training
and testing, and # positively labeled data points (time-points after the student had stopped out).

1. Accuracy within-course: How much variation in
accuracy is there from course to course? How does
this accuracy vary over t ∈ [0, Te] within each course?

2. Accuracy between-courses: How well does a clas-
sifier trained on the largest course in Table 1 (ER22x)
perform on the other courses?

3. Training set size & over/under-fitting: Does ac-
curacy improve if more data are collected? Is there
evidence of over/under-fitting?

4. Feature selection: Which features are most predic-
tive of stopout? How much accuracy is gained by
adding more features?

5. Confidence: Does the classifier become more confi-
dent as the time-since-stopout increases?

4.3 Accuracy within-course
For this experiment we trained a separate classifier for each
of 10 HarvardX MOOCs (see Table 1) using only training
data and then evaluated on testing data. Accuracy for each
course as a function of time-to-course-end (Te−t) is shown in
Fig. 2. In this graph we observe substantially lower accuracy
during the beginning of each course (left side of the graph)
than at the end, suggesting that longer event histories (larger
t) yield more accurate classifications. In addition, accuracy
varies considerably from course to course, especially at the
beginning of each course.

Table 2 (middle column) shows accuracy for each course ag-
gregated over all t ∈ T . Comparing classification architec-
tures across different courses is approximate at best; how-
ever, we do observe a large performance gap between our
numbers and the accuracy reported in [1] (AUC=0.71), who
also use“last event”as their definition of stopout. One possi-
ble explanation is the lack of a“time since last event” feature
(see Sec. 4.6) in their feature set. [8] use a similar definition
of stopout but only report percent-correct, not AUC.

Based on Fig. 2, it is conceivable that students’ behavior (or
the set of students) is qualitatively different during the first
week of a course compared to later weeks, and that training
a specialized classifier to predict stopout only during the
first week might perform better than a classifier trained on

Figure 2: Accuracy (area under the receiver oper-
ating characteristics curve (AUC)) of the various
stopout classifiers as a function of time, expressed
as number of days until the course-end date.

all weeks’ data. We explored this hypothesis in a follow-up
study (ER22x only) and found minor evidence to support it:
train on week 1, test on week 1 gives an AUC of 0.69; train
on all weeks, test on week 1 gives an AUC of 0.66.

4.4 Accuracy between-courses
Here, we consider only the classifier for course ER22x, con-
taining the largest number of students and the most train-
ing data. We assessed how well the ER22x stopout clas-
sifier generalized to other courses compared to training a
custom classifier for each course. We assess accuracy over
all students and all t ∈ T to obtain an overall AUC score
for each course. Results are shown in Table 2. The mid-
dle column shows testing accuracy when training on each
course, whereas the right column shows testing accuracy
when trained on ER22x. Interestingly, though a small con-
sistent performance gain can be eked by training a classifier
for each MOOC, the gap is quite small, typically < 0.02.
This suggests that the features described in Sec. 4.1 are quite
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Course Within-course Cross-train (ER22x)
AT1x 0.850 0.832
CB22x 0.879 0.876
CB22.1x 0.868 0.866
ER22x 0.895 0.895
GSE2x 0.892 0.881
HDS1544.1x 0.897 0.887
PH525x 0.860 0.847
SW12x 0.890 0.880
SW12.2x 0.907 0.896
USW30x 0.884 0.875

Table 2: Accuracy (AUC, measured over all stu-
dents in the test set and all times t) of stopout clas-
sification for each course, along with accuracy when
cross-training from course ER22x.

general; on the other hand, it also points to the possibility
of underfitting (see Sec. 4.5).

4.5 Training set size & over/under-fitting
We examined how testing accuracy (AUC) increases as the
number of training data increases. For ER22x, we found
that, even if the number of training students is drastically
reduced to 1000 (down from around 36000), the testing ac-
curacy is virtually identical at 0.894. Moreover, the training
accuracy for a training set of 1000 students is only 0.91 (and
slightly lower when using the full training set) and does not
improve by reducing the ridge term. These numbers suggest
that (a) the feature space may be too impoverished (under-
fitted) to classify all data correctly; and/or (b) there is a
large amount of inherent uncertainty in a student’s future
action given only his/her event logs and grades.

4.6 Feature selection
While some insight into feature salience can be gleaned by
examining the regression coefficients, in practice it is difficult
to interpret these coefficients because the L2 regularizer dis-
tributes weight across multiple correlated features. We thus
used the following greedy feature selection procedure: Ini-
tialize a feature set F to contain only the “bias” feature; find
the feature (not already in F) that maximally increases the
AUC on training data (for ER22x); add this feature to F
and record the associated AUC score; repeat N − 1 times.

We executed this procedure for N = 5 rounds and obtained
the results in Table 3. The most predictive feature was time-
since-last-action (which corroborates a similar result in [7]);
using this feature alone (along with the “bias” feature), the
AUC was already 0.867. The student’s normalized grade
(gt/G) was the second most predictive feature; this is intu-
itive since our definition of stopout includes certification as
one of the criteria. Next, time into the course (t) was se-
lected, suggesting there are certain times in the course when
students are more likely to stop out. The fourth feature se-
lected was a Gabor feature; rather than capturing periodic-
ity in a student’s events, the high bandwidth (σ = 56 days)
and low frequency (F = 2−10 days) of the feature can more
aptly be described as a weighted sum of event counts favor-
ing the recent past more than the distant past (see Fig. 5).

Top 5 Most Predictive Features
Cumulative

# Feature AUC (training)
1 Time since last event 0.867
2 Normalized grade (gt/G) 0.880
3 Time into course (t) 0.886
4 Gabor (σ = 56, F = 2−10 days) 0.889
5 Total # events 0.890

Table 3: The top 5 most predictive features and
associated cumulative AUC on training data, for
ER22x. Feature i is chosen so as to maximize the
training AUC given the previously selected features
1, . . . , i− 1.

Figure 3: The average output of the ER22x stopout
classifier, as a function of time-since-stopout, on stu-
dents who had stopped out of the course.

In retrospect, it is clear that “time since last event” would
be salient – the longer it has been since a student has done
anything, the less likely he/she is to do anything in the fu-
ture. It may be useful, in future stopout detection research,
to compare with this single feature as a baseline.

4.7 Confidence
When building a real-time system that uses the probability
estimates given by a classifier to make decisions, it can be
useful to “wait” before acting until the classifier becomes
more confident (so as to avoid false alarms). For course
ER22x, we found that the expected classifier output at time
t, averaged over every student who stopped out at time t′ <
t, increases with time-since-stopout (t − t′). The Pearson
correlation of the classifier output y with t−t′ was 0.73, and
the Spearman rank correlation was even higher (0.93). A
graph displaying the expected classifier output versus time-
since-stopout is shown in Fig. 3.

5. CONTROLLER
Given a trained classifier of student stopout, how can we
use it to decide which students to contact and when to con-
tact them? At each week t, the classifier estimates for each
student s the probability yst that the student has stopped
out. How high must yst be in order to justify querying that
student at that time? In this decision problem, we are faced
with the following trade-off:
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Factor 1: The sooner we contact a student after he/she
has stopped out, the higher the probability that he/she will
respond (see Fig. 1); this suggests using a lower threshold.
Factor 2: On the other hand, the longer we wait after
he/she has stopped out, the more accurate our classifier be-
comes (see Fig. 3); this suggests using a higher threshold.

Depending on how the “response fall-off curve” (factor 1)
and the “confidence increase” curve (factor 2) are shaped, it
is possible that a more efficient (higher response rate, lower
spam rate) system can be constructed if the threshold θ on
the classifier’s output is chosen carefully. Factor 2 was esti-
mated in Sec. 4.7. Factor 1 can be roughly estimated using
response rate data collected from the post-course surveys
(see Introduction) and back-dating when students who re-
sponded to the survey had stopped out.

In collaboration with the HarvardX course creation teams,
we also decided on additional constraints: (1) each student
can be contacted during the course at most once (so as to
avoid irking students with multiple email messages), and
(2) the fraction of students whom we query but who had
not actually stopped out (false alarms) should not exceed
α = 20%. Note that this false alarm rate, which is com-
puted over students’ entire trajectories through the MOOC,
is different from the false alarm rate of classification de-
scribed in Sec. 4, which is computed at multiple timepoints
within each trajectory. Subject to these constraints, we wish
to choose a threshold θ (a scalar) on the classifier’s output
yst so as to maximize the rate of survey response from stu-
dents who had stopped out. Our approach to tackling this
problem is based on optimization via simulation.

Optimization via simulation: We built a simulator of
how students generate events, what grades they earn, and
when they stop out, based on historical data from prior Har-
vardX MOOCs. We can also simulate whether a student
who stopped out at time t′ responds to a survey given at
time t using the “response fall-off curve” described above.
Then, for any given value of θ, we can estimate how many
query responses and how many false alarms it generates by
averaging over many runs (we chose N = 50000) of the sim-
ulator: for each run, we randomly choose a student s from
our training set, and at each time point t (every 7 days until
Te), we extract a feature vector xt based on s’s event log
and grade up to time t. We then classify xt using a trained
classifier (from Sec. 4) and threshold the result yst using θ.
If yst > θ and if we had not previously queried s during the
current simulation run, then we query the student. If the
student had indeed stopped out before t, then we sample
the student’s response (reply, not reply) from the response
fall-off curve. During all simulation runs we maintain counts
of both false alarms and hits (stopped-out student replies to
query). Since θ is a scalar, we can use simple grid-search to
find θ∗ that maximizes the hit rate subject to a false alarm
rate below α. Note that more sophisticated controllers with
multidimensional parameter vectors θ are also possible (e.g.,
a different threshold for every week of the MOOC) using pol-
icy gradient optimization methods.

6. SURVEY INTERVENTION
Using the classifier and controller described above, we con-
ducted a “dynamic survey intervention” on two live Har-

vardX courses: HLS2x (“ContractsX”) and PH525x (“Statis-
tics and R for the Life Sciences”), which started on Jan. 8
and Jan. 19, 2015, respectively. The goals were to (1) collect
feedback about why stopped-out students left the course and
(2) explore how sending a simple survey solicitation email
affects students’ behavior.

We trained separate stopout classifiers, using previous Har-
vardX courses for which stopout data were already available,
for HLS2x and PH525x. For PH525x, there was a 2014 ver-
sion of the course on which we could train. For HLS2x, we
trained on a 2014 course (“AT1x”) whose lecture structure
(e.g., the frequency with which lecture videos were posted)
was similar. Then, using each trained classifier and the re-
sponse fall-off curve estimated from post-course survey data
(see Sec. 5), we optimized the classifier threshold θ for each
MOOC (θ = 0.79 for HLS2x, θ = 0.75 for PH525x).

We emailed students in batches once per week. Each week,
we ran the stopout classifier on all students who had regis-
tered and were active in the course (i.e., had not de-registered).
Each student was assigned a condition (50% experimental,
50% control) based on a hash of his/her username. To every
student s in the experimental group whose yst at time t ex-
ceeded θ, we sent an email (see Fig. 4) asking whether he/she
intended to complete the course and why/why not. After
clicking on a link, the user is given the opportunity to enter
free-response feedback in a textbox. We used Qualtrics to
manage the surveys, send the emails, and track the results.
Students in the control group were not emailed; instead, we
used them to measure the accuracy of our stopout classifier
and to compare the “comeback rates” across conditions.

We delivered 3 batches (Jan. 21, Jan. 26, Feb. 2) of survey
emails to 5073 students in HLS2x and 1 batch (Feb. 2) to
3764 students in PH525x. These dates were chosen to occur
shortly after the data transfers from edX to HarvardX (see
Sec. 2). Except in Sec. 6.2, we exclude students (138 (2.7%)
from HLS2x, 201 (5.4%) from PH525x) from our analyses
whom we would not have emailed if we had had real-time
access to students’ event data. Hence, the results below
estimate the response rates, accuracy, and comeback rates
if we could run our intervention directly on edX’s servers
(with 0 time-gap).

6.1 Response rate from stopped-out students
We investigated whether the dynamic survey intervention
induced more stopped-out students to respond compared to
the conventional post-course survey mechanism. Because
the HarvardX post-course surveys are much longer than our
stop-out survey, we compared the rates with which stopped-
out students started the surveys (without necessarily com-
pleting them) to enable a fairer comparison. We analyzed
response rates for HLS2x only (PH525x is still ongoing).

To measure response rates, we computed the number of stu-
dentsD whom we emailed and who had actually stopped out
(which we now know since the course has ended) before the
email was sent. Then, of these D students, we compute the
number N of students who responded to (started, but not
necessarily completed) the survey, and then calculated the
response rate N/D. Since the last intervention for HLS2x
was on Feb. 2, which was 32 days before the course-end date
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Dear Jake,

We hope you have enjoyed the opportunity to explore ContractsX. It has been a while since you logged into the course,
so we are eager to learn about your experience. Would you please take this short survey, so we can improve the course for
future students? Each of the links below connects to a short survey. Please click on the link that best describes you.
[ ] I plan on continuing with the course
[ ] I am not continuing the course because it was not what I expected when I signed up.
[ ] I am not continuing the course because the course takes too much time.
[ ] I am not continuing the course because I am not happy with the quality of the course.
[ ] I am not continuing the course because I have learned all that I wanted to learn.
[ ] I am not continuing the course now, but I may at a future time.
Your feedback is very important to us. Thank you for registering for ContractsX.

Figure 4: A sample email delivered as part of our dynamic survey intervention for HLS2x.

(Mar. 6), we also calculated the corresponding fraction of
students in previous HarvardX courses who responded to
the post-course surveys who had stopped out at least 32
days before the course-end date (c.f. Fig. 1).

Result: The response rate from stopped-out students for
the dynamic survey intervention was 3.7% compared to 1.0%
for the post-course survey mechanism; the difference was sta-
tistically significant (χ2(1) = 183, p < 10−15, 2-tailed). In
other words, the dynamic survey mechanism achieved over
3x higher response rate.

6.2 Survey responses
For this analysis we included all students whom we emailed
(even those whom we would not have emailed with real-
time data; see above). From HLS2x, 336 students (6.6%)
responded to (i.e., started but not necessarily finished) the
survey. From PH525x, 353 students (9.4%) responded to
the survey. Note that, in contrast to [7], who reported a
12.5% response rate for a computer science MOOC, we did
not condition on students having watched at least one video.

Of students who started the survey and answered whether
or not they planned to continue (329 for HLS2x, 328 for
PH525x), most replied that they planned to continue the
course (242 for HLS2x, 203 for PH525x). Of those who
replied they did not wish to continue (87 for HLS2x, 125 for
PH525x), the reasons are broken down as follows:

Reason Freq.
“It was not what I expected when I signed up” 8.4%
“The course takes too much time” 5.0%
“I am not happy with the quality of the course” 0.5%
“I have learned all that I wanted to learn” 5.5%
“I may at a future time” 80.7%

In other words, many respondents who confirmed they had
stopped out indicated that they also might resume the course
in the future. Notably, very few respondents reported that
the courses were of poor quality. However, we emphasize
that the full population of registrants who stop out could po-
tentially be very different from the sample who responded to
the survey; hence, the numbers above should be interpreted
with caution. Our stopout detector may disproportionately
identify students who stop out because they are too busy,
or students who stop out because they are too busy may
disproportionately respond to our survey and students un-
happy with the course may choose not to respond.

6.3 Accuracy
As a further assessment of the stopout detector described in
Sec. 4, we computed the accuracy of the classifier on students
in the control group of our HLS2x intervention.

Results: The accuracy (AUC) for HLS2x was 0.74 for week
1, 0.78 for week 2, and 0.80 for week 3. These numbers are
consistent with the results in Sec. 4.3.

6.4 Effect on student “comeback”
One survey respondent wrote: “I was not allocating time for
edX, but receiving your survey e-mail recaptured my atten-
tion.” This raises the question of whether the mere act of
notifying students that we believed they had lost interest
might cause them to “come back”. To test this hypothe-
sis, we compared the fraction of students in the experimen-
tal group who “came back” – i.e., took at least one action
(other than de-registering and/or responding to the survey)
in the course after we sent the emails – to the correspond-
ing fraction of students in the control group. We assessed
comeback rates at two different timepoints – Feb. 12 (before
we submitted the paper for review) and Apr. 20 (before we
submitted the paper for final publication) – using all event
data available by those dates.

Results: For all 4 interventions (3 weeks of HLS2x, and 1
week of PH525x), the comeback rates were higher at both
timepoints for the experimental group (who received an email)
than for the control group (who did not receive an email).
Aggregated over all weeks of both courses, the comeback
rate by Feb. 12 was 12.4% for the experimental group versus
11.2% for the control group; the difference was statistically
significant (χ2(1) = 5.63, p = 0.018, 2-tailed). By Apr. 20,
however, the difference was smaller – 22.1% for the experi-
mental group versus 21.4% for the control group – and not
statistically significant (χ2(1) = 1.25, p = 0.26, 2-tailed).

Together, these results suggest that the intervention induced
students to come back sooner into the course, even if the
overall comeback rates are similar. To confirm this hy-
pothesis, we compared the mean “comeback time” (time be-
tween last action before intervention, and first action af-
ter intervention, among students who came back) between
the two groups and across all 4 interventions. We found
that students in the experimental group came back signif-
icantly sooner: 51.68 days for the experimental group ver-
sus 55.02 days for the control group (Mann-Whitney U =
1458393, n1 = 1725, n2 = 1831, p < 10−4, 2-tailed). These
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Figure 5: Sample Gabor kernels.

results provide evidence that an “intervention” consisting of
an email indicating that a student has been flagged as having
potentially stopped out, can affect students’ behavior.

7. CONCLUSIONS
We developed an automatic classifier of MOOC student“stop-
out” and showed that it generalizes to new MOOCs with
high accuracy. We also presented a novel end-to-end archi-
tecture for conducting a “dynamic survey intervention” on
MOOC students who recently stopped out to ask them why
they quit. Compared to post-course surveys, the dynamic
survey mechanism attained a significantly higher response
rate. Moreover, the mere act of asking students why they
had left the course induced students to “come back” into
the course more quickly. Preliminary analysis of the surveys
suggest students quit due to exogenous factors (not enough
time) rather than poor quality of the MOOCs.

Limitations: The subset of stopped-out students who re-
sponded to the survey may not be a representative sample;
thus, results in Sec. 6.2 should be interpreted with caution.

Future work: In future work we will explore whether more
sophisticated, time-variant classifiers such as recurrent neu-
ral networks can yield better performance. With more ac-
curate classifiers we can conduct more efficient surveys and
more effective interventions to reduce stopout.

APPENDIX
Event count features: We counted events of the follow-
ing types (using the “event type” field in the edX “track-
ing log” table): “showanswer”, “seek video”, “play video”,
“pause video”, “stop video”, “show transcript”, “page close”,
“problem save”, “problem check”, and “problem show”. We
also measured activity in discussion forums by counting events
whose “event type” field contained “threads” or “forum”.

Gabor features: A Gabor filter kernel (see Fig. 5) is the
product of a Gaussian envelope and a complex sinusoid. At
time t−τ (i.e., τ days before t), the real and imaginary com-
ponents are given by Kr(τ) = exp(−πτ2/(2σ2)) cos(2πFτ)
andKi(τ) = exp(−πτ2/(2σ2)) sin(2πFτ) (respectively), where
σ is the bandwidth of the Gaussian envelope and F is the fre-
quency of the sinusoid. When extracting Gabor features at

time t, we convolve this complex kernel with a t-dimensional
“history vector” h whose τth component contains the total
number of events generated by that student on day t−τ . We
then compute the magnitude of the complex filter response,
i.e.,

∣∣∑t
τ=1 (Kr(τ)hτ + jKi(τ)hτ )

∣∣, where j =
√
−1.
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ABSTRACT
At their core, Intelligent Tutoring Systems consist of a stu-
dent model and a policy. The student model captures the
state of the student and the policy uses the student model
to individualize instruction. Policies require different prop-
erties from the student model. For example, a mastery
threshold policy requires the student model to have a way to
quantify whether the student has mastered a skill. A large
amount of work has been done on building student models
that can predict student performance on the next question.
In this paper, we leverage this prior work with a new when-
to-stop policy that is compatible with any such predictive
student model. Our results suggest that, when employed as
part of our new predictive similarity policy, student mod-
els with similar predictive accuracies can suggest that sub-
stantially different amounts of practice are necessary. This
suggests that predictive accuracy may not be a sufficient
metric by itself when choosing which student model to use
in intelligent tutoring systems.

1. INTRODUCTION
Intelligent tutoring systems offer the promise of highly ef-
fective, personalized, scalable education. Within the ITS
research community, there has been substantial work on con-
structing student models that can accurately predict student
performance (e.g. [6, 3, 15, 5, 10, 9, 14, 7]). Another key is-
sue is how to improve student performance through the use
of instructional policy design. There has been significant
interest in cognitive models used for within activity design
(often referred to as the inner-loop) and even authoring tools
developed to make designing effective activities easier (e.g.
CTAT [1]). However, there has been much less attention to
outer-loop (what problem to select or when to stop) instruc-
tional policies (though exceptions include [5, 12, 17]).

In this paper we focus on a common outer-loop ITS chal-
lenge, adaptively deciding when to stop teaching a certain
skill to a student given correct/incorrect responses. Some-
what surprisingly, there are no standard policy rules or al-

gorithms for deciding when to stop teaching for many of the
student models introduced over the last decade. Bayesian
Knowledge Tracing [6] naturally lends itself to mastery teach-
ing, since one can halt when the student has mastered a skill
with probability above a certain threshold. Such a mastery
threshold has been used as part of widely used tutoring sys-
tems, but typically in conjunction with additional rules since
a student may never reach a sufficient mastery threshold
given the available activities.

We seek to be able to directly use a wide range of student
models to create instructional policies that halt both when a
student has learned a skill and when the student seems un-
likely to make any further progress given the available tutor-
ing activities. To do so we introduce an instructional policy
rule based on change in predicted student performance.

Our specific contributions are as follows:

• We provide a functional interface to student models
that captures their predictive powers without knowl-
edge of their internal mechanics (Section 3).

• We introduce the predictive similarity policy : a new
when-to-stop policy that can take as input any pre-
dictive student-model (Section 4) and can halt both if
students have successfully acquired a skill or do not
seem able to do so given the available activities.

• We analyze the performance of this policy compared
to a mastery threshold policy on the KDD dataset and
find our policy tends to suggest similar or a smaller
number of problems than a mastery threshold policy
(Section 5).

• We also show that our new policy can be used to ana-
lyze a range of student models with similar predictive
performance (on the KDD dataset) and find that they
can sometimes suggest very different numbers of in-
structional problems. (Section 5).

Our results suggest that predictive accuracy alone can mask
some of the substantial differences among student models.
Polices based on models with similar predictive accuracy can
make widely different decisions. One direction for future
work is to measure which models produce the best learning
policies. This will require new experiments and datasets.
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Figure 1: BKT as a Markov process. Mastery and
Non-Mastery are hidden states. Arrow values repre-
sent the probability of the transition or observation.

2. BACKGROUND: STUDENT MODELS
Student models are responsible for modeling the learning
process of students. The majority of student models are
predictive models that provide probabilistic predictions of
whether a student will get a subsequent item correct. In this
section we describe two popular predictive student models,
Bayesian knowledge tracing and latent factor models. Note
that other predictive models, such as Predictive State Rep-
resentations (PSRs), can also be used to calculate the prob-
ability of a correct response [7].

2.1 Bayesian Knowledge Tracing
Bayesian Knowledge Tracing (BKT) [6] tracks the state of
the student’s knowledge as they respond to practice ques-
tions. BKT treats students as being in one of two possible
hidden states: Mastery and Non-Mastery. It is assumed
that a student never forgets what they have mastered and if
not yet mastered, a new question always has a fixed static
probability of helping the student master the skill. These
assumptions mean that BKT requires only four trained pa-
rameters:

P (L0) Initial probability of mastery.
P (T ) Probability of transitioning to mastery over a

single learning opportunity.
P (G) Probability of guessing the correct answer when

the student is not in the mastered state.
P (S) Probability of slipping (making a mistake) when

the student is in the mastered state.
After every response, the probability of mastery, P (Lt), is
updated with Bayesian inference. The probability that a
student responds correctly is

PBKT(Ct) = (1− P (S))P (Lt) + P (G)(1− P (Lt)). (1)

Prior work suggests that students can get stuck on a par-
ticular activity. Unfortunately, BKT as described above as-
sumes that students will inevitably master a skill if given
enough questions. As this is not always the case, in indus-
try BKT is often used together with additional rules to make
instructional decisions.

2.2 Latent Factor Models
Unlike BKT models, Latent Factor Models (LFM) do not di-
rectly model learning as a process [3]. Instead, LFMs assume
that there are latent parameters of both the student and skill
that can be used to predict student performance. These pa-
rameters are learned from a dataset of students answering

questions on multiple skills. The probability that the stu-
dent responds correctly to the next question is calculated by
applying the sigmoid function to the linear combination of
parameters p and features f .

PLFM(C) =
1

1− e−f ·p (2)

Additive Factor Models (AFM) [3] are based on the assump-
tion that student performance increases with more ques-
tions. A student is represented by an aptitude parameter
(αi) and a skill is represented by a difficulty parameter (βk)
and learning rate (γk). AFM is sensitive to the number of
questions the student has seen, but ignores the correctness
of student responses. The probability that student i will
respond correctly after n responses on skill k is

PAFM(C) =
1

1− e−(αi+βk+γkn)
. (3)

Performance Factor Models (PFM) [15] are an extension of
AFMs that are sensitive to the correctness of student re-
sponses. PFMs separate the skill learning rate into success
and failure parameters, µk and ρk respectively. The prob-
ability that student i will respond correctly after s correct
responses and f incorrect responses on skill k is

PPFM(C) =
1

1− e−(αi+βk+µks+ρkf)
. (4)

LFMs can easily be extended to capture other features. For
example, the instructional factors model [5] extends PFMs
with a parameter for the number of tells (interactions that
do not generate observations) given to the student. To our
knowledge there is almost no work on using LFMs to cap-
ture temporal information about the order of observations.
Unlike BKT, LFMs are not frequently used in instructional
policies.

Though structurally different, BKT models, AFMs and PFMs
tend to have similar predictive accuracy [9, 15]. This raises
the interesting question of whether instructional policies that
use these models are similar.

3. WHEN-TO-STOP POLICIES
We assume a simple intelligent tutoring system that teaches
students one skill at a time. All questions are treated the
same, so the system only has to decide when to stop pro-
viding the student questions. In this section, we provide a
general framework for the when-to-stop problem. In partic-
ular, we describe an interface that abstracts out the student
model from instructional policies, which we will use to define
the mastery threshold policy and use in the next section
as the foundations of a model-agnostic instructional policy.

3.1 Accessing Models
Policies require a mechanism for getting values from stu-
dent models to make decisions. We describe this mecha-
nism as a state type and a set of functions. A student
model consists of two types of values: immutable param-
eters that are learned on training data and mutable state
that changes over time. For example, the parameters for
BKT are (P (L0), P (T ), P (G), P (S)) and the model state is
the probability of mastery (P (Lt)). Policies treat the state
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Figure 2: Model process with functional interface

as a black box, which they pass to functions. All predic-
tive student models must provide the following functions.
startState(. . . ) returns the model state given that the stu-
dent has not seen any questions. updateState(state, obs)
returns an updated state given the observation. For this pa-
per, observations are whether the student got the last ques-
tion correct or incorrect. Finally, predictive student mod-
els must provide predictCorrect(state), which returns the
probability that the student will get the next question cor-
rect. The function interfaces for BKT models and PFM
are provided in table 1. Under this abstraction, when-to-
stop policies are functions stop(state) that output true if
the system should stop providing questions for the current
skill and false if the system should continue providing the
student with questions.

3.2 Mastery Threshold Policy
The mastery threshold policy halts when the student
model is confident that the student has mastered the skill.
This implies that we want to halt when the student masters
the skill. Note that if the estimate of student mastery is
based solely on a BKT1 then a mastery threshold policy
implicitly assumes that every student will master the skill
given enough problems. Mathematically, we want to stop at
time t if P (Lt) > ∆, where ∆ is our mastery threshold. The
mastery threshold policy function can be written as:

stopM (state) = predictMastery(state) > ∆. (5)

The mastery threshold policy can only be used with mod-
els that include predictMastery(state) in their function
set. BKT models are compatible, but LFMs are not. By
itself, the mastery threshold does not stop if the student
has no chance of attaining mastery in the skill with the given
activities. Students on poorly designed skills could be stuck
learning a skill indefinitely.

4. FROM PREDICTION TO POLICY
In educational data mining, a large emphasis is put on build-
ing models that can accurately predict student observations.
Our goal is to build a new when-to-stop policy that will work
with any predictive student model.

1In practice, industry systems that use mastery thresholds
and BKTs often use additional rules as well.

Our new instructional policy is based on a set of assump-
tions. First, students working on a skill will eventually end
in one of two hidden end-states. Either, they will master
the skill, or they will be unable to master the skill given
the activities available. Second, once students enter either
end-state, the probability that they respond correctly to a
question stays the same. Third, if the probability that a stu-
dent will respond correctly is not changing, then the student
is in an end-state. Finally, we should stop if the student is
in an end-state.

From these assumptions it follows that if the probability
that the student will respond correctly to the next question
is not changing, then we should stop. In other words, we
should stop if it is highly likely that showing the student
another question will not change the probability that the
student will get the next question correct by a significant
amount. We propose to stop if

(P (|P (Ct)− P (Ct+1)| < ε)) > δ (6)

where P (Ct) is the probability that the student will get the
next question right. This can be thought of as a threshold on
the sum of the probabilities of each observation that will lead
to an insignificant change in the probability that a student
will get the next question correct, which can be written as∑

o∈O

P (Ot = o)1(|P (Ct)− P (Ct+1|Ot = o)| < ε) > δ (7)

where P (Ct+1|Ot = o) is the probability that the student
will respond correctly after observation o, Ot is the obser-
vation at time t, and 1 is an indicator variable. In our case
O = {C,¬C}. This expression is true in the following cases:

1. P (Ct) > δ and |P (Ct)− P (Ct+1|Ct)| < ε

2. P (¬Ct) > δ and |P (Ct)− P (Ct+1|¬Ct)| < ε

3. |P (Ct)− P (Ct+1|Ct)| < ε and
|P (Ct)− P (Ct+1|¬Ct)| < ε

First, if a student is highly likely to respond correctly to the
next question and the change in prediction is small if the
student responds correctly, then we should stop. Second,
if a student is highly unlikely to respond correctly to the
next question and the change in prediction is small if the
student responds incorrectly, then we should stop. Third, if
the change in prediction is small no matter how the student
responds, then we should stop. All terms in these expres-
sions can be calculated from the predictive student model
interface as shown in equations 8 and 9. We call the in-
structional policy that stops according to these three cases
the predictive similarity policy. The function for the
predictive similarity policy is provided in algorithm 1

P (Ct) = predictCorrect(s) (8)

P (Ct+1|Ot) = predictCorrect(updateState(s,Ot)) (9)

5. EXPERIMENTS & RESULTS
We now compare the predictive similarity policy to the
mastery threshold policy and see if using different stu-
dent models as input to the predictive similarity policy
yields quantitatively different policies.
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Table 1: Functional interfaces for BKT and PFM

BKT PFM

startState(. . . ) P (L0) (αi + βk, µk, ρk, 0, 0)

updateState(s, o) P (Lt+1|P (Lt), Ot+1 = o)

{
(w, µ, ρ, s+ 1, f) if o = C

(w, µ, ρ, s, f + 1) if o = ¬C

predictCorrect(s) P (¬S)P (Lt) + P (G)(1− P (Lt))
(

1 + e−(w+sµ+fρ)
)−1

predictMastery(s) P (Lt) —

Algorithm 1 Predictive Similarity policy stop function

1: function stop(state)
2: P (Ct) ← predictCorrect(state)
3: total ← 0
4: if P (Ct) > 0 then
5: state′ ← updateState(state, correct)
6: P (Ct+1|Ct) ← predictCorrect(state′)
7: if |P (Ct)− P (Ct+1|Ct)| < ε then
8: total ← total + P (Ct)

9: if P (Ct) < 1 then
10: state′ ← updateState(state, incorrect)
11: P (Ct+1|¬Ct) ← predictCorrect(state′)
12: if |P (Ct)− P (Ct+1|¬Ct)| < ε then
13: total ← total + (1− P (Ct))

14: return total > δ

5.1 ExpOps
In order to better understand the differences between two
instructional policies we will measure the expected num-
ber of problems to be given to students by a policy using
the ExpOps algorithm. The ExpOps algorithm allows us to
summarize an instructional policy into a single number by
approximately calculating the expected number of questions
an instructional policy would provide to a student. A naive
algorithm takes in the state of the student model and re-
turns 0 if the instructional policy stops at the current state
or recursively calls itself with an updated state given each
possible observation as shown in equation 10. It builds a
synthetic tree of possible observations and their probabil-
ity using the model state. The tree grows until the policy
decides to stop teaching the student. This approach does
not require any student data nor does it generate any obser-
vation sequences. However, this algorithm may never stop,
so ExpOps approximates it by also stopping if we reach a
maximum length or if the probability of the sequence of ob-
servations thus far drops below a path threshold as shown in
algorithm 2. In this paper, we use a path threshold of 10−7

and a maximum length of 100.

E[Ops] =

0 if stop(s)

1 +
∑
o∈O

P (Ot = o)E[Ops|o] otherwise (10)

Lee and Brunskill first introduced this metric to show that
individualized models lead to significantly different policies
than the general models [12].

5.2 Data

Algorithm 2 Expected Number of Learning Opportunites

1: function ExpOps(startState)
2: function ExpOps′(state, P (path), len)
3: if P (path) < pathThreshold then
4: return 0
5: if len ≥ maxLen then
6: return 0
7: if stop(state) then
8: return 0
9: P (C) ← predictCorrect(state)

10: P (W ) ← 1− P (C)
11: expOpsSoFar ← 0
12: if P (C) > 0 then
13: P (path + c) ← P (path) ∗ P (C)
14: state′ ← updateState(state, C)
15: ops ← ExpOps′(state′, P (path + c), len + 1)
16: expOpsSoFar ← expOpsSoFar + (ops ∗P (C))

17: if P (W ) > 0 then
18: P (path + w) ← P (path) ∗ P (W )
19: state′ ← updateState(state, incorrect)
20: ops ← ExpOps′(state′, P (path + w), len + 1)
21: expOpsSoFar← expOpsSoFar+(ops∗P (W ))

22: return 1 + expOpsSoFar

23: return ExpOps′((startState, 1, 0))

For our experiments we used the Algebra I 2008–2009
dataset from the KDD Cup 2010 Educational Data Min-
ing Challenge [18]. This dataset was collected from stu-
dents learning algebra I using Carnegie Learning Inc.’s in-
telligent tutoring systems. The dataset consists of 8,918,054
rows where each row corresponds to a single step inside a
problem. These steps are tagged according to three differ-
ent knowledge component models. For this paper, we used
the SubSkills knowledge component model. We removed all
rows with missing data. We combined the rows into obser-
vation sequences per student and per skill. Steps attached
to multiple skills were added to the observation sequences of
all attached skills. We removed all skills that had less than
50 observation sequences. Our final dataset included 3292
students, 505 skills, and 421,991 observation sequences.

We performed 5-fold cross-validation on the datasets to see
how well AFM, PFM, and BKT models predict student per-
formance. We randomly separated the dataset into five folds
with an equal number of observation sequences per skill in
each fold. We trained AFM, PFM, and BKT models on four
of the five folds and then predicted student performance on
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Table 2: Root Mean Squared Error on 5 Folds

Fold BKT PFM AFM

0 0.353 0.364 0.368
1 0.359 0.367 0.371
2 0.358 0.368 0.371
3 0.366 0.369 0.374
4 0.353 0.365 0.368

the leftover fold. We calculated the root mean squared error
found in Table 2. Our results show that the three models
had similar predictive accuracy, agreeing with prior work.

5.3 Model Implementation
We implemented BKT models as hidden Markov models us-
ing a python package we developed. We used the Baum-
Welch algorithm to train the models, stopping when the
change in log-likelihood between iterations fell below 10−5.
For each skill, 10 models with random starting parameters
were trained, and the one with the highest likelihood was
picked. Both AFM and PFM were implemented using scikit-
learn’s logistic regression classifier [16]. We used L1 nor-
malization and included a fit intercept. The tolerance was
10−4. We treated an observation connected to multiple skills
as multiple observations, one per skill. It is also popular to
treat them as a single observation with multiple skill param-
eters. In the interest of reproducibility, we have published
the models used as a python package.2

5.4 Experiment 1: Comparing policies
The mastery threshold policy is frequently used as a key
part of deciding when to stop showing students questions.
However without additional rules, it does not stop if students
cannot learn the skill from the current activities. In this
experiment we compare the predictive similarity policy
to the mastery threshold policy to see if the predictive
similarity policy acts like the mastery threshold policy
when students learn and stops sooner when students are
unable to learn with the given tutoring. We based both
policies on BKT models.

We ran ExpOps on each skill for both policies. For the mas-
tery threshold policy, we used the community standard
threshold of ∆ = 0.95. For the predictive similarity
policy, we decided that the smallest meaningful change in
predictions is 0.01 and that our confidence should be 0.95,
so we set ε = 0.01 and δ = 0.95. We then split the skills
into those where the BKT model trained on them had se-
mantically meaningful parameters and the rest. A BKT
model was said to have semantically meaningful parameters
if P (G) ≤ 0.5 and P (S) ≤ 0.5. 218 skills had semantically
meaningful parameters and 283 did not.3.

2The packages are available at http://
www.jrollinson.com/research/2015/edm/
from-predictive-models-to-instructional-policies.
html.
3We found similar results for both experiments using
BKT models trained through brute force iteration on
semantically meaningful values. These results can be found
at http://www.jrollinson.com/research/2015/edm/
from-predictive-models-to-instructional-policies.
html
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Figure 3: ExpOps using the mastery threshold pol-
icy and the predictive similarity policy on skills with
and without semantically meaningful parameters.

The Pearson correlation coefficient between ExpOps values
calculated using the two policies on skills with semantically
meaningful parameters was 0.95. This suggests that the two
policies make very similar decisions when based on BKT
models with semantically meaningful parameters. However,
the Pearson correlation coefficient between ExpOps values
calculated using the two policies on skills that do not have
semantically meaningful parameters was only 0.55. To un-
cover why the correlation coefficient was so much lower on
skills that do not have semantically meaningful parameters,
we plotted the ExpOps values calculated with the mastery
threshold policy on the X-axis and the ExpOps values
calculated with the predictive similarity policy on the
Y-axis for each skill as shown in figure 3. This plot shows
that the predictive similarity policy tends to either agree
with the mastery threshold policy or have a lower Ex-
pOps value on skills with parameters that are not semanti-
cally meaningful. This suggests that the predictive simi-
larity policy is stopping sooner on skills that students are
unlikely to learn. The mastery policy does not give up on
these skills, and instead teaches them for a long time.

5.5 Experiment 2: Comparing models with
the predictive similarity policy

The previous experiment suggests that the predictive sim-
ilarity policy can effectively mimic the good aspects mas-
tery threshold policy when based on a BKT model. We
now wish to see how using models with similar predictive ac-
curacy, but different internal structure will affect it. LFMs
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Figure 4: ExpOps plots for the predictive similarity policy using BKT, AFM, and PFM.

Table 3: Correlation coefficients on ExpOps values
from policies using BKT, AFM, and PFM.

Models Coefficient with
all skills

Coefficient with
skills not stopped

immediately

AFM vs. PFM 0.32 0.72
AFM vs. BKT -0.06 0.44
PFM vs. BKT 0.16 0.46

and BKT models have vastly different structure making
them good models for this task. Our earlier results also
found that AFM, PFM, and BKT models have similar pre-
dictive accuracy. We ran ExpOps on each skill with the pre-
dictive similarity policy based both on AFM and PFM.
AFM and PFM require a student parameter, which we set
to the mean of their trained student parameters. This is
commonly done when modeling a student that has not been
seen before. We compared the ExpOps values for these two
models with the values for the BKT-based predictive sim-
ilarity policy calculated in the previous experiment.

We first looked at how many skills the different policies im-
mediately stopped on. We found that the BKT-based policy
stopped immediately on 31 (6%) of the skills, whilst PFM
stopped immediately on 130 (26%) and AFM stopped im-
mediately on 295 (59%).

We calculated the correlation coefficient between each pair
of policies on all skills as well as just on skills in which both
policies did not stop immediately as shown in table 3. We
found that AFM and PFM had the highest correlation co-
efficient. For each pair of policies, we found that removing
the immediately stopped skills had a large positive impact
on correlation coefficient. The BKT-based policy had a cor-
relation coefficient of 0.44 with the AFM-based policy and
0.46 with the PFM-based policy on skills that were not im-
mediately stopped on. This suggests that there is a weak
correlation between LFM-based and BKT-based policies.

We plotted the ExpOps values for each pair of policies,
shown in figure 4. The AFM vs. PFM plot reiterates that
the AFM-based and PFM-based policies have similar Ex-
pOps values on skills where AFM does not stop immediately.
The BKT vs. PFM plot shows that the PFM-based policy
either immediately stops or has a higher ExpOps value than

the BKT-based policy on most skills.

To understand why the PFM-based policy tends to either
stop immediately or go on for longer than the BKT-based
policy, we studied two skills. The first skill is ‘Plot point on
minor tick mark — integer major fractional minor’ on which
the BKT-based policy has an ExpOps value of 7.0 and the
PFM-based policy has an ExpOps value of 20.7. The sec-
ond skill is ‘Identify solution type of compound inequality
using and’ on which the BKT-based policy has an ExpOps
value of 11.4 and the PFM-based policy immediately stops.
We calculated the predictions of both models on two ar-
tificial students, one who gets every question correct and
one who gets every question incorrect. In figure 5, we plot
the prediction trajectories to see how the predictions of the
two models compare. In both plots, the PFM-based policy
asymptotes slower than the BKT-based policy. Since LFMs
calculate predictions with a logistic function, PFM predic-
tions asymptote to 0 when given only incorrect responses
and 1 when given only correct responses, whereas the BKT
model’s predictions asymptote to P (G) and 1−P (S) respec-
tively. In the first plot, the PFM-based policy learns at a
slower rate than the BKT-based policy, but the predictions
do begin to asymptote by the 20th question. In the second
plot, the PFM-based policy learns much more slowly. Af-
ter 25 correct questions, the PFM-based policy’s prediction
changes by just over 0.1, and after 25 incorrect questions, the
PFM-based policy’s predictions changes by less than 0.03.
In contrast, the BKT-based policy asymptotes over 10 ques-
tions to 1 − P (S) = 0.79 when given correct responses and
P (G) = 0.47 when given incorrect responses.

This figure also shows how the parameters of a BKT model
affect decision making. P (L0) is responsible for the initial
probability of a correct response. P (S) and P (G) respec-
tively provide the upper and lower asymptotes for the prob-
ability of a correct response. P (T ) is responsible for the
speed of reaching the asymptotes. For the predictive simi-
larity policy, the distance between the initial probability of
a correct response and the asymptotes along with the speed
of reaching the asymptotes is responsible for the number of
questions suggested.

6. DISCUSSION
Our results from experiment 1 show that the predic-
tive similarity policy performs similarly to the mastery
threshold policy on BKT models with semantically mean-
ingful parameters and suggests the same or fewer problems
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Figure 5: Predictions of BKT models and PFMs if
given all correct responses or all incorrect responses
on two skills.

on BKT models without semantically meaningful parame-
ters. Thus, this experiment suggests that the two instruc-
tional policies treat students successfully learning skills sim-
ilarly. The lower ExpOps values for the predictive simi-
larity policy provide evidence that the predictive simi-
larity policy does not waste as much student time as the
mastery threshold policy on its own. Fundamentally, the
mastery threshold policy fails to recognize that some stu-
dents may not be ready to learn a skill. The predictive
similarity policy does not make the same error. Instead,
the policy stops either when the system succeeds in teaching
the student or when the skill is unteachable by the system.
In practice mastery threshold policies are often used in
conjunction with other rules such as a maximum amount of
practice before stopping. A comparison of such hybrid poli-
cies to the predictive similarity policy is an interesting
direction for future work. However, it is important to note
that such hybrid policies would still require the underlying
model to have a notion of mastery, unlike our predictive
similarity policy.

The predictive similarity policy can be used to uncover
differences in predictive models. Experiment 2 shows that
policies based on models with the same predictive power
can have widely different actions. AFMs had a very sim-
ilar RMSE to both PFMs and the BKT models, but im-
mediately stopped on a majority of the skills. An AFM
must provide the same predictions to students who get many
questions correct and students who get many questions in-
correct. To account for this, its predictions do not change
much over time. One may argue that this suggests that
AFM models are poor predictive models, because their pre-
dictions hardly change with large differences in state. Both
AFMs and PFMs have inaccurate asymptotes because it is

likely that students who have mastered the skill will not get
every question correct and that students who have not mas-
tered the skill will not get every question incorrect. This
means that these models will attempt to stay away from
their asymptotes with lower learning rates. One possible so-
lution would be to build LFMs that limit the history length.
Such a model could learn asymptotes that are not 0 and 1.

7. RELATED WORK
Predictive student models are a key area of interest in the
intelligent tutoring systems and educational data mining
community. One recent model incorporates both BKT and
LFM into a single model with better predictive accuracy
than both [10]. It assumes that there are many problems
associated with a single skill, and each problem has an item
parameter. If we were to use such a model in a when-to-stop
policy context, the simplest approach would be to find the
problem with the highest learning parameter for that skill,
and repeatedly apply it. However, this reduces Khajah et
al.’s model to a simple BKT model, which is why we did not
explicitly compare to their approach.

Less work has been done on the effects of student models
on policies. Fancsali et al. [8] showed that when using the
mastery threshold policy with BKT one can view the
mastery threshold as a parameter controlling the frequency
of false negatives and false positives. This work focused on
simulated data from BKT models. Since BKT assumes that
students eventually learn, this work did not consider wheel-
spinning. Rafferty et al. [17] showed that different models of
student learning of a cognitive matching task lead to signifi-
cantly different partially observable Markov decision process
policies. Unlike our work which focuses on deciding when-
to-stop teaching a single activity type, that work focused
on how to sequence different types of activities and did not
use a standard education domain (unlike our use of KDD
cup). Mandel et al. [13] did a large comparison of differ-
ent student models in terms of their predicted influence on
the best instructional policy and expected performance of
that policy in the context of an educational game; however,
like Rafferty et al. their focus was on considering how to se-
quence different types of activities, and instead of learning
outcomes they focused on enhancing engagement. Chi et
al. [5] performed feature selection to create models of stu-
dent learning designed to be part of policies that that would
enhance learning gains on a physics tutor; however, the fo-
cus again was on selecting among different types of activities
rather than a when-to-stop policy. Note that neither BKT
nor LFMs in their original form can be used to select among
different types of problems, though extensions to both can
enable such functionality. An interesting direction of future
work would be to see how to extend our policy to take into
account different types of activities.

Work on when-to-stop policies is also quite limited. Lee
and Brunskill [12] showed that individualizing student BKT
models has a significant impact on the expected number of
practice opportunities (as measured through ExpOps) for a
significant fraction of students. Koedinger et al. [11] showed
that splitting one skill into multiple skills could significantly
improve learning performance; this process was done by hu-
man experts and leveraged BKT models for the policy de-
sign. Cen et al.[4] improved the efficiency of student learn-

Proceedings of the 8th International Conference on Educational Data Mining 185



ing by noticing that AFM models suggested that some skills
were significantly over or under practiced. They created new
BKT parameters for such skills and the result was a new tu-
tor that helped students learn significantly faster. However,
the authors did not directly use AFM to induce policies,
but rather used an expert based approach to transform the
models back to BKT models, which could be used with ex-
isting mastery approaches. In contrast, our approach can be
directly used with AFM and other such models.

Our policy assumes that learning is a gradual process. If
you were to instead subscribe to an all-at-once method of
learning, you could possibly use the moment of learning as
your stopping point. Baker et al. provide a method of de-
tecting the moment at which learning occurs [2]. However,
this work does not attempt to build instructional policies.

8. CONCLUSION & FUTURE WORK
The main contribution of this paper is a when-to-stop pol-
icy with two attractive properties: it can be used with any
predictive student model and it will provide finite practice
both to students that succeed in learning a given skill and
to those unable to do so given the presented activities.

This policy allowed us for the first time to compare com-
mon predictive models (LFMs and BKT models) in terms of
their predicted practice required. In doing so we found that
models with similar predictive error rates can lead to very
different policies. This suggests that if they are to be used
for instructional decision making, student models should not
be judged by predictive error rates alone. One limitation of
the current work is that only one dataset was used in the
experiments. To confirm these results it would be useful to
compare to other datasets.

One key issue raised by this work is how to evaluate instruc-
tional policy accuracy. One possible solution is to run trials
with students stopping after different numbers of questions.
The student would take both a pre and post-test, which
could be compared to see if the student improved. How-
ever, such a trial would require many students and could be
detrimental to their learning.

There is a lot of room for extending this instructional policy.
First, we would like to incorporate other types of interac-
tions, such as dictated information (“tells”) or worked ex-
amples, into the predictive similarity policy. This would
give student models more information and hopefully lead
to better predictions. Second, the predictive similarity
policy is myopic, and we are interested in the effects of ex-
panding to longer horizons. Third, we are excited about ex-
tending this instructional policy to choosing between skills.
Instead of stopping when there is a high probability of pre-
dictions not changing, the instructional policy could return
either the skill that had the highest chance of a significant
change in prediction, or the skill with the highest expected
change in prediction.
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ABSTRACT
Classification evaluation metrics are often used to evalu-
ate adaptive tutoring systems— programs that teach and
adapt to humans. Unfortunately, it is not clear how in-
tuitive these metrics are for practitioners with little ma-
chine learning background. Moreover, our experiments sug-
gest that existing convention for evaluating tutoring systems
may lead to suboptimal decisions. We propose the Learner
Effort-Outcomes Paradigm (Leopard), a new framework to
evaluate adaptive tutoring. We introduce Teal and White,
novel automatic metrics that apply Leopard and quantify
the amount of effort required to achieve a learning outcome.
Our experiments suggest that our metrics are a better alter-
native for evaluating adaptive tutoring.

Keywords
evaluation, efficacy, classification evaluation metrics

1. INTRODUCTION
A fundamental part of the scientific and engineering pro-
cess is testability— the property of evaluating whether a
hypothesis or method can be supported or falsified by data
of actual experience. For example, in educational data min-
ing, we formulate testable hypotheses that claim that the
methods we engineer improve the outcomes of learners. In
this manuscript, we study how to verify learner outcome
hypotheses.

We focus on evaluating a popular type of educational method
called adaptive intelligent tutoring system. Adaptive sys-
tems teach and adapt to humans; their promise is to im-
prove education by optimizing the subset of items presented
to students, according to their historical performance [5],
and on features extracted from their activities [10]. In this
context, items are questions, problems, or tasks that can be
graded individually.

Evaluation metrics are important because they quantify the
extent of whether an educational system helps learners. For
example, a practitioner may use an evaluation method to
choose which of the alternative adaptive tutoring systems
to deploy in a classroom, or school district. On the other
hand, a researcher may be interested in quantifying the im-
provements of her system compared to previous technology.

Our main contributions are proposing a novel evaluation
paradigm for assessing adaptive tutoring and examples of
when traditional evaluation techniques are misleading. This
paper is organized as follows: § 2 reviews related methods
for evaluating adaptive systems; § 3 describes the paradigm
we propose for automatic evaluation of tutoring systems;
§ 4 provides a meta-evaluation of our novel evaluation tech-
niques; and, § 5 provides some concluding remarks.

2. BACKGROUND
Adaptive tutoring is often implemented as a complex sys-
tem with many components, such as a student model, con-
tent pool, and a cognitive model. Adaptive tutoring may
be evaluated with randomized control trials. For example,
in a seminal study [5] that focused on earlier adaptive tu-
tors, a controlled trial measured the time students spent on
tutoring and their performance on post-tests. The study re-
ported that the tutoring system enabled significantly faster
teaching, while students maintained the same or better per-
formance on post-tests

Unfortunately, controlled trials can become extremely ex-
pensive and time consuming to conduct: they require insti-
tutional review board approvals, experimental design by an
expert, recruiting (and often payment!) of enough partici-
pants to achieve statistical power, and data analysis. Au-
tomatic evaluation metrics improve the engineering process
because they enable less expensive and faster comparisons
between alternative systems. Fields that have agreed on
automatic evaluation have seen an accelerated pace of tech-
nological progress. For example, the widespread adoption
of the Bleu metric [15] in the machine translation commu-
nity has lowered the cost of development and evaluation of
translation systems. At the same time, it has enabled ma-
chine translation competitions that result in great advances
of translation quality. Similarly, the Rouge metric [13] has
helped the automatic summarization community transition
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from expensive user studies of human judgments that may
take thousands of hours to conduct, to an automatic metric
that can be computed very quickly.

The adaptive tutoring community has tacitly adopted con-
ventions for evaluating tutoring systems [6, 16, 18]. Re-
searchers often evaluate their models with classification eval-
uation metrics that assess the student model component of
the tutoring system— student models are the subsystems
that forecast whether a learner will answer the next item
correctly. Popular classification evaluation metrics include
accuracy, log-likelihood, Area Under the Curve (AUC) of
the Receiver Operating Characteristic curve, and, strangely
for classifiers, the Root Mean Square Error. However, au-
tomatic evaluation metrics are intended to measure an out-
come of the end user. For example, the PARADISE [22]
metric used in spoken dialogue systems correlates to user
satisfaction scores. Not only is there no evidence that sup-
ports that classification metrics correlate with learning out-
comes; but, prior work [2] has identified serious problems
with them. For example, classification metrics ignore that
an adaptive system may not help learners— which could
happen with a student model with a flat or decreasing learn-
ing curve [1, 20]. A decreasing learning curve implies that
student performance decreases with practice; this curve is
usually interpreted as a modeling problem, because it op-
erationalizes that learners are better off with no teaching.
Therefore, an adaptive tutor with a student model with a
decreasing learning curve does not teach students.

Surprisingly, in spite of all of the evidence against using clas-
sification evaluation metrics, their use is still very widespread
in the adaptive literature [6, 16, 18]. Moreover, there is very
little research on alternative evaluation techniques. A no-
ticeable exception is recent work on individualizing student
models [12]. The authors evaluated their approach using a
method called ExpOppNeed, which calculates the expected
number of practice opportunities that learners require to
master the content of the tutoring curriculum. Though their
evaluation methodology is extremely interesting and promis-
ing, it was not intended to be generalizable. In the next
section we extend on prior work and present a novel general
paradigm for evaluating adaptive systems.

3. LEOPARD EVALUATION
Adaptive tutoring implies making a trade-off between min-
imizing the amount of student effort, by carefully personal-
izing the curriculum, and maximizing student outcomes [4].
For example, repeated practice on a skill may improve stu-
dent proficiency, at the cost of a missed opportunity for
teaching new material. Adequate values for student effort
and outcomes respond to external expectations from the so-
cial context. For example, it is not acceptable for a tutor
to minimize effort by not teaching any content at all, or to
maximize outcomes by taking twenty years to teach a sim-
ple concept. The right trade off is defined by subject matter
experts.

We propose the novel Learner Effort-Outcomes Paradigm
(Leopard) for automatic evaluation of adaptive tutoring. At
its core, Leopard quantifies the effort and outcomes of stu-
dents in adaptive tutoring. Even though measuring effort
and outcomes is not novel by itself, our contribution is mea-

suring both without a randomized control trial.

• Effort: Quantifies how much practice the adaptive tu-
tor gives to students. In this paper we focus on count-
ing the number of items assigned to students but, al-
ternatively, amount of time could be considered.

• Outcome: Quantifies the performance of students after
adaptive tutoring. For simplicity, we operationalize
performance as the percentage of items that students
are able to solve after tutoring. We assume that the
performance on solving items is aligned to the long-
term interest of learners.

We argue that Leopard is more intuitive than classification
metrics because the effort and outcome resonate to educa-
tional principles. We now describe two novel metrics that
apply the Leopard philosophy. In § 3.1, we describe Teal, a
metric that calculates the theoretical expected behavior of
students when interacting with a family of student models;
and in § 3.2, we describe White1 a metric that uses empirical
data that may have not been collected on a control trial.

3.1 Theoretical Evaluation of Adaptive Learn-
ing Systems (Teal)

We formulate Theoretical Evaluation of Adaptive Learning
Systems (Teal) to evaluate adaptive tutoring from the ex-
pected behavior of their student model. Teal focuses on
models of the Knowledge Tracing Family— a very popular
set of student models [10].

To use Teal on data collected from students, we first train a
model using an algorithm from the Knowledge Tracing fam-
ily (§ 3.1.1), then we use the learned parameters to calculate
the effort (§ 3.1.2) and outcome (§ 3.1.3) for each skill. We
discuss how to use Teal on models that use features (§ 3.1.4)
and our design decisions (§ 3.1.5).

3.1.1 Knowledge Tracing Family
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Figure 1: Knowledge Tracing plate diagram. The color of
the circles represent whether the variable is latent (white), or
observed in training (light), and plates represent repetition.

Figure 1 describes the Knowledge Tracing [5] model, the
most simple member of the family. Knowledge Tracing re-
quires a mapping of items to skills, often built by subject
matter experts, although automatic approaches exist [8].
These skill mappings are also called cognitive models, or Q-
matrices. Knowledge Tracing uses a Hidden Markov Model
(HMM) per skill to model the student’s knowledge as latent
variables. The binary observation variable yqu,t represents

1Tradition names metrics like colors! E.g., Rouge, Bleu.
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whether the student u applies the tth practice opportunity
of skill q correctly. The latent variable kqu,t models the latent
student proficiency, which is often modeled with a binary
variable to indicated mastery of the skill. To declutter nota-
tion, we may not explicitly write the indices q and u. There
are two conventions for naming the skill-specific parameters
of Knowledge Tracing. In the HMM tradition, the parame-
ters are simply named transition or learning (L), and emis-
sion (E). In the educational tradition when using two latent
states the parameters are called initial knowledge (l0 ), learn-
ing (l ), forgetting (f ), guess (g) and slip (s). The Knowl-
edge Tracing family includes models that parameterize the
emission probabilities, transition probabilities, or both. For
example, in Knowledge Tracing, the emission probability of
emitting an answer y when the student has knowledge k is:

Ey,k = p(y|k) (1)

Which is simply a binomial probability. To allow features
in the emissions, we replace the binomial with a logistic
regression [10]:

Ey,k(β,Xt) = p(y|k;β,Xt) (2)

=
1

1 + exp(−βᵀ ·Xt)
(3)

Here Xt is the feature vector extracted at time t, and β is
the regression coefficient vector. The feature may indicate,
for example, if the student requested a hint.

3.1.2 Effort
Teal calculates the expected number of practice that an
adaptive tutor gives to students. We assume a policy that
the tutor stops teaching a skill once the student is very likely
to answer the next item correctly according to a model from
the Knowledge Tracing Family. For notational convenience,
we define the probability of answering the next item cor-
rectly as:

ct+1(y1, . . . ,yT ) ≡ p(yt+1 = correct|y1, . . . ,yt; L,E) (4)

Here L and E are the parameters of the Knowledge Trac-
ing Family model. We can estimate ct+1 using conventional
inference techniques for HMMs [19], such as the Forward-
Backward algorithm.

The adaptive tutor teaches an additional item if two condi-
tions hold: (i) it is likely that the student will get the next
item wrong— in other words, the probability of answering
correctly the next item is below a threshold R; and (ii) the
tutor has not decided to stop instruction already. More for-
mally, the tutor keeps teaching if:

teach(y1, . . . ,yt, R) ≡

{
1 if ∀

t′<t
ct′+1(y1, . . . ,yt′) < R

0 otherwise

(5)

We now can calculate at which practice opportunity the tu-
tor should stop instruction. For simplicity, we assume all
sequences are of length T . We simply count all of the times
the tutor decides to teach a new item:

costR(y1, . . . ,yT ) ≡
T∑

t=1

teach(y1, . . . ,yt, R) (6)

Note that if the probability of answering correctly the next
item has not reached the threshold in T time steps, the cost
is defined as T . Teal defines effort as the expected value of
the number of practice opportunities a tutor gives. This is:

effort(R) ≡ E (costR(YT )) (7)

=
∑

y1,...,yT∈YT

costR(y1, . . . , ,yT )︸ ︷︷ ︸
amount of practice

· p(y1, . . . ,yT )︸ ︷︷ ︸
sequence likelihood

(8)

Here, YT is the set of all sequences of length T . When we
have binary student outcomes (correct or not), the cardi-
nality of this set is 2T , which makes Teal only tractable for
sequences of a few dozens of observations. In our experience,
the sequences of adaptive tutoring systems are often in this
range. In a companion paper [9] we give an alternative for-
mulation of Teal that allows approximate calculations. The
likelihood of the sequence can be efficiently estimated using
the Forward-Backward algorithm.

3.1.3 Outcome
We define the outcome of a student as the mean performance
after the tutor should stop instruction. For a particular
sequence with student cost k = costR(y1, . . . ,yT ), this is:

outcome(y1, . . . ,yT , k) ≡

{
mean(yk . . . yT ) if k < T

impute value otherwise

(9)
We map the correct and incorrect student responses yt into 1
or 1, respectively. If the student sequence does not reach the
performance threshold, we impute the value of the outcome.
In this paper, we set the imputation value to 0. We define
the score as the expected value of the outcome:

score(R) ≡ E(outcome(YT , k)) (10)

=
∑

y1,...,yT∈YT

outcome(y1, . . . ,yT , R) · p(y1, . . . ,yT )

(11)

3.1.4 Usage on Models With Features
For models that parameterize emission or transitions we first
must build a counterfactual feature vector X, and use it to
calculate model parameters that do not depend on features.
For example, consider a model that uses a binary feature
vector that encodes students in different conditions. Condi-
tions can be any feature of interest of the tutoring system,
such as the ability to display multimedia content. We can
use Teal to calculate the effort of students in each of the
specific conditions.

For example, consider a feature vector X = (f1, f2, . . . , fn).
Feature f1 is 1 iff the student is using condition 1 (e.g., mul-
timedia content is available), feature f2 is 1, iff the student is
using condition 2, etc. The vector is all zeros if the student
is in the control condition. If we activate feature f1, we can
calculate the effort or score of students in the treatment 1.
To apply Teal we first estimate counterfactual slip and guess
parameters using Equation 3. We can use the counterfactual
parameters with Teal.
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For some models with features, Teal may require that stu-
dents are assigned randomly to feature activation condi-
tions, so that the regression coefficients can be interpreted
as causal effects. Teal may not be appropriate if – for ex-
ample – the features have reverse causality, or if there are
omitted variables in the model.

3.1.5 Design Discussion
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Figure 2: Expected and empirical student performance for
a skill (l0 = 0.3, l = 0.25, g = 0.3, s = 0.3, f = 0).

Teal extends the ExpOppNeed algorithm discussed on § 2.
We compare both approaches to justify our design decisions.

1. When to stop tutoring. Teal expects tutoring to
stop once the student is very likely to apply the skill
correctly. On the other hand, ExpOppNeed relies on
stopping tutoring once the posterior probability of the
latent variable for knowledge is above a threshold. Fig-
ure 2 compares both approaches for some Knowledge
Tracing parameters. The solid lines represent the ex-
pected values derived theoretically2 for both strategies.
To illustrate what actual student behavior may look
like, we plotted dotted lines for 50 synthetic students
sampled from a HMM. Although individual students
vary, their average behavior is close to theoretical.

In the figure, with 15 practice opportunities the stu-
dents have close to 100% probability of skill mastery,
while they only have 65% probability of applying the
skill correctly. This big gap between the probability
of mastery and probability of correct (the two solid
lines) implies that the model is defining mastery as a
state when students have low probability of applying
the skill correctly. Low probability of answering cor-
rectly in a mastery state can occur due to a number of
problems, for example, an incorrect item-to-skill map-
ping, or confusing tutoring content. We argue that an
evaluation metric should penalize such models to be
consistent with the Mastery Learning Theory [3].

Moreover, prior work [1] has demonstrated that some
ill-defined models have probability of correct decreas-
ing with practice opportunities, at the same time that
the probability of mastery increases. ExpOppNeed
does not penalize such ill-defined models, but Teal
does.

2Prior work derived [21]: p(yt = correct) = 1− s −Aβt.
Here, β = (1− l ), and A = (1− s − g) · (1− l0 )

Algorithm 1 Single-Skill White

Require: performance sequences yu,q,t, student model pre-
dictions ĉu,q,t (the subscripts index students, skills, and
practice opportunities), threshold R

1: function White(yu,q,t, ĉu,q,t, R)
2: for each student u do
3: for each skill q do
4: . Select data for student u and skill q only:
5: y′, ĉ′ ← filter(y, ĉ, u, q)
6: effort(q, u)← 0
7: for each practice opportunity t in y′ do:
8: if ĉ′t+1 ≥ R then
9: score(q, u)← mean(yt+1, . . . , yT )

10: next skill q
11: else if last(t) then
12: score(q, u)← impute

13: effort(q, u)← effort(q, u) + 1
return effort, score

2. What to measure. ExpOppNeed does not calculate
expected outcome of students. Teal considers both stu-
dent outcome and effort because it is trivial to optimize
one of the metrics if the other one is ignored.

3. Precision of the results Both ExpOppNeed and
Teal have exponential computational complexity. How-
ever, ExpOppNeed uses a heuristic to prune sequences
with low probability. Unfortunately, if the effort is
very high (or infinite), the likelihood of the individual
sequences becomes very low, and ExpOppNeed prunes
the sequences too soon and therefore it may underes-
timate the effort. Teal improves on ExpOppNeed by
defining effort on fixed-length sequences and not doing
pruning.

We now summarize some limitations of our approach. Teal
assumes that the model parameters are correct, and does
not take into account potential modeling problems— such
as misspecification, or over-fitting. By design, Teal only is
able to evaluate models in the Knowledge Tracing Family.
We now present a novel evaluation method that addresses
these limitations.

3.2 Whole Intelligent Tutoring System Empir-
ical Evaluation (White)

We propose Whole Intelligent Tutoring System Evaluation
(White), a novel automatic method that evaluates the rec-
ommendations of an adaptive system using data. White
does not assume the student data is generated by a Knowl-
edge Tracing model; instead, it relies on counterfactual sim-
ulations. White reproduces the decisions that the tutoring
system would have made given the input data on the test
set, by counting how many items the adaptive tutor would
ask students to solve, and what is the mean student perfor-
mance after tutoring.

Algorithm 1 describes White for a tutoring system that as-
sumes an item is assigned to exactly one skill. We leave more
complex tutors for future work. The input of White is the
student performance sequences y, the predictions of answer-
ing correctly ĉ, and a threshold R that defines what is the
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Figure 3: Example of White calculating counterfactual score
and effort using empirical data (R = 0.6).

target probability of correct. White assumes that the stu-
dents are a random sample of the student population. The
predictions are calculated by the student model component
of the adaptive tutoring. For a data-driven student model,
the predictions can be informed with the history preceding
the current time step. For instance, to predict on the third
time step, the student model may use the data up to the
second time step. For example, for Knowledge Tracing:

ĉt = p̂(yt = correct|y1, . . . ,yt−1) (12)

Figure 3 shows example data of how White works for a 60%
threshold (R = 0.6). For each student and skill in the test
set, White estimates their counterfactual effort— how many
items the student would have solved using the tutoring sys-
tem. In our example, Alice does not get to practice the
skill because the student model believes that she is likely to
already know it (effort =0), but Bob is given one practice op-
portunity (effort=1). After Bob answers correctly the item,
he is not given any more practice. White also calculates a
counterfactual score to represent the student learning. It is
the percentage of correct answers after the instruction would
have stopped. The score is related to an existing classifica-
tion evaluation metric called precision. Precision aggregates
the entire dataset, while score is computed by students and
skills. Although superficially it may sound as a small dif-
ference, our strategy allows us to avoid a special case of the
Simpson’s Paradox. In § 4.1.1 we discuss the issue more.

In this paper, when we report results with White, we impute
the score of students that do not reach the threshold with
their average performance. This is deliberately a different
imputation strategy that we use with Teal, which assigns a
score of zero to students that do not reach the threshold.

4. META-EVALUATION
In this section we meta-evaluate Leopard. We experiment
with data from students (§ 4.1) and simulations (§ 4.2).

We compare these sets of metrics:

• Conventional metrics. We use classification evalu-
ation metrics to evaluate how the student models pre-
dict future student performance. For this, we allow
student models to use the history preceding the time
step we want to predict.

• Leopard metrics. We use the score and effort as
calculated by White and Teal. For simplicity we report
the average scores across skills, and the sum of the
mean effort. For U students and Q skills, this is:

dataset score(R) =
1

Q · U

Q∑
q

U∑
u

score(q, u) (13)

dataset effort(R) =
1

U

Q∑
q

U∑
u

effort(q, u) (14)

4.1 Real Student Data
We use data collected from a commercial non-adaptive tu-
toring system for middle school Math. Our dataset includes
only the first part of the entire curriculum, and contains stu-
dents from the same grade from multiple schools. It contains
approximately 1.2 million observations from 25,000 students.
We randomly split the dataset into three sets of students.
The training and test set have 60% and 20% of the students,
respectively. The remainder of the data is reserved for future
experiments not described in this paper. The item bank was
mapped to skills in three different ways— the coarse defini-
tion maps the items into 27 skills, the fine definition into 90
skills, and the proprietary one is not reported.

4.1.1 Are predictive models always useful?
Assessing an evaluation metric with real student data is dif-
ficult because we often do not know the ground truth. To
get around this, we now describe a strategy to select a sub-
set of the dataset that we know the behavior of. Our main
insight is that for adaptive tutoring to be able to optimize
when to stop instruction, the student performance should in-
crease with repeated practice (the learning curve should be
increasing). Our strategy consists on selecting the subset of
the data where student modeling may fail, because student
performance remains flat or decreases with practice.

We first train a simplified Performance Factors Analysis [17]
(PFA) model. We use a logistic regression for each skill:

p(yqu,t) =
1

1 + exp(βq ·Xq))
(15)

The dimensions of Xq are the count of prior correct re-
sponses of the student and an intercept. We learn the pa-
rameters of the model βq using constrained optimization—
the regression coefficient for the effect of prior correct re-
sponses has to be non-negative.

We only use data from the skills that have zero regression
coefficient for the effect of prior correct responses (flat or
decreasing learning curve). Such skills are not suitable for
an adaptive tutor because the PFA student model believes
that practice does not influence student performance. More
concretely, this PFA model would give infinite practice to
difficult skills, or no practice to easy skills. Table 1 compares
the results of using White and two conventional metrics on
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the test set of the selected skills. We compare with a ma-
jority class model that always predicts students answers as
correct. The conventional metrics we report are the AUC,
because of it’s popularity, and the F-metric, because in ex-
periments we report later correlates highly with White. For
White we use a threshold of 60%. We cannot report on Teal
because PFA is not part of the Knowledge Tracing Family.

Table 1: Evaluation metric comparison.

White conventional
score effort F AUC

Performance Factors Analysis .18 10.1 .79 .85
Majority Class .18 11.2 0 .50

The AUC and F-metric results are arguably very high, in-
dicating that the PFA model is highly predictive— yet by
construction, we know that the model is not useful for adap-
tivity. The high prediction power of PFA is explained only
by the intercepts of the model. That is, the predictions are
based on the skill difficulty, independently of the student
performance. We argue that White communicates better
the unfavorable nature of the model because it reports a
very low score, and only a small improvement of effort when
compared to a baseline.

The problem with metrics that aggregate over the entire
dataset, like the AUC and the F-metric, can be explained
by Simpson’s paradox— a trend that appears in different
groups of data that disappears or reverses when the groups
are combined. Because adaptive tutors learn a model from
each skill independently, it is effectively a group of models.
White and Teal evaluate each skill independently and are
not susceptible to this problem. Consider the alternatives:

• Reporting as a baseline the difficulty classifier— a clas-
sifier that only considers the fraction of correct answers
of each skill in the training set. For example, in Ta-
ble 1, the PFA model has an AUC of 0.8, the same as
the difficulty classifier. Because PFA did not outper-
form this baseline, it suggests the student model has
a problem. However, simulations [8] provide evidence
that useful student models may have predictive per-
formance similar to the difficulty classifier. Therefore,
the difficulty classifier baseline may reject some useful
student models. Moreover, convention expects classi-
fiers to have an AUC of higher than 0.5 to be useful,
and this new baseline would break this interpretation.

• Calculating classification metrics over skills indepen-
dently. This would only be useful when the skills are
known beforehand, and not discovered with data [8].
We now provide evidence that suggests that classifica-
tion metrics may be misleading, even when they are
not affected by the Simpson’s paradox.

4.1.2 Do traditional metrics lead to good decisions?
We now compare Leopard and traditional metrics for choos-
ing an item-to-skill mapping. We train a PFA model using
our Math dataset. Table 2 compares the results of White
(R = 0.6) and AUC.

If we were to choose the best skill mapping by AUC alone, we

Table 2: Comparisons of item-to-skill definitions.

White
score effort AUC

coarse .41 55.7 .69
fine .36 88.1 .74

would choose the finer item-to-skill mapping, while White
selects the coarser one. Why do they disagree? The fine
skill mapping has almost three times the number of skills (90
skills) than the coarse mapping (27 skills). This means that
for the effort to be the same on both models, the finer model
should give a third of the practice of the coarser model. Even
though the finer model is slightly more predictive, we argue
that the coarser model is better suited for adaptive tutoring.

4.1.3 Case Study
For completeness, Table 3 demonstrates using different stu-
dent modeling techniques with the coarse item-to-skill map-
ping. For Knowledge Tracing, we show both the White es-
timates, and the Teal estimates (in parenthesis). We use
the average sequence length for each skill because Teal re-
quires a sequence length as an input. The estimates of
Teal and White for effort are very similar, but their scores
mismatch— possibly due to the differences in imputation
for skills that don’t reach the threshold. The low score met-
rics are indicative of students not reaching the performance
threshold. This suggests that further inspection is necessary,
because the learning curves may be decreasing or some some
skills may have high slip probabilities. One of the advantages
of White is that it can be used to evaluate non-probabilistic
student models. For example, we use White to evaluate the
student model that gives practice of a skill until the student
gets three correct answers in the skill.

Table 3: Student model comparison using Leopard

Leopard
score effort AUC

.39 49.5
Knowledge Tracing

(.18) (50.9)
.70

Performance Factor Analysis .41 55.7 .69
Three Correct .39 59.1 n/a
Majority Class .41 65.6 .50

4.2 Simulations
With real data, we do not know the extent that the parame-
ters are learned correctly, or affected by modeling problems—
such as misspecification. We now use synthetic data to eval-
uate different metrics and compare them to a ground truth.
Given that we know the Knowledge Tracing parameters that
were used to generate the synthetic datasets, we can use Teal
to calculate exactly the student effort and outcomes.

We sample 500 different datasets using random Knowledge
Tracing parameters. In none of the datasets we allow forget-
ting, but we do not impose any other constraint (not even
that students improve with practice). Each dataset has only
a single skill, and has 200 students with 10 practice oppor-
tunities. We do not learn parameters from the synthetic
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dataset, so we do not cross-validate.

4.2.1 Which metrics correlate best with the truth?
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Figure 4: Correlation matrix of Leopard and conventional
metrics. The size of the circles indicate the magnitude of
the Pearson ρ correlation coefficient.

Figure 4 shows the pairwise Pearson-ρ correlations across
500 synthetic datasets on Teal (score), Teal (effort), White
(effort), White (score), F-metric, Log-likelihood, RMSE, AUC,
and Accuracy.

The metrics that correlate the most with the ground truth
are White and the F-metric. Interestingly, the ground truth
effort and score have low correlation with all the conven-
tional metrics, except the F-metric, but the conventional
metrics have relatively high correlation among each other
(except the F-metric). In other words, most conventional
metrics seem to be exchangeable.

We now investigate the effect of the imputation strategy of
White. We are mindful that all of the synthetic students
have 10 practice opportunities. Therefore, if White reports
an effort of 10 for a dataset, it is likely that the dataset is
not suitable for adaptivity, and that White may be imputing
missing data to calculate the score. Figure 5 compares the
324 datasets that White reports effort lower than 9.99. Each
dot in the scatterplot represents a different dataset. We see
that effort computed with White has an almost perfect cor-
relation with the ground truth (ρ = 1.00, p<0.05). On the
other hand, the score computed with White is affected by
our imputation strategy, but still has near perfect correlation
(ρ = 0.98, p<0.05) with the ground truth. The correlation
of the F-metric with the ground truth effort (ρ = −0.47) and
score (ρ = 0.89) is relatively lower than White’s. E.g., when
the ground truth effort is 0, the F-metric ranges from very
bad (0.2) to very good (1.0) predictive power, but White’s
effort is close to 0. Moreover, we speculate that score and
effort may be more relatable to practitioners with little back-
ground of machine learning than the F-metric.

4.2.2 Does White Converge to True Values?
We now investigate whether White converges to the true val-
ues calculated by Teal. We use the same parameters used to
plot Figure 2, and we manipulate the number of synthetic

0 2 4 6 8 10
Teal Effort

0.0

0.2

0.4

0.6

0.8

1.0

F-
m

et
ric

ρ=-0.47; p=0.00

0 2 4 6 8 10
Teal Effort

0

2

4

6

8

10

W
hi

te
 E

ffo
rt

ρ=1.00; p=0.00

0.0 0.2 0.4 0.6 0.8 1.0
Teal Score

0.0

0.2

0.4

0.6

0.8

1.0

F-
m

et
ric

ρ=0.89; p=0.00

0.0 0.2 0.4 0.6 0.8 1.0
Teal Score

0.0

0.2

0.4

0.6

0.8

1.0

W
hi

te
 S

co
re

ρ=0.98; p=0.00

Figure 5: Comparison between F-metric and White to the
ground truth.

students, each student with 20 practice opportunities, Fig-
ure 6 shows that with little data, White converges to the
true value computed by Teal. Future work may provide a
formal argument of when and how much data White requires
to convergence.
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Figure 6: Example of White converging to Teal.

5. DISCUSSION
Our main contribution is the Leopard framework that auto-
matically assesses adaptive tutoring systems in dimensions
that relate to learner effort and outcomes. These dimen-
sions were previously measured only in randomized control
trials. We present Teal and White, two novel metrics that
apply Leopard and are useful to evaluate adaptive tutoring
systems. Secondary contributions include a novel method-
ology to assess evaluation metrics, the insight of Simpson’s
paradox affecting adaptive tutoring evaluation, and the im-
plementation of the techniques we propose in this paper3.

Classification evaluation metrics are very widespread in many
disciplines, and their use in education is very important.

3http://josepablogonzalez.com
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For example, for Computer-Adaptive Testing (CAT), classi-
fication metrics provide very useful insights to psychometric
models. Leopard is not intended to replace classification
metrics, randomized control trials, automatic experimenta-
tion [14], or visualization approaches [7, 11]. Leopard is
a complementary approach to existing techniques, and we
claim that it is specially useful when in vivo and online ex-
perimentation is not feasible.

We argue against the de facto standard of evaluating adap-
tive tutoring solely on classification metrics. Our experi-
ments on real and synthetic data reveal that it is possible
to have student models that are very predictive (as mea-
sured by traditional classification metrics), yet provide little
to no value to the learner. Moreover, when we compare
alternative tutoring systems with classification metrics, we
discover that they may favor tutoring systems that require
higher student effort with no evidence that students learn
more. That is, when comparing two alternative systems,
classification metrics may prefer a suboptimal system.

An interesting future direction may be to relax Teal’s as-
sumption that all sequences have fixed-length. Future work
may provide more rigorous theoretical analysis on conver-
gence, confidence intervals, validate our metrics with ran-
domized control trials, or derive White for policies with mul-
tiple skills per item.

We are excited to see future work in adaptive tutoring sys-
tems reporting their contributions in terms of learner effort
and outcomes. Besides the technical contributions of our
evaluation metrics, we hope that our work contributes to
the mission of driving the student modeling community to
have a more learner-centric perspective.
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[11] Y. Huang, J. P. González-Brenes, R. Kumar, and
P. Brusilovsky. A framework for multifaceted evaluation of
student models. In J. G. Boticario, O. C. Santos,
C. Romero, and M. Pechenizkiy, editors, Proceedings of the
8th International Conference on Educational Data Mining,
Madrid, Spain, 2015.

[12] J. I. Lee and E. Brunskill. The impact on individualizing
student models on necessary practice opportunities. In
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ABSTRACT
Archived transcripts from tens of millions of online human
tutoring sessions potentially contain important knowledge
about how online tutors help, or fail to help, students learn.
However, without ways of automatically analyzing these large
corpora, any knowledge in this data will remain buried.
One way to approach this issue is to train an estimator for
the learning effectiveness of an online tutoring interaction.
While significant work has been done on automated assess-
ment of student responses and artifacts (e.g., essays), au-
tomated assessment has not traditionally automated assess-
ments of human-to-human tutoring sessions. In this work,
we trained a model for estimating tutoring session quality
based on a corpus of 1438 online tutoring sessions rated
by expert tutors. Each session was rated for evidence of
learning (outcomes) and educational soundness (process).
Session features for this model included dialog act classifi-
cations, mode classifications (e.g., Scaffolding), statistically
distinctive subsequences of such classifications, dialog ini-
tiative (e.g., statements by tutor vs. student), and session
length. The model correlated more highly with evidence
of learning than educational soundness ratings, in part due
to the greater difficulty of classifying tutoring modes. This
model was then applied to a corpus of 242k online tutoring
sessions, to examine the relationships between automated
assessments and other available metadata (e.g., the tutor’s
self-assessment). On this large corpus, the automated as-
sessments followed similar patterns as the expert rater’s as-
sessments, but with lower overall correlation strength. Based
on the analyses presented, the assessment model for online
tutoring sessions emulates the ratings of expert human tu-
tors for session quality ratings with a reasonable degree of
accuracy.
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1. INTRODUCTION
As online learning has expanded, computer-mediated tutor-
ing and help-seeking has become more prevalent and acces-
sible. This tutoring occurs in a variety of forms, ranging
from large commercial platforms employing certified teach-
ers down to ad-hoc peer tutoring in rudimentary learning
management systems (LMS). These systems generate a wealth
of data about human tutoring interactions that can provide
significant insights into the processes of online learning, the
space of effective tutoring strategies, and the effectiveness
of different platforms and contexts for tutoring. However,
to study successful tutoring, tools are needed that can help
distinguish between more and less successful sessions.

Quality ratings for tutoring sessions are often only avail-
able from self-reports by the tutor and student. However,
these ratings have significant problems. Students typically
have limited metacognitive skills and need training to as-
sess their own learning [17]. Tutors can be more effective
judges of learning, but a tutor’s assessments of their stu-
dents’ learning can be biased and hard to compare due to
these rating biases. Some of these biases may be individual
variation (easy vs. hard raters), while others are systematic,
such as less-expert tutors reporting higher average learning
from their sessions. Other tutoring session sources have no
real quality measure. For example, peer tutoring often lacks
any assessment of the quality of the tutoring session, and
hand-tagging these sessions for quality measures would be
very time-consuming.

A standardized, automated estimator for the effectiveness of
online tutoring sessions is arguably essential to the analysis
of large-scale transcript corpora. Such a tool can be used to
identify especially high-rated sessions, to track the results of
improvement efforts, and to identify patterns in associated
metadata. Also, differences between the automated estima-
tor and tutors’ self-reports could be used to identify new
features that indicate effective tutoring strategies (i.e., an
active learning approach). As such, the iterative improve-
ment of a session success indicator would provide new in-
sights into the features of effective tutoring and how they
relate to other sets of data.

In this work, we have used a two-step supervised learning
approach to train an estimator for session effectiveness. This
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estimator was trained on a corpus of 1438 human-to-human
tutoring sessions, where each session was rated in terms of
two quality measures and each statement was annotated
with a dialog act tag (e.g., Confirmation:Positive) and a
dialog mode (e.g., Scaffolding). Based on the quality rat-
ings assigned by independent expert tutors, features related
to tutoring session success were identified using sequential
pattern mining and statistical analysis of high-level session
features (e.g., duration). Second, regression models that em-
ployed these features were trained to rate the quality of the
tutoring sessions. Finally, this model was applied to a large
sample of 246k tutoring sessions to examine the consistency
of these ratings against metadata associated with each ses-
sion, such as the original tutor’s rating of student learning
and of the student’s knowledge of necessary prerequisites.

2. BACKGROUND AND RELATED WORK
Studying strategies and patterns in tutoring transcripts is
a longstanding research area with roots in speech act the-
ory [21]. Key techniques from this literature include dialog
act classification [8], identifying dialog modes [1], and iden-
tifying statistically significant sequence patterns [3]. Our
research described here relies on the use of all three levels
of analysis to identify significant features that can be used
to assess session quality. Dialog act classification involves
binning each tutor or student statement into distinct tax-
onomy categories, which represent the functional purpose of
the statement (e.g., an“Assertion”that states a fact). Dialog
act taxonomy distinctions vary depending on the research fo-
cus, such as question types [8], higher-level dialog acts and
feedback [1], and finer-grained pedagogical acts [3]. Our re-
search extended this prior work in several ways, including
a highly granular coding scheme, developed in collaboration
with professional online tutors, which will be discussed later.

Dialog modes are a more recent area of focus for machine
learning, but their theoretical underpinnings for studying
learning are equally mature. In our work, modes represent
shared understandings regarding hidden, higher-order dia-
log states with associated roles and expectations concern-
ing the likelihood and appropriateness of particular dialog
acts given that state [16]. In tutoring research, theoretically-
based modes typically represent pedagogical strategies, such
as Modeling, Scaffolding, and Fading. More recent studies of
modes have used unsupervised approaches, such as Hidden
Markov Models to detect patterns of dialog acts that match
such theoretical modes [1]. However, such discovered states
are not always guaranteed to be modes as we frame them
here: others likely represent intermediate structures, such
as adjacency pairs (e.g., a question followed by an answer).
As such, in this research, we have relied on human-tagged
modes and supervised mode-classifiers based on such modes,
so that each mode can be linked more clearly to theoretical
descriptions of pedagogy.

Finally, this research relies on features extracted using se-
quence data mining. A good review of prior work for se-
quence mining tutoring transcripts is presented by D’Mello
and Graesser [3], which outlines conventional approaches
(e.g., association rule mining) as well as a novel method
based on transition likelihoods. In general, traditional anal-
yses of tutoring sessions focus on identifying frequent or dis-
tinctive dialog act transitions and subsequences. However,

where supervised labels exist (e.g., quality tags), alternative
sequence analysis techniques can be applied to identify se-
quences that occur more frequently in certain session types.
This type of analysis detects distinctive subsequences, which
discriminate between one group of sequences versus another
group of sequences [5].

Since online human tutoring is a dyadic interaction, it also
has similarities with computer-supported collaborative learn-
ing (CSCL). CSCL analysis often considers higher-level con-
structs related to collaboration, such as reaching consensus
and division of tasks [13]. Many of these constructs are less
central to a professional tutoring process, which has prede-
fined roles (tutor vs. student) and associated cultural expec-
tations for dialog behavior. However, aspects of these more
general interactions were incorporated, such as dialog man-
agement (a “Process Negotiation” mode) and interpersonal
relationships (a “Rapport Building” mode).

The quality of a tutoring session can be measured in two
ways: “objective” assessments, such as tests given to the
student [1], or “subjective” assessments, based on expert
ratings or tags assigned to the session. However, even ob-
jective assessments require subjective decisions about their
criteria. Additionally, expert raters can often provide higher
granularity for tagging events during the tutoring process.
As such, process-focused machine learning often focuses on
building classifiers and estimators trained on expert tags
and ratings [18]. Our research builds on this approach, so
our automated assessments model how expert tutors perceive
session quality rather than necessarily the resulting learning
gains. In future work, we feel that there would be great
value in contrasting a session quality assessment trained on
tested learning gains against the one developed in this paper.
Such an assessment might identify session features that help
identify when illusions of mastery and other rating biases
occur [6].

3. DATA SET
This research analyzes a full data set of 246k online human-
to-human tutoring transcripts from a major commercial tu-
toring service (Tutor.com). Thousands of different tutors,
and tens of thousands of different students participated in
these sessions, but all focused on Algebra and Physics top-
ics. As an on-demand service, each session was initiated by
a student who requested help on a problem or concept (e.g.,
at an impasse). Of these transcripts, approximately 4k were
excluded from analyses on the full data set due to missing
data or formatting issues. Each session contained a times-
tamped line-by-line text transcript of the statements typed
by the student, the tutor, and system messages (e.g., file up-
loads). Every session was also associated with metadata col-
lected before and after the session. This metadata included
the tutor’s assessment of evidence of learning during the ses-
sion (EL1) and the tutor’s assessment of the student’s level
of prerequisite knowledge (PREREQ). Metadata was also
available for a subset of tutors, which included their “Tu-
tor Level,” an internal performance level that ranged from
“Probationary” (0) to “Level III” (Highest). The tutor level
was determined by each tutor’s mentor, based on internal
reviews of the tutor’s sessions, and is correlated with experi-
ence. On average, Level III tutors had five years experience,
Level II had two to four years, and Level I had a little over
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a year. Probationary tutors averaged 6 months.

Of the total set of transcripts, 1438 sessions were annotated
by a panel of 19 subject matter experts (SMEs), selected
from a pool of some 2,800 Tutor.com tutors using a rigor-
ous screening process, which included analysis of answers to
a set of survey questions designed to gather initial expert
opinion about tutoring, and also to assess the respondents’
ability to critique session transcripts. The training process
and details on inter-rater reliability are described in more
detail in related work [15]. As part of the annotation pro-
cess, the SMEs rated each session on two scales: evidence
of learning (EL2) and educational soundness (ES). Annota-
tors were instructed to consider different criteria for each:
EL2 targets outcomes (i.e., did the student learn) and ES
targets process (i.e., did the tutor use good tutoring strate-
gies). This is important because sometimes good tutoring
steps can still fail to produce learning for a given student.
EL1, EL2, ES, and PREREQ were all rated on a 0-5 scale,
where zero represents a low rating and five represents a top
rating.

Each line in the tutoring session was also tagged for a dia-
log act and was also part of a dialog mode. Given the size
of the taxonomies (126 dialog acts and 16 dialog modes), a
full review of each tag would be infeasible, so specific tags
that showed value as features will be noted as they are dis-
cussed. The taxonomy of dialog acts included 126 distinct
tags, organized into 15 main categories. At a macro-level,
these categories focus on traditional dialog act classes such
as Questions, Assertions, Requests, Directives, and Expres-
sives [21]. Within the tutoring context, these categories
tend to be used to provide information (Answer, Assertion,
Clarification, Confirmation, Correction, Expressive, Expla-
nation, Reminder), asking for information (Hint, Prompt,
Question), and managing the tutoring process (Directive,
Promise, Request, Suggestion). Within each of the 15 main
categories, subtypes capture key differences such as positive
versus negative feedback (e.g., Expressive:Positive vs. Ex-
pressive:Negative).

Annotators also tagged student or tutor contributions that
signaled the start of a dialog mode, or a switch from one
dialog mode into another. The 16 included modes asso-
ciated with classic tutoring strategies (Fading, Modeling,
Scaffolding, Sensemaking, Session Summary, Telling), iden-
tifying the problem (Method Identification, Problem Iden-
tification) or learner prerequisites (Assessment), interper-
sonal strategies (Metacognitive Support, Rapport Building),
and session process (Process Negotiation, Opening, Closing,
Method Road Map, Off Topic). The time spent in each mode
was far from uniform. Tutoring strategy modes, particularly
Scaffolding, accounted for a majority of most sessions. Ses-
sion process modes were also significant, such as Process
Negotiation (i.e., getting on the same page), Openings, and
Closings. Other modes were fairly rare, such as Method
Identification.

Based on these annotated tags, complementary research on
this data set developed a logistic regression dialog act clas-
sifier [20] and a conditional-random fields (CRF [11]) mode
classifier [19]. This tagging methodology followed similar
principles to Moldovan et al. [14]. These classifiers ap-

Table 1: Reliability Scores for Tagging
Main Act Sub-Act Mode

Tagger Acc Kappa Acc Kappa Acc Kappa

Human 81% 0.77 65% 0.63 56% 0.47
Machine 77% 0.71 53% 0.50 57% 0.52

(43%) (0.21)

proached the level of reliability shown by independent tag-
ging by human experts, as noted in Table 3. The figures
in this table show the best performance by both the hu-
man taggers (i.e., their final inter-rater reliability tests) and
the performance of the classifiers used for automated tag-
ging in this paper. Machine tagging statistics shows cross-
validation results. As can be observed, the classification
of the main dialog acts (15 categories) and full set of sub-
acts (126 categories) approximated human inter-rater tag-
ging fairly closely. Classifying modes was fairly effective
also, but lost nearly half of its accuracy the tagger trained on
human speech act tags was applied to the machine-labeled
dialog acts (29% accuracy). Retraining on machine tags be-
fore testing on machine tags improved overall accuracy, but
still produced a significantly lower kappa (43% and 0.21, re-
spectively, as shown in parentheses), as compared to training
and testing on human tags. As such, mode tags will be less
accurate for machine-tagged sessions.

From the standpoint of analysis, the 1,438 human-tagged
training set was used for initial feature identification and
training of the session quality assessment model. The full
set of 242k machine-tagged sessions were then treated as a
second data sample for analysis, which included the origi-
nal training set but tagged using the automated dialog act
and mode classifier models. This research builds on the
prior research that developed dialog act classifiers [20] and
mode classifiers [19], as well as development of a taxonomy
for speech acts and modes in human tutoring [15]. The
novel contributions reported in this paper include identify-
ing patterns in speech acts and modes (subsequence analy-
sis), identifying features that help estimate tutoring session
quality, training machine learning models that estimate tu-
toring session quality, examining the strength of features
in these models, and examining the correlation between es-
timated session quality against other indicators of session
quality (e.g., the original tutor’s rating of learning during
the session). This work was done to target the research
questions described in the following section.

4. RESEARCH METHODOLOGY
Based on these data sets, this work approaches five primary
research questions:

1. How closely can we model expert judgments about ses-
sion quality, based on domain-independent dialog acts
and modes?

2. What models show the most promise for assessing ses-
sion quality?

3. What features are the strongest predictors in these
models?

4. What features lose predictive power when trained on
machine tags rather than human tags?
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5. How closely do the results from machine quality tags
correlate with metadata on the full corpus (e.g., EL1),
as compared to the training corpus?

To examine these questions, a session quality classifier was
trained using a two-step process of feature selection followed
by supervised learning. First a set of high-level features was
selected that correlated with the rater’s evidence of learn-
ing (EL2) and educational soundness (ES). These features
included the duration of the session, the average number
of words typed by the student per contribution (verbosity),
the number of dialog acts typed by the tutor and by the
student, and the number of short and long pauses between
dialog acts. Additionally, the counts of each mode tag and
of each individual dialog act by a given speaker were used
as features (e.g., Confirmation:Positive [Tutor]).

Next, to capture more complex features of the tutoring pro-
cess, sequence pattern mining was applied to tutoring ses-
sions to identify subsequences of dialog acts or dialog modes
that help distinguish between excellent and poor tutoring
sessions. For this analysis, two subsets of human-annotated
tutoring sessions were selected that included the most suc-
cessful sessions (N=261, where ES = 5 and EL2 = 5) and
the least successful sessions (N=93, where ES <= 2 and
EL2 <= 2). Subsequences of dialog modes consider dialog
mode switches, where there was a change from one mode
to another. This is important because modes often span
multiple dialog acts.

The subsequence analysis used the TraMiner package for
sequence analysis [5], which contains an algorithm for de-
tecting discriminant event subsequences between two groups
of sequences. At a high level, this algorithm calculates
the frequency of all subsequences up to a given length for
each group of sequences, then applies a Chi-squared test
(Bonferroni-adjusted) to identify subsequences that are sta-
tistically more (or less) frequent in each group. In this con-
text, a subsequence must be distinguished from a substring:
subsequences are ordered, but do not necessarily have to be
contiguous. Three sets of distinctive subsequence analyses
were performed: 1) dialog act subsequences, 2) mode subse-
quences, and 3) dialog acts within each type of mode. Any
subsequence which was distinctive at the p<0.4 level was
included as a candidate feature. The p<0.4 cutoff was se-
lected to allow a large set of candidate features, while still
likely performing better than chance. This analysis was per-
formed on the human-annotated tags. Each subsequence
was treated as a feature whose incidence would be counted
within a session (i.e., a count of the number of times that
tags occurred in that order, without reusing any tags).

Four algorithms were trained to estimate the average of ES
and EL2 based on the full feature set: linear regression with
feature selection, support vector machine (SVM) regression
[10], and additive regression based on decision stumps [4].
In general, these algorithms were selected and tuned to try
to avoid over-fitting: the final number of active candidate
features was 1465, which was comparable to the number of
training sessions (1438). Ridge regression reduces the num-
ber of parameters by penalizing additional factors. Sup-
port Vector Machines are resistant to overfitting because
they regularize the space solution space. Additive regression

(also called Stochastic Gradient Boosting) uses smoothing
that reduces the impact of each additional factor. Each al-
gorithm was evaluated using 10-fold cross validation, using
Weka [9]. After evaluating the effectiveness of each algo-
rithm on the human-annotated data, the best of these al-
gorithms was then tested on the machine-tagged sessions to
examine performance. The best algorithm was re-trained
using machine-tagged sessions, to test if calibrating to the
dialog act and mode classifier outputs would improve per-
formance.

Finally, the full set of 242k tutoring sessions was tagged
using the best-fit model for session quality. These quality
tags were correlated against session metadata available for
the larger corpus of sessions: the original tutor’s evidence
of learning (EL1), the original tutor’s assessment of the stu-
dent’s prerequisite knowledge (PREREQ), and the level of
the tutor (Tutor Level). These correlations were compared
against the correlations observed between the automated as-
sessments and these same metadata variables for the training
set. The goal of this analysis was to examine the consistency
of the automated assessment with other ratings of session
quality that were available for all tutoring sessions.

5. RESULTS AND DISCUSSION
The results from each step are discussed in this section, in-
cluding sequence mining for session features, training and
evaluating the session assessment model, and applying this
model to a large corpus of online tutoring session transcripts.
For the sake of brevity, dialog acts in this section are dis-
played using the shorthand form <Main Dialog Category>:
<Sub Act> [<Speaker>], such that Expr:Praise [T] means
“expressive praise from the tutor.”

5.1 Sequence Pattern Mining
Discriminate sequence analysis that compared the most suc-
cessful and least successful tutoring sessions identified 1151
better-than-chance (p<0.4) distinctive subsequences from 2
to 7 elements long. The majority of these sequences were
sequences of dialog acts (1062) and a significant number
of these sequences captured variations on similar patterns.
Due to the granularity of the taxonomy, distinctions oc-
curred such as Assertion:Calculation [S]⇒ Expressive: Con-
firmation: Positive [T] versus Assertion:Calculation [S]⇒
Confirmation:Positive [T], where the only difference was
whether the tutor’s feedback took the form of an Expres-
sive. Moreover, such distinctions sometimes showed slightly
higher distinctiveness. For example, in the above case, Ex-
pressive:Confirmation: Positive feedback (e.g.,“Great!”) was
a stronger indicator of session success than Confirmation:
Positive (e.g., “Right”).

A total of 89 distinctive mode subsequences were identi-
fied as candidate features that distinguished between session
quality. Many of these were variants of eight patterns that
were supported by Bonferroni-adjusted Chi-squared tests at
the p<0.05 level. Six of these patterns were indicators of
positive sessions. 1) Successful sessions almost always ended
with a Closing/WrapUp, suggesting that both the tutor and
student are satisfied with the progress. 2) Successful ses-
sions had more Fading. The existence of even one Fad-
ing segment was an indicator of success, though Scaffolding
preceding Fading was a better indicator; 3) Successful ses-
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sions tended to have repeated Scaffolding or Sensemaking
segments (the conceptual equivalent of Scaffolding), where
Scaffolding was interleaved with other modes. 4) Successful
sessions were more likely to have late-session Rapport Build-
ing is after Scaffolding or Fading, but preceding the Closing.
5) A Telling mode (i.e., mini-lecture) before Rapport Build-
ing was also a positive feature, which likely indicates that
a summary is positive. 6) The presence of a single Open-
ing mode was also an indicator of a good session, where
less-successful sessions skipped the Opening greetings and
moved immediately to Problem Identification.

Two patterns of mode subsequences tended to be associ-
ated with less successful tutoring sessions. 1) Unsuccess-
ful sessions tended to have repeated Modeling mode cycles.
While a single Modeling mode segment was not indicative
of a poor session, two or more in series was associated with
worse ratings. 2) Unsuccessful sessions were also indicated
by repeated Process Negotiation, particularly if Process Ne-
gotiation alternated with Modeling (the tutor solving the
problem) or Problem Identification (figuring out what prob-
lem the student has). It was also a negative indicator when
Process Negotiation started early in a session sequence. Pro-
cess Negotiation is a mode that is associated with discussing
the tutoring process itself, which includes figuring out who
should be speaking or addressing technical issues. Process
Negotiation itself was not a bad mode, and was also present
in many good characteristic sequences. In these good se-
quences, it tends to occur late in the session (preceding a
Closing) rather than early-on. In general, long or early cy-
cles of Process Negotiation likely indicate that the student
is unable to contribute meaningfully to the problem due to
lack of prerequisites, technical issues, or poor dialog coordi-
nation (e.g., student interrupting).

From aligning these distinctive subsequences, an ideal path
of modes for a session might be framed as: Opening⇒ Prob-
lemID ⇒ Scaffolding ⇒ Fading⇒ ProcessNegotiation ⇒
Telling ⇒ RapportBuilding ⇒ Closing, where some modes
(e.g., Scaffolding and Fading) optimally alternate multiple
times. This successful mode sequence shows some similari-
ties and differences when compared to Graesser et al.’s 5-step
frame for in-person tutoring, which can be described as: [Tu-
tor poses a question]⇒ [Student attempts to answer]⇒ [Tu-
tor provides brief feedback]⇒ [Collaborative interaction]⇒
[Tutor checks if student understands] [7]. The final two
frames align well with Scaffolding⇒ Fading⇒ ProcessNe-
gotiation pattern observed in the successful online sessions.
The main differences likely stem from the tutoring context.
The Graesser tutoring frame assumes a tutor-driven process
in which the student is attempting to answer a question,
typically conceptual, posed by the tutor. In our data, the
student is typically coming to the tutor for help on a spe-
cific problem, and the session is in this sense student-driven.
As such, Problem Identification occurs first, instead of the
tutor posing an initial question.

The insights from the dialog act sequences for successful
versus less successful sessions show similar patterns as those
based on sequences of modes. However, they are more gran-
ular and some of the distinctive sequences tend to be longer
or repeating (e.g., repeated answers by a student alternat-
ing with Confirmation:Positive by the tutor are better).

These patterns match loosely to the learning-relevant affec-
tive states noted by D’Mello and Graesser [2], which were:
Achievement, Engagement, Disengagement, Confusion / Un-
certainty, and Frustration. Evidence of achievement (i.e.,
answers that received positive feedback, explanations fol-
lowed by expressions of understanding) corresponded with
higher session ratings. Likewise, engagement (student an-
swer attempts and sequences with multiple student state-
ments) were positive.

Disengagement indicators, such as questions followed by Ex-
pressive:LineCheck (e.g., “Are you there?”) and Expres-
sive:Neutral statements by the student (e.g., “ok”) were as-
sociated with lower ratings. Raters likely interpreted neutral
responses as indicating that the learner was passively pro-
cessing the session. By comparison, tutor questions that
transitioned to Confirmation:Understanding:Negative (e.g.,
“No, I don’t understand”) were not strong indicators of an
unsuccessful session. Frustration was not significantly ob-
served in the corpus, in part due to a lack of taxonomy tags
devoted to detecting it and in part due to a relatively low
prevalence of obvious frustration within the training cor-
pus. While taxonomy acts for confusion and uncertainty
were available in the taxonomy, these were less common and
did not have a clear correlation to successful or unsuccessful
sessions. This is somewhat expected, since a limited amount
of confusion tends to be productive [2], but a large amount
can lead to unproductive frustration. More nuanced tech-
niques might be needed to monitor these cycles in tutoring
sessions.

5.2 Automated Assessment Models
The total feature set was used to train a series of machine-
learning models: linear ridge regression with parameter se-
lection (Linear), SVM regression (SVM), and additive re-
gression with decision stumps (Add.). The outcome vari-
able for this training was a unified quality score based on
the average of the rater’s assessment of educational sound-
ness (ES) and evidence of learning (EL2). The process for
training these models is outlined in Figure 1. The results
of 10-fold cross-validation for the best-fit models are pre-
sented in Table 5.2, in terms of the correlations between
the machine-generated tags and the hold-out folds. Addi-
tive regression outperformed the other models, even with a
fairly small number of decision branches (10). However, it
improved significantly when allowed to use additional de-
cisions (400). From examining the decision stumps, these
additional stumps allowed it to incorporate additional fac-
tors and also form piecewise curves for some of the strongest
factors.

Table 2: Regression Fits for (ES+EL2)/2 (10-fold
CV)

Linear SVM Add. (10) Add. (400)

Human Tags 0.24 0.55 0.62 0.69
Machine Tags 0.24 0.49 0.52 0.56

The linear model performed very badly, despite parameter
selection: it tended to overfit the data and did not seem to
model the expert ratings very well. SVM performed slightly
better, but was not the best model overall. The Additive
model, which was based on decision thresholds, worked best
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Figure 1: Model Data Flow

out of the three. This may indicate that the human raters
tended to implicitly use heuristics such as “too many Mod-
eling modes,” or “not enough Student contributions.” The
nature of features was also a factor, since many features were
relatively sparse in each session (e.g., only occurred once or
twice within an average session), which lends itself to rules
related to the existence of a feature (i.e., N > 0).

Models trained on the machine-generated tags followed a
similar pattern, but with slightly worse estimates. Retrain-
ing the classifiers on the machine-labeled tags did not sig-
nificantly improve estimates based on those tags. When ap-
plying the model trained on human tags to the training set
with machine tags, the model fit is R=0.54, as compared
to R=0.56 for the cross-validated model built on the ma-
chine tags. As such, the machine tags appear to lose certain
information, rather than simply categorizing it differently.

Since the smallest Additive Regression model worked so ef-
fectively, it is worthwhile to examine the features that were
included. These models differed slightly when trained on
human tags versus machine-labeled tags. The top features
for this model on human tags vs. machine-labeled tags are
shown in Table 5.2, in order of their importance (note: Con-
firmation is shortened to Conf ). The presented analysis
used non-standardized data, which is reasonable partly be-
cause the length of Tutor.com sessions tends to be fairly
regular (i.e., a typical session is 15-25 minutes). Normal-
ization would likely be needed to apply this to significantly
different corpora. In general, many of the same patterns are
important for both the human and machine tagged models.
At least some of the judgments are based on a required min-
imal session length (e.g., # of Tutor Acts). Certain features
appear to target evidence of learning (EL2), such as tutor ac-
tions that indicate the student has provided correct answers
(Confirmation:Positive,Expr:Praise) and not passive in the
tutoring session (Expr:Neutral, Expr:LineCheck). Other fea-
tures appear to be associated with educational soundness
(ES) for tutoring process (e.g., existence of a Closing, Scaf-
folding, and no excessive Modeling). Machine tagging ap-
pears to lose some of these nuances with respect to modes,
probably due to the significantly lower accuracy for classi-
fying modes.

Overall, the model appears to capture evidence of learn-
ing (EL2) better than educational soundness (ES). When
trained on the full training data set (human tags), the Ad-

Table 3: Top-10 Features in Additive Regression
Trained on Human Tags Trained on Machine Tags

Closing > 0 # of Tutor Acts > 11
Expr:Conf:Positive [T]⇒
Expr:Conf: Positive [T] > 0

RapportBuild ⇒ Closing > 0

Scaffolding > 0
Expr:Conf:Positive [T]⇒
Expr:Conf: Positive [T] > 0

Closing > 0 Assertion:Concept [T] < 18
Expr:Apology [T] = 0 # of Tutor Acts < 12
# of Tutor Acts > 6 # of Tutor Acts > 5
ProcessNegotiation⇒
Modeling ⇒ Modeling⇒
Modeling < 4

Request:Conf: Understanding
[S] < 3

Expr:Praise [T] > 0
Scaffolding⇒ Scaffolding⇒
Closing > 4

Expr:LineCheck [T] = 0 # of Tutor Acts < 12
Expr:Neutral [S] > 15 Expr:Conf:Positive [S] > 1

ditive Regression (400) correlates with the average of ES
and EL2 at R=0.8. By comparison, the correlation to these
estimates is R=0.76 for EL2 versus R=0.63 for ES. Clearly,
this is not the result of the outcome variable itself, which
is a straight average of the two ratings (R=0.93 with EL2
and R=0.92 with ES). Instead, this indicates that the fea-
tures for evidence of learning are more easily detected using
the available taxonomy tags and features. This limitation
was amplified when using the machine-generated tags, where
the fit to (ES+EL2)/2 was R=0.54 but the correlation with
the components was R=0.55 for ES2 and R=0.38 for ES.
As such, improving the automated tagging of dialog modes
would improve the automated assessments significantly.

5.3 Tagging Large Tutoring Data Set
To examine the consistency of this assessment model on out
of sample data, it was applied to a corpus of 242k machine-
tagged sessions. The features for each tutoring session were
extracted from parsing the transcript. Metadata about the
session and the tutor were collected and aligned to the au-
tomated session assessments for analysis. The correlations
between the Automated Estimates (Estimates), EL1, and
PREREQ were available for almost the full corpus of 242k
sessions. Other metadata was not always complete (e.g., not
all tutor level data was available), so each pairwise correla-
tion may have a slightly different N. However, all compar-
isons involve thousands of values and are statistically signif-
icant at the p<0.01 level.

Table 4: Correlations of Quality Scores with Session
Metadata

Estimate (ES+EL)/2 EL1 PREREQ

(ES+EL)/2 0.54 - - -
EL1 0.45 0.56 - -
PREREQ 0.39 0.49 0.87 -
Tutor Level 0.05 0.11 -0.02 -0.04

Table 5.3 shows the correlations between the automated esti-
mate of session quality (Estimate), the average quality score
for human raters (ES+EL2)/2 (available for the training set
only), the original tutor’s ratings for evidence of learning
(EL1) and the learner’s prerequisite knowledge (PREREQ),
and the Tutor Level. The first two columns of this ta-
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ble show that the estimate maintains similar correlations
to those for the ratings that it was based on, across the
larger data set, but slightly weaker overall. For example,
the session tutor’s rating of learning for the student corre-
lates at R=0.56 (N=1438) for the training tags, but only
R=0.45 (N=242k) for the automated tags across the full
session data. With that said, the automated session rating
maintains a similar pattern as the supervised tags across
the full corpus. This indicates that the automated assess-
ment captures significant information from the original ex-
pert raters, but with additional noise due to the machine-
tagging process (particularly for modes).

This table also indicates why an external rating source can
be important for evaluating the quality of tutoring sessions,
even for well-trained professional tutors. Despite being rated
independently by tutors with no knowledge of the origi-
nal tutor, a higher Tutor Level correlated with significantly
higher external quality ratings (R=0.11, N=1328). How-
ever, these more-expert tutors rated both the learning (R=-
0.02) and the prerequisite knowledge (R=-0.04) lower than
lower-level tutors. Or, put another way, less-expert tutors
probably over-estimate both the learning and initial under-
standing of their students.

Moreover, it may be difficult for session tutors to provide rat-
ings for the session that capture distinct features. For exam-
ple, the original tutors expressed an R=0.87 (N=242k) cor-
relation between learning (EL1) and and prerequisite knowl-
edge (PREREQ). While one would expect these factors to
be related, that level of correlation is nearly identical. By
comparison, the external quality ratings correlated with the
PREREQ assessments much more loosely (R=0.49, N=1438)
and the automated assessments shadow this pattern (R=0.39,
N=242k). So then, this automated rater provides a unique
source of information modeled after the judgments of the ex-
ternal raters, which can be complementary to other sources
of information about tutoring session quality.

6. CONCLUSIONS AND FUTURE WORK
This research has offered some insights into the five primary
research questions posed earlier in Section 4. First, this
work demonstrates the feasibility of an automated assess-
ment model that models human expert judgments about the
learning that took place during an online human-to-human
tutoring session, at a level of R=0.54. While room for im-
provement exists, this model is already functionally useful.
At least in this work, non-linear meta-models based on deci-
sion stumps (e.g., Additive Regression) outperformed more
linear approaches such as Linear Regression and SVM Re-
gression. This finding indicates that Random Forests [12]
and similar algorithms are probably also promising for this
type of problem. The strongest predictors of session quality
in these models tended to be features where the tutor con-
firmed the accuracy of the student’s responses, the session
process indicated that progress was occurring (e.g., Scaffold-
ing, Fading), or a consensus about successful learning was
reached (i.e., a mutually-agreed Closing). Of these features,
modes were fragile when machine tags were used: the level of
noise in the mode classification appears to wash out informa-
tion that is needed to evaluate the tutoring process. Finally,
the resulting model was shown to follow similar patterns to
the original training ratings, even over a much larger data

set. This indicates that the automated assessments offer a
reasonable proxy for expert human assessment when needed.

Notably, these ratings are calculated without a domain model
that can directly assess the quality of students’ answers. In-
stead, the model captures more general features of the tu-
toring interaction that relate to engagement and consensus
between the tutor and student about learning accomplish-
ment. As such, this model should be effective across a vari-
ety of tutoring domains beyond those analyzed in this work
(Algebra and Physics). These session features are, in prin-
ciple, domain-independent: they are based on classifications
of tutoring dialog acts and modes.

However, this is also a limitation. Since the automated as-
sessment system lacks the ability to assess the correctness
of student input, it relies significantly on the session tutor’s
domain knowledge and basic capabilities to provide correct-
ness feedback. As such, the session assessments can detect
aspects of the pedagogy and student progress, but are un-
likely to work appropriately if the tutors are entirely un-
qualified. This is, in part, because the training corpus in-
cludes only professional tutors who are rated and evaluated
for quality. As such, additional quality-rated corpora might
be needed to transition this estimator to other tutoring con-
texts where session quality assessments are important (e.g.,
peer-tutoring).

Additionally, significant drops in performance were observed
when using machine-annotated sessions instead of human-
annotated sessions. These drops were particularly severe for
mode classifications, which had a direct impact on the abil-
ity of the session quality estimates to model the educational
soundness of a session. This functionality would be helpful,
as it allows credit for “good process” even when strong learn-
ing outcomes are not observed. Improving the accuracy of
dialog mode classification would significantly strengthen the
assessment of tutoring sessions, and is an important area
for further research. One way to approach this problem
would be to use active learning where machine-annotated
transcripts are corrected by human taggers.

Finally, an important next direction for this research would
be to train a similar tutoring session assessment model based
on pre-test and post-test assessments, such as the approach
taken by Boyer et al. [1]. This step would enable a compar-
ison between the features underlying our expert ratings of
session quality against the features associated with measured
learning gains. This work may show notable qualitative dif-
ferences related to not only the key features, but also the
algorithms involved (e.g., discontinuous algorithms such as
Additive Regression might not be as dominant). Features
associated with learning gains that are not associated with
human ratings might also help detect illusions of mastery or
expert blind spots. Likewise, integrating both approaches
for analysis of tutoring sessions would offer the potential
to identify authentic “Eureka moments” where the learner’s
sense of sudden understanding can be shown to correlate
with subsequent performance on a similar problem. In the
long term, the process of maintaining and improving this
model should provide insights into new features of success-
ful tutoring that may even be more valuable than the auto-
mated assessments calculated by the model.
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ABSTRACT
Latent variable models, such as the popular Knowledge Trac-
ing method, are often used to enable adaptive tutoring sys-
tems to personalize education. However, finding optimal
model parameters is usually a difficult non-convex optimiza-
tion problem when considering latent variable models. Prior
work has reported that latent variable models obtained from
educational data vary in their predictive performance, plau-
sibility, and consistency. Unfortunately, there are still no
unified quantitative measurements of these properties. This
paper suggests a general unified framework (that we call
Polygon) for multifaceted evaluation of student models. The
framework takes all three dimensions mentioned above into
consideration and offers novel metrics for the quantitative
comparison of different student models. These properties
affect the effectiveness of the tutoring experience in a way
that traditional predictive performance metrics fall short.
The present work demonstrates our methodology of compar-
ing Knowledge Tracing with a recent model called Feature-
Aware Student Knowledge Tracing (FAST) on datasets from
different tutoring systems. Our analysis suggests that FAST
generally improves on Knowledge Tracing along all dimen-
sions studied.

Keywords
Student Modeling, Knowledge Tracing, parameter estima-
tion, Identifiability, Model Degeneracy

1. INTRODUCTION

Adaptive tutoring systems often rely on student models to
trace the progress of student knowledge to personalize in-
struction. Such student models are usually latent variable
models with the state of student knowledge as the latent
variable. However, finding optimal model parameters is usu-
ally a difficult non-convex optimization problem for latent
variable models. Moreover, in the context of tutoring sys-
tems, even global optimum model parameters may not be
interpretable (or plausible). Knowledge Tracing [4] is one
such latent variable model that has been widely used, and
different properties of its estimated parameters have been
presented in many previous studies: predictive performance
[6], plausibility [1, 6, 19], and consistency [2, 6, 16, 19, 9].
Unfortunately, there are still no unified quantitative mea-
surements of these properties. If prediction of student per-
formance is our only goal, this need is less urgent, since
we can simply pick a model according to classification met-
rics. However, parameters with varying properties might
have different inferences about knowledge, which may result
in different tutoring decisions that can have a large impact
on students. To illustrate, we show examples where two
models that both belong to Knowledge Tracing are fitted
from the same data, and where predictive performance is
not sufficient to pick a good model:

• One model with higher predictive performance asserts
that student knowledge decreases with correct prac-
tices, while the other model asserts the opposite. In
such cases, the former model will suggest continuing
practicing even if students get a lot of correct answers
in a row, while the latter will suggest moving to other
skills in a shorter amount of time.

• Two models have the same predictive performance,
yet one asserts that about 20 practices are required
to reach mastery of a skill, while the other asserts that
only about 3 practices are enough. In such cases, a stu-
dent needs to practice a lot under the former model,
but under the latter model, students can move to learn-
ing other skills more quickly.
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In the first example, the more predictive model lacks plau-
sibility; in the second example, two models lack consistency,
even though they have the same predictive performance. As
a result, we advocate that a student model should be exam-
ined from dimensions besides predictive performance. We
propose a unified quantitative framework, called Polygon,
for the multifaceted evaluation and comparison of student
models. The framework suggests novel metrics to quantify
the properties of a student model along multiple dimensions,
including predictive performance, plausibility, and consis-
tency. Polygon is designed for general latent variable mod-
els that model latent student knowledge and is domain-
independent. In the present work, we demonstrate how
we apply Polygon to evaluate and compare classic Knowl-
edge Tracing with a recent generalized model called Feature-
Aware Student Knowledge Tracing (FAST) [8] in four differ-
ent domains. Section 2 reviews some latent variable student
models and prior work examining their properties; Section
3 describes our Polygon framework and metrics; Section
4 studies the relationship among these metrics and com-
pares Knowledge Tracing with FAST; Section 5 concludes
the work.

2. BACKGROUND
2.1 Latent Variable Student Models
We now review two effective latent variable models for pre-
dicting student performance and inferring student knowl-
edge: Knowledge Tracing [4] and Feature-Aware Student
Knowledge Tracing (FAST) [8]. Knowledge Tracing uses
Hidden Markov Models to model student knowledge as bi-
nary latent variables (either learned or unlearned), given the
observed practice performance (correct or incorrect) and us-
ing four parameters: Init (initial knowledge level), Learn
(learning rate), Guess, and Slip. We learn the parameters
of Knowledge Tracing using the Expectation Maximization
algorithm. A recent model FAST incorporates features into
Knowledge Tracing by replacing the binomial distributions
by logistic regression distributions. It encodes contextual
information as features for the original Knowledge Tracing
parameters. It allows flexible features to affect student per-
formance or knowledge directly. For simplicity, we use fea-
tures in all four parameters in the study. FAST trains fea-
ture coefficients jointly with other parameters using the Ex-
pectation Maximization with Features algorithm [3]. This
algorithm keeps the original E-step and replaces the M-step
by training a weighted regularized logistic regression using a
gradient-based search algorithm (LBFGS). While FAST has
been shown to outperform Knowledge Tracing in many pre-
diction tasks, we are interested in comparing it with Knowl-
edge Tracing in other dimensions.

2.2 Prior Work Examining Properties of Knowl-
edge Tracing

Prior work has examined Knowledge Tracing models from
predictive performance, plausibility, and consistency. We
now review previous studies in each dimension.

Predictive Performance. Measurements of predictive per-
formance have been broadly applied to evaluate student
models. Prior studies have shown several problems with
parameter estimation for Knowledge Tracing, which predic-
tive performance metrics often fail to detect [2, 16, 7]. We

examine this traditional dimension in more depth for both
Knowledge Tracing and FAST, and complement it in other
dimensions, including plausibility and consistency.

Plausibility. Interpretability of a model is a desire prop-
erty because it allows for better scientific claims and prac-
tical applications. Prior studies have used external mea-
surements for validating the plausibility of fitted parame-
ters, such as pre-test scores [6], exercise scores [4], or some
domain-specific measurements [2]. However, such external
resources are not always available. Many studies also ex-
amined plausibility by internal validity. Learning curves
plotted using fitted parameters are inspected [2], and ex-
tremely low learning rates are considered implausible. How-
ever, very difficult skills can have very low learning rates,
and it is not clear what is the suitable threshold for defining
low learning rates. Implausibility has been formally defined
using model degeneracy [1], which refers to situations where
parameter values violate the model’s conceptual meaning.
They defined strong empirical constraints to detect theoret-
ical degeneracy, and designed two specific metrics involving
empirical parameters to detect empirical degeneracy: (i) the
model’s estimated probability that a student knows a skill
is not higher than before the student’s first N actions, or
(ii) the model doesn’t assess that the student has mastered
the skill, even though the student has made a large number
M of correct responses in a row. Under these two cases, the
model is judged to be empirically degenerate. They arbitrar-
ily chose N=3 and M=10 for the study. A later theoretical
fixed point analysis [19] has precisely identified the condi-
tions where models will be empirically degenerate. We are
interested in generally quantifying the plausibility property
based on such a theoretical conclusion, avoiding imposing
empirical parameters during evaluation.

Consistency. Prior work has focused on two aspects of this
dimension. First, the optimization algorithm (namely, the
Expectation Maximization algorithm) can converge to the
local optima of the log likelihood space yielding different
properties of parameters that depend on the initial values
[5, 16]. Although there are studies on setting good initial
values to tackle this problem [5], practically, the strategy of
setting randomly distributed initial values is usually taken.
Yet there is still no principled way to measure the models’
difference in the variation of convergence, and as a result, it
is difficult to get a quantitative view of such a property. Sec-
ond, multiple global optima of Knowledge Tracing exist [16,
2] where observed student performance corresponds to dif-
ferent sets of parameter estimates that make different as-
sertions about student knowledge, yet have identical (under
finite precision) performance predictions [2]. This problem
is referred to as the identifiability problem [2]. Later studies
have presented different (and even contradictory) views of
this problem [19, 9]. These two aspects all relate to the con-
sistency of the parameter space, and in order to determine
their practical implications, we offer a unified view of them.

3. POLYGON EVALUATION FRAMEWORK
Polygon is a novel framework proposed for evaluating gen-
eral latent variable student models from multiple dimen-
sions with multiple metrics, besides simply predictive per-
formance. It considers three dimensions, predictive perfor-
mance, plausibility, and consistency, along with novel met-
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rics that instantiate each dimension. Polygon can evaluate
a single model which contains only one set of parameters
fitted from the data, because in practice we usually deploy
a single model into a tutoring system after model selection.
Polygon’s predictive performance and plausibility metrics
can be used to evaluate single models. However, latent vari-
able models can converge to different points with different
initial parameter values due to the non-convexity of the neg-
ative log-likelihood. A better model should be more likely
to converge to points with higher predictive performance
and plausibility, and also give more stable predictions and
inferences. So we also use Polygon to evaluate a student
model fitted from a large number of random initializations.
This provides an examination on the parameter space that
is useful for single model selection or construction. In our
study, we call these final fitted models random restarts. We
mainly focus on evaluating the parameter space from ran-
dom restarts, but also include evaluating a single model.
Each Polygon metric evaluates the trained model(s) of a
skill. To get an overall evaluation across skills, we aggre-
gate by averaging each skill’s individual metric. All metrics
range from 0 to 1, with a higher positive value indicating
higher quality. We focus on the evaluation on Knowledge
Tracing and FAST in this study. We now introduce Polygon
in detail.

3.1 Predictive Performance
Predictive performance has been the previous standard of
evaluating student models. It provides useful validation for
the inference of knowledge, since accurate knowledge esti-
mation should imply accurate prediction of student perfor-
mance. We apply a widely used classification metric for this.

AUC and P-RAUC. We use Area Under the Curve (AUC)
of the Receiver Operating Characteristic (ROC) curve to
evaluate each single model on test set, which gives an over-
all summary of diagnostic accuracy. AUC equals 0.5 for a
random classifier and 1.0 for perfect accuracy. For assessing
multiple random restarts, we compute the average of AUC
values from single models and define it as P-RAUC, where
P- stands for prediction performance, R stands for random
restart, and r indicates the rth random restart:

P-RAUC =
1

R

R∑
r=1

AUCr (1)

3.2 Plausibility
The conceptual idea behind using Knowledge Tracing to
model student knowledge is that knowing a skill generally
leads to correct performance, and conversely, that correct
performance implies that a student knows the relevant skill
[1]. We define plausibility metrics based on this idea.

Guess+Slip<1 (GS) and P-RGS. Several prior studies
have empirically addressed the issue of plausibility, as men-
tioned in Section 2. A recent study [19] has provided a the-
oretical ground that we think can be used to formally define
plausibility. This study used theoretical fixed point analy-
sis to prove that when Guess+Slip>1, the probability that a
student has learned a skill just after a practice, given the stu-
dent’s previous performance, decreases for correct practices
and increases for incorrect practices. In this case, the model
is empirically degenerate [1]. This is different from theoret-
ically degenerate [1] constraining Guess≤0.5 and Slip≤0.5

to be plausible estimations, which we think is somewhat too
strong. For example, it is possible that a student may answer
a problem correctly after receiving strong scaffolding (help),
even though the skill has not yet been learned. As a result,
we propose a metric constructed using the Guess+Slip<1
condition. We use an indicator for Guess+Slip<1 for a single
model and refer to it as GS (Equation 2). For assessing ran-
dom restarts, we compute the average of the GS values from
single models and define it as P-RGS, where P- stands for
plausibility and R stands for random restart (Equation 3):

GSr = 1(Guessr + Slipr < 1) (2)

P-RGS =
1

R

R∑
r=1

GSr (3)

Here, 1 is an indicator function and Guessr and Slipr are the
rth random restart’s fitted probabilities. For FAST, with
the change of feature values, Guess and Slip can change.
We focus on capturing the average behavior of guessing and
slipping across contexts, so we compute Guess and Slip with
only the intercepts in the logistic regression component (note
that other features are activated according to context dur-
ing training). The interpretation of our computation de-
pends on the construction of features. For example, when
using item indicator features, the computation captures the
average values of Guess and Slip of a skill.

Non-decreasing Predicted Probability of Learned (NPL)
and P-RNPL. In addition to the above metric grounded in
a theoretical analysis [19] for Knowledge Tracing, we con-
struct another empirical metric to capture the behavior of a
general latent variable model, since it is not always easy or
feasible to conduct theoretical analysis of complex models.
Our proposed metric captures how likely a model gives a
non-decreasing estimation of knowledge levels with an in-
crease in practice opportunities. This idea is consistent
with constraining the learning rate to be non-negative, as
in [17, 6]. We think that a decreasing predicted probability
of learned is not plausible, based on the interpretation that
such a decrease implies practices that hurt learning. We are
aware that a decreasing knowledge estimate can also be in-
terpreted as a decrease in the model’s belief that a student
might reach a high knowledge level, where the model adjusts
itself when observing a lot of incorrect practices. However,
we focus on the first interpretation, because in real world tu-
toring systems where students are aware of their knowledge
level as provided by the systems, decreasing knowledge esti-
mates with more practices might discourage students from
trying more.

To construct this new metric, we first obtain the estima-
tion of a student reaching leaned state at each tth prac-
tice opportunity given prior 1th to (t − 1)th performance
O1 to Ot−1 on the test set. We denote this probability as

P(Lt=Learned|O1:t−1), and also refer to it as P(L̃t|O) for
simplicity. Then we count the total number of consecutive

pairs with non-decreasing P(L̃t|O) across each skill-student
sequence, and then divide it by the the total number of ob-
servations of the current skill. We define this as NPL as
an indicator of its plausibility for assessing a single model
(Equation 4). For assessing random restarts, we compute
the average of the NPL values obtained from single models,
and define it as P-RNPL, where P- stands for plausibility
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and R stands for random restart (Equation 5):

NPLr =
1

D

S∑
s=1

Ts−1∑
t=1

1[P(L̃rs
t+1|Ors) ≥ P(L̃rs

t |Ors)] (4)

P-RNPL =
1

R

R∑
r=1

NPLr (5)

where 1 is an indicator function, r, s, t indicates random
restarts, students, and practice opportunities, respectively.
Ts is the total number of practices of student s, and D is
the total number of practices of all students of current skill.

3.3 Consistency
Depending on different initial values of parameters, Knowl-
edge Tracing and FAST can converge to points with differ-
ent properties (such as plausibility or prediction of mastery).
We favor a consistent model that has a low variance in prop-
erties across random restarts. Here, we extend the problem
of Identifiability, where only global optimal log likelihood
points are involved, into a more general problem of consis-
tency, where all converged points are examined. The mea-
surement of all converged points might be more operational
in practice since it can be hard to judge whether the algo-
rithm reaches a local or global optimum. For example, it is
not clear how many random restarts are needed. Also, it is
not sure whether converged points with log likelihood very
close to the identified highest one can be treated as global
optima or not.

Consistency of AUC, GS, NPL (C-RAUC, C-RGS, C-
RNPL). Based on the explained importance of the per-
formance metric AUC and the plausibility metrics GS and
NPL, we think that a good model should also present low
variance in these metrics across random restarts. As a result,
we define consistency metrics C-RAUC, C-RGS, C-RNPL
correspondingly by computing the standard deviation1 of
each single model’s metrics across multiple random restart
runs (r) on the test set with some transformation to map
them into [0, 1] interval. Here, C- stands for consistency
and R stands for random restarts. For example, for com-
puting C-RAUC, we use the following formula:

C-RAUC = 1−

√√√√ 1

R

R∑
r=1

(AUCr −AUC)2 (6)

Consistency of the Predicted Probability of Mastery
(C-RPM). Student models are usually used to assess whether
and when students reach mastery, based on which tutoring
systems give adaptive instruction. A model lacking consis-
tency in mastery prediction will lead to varying decision in
instruction, which can have a significant impact on students.
So we also construct a metric to quantify this consistency, in-
spired by previous studies [2, 15, 7]. We use the conventional
definition of Mastery as the probability of Learned reaching
0.95 [4]. We compute P(Lt=Learned|O1:t), the posterior
knowledge estimation of being in the Learned state at tth

practice updated by 1st to tth practice observations O1:t.

1We use uncorrected sample standard deviations to map the
metric to [0, 1]. With a large enough sample size (100 in
our study), the bias of this estimator is small. For a smaller
sample size, the corrected version might be considered.

We also refer to it as P(L̃t|O) for simplicity. We then com-
pute the probability of reaching Mastery as the percentage

of students predicted to ever have P(L̃t|O) ≥ 0.95, which
means achieving a 0.95 posterior knowledge estimation in
a practice sequence for the current skill. We refer to this
probability as P(Mastery) or PM (Equation 7). We then
compute the standard deviation of P(Mastery) across differ-
ent runs, transform it to map to [0, 1] interval, and refer to
it as C-RPM where C- stands for consistency, R stands for
random restarts (Equation 8):

PMr =
1

S

S∑
s=1

1{P(L̃rs
t |Ors) ≥ 0.95, ∃t ∈ [1, Ts]} (7)

C-RPM = 1−

√√√√ 1

R

R∑
r=1

(PMr − PM)2 (8)

where r, s, t indicates random restarts, students, and prac-
tice opportunities respectively. Ts is the total number of
practices of student s of current skill.

Cohesion of the parameter vector space (C-RPV). Fixed
point analysis has been used to show that we need all four
parameters to define the overall behavior of Knowledge Trac-
ing [19] during the prediction phase, when knowledge esti-
mation is updated by prior observations. We use this con-
clusion to construct another consistency metric. To capture
all four parameters, we construct a Euclidian vector based
on the four fitted parameters Init, Learn, Guess, and Slip for
each single model. For FAST, we compute the four param-
eters with only the intercepts in the logistic regression com-
ponents after fitting with features during training. We then
compute the Euclidian distance of each vector to the mean of
the parameter vectors (similar to the cluster cohesion mea-
surement), and then perform a transformation to map this
value to [0, 1] interval. We define it as C-RPV where C-
stands for consistency, R stands for random restarts, and
PV stands for parameter vector:

C-RPV = 1− 1

2R

R∑
r=1

||Vr −V|| (9)

where Vr is the parameter vector of the rth random restart.
Vr=(Initr, Learnr, Guessr, Slipr). V is the mean of the
parameter vectors across the random restarts.

3.4 Metric Selection
Our proposed Polygon framework consists of three dimen-
sions: prediction, plausibility, and consistency, and allows
flexibly designed metrics for each dimension. The metrics
we introduced before are the potential ones to be considered.
We propose a principled way to select metrics to instanti-
ate the framework: selected metrics should cover all three
dimensions while having the smallest pairwise correlation.
To achieve this, we examine the scatterplot and correlation
of each pair of the metrics and conduct a significance test.
Finally, we report our selected metrics in Section 4.3.1.

4. STUDIES AND RESULTS
4.1 Datasets and Features
We conducted experiments on datasets from different tu-
toring systems: Geometry Cognitive Tutor [12], OLI Engi-
neering Statics [18], Java programming tutor [10], and the
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Physics tutoring instance of the BBN learning platform [14].
Table 1 shows descriptive statistics (#observations indicates
the smallest assessable practice units of students).

Geometry, Statics. We obtained these datasets from PSLC
Datashop [13]. The Geometry dataset has data from the
area unit of the Geometry course, which was conducted dur-
ing the 1996-1997 school year. The Statics dataset has data
from multiple schools during Fall 2011. We defined a prob-
lem (item) by concatenating the problem hierarchy, problem
name, and step name. We defined a skill by concatenating
the problem hierarchy and original skills, and treated the
combination of skills as one unique skill if multiple skills are
associated with a problem. For the Statics dataset, we ran-
domly selected 20 skills (from the total of 156) to avoid bias
towards this dataset when we aggregate across datasets. We
further removed 3 skills where there are fewer than 10 obser-
vations in total, resulting in 17 skills. For FAST models, we
constructed binary item indicator features for each problem
with fitted coefficients represent item difficulties. Such mod-
els have been known for their high predictive performance
[11, 8], and we plan to examine other dimensions as well.

Java. The Java dataset was collected from an online Java
programming tutoring system [10] from Fall 2010 to Fall
2014. For each problem, students are asked to give the
value of a variable or the printed output of a Java program
after they have executed the code in their mind, and the
system assesses correctness. The Java programs are instan-
tiated randomly from templates on every attempt. Students
can make multiple attempts until they think they have mas-
tered the skill, or just give up. Problems are grouped by
Java topics (each problem is mapped to a single topic), and
we considered each topic as a skill. We consider each prob-
lem template as a single item. For FAST models, we also
constructed binary item indicator features, adding to the
exploration of the effect of item difficulties.

Physics. The Physics dataset was collected from the BBN
Learning Platform [14], a domain-independent, problem-solving-
based online learning platform. Students can solve problems
without any help, or request a decomposition of the prob-
lem into steps. The steps lead students through a carefully
crafted directed path to help solve the problem. We used
logs collected from 40 users solving 10 problems from the
Electric Circuits units. Each of these problems and steps
are annotated with electric circuits skills (in total 10). In
addition to capturing student actions at the items, the plat-
form logs requests for help, feedback received, and problem
navigation actions. We derived 105 numeric features from
these logs, performed feature selection, and finally used the
top ranked feature for FAST. This allows us to inspect the
effect of help in the Knowledge Tracing framework.

4.2 Experimental Setup
We used Expectation Maximization (EM) for training Knowl-
edge Tracing, and Expectation Maximization with features
for FAST [8]. We uniformly initialized each parameter within
(0, 1) at each run for Knowledge Tracing, and we uniformly
initialized each feature coefficient within (-10, 10) for FAST,
which resulted in original parameters approximately cover-
ing (0, 1). We drew 100 different initial values for each
parameter. We set 500 as the maximum EM iteration, 50 as
the maximum LBFGS iteration and the log likelihood’s rela-

Table 1: Dataset descriptive statistics.

Dataset #observations #skills #students %correct
Geometry 5,055 18 59 75%
Statics 23,390 17 326 77%
Java 43,696 20 328 67%
Physics 10,063 10 40 62%

Table 2: Scatterplot and Kendall rank correlation among
metrics of all skills (65) from Knowledge Tracing. Metrics se-
lected into Polygon are shown in blue. Values shown in blue
indicate a low correlation, and values shown in YellowOr-
ange with asterisks indicate statistical significance (α=0.05).
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tive change within 10−6 as convergence criteria. We trained
each skill independently and used a user-stratified data split:
80% of the students were randomly selected into the training
set, and the remaining students were assigned to the test set.
In this way, models can be generalized to unseen students.

4.3 Results
4.3.1 Metric Selection

In order to obtain a compact instantiation of the Polygon
evaluation framework, we analyze the pairwise correlation
among the proposed metrics on Knowledge Tracing models.
For each skill we compute eight metrics based on 100 random
restarts and analyze the relationship across skills. Table 2
shows that C-RGS, C-RNPL and C-RPV all include signifi-
cant correlations with other metrics. Particularly, the scat-
terplot of P-RGS and C-RGS shows a U-shape; we think
this finding is because the mean and standard deviation
of Bernoulli-distributed variables (GS) have this property.
Finally, we instantiate the Polygon framework with five
metrics in our study: P-RAUC, P-RGS, P-RNPL, C-
RAUC and C-RPM, where they cover three dimensions
and have low, non-significant pairwise correlations.

4.3.2 Evaluation on Multiple Random Restarts
We now present how we use Polygon to evaluate multi-
ple random restart models and single models on Knowledge
Tracing and FAST. Figure 1 shows Polygon evaluation per
dataset aggregated across skills. Overall, FAST mostly have
Polygon areas covering that of Knowledge Tracing. Consid-
ering the variance across skills, FAST has significantly higher
values in all five metrics (α=0.05, p < 0.0001 by Wilcoxon
signed-rank test), suggesting that it might promise not only
higher predictive performance, but also higher plausibility
and consistency. One possibility is that the constructed
features indirectly constrain the optimization algorithm to

Proceedings of the 8th International Conference on Educational Data Mining 207



P-RAUC*

P-RGS*                 

P-RNPL* C-RPM*

          C-RAUC*
0.2

0.4
0.6

0.8
1.0

Geometry
P-RAUC*

P-RGS                 

P-RNPL* C-RPM*

          C-RAUC*
0.2

0.4
0.6

0.8
1.0

Statics
P-RAUC*

P-RGS*                 

P-RNPL C-RPM*

          C-RAUC*
0.2

0.4
0.6

0.8
1.0

Java
P-RAUC*

P-RGS                 

P-RNPL C-RPM*

          C-RAUC
0.2

0.4
0.6

0.8
1.0

Physics

Knowledge Tracing FAST

Figure 1: Polygon metrics per dataset comparing Knowledge Tracing and FAST. An asterisk (∗) indicates statistical signifi-
cance under Wilcoxon signed-rank test (α=0.05). FAST’s Polygon area mostly covers that of Knowledge Tracing.
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Figure 2: Polygon metrics per skill comparing Knowledge Tracing and FAST. FAST’s Polygon area mostly covers that of
Knowledge Tracing.

search within regions with both high fitness and plausibil-
ity. However, FAST’s plausibility seems to be less stable, as
compared to other properties, since its improvement varies
across datasets.

We further examine Geometry, Statics and Java datasets
where we use FAST with item difficulty features. As shown
in Figure 1, FAST significantly outperforms Knowledge Trac-
ing in all metrics, except for P-RGS on Statics and P-RNPL
on Java, where FAST still presents positive tendencies. Gen-
erally speaking, using item difficulty features in Knowledge
Tracing not only increases the model’s predictive perfor-
mance, but also its plausibility and consistency. However,
the relative improvement in plausibility varies across datasets.

In the Physics dataset, FAST using problem decomposition
requested features has a higher P-RAUC (significant), P-
RNPL, C-RPM (significant), and C-RAUC, yet it also has
a lower P-RGS, compared with Knowledge Tracing (not sig-
nificant). Noticing that both methods have very low P-
RGS, we suspect that skill definitions may be too coarse-
grained, meaning that latter practices may involve potential
new skills, where students fail more often than in the begin-
ning. Thus, student models fitted from such data might be
prone to estimating high Guess and Slip. FAST may be more
vulnerable to bad skill definitions, since it might seek to fit
the data as the primary goal, given that it has significantly
higher predictive performance. In order to find out more
about these potentially ill-defined skills, we further examine
Polygon for each skill, as shown in Figure 2. This analysis
shows that more than half of the skills in the Physics dataset
have very low P-RGS, and particularly, there are two skills
where FAST and Knowledge Tracing have an obvious gap
on P-RGS (6th and the last one), which should cause Knowl-
edge Tracing to obtain a higher average value over FAST.
We plan to examine whether refinement of the skill defini-
tions will increase plausibility of both methods and FAST’s
relative quality for P-RGS in next steps.
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Figure 3: Evaluation on each skill’s each random restart
on Geometry dataset. Each color-shape corresponds to one
skill. Each point corresponds to one random restart con-
vergence point. Comparing with Knowledge Tracing, FAST
generates more consistent, plausible models.

4.3.3 Drill-down Evaluation of Single Models
Polygon not only evaluates a method from multiple random
restarts, but also contains components that can evaluate a
single model. We use AUC, GS (Guess+Slip<1), and NPL
to analyze each single model’s predictive performance and
plausibility, and also use the component PM (P(Mastery))
to get an intuitional understanding of a single model’s ef-
fect on tutoring. Figure 3 visualizes AUC, Guess+Slip, and
P(Mastery) of each random restart of each skill for Knowl-
edge Tracing and FAST on Geometry dataset. Each color-
shape corresponds to one skill, while each point corresponds
to one random restart convergence point. We can easily
determine different behaviors between Knowledge Tracing
and FAST. FAST generates more consistent solutions than
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Figure 4: Polygon evaluation on a skill (id=154) on Stat-
ics dataset. The multi-model pentagon reveals this skill has
high AUC consistency but low P(Mastey) consistency. The
single-model quadrangle further reveals the contradictory
properties of two random restart single models even they
have very similar AUC.
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Figure 5: Comparison of two random restart single FAST
models of a skill (id=154) from Statics dataset on two
students. Both models have similar curves of predicted
P(Ot=Correct) but have substantially different curves of
predicted P(Lt=Learned | O1:t−1).

Knowledge Tracing, since there is less spread both horizon-
tally and vertically of the random restart points within the
same skill for all three metrics. FAST also generates more
plausible models than Knowledge Tracing, since most of the
points fall into Guess+Slip<1 region. Note that FAST as-
serts that students are more likely to reach mastery, since
the converged points mostly lie in the higher-value region.

However, does FAST perform well on every skill? If not,
can we use Polygon to effectively identify such skills and
better understand the behavior? Based on previous skill-
specific polygon evaluations (Figure 2), we identify one skill
(3rd polygon on the 2nd row) on the Statics dataset, where
Knowledge Tracing has better P-RGS than FAST. In Fig-
ure 4 the left-hand figure shows that this skill has a very
high consistency of predictive performance (C-RAUC), yet
a very low consistency of PM (C-RPM) across 100 random
restarts. We further pick two of the random restarts and
compute the polygon metrics for single models, as shown in
Figure 4 right-hand single-model quadrangle. The quadran-
gle reveals that these two random restarts have almost iden-
tical AUC, yet have contradictory assertions about learning
and mastery. In order to better understand the behavior, we

Table 3: Kendall rank correlation among single model AUC,
GS, NPL and log likelihood (LL) on training set for the same
skill across 100 random restarts on Knowledge Tracing. We
report the number of skills and in the bracket the average of
the correlation values across skills under each positive (+)
or negative (-) correlation relation (zero correlation ignored)
among all skills (65).

AUC GS NPL
+ – + – + –

AUC 41(0.6) 23(-0.6) 35(0.7) 30(-0.5)
LL 46(0.5) 19(-0.4) 34(0.5) 30(-0.5) 30(0.4) 35(-0.5)

pick two students from each one of these random restarts,
and plot the predicted correctness curve and knowledge level
curve (conditioned on prior observations). Figure 5 shows
a severe problem in comparing these two random restarts:
they have very similar predicted correctness, yet present fun-
damentally different predicted knowledge levels. We think
that this problem extends the identifiability problem, in the
sense that similar predicted correctness curves though not
identical can be problematic if the predicted knowledge level
curves differ greatly. Also, we observe the empirical degen-
eracy of random restart 1: with more incorrect practices,
the predicted probability of Learned increases. This analy-
sis showcases the deficiency of using only predictive perfor-
mance to evaluate student models, and the effectiveness of
Polygon metrics in identifying hidden problems.

4.3.4 Implications for Single Model Selection
We further examine the deficiency of using prediction perfor-
mance or fitness metrics to select single models. We compute
the Kendall rank correlation between AUC and the plausi-
bility metrics for each run of each skill of Knowledge Tracing.
Table 3 shows the deficiency of using only AUC to select the
best random restart. There are more than one-third of skills
that show a negative correlation between predictive perfor-
mance and plausibility across different runs, and the mag-
nitude of the negative correlation on average is not small.
What about choosing the model with the maximum likeli-
hood (LL) on the training set? Table 3 also shows the corre-
lation between LL, AUC, and the plausibility metrics across
different random restarts. Overall, about 71% (46/65) of
the time, choosing the maximum LL on the training set can
lead to a higher predictive performance in the test set, yet
we have no more than 46% (30/65) of the time to get a more
plausible model. These findings show that LL fails to offer
a better choice than AUC. We think that a practical gener-
alizable way to obtain a latent variable student model with
both high predictive performance and plausibility remains
to be explored, and Polygon provides important insights.

5. CONCLUSIONS
In this paper, we propose a general unified evaluation frame-
work (that we call Polygon) to evaluate student models with
latent knowledge estimates. Prior studies have presented dif-
ferent properties of the estimated parameters of Knowledge
Tracing, yet there are no unified, quantitative evaluations for
general student models. Our primary contribution lies in the
quantitative unification of three aspects for general latent
variable student models: predictive performance, plausibil-
ity, and consistency. We propose novel metrics and present a
principled way to select proper metrics. Our defined dimen-
sions extend the definitions of previously defined Identifia-
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bility and Model Degeneracy, which allows us to understand
such problems more practically and more generally. A sec-
ondary contribution is that we show that a recent model
with proper features, known as FAST, generally provides
higher predictive models with higher plausibility and consis-
tency than Knowledge Tracing. This suggests that proper
features might help the optimization algorithm to constrain
the search towards more plausible, more predictive regions.

There are several areas in which we can further extend our
study. First, a single metric or perspective considering the
multiple facets introduced in our analysis can further im-
prove the accessibility of the evaluation. Also, each single
metric can be further improved. For example, we can in-
vestigate the proper number of random restarts. However,
Polygon’s current individual metrics already provide insights
for training student models. For example, incorporating the
plausibility metric as a penalty into the optimization ob-
jective function can guide the algorithm to search within
the high plausibility region. Second, external measurements
applied in prior studies [4, 2, 6] may help to validate our
framework. However, Polygon primarily serves as domain-
independent internal validity, which is useful when external
resources are not available. Third, the plausibility measure-
ment can be a mixture of both student model and skill model
evaluations. Will each model’s relative quality be different
when we examine well-defined vs. ill-defined skills? Can we
utilize plausibility metrics to inspect skill model qualities?
These are questions that remain unanswered. Fourth, we
need to further understand and improve FAST. Since there
are still cases where FAST generates models with low plau-
sibility or low consistency, is there a principled way to con-
struct features that maximize all three dimensions? Also,
as we have only studied cases where a single feature (be-
sides the intercept) is activated for each observation, will
increasing the number of features change FAST’s behavior?

Our study is still exploratory and serves as a first step to-
wards a more theoretical, deeper understanding of the pa-
rameter estimation of complex latent variable student mod-
els. We hope that our work can open the door to more
studies in the community on building student models that
can yield not only better predictions of student performance
but also more reliable, effective tutoring systems.
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ABSTRACT 
Student models for adaptive systems may not model collaborative 
learning optimally. Past research has either focused on modeling 
individual learning or for collaboration, has focused on group 
dynamics or group processes without predicting learning. In the 
current paper, we adjust the Additive Factors Model (AFM), a 
standard logistic regression model for modeling individual 
learning, often used in conjunction with knowledge component 
models and tutor log data. The extended model predicts 
performance of students solving problems collaboratively with an 
ITS. Specifically, we address the open questions: Does adding 
collaborative features to a standard AFM provide a better fit than 
the standard AFM? Also, does the impact of these features change 
based on the nature of the knowledge (conceptual v. procedural) 
that is being acquired? In our extended AFM models, we include a 
variable indicating if students are working individually or in pairs. 
Also, for students working collaboratively, we model both the 
influence on learning of being helped by a partner and helping a 
partner. For each model, we analyzed conceptual and procedural 
datasets separately. We found that both collaborative features 
(being helped and helping) improve the model fit. In addition, the 
impact of these features differs between the collaborative and 
procedural datasets, suggesting collaboration may affect 
procedural and collaborative learning differently. By adding 
collaborative learning features into an existing regression model 
for individual learning over a series of skill opportunities, we gain 
a better understanding of the impact that working with a partner 
has on student learning, when working with a step-based 
collaborative ITS. This work also provides an improved model to 
better predict when students have reached mastery while 
collaborating.  

Keywords 

knowledge tracing, collaborative learning, educational data 
mining, Additive Factors Model 

1. INTRODUCTION 
The modeling of student knowledge has been shown to be an 
important aspect of Intelligent Tutoring Systems (ITSs) 
technology. A variety of modeling approaches have been used to 
model student knowledge and have often been used to support 

individualized learning [2, 3, 15, 25]. Models can provide an 
accurate prediction of learning and also provide insights into how 
people learn. However, these types of models typically account 
for students who work individually with an ITS; they do not 
account for situations in which students learn collaboratively in 
dyads or small groups, supported by ITS technology. Yet 
collaboration cannot be ignored since it has been shown to be 
beneficial for student learning [6, 19] and there may be relative 
strengths for collaborative and individual learning [11]. Students 
who work collaboratively may have different learning rates than 
when working individually; this effect may be caused from being 
helped by a partner or helping a partner. A key question is, 
therefore: How can modeling techniques used for individual 
learning be adapted so they help provide predictions and insights 
into collaborative learning, in addition to individual learning? 
Specifically, how can these models be adapted to account for the 
fact that the collaborating partners may influence each other’s 
learning? What insight can models provide regarding this 
influence? In our ITS, students work either collaboratively or 
individually on the problem sets. We extend the Additive Factors 
Model (AFM) [2, 15] by including features that are unique to 
collaboration, in an attempt to better model both individual and 
collaborative learning.  

Much of the research on learning prediction has focused on 
modeling individual learning such as through Bayesian 
Knowledge Tracing [3], AFM [2, 15], and Knowledge 
Decomposition Model [25]. These models accurately predict 
student performance and can advance our understanding of how 
students learn. Previous research has adapted these types of 
models to better predict and understand individual learning, such 
as by treating correct and incorrect attempts differently [15] or by 
including the transfer that may happen between similar skills [25]. 
For our work, we are using a version of the AFM. The AFM has 
frequently been used to assess and predict individual student 
performance. The AFM is a generalized logistic mixed model [1]. 
It is widely used to fit learning curves and to analyze and improve 
student learning [1]. To adapt the AFM to account for aspects of 
collaborative learning, we can apply the same types of principles 
that have been applied to increase our understanding of individual 
learning and apply them to collaborative learning. For example, 
individual models can account for the transfer of learning from 
previous similar opportunities [25]; the same method can be 
applied to collaborating students having an opportunity to learn 
from watching their partner solve steps. 

Prior research within collaborative learning has focused on 
analyzing collaborative processes to better understand learning 
and social influence [5, 20].  Within this area, there are multiple 
approaches for better understanding the collaborative processes.
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Figure 1. An example of a conceptual problem showing the different steps assigned to the partners in the collaborative condition 

based on the “Do” and “Ask” icons. 
 

Some research aims to detect and classify collaboration skills, 
such as social deliberation skills and collaborative networks [21, 
24]. Other research looks at the change in communication and 
processes that happen over time [10, 18]. Research has also 
focused on group dynamics and how we can recognize and 
intervene with groups that are not collaborating well [8, 9, 16]. 
Another aspect of collaboration that has been studied is 
asynchronous work that occurs on discussion boards and how this 
can influence learning and retention [22, 23]. Although this 
research is broad in the types of research questions that are 
addressed and covers many aspects of collaboration, much of the 
work does not attempt to predict student performance as students 
collaboratively solve problems. Such predictions could support 
student learning, for example by informing problem choices for 
dyads to help students where they are struggling. There has been 
previous work that has studied predicting performance by 
predicting posttest scores based on pair actions and found student 
interactions are predictive of the posttest score [17]; however, this 
work focuses on environments where the actions of collaborating 
students within a dyad or group cannot be distinguished (i.e., it is 
not known who took the action). In collaborative environments, in 
which the actions of the students within a collaborating group can 
be distinguished (e.g., a collaborative ITS), including 
collaborative features in models that have typically been used to 
predict individual performance may support a better 
understanding of the collaborative learning process and the ability 
to predict performance when students are collaborating. Previous 
work has attempted to address this issue by predicting 
performance of students based on their speech with an intelligent 
agent and found semantic match scores as a key predictor of later 
test performance [12]. Our work adds to this body of literature by 
investigating the prediction based on student actions within a 

system and how students will later do on similar items. The 
analysis of the student actions may provide different insights into 
the collaborative processes.  

Extending the AFM with collaborative features enables us to 
study how collaboration might influence learning. Prior research 
with collaborative learning has shown that within mathematics, 
collaborative learning may better help students acquire conceptual 
knowledge, whereas individual learning activities may be more 
conducive to learning procedural knowledge [11]. Since our data 
set, obtained with a fractions tutor that supports collaborative 
learning, described below, includes both conceptual and 
procedural activities [13], we can study whether and how 
collaboration affects learning differently for these types of 
activities. By separately fitting models capturing collaborative and 
individual learning to data from procedurally versus conceptually 
oriented problems, we may be able to add to the understanding of 
how the different aspects of collaborative learning may have 
different strengths for different types of knowledge. 

In this paper, we extend the AFM to (a) distinguish the learning 
that may occur when working individually versus collaboratively 
and (b) to capture learning that may occur from observing a 
partner’s answers to steps. We also explore (c) whether the effect 
of these features is different in activities designed to support 
learning of concepts, compared to activities designed to support 
learning of procedures. By modeling student knowledge when 
working collaboratively, we aim to develop a better understanding 
of collaborative and individual learning processes. An improved 
model would also allow us to more accurately predict student 
performance and has the potential to support learning more 
effectively within an ITS, for example through improved problem 
selection for collaborative learning. 
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Figure 2. An example of a conceptual problem showing the different steps assigned to the partners in the collaborative condition 

based on the “Do” and “Ask” icons. 
 

2. METHODS 
In the following sections, we present the collaborative ITS for 
fractions learning that was used in our study and explain the 
experimental set-up that was used for data collection.  

2.1 Individual and Collaborative Fraction 
Tutors 
In the study that produced the data set that we analyze in the 
current work, students worked with an ITS that targeted 
equivalent fractions knowledge either working individually or 
with a partner. We developed two parallel versions of a fractions 
tutor, one with embedded collaboration scripts and one for 
individual learning. We created all tutor versions using the 
Cognitive Tutor Authoring Tools (CTAT), which we extended so 
it supports the authoring of tutors with embedded (static) 
collaboration scripts that are tied to the problem state [14]. Both 
the individual and the collaborative tutor versions had procedural 
and conceptual problem sets. Figure 1 shows an example of a 
conceptual problem, which shows the student different 
relationships between the numerators and denominators and that 
only the one where the amount stays the same shows an 
equivalent fraction. On the other had, Figure 2 shows an example 
of a procedural problem where the student makes equivalent 
fractions by multiplying the numerator and denominator by the 
same number. The individual ITS provides standard ITS support  
(step-level guidance for problem solving, with correctness 
feedback, next-step hints, and error-specific feedback messages) 
while the collaborative ITS also has embedded collaborative 
scripts. The students working collaboratively did so through a 
synchronous, networked collaboration. That is, collaborating 
students sat at their own computer and had a shared (though 
differentiated) view of the problem state. They could discuss the 
activity through audio by using Skype.  

The collaboration was supported through proven collaboration 
scripts such as the use of roles, cognitive group awareness, and 
unique information, embedded in the interactions with the ITS. 
First, the embedded collaboration scripts defined roles that 
distribute the activities between the students and provide guidance 
to the students about what they should be doing to interact with 
their partner and help to scaffold this interaction. A second 
collaborative support feature we used in the collaborative problem 
sets is cognitive group awareness. Cognitive group awareness 
means that group members have information about other group 
members’ knowledge, information, or opinions and has been 
shown to be effective for the collaboration process [7]. The last 
collaborative support feature is the use of unique information to 
create a sense of individual accountability. Individual 
accountability means that each group member takes responsibility 
for the group reaching its goal [19]. All of these collaboration 
features, as implemented, assigned different problem steps to each 
student within a collaborating dyad. The “Do” and “Ask” icons 
shown in Figures 1 and 2 indicate which student was responsible 
for solving a given step and which student had the role of 
supporting the other student; on the screen of the collaborating 
partner, the “Do” and “Ask” icons would be flipped. Therefore, 
problem steps divide into a student’s own steps and that student’s 
partner’s steps. This distinction is important because, we will see, 
our extended AFMs treat these steps differently. 

Our ITS is uncommon in that it was developed to support both 
collaborative and individual learning. This means that our data 
logs contain both records of individual and collaborative sessions, 
with a common set of features that is typical of ITS log data. (The 
data from the collaborative sessions were captured as separate 
streams from each student, where a partner’s actions are not 
associated with a student’s id.) Although the collaborative tutor 
had three different types of support for collaboration, each 

Proceedings of the 8th International Conference on Educational Data Mining 213



scaffolding the interactions between the students in different 
ways, each of these support type led to the same pattern of 
information in the log data. For every step in a tutor problem, one 
student was responsible for answering the step and the other 
student’s role was to monitor and help; therefore, the steps in the 
log data can be assigned to one partner or the other. Although not 
all collaboration environments allow for the distinction between 
student actions within a group, many environments can record this 
data and would then have similar log data to what we have, 
possibly even when student roles are not as clearly defined and 
supported. 

2.2  Data Source 
Our data is a set of collaborative and individual data that had been 
collected from a study [13] in which 4th and 5th grade students 
engaged in a problem-solving activity with the ITS for fractions 
learning described above. The experiment was a pull-out design, 
in which the students left their normal instruction during the 
school day to participate in the study. The data set comprises 84 
students. Each teacher paired the students participating in the 
study based on students who would work well together and had 
similar math abilities. These pairs were then randomly assigned to 
one of four conditions: collaborative conceptual, collaborative 
procedural, individual conceptual, and individual procedural. 
Twice as many students were assigned to the collaborative 
conditions as to the individual conditions, so that the number of 
dyads in the collaborative conditions equaled the number of 
individual students in the individual conditions. Each student or 
dyad worked with the tutor for 45 minutes in a lab setting at their 
school during the school day.  

We analyzed all tutor problems in terms of the underlying 
knowledge components (KCs) related to fraction equivalence. For 
the four conditions, the KCs were the same between the individual 
and collaborative conditions, but there was no overlap in the KCs 
between the conceptual and procedural items, as conceptual and 
procedural KCs were modeled separately. 

3. MODELS 
In this section we review the standard AFM and then present the 
models we made by adding collaborative features to this model. 

3.1 Additive Factors Model 
We first present the standard AFM, because this model is the basis 
on which all of our other models are built. The AFM [2] shows 
that the log-odds that a given student correctly solves a given step 
in a problem are a function of three parameters capturing, 
respectively, the given student’s proficiency, the ease of the given 
knowledge component (KC, the skill the student is learning), and 
the learning rate. It assumes that the learning rate differs by KC 
but, for any given KC, is equal for all students. It further assumes 
that students differ in their general proficiency but in a way that 
affects all KCs and KC opportunities equally.  

The AFM is a generalized mixed model. pij is the probability that 
student i gets step j right, θi is  the random effect representing the 
proficiency of the student i. The fixed effect portion of the model 
includes βk (the ease of KC k), γk (the learning rate of this KC), 
and Nik (the prior learning opportunities the student had to apply 
KC k). The Qkj term represents if an item the student encounters 
(i.e., a step in a tutor problem) uses KC k.  

 

ln
pij

1− pij
=θi + βkQkj

k
∑ + Qkj (γ kNik )

k
∑                                (1) 

 

The standard AFM presented in Formula 1 is based on individual 
learning parameters of the opportunities that the individual has 
had with the KC. For the individual learning condition, these are 
all steps the student encountered in which the given KC applies. 
When this model is applied to the collaborative learning 
condition, on the other hand, these are the steps with the given KC 
that the given student is responsible for solving. This model 
however does not take into account that the learning rate for 
students may be different when working in a group compared to 
individually or that the students may learn from watching their 
partner solve problems. 

3.2 Additive Factors Model with Condition 
To investigate the difference in learning rates that may occur 
when students work individually, as compared to working in 
pairs, we added a feature to the original AFM that changes the 
slope based on condition (individual v. collaborative). Similar to 
the assumption that students learn at different rates from correct 
and incorrect answers in Pavlik, Cen, and Koedinger’s 
Performance Factors Analysis, PFA [15], students may learn 
different amounts (per opportunity) when they are working 
individually versus collaboratively. In the collaborative condition, 
students are talking with their partner (through Skype) while 
solving steps that have been assigned to them. Having a partner 
may have an influence on their learning, even on steps that they 
(and not their partner) are responsible for solving. A student may 
get more learning out of a step they solved because of fruitful 
discussion with the partner, but could conceivably also learn less 
than when solving the step alone, with tutor help only, for 
example if the partner simply tells them the answer and the 
student does not reflect on the answer. In Formula 2, we capture 
the influence that the presence of a partner has on the student’s 
own opportunities. A term c is added to represent the condition 
that the student is in at a given step. This allows the learning rate 
of a KC, γkc, to vary depending on the condition, so as to capture a 
difference in the learning that occurs between individual and 
collaborative work, on the student’s own steps  

ln
pij

1− pij
=θi + βkQkj

k
∑ + Qkj (γ kcNikc )

k
∑                           (2) 

By adding the condition parameter to the model, we can capture 
any differences in learning rates that may occur between working 
individually and within a group.  

3.3  Additive Factors Model with Partner 
Opportunities 
Within collaborative learning, there is an opportunity for students 
to learn from their partner’s actions. Recall that when students 
work collaboratively in our tutoring system, the students are 
assigned to different roles for any given step (either solve it or 
help the partner solve it). Therefore, steps in tutor problems 
classify as the student’s own steps or the partner’s steps. On the 
partner’s steps the student is watching and possibly providing 
advice, feedback, and explanations, which may create a learning 
opportunity for that student, even though he or she is not solving 
this step. Thus, we need to model the learning that occurs not only 
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Table 1. Prediction accuracy for the individual and collaborative procedural dataset across all models. The asterisks indicates the 
model with the best performance for that criterion.  

Procedural Models Log 
Likelihood RMSE AIC Parameters 

Standard AFM -2010.34 0.4738 4080.69 30 

AFM with Condition -1983.39 0.4717 4056.77* 45 

AFM with Partner Opportunities -1984.59 0.4712 4059.17 45 

AFM with Condition and Partner Opportunities -1972.97* 0.4674* 4065.94 60 
 

on a student’s own opportunities (as modeled in Formulas 1 and 
2) but also on their partner’s opportunities. Learning on partner 
opportunities may be analogous to the learning decomposition that 
happens as students learn reading and their learning of a certain 
word benefits from seeing words with identical stems [25]. 
Although the student is not interacting directly with the tutor, 
there may still be learning. We assume that the learning that 
occurs when watching and/or helping a partner is possibly 
different from that which occurs when doing steps. We therefore 
added a new fixed parameter that takes into account the learning 
that could happen on a partner’s opportunities. In the model seen 
in Formula 3, ρkNlk represents the learning (with its own learning 
rate) from a partner’s opportunities on KC k (Nlk). 

 

ln
pij

1− pij
=θi + βkQkj

k
∑ + Qkj (γ kNik )

k
∑ + Qkj (ρkNlk )

k
∑      (3) 

 

By adding the learning from partner’s opportunities to the model, 
we can capture how students learn from their partner’s 
opportunities, when their role is to observe and provide help and 
advice. This provides insights into the importance of helping a 
partner’s work. The model also may provide better predictions of 
student performance when working in a collaborative condition 
where the student’s actions can be differentiated.  

3.4 Additive Factors Model with Condition 
and Partner Opportunities 
The final model combines the collaborative features of the 
previous two. This model takes into account both the differences 
in learning rates that may occur for a student’s own opportunities 
between individual and collaborative learning (captured in 
Formula 2) and also includes the learning that may occur by 
observing a partner’s opportunities while working collaboratively 
(captured in Formula 3). Please note that the c (condition term) 
was not included in the partner’s opportunities, because students 
who work individually do not have any partner opportunities to 
observe, making the partner opportunities always be 0 for students 
working individually. 

 

ln
pij

1− pij
=θi + βkQkj

k
∑ + Qkj (γ kcNikc )

k
∑ + Qkj (ρkNlk )

k
∑   (4) 

 

This model combines the collaborative features of the previous 
two models to capture how these two ways of possibly benefitting 
from collaboration might balance.  

4. RESULTS 
For our analysis of the models, we evaluated the data from the 
procedurally-oriented tutor problems and the conceptually-
oriented tutor problems separately to be able to see if the 
collaborative features that were added to the model have different 
effects for these two types of knowledge. Because students were 
assigned to either work on procedurally or conceptually oriented 
problems, there was no overlap in the students in the two datasets. 
Additionally, there was no overlap in the KCs in the datasets since 
any given KC captured either procedural or conceptual 
knowledge. With neither an overlap in students nor KCs between 
the datasets, the datasets can be analyzed separately, so as to 
analyze how collaboration (versus individual learning) might 
influence the learning of conceptual and procedural knowledge 
differently. 
We measured the prediction accuracy of all of the models across 
the two data groups using the log likelihood, the root mean 
squared error on the training set (RMSE), and the Akaike 
information criterion (AIC). The log likelihood and RMSE 
provide a measure of fit not taking into account the complexity of 
the model. The AIC takes into account the complexity of the 
model when determining the fit of the model; it imposes a penalty 
based on the number of parameters. All of the models were run 
through a LIBLINEAR library in C [4]. Although in a standard 
AFM, the learning rate is restricted to be greater than or equal to 
zero, this restriction was not enforced in our models. 

4.1 Procedurally-Oriented Problems 
On the procedural dataset (see Table 1), the more complex models 
(i.e., the models that capture the influence of working with a 
partner in the ways discussed above) have a better fit in terms of 
log likelihood and RMSE, compared to the standard AFM. When 
comparing the models based on the AIC, all of the models that 
model aspects of collaborative learning have an improved AIC 
over the standard AFM. The AFM with Condition has the best 
AIC fit. Since the parameters are the same for the AFM with 
Condition and the AFM with Partner Opportunities, yet the former 
has a lower AIC, the condition the students are working in may be 
a better predictor of performance than having additional 
opportunities to observe a partner solving a step. Put differently, 
on procedural problems, having partner help when solving a step 
may influence learning more than helping a partner solve a step. It 
should be noted, however, that the difference in AIC between the 
two models is very small. The AIC for the model that combines 
the two collaborative features (AFM with Condition and 
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Table 2. Prediction accuracy for the individual and collaborative conceptual dataset across all models. The asterisks indicates the 
model with the best performance for that criterion.  

Conceptual Models Log 
Likelihood RMSE AIC Parameters 

Standard AFM -1383.81 0.4815 2843.61 38 

AFM with Condition -1362.72 0.4804 2839.44 57 

AFM with Partner Opportunities -1359.67 0.4815 2833.33* 57 

AFM with Condition and Partner Opportunities -1344.50* 0.4772* 2841.01 76 
 

Partner Opportunities) is higher, even though the log likelihood 
and RMSE are lower, indicating that the complexity of the model 
out-weighs the added gains. 

4.2 Conceptually-Oriented Problems 
For the models that were run on the conceptual dataset (see Table 
2), the more complex models (i.e., those modeling how 
collaboration might influence learning) again have a better fit in 
terms of log likelihood and RMSE. As with the procedural 
dataset, these results indicate the importance of both the condition 
the students are working in (i.e., influence of partner help on the 
student’s own opportunities) and of the partner opportunities (i.e., 
influence of helping a partner). When comparing the models 
based on the AIC, all of the models with collaborative features 
have an improved AIC over the standard AFM, and the AFM with 
Partner Opportunity has the best fit. Unlike with the procedural 
dataset, on conceptual problems, being able to observe a partner 
solving a step has more of an impact on predicted performance 
than condition. 

5. DISCUSSION 
AFMs are widely used models for predicting student performance. 
However, these models have mostly been used to predict the 
performance of students who are working individually. Students 
who are working collaboratively may go through different 
learning processes as they interact with other students, which 
currently are not accounted for in the standard AFM. In this paper, 
we wanted to see if adding collaborative features to AFM had an 
impact on the accuracy of the predicted learning performance of 
students in ITSs. Specifically, we investigated two mechanisms 
by which collaboration might influence learning. First, students 
might have different learning gains on steps they are responsible 
for solving because of the influence of a partner, such as through 
productive discussion or by being distracted. Second, a student 
might benefit from collaboration through engaging in discussion 
with a partner on steps that the partner is solving or by observing 
a partner as the partner solves the step. These two mechanisms 
were tested by two different ways of extending the AFM. First, 
we took into account the condition the student is working in 
(collaborative v. individual) by allowing the learning slope to vary 
based on condition. Second, we included the partner opportunities 
to capture the learning that may occur from observing/discussing 
a partner’s answers to steps. These different learning mechanisms 
may differ for students who are working to acquire different types 
of knowledge. To take this into account, we analyzed our datasets 
for conceptual and procedural knowledge separately. 

We first investigated if there is a difference between the learning 
rate of students working individually and those working 
collaboratively. To model the effect a partner may have on the 
steps that a student is responsible for solving, we added condition 

as a feature to the learning slope parameter. For both the 
procedural dataset and the conceptual dataset, the models that 
included condition outperformed the standard AFM based on AIC 
and log likelihood. Condition may be a useful predictor to include 
in a model for performance when students work collaboratively 
(or even, alternate between working collaboratively or 
individually) to more accurately predict performance.  

To answer the question if observing and working with a partner 
on the partner’s opportunities has an impact on learning (the 
second mechanism by which collaborative learning might help), 
we added an additional learning slope for a partner’s opportunities 
to the standard AFM. Again, for both the procedural and 
conceptual datasets, the models that included the partner’s 
opportunities outperformed the standard AFM based on AIC and 
log likelihood. This indicates that observing and helping a partner 
solve problems has an impact on a student’s learning when 
working on either procedurally oriented problems or conceptually 
oriented problems. A partner’s opportunity to practice a KC may 
be important to include in a learning model where students have 
the potential to work with another student.  

Although the models built on the procedural and conceptual 
datasets cannot be compared directly, we can observe some 
differences in the order of the model fits that may indicate 
differences in the importance of different learning processes when 
acquiring different types of knowledge. The best model for the 
procedural dataset was the AFM with Condition, whereas the best 
fitting model for the conceptual dataset was the AFM with Partner 
Opportunity. These differences in the best-fitting model may 
indicate that collaboration might influence learning differently 
when learning procedural knowledge than when learning 
conceptual knowledge. When students are acquiring conceptual 
knowledge, observing a partner or helping a partner solve a step 
may have more of an impact than when a student is acquiring 
procedural knowledge.  

The work makes a number of contributions to the field of EDM. It 
is one of the few to address how standard student modeling 
techniques in EDM can be applied to collaborative learning. Our 
modified AFM model predicts student performance as students 
collaboratively solve problems. The model can be applied to 
learning in collaborative environments in which the actions of the 
students within a collaborating group can be distinguished. The 
work extends the AFM so it can be applied to collaborative 
learning, capturing two different mechanisms by which 
collaboration might help students learn with a collaborative ITS. 
By applying these new models to a data set on both collaborative 
and individual learning, the work demonstrates that these two 
mechanisms might both be at work in conceptual and procedural 
learning, although to varying degrees. These findings contribute 
to enhance the understanding of the relative strengths of 
collaborative and individual learning.  
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A limitation of this dataset is that we do not have a comparison 
between the difficulty of the procedural and conceptual datasets. 
Any differences between the models for these datasets may not be 
due to the type of knowledge that is being acquired but may be 
related to where the students were in the learning process for these 
different types of data while learning. For future work, we are 
interested in using these models for student data where the 
students switch between working individually and collaboratively 
on the same sets of KCs, both conceptual and procedural. By 
modeling this data using the new AFMs we have created, we can 
better understand how the models will generalize to a more 
natural learning situation in the classroom. In addition, the models 
can be applied to situations where students come to the 
collaboration with different skills to see how students learn the 
skills from their partner. The AFMs with the added parameters 
provide improved models to better predict when students have 
reached mastery while collaborating or working individually. 
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ABSTRACT
With large student enrollment, MOOC instructors face the unique
challenge in deciding when to intervene in forum discussions with
their limited bandwidth. We study this problem of instructor inter-
vention. Using a large sample of forum data culled from 61 courses,
we design a binary classifier to predict whether an instructor should
intervene in a discussion thread or not. By incorporating novel in-
formation about a forum’s type into the classification process, we
improve significantly over the previous state-of-the-art.

We show how difficult this decision problem is in the real world
by validating against indicative human judgment, and empirically
show the problem’s sensitivity to instructors’ intervention prefer-
ences. We conclude this paper with our take on the future research
issues in intervention.

Keywords
MOOC; Massive Open Online Course; Instructor Intervention; Dis-
cussion Forum; Thread Recommendation

Categories and Subject Descriptors
H.3.3. [Information Search and Retrieval]: Information filtering;
K.3.1. [Computers and Education]: Computer Uses in Education

1. INTRODUCTION
MOOCs scale up their class size by eliminating synchronous teach-
ing and the need for students and instructors to be co-located. Yet,
the very characteristics that enable scalability of massive open on-
line courses (MOOCs) also bring significant challenge to its teach-
∗This research is supported by the Singapore National Research
Foundation under its International Research Centre @ Singapore
Funding Initiative and administered by the IDM Programme Office.

ing, development and management [7]. In particular, scaling makes
it difficult for instructors to interact with the many students — the
lack of interaction and feelings of isolation have been attributed as
reasons for why enrolled students drop from MOOCs [9].

MOOC discussion forums are the most prominent, visible artifact
that students use to achieve this interactivity. Due to scale of contri-
butions, these forums teem with requests, clarifications and social
chatting that can be overwhelming to both instructors and students
alike. In particular, we focus on how to best utilize instructor band-
width: with a limited amount of time, which threads in a course’s
discussion forum merit instructor intervention? When utilized ef-
fectively, such intervention can clarify lecture and assignment con-
tent for a maximal number of students, promoting the enhancing
the learning outcomes for course students.

To this end, we build upon previous work and train a binary classi-
fier to predict whether a forum discussion thread merits instructor
intervention or not. A key contribution of our work is to demon-
strate that prior knowledge about forum type enhances this predic-
tion task. Knowledge of the enclosing forum type (i.e., discussion
on lecture, examination, homework, etc.) improves performance
by 2.43%; and when coupled with other known features disclosed
in prior work, results in an overall, statistically significant 9.21%
prediction improvement. Additionally, we show that it is difficult
for humans to predict the actual interventions (the gold standard)
through an indicative manual annotation study.

We believe that optimizing instructor intervention is an important
issue to tackle in scaling up MOOCs. A second contribution of our
work is to describe several issues pertinent for furthering research
on this topic that emerge from a detailed analysis of our results. In
particular, we describe how our work at scale details how person-
alized and individualized instructor intervention is — and how a
framework for research on this topic may address this complicating
factor through the consideration of normalization, instructor roles,
and temporal analysis.

2. RELATED WORK
While the question of necessity of instructor’s intervention in on-
line learning and MOOCs is being investigated [12, 20], technolo-
gies to enable timely and appropriate intervention are also required.
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The pedagogy community has recognized the importance of in-
structor intervention in online learning prior to the MOOC era (e.g.,
[10]). Taking into consideration the pedagogical rationale for effec-
tive intervention, they also proposed strategic instructor postings:
to guide discussions, to wrap-up the discussion by responding to
unanswered questions, with “Socrates-style” follow-up questions
to stimulate further discussions, or with a mixture of questions and
answers [13]. However, these strategies must be revisited when
being applied to the scale of typical MOOC class sizes.

Among works on forum information retrieval, we focus on those
that focus on forum moderation as their purpose is similar to the
instructor’s role in a course forum. While early work focused on
automated spam filtering, recent works shifted focus towards cu-
rating large volumes of posts on social media platforms [4] to distil
the relevant few. Specifically, those that strive to identify thread
solvedness [21, 8] and completeness [3] are similar to our problem.

Yet all these work on general forums (e.g., troubleshooting, or threaded
social media posts) are different from MOOC forums. This is due
to important differences in the objectives of MOOC forums. A typ-
ical thread on a troubleshooting forum such as Stack Overflow is
centers on questions and answers to a particular problem reported
by a user; likewise, a social media thread disseminates information
mainly to attract attention. In contrast, MOOC forums are primarily
oriented towards learning, and also aim to foster learning commu-
nities among students who may or may not be connected offline.

Further, strategies for thread recommendation for students such as
[23] may not apply in recommending for instructors. This dif-
ference is partially due to scale: while the number of students
and threads are large, there are few instructors per course. In this
case, reliance on collaborative filtering using a user–item matrix
is not effective. Learning from previous human moderation de-
cisions [2], therefore, becomes the most feasible approach. Prior
work on MOOC forums propose categorisation of posts [16, 5, 19]
to help instructors identify threads to intervene. Chaturvedi et al.
[5], the closest related work to ours, show each of the four states of
their sequence models to predict instructor intervention to be dis-
tributed over four post categories they infer. In this paper, we use
their results for comparison.

Different from previous works, we propose thread–level categories
rather than post–level categories, since an instructor needs to first
decide on a thread of interest. Then they need to read its content, at
least in part, before deciding whether to intervene or not. We make
the key observation that show thread–level categories identified as
by the forum type, help to predict intervention.

Previous work has evaluated only with a limited number of MOOC
instances. One important open question is whether those reported
results represent the diverse population of MOOCs being taught. In
this paper, we address this by testing on a large and diverse cross-
section of Coursera MOOC instances.

3. METHODS
We seek to train a binary classifier to predict whether a MOOC fo-
rum thread requires instructor intervention. Given a dataset where
instructor participation is labeled, we wish to learn a model of
thread intervention based on qualities (i.e., features) drawn from
the dataset. We describe our dataset, the features distilled used for
our classifier, how we obtain class labels, and our procedure for
instance weighting in the following.

Figure 1: Typical top-level forum structure of a Coursera
MOOC, with several forums. The number of forums and their
labels can vary per course.

Forum type All Intervened
# threads # posts # threads # posts

D61 Corpus
Homework 14,875 127,827 3993 18,637
Lecture 9,135 64,906 2,688 10,051
Errata 1,811 6,817 654 1,370
Exam 822 6,285 405 1,721
Total 26,643 205,835 7,740 31,779

D14 Corpus
Homework 3,868 31,255 1,385 6,120
Lecture 2,392 13,185 1,008 3,514
Errata 326 1,045 134 206
Exam 822 6,285 405 1,721
Total 7,408 51,770 2,932 11,561

Table 1: Thread statistics from our 61 MOOC Coursera
dataset and the subset of 14 MOOCs, used in the majority of
our experiments.

3.1 Dataset
For our work, we collected a large-scale, multi-purpose dataset of
discussion forums from MOOCs. An important desideratum was
to collect a wide variety of different types of courses, spanning the
full breadth of disciplines: sciences, humanities and engineering.
We collected the forum threads 1 from 61 completed courses from
the Coursera platform2, from April to August 2014, amounting to
roughly 8% of the full complement of courses that Coursera offers3.

For each course, we first assigned each forum4 to one of several
types based on the forum’s title. For this study we focus on threads
that originated from four prevalent types: (i) errata or course mate-
rial errors, (ii) video lectures, (iii) homework, assignments or prob-

1We collected all threads and their component posts from four sub-
forum categories as in Section 3.1. We did so, as we hypothesize
that they would necessitate different levels of instructor interven-
tion and that such interventions may be signaled by different fea-
tures.
2The full list of courses is omitted here due to lack of space.
3As of December 2014, Coursera, a commercial MOOC plat-
form: https://www.coursera.org, hosted 761 courses in En-
glish spanning 25 different subject areas.
4“Subforum” in Coursera terminology.
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Figure 2: Coursera’s forums allow threads with posts and a
single level of comments.

lem sets, and (iv) exams or quizzes (see Figure 1)5. All 61 courses
had forums for reporting errata and discussing homework and lec-
tures. For more focused experimentation, we selected the 14 largest
courses within the 61 that exhibited all four forum types (denoted
“D14” hereafter, distinguished from the full “D61” dataset). Ta-
ble 1 provides demographics of both D61 and D14 datasets. In
our corpus, there were a total of 205,835 posts including posts and
comments to posts. The Coursera platform only allows for a single
level of commenting on posts (Figure 2). We note that this lim-
its the structural information available from the forum discourse
without content or lexical analysis. We observed that posts and
comments have similar topics and length, perhaps the reason why
previous work [18] ignored this distinction. We have retained the
distinction as it helps to distinguish threads that warrant interven-
tion.

Figure 3: Thread distribution over errata, homework, lecture
and exam forums in D14 by their intervention ratio.

3.2 System Design
From the dataset, we extract the text from the posts and comments,
preserving the author information, thread structure and posting times-
tamps, allowing us to recreate the state of the forum at any times-
tamp. This is important, as we first preprocessed the dataset to
remove inadmissible information. For example, since we collected
the dataset after all courses were completed, instructors’ posts as
5Some courses had forums for projects, labs, peer assessment, dis-
cussion assignments. We omit from the collection these and other
miscellaneous forums, such as those for general discussion, study
groups and technical issues.

well as any subsequent posts in a thread need to be removed. We
also do not use the number of votes or views in a thread as these
are summary counts that are influenced by intervention6.

We used regular expressions to further filter and canonicalize cer-
tain language features in the forum content. We replaced all math-
ematical equations by <MATH>, URLs by <URLREF> and ref-
erences to time points in lecture videos by <TIMEREF>. We re-
moved stopwords, case-folded all tokens to lowercase, and then
indexed the remaining terms and computed the product of term
frequency and inverse thread frequencies (tf × itf ) for term im-
portance. The weighted terms form a term vector that we further
normalized using the L2–norm. Other real-valued features were
max–min normalized. Categorical features such as the forum type
were encoded as bit vectors.

Each thread is represented as bag of features consisting of terms
and specific thread metadata as disclosed below. We indicate each
new feature that our study introduces with an asterisk.

1. Terms (unigrams);

2*. Forum type to which the thread belongs: Figure 3 shows a
clear difference in intervention ratio, the ratio of number of
threads intervened to those that weren’t, across different fo-
rum types. Forum type thus emerges as a feature to use to
discriminate threads worthy of intervention. The forum type
encapsulating the thread could be one of homework, lecture,
exam or errata.

3*. Number of references to course materials and other sources
external to the course: includes explicit references by stu-
dents to course materials within and outside the course e.g.,
slide 4, from wikipedia, lecture video 7.

4*. Affirmations by fellow students; Count of agreements made
by fellow students in response to a post. Mostly, first posts
in a thread receive affirmations.

5. Thread properties (Number of posts, comments, and both
posts / comments, Average number of comments per post):
expresses a thread’s length and structural properties in terms
of number of posts and comments posted.

6. Number of sentences in the thread: This feature intends to
capture long focussed discussions that may be intervened
more often than the rest.

7*. Number of non-lexical references to course materials: (num-
ber of URLs, references to time points in lecture videos).
This feature is similar to course material references but in-
cludes only non-lexical references (Item #1) such as URLs
and time points in lecture videos.

Importantly, as part of the author information, Coursera also marks
instructor-intervened posts / comments. This supplies us with auto-
matically labeled gold standard data for both training and evaluat-
ing our supervised classifier. We use threads with instructor posts /
comments as positive instances (intervened threads). However, we
note that the class imbalance is significant: as the instructor-student
ratio is very low, typical MOOC forums have fewer positives (in-
terventions) than negative ones. To counter skewness, we weigh
6Previous work such as [5] utilize this as they have access to time-
stamped versions of these statistics, since they use privately-held
data supplied by Coursera for MOOCs held at their university.
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Figure 4: Thread distribution over the errata, homework, lec-
ture and exam forums in D14. Corresponds to numeric data in
Table 2.

majority class (generally positive) instances higher than minority
class (generally negative) instances. These weights are important
parameters of the model, and are learned by optimizing for maxi-
mum F1 over the training / validation set.

4. EVALUATION
We performed detailed experimentation over the smaller D14 dataset
to validate performance, before scaling to the D61 dataset. We
describe these set of experiments in turn. As our task is binary
classification, we adopted L1-regularized logistic regression as our
supervised classifier in all of our experimentation.

We first investigated each of the 14 courses in D14 as 14 sepa-
rate experiments. We randomly used 80% of the course’s threads
for training and validation (to determine the class weight parame-
ter, W ), and use the remaining 20% for testing. Our experimental
design for this first part closely follows the previous work [5] for
direct comparison with their work. We summarise these results in
Table 2, in the columns marked “(II) Individual”, averaging perfor-
mance over ten-fold cross validation for each course.

The results show a wide range in prediction performance. This
casts doubt on the portability of the previously published work
[5]. They report a baseline performance of F1 ≈ 25 on both their
courses each having an intervention ratio ≈ 0.137. In contrast, our
results show the instability of the prediction task, even when using
individualized trained models. Nevertheless, on average our set of
features performs better on F1 by at least 10.15%.8

We observe the true intervention ratio correlates to performance,
when comparing Columns I.2 and II.3 (ρ = 0.93). We also see that
intervention ratio varies widely in our D14 dataset (Figure 4). This
happens to also hold for the larger D61 dataset. In some courses, in-
structors intervene often (76% for medicalneuro-002) and in some
other courses, there is no intervention at all (0% for biostats-005).

To see whether the variability can be mitigated by including more
data, we next perform a leave-one-course-out cross validation over
the 14 courses, shown in “Columns (III) LOO-course C.V.”. I.e., we
train a model using 13 courses’ data and apply the trained model
to the remaining unseen test course. While not strictly compara-
ble with (II), we feel this setting is more appropriate, as it: allows
training to scale; is closer to the real scenario discussed in Section
6, Item 4.

Separately, we studied the effectiveness of our proposed set of fea-
7Based on test data figures [5] had disclosed in their work
8Due to non-availability of experimental data, we can only claim a
10.15% improvement over the highest F1 they reported, 35.29.

Feature Precision Recall F1

1. Unigrams 41.98 61.39 45.58
2. (1) + Forum Type 41.36 69.13 48.01
3. (2) + Course_Ref 41.09 66.57 47.22
4. (3) + Affirmation 41.20 68.94 47.68
5. (4) + T Properties 42.99 70.54 48.86
6. (5) + Num Sents 43.08 69.88 49.77
7. (6) + Non-Lex Ref 42.37 74.11 50.56
8. (7) – Forum Type 41.33 83.35 51.16
9. (7) – Course Ref 45.96 79.12 54.79
10. (7) – Affirmation 42.59 71.76 50.34
11. (7) – T Properties 40.62 84.80 51.35
12. (7) – Num Sents 42.37 73.05 49.32
13. (7) – Non-Lex Ref 43.08 69.88 49.77

Table 3: Feature study. The top half shows performance as
additional features are added to the classifier. Ablation tests
where a single feature is removed from the full set (Row 7)
are shown on the bottom half. Performance given as weighted
macro-average over 14 courses from a leave-one-out cross
course validation over D14.

tures over the D14 dataset. Table 3 reports performance averaged
over all 14 courses weighted by its proportion in the corpus. In
the top half of the table, we build Systems 1–7 by cumulatively
adding in features from the proposed list from Section 3.2. Al-
though the overall result in Row 7 performs ∼ 5% better than the
unigram baseline, we see that the classifier worsens when the count
of course references are used as a feature (Row 2). Other rows all
show an additive improvement in F1, especially the forum type and
non-lexical reference features, which boost recall significantly.

The performance drop when adding in the number of course ref-
erences prompts us to investigate whether removing some features
from the full set would increase prediction quality. In the bottom
half of Table 3, we ablate a single feature from the full set.

Results show that removing forum type, number of course refer-
ences and thread length in a thread all can improve performance.
Since the different rows of Table 3 are tested with weightsW learnt
from its own training set the changes in performance observed are
due to the features and the learnt weight. When we tested the
same sequence with an arbitrary constant weight we observed all
features but Course_Ref improved performance although not every
improvement was significant.

Using the best performing feature set as determined on the D14
experiments, we scaled our work to the larger D61 dataset. Since
a leave-one-out validation of all 61 courses is time consuming we
only test on the each of the 14 courses in D14 dataset while train-
ing on the remaining 60 courses from D61. We report a weighted
averaged F1 = 50.96 (P = 42.80; R = 76.29) which is less than row
9 of Table 3. We infer that scaling the dataset by itself doesn’t im-
prove performance since W learnt from the larger training data no
longer counters the class imbalance leaving the testset with a much
different class distribution than the training set.

4.1 Upper bound
The prediction results show that forum type and some of our newly-
proposed features lead to significant improvements. However, we
suspect the intervention decision is not entirely objective; the choice
to intervene may be subjective. In particular, our work is based on
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(I) Demographics (II) Individual (III) LOO-course C.V.
Course 1. # of Threads 2. I. Ratio 1. Prec. 2. Rec. 3. F1 4. W 1. Prec. 2. Rec. 3. F1 4. W
ml-005 2058 0.45 51.08 89.19 64.96 2.06 48.10 68.63 56.56 2.46
rprog-003 1123 0.32 50.77 48.53 49.62 2.41 35.88 75.77 48.70 2.45
calc1-003 965 0.60 60.98 44.25 51.29 0.65 65.42 72.79 68.91 2.45
smac-001 632 0.17 21.05 30.77 25.00 5.29 22.02 67.93 33.26 2.00
compilers-004 624 0.02 8.33 50.00 14.28 37.23 2.53 80.00 4.91 2.33
maththink-004 512 0.49 46.59 100.00 63.56 2.13 50.24 85.48 63.29 2.57
medicalneuro-002 323 0.76 100.00 60.47 75.36 0.32 75.86 89.07 81.94 2.34
bioelectricity-002 266 0.76 75.00 54.55 63.16 0.34 75.36 82.98 78.99 2.41
bioinfomethods1-001 235 0.55 56.00 60.87 58.33 0.78 59.67 83.72 69.68 2.36
musicproduction-006 232 0.01 0.00 0.00 0.00 185.00 0.52 50.00 1.03 2.55
comparch-002 132 0.46 47.62 100.00 64.57 1.56 48.57 83.61 61.45 2.37
casebasedbiostat-002 126 0.20 13.33 100.00 23.53 3.54 24.47 92.00 38.66 2.11
gametheory2-001 125 0.19 28.57 28.57 28.57 5.18 18.27 86.36 30.16 2.61
biostats-005 55 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 2.01
Average 529 0.36 39.95 54.80 41.59 17.68 37.64 72.74 45.54 2.36
Weighted Macro Avg NA 0.40 45.44 61.84 49.04 10.96 42.37 74.11 50.56 2.37

Table 2: Individual course results for each course in the D14 dataset. Weights W weigh each +ve class instance w times as much as a
–ve class instance. Performance varies with large variations in Intervention ratio (I-ratio) and # of threads.

the premise that correct intervention follows the historical pattern
of intervention (where instructors already intervene), and may not
be where general pedadogy would recommend prediction. We rec-
ognize this as a limitation of our work.

To attempt to quantify this problem, we assess whether peer in-
structors with general teaching background could replicate the orig-
inal intervention patterns. Three human instructors9 annotated 13
threads from the musicproduction-006 course. We chose this course
to avoid bias due to background knowledge, as none of the annota-
tors had any experience in music production. This course also had
near zero interventions; none of the 13 threads in the sample were
originally intervened by the instruction staff of the course.

They annotated 6 exam threads and 7 lecture threads. We found that
among exam threads annotators agreed on 5 out of 6 cases. Among
lecture threads at least two of three annotators always agreed. On
4 out of 7 cases, all three agreed. The apparently high agreement
could be because all annotators chose to intervene only on a few
threads. This corresponds to a averaged interannotator agreement
of k = 0.53. The annotators remarked that it was difficult to make
judgements, that intervention in certain cases may be arbitrary, es-
pecially when expert knowledge would be needed to judge whether
factual statements made by students is incorrect (thus requiring in-
structor intervention to clarify). As a consequence, agreement on
exam threads that had questions on exam logistics had more agree-
ment at k = 0.73.

While only indicative, this reveals the subjectiveness of interven-
tion. Replicating the ground truth intervention history may not be
feasible – satisfactory performance for the task may come closer to
the interannotator agreement levels: i.e., k = 0.53 corresponding
to an F1 of 53%. We believe this further validates the significance
of the prediction improvement, as the upper bound for deciding in-
tervention is unlikely to be 100%.

9The last three authors, not involved in the experimentation: two
professors and a senior pedagogy researcher.

5. DISCUSSION
From handling the threads and observing discussion forum interac-
tions across courses, several issues arise that merit a more detailed
discussion. We discuss each in turn, identifying possible actions
that may mollify or address these concerns. Specifically:

1. The number of threads per course varies significantly.

2. Intervention decisions may be subjective.

3. Simple baselines outperform learned systems.

4. Previous experimental results are not replicable.

Issue 1: Variation in the number of threads. We observed signif-
icant variation in the number of threads in different courses, ranging
from tens to thousands. Figure 4 shows thread distribution over the
D14 dataset for the errata, homework, lectures and exam forums; a
similar distribution held for the larger D61 dataset. These distribu-
tions are similar to those reported earlier in the large cross-course
study of [18]. The difference in number of threads across courses
is due to a multitude of factors. These include number of students
participating, course structure, assignment of additional credits to
participating students, course difficulty, errors in course logistics
and materials, etc.

When performing research that cuts across individual MOOCs, this
issue becomes important. As we saw, using simple averaging on a
per-course basis equates to a macro-averaging: putting each course
on par in importance. However, when the decision unit is at the
thread (as in our task), it makes more sense to treat individual
threads at parity. In such cases, normalization at the thread level
(analogous to micro-averaging) may be considered. Such thread-
level normalization can affect how we weight information from
each course when training in aggregate over data from multiple
courses: courses with many threads should carry more weight in
both training and evaluation.

Issue 2: Intervention decisions may be subjective. Instructor
policy with respect to intervention can markedly differ. Instruc-
tors may only intervene in urgent cases, preferring students to do
peer learning and discovery. Others may want to intervene often,
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to interact with the students more and to offer a higher level of
guidance. Which policy instructors adopt varies, as best practices
for both standard classroom and MOOC teaching have shown both
advantages and disadvantages for [12, 11].

Instructors can also manifest in different roles. In Coursera, posts
and comments marked as instructor intervened can come from ac-
tual instructor intervention as well as participation by helpers, such
as community teaching assistants (CTAs). We observe courses with
CTAs where CTAs have a higher intervention rate. We hypothesize
that such factors decreases agreements.

This plays out in our datasets. We observe that intervention is not
always proportional to the number of threads in the course. Some
courses such as compilers-004 (see Figure 4) has relatively fewer
number of threads than other large courses. Yet its intervention
rate is noticeably low. This suggests that other factors inform the
intervention decision. Handling this phenomenon in cross-course
studies requires an additional form of normalization.

To normalize for these different policies we can upweight (by over-
sampling) threads that were intervened in courses with fewer in-
terventions. We can continue to randomly oversample a course’s
intervened threads until its intervention density reaches the dataset
average. Note this normalization assumes that the few threads in-
tervened in course with relatively low intervention density are more
important; that the threads intervened for a similar high interven-
tion density course would be a proper superset.

Even when a policy is set, intervention decisions may be subjective
and non-replicable. Even with our cursory annotation of a course
to determine an upper bound for intervention shows the potentially
large variation in specific intervention decisions. We believe that
automated systems can only approach human performance when
such decisions can be subjective. As such, the upper bound for
performance (cf Section 4.1) should not be construed as the single
gold standard; rather, prediction performance should be calibrated
to human performance levels.

Issue 3: Simple baselines outperform learned models. We also
compared our work with a simple baseline that predicts all threads
as needing instructor intervention. This baseline does no work –
achieving 100% recall and minimal precision – but is very compet-
itive, outperforming our learned models for courses with high levels
of intervention (see Table 4). Diving deeper into the cause, we at-
tribute this difference to the subjective nature of interventions and
other extraneous reasons (bandwidth concerns) resulting in high
false positive rates. That is, given two threads with similar set of
features, one may be intervened while the other is not (e.g., Fig-
ure 5). This makes the ground truth and the evaluation less reliable.
An alternative evaluation model might be to assign a confidence
score to a prediction and evaluate the overlap between the high con-
fidence predictions and the ground truth interventions.

Issue 4: Previous results are not replicable. From earlier work
[5], intervention prediction seemed to be straightforward task where
improvement can be ascribed to better feature engineering. How-
ever, as we have discovered in our datasets, the variability in in-
structor intervention in MOOCs is high, making the application of
such previously published work to other MOOCs difficult. This
is the perennial difficulty of replicating research findings. Find-
ings from studies over a small corpus with select courses from spe-
cific subject categories may not generalise. Published findings are
not verifiable due to restricted access to sensitive course data. The

Individual D14
Course F1 F1@100R F1 F1@100R
ml-005 64.96 63.79 72.35 61.83
rprog-003 49.62 47.39 48.55 49.31
calc1-003 51.29 74.83 70.63 75.33
smac-001 25.00 34.67 34.15 29.28
compilers-004 14.28 3.28 4.82 4.75
maththink-004 63.56 63.08 61.11 65.49
medicalneuro-002 75.36 88.66 78.06 85.67
bioelectricity-002 63.16 86.84 80.10 85.84
bioinfomethods1-001 58.33 67.65 69.40 71.07
musicproduction-006 0.00 4.35 1.09 1.72
comparch-002 64.57 55.56 60.49 63.21
casebasedbiostat-002 23.53 14.81 38.71 34.25
gametheory2-001 28.57 45.16 27.12 30.56
biostats-005 0.00 0.00 0.00 0.00
Average 41.59 46.43 45.18 47.09
Weighted Macro Avg 49.04 51.51 54.79 53.22

Table 4: Comparison of F1 in Table 2 with those of a naïve
baseline that classifies every instance as +ve – resulting in 100%
recall.

problem is acute for discussion forum data due to privacy and copy-
right considerations of students who have authored posts on those
forums.

The main challenge is to provision secured researcher access to the
experimental data. Even in cases where researchers have access
to larger datasets, such prior research [1, 5, 14, 15, 16, 22] have
reported findings on each course separately (cf Table 2 “(II) Indi-
vidual”), shying away from compiling them into a single dataset
in their study. Bridging this gap requires cooperation among in-
terested parties. The shared task model is one possibility: indeed,
recently Rose et al. [17] organised a shared task organised to pre-
dict MOOC dropouts over each week of a MOOC. To effectively
make MOOC research replicable, data must be shared to allow oth-
ers to follow and build on published experimentation. Similar to
other communities in machine learning and computational linguis-
tics, the community of MOOC researchers can act to legislate data
sharing initiatives, allowing suitably anonymized MOOC data to be
shared among partner institutes.

We call for the community to seize this opportunity to make re-
search on learning at scale more recognizable and replicable. We
have gained the endorsement of Coursera to launch a data-sharing
initiative with other Coursera-partnered universities. While we rec-
ognize the difficulties of sharing data from the privacy and institu-
tional review board perspectives, we believe that impactful research
will require application to a large and wide variety of courses, and
that restricting access to researchers will alleviate privacy concerns.

6. A FRAMEWORK FOR INTERVENTION
RESEARCH

We have started on the path of instructor intervention prediction,
using the task formalism posed by previous work by Chaturvedi
et al. [5]: the binary prediction of whether a forum discussion
thread should be intervened, given its lexical contents and meta-
data. While we have improved on this work and have encouraging
results, this binary prediction problem we have tackled is overly
constrained and does not address the real-world need for interven-
tion prediction. We outline a framework for working towards the
real-world needs of instructor intervention.
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Figure 5: Interventions are, at times, arbitrary. We show two threads from compilers-001 with similar topics, context, and
features that we model (red underline). Yet only one of them is intervened (circled in red).

We thus propose a framework for investigation that iteratively re-
laxes our problem to take into account successively more realis-
tic aspects of the intervention problem, with the hope of having a
fieldable, scalable, real-time instructor intervention tool for use on
MOOC instructors’ dashboard as an end result.

1. Thread Ranking. We posit that different types of student posts
may exhibit different priorities for instructors. A recommendation
for intervention should also depend on thread criticality. For exam-
ple, threads reporting errors in the course material may likely be
perceived as critical and hence should be treated as high-priority
for intervention. Even with designated errata forums, errata are re-
ported in other forums, sometimes due to the context – e.g., when a
student watches a video of a lecture, it is natural for him to report an
error concerning it in the lecture forum, as opposed to the proper
place in the errata forum. Failure to address threads by priority
could further increase the course’s dropout rate, a well-known prob-
lem inherent to MOOCs [6]. Thread ranking can help to address
this problem to prioritize the threads in order of urgency, which the
naïve, always classifying all instances as positive, baseline system
cannot perform.

2. Re-intervention. Threads can be long and several related con-
cerns can manifest within a single thread, either by policy or by
serendipity. Predicting intervention at the thread level is insuffi-
cient to address this. A recommendation for intervention has to
consider not only those threads that had been newly-created but
also if older threads that had already been intervened require fur-
ther intervention or reintervention. In other words, intervention
decision needs to be made in the light of newly posted content to
a thread. We can change the resolution of the intervention predic-
tion problem to one at the post level, to capture re-interventions;
i.e., when a new post within a thread requires further clarification
or details from instructor staff.

3. Varying Teaching Roles. MOOCs require different instruc-
tion formats than the traditional course format. One evolution of
the MOOC teaching format to adapt to the large scale is to re-
cruit community teaching assistants (CTA)s. Community TAs are
volunteer TAs recruited by MOOC platforms including Coursera
based on their good performance in the previous iteration of the
same MOOC. CTAs, traditional Teaching Assistants and technical
staff are all termed as “staff” within the Coursera system. Cur-
rently, Coursera only marks threads with a “staff replied” marking,
which we use directly in our training supervision in this paper. At a
post level, those posted by CTAs, instructor and technical staff are
marked appropriately.

We hypothesize that that these various roles differ in the quantum
of time and effort, and type of content that they provide in answer-
ing posts that they contribute on a forum. It will be important to
consider the role of the user while recommending threads to inter-
vene, as the single problem of intervention may lead to n separate
triaging problems for the n staff types or individual instructors that
manage a MOOC.

4. Real-time. In the real world, a system needs to be predicting
intervention in real-time; as new posts come into a course’s forum.
With ranking, we can decide when to push notifications to the in-
struction staff, as well as those less urgent that can be viewed at
leisure on the instructor’s MOOC dashboard.

With the timestamp metadata in the dataset, we have a transaction
log. This allows us to easily simulate the state of a MOOC by
“rewinding” the state of the MOOC at any time t, and make a pre-
diction for a post or thread based on the current state.

This half-solves the problem. For real-world use, we also need
to do online learning, by observing actual instructor intervention
and adopting our system for the observed behavior. We feel this
will be important to learn the instructor’s intervention preference,
as we have observed the variability in intervention per course, per
instructor.
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In our work, we focus only on the instructor’s view, however this
set of problems also has an important dual problem set: that of the
student’s view. We believe that solving both problems will have
certain synergies but will differ in important ways. For example,
solving the student’s view will likely have a larger peer and social
component than that for instructors, as MOOCs develop more so-
cial sensitivity.

7. CONCLUSION
We describe a system for predicting instructor intervention in MOOC
forums. Drawing from data over many MOOC courses from a wide
variety of coursework, we devise several novel features of forums
that allow our system to outperform the state-of-the-art work on an
average by a significant margin of 10.15%. In particular, we find
that knowledge of where the thread originates from (the forum type
– whether it appears in a lecture, homework, examination forum)
alone informs the intervention decision by a large 2% margin.

While significant in its own right, our study also uncovers issues
that we feel must be accounted for in future research. We have
described a framework for future research on intervention, that will
allow us to account for additional factors – such as temporal effects,
differing instructor roles – that will result in a ranking of forum
threads (or posts) to aid the instructor in best managing her time in
answering questions on MOOC forums.

Crucially, we find the amount of instructor intervention is widely
variable across different courses. This variability undermines the
veracity of previous works and shows that what works on a small
scale may not hold well in large, cross-MOOC studies. Our own re-
sults show that for many courses, simple baselines work better than
supervised machine learned models when intervention ratios are
high. To allow the replicability of research and to advance the field,
we believe that MOOC-fielding institutions need to form a data
consortium to make MOOC forum data available to researchers.
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ABSTRACT 
While MOOCs undoubtedly provide valuable learning resources 
for students, little research in the MOOC context has sought to 
evaluate students’ learning gains in the environment. It has been 
long acknowledged that conversation is a significant way for 
students to construct knowledge and learn. However, rather than 
studying learning in MOOC discussion forums, the thrust of 
current research in that context has been to identify factors that 
predict dropout.  Thus, cognitively relevant student behavior in 
the forums has not been evaluated for its impact on cognitive 
processes and learning.  In this paper, we adopt a content analysis 
approach to analyze students’ cognitively relevant behaviors in a 
MOOC discussion forum and further explore the relationship 
between the quantity and quality of that participation with their 
learning gains. As an integral part of our approach, we built a 
computational model to automate the analysis so that it is possible 
to extend the content analysis to all communication that occurred 
in the MOOC.  We identified significant associations between 
discourse behavior and learning. Theoretical and practical 
implications are discussed. 

Keywords 

Massive Open Online Courses (MOOC); Cognitive behavior; 
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1. INTRODUCTION 
Despite concerns over their effectiveness, MOOCs (Massive Open 
Online Courses) have attracted increasing attention both in the 
popular press and academia, raising questions about ptheir 
potential to deliver educational resources at an unprecedented 
scale to new populations of learners. With learning through social 
processes featuring among the potential impacts of MOOC 
platforms [5], and discussion forums currently the primary means 
for supporting social learning in typical MOOC platforms, recent 
research has begun to focus on interventions that might enrich 
students’ interaction in this context [e.g., 30], with the purpose of 
providing a more engaging and effective learning experience. 
Previous studies on learning and tutoring systems have provided 
evidence that students’ participation in discussion [e.g., 2, 9, 12] 
is correlated with their learning gains in other instructional 
contexts. 

However, whether discussion will also contribute substantially to 

learning in a MOOC context, and what aspects of discussion will 
ultimately matter most to learning in this new context remain 
important open questions. Considering the significant connection 
that has been discovered between discussion behaviors in MOOC 
forums and student commitment, its potential for enabling 
students to form supportive relationships with other students, and 
the potential to enhance social learning through interaction, in 
depth empirical research is needed to uncover the relationship 
between student discourse patterns and learning gains in MOOCs. 

One challenge to assessing learning in MOOCs, even in cases 
where formal assessments are integrated with the courses, is that 
students come into a MOOC with a wide variety of backgrounds 
[15,20], and it is typically unnatural to make a pretest a natural 
part of the learning process, especially when activities in the 
MOOC are all voluntary.  However, while inconvenient, it is not 
impossible.  The study reported in this paper took place in an 
unusual MOOC where a pretest was provided and students were 
aware that the MOOC data would be used for research purposes.  
This dataset, from a course entitled “Introduction to Psychology 
as a Science”, thus provides a unique opportunity to begin to 
address the research questions introduced above.   

Many student behaviors have been observed in discussion forums, 
e.g., question answering, self-introduction, complaining about 
difficulties and corresponding exchange of social support. A very 
coarse grained distinction in posts could be on vs. off topic. 
However, the important distinctions do not stop there and may be 
substantially more nuanced than that.  Other than literal topic 
features, students’ cognitively relevant behaviors, which are 
associated with important cognitive processes that precede 
learning may also be found in discussion forums.  What those 
behaviors are in this context, and how frequently they occur are 
two questions we address. 
Specifically, we ask the following research questions in this work: 
1. Is a higher quantity of participation in MOOC discussion 

forums associated with higher learning gains? 
2. Is on-task discourse associated with more learning gains than 

off-task discourse? 
3. If certain properties of discussion are associated with 

enhanced learning, why it is so? What are the higher-order 
thinking behaviors demonstrated in student discourse and 
their connection with learning?  

We consider that answering these questions has important 
implications for designing discussion interventions in MOOCs. 

Some previous studies on MOOC discussion forums analyzed at a 
macro-level the quantity of participation [e.g., 1], whereas other 
work [23] pointed out that quantitative indices of participation 
does not directly imply the quality of conversation and interaction. 
Others conducted content analysis of thread topics [17] or used 
rule-based algorithms to extract linguistic markers [28]. However, 
students’ higher-order thinking behaviors are not well represented 
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or thoroughly and systematically explored in these previous 
investigations. In this work, we aim to adopt a content analysis 
approach to hand-code data based on a well-established learning 
activity classification framework from earlier cognitive science 
research [8] in an attempt to capture students’ discussion 
behaviors and their underlying cognitive strategies in a MOOC 
discussion forum. This is the first work we know of that has 
brought this lens to explore students’ discussion behaviors and 
their association with learning gains in MOOCs.  

In particular, we contribute to the existing literature by 1) 
developing a coding scheme based on Chi’s ICAP (Interactive-
Constructive-Active-Passive) framework [8] in categorizing 
students’ discussion behaviors in a MOOC context; 2) providing 
empirical support for the importance of discussion in enhancing 
learning in a MOOC context. We also contribute to the literature 
on computer-supported collaborative learning by exploring the 
relationship between discourse and learning in a multi-user 
distributed asynchronous discussion environment.  

In the remainder of the paper, we first discuss related work and 
existing theoretical foundations that we leverage in our analysis. 
Next we introduce our dataset. We then describe our methods, 
including specifics about the coding scheme, and computational 
model in the Methods section.  We present an extensive 
correlational analysis and then discuss our interpretation along 
with caveats and directions for continued work. 

2. RELATED WORK  
2.1 Research on MOOC discussion forums 
Studies in the field of learning science and computer supported 
collaborative learning have provided evidence that learners’ 
contribution to discourse is an important predictor of their 
knowledge construction [2, 12]. In offline environments, studies 
have suggested, for example, that the number of words per 
utterance [26] and proportion of words produced [14] are 
correlated with learning gains. Transitioning from traditional 
classroom to online learning, computer-mediated conferencing 
has proved to be a gold mine of information concerning students’ 
psycho-social dynamics and their knowledge acquisition [19]. 
Investigating the usage of discussion forums in MOOCs has been 
one major theme for research. To give a few examples, at a 
participation level, Anderson and colleagues [1] found that 
students who participated in other platform activities (videos, 
quizzes, etc.) participated more in the forum as well. They also 
explored patterns of thread initiators and contributors in terms of 
specific discussion behaviors in the discussion forum. At a content 
level, Brinton [5] categorized discussion threads into “small-talk”, 
“course logistics”, and “course specific” categories. Gillani [17] 
adopted a content analysis approach combined with machine 
learning models to discover sub-communities in a MOOC based 
on user profiles. Anderson [1] used a lexical analysis to see which 
words predict the number of assignments a student finally turns in. 

These studies have set up a good foundation for analyses in 
MOOC discussion forums. However, to confirm a relationship 
between discussion and learning, we need to look closer into what 
aspects of discussion actually contribute to learning from a 
cognitive perspective.  

2.2 Content analysis  
We base our work on previous approaches to analyze content of 
student dialogues in tutoring and computer-supported 
collaborative learning environments. Chi [6] pointed out the 
importance of verbal analysis, which is a way to indirectly view 
student cognitive activity. De Wever [16] further demonstrated 

that content analysis has the potential to reveal deep insights about 
psychological processes that are not situated at the surface of 
internalized collaboration scripts.  

Chi’s ICAP framework [8] has been considered to be the strongest 
evidence for the value of a dialogic approach to learning [25], 
which has been widely adapted and applied to identify learning 
activities and explain study results [e.g., 24, 27]. The framework 
has been utilized to explain classical educational experiments [10] 
and serve as a theoretical foundation for studies on tutoring and 
computer-supported collaborative learning, for example in a 
discourse analysis of different kinds of scaffolds [24]. 

The framework was created through a meta-analysis of 18 studies 
in which learning activities were classified into 3 categories, 
namely, interactive activities that involve discussing and co-
constructing with a peer or the learning environment, constructive 
activities that produce a representation of information that goes 
beyond the presented information, and finally, active activities 
that show how students are actively engaged in the learning 
process. The taxonomy suggests the hypothesis that what are 
referred to in it as interactive activities should generate more 
learning outcomes than constructive activities, which in turn 
should generate more learning outcomes than active activities. [8]  

MOOCs provide an emerging environment where computer-
supported collaborative learning activities might be provided, and 
where social presence might reflect cognitive presence [27].  
Thus, in this context we aim to apply the ICAP framework to 
explore the relationship between discussion and learning by 
coding observed student behaviors in the discussion forum.  

3. DATASET 
In this work, we conducted a secondary analysis of the dataset of 
the course “Introduction to Psychology as a Science” offered 
through Coursera collaboratively by Georgia Institute of 
Technology and Carnegie Mellon University. The course 
incorporated elements of the OLI (Open Learning Initiative) 
“Introduction to Psychology” learning environment. One special 
characteristic of the course was that it administered a pre/post test 
with the intention to support research.  

 “Introduction to Psychology as a Science” was designed as a 12-
week introductory course. For each week of class, the course 
targeted a major topic (e.g. Memory, Brain Structures, Nervous 
System); Course materials include video lectures, assigned 
MOOC activities, learning activities in the OLI environment, and 
what are referred to as weekly high-stakes quizzes.  

In the first analysis of the dataset [21], researchers found that 
students who registered for the OLI activities learned more than 
students who used only the typical MOOC affordances, and 
further demonstrated that students who did more learning-by-
doing activities learn more than students who watch more videos 
or read more texts. In other words, doing an activity has a much 
greater effect (6x) on predicted learning outcomes than watching a 
video or reading a web page. However, students’ participation in 
the discussion forum hasn’t been explored yet in that work.  

In our preliminary exploration into the dataset, we found that 
when controlling for students’ registration for OLI activities 
(which serves as a control variable associated with effort and 
commitment to the course), their quantity of participation in 
discussion forums significantly predicts learning gains as well. 
Based on this, we wanted to further explore how students’ specific 
cognitively relevant behaviors in the forums correlate with their 
learning gains. We observed specific related discourse behaviors 
in the forum, and present several examples here.  
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Active behavior: “According to the OLI textbook, creative 
intelligence is ‘the ability to adapt to new situations and create 
new ideas or practicality’.” 
This is an example of the student actively repeating what’s being 
said in the course materials.  

Constructive behavior: “When I tell my son to wash the dishes, 
it's much more straightforward to explain his refusal or 
agreement by some behavioral (e.g. Reward or punishment) or 
cognitive mechanisms than by an innate instinct to wash or not to 
wash the dishes.” 
This is an example of constructive behavior, when the learner 
produces output, which could be examples, explanations, etc., that 
go beyond course materials. 

Interactive behavior: “I agree that language can be an extra 
difficulty, but it is not a variable with which is counted. Also, 
depression, work stress…could form extra difficulties for the 
student in particular.” 
This interactive behavior example shows that students not only 
engage in self-construction, but build their ideas upon their 
partners’ contributions. 
Altogether, there are 27,750 registered users in the dataset, and 
7,990 posts and comments in the dataset. For the learners who 
have both pretest and posttest on record, which is our population 
of interest, there are 3,864 posts in total and 491 users. In addition 
to forum records, student clicks with course materials are also 
recorded in the clickstream data. The course has 1,487,665 student 
clicks. The clickstream logfile provides us with the opportunity to 
observe each students’ interaction with course materials. 

4. METHOD 
4.1 Unit of analysis 
In this paper, our unit of analysis is the message. As proposed in 
[16], in their review of 15 instruments in doing content analysis of 
the transcripts of online asynchronous discussion groups, 7 
recommended using the message as the unit of analysis. 

We first looked at students’ quantity of participation, and 
distinguished on-task discourses from off-task. We then applied a 
coding scheme on on-task discourse to capture the cognitive 
behaviors in the discussion forum. We hand-coded half of the 
dataset, and trained a machine learning model to replicate that 
annotation approach in the rest of the dataset. 

In a MOOC context, the data we usually deal with is student log 
data [4, 5, 13], which illustrates their participation process. 
However, students’ cognitive behaviors are better represented in 
their discourse displayed in the discussion forum. In this work, we 
hand-coded a large sample of the dataset, which may reduce noise 
in this kind of analysis. Thus the result may be more reliable in 
demonstrating the relationship between students’ cognitive 
behaviors in the discussion forum and their learning gains. 

4.2 Quantity of participation 
H1: In response to our first research question, we hypothesized 
that students who participated more in the discussion forum have 
higher learning gains.  
We quantified students’ participation in the discussion forum by 
the variable PostCountByUser.  
PostCountByUser: It is measured by the number of posts a user 
posted in the discussion forum.  

We did not distinguish between posts and comments in this 
analysis. So the word posts when mentioned in the rest of the 
paper refers both to posts and comments.  

4.3 On-task vs. Off-task discourse 
H2: in response to our second research question, we distinguished 
on-task and off-task discourse in the dataset. And we 
hypothesized that students’ total number of on-task discourse 
contributions has a positive association with their learning gains. 

We distinguished on-task discourse from off-task discourse in the 
dataset, based on the following definitions. On-task discourse 
includes posts that talk about course content, the content of 
quizzes and assignments, comments on course materials, and 
interaction between students on course content-related issues. Off-
task discourse includes posts that talk about administrative issues 
in the course, e.g., asking for extensions on assignments; technical 
issues regarding course materials, e.g., asking where to download 
videos, off-topic self-introductions and social networking.  
This feature in the dataset is acquired through hand-coding.  

4.4 Cognitively Relevant Discussion behavior 
H3: In response to our third research question, we want to 
investigate what discussion behaviors are demonstrated in the 
discussion forum, their frequencies and their association with 
learning. In order to capture these discussion behaviors, we 
developed a coding scheme based on Chi’s ICAP framework [8].  
We further hypothesized that students who demonstrated more 
higher-order thinking behaviors in each of the categories, active 
discourse, constructive discourse, and interactive discourse have 
higher learning gains. And according to Chi’s work represented in 
18 empirical studies, we hypothesized that the effect follows the 
pattern interactive>constructive>active.  

4.4.1 Coding scheme 
Students’ cognitive behaviors are reflected in the MOOC 
discussion forums, which is not easily mined through rule-based 
algorithms due to its scale and informal style. This may pose 
challenges for computational modeling. In this work, we adopt a 
hand-coding method to capture higher-order thinking behaviors 
and follow the hand coding with computational modeling. 

Within the category of on-task discourse we divide all posts into 
3x3 categories as listed in Table 1 according to Chi’s Active-
Constructive-Interactive framework [8]. We further offer 
operational definitions for each category, and provide examples 
from our dataset. Due to space limitations, we provide abbreviated 
definitions rather than the full ones provided to the human coders. 
When defining each category of cognitive behavior, we evaluated 
how this might contribute to learning. Through empirical 
observation, we found this coding scheme to be exhaustive of all 
conditions. The 9 categories are not mutually exclusive. Thus, a 
post may belong to more than one of these fine-grained categories.  

4.4.2 Inter-rater reliability  
Two experts separately coded 100 posts randomly selected from 
the dataset, and applied on- vs. off-task annotation plus the 9 fine-
grained categories of discussion behaviors to the sample. The two 
experts at first reached an agreement statistic of 0.52 (Cohen’s 
Kappa), which is a moderate level of agreement. The two experts 
then resolved their disagreements through consensus coding by 
discussing and clarifying some borderline cases. After higher 
consensus was achieved, one of the experts coded 2000 posts 
randomly sampled from the whole dataset (3864 posts).  
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Table 1. Coding Examples 

Active Discourse- (1) Repeat 
Operational Definition: The learner explicitly repeats 
information that’s already covered in the material, which could 
be indicated by quotes. 

E.g. 1: Week 2, I quote from the picture: "The portion of the sensory and 
motor cortex devoted … as does the entire trunk of the body." 

Active Discourse- (2) Paraphrase 
Operational Definition: The learner paraphrases what’s 
covered in course materials, it could be indicated by words like 
“it’s mentioned in the textbook…”, “it’s said in the video…” 

E.g. 2: On the chapter about Health Psychology there is a board 
depicting various factors about Happiness, such as the Inequality of 
Happiness and then the Inequality Adjusted Happiness. 

Active Discourse- (3) Notes-taking 

Operational Definition: The learner mentions about note-taking 
and information seeking. 

E.g. 3: I use the text files as a basis for my lecture notes. 

Constructive Discourse- (1) Ask novel questions 
Operational Definition: The learner proposes a novel question 
or problem based on his/her own understanding. 

E.g. 4: Violence is throughout our history and have shaped societies, is it 
really as simple as an observed response? or a throwback of survival 
instinct? 

Constructive Discourse- (2) Justify or provide reasons 
Operational Definition: The learner uses examples and 
evidence to support a claim he/she has made. Reasoning is 
explicitly demonstrated in the discourse. 

E.g. 5: It depends on the visual field. Signals from the  right visual field 
come to the left hemisphere, while signals from the left visual field come 
to the right hemisphere. 

Constructive Discourse- (3) Compare or connect 
Operational Definition: The learner compares cases, connects 
or shares links to external resources. 

E.g. 6: Here's a link to an article about a lady who stopped dreaming 
after suffering a stroke: [link] 

Interactive discourse- (1) Acknowledgement of partners’ contribution 
Operational Definition: The learner explicitly acknowledges 
their partners’ contribution, which could be indicated by 
“thanks for pointing that out”, “I agree with you there…”. 

E.g. 7: That's an interesting point, and it has made me wonder why this 
example was chosen. 

Interactive discourse- (2) Build on partners’ contribution 
Operational Definition: The learner makes a point that builds 
on what their partner has said. 

E.g. 8: I do agree with what you said to a large degree. Changing a 
behavior  merely to avoid pain or any other form of punishment is not 
good… Hence it requires a much deeper introspection and 
understanding… 

Interactive discourse- (3) Defend and challenge 
Operational Definition: The learner challenges his/her 
partners’ ideas, or defends their own ideas, when there is a 
disagreement. (Note: The partner here can be either a peer or 
the learning environment) 

E.g. 9: I think I understand what you mean (I am currently doing the 
statistics course as well). However, as I can see from what you've 
described, you still have the hypothesis in your psychological experiment 
which is not null - your prediction that something WILL happen. 

4.4.3 Computational model and data preparation 
In order to better visualize the dataset and potentially apply the 
model to another context, we trained a computational model based 
on the coded 2000 posts to predict the cognitively relevant 
discussion behavior categories and expand the coding to the rest 
of the dataset.  

In our hand-coded dataset, we labeled 9 types of cognitively 
relevant discussion behaviors, but due to the fact that the 
occurrences of each single category are relatively sparse, we 
acquired a low accuracy when using the sample to train a model 
and apply it to the rest of the dataset. Instead, we aggregated the 9 
categories into the three major categories—Active, Constructive, 
and Interactive.  All three are binary variables indicating whether 
the user has a post under this category. We then built models to 
predict these labels. 

Our classifier is designed to predict whether the cognitive 
behavior expressed in a post belongs to Active (A), Constructive 
(C) or Interactive (I) by taking advantage of a bag-of-words 
representation. However, we have to distinguish between on-task 
discourse and off-task discourse since learning relevant cognitive 
behaviors will occur primarily in on-task discussion (Among our 
coded 2000 posts, 558 are on-task discussions). 

For this purpose, we built a two-stage classification model. In the 
first stage, we designed a logistic regression classifier to predict 
whether a post is on-task or off-task; in the second stage, we 
classified the posts that were predicted to be on-task into A, C or I 
categories. The input for each classifier is a bag-of-words feature 
representation. In the first step, we used the coded 2000 posts as 
the training set to train a logistic regression classifier to 
distinguish on-task discourses and off-task discourse, and in the 
second step, we used 588 on-task messages as our training set to 
train three logistic regression classifiers to label on-task 
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discourses in the three categories (A, C, I). On the training set, we 
adopted a 10-fold cross-validation approach to evaluate the model. 
The classification results presented in Table 2 are the average 
accuracy and Kappa for this cross-validation. The results show 
that both accuracy and kappa are within a reasonable range for our 
further analysis of the whole dataset.  
Table 3 shows some top-ranked features identified by the 
classifiers that are used to predict the three cognitive behaviors. 
From this table, we can see that in active discourse, students more 
often mentioned “lectures” “page” “notes”, which indicates 
they’re actively engaged with the course materials. In constructive 
discourse, students more often mentioned words associated with 
reasoning, such as “more” “but” “hence” “examples”, and in 
interactive discourses, students mentioned “your” “agree” 
“disagree” more often, which implies interaction. These features 
are consistent with our initial definitions of these distinct 
categories of discussion behavior and assumptions about their 
underlying cognitive processes and strategies. 

Table 2. Evaluation metrics of the computational model. 

Evaluation Metrics Accuracy Kappa 
1st Stage 
On-task Prediction 

On-task 82.1% 0.527 

2nd Stage 
Cognitive Behavior 

Active 74.3% 0.361 
Constructive 75.4% 0.318 
Interactive 75.6% 0.236 

 

Table 3. Performance of Discussion Behaviors Regressors and 
Top Ranked Features 

Categories Active Constructive  Interactive 

Most 
Important 
Word 
Features 
(Regression 
Weight) 

lecture  
(1.68) 
page (1.24) 
what (.84) 
text (.83) 
incorrect 
(.79) 
answer 
(.72) 
says (.72) 
notes (.68) 

course (.87) 
more (.79) 
give (.75) 
trying (.68) 
but (.64) 
hence (.64) 
looking (.61) 
topics (.58) 
example (.56) 
because (.56) 

your (1.56) 
agree (1.11) 
our (.99) 
again (.86) 
thanks (.76) 
disagree 
(.6) 
response 
(.6) 

4.4.4 Clickstream Data 
In order to explore the relationship between cognitively relevant 
discussion behaviors and learning, we also need to control for 
students’ involvement in other activities in the MOOC 
environment other than the discussion forum. This enables us to 
isolate, to some extent, the effect of pure effort and engagement in 
the course from the effects specifically related to discussion 
behavior. We further generated the following control variables 
through mining clickstream data of the course. 

Video: The variable was computed first by summing the number 
of unique videos the student started to watch (Based on clicks on 
unique video urls), and then standardizing the sums. 

Quiz: The variable was computed first by summing the number of 
unique quizzes the student attempted (Based on clicks on unique 
quiz urls), and then standardizing the sums. 

OLI_textbook: The variable indicates reading the OLI textbook, 
and it’s calculated by summing the number of clicks the student 
made in the OLI environment and then standardizing the sums. 

5. RESULTS 
5.1 Participation quantity in the discussion 
forum 
In response to the first research question, we fitted linear 
regression models to explore the relationship between students’ 
quantity of participation and their learning gains.  

In the dataset, there are 1,079 students out of 27,750 students (i.e., 
students who registered for the course) who have both pre- and 
post-test scores on record. And among these students, there are 
491 students who have posted in the discussion forum, with a total 
of 3,864 posts. We now introduce the variables we used in these 
models. 
Dependent variable:  
Post-test: The dependent variable in all the following models is 
students’ posttest score, which is standardized. Post-test score is 
students’ final exam score composed of 35 multiple-choice 
questions. 
Control variable: 
Pre-test: This is a test students took before the course started, 
which contains 20 multiple-choice questions. We also 
standardized the pretest score.  

OLI_Registration: This is a binary variable capturing whether 
the student has registered for OLI or not. 1 means the student 
registered for OLI. As demonstrated in [21], students who 
registered for OLI learnt more than students who didn’t. 

We also controlled for students’ involvement in other activities, 
including Video, Quiz and OLI_textbook. 
Independent variable: 
Participation: This is a binary variable indicating whether the 
student has ever posted in the discussion forum during the course.  
PostCountByUser: This is the total number of posts a student 
contributed in the discussion forum during the course. 
From Model 1, we see that whether the student has participated in 
the discussion forum is a significant predictor of the student’s 
learning gains. The result from Model 2 shows that for those who 
have participated in the discussion forum, the more they posted, 
the higher the learning gains they achieved.  
 

Table 4. Regression results of learning gains on the quantity of 
participation and on-task discourse 

Control/Indep. 
Variable 

Model 1  
(N=1079) 

Model 2 
 (N=491) 

Model 3 
(N=491) 

Participation  0.089**   

PostCountByUser  0.005* 0.006* 
OnTaskPercent.   0.123** 

Pretest 0.196*** 0.254*** 0.243*** 
OLI_registration  0.119** 0.107 0.120 
Video 0.056* 0.0001 -0.011 

Quiz -0.008 -0.035 -0.037 
OLI_textbook 0.050** 0.048 0.044 

(p<0.001***, p<0.01**, p<0.05*) 
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5.2 On-task versus off-tasks discourse 
In response to the second research question, we looked at whether 
students’ on-task discourse contributes to their learning gains. In 
this model, we examine the main effect of on-task discourse, 
which is represented by the variable OnTaskPercent. 
Independent variable: 
OnTaskPercent. : This is measured by the number of a student’s 
posts that are categorized as on-task divided by the total number 
of posts the student has made, and the value is standardized. 
In this regression model, we also controlled for a student’s 
number of posts, whether they registered for OLI, pretest score, 
and their involvement in other activities. The regression result is 
displayed in Table 4-Model 3. The result shows that the quantity 
of students’ on-task discourse in the discussion forum is a 
significant predictor of their learning gains.  

5.3 Cognitively relevant discussion behavior 
analysis 
5.3.1 Active, Constructive and Interactive behaviors 
In this section we examine the relationship between students’ 
discussion behavior and their learning gains and attempt to 
explain why certain behaviors lead to learning. We built linear 
regression models to explore the relationship between students’ 
active, constructive and interactive discussion behaviors and their 
learning gains. 

In the whole dataset, the number of instances (N=3864) of active, 
constructive and interactive activities is respectively 269, 744 and 
203. And the number of students (N=491) who have demonstrated 
active, constructive and interactive activities is respectively 114, 
230 and 84.  
Our independent variables include: 
Active, Constructive, Interactive: All three are binary variables 
indicating whether the student has a post that is categorized in that 
category. 
We also controlled for variables including pretest, the number of 
posts, whether registered for OLI, students’ involvement in other 
activities, as defined above. The regression result is shown in 
Table 5. 

In Model 4 and Model 5, we found that students who have 
demonstrated active and constructive behaviors in the discussion 
forum had significantly more learning gains than students who 
didn’t. From Model 6, we can see that the effect of Interactive 
discussion behavior is not significant in predicting learning gains. 
And we then introduced another variable to define whether a user 
is an active poster by counting the total number of their posts.  

Poster profile: This nominal variable categorizing users into 
active poster and inactive poster. If a user has more than 3 posts 
(including 3), he/she is categorized as an active poster, otherwise 
categorized as an inactive poster. 3 is the median of the number of 
posts. 
When nesting interactive behaviors with a poster profile, we 
found that interactive discussion is a significant predictor of 
learning gains for students who posted less. We think this might 
be because the number of posts is a basic measure of a student’s 
social engagement in the discussion forum, which overlaps with 
some behaviors under the Interactive category. We further fitted a 
regression model to check the correlation between a student’s 
total number of posts and the number of posts that are categorized 
as Interactive. The result shows that Interactive posts account for 

66% of the variance in the total number of posts. We consider this 
high correlation could lead to the result described above. The 
results here show that both active and constructive discussion 
behaviors significantly contribute to students’ learning gains, with 
active behaviors having higher predictive power. For users who 
posted less in the discussion forum, interactive behaviors strongly 
predict their learning gains (coefficient=0.515), however, the 
effect of interactive behavior disappears on the overall user 
population. 

In addition to the occurrence of different discussion behaviors, we 
also used the frequency of each behavior as independent variables 
and did a second round of regression, from which we acquired 
similar results. 

Table 5. Regression results of learning gains on discussion 
behaviors (part 1, N=491) 

Control/Indep. 
Variable 

Model 4  Model 5  Model 6 Model 7 

Active 0.125*    
Constructive  0.112*   
Interactive   0.106  
Interactive 
[inact._poster] 

   0.496* 

Interactive 
[act._poster] 

   0.043 

Pretest 0.252*** 0.246*** 0.254*** 0.254*** 
PostCntByUser 0.004 0.004 0.004 0.004 
OLI_registr.  0.125 0.109 0.104 0.115 
Video -0.004 0.015 0.003 0.007 
Quiz -0.039 0.036 -0.038 -0.036 
OLI_textbook 0.034 0.044 0.040 0.036 
(p<0.001***, p<0.01**, p<0.05*) 

5.3.2 Specific discussion behaviors 
From the hand-coded dataset (N=2000), we summarized the 
occurrences of the 9 sub-categories of behaviors in Table 6. It 
shows that the most frequent behavior in the discussion forum is 
proposing an idea or asking novel questions. And the least 
frequent behaviors include building on a partner’s contribution as 
well as defending and arguing, which is consistent with our 
expectation that higher-order thinking behaviors and highly 
interactive behaviors are relatively rare in MOOC discussion 
forums, and that the conversations going on in MOOCs are not 
satisfactorily rich and interactive. 

Table 6. Distribution of 9 categories of discussion behaviors 

Behavior Type Freq. Behavior Type Freq. 
Repeat 53 Notes-taking 28 

Paraphrase/ask shallow 
questions 103 Justify or provide 

reasons 
118 

 
Propose an idea/ask 

novel questions 315 Compare, connect/ 
Reflect 59 

Acknowledge partners’ 
contribution 101 Build on partners’ 

contribution 23 

Defend and argue 14   
 

We also fitted regression models on this more nuanced coded 
dataset, but due to the fact that the occurrences of each category is 
relatively sparse, there was not sufficient statistical power to 
detect a significant effect of every category on learning gains. We 
display just the 2 significant predictors (out of 9) in Table 7. 
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Independent variables: 

Constructive-(1): This is a binary variable indicating whether the 
student has a post that is categorized as “propose an idea/ ask 
novel questions”. 

Constructive-(2):  This is a binary variable indicating whether 
the student has a post that is categorized as “Justify or provide 
reasons”. 

We controlled for pretest, number of posts, and whether the 
student registered for OLI in the regression models. We also 
controlled for students’ involvement in other activities, the effects 
of which aren’t significant in the regression models, so we don’t 
report them here in Table 7. 

Table 7. Regression results of learning gains on discussion 
behaviors (part 2, N=399) 

 Model 8 Model 9 
Constructive-(1) 0.136*  
Constructive-(2)  0.211** 
Pretest 0.205*** 0.198*** 
OLI_registration 0.225 0.214 
Number of posts 0.007 0.005 
(p<0.001***, p<0.01**, p<0.05*) 

After fitting regression models of learning outcome and all 
discussion behaviors as main effects, we found that only two 
categories are significant in predicting learning gains, as shown in 
Table 7. We consider higher frequencies of both behaviors might 
be the reason leading to significant effects on learning. 
Nevertheless, the processes of proposing an idea or a problem, 
and providing examples and reasons to justify a claim are 
considered to be higher-order thinking behaviors that have been 
proved to be instrumental to learning in several studies [e.g., 7, 
18, 22], which could also lead to the significant effects. 

6. CONCLUSION AND DISCUSSION 
In this paper we adopted a content analysis approach and 
developed a coding scheme to analyze students’ discussion 
behaviors, which are hypothesized as relating to their underlying 
cognitive processes in the discussion forum of a MOOC. The 
learning gains measures available for students in this MOOC 
enabled us to explore the relationship between students’ 
discussion behaviors and their learning, and discuss what aspects 
of discussion appear to contribute to learning.  

We observed that students’ active and constructive discussion 
behaviors are significant in predicting students’ learning gains, 
with active discussion behaviors possessing better predictive 
power, which is inconsistent with our hypotheses. Interactive 
discussion behaviors are significant in predicting learning gains 
only for students who are less active in the forums. This work also 
provides insight into how students are discussing in the discussion 
forum now, what behaviors they demonstrate and what the 
underlying cognitive processes are.  

6.1 Active-Constructive-Interactive 
framework 
Based on Chi’s framework [8], we hypothesized that students’ 
interactive discussion behaviors will produce more learning gains 
than constructive behaviors, and constructive behaviors will 
produce more learning gains than active behaviors. However, in 
this analysis we found that students’ active discussion behaviors 
are most effective in predicting students’ learning gains  
(coefficient=0.125). In our categorization of active behavior, 
students are talking about what is already covered in the materials, 

repeating statements that had appeared in the textbook or video 
lectures, and asking clarifying questions about definitions, 
implicitly expressing confusion about course materials, etc. 
According to Chi’s framework [8], constructive activities should 
provide better learning outcomes than active activities.  An 
example of this is when students need to explain in a constructive 
condition. However, we consider one reason we may not have 
seen this pattern in our dataset is that the post-test may not have 
targeted the skills and concepts students learned from these 
constructive activities. Assessments of a different nature, for 
example incorporating more demanding open ended response 
items, may have been more sensitive to these gains.  For example, 
when the learning task is about design of psychology experiments, 
an assessment of requiring the students to design an actual 
experiment might be more telling than multiple-choice questions 
in measuring students higher-order thinking skills.  

6.2 Invisible learning practices 
In this paper, we looked at students’ overt discussion activities in 
the forum, however students may be engaged in these higher order 
thinking activities without articulating their reasoning in a visible 
discourse.  As indicated by [3], reading but not necessarily posting 
can be a productive practice for some learners. Our estimates of 
the amount of videos, quizzes and OLI textbook pages attempted 
could also be improved, for example, using the time spent on each 
activity, and further details about the attempt of OLI activities 
could be incorporated, as defined and estimated in [21]. 

6.3 Design implications 
As MOOCs evolve, our focus as a community will transition  
from a primary concern about retaining users to actively 
improving the pedagogical effectiveness of this learning 
environment. Thus we need an empirical foundation to base 
designs for discussion affordances in MOOCs that might facilitate 
constructive and interactive conversations. Also, we need to come 
up with better assessment methods to assess and acknowledge 
students’ higher-order thinking behaviors and skills they acquired 
through reading others’ ideas, explaining and arguing in a 
discussion forum.  

The paper proposes a manual way to hand-code students 
discussion behaviors, and offers a machine learning model to 
predict the corresponding behaviors in all communications of the 
dataset. We haven’t had the opportunity to test the model in other 
courses, as few courses have pre- and post-test measures. If the 
computational model can be applied, we may provide feedback on 
students’ advanced discussion behaviors in the forum, in terms of 
their cognitive processes and strategies.  
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ABSTRACT 
Determining how learners use MOOCs effectively is 
critical to providing feedback to instructors, schools, and 
policy-makers on this highly scalable technology. However, 
drawing inferences about student learning outcomes in 
MOOCs has proven to be quite difficult due to large 
amounts of missing data (of various kinds) and to the 
diverse population of MOOC participants. Thus significant 
methodological challenges must be addressed before 
seemingly straightforward substantive questions can be 
answered. The present study considers modeling final exam 
performance outcomes on early-stage ability estimates, 
discussion forum viewing frequency, and overall 
assessment-oriented engagement (AOE, seen as a proxy 
measure of motivation). These variables require careful 
operationalization, analysis of which is the principle 
contribution of this work. This study demonstrates that the 
effect sizes of discussion forum viewing activities on final 
exam outcomes are quite sensitive to these choices. 

Author Keywords 
MOOCs; discussion forums; social learning. 
 

INTRODUCTION 
Massive open online courses (MOOCs), a recent modality 
of distance learning wherein course materials are made 
available online and are freely accessible by anyone with 
computer access, have been rapidly gaining popularity as 
new platforms and courses come online. As of August 
2014, over 2000 MOOCs were being offered through more 
than 50 initiatives (www.mooc-list.com), and these 
numbers had more than doubled over the prior year. 
MOOCs are generally viewed as having great value because 
they provide expanded opportunities to learn and near-
instantaneous feedback and support. Additionally, the large 
number of enrollees and clickstream interaction logs in any 
given MOOC provide a vast amount of fine-grained data 
that can help researchers understand how people learn and 
how best to support learning in an online environment.  

This program of research began with the hope of 
capitalizing on these properties in order to examine the 
impact of MOOC discussion forum use on learning 
outcomes. Simply put, we wanted to study whether viewing 
discussion board threads while doing homework resulted in 

final exam gains attributable to this behavior, i.e. 
controlling for other factors. It seemed prudent to try to 
account for enrollees with different levels of prior ability 
and engagement/motivation, as MOOC students are known 
to have diverse populations. Thus, final exam performance 
would be our outcome variable; prior ability, 
engagement/motivation (or some proxy), and discussion 
forum usage would be covariate predictors. Along the way, 
however, we perceived that the challenges of 
operationalizing all of the variables gained more and more 
importance to the validity of our inferences.  

Indeed, recent work by other authors concentrated on the 
sensitivity of analytical inferences to operationalization of 
predictor variables such as time-on-task estimation [18]. In 
reference to that work, this paper may also be seen as an 
attempt to “penetrate the black box” of a particular MOOC 
analysis. Thus, we raise the following auxiliary research 
questions: Does the method of quantifying discussion 
forum use significantly impact the analysis of its effect on 
performance? Given that motivation matters, does the 
decision of which filter to use to exclude unmotivated 
students change the results of the analysis? Issues of prior 
ability estimation are myriad; we discuss these briefly 
below but get into more details in a separate study [4]. 

In the remainder of this paper, we examine the impact of 
methodological decisions on the quality and type of 
inferences that can be drawn from examining MOOC forum 
use, focusing specifically on methods of quantifying 
discussion forum use and filtering unmotivated students. 

The organization is as follows. By way of motivating our 
original substantive questions, we first review related 
literature on the impact of discussion forums in online 
learning. We then describe our data set. Next, we turn to the 
challenges of MOOC analyses, in general and specifically 
to the variables under consideration. We describe different 
methods for and results from operationalization choices 
with regards to discussion forum usage, motivation proxies, 
and prior ability estimates. Finally, we consider the impact 
of these variables on performance using multiple linear 
regression models for final exam score.  

DISCUSSION FORUMS IN ONLINE LEARNING 
The impact of discussion forums on learning in MOOCs 
and other online courses is still not well understood, 
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although the literature on the subject dates back to the 
1990s. While some early research on discussion forums 
cautioned about the shortcomings of computer-mediated 
dialogue as compared with face-to-face interactions [25], 
much of that research explored the benefits of the cognitive 
processes involved in the use of discussion forums, such as 
reshaping ideas and constructing meaning with the help of 
peers [3,21]. Later research (but still prior to the MOOC 
era) focused on measuring the level and quality of student 
activity in the forums, for example using data mining and 
text mining [8]. Cultivation of successful asynchronous 
discussion was linked to measures of discussion quality [2]. 
Artificial intelligence approaches for classifying effective 
synchronous collaborative learning [23] were also applied 
to asynchronous forums in a graduate level course [24].  

Correlations of discussion activity with external 
performance measures have been the subject of several 
studies ranging from high school [15] to college [17,19] to 
graduate school [24], with mixed results. Correlations of 
0.51 were found for topical student discussion behaviors 
(coded by hand) with concept-test performance in a physics 
course using the learning online network with computer-
assisted personalized approach (LON-CAPA) learning 
management system [17]. Operationalizing discussion 
behavior purely by counts, [15] found correlations of 0.27-
0.44 between project performance and activity volume in 
the forums for secondary school computer science. [19] 
performed a multiple regression analysis of quiz scores in 
two college psychology courses, finding that only content-
page-hits were significant, not counts of discussion posts or 
reads. [24] also found no significant correlations between 
number of posts and student success in a graduate level 
course, but success variability was very low and the number 
of students was only 18. 

Prior to MOOCs, the largest number of students in any of 
these studies was 214 [17]. This is one profound difference 
in the MOOC era, where tens of thousands of students 
participate and often thousands complete an online course. 
More recent analyses of discussion forum use in large 
MOOCs include the following: one analysis found that 
superposters elicited more posting from their less prolific 
peers, but the study did not analyze the impact of posting 
behavior on performance [14]. A randomized controlled 
trial comparing students with access to chat and discussion 
forms to students with access to only discussion forums 
found no differences in retention or performance between 
groups [6]. Background characteristics of forum users and 
the communication networks they formed were analyzed in 
[12], which found that higher performing students 
participated more in discussion forums but did not interact 
exclusively with other higher performing students.   

MOOC DATA SET 
The data for this study come from the Spring 2012 Circuits 
and Electronics MOOC on the MITx platform. Descriptive 
measures of discussion forum usage, homework 

performance, and final exam scores were extracted from the 
MOOC clickstream logs using parsers written in Python 
[22]. Over 100,000 students registered for this course, 
though only half as many attempted to solve at least one 
problem in the course. Roughly 9000 attempted at least one 
problem on the final exam, and 7157 earned certificates.  

Each access by a student to the discussion forum was 
recorded in the click-stream logs of the MOOC, as were the 
times when the student first opened each weekly homework 
assignment and the time of the last submit (the “homework 
window”). Thus it was straightforward to enumerate the 
number of threads viewed each week during the homework 
window. In this course, the most commonly referenced 
resource during homework solving was the discussion 
forum [22], which was structured as a Q&A board with up-
voting and search capability (other course resources 
included lecture videos, an online textbook, and a wiki). 
Interestingly, most of this activity was “voyeuristic” not 
contributive: 67% of active students viewed (that is, clicked 
on—without scroll information and/or eye-tracking sensors, 
one cannot say for sure whether students read the threads 
they opened) at least one discussion thread between the first 
time they opened the homework and their last submission, 
whereas fewer than 10% posted a question, comment, or 
answer. Moreover 95% of all discussion activity in this 
course (by number of events) was viewing, not posting.  

Because discussion forum content was generated by 
students, the forum was not as rich in the first few weeks of 
the course until participation reached a critical level, as 
shown in Figure 1.  

 
Figure 1: MOOC activity over time. Grey bars indicate early 
stage and late stage intervals on either side of the midterm.	
  

As seen in this figure, the number of students actively doing 
homework in our data set (active in homework, blue line) 
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decays over time, while activity in the forums increases 
before leveling off (threads per user, brown line). The 
midterm exam occurred between weeks 7 and 8, which 
explains the dip and then surge in discussion forum activity, 
as it was not permitted to post questions or answers about 
the midterm. The greyed regions of Figure 3 represent two 
three-week intervals, which we label “early stage”—weeks 
4-6, after the discussion forum had fully taken off but 
before the midterm—and “late stage”—weeks 9-11, after 
the midterm but before the final exam. To smooth out 
week-to-week variation, we summed over views within 
each three-week long interval, as discussed below. 

CHALLENGES IN OPERATIONALIZING PREDICTORS 
MOOCs differ from standard courses in a number of ways 
that make analyzing enrollee behavior difficult. These 
include higher than usual variability in prior educational 
attainment [20] and assessment motivation [26], large 
amounts of missing data, and affordances of multiple 
attempts on both formative and summative assessments [4]. 
Due to these issues, several researchers have noted that 
traditional measures of participation and achievement may 
need to be reconsidered in the context of MOOCs 
[5,7,13,16]. In this section, we introduce three sets of 
challenges, one for each predictor variable: 

1. How can prior ability be estimated so that 
performance models can control for prior ability? 

2. How should discussion forum usage be quantified? 
Is it a static quantity, or does it change over time? 

3. Can we identify students who appear to be 
disengaged/unmotivated? What effect would 
excluding those students have on the effect size of 
forum usage? 

Prior Ability  
Enrollees in MOOCs range from high school students to 
professionals with earned doctorates [20]. Because overall 
performance is likely to depend on prior ability, this factor 
should be accounted for in any analysis of “treatment 
effects” from discussion forum usage. However, prior 
ability is typically unavailable information. Not all MOOCs 
survey incoming students, and those that do often survey 
sparsely. Enrollees in the Spring 2012 Circuits and 
Electronics MOOC were not given a pretest. Therefore, 
prior ability had to be inferred from the course data. In this 
study, we chose to estimate prior ability levels from 
performance on homework assignments in the first three 
weeks of the course, when enrollees had just begun to learn 
the content and before discussion forum use had taken off. 
The main idea was that early stage ability estimates were 
not likely to be affected by discussion forum usage, 
whereas final exam performance might be. 

Because homework assignments allowed an unlimited 
number of attempts, the variability of the eventually correct 
(EC) score (the official score of record) was quite low. 
However, scoring items based on whether they were solved 
correctly on the first attempt (CFA) resulted in a far more 

normal distribution (see Figure 2). A host of options for 
scoring homework in the presence of missing data and 
multiple attempts was described in [4]. While approaches 
based on polytomous item response models were most 
predictive of final exam scores, a reasonable improvement 
of the EC score was obtained for observed scores based on 
CFA. For simplicity, we use the mean CFA score, which is 
the proportion of homework problems attempted by each 
enrollee in the first three weeks of the course that were 
solved correctly on the first attempt. Skipped items are 
ignored, rather than scored as incorrect. For detailed 
considerations of homework scoring in MOOCs, we refer 
the reader to [4]. 

 
Figure 2: EC and CFA score distributions 

It should be noted that the issues of homework scoring also 
arise in the final exam, which is our outcome measure. We 
do not consider alternate scoring options, e.g. CFA scoring 
or item response theory, for the final exam. Only three 
attempts were allowed versus unlimited attempts on 
homework, and we did not want to punish students for 
strategically using their available attempts. However, there 
remain issues of examinee motivation, as discussed below. 

Discussion Forum Usage 
The average number of threads viewed per week was 
shown in Figure 1. We now explore the distribution over 
MOOC users of the early stage and late stage intervals 
(grey regions in Figure 1; the purpose of summing was to 
smooth out week-to-week variation.) We are interested in 
knowing both the distribution of counts within each 
interval—e.g. is it simple or bimodal?—as well as across 
the intervals—i.e. do learners exhibit consistent discussion 
usage over time, or does it change? These are important 
considerations for modeling the effect of discussion views. 
Consider students who purposefully increase their reference 
to forums after the midterm and reap performance gains as 
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a result. Modeling their usage as constant over time would 
distort the positive effect. 

As shown in Figure 3, the early/late view count variables 
are of mixed type: many students do not view any threads, 
but among those who view at least one, the counts are 
roughly log-normally distributed. We have added 0.37 to all 
counts, such that after log-transformation, the students with 
zero counts appear in the disjoint bin at -1. As seen in the 
figure, there are roughly 1600 students in this bin for both 
early stage and late stage counts.  

 
Figure 3: Distribution of view counts (log-transformed) 

Figure 3 does not reveal whether there are students who 
significantly increase or decrease their discussion viewing 
between these time periods. Moreover, determining what 
amount of change is significant is a subtle point.  

To address this question, we plot early view counts (scaled) 
against the difference between early and late counts (also 
both scaled) in Figure 4. Scatterplot and point density are 
both shown. There is a floor effect, which appears as a 
diagonal lower bound in the figure, representing students 
who went from a finite number of threads viewed in the 
early period to zero in the late period. Another salient 
feature is that for medium to large values of early counts, 
the change (from early to late counts) seems to be a random 
effect around zero (no change). This random description 
does not however fit all of the data. There does appear to be 
a clump of students on the upper left, whose viewing counts 
increase from very low levels to moderate levels. And there 
are some whose viewing decreases beyond the noise 
threshold. We chose to identify these students as outliers 
from the random distribution. 

We determined empirical means and variances after 
removing low values and then drew a random sample of 
7000 data points from a bivariate normal distribution with 
center  𝜇 =  (4.17, -0.27) and with covariance matrix Σ = 
(1.15, 0, 0, 0.84). Elliptical contours are drawn at the 95% 

and 99% confidence level in the figure. We have also 
included reference lines at the vertical mean value plus and 
minus log(2). The purpose of this second boundary is to 
define a criterion for those students whose early view 
counts were extreme outliers but whose change was still 
modest. Since the vertical axis is a difference of logarithms 
(or the log of the ratio), points outside this inner region 
represent doubling (or halving) in the counts. 

 

 
Figure 4: Change in discussion view counts against early 

counts. Ellipses denote 95% and 99% confidence intervals 
around a bivariate normal uncorrelated distribution. Dashed 

lines at +/- log(2) denote doubling thresholds. 

As a result of this exploratory analysis, we divided our 
initial population into an overall group (N = 6505), whose 
discussion viewing during homework could be seen as 
unchanging over time and thus aggregated into a variable 
𝑉!, and a change group (N = 989), whose viewing change 
𝑉!  should be modeled instead. 𝑉! is the sum of the early 
and late stage counts, and 𝑉!  is the difference. Each would 
subsequently be treated as a continuous variable in an 
overall model or a change model, respectively. 

Assessment-oriented Engagement and Total Time as 
Proxy Measures of Motivation 
Inferences about ability from standard measures of 
performance may not always be valid in a MOOC due to 
differences in enrollees’ motivations for taking the course. 
The expectancy-value model [9] puts the validity problem 
as follows: achievement motivation is influenced by both 
the individual’s expectancies for success and the subjective 
value attached to success on the task. If the value of success 
is low, the examinee’s achievement motivation will be low. 
Motivation thus acts as a source of construct-irrelevant 
variance and impacts the validity of score-based inferences  
[10]. In a meta-analysis of twelve empirical studies, [26] 
found that motivated students scored on average 0.59 
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standard deviations higher than their unmotivated 
counterparts. Such a result highlights the need to evaluate 
examinee motivation and possibly filter data from 
unmotivated test-takers to strengthen the assumption that a 
score obtained from an assessment accurately reflects the 
underlying abilities/traits of interest [1]. 

Consider the final exam score, which typically counts 
heavily toward qualification for a certificate (in the course 
under study, the final counted for 40% of the cumulative 
grade). However, the MOOC certificate is largely symbolic 
when it confers no degree credit. Thus, enrollees whose 
motivations for taking the course do not include 
certification may well view the final exam as low-stakes. 
The consequentiality of certificates may, in fact, change as 
more MOOCs seek accrediting status and even charge fees 
accordingly.  

In the following, we consider three solutions to this 
problem, which is essentially the problem of whom to 
include. The first is to use a heuristic cutoff with respect to 
proportion of items attempted in the initial and final ability 
assessments. In the second solution, we attempt to filter out 
unmotivated students using a simple measure that should be 
relatively insensitive to the initial and final assessments, 
namely total time spent online in the course. The third and 
most intricate solution will be to use a latent class cluster 
analysis to model the course population as a mixture of 
classes based on cumulative evidence of assessment-
oriented engagement (AOE). Thus both AOE and time-on-
task are effective proxy measures for motivation, but we 
continue to use the original term in order to make contact 
with validity literature. 

Motivation heuristic filter on attempts 
Screening out students who attempted less than 60% of the 
HW1-3 items (which constitute our proxy measure of “prior 
ability”) or less than 60% of the final exam leaves 6210 
students. This proportion is chosen to match the passing 
grade threshold of the course; in order to achieve this 
minimum, a student must at the very least attempt the same 
fraction of assessment items. This cutoff ignores the 
proportion of attempts on items in between Week 3 and the 
final exam, which will enter into the latent class analysis. 

Although this is a filter based on attempts and not scores, it 
raises selection bias issues. While low-performing students 
who at least attempted many items would remain, this filter 
does, by definition, remove low scoring students. Thus our 
proxy for motivation is wrapped up in the outcome variable 
of our analysis. The rationale for solution two is partly a 
response to the bias of solution one. 

Motivation heuristic filter on time 
What if there were students who invested significant 
amounts of time and effort in this course but were simply 
unable to answer many questions and were disinclined to 
guess? Alternately, what if there were students who 
carelessly attempted many items, but whose investment in 

the course was more accurately reflected in low overall 
time commitment. Rather than filter on proportion of 
assessment items, we considered overall time spent in the 
course as a proxy for motivation. All activity, including 
video views, was included in this time aggregate, which is 
roughly log-normally distributed (slightly skewed to the 
left) with a median value around 100 hours. At a minimum 
time cutoff of 30 hrs (~1.5 standard deviations below), 679 
students would be excluded, leaving 6815. 

Motivation via latent class analysis of AOE 
In the third approach, rather than determine whom to 
include or exclude, we seek to identify self-similar groups 
of students based on a pattern throughout the course. We 
could then model the effect of discussion viewing 
separately for all groups. Our idea is related to the approach 
in [16], where week-by-week trajectories were clustered. 
The results of that analysis were largely interpreted in terms 
of proportion of assessment attempted, so we went directly 
to that measure as a basis for clustering. We used five 
measures based on proportion of assessment items 
attempted: homework in weeks 1-3, homework in weeks 4-
6, midterm exam, homework in weeks 9-11, and final 
exam. Each student’s record of item attempts was thus 
mapped to a vector of five proportions, and these vectors 
were clustered using the Gaussian mixture model-based 
clustering algorithm in the MClust package [11] in R.  

 

 
Figure 5: Mean values of proportion of items attempted for 

three latent class cluster groups. 

The model-based approach used here differs from the 
clustering method in [16], but the results are consistent. The 
best fit was at three clusters. Mean values for proportion of 
items attempted are plotted in Figure 5. Groups 1-3 roughly 
correspond to what [16] called completing, disengaging, 
and sampling. Probably because we removed in advance 
students who did not attempt at least one final exam 
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problem, we do not have an auditor group, typified by 
students who watch videos but do not attempt any 
assessment items. 

SUBSTANTIVE ANALYSES 
Having operationalized our predictors, we now turn to 
modeling the effect of discussion viewing on final exam 
performance. Using multiple linear regression, we examine 
the standardized regression coefficient for the discussion 
viewing term as a probe of effect size. Based on the 
exploratory analyses described above, discussion viewing 
was treated differently for those students whose usage 
levels were consistent overall versus those who changed 
their viewing amount between the early and late stages. We 
computed two different variables 𝑉! and 𝑉!  for these two 
populations respectively. Variability in motivation was 
handled both through heuristic attempt-based and time-
based filters as well as via latent class analysis.  

Model and results using motivation filters 
Consider the following linear model for predicting the final 
exam 𝑌 using prior ability 𝜃 and overall discussion view 
counts 𝑉𝑂, 

𝑌 = 𝛽! + 𝛽!𝜃 + 𝛽!𝑉! 

The change model is identical except for the substitution of 
view change for overall views. Importantly, the populations 
included for each model are different, as described above.  

Table 1 reports standardized regression coefficients 𝛽! for 
these two models. The first column is the result when 
including all students who attempted at least one final exam 
problem and one homework item in weeks 1-3 (HW1-3 
performance was the basis for estimating prior ability 𝜃). 
The middle column shows results when excluding students 
who spent fewer than 30 hours online. The last column 
shows results excluding those who did not attempt at least 
60% of both the final exam and the weeks 1-3 homework. 

Table 1: Standardized regression coefficients for discussion 
viewing factor in two models under different data thresholds 

(white cells p < .001; grey cells not significant) 

 No filter Time > 30h Attempt > 60% 

Overall 𝛽2 0.24 0.18 -0.01 

Change 𝛽2 0.19 0.19 0.16 
 

The effect of discussion viewing in the overall model (first 
row of Table 1) appears to be significant when no filter is 
applied. But this unfiltered population contains hundreds of 
students who attempted very few assessment items, so these 
coefficients are not necessarily trustworthy. Indeed, the 
effect of overall viewing starts to decline as the population 
is refined in the next two columns. Screening out students 
who spent comparatively little time in the course reduces 
the effect but not by much. On the other hand, after 

screening out students who did not attempt at least 60% of 
those assessment items that formed the basis of the prior 
and outcome performance measures, the effect of 
discussion viewing disappears entirely.  

At the least, it must be said that the effect size of discussion 
viewing in the overall model is sensitive to selection of 
students. We note that these models altogether explain only 
about 10% of the variance in the final exam. The midterm 
exam, for reference, is more predictive (R2 = 0.22). 

The effect of discussion views in the change model (second 
row), in contrast, appears to be more robust under selection 
for motivated students. At first glance, it is not clear 
whether increases in viewing are translating into higher 
scores or decreases in viewing are translating into lower 
scores. The latter could be consistent with attrition, for 
example. However, if attrition were the dominant 
explanation, then the third column coefficient would also be 
small, since course droppers would have been screened out. 
Thus the change model coefficients suggest that increasing 
discussion views are associated with higher final scores. 
We believe that interpretation of this effect is improved 
with reference to the latent class models, described next. 

Model and results for latent class analysis 

Table 2: Standardized regression coefficients for the overall 
viewing model with latent class cluster groups                       

(white cells, p < .005; grey cells are not statistically significant) 

𝑌 = 𝛽! + 𝛽!𝜃 + 𝛽!𝑉! + 𝛽!𝐺 + 𝛽!𝜃𝐺 +   𝛽!𝑉!𝐺  
 0.75 0.14 -0.09 0 0 0 G=1 

    -0.76 0.05 0.05 G=2 

    -0.96 0.09 0.53 G=3 
 

In Table 2 we show the model equation and estimated 
parameters for overall viewing effect with latent class 
cluster assignments. There were significant interactions 
between the cluster groups G and the continuous prior 
ability and discussion variables for the overall model; 
therefore we include five coefficients. Group 1, the 
reference group, attempted almost all assessment items (see 
Figure 5). Because Group 2 and 3 attempted fewer items, 
the main effect for those groups (𝛽!;  p < .001) is a lower 
expected final exam score. Indeed, Group 1 may be thought 
of as a more restrictive subsample from the third column of 
Table 1. The interpretation of this small negative 𝛽!  is not 
necessarily that discussion views hurt, of course. Among 
Group 1 students, more viewing may indicate challenges 
with homework that transfer into challenges on the final.  

Given that students in Group 3 omitted significant numbers 
of assessment items, why would such students reap more 
rewards from viewing discussion threads (𝛽!)? A possible 
explanation is that discussion viewing is a proxy for activity 
within Group 3. Indeed, there were positive correlations 
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between overall views and final exam items attempted 
(0.38) as well as late-stage homework attempted (0.53). 
Students who viewed more also did more assessment items 
relative to other students in this group.  

Finally, Table 3 shows the change model with latent 
classes. Comparing to the second row of Table 1, we see 
now that for Group 1, increasing views are no longer 
associated with higher final exam scores. Recall that this 
group comprises the most active population with respect to 
assessment items. Again, a plausible explanation is that 
increasing discussion views are simply an indication of 
increasing participation in Groups 2 and 3, for example due 
to late joiners to the course. The correlation between 
viewing change and final exam items attempted is low in 
both cases (roughly 0.06), but the correlation with late 
homework attempted is moderate (0.27 and 0.33 for Groups 
2 and 3, respectively). For the sporadic users of assessment 
in these groups, the positive association of increasing 
discussion views over time is there, but it may be linked to 
increasing engagement with the homework.  

Table 3: Change model including latent class cluster groups 
(white cells, p < .05; grey cells are not statistically significant) 

𝑌 = 𝛽! + 𝛽!𝜃 + 𝛽!𝑉! + 𝛽!𝐺 + 𝛽!𝜃𝐺 +   𝛽!𝑉!𝐺  

 0.76 0.18 -0.05 0 0 0 G=1 

    -0.80 -0.06 0.22 G=2 

    -1.14 -0.15 0.21 G=3 

CONCLUSIONS AND FUTURE WORK 
We started out with a simple goal of studying the learning 
outcome benefit from viewing discussion threads while 
doing homework in a MOOC. Along the way, it became 
clear that operationalizing almost all of the variables in this 
equation presented challenges. We have considered 
solutions to several issues that are endemic to MOOCs: 
estimating prior ability; determining whether to use an 
overall or a change model of discussion viewing; and 
screening out unmotivated students for the purpose of 
increasing the validity of inferences.  

In the end, neither overall discussion viewing (for those 
whose viewing was fairly steady) nor change in discussion 
view volume appeared to be significant for students who 
attempted most of the assessment items, i.e. Group 1. The 
gain that appears from a naïve application of a linear model 
to the larger student sample (Table 1, column 1) seems to 
be due to confounding discussing thread viewing with 
participation, among sporadic participants. More work 
would need to be done to decouple use of the discussion 
forum from assessment-oriented engagement, for example 
by treating the latter as a continuous measure rather than as 
an indicator on which to filter the population. Moreover, 
counting discussion thread views is a limited window into 
usage of the forums. We did not analyze posting or 

commenting in this analysis, nor did we discriminate 
between threads using textual analysis. 

We did not say much about why the effect size of 
discussion viewing seemed insensitive to filtering students 
by overall time spent online. We suspect this is because 
there were hundreds of students who scored very highly on 
the final exam in this course but spent almost no time 
learning; in other words, these students already knew the 
content, but took the tests for fun or for the certificate. 

As suggested above, we suspect that late joiners—whose 
increasing viewing over time appeared to associate with 
score gains—were a foil in this analysis. It would be 
interesting to dig deeper into how to model students whose 
trajectories of participation are increasing or decreasing 
over time. Also, although we used the final exam because it 
was an obvious choice, it may be possible to model the 
effect of discussion viewing on homework performance 
directly. There are subtleties to this, because multiple 
attempts increase the likelihood of correct responses. From 
a learning science perspective, looking at how students 
search the forums to get homework assistance may also be a 
fruitful direction. 
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ABSTRACT
With the development of Massive Open Online Courses (MOOC)
in recent years, discussion forums there have become one of the
most important components for both students and instructors to
widely exchange ideas. And actually MOOC forums play the role
of social learning media for knowledge propagation. In order to
further understand the emerging learning settings, we explore the
social relationship there by modeling the forum as a heterogeneous
network with theories of social network analysis. We discover a
specific group of students, named representative students, who fea-
ture large engagement in discussions and large aggregation of the
majority of the whole forum participation, except the large learning
behavior or the best performance. Based on these discoveries, to
answer representative students’ threads preferentially could not on-
ly save time for instructors to choose target posts from all, but also
could propagate the knowledge as widespread as possible. Further-
more if extra attention is paid to representative students in the sight
of their behavior, performance and posts, instructors could readily
get feedback of the teaching quality, realize the major concerns in
forums, and then make measures to improve the teaching program.
We also develop a real-time and effective visualization tool to help
instructors achieve these.

Keywords
MOOC forum, Coursera, influence, behavior, performance, hetero-
geneous network

1. INTRODUCTION
Comparing with the traditional distance education or online cours-
es, discussion forums in Massive Open Online Courses (MOOC)
offer a big and lively venue for communication between students
and instructors, which has been proved important for large-scale
social learning [1, 7, 9]. However, due to their massiveness, the
forums are full of various information relevant and irrelevant to the
course [6]. So how to fast and accurately extract valuable informa-
tion from the large-scale settings has become a problem to which
priority should be given.

Considering Twitter, Facebook or StackOverflow, MOOC forum-
s look similar to some kind of social media because of the large
number of participants and their interactivity. Every member in the
forum may talk about course content, such as asking or answering a
question. The intensive interaction between them actually supports
the knowledge propagation between members of the learning com-
munity. However here comes up a dilemma. In light of knowledge
propagation, the proportion of instructors’ responses is expected as
large as possible in order to resolve students’ questions; But consid-
ering the scale, instructors could not have enough time to read every
thread. In order to cope with this situation, we propose a trade-off
solution that extracts influential students from all and recommend-
ed them to instructors. Then instructors could make decisions in a
much smaller scale and their’ effort would be amplified based on
principles of influence propagation [12, 16, 24].

Although the definition of influence is various from different per-
spectives, we leave aside others except instructor for the time being
in this paper. We conceive in each forum there could be a group of
influential students who attract many others to interact with them,
just like the verified accounts in Twitter. We call them ‘represen-
tative students’ and they involuntarily undertake the responsibility
for knowledge propagation. So instructors could amplify the influ-
ence of right answers by preferentially responding to questions of
representative students. Thus, many more students who pay atten-
tion to representative students’ answers would also benefit without
actually having a response by the instructor. On the other hand,
given that representative students’ threads may get a lot of atten-
tion, instructors could address the main concerns in the learning
community more promptly. Through the rank list of representative
students’ influence, the chief instructor could also realize whether
other instructors (or called TAs) are on duty, since TAs’ influence
could be calculated meanwhile. As we show later in this paper, rep-
resentative students’ performance is not the best within the learning
community, but given their positive motivation and high volume of
messages answering promptly their questions is beneficial for the
whole learning community.

Since posts irrelevant to the course are unavoidable in such a free
forum, for example chatting, making friends or other things, it is
not reasonable to directly regard superposter [9] as representative
students or merely consider their social relationship. Experiments
later in this paper approve the opinion and find post contents are
useful. That being the case, since we regard the interaction in
MOOC forums as the procedure of knowledge propagation in so-
cial media, we could build a heterogeneous network [23] to model
the forum with two kinds of entities by leveraging theories of net-
worked entities ranking. Then we can get a rank list of students’ in-
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fluence from that network with a specially designed algorithm. The
higher a student ranks on the list, the more influential she would
be. This model could fully utilize the social information and tex-
tual messages to avoid outliers or exceptions (e.g. someone who
always submits posts irrelevant to the course).

To our knowledge, this is the first work to adopt a heterogeneous
network to model social relationship in MOOC forums and extrac-
t representative students. We also propose a novel algorithm for
ranking students’ influence based on graphic theories. Experimen-
tal results show the effectiveness and efficiency of the algorithm
are both decent. Through the analysis of representative students’
log data, we find they engage highly and aggregate much participa-
tion except the excellent grades, which suggests they are represen-
tative for instructors to watch the class and are the first low hanging
fruit for increasing the passing rate. Analysis of historical records
of interaction between instructors and students indicates it is time-
saving and meaningful for instructors to recommend threads of rep-
resentative students. Based on those discoveries, we developed a
web service of visualization tool as an assistant for instructors to
achieve the conception of supervising their class effort-savingly.

2. RELATED WORK
In traditional off-line classes, the scale is relatively small and face-
to-face Q&A is not a challenge. And in traditional online education
or online video class, not only the scale is not large enough but the
absence of instructors is very common. However, a widespread
viewpoint is that it is quite important for MOOC to make students
engage in a social learning environment to guarantee and improve
the teaching quality [1, 6, 7, 18].

In view of researches in the field of Community Question Answer-
ing (CQA), issues related to this paper are about expert finding and
forum search [21]. Recently, several novel methods for finding
experts in CQA have been provided [26, 29, 30]. Nevertheless,
there would be rare experts in MOOC forum due to the specifici-
ty that a MOOC forum is not open to all kinds of discussions and
it just belongs to the corresponding course for students to acquire
knowledge. Also the definition of representative students here is
different from that of experts. On the other hand, the task of dis-
covering representative learners and their posts seems like forum
search [3, 19] which develops a mechanism analogous to a search
engine. But here we concentrate on just the ranking result and not
emphasise the accuracy of retrieval. Except those general forum-
related work, recently some researches of MOOC forums have been
published from various perspectives. For example, Yang et al. [25]
tried thread recommendation for MOOC students with method of
an adaptive feature-based matrix factorization framework. Wen
et al. [22] analyzed the sentiment in MOOC forums via students’
words for monitoring their trending opinions. And Stump et al. [20]
proposed a framework to classify forum posts.

The classical PageRank [5] and HITS [14] have been applied on
broad problems of networked entities ranking and been promoted
to solve problems in heterogeneous network [11, 15, 27]. [17, 28]
built a heterogeneous network with two types of nodes to discov-
er the influential authors with scientific repository data, which is
similar to our work. The point in common is to discover influential
entities with iteration by building a graphic model. In this paper,
we leverage that principle and build a new heterogeneous network
to model MOOC forum and discover representative students.

Besides, many MOOC log analysis also involve forums. Ander-

Table 1: Pairs of course code and course title
Course Code Course Title

peopleandnetworks-001 Networks and Crowds
arthistory-001 Art History

dsalgo-001 Data Structures and Algorithms A
pkuic-001 Introduction to Computing

aoo-001 The Advanced Object-Oriented
Technology

bdsalgo-001 Data Structures and Algorithms B
criminallaw-001 Criminal Law

pkupop-001 Practice on Programming
chemistry-001 General Chemistry (Session 1)
chemistry-002 General Chemistry (Session 2)

pkubioinfo-001 Bioinformatics: Introduction
and Methods (Session 1)

pkubioinfo-002 Bioinformatics: Introduction
and Methods (Session 2)

Table 2: Statistics per course
Course # threads # posts # votes

peopleandnetworks-001 219 1,206 304
arthistory-001 273 2,181 1,541

dsalgo-001 283 1,221 266
pkuic-001 1,029 5,942 595
aoo-001 97 515 204

bdsalgo-001 319 1,299 132
criminallaw-001 118 763 648

pkupop-001 1,085 6,443 977
chemistry-001 110 591 65
chemistry-002 167 715 678
pkubioinfo-001 361 2,139 1,474
pkubioinfo-002 170 942 235

Overall 4,259 24,042 -

son et al. [2] deployed a system of badges to produce incentives
for activity and contribution in the forum based on behavior pat-
terns. Huang et al. [9] specially analyzed the behavior of super-
poster in 44 MOOC forums and found MOOC forums are mostly
healthy. Kizilcec et al. [13] did a research on the behavior of stu-
dents disengagement. Some technical reports and study case papers
also involved behavior analysis of MOOC students in forums, such
as [8] and [4]. Nevertheless, we believe incentives established on
intelligent analysis of various data like social information and tex-
tual messages would be more reasonable than on the pure credits
mechanism in traditional forums, since the latter only considers the
quantity of behavior while not the quality.

3. DATASET
We use all the log data of 12 courses from Coursera platform. They
were offered in Fall Semester of 2013 and Spring Semester of 2014.
There are totally over 4,000 threads and over 24,000 posts. For con-
venience later in the paper, Table 1 lists the pairs of course code and
course title. Table 2 shows the statistics of the dataset per course.
Here posts denotes responses including posts and comments. We
can see both the subjects and scales range widely.

4. MODEL AND ALGORITHM
In order to model MOOC forums as social media, the first chal-
lenge is that no explicit post-reply relationship which describes
who replies who is recorded. We simplify this problem and assume
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Table 3: Attributes of the heterogeneous network constructed per course

Course GS GK GSK

nS |ES | |ES |/n2
S nK |EK | |EK |/n2

K |ESK | |ESK |/(nS + nK)2

peopleandnetworks-001 321 3,287 0.032 1,193 104,821 0.074 4,814 0.002
arthistory-001 540 17,022 0.058 3,376 1,019,289 0.089 14,195 0.001

dsalgo-001 295 1,876 0.022 1,152 124,118 0.094 5,009 0.002
pkuic-001 768 19,801 0.034 2,302 302,989 0.057 14,599 0.002
aoo-001 175 1,963 0.064 783 73,208 0.119 2,597 0.003

bdsalgo-001 225 2,369 0.047 781 23,540 0.039 3,133 0.003
criminallaw-001 219 2,971 0.062 1,224 123,737 0.083 4,577 0.002

pkupop-001 628 12,883 0.033 1,748 88,035 0.029 13,807 0.002
chemistry-001 130 886 0.052 1,055 111,026 0.100 2,685 0.002
chemistry-002 125 2,341 0.150 964 61,425 0.066 2,574 0.002
pkubioinfo-001 594 22,275 0.063 686 46,768 0.099 1,946 0.001
pkubioinfo-002 189 1746 0.049 380 16662 0.115 784 0.002

Table 4: Notations
Notation Description

G = (V,E,W ) heterogenous network
GS = (VS , ES ,WS) student subnetwork
GK = (VK , EK ,WK) keyword subnetwork

GSK = (VSK , ESK ,WSK) bipartite subnetwork
nS , nK |VS |, |VK |

if two students appear in the same thread, they have the same top-
ic interests and the one whose post is chronologically later replies
the other. As mentioned in previous sections, post contents of rep-
resentative students should be course-related. Thus it may be not
enough to cover that demand with only extracting the post-reply re-
lationship. Based on the fact that the most post contents are course-
related [9], we add the keywords as another kind of entities into the
model to construct the heterogenous network. The keywords here
are all meaningful nouns in post contents and they could represent
various aspects of topics. Other kinds of parts of speech are un-
explored at the present. The role of keywords in the heterogenous
network is to help the algorithm reinforce the influence of students
who involve more topics, which ensures the need that posts of pre-
sentative students are course-related. Figure 1 shows the demo of
the heterogeneous network, and Table 4 lists the defined notations.

Figure 1: Demo of the heterogeneous network G. Circles de-
note VS and rectangles denote VK . Solid lines with arrows
denote the co-presence relationship between students in the
same thread and arrows denote one whose post is later points
to the other.Dash lines with arrows denote the co-presence of
keywords in the same thread but directed or bidirectional ar-
rows mean the two keywords are in the different post or not.
Dash lines without arrows denote the authorship between s-
tudents and keywords. The weight values mean the times of
co-presence of two entities on corresponding edges. Self co-
presence is meaningless and all ignored.

This model captures the characteristic that representative students

would own more latent post-reply relationship and involve more
topics. After building the network through log dataset, the basic
attributes of graphs per course are calculated (Table 3).

For co-ranking students and keywords, we need an algorithm. We
simulates two random surfers jumping and walking in the hetero-
geneous network and design the algorithm named Jump-Random-
Walk (JRW). We assume the weights W represent the influence
between entities and the algorithm’s task is to discover the most in-
fluential students, namely representative students. Figure 2 shows
the framework of JRW algorithm.

Figure 2: The framework of Jump-Random-Walk algorithm.
β is the probability of walking along an edge within GS or GK .
λ is the probability for jumping from GS to GK or in reverse.
λ = 0 means to discover representative students only by using
post-reply relationship. We assume the probabilities of each
jump or walk are consistent.

Denote s ∈ RnS and k ∈ RnK are the ranking result vectors,
also probability distributions, whose entries are corresponding to
entities of VS and VK , subject to ‖s‖1 ≤ 1 and ‖k‖1 ≤ 1. Denote
the four transition matrixes, GS , GK , GSK and GKS , for iteration
as S ∈ RnS×nS , K ∈ RnK×nK , SK ∈ RnSK×nSK , and KS ∈
RnK×nS respectively. Adding the probability of random jumping
for avoiding trapped in connected subgraph or set of no-out-degree
entities, the iteration functions are

s = (1− λ)(βSs̃+ (1− β)enS/nS) + λSKk̃, (1)

k = (1− λ)(βKk̃+ (1− β)enK/nK) + λKSs̃, (2)
where enS ∈ RnS and enK ∈ RnK are the vectors whose all
entries are 1. The mathematical forms of four transition matrixes
are

Si,j =
wS

i,j∑
i
wS

i,j

where
∑

i
wS

i,j 6= 0, (3)

Ki,j =
wK

i,j∑
i
wK

i,j

where
∑

i
wK

i,j 6= 0, (4)

Proceedings of the 8th International Conference on Educational Data Mining 244



Figure 3: NDCG5% scores of different rankings

SKi,j =
wSK

i,j∑
i
wSK

i,j

, (5)

KSi,j =
wKS

i,j∑
i
wKS

i,j

where
∑

i
wKS

i,j 6= 0. (6)

wS
i,j is the weight of the edge from V S

i to V S
j , wK

i,j is the weight of
the edge between V K

i and V K
j , wSK

i,j is the weight of the edge be-
tween V S

i and V K
j and wKS

i,j is the weight of the edge between
V K
i and V S

j . Actually wSK
i,j = wKS

j,i . When
∑

i
wS

i,j = 0,

it means the student V S
j is always the last one in a thread. If∑

i
wK

i,j = 0, it means the keyword V K
j always has no peer in

a thread. Actually this situation almost never happens in our fil-
tered data.

∑
i
wSK

i,j = 0 is also impossible, which means every
keyword would have at least one author (student). On the contrary,
it does not make sure that every student would post at least one key-
word, because maybe there is some post having nothing valuable or
not containing any nounal keyword. Algorithm 1 shows the detail
of JRW algorithm below.

Algorithm 1 Jump-Random-Walk on G

INPUT S,K, SK,KS, β, λ, ε
1:s← e/nS

2:k← e/nK

3:repeat
4: s̃← s

5: k̃← k

6: s = (1− λ)(βSs̃+ (1− β)enS/nS) + λSKk̃

7: k = (1− λ)(βKk̃+ (1− β)enK/nK) + λKSs̃
8:until |s− s̃| ≤ ε
9:return s,k

5. EXPERIMENTS
We do not exclude the data of instructors (or TAs) and regard every-
one in the forums as ‘students’. So that instructors’ influence can
also be evaluated in the uniform framework. Since the courses are
all in Chinese and the contents are overwhelmingly most in simple

Figure 4: Iteration speed of Jump-Random-Walk

Chinese or traditional Chinese, we filter the non-Chinese contents
in the preprocessing step with a tool of Chinese words segmenta-
tion which is essential for extracting Chinese keywords. Also we
filter the HTML tags irregularly existed. During this process, most
spam and valueless posts are filtered incidentally.

To evaluate the effectiveness of JRW, we set some competitors list-
ed below.

• Post the most (PM), for superposter by quantity. The more
amount and frequency of posts are submitted, the higher she
would rank.

• Be voted the most (VM), for superposter by quality. The
larger ratio of the number of votes earned to the average num-
ber of votes in a forum, the higher she would rank.

• Reputation (RE), for superposter by reputation. It is a repu-
tation score maintained by the Coursera platform and can be
seen as a measure of both the quantity and quality of a forum
student’s contribution.

• PageRank (PR), for representative students only by post-
reply relationship. It computes each forum student’s influ-
ence only in GS with PageRank algorithm.
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Table 5: Representative students’ behavior and performance. P (R|T ) is the proportion of the number of threads initiated by
representative students to the all. P (R|P ) is the proportion of the number of posts by representative students to the all. Over Rate is
the deviation of the average numbers of posts per thread initiated by representative students and the all. P (R|V ) is the proportion
of the number of watching video by representative students to the all. P (R|Q) is the proportion of the number of submitting quiz by
representative students to the all. P (R|C) and P (R|C,D) are the proportions of certificated representative students and certificated
representative students with distinction to the all. Precise is the proportion of the number of posts by instructors in threads initiated
by representative students to that of all the instructors’ posts. Recall is the proportion of the number of threads replied by instructors
to that of threads initiated by representative students.

Course Forum Behavior Learning Behavior Performance Instructor
P (R|T ) P (R|P ) Over Rate P (R|V ) P (R|Q) P (R|C) P (R|C,D) Precise Recall

peopleandnetworks-001 0.205 0.246 1.182 0.084 0.074 0.126 0.167 0.267 0.556
arthistory-001 0.289 0.335 1.125 0.102 0.074 0.109 0.188 0.453 0.190

dsalgo-001 0.177 0.355 5.961 0.061 0.082 0.075 0.038 0.182 0.540
pkuic-001 0.282 0.444 -0.649 0.077 0.088 0.117 0.151 0.328 0.545
aoo-001 0.247 0.328 1.446 0.090 0.056 0.071 0.042 0.351 0.583

bdsalgo-001 0.210 0.473 0.401 0.110 0.047 0.047 0.054 0.286 0.866
criminallaw-001 0.246 0.326 1.524 0.060 0.067 - - 0.504 0.793

pkupop-001 0.283 0.428 1.122 0.095 0.091 0.126 0.212 0.356 0.596
chemistry-001 0.082 0.367 1.706 0.050 0.076 0.078 0.079 0.207 1.000
chemistry-002 0.413 0.494 0.707 0.056 0.042 0.071 0.036 0.362 0.696
pkubioinfo-001 0.260 0.332 -0.963 0.097 0.061 0.075 0.061 0.284 0.713
pkubioinfo-002 0.200 0.445 0.282 0.029 0.035 0.028 0.035 0.210 0.706

• Jump-Random-Walk (JRW), for representative students. It
co-ranks the influence of both forum students and keywords
meanwhile in G.

In order to compare with superposter, we set the same metric that
a student is called a representative student when she is within top
5% of the rank list. Note that other alternative metrics, such as the
threshold of an absolute number, are also feasible. The parameters
used in JRW are β = 0.85, λ = 0.5 and ε = 10−6. λ = 0.2 and
λ = 0.8 are also tried, however the differences are tiny. We adopt
Normalized Discounted Cumulated Gain (NDCG) [10] as the met-
ric which is applicable for evaluating rankings’ quality. We invited
two human judges who both are experienced in MOOC forums.
They give the influence of each top 5% student a score by read-
ing all the contents of related threads. Each thread and post here
are preprocessed to be anonymous and unordered. Score values in-
clude 0, 1, 2 and 3, which denotes strongly disagree, disagree, agree
and strongly agree. Finally the two assessments are averaged.

Figure 3 shows the results of human assessment. JRW outperforms
others among the majority of courses as well as PR, which sug-
gests the necessity of building such a heterogeneous network for
discovering representative students. If instructors would set a rule
to incentivize representative students, JRW could also be more ob-
jective and fairer than simple rankings based on the quantity of
behavior. Here is a phenomenon that students voted the most are
not representative. This is maybe by reason that the majority of
forum students are actually not used to voting the influential posts
while unusual comments earn many. In addition, we carry out the
convergence analysis of JRW algorithm. Figure 4 shows this algo-
rithm can converge rapidly and satisfy the requirement of real-time
computation in large-scale applications.

6. ANALYSIS OF REPRESENTATIVE STU-
DENTS

In this section, we would explore the characteristics of represen-
tative students in two aspects of behavior and performance. Then

based on the model and algorithm proposed, we developed a web
service which can help instructors supervise not only the behav-
ior and performance of each student, but also their relative position
compared with the average level of the whole class. This service
could be competent for instructors to gain feedback of the teaching
quality.

6.1 Behavior and Performance
Firstly, we analyze the difference of behaviors between represen-
tative and non-representative students from a statistic view. Ta-
ble 5 shows the proportions of various behavior of representative
students to the whole forum students per course. The column of
Forum Behavior contains three indicators, among which P (R|T )
and P (R|P ) reflect the degree of representative students’ partici-
pation in forums. Over Rate indicates if the value is over zero, it
means representative students’ threads are more popular than the
average, and vice versa. The values of the three indicators sug-
gest in most forums representative students’ participation is rela-
tively high considering their low ratio, only 5%, and their threads
are more popular. In other words, the result here manifests threads
of representative students initiate the majority of discussions, not
counting in the possible sub-discussions initiated by them within a
thread.

The column of Learning Behavior shows the behavior of watching
video and submitting quiz by representative students. The values
of the two indicators, P (R|V ) and P (R|Q), suggest the degree of
learning behavior of representative students is relatively low com-
pared with their participation, but still larger than 5%. So we can in-
fer that representative students’ learning behavior is just above the
average. This also suggests their motivation is positive by judging
from the value of P (R|Q) which is related to the final certificate.

The column of Instructor demonstrates the necessity of preferen-
tially answering the threads of representative students. Precise sug-
gests instructors spent almost one third energy on answering rep-
resentative students’ questions, while Recall suggests instructors
have answered about two third, up to overall, threads initiated by
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Figure 6: # of standard deviations of representative students outperforming non-representative students on grades per course, com-
paring with superposters by quantity.

Figure 5: # of standard deviations of representative students
outperforming non-representative students on grades averaged
over all courses.

representative students. The historical records explain it is neces-
sary for instructors to discover the representative students and their
posts, since the range and time cost of choosing which post to re-
ply from all are both reduced. The indicator of Over Rate also
implies preferentially answering the threads of representative stu-
dents means more audience would be indirectly beneficial, without
actually having a response by the instructor.

Then we would analyze the performance of representative students
in the forums. Still in Table 5, the column of Performance denotes
the proportions of certificated representative students. P (R|C) and
P (R|C,D) are indicators of the passed and the excellent repre-
sentative students respectively. The values indicate representative
students have the higher proportion among the excellent students
than the passed students in most courses. However it is potential to
improve the proportion of passing rate considering the large forum
participation and positive motivation of representative students. So
they are worthy being paid extra attention by instructors.

Figure 5 shows the standard deviations, that are averaged z-score
grades, to illustrate whether representative students’ averaged grade
outperforms that of non-representative students among all courses,
comparing four different ranking metrics. Superposter by quantity
(PM), superposter by reputation (RE) and representative students
by JRW (JRW) outperform their peers. However, the score of JRW

is lower than that of PM. This may suggest representative students’
performance is better than the peers, but not the group with best
scores, and the top 5% students who post the most have the higher
average score.

From the perspective of each course, representative students’ per-
formances are various. Figure 6 exhibits the same standard devi-
ations per course. We can see representative students do not out-
perform their peers in some courses. Superposter and represen-
tative students almost show the consistent trends except for Gen-
eral Chemistry. Representative students’ grade is lower than that
of superposters by quantity in most courses, which also suggests
representative students may have better performance above the av-
erage but not the best. This phenomenon could be explained that
maybe similar to off-line class, representative students hard to mas-
ter course content would involve more questions and need more
instructions, while superposters by quantity are ones good at the
course and always answer questions. So representative students are
characterised by large participation of discussions, moderate learn-
ing behavior, and above-average performance but not the best.

6.2 Visualization Tool for Instructor
With the various forms of data, an open-and-shut visualization tool
could be helpful for instructor to evaluate representative students
and supervise their behavior. In order to apply the model proposed
in previous sections to an actual function, we scale the final ranking
scores to 0-100 as an index score, and developed such a web service
whose interface looks as Figure 7.

Here we present the typical usage scenario of the service. Instruc-
tors could choose which course to see (Figure 7 A). Surely we
would add role and permission administration to protect privacy
in the future while here is just the demo of use cases. Then instruc-
tors could choose to see how many top students, at most overall
(Figure 7 B). Instructors can also select to see the representative
students’ behavior (Figure 7 C) or their post contents (Figure 7 D).
In the main exhibition area (Figure 7 C) where is a table list, in-
structors can realize the top students’ various behavior, including
forum participation, learning behavior and performance, students’
influence index, and role in the forum. If instructors select to see
‘influential post’, the main area would replaced by the post con-
tents composed by representative students (Figure 7 D). We con-
ceive that Figure 7 D should provide functions for instructors to re-
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Figure 7: Web service interface

spond, rate, provide feedback and/or other post-related operations
like those in the normal forum discussion settings in the future.
Given the menu tab ‘Influencer’ selected, if instructors click the ra-
dio button ahead each record of the list, the behavior of correspond-
ing student would also be presented in the radar chart (Figure 7 E).
The radar chart displays six dimensions about students’ behavior,
that are quiz submission, video watching, vote, response, initiated
thread, and final score. The scale of each dimension ranges from
the minimum to the maximum of each class. Actually there are
two closed hexagons on the radar chart. The fixed one in the mid-
dle denotes the average values in the whole class while the other,
changed with trigger of radio click corresponding to each student,
indicates the behavior of individual student. This radar chart can
help instructors evaluate the behavior of each student comparing
with the whole class under different dimensions.

In our observation and interview, this web service offers instructors
the way to realize the class macroscopically and get feedback of
main concerns in the forum promptly. Note that due to the rapid
speed of our algorithm, this web service can real-timely refresh
with changes of students’ forum behavior.

7. CONCLUSION AND FUTURE WORK
In the MOOC forum settings, different participants may consider
the influence as different definitions. We stand at the side of instruc-
tors and assume the influencers in MOOC forums are representative
students who stimulate and attract much forum participation. They
are actually characterized by lively engagement in forum discus-
sions but unexpected learning behavior and performance, compar-
ing with superposter. They are worthy being paid extra attention
from instructors thereby to improve the course passing rate. Since
they aggregate much discussion, they could be helpful to amplify
instructors’ answers and play the latent roles of knowledge propa-
gation. Through representative students’ influence, instructors can
time-savingly realize the hot topics concerned by the most students.
TAs’ workload can be evaluated incidentally. In general, it is mean-
ingful for instructors to preferentially read and answer representa-
tive students’ threads.

In this paper, we leverage methods and algorithms of social net-
work analysis to model MOOC forums in order to further under-
stand the MOOC social learning settings and provide bases for in-

structors to intervene the social learning. This model has the advan-
tages of fully utilizing social information and textual messages to
identify and rank students’ influence. Thus based on their behavior,
performance and post contents, instructors may make measures to
improve the teaching quality, better with that web service of visu-
alization tool as an assistant.

Nevertheless, we have much future work to refine the discoveries
in this paper. We would attempt other kinds of heterogeneous net-
works with more forum information and explore the effect of pa-
rameters. Some other random walk algorithms, such as HITS and
topic based ones, would be more effective. Furthermore, by inte-
grating our visualization tool into a practical platform, whether the
amplification of knowledge propagation via representative students
is effective and whether the teaching quality could be promoted
still need to be verified through subsequent courses specifically de-
signed in the future.
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ABSTRACT 
There is an emerging trend in higher education for the adoption of 
massive open online courses (MOOCs). However, despite this 
interest in learning at scale, there has been limited work 
investigating the impact MOOCs can play on student learning. In 
this study, we adopt a novel approach, using language and 
discourse as a tool to explore its association with two established 
measures related to learning: traditional academic performance 
and social centrality. We demonstrate how characteristics of 
language diagnostically reveal the performance and social 
position of learners as they interact in a MOOC. We use Coh-
Metrix, a theoretically grounded, computational linguistic 
modeling tool, to explore students’ forum postings across five 
potent discourse dimensions. Using a Social Network Analysis 
(SNA) methodology, we determine learners’ social centrality. 
Linear mixed-effect modeling is used for all other analyses to 
control for individual learner and text characteristics. The results 
indicate that learners performed significantly better when they 
engaged in more expository style discourse, with surface and deep 
level cohesive integration, abstract language, and simple syntactic 
structures. However, measures of social centrality revealed a 
different picture. Learners garnered a more significant and central 
position in their social network when they engaged with more 

narrative style discourse with less overlap between words and 
ideas, simpler syntactic structures and abstract words. 
Implications for further research and practice are discussed 
regarding the misalignment between these two learning-related 
outcomes. 
Keywords 

Social Centrality, Learning, Discourse, Coh-Metrix, MOOCs 

1. INTRODUCTION 
Advances in educational technologies and a desire for increased 
access to learning, are enabling the development of pedagogical 
environments at scale, such as Massive Open Online Courses 
(MOOCs) [41]. Open online courses have the potential to advance 
education on a global level, by providing the masses with broader 
access to lifelong learning opportunities. Additionally, the 
insulated nature of the MOOC web-based platforms allows 
valuable learning dynamics to be detailed at unprecedented 
resolution and scale. As such, the digital traces left by learners are 
regarded as a gold mine that can offer powerful insights into the 
learning process, resulting in the advancement of educational 
sciences and substantially improved learning environments.  

While the scale of the data has grown, making sense of data from 
the learning environments is not a novel effort. Prior to the arrival 
of MOOCs, similar endeavors were undertaken at smaller scale in 
the domains of computer-supported collaborative learning and 
intelligent tutoring systems, among others. The volume of student 
behavior and performance data produced in those interactions 
motivated the fields of educational data mining (EDM) and 
learning analytics (LA) [37]. Both of these research communities 
have leveraged this fine-grained data and aligned with educational 
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theory. The EDM community offer methods for exploring learners 
and educational settings, while LA focuses on the measurement, 
collection, and analyses that aim at optimizing the learning 
process [38]. That said, inquiring into MOOCs and other 
unexplored learning environments requires inputs from both 
communities. Direct application of methodologies, theoretical 
frameworks, and established analytics require deeper 
understanding of the relationships between parts of the whole, to 
enable drawing the relevant parallels with existing research. 

Drawing on this, this paper adopts a novel approach, which uses 
language and discourse as a tool to explore its association with 
two established measures of learning, namely traditional academic 
performance and social centrality. Specifically, we are 
investigating the extent to which characteristics of language 
diagnostically reveal the performance and social position of 
students as they interact in a MOOC. As a methodological 
contribution, we adopt a theoretically grounded computational 
linguistics modeling approach to explore students’ forum posting, 
within a MOOC, across five potent discourse dimensions. In line 
with current practice, we implement a Social Network Analysis 
(SNA) methodology to monitor and detect learners’ social 
centrality.  Students’ performance in the course, i.e. course grade, 
is represented by an aggregate measure combining scores for the 
essays submitted during the MOOC, and a final peer-evaluated, 
open-ended written-assignment. Linear mixed-effects modeling 
approach is used for all other analyses to control for individual 
learner and text characteristics. This design allows us to contrast 
the linguistic profiles of high performing learners and centrally 
situated learners. Consequently, we gain insights into the 
qualitative differences between these two different learning-
related outcomes. Finally, we explored whether the discourse 
features characterizing learning-related outcomes varied within 
different learner population, namely across all learners in the 
MOOC and within a subset of active learners.   
The subsequent sections of the paper are organized as follows. 
First, we provide a brief overview of language and discourse 
situated within the contexts of psychological frameworks of 
comprehension and learning. Then, the following two sections 
address the traditional application of social network analysis, 
including theoretical foundations, as well as interpretations 
applied in MOOCs research. We then move into the 
methodological features of the current investigation, and conclude 
the paper with a detailed discussion of the results in the context of 
theory, as well as a general discussion of the theoretical, 
methodological, and practical implications for the EDM and LA 
community.  

2. THEORETICAL BACKGROUND 
2.1 Language and Discourse 
Across academic fields, there has been a burgeoning literature 
demonstrating the usefulness of language and discourse in 
predicting a number of psychological, affective, cognitive, and 
social phenomena, ranging from personality to emotion to 
learning to successful group interactions (e.g. [6,10,26]). Within 
the educational contexts, there are many critical learning-related 
constructs that cannot be directly measured, but can be inferred 
from measurable signals like language and other behavioral 
patterns. Working with these barriers, we are continually pushing 
beyond the boundaries of established implementation. In that 
realm, it is particularly important that these endeavors be guided 
by established theory. A number of psychological models of 
discourse comprehension and learning, such as the construction-
integration, constructionist, and indexical-embodiment models, 

lend themselves nicely to the exploration of learning related 
phenomena in computer-mediated educational environments. 
These psychological frameworks have identified the 
representations, structures, strategies, and processes at multiple 
levels of discourse [16,23,40]. Five levels have commonly been 
offered in these frameworks: (1) words, (2) syntax, (3) the explicit 
textbase, (4) the situation model (sometimes called the mental 
model), and (5) the discourse genre and rhetorical structure (the 
type of discourse and its composition). In the learning context, 
learners can experience communication misalignments and 
comprehension breakdowns at different levels. Such breakdowns 
and misalignments have important implications for the learning 
process. In this paper we adopt this multilevel approach to the 
analysis of language and discourse. 
With regard to analytical approaches, there has been extensive 
knowledge gleamed from manual content analyses of learners’ 
discourse during educational interactions, however, these methods 
are no longer a viable option with the increasing scale of 
educational data. As such, researchers have been incorporating 
automated linguistic analysis, including more shallow level word 
counts and deeper level discourse analysis approaches. Both 
levels of linguistic analysis are informative. Content analysis 
using word-counting methods allows getting a fast overview of 
learners’ participation levels, as well as assessing specific words. 
For instance, a study by Wen and colleagues [43] is an example of 
incorporating word counts (LIWC) of theory-informed and 
carefully selected words with manual message coding. Their work 
links specific (and thus identifiable and countable) words used by 
the students with the degree of their engagement and commitment 
to remain in the course.  

To extend analysis of learning-related phenomena beyond the 
shallow level word counts, one needs to conduct a deeper level 
discourse analysis employing sophisticated natural language 
processing techniques, e.g. syntactic parsing and cohesion 
computation. For example, Dowell and colleagues [11] explored 
the possibility of using discourse features to predict student 
performance during collaborative learning interactions. Their 
results indicated that students who engaged in deeper cohesive 
integration and generated more complicated syntactic structures 
performed significantly better. In line with this, Cade and others 
[3] demonstrated that cognitive linguistic cues can be used in 
detecting students’ socio-affective attitudes towards fellow 
students in CMCL environments. As a whole, these studies 
highlight the critical and complex role of language and discourse. 
This is, perhaps, not surprising, since language is a primary means 
for expressing and communicating information in computer-
mediated learning environments. 

2.2 Social Network Analysis in Educational 
Research  
Social Network Analysis (SNA) is a methodology that is 
increasingly being used for analyzing learning-related 
phenomena, especially in online settings [25]. SNA has gained 
popularity with researchers who view social relationships between 
students as an aspect influencing overall educational experience 
and learning outcomes (i.e. [33]). Its methodology is grounded in 
systematic empirical data [4:8], as well as “motivated by a 
relational intuition based on ties connecting social actors” (ibid.). 
Studies that employ SNA, aim at revealing the role of social 
relationships in learning, around such issues as who is central in a 
social learning network, who is talking to whom, and who is 
participating peripherally and how those interaction patterns 
influence learning [4,25,42]. Due to such focus, SNA provides the 
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theoretical and methodological tools to understand activities and 
social processes that students and teachers engage with. [25,31]  

Traditionally, the analyses of social networks of learners have 
been derived from participation in discussion forums in formal 
online courses. The relationship between learners’ position in a 
social network and student academic performance is well 
documented, in this context [5,14,33]. The general finding in this 
literature shows more centrally situated learners tend to get higher 
final grades [33]. Moreover, Russo and Koesten [34] showed that 
network centrality (measured as in-degree and out-degree) is a 
significant predictor of cognitive learning outcome. Rizzuto and 
others [32] found that network density significantly predicted the 
scores reflecting course material comprehension. Reflective of the 
finding from these studies a students’ position in a network also 
influences their overall sense of community [9]. These studies 
suggest, in the context of formal online learning, individuals who 
are centrally positioned in their network perform better, and feel a 
stronger sense of connection than students that are more 
peripheral in the network structure. 

In the context of MOOCs, SNA is increasingly used to explore 
learning-related phenomena [13]. For example, Gilliani et al. [15] 
applied SNA to capture broad trends in communication and the 
roles of individuals in facilitating discussions [15]. Another 
example of SNA in MOOCs is a study by Yang and colleagues 
[44], which suggests that learners who join forums (i.e. networks 
of learners) earlier are likely to persist in the course, in contrast to 
their counterparts who joined later and found it difficult to form 
social bonds. This finding is parallel to prior findings in the 
domain of traditional online learning revealing that learners 
central to the social network tend to have a higher sense of 
belonging to the group [8]. However, there is research that 
suggests the interpretation of SNA in MOOCs requires further 
attention. For example, the relationship between student centrality 
in MOOC discussion forums and their academic performance 
(i.e., final grade), has been shown to be context dependent [21]. 
Jiang and colleagues [21] demonstrated that in Algebra MOOC, 
betweenness and degree centrality yielded significant correlation 
with the final grade, while none of the metrics analyzed (i.e., 
closeness, degree, and betweenness centrality) was significantly 
correlated with the learning outcome in a Financial Planning 
MOOC.  

Automated linguistic analysis of student interactions, within 
computer-mediated learning environments, can compliment SNA 
techniques by adding rich contextual information to the structural 
patterns of learner interactions. However, the combination of 
these two analytical methods is relatively sparse in the literature, 
beyond a few noteworthy exceptions [22,36]. Similar to the 
current work, is Joksimović and colleagues’ [22] analysis of 
students’ interaction patterns in a distributed MOOC, i.e. learner 
interactions take place via social media, and the course is based on 
connectivist pedagogy. Their findings pinpoint specific discourse 
features that were predictive of a learners’ accumulation of social 
capital.  

2.3 Research Questions 
To summarize, SNA is a widely used tool for exploring learning 
processes that take place in MOOCs, largely due to its theoretical 
foundation and established application in formal educational 
contexts. However, given the open nature of scaled online 
courses, the interpretation of SNA in MOOCs requires further 
attention. This study approaches language as the primary means 
for communication and a window into inferring learning-related 
phenomena. We apply discourse analysis as a proxy for providing 

qualitative information about the position of learners in the 
network and their performance. The analysis focuses around the 
following research questions: Which characteristics of language 
diagnostically reveal the performance and social position of 
students as they interact in a MOOC? And do these features 
operate similarly with different learner populations, namely across 
all learners in a MOOC and within a subset of active learners? 

3. METHODS  
3.1 Participants  
The study analyzed forum discussion posted on the edX platform, 
within the course NGI101x Next Generation Infrastructures 
(NGIx). It ran for 8 weeks in the period of April 22 – July 8, 2014. 
The subject area of the analyzed MOOC fell under the domain of 
applied non-life soft sciences [2]; the course objective was to 
introduce the complexity of infrastructure systems, familiarize 
students with the main concepts within the area, as well as with 
the practical approaches to the infra-systems analysis. In total 
16,091 participants enrolled and 517 received certificate of 
completion (passed). To pass the course the students needed to 
receive a score of 0.7 (out of 1) or higher. The grade was derived 
from the submission of 3-6 open-ended papers (60% of the grade) 
and a final issue paper (40% of the grade) that was peer assessed 
by several co-learners. The dataset for the analysis in this study 
included 1,754 participants (Npost=7,244, M=4.13, SD=9.85, 
Q1=1.0, Q3=4.0, Min=1.0, Max=180), i.e. all those who used the 
course forum. Forum data was collected from the edX platform in 
the JSON format, and included all the information specified 
within the edX discussion forums data documentation1. 

3.2 Analyses 
3.2.1 Social Network Analysis 
Although other approaches have been proposed, the most 
common approach for extracting social networks from online 
discussions is to consider each message as directed to the previous 
one in the thread [25,31]. In the current study, we followed the 
approach suggested in [24,25,31], among others. Specifically, 
social graph representing interaction within the discussion forum 
included all the students who posted a message(s). For example, 
author A1 initiated the discussion, and author A2 posted a 
message directly into the thread, in reply to A1’s initial thread 
message, we would add directed edge A2->A1. Then, if author A3 
replied to the message posted by author A2, we would include a 
direct edge A3->A2 to the graph. If author A4 started a nested 
discussion as a reply to A1’s initial post, then A4 would have a 
direct edge to A1. The concept of centrality has been commonly 
used to assess the importance of an individual node within a social 
network [12,42]. The following well-established SNA measures 
[42], that capture various notions of a graph structural centrality, 
were calculated for each learner in the social network extracted:  
• Degree Centrality – the number of edges a node has in a 

network; 
• Closeness Centrality – the distance of an individual node in 

the network from all the other nodes; 
• Betweenness Centrality – the number of shortest paths 

between any two nodes that pass via a given node. 
Degree centrality is generally used to capture the “potential for 
activity in communication” [12:219] or the popularity [31] of a 
node in a social network. Betweenness centrality, on the other 
hand, represents a potential for influence over the information 
                                                                    
1 http://devdata.readthedocs.org/en/latest/internal_data_formats/discussion_data.html 
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flow, as it bridges the parts of the network that were disconnected 
otherwise [12,31,42]. Finally, the concept of closeness centrality 
refers to the distance between a learner and the other participants 
of the network. In a MOOC, closeness centrality can be 
interpreted as the extent to which a learner is in the middle of 
what is happening on the forum. The relationship between 
students’ linguistic properties and their position in the social 
network, measured through the three properties described above, 
has been investigated in this study. The social network variables 
were analyzed using igraph 0.7.1 [7], a comprehensive R software 
package for complex social network analysis research. 

3.2.2 Coh-Metrix Analyses  
Prior to Coh-Metrix analyses, the logs were cleaned and parsed to 
facilitate a student level evaluation. Thus, text files were created 
that included all contributions from a single learner, yielding a 
total of 1,754 text files, one for each student. All files were then 
analyzed using Coh-Metrix. Coh-Metrix (www.cohmetrix.com) is 
a computational linguistics facility that provides measures of over 
100 measures of various types of cohesion, including co-
reference, referential, causal, spatial, temporal, and structural 
cohesion [18,26]. Coh-Metrix also has measures of linguistic 
complexity, characteristics of words, and readability scores. 
Currently, Coh-Metrix is being used to analyze texts in K-12 for 
the Common Core standards and states throughout the U.S. More 
than 50 published studies have demonstrated that Coh-Metrix 
indices can be used to detect subtle differences in text and 
discourse [26].  

There is a need to reduce the large number of measures provided 
by Coh-Metrix into a more manageable number of measures. This 
was achieved in a study that examined 53 Coh-Metrix measures 
for 37,520 texts in the TASA (Touchstone Applied Science 
Association) corpus, which represents what typical high school 
students have read throughout their lifetime [17]. A principal 
components analysis was conducted on the corpus, yielding eight 
components that explained an impressive 67.3% of the variability 
among texts; the top five components explained over 50% of the 
variance. Importantly, the components aligned with the language-
discourse levels previously proposed in multilevel theoretical 
frameworks of cognition and comprehension [16,23,40]. These 
theoretical frameworks identify the representations, structures, 
strategies, and processes at different levels of language and 
discourse, and thus are ideal for investigating trends in learning-
oriented conversations. Below are the five major dimensions, or 
latent components, that may be useful for understanding trends in 
learning-oriented, but inherently social, conversations: 
• Narrativity. The extent to which the text is in the narrative 

genre, which conveys a story, a procedure, or a sequence of 
episodes of actions and events with animate beings.  
Informational texts on unfamiliar topics are at the opposite 
end of the continuum.  

• Deep Cohesion. The extent to which the ideas in the text are 
cohesively connected at a deeper conceptual level that 
signifies causality or intentionality.   

• Referential Cohesion. The extent to which explicit words 
and ideas in the text are connected with each other as the text 
unfolds.  

• Syntactic Simplicity. Sentences with few words and simple, 
familiar syntactic structures. At the opposite pole are 
structurally embedded sentences that require the reader to 
hold many words and ideas in working memory.  

• Word Concreteness. The extent to which content words that 
are concrete, meaningful, and evoke mental images as 
opposed to abstract words. 

3.2.3 Data Preparation 
The students’ performance, linguistic and network data were 
merged to facilitate subsequent statistical analyses. Following 
this, the scores were centered and normalized by removing any 
outliers. Specifically, the normalization procedure involved 
Winsorising the data based on each variable’s upper and lower 
percentile. Finally, we were interested in exploring whether the 
discourse features characterizing learning-related outcomes varied 
within different learner population, namely across all learners in 
the MOOC and within a subset of active learners.  To enable this 
analysis, we created two datasets. The All Learner dataset 
contained data for the full 1,754 students that participated in the 
MOOC. We operationalized active students as those learners who 
made 4 or more posts in the MOOC. The cut-off point was chosen 
because the top 25% of learners made 4 or more posts.  The 
resulting Active Learner dataset contained the data for those top 
471 learners. 

3.2.4 Statistical analyses 
A mixed-effects modeling approach was adopted for all analyses 
due to the structure of the data (e.g., inter-individual and word 
count variability) [30]. Mixed-effects models include a 
combination of fixed and random effects and can be used to assess 
the influence of the fixed effects on dependent variables after 
accounting for any extraneous random effects. The primary 
analyses focused on identifying the association between the 
discourse features, namely, Narrativity, Deep Cohesion, 
Referential Cohesion, Syntax Simplicity, and Word Concreteness 
and the learning outcomes, measured through learners’ social 
centrality and grades. Therefore, we identified two sets of 
dependent measures in the present analyses: (1) learners’ social 
centrality (Closeness, Degree, and Betweenness) and (2) learners’ 
performance in the course (the final grade). The independent 
variables in all models were the five discourse features of interest.  

Additionally, the influence of language on learning and social 
capital might vary depending on relevant learner characteristics. 
For instance, discourse may play a more meaningful role, for 
student performance and social position in a network, for more 
active learners than less active learners [25]. This would be in line 
with Gillani and others [15] conclusion that suggests the social 
network extracted from the learner interactions “was a noise-
corrupted version of the “true” network” (p.2). Thus, we decided 
to further refine our analysis and create social graph only for those 
learners who actively participated in discussions (for the cut-off 
point see Section 4.2). This resulted in an additional four models, 
labeled as Active Learners, exploring the influence of language on 
learners’ social centrality (three models) and performance (one 
model) for the most active participants in the course. 

It is important to note that in addition to constructing the models 
with the five discourse features as fixed effects, null models with 
the random effects (learner and word count) but no fixed effects 
were also constructed. A comparison of the null random effects 
only model with the fixed-effect models allows us to determine 
whether discourse predicts social centrality and performance 
above and beyond the random effects. Akaike Information 
Criterion (AIC), Log Likelihood (LL) and a likelihood ratio test 
were used to determine the best fitting and most parsimonious 
model. In addition, we also estimate effect sizes for each model, 
using a pseudo R2 method, as suggested by Nakagawa and 
Schielzeth [28]. For mixed-effects models, R2 can be 
characterized into two varieties: marginal R2 and conditional R2. 
Marginal R2 is associated with variance explained by fixed factors, 
and conditional R2 is can be interpreted as the variance explained 
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by the entire model, namely random and fixed factors. Both 
marginal (R2

m) and conditional (R2
c) R2 convey unique and 

relevant information regarding the model fit and variance 
explained, and so we report both here. The lme4 package in R [1] 
was used to perform all the required computation. 

4. RESULTS AND DISCUSSION 
4.1 Discourse and Learning   
First, we assessed the relationship between learners discourse 
patterns and performance in the MOOC. The likelihood ratio tests 
indicated that both the All Learner and Active Learner models 
yielded a significantly better fit than the null model with χ2(5) = 
82.57, p = .001, R2

m = .05, R2
c = .93, and χ2(5) = 85.44, p = .001, 

R2
 m = .21, R2

c = .95, respectively. A number of conclusions can 
be drawn from this initial model fit evaluation and inspection of 
R2 variance. First, the model comparisons imply that the discourse 
features were able to add a significant improvement in predicting 
the learners’ performance above and beyond individual participant 
characteristics. Second, for the All Learner model, discourse and 
individual participant features explained about 93% of the 
predictable variance, with 5% of the variance being accounted for 
by the discourse features. However, the discourse features alone 
were able to explain a total of 21% of predictable variance in 
active learners’ performance. The observed difference in variance 
suggests discourse features are more accurate at predicting active 
learners’ performance than that of learners who are less active in 
the course. It is important to note that the difference in the 
explained variance for the All Learner and Active Learner models 
is not a result of the students simply being more prolific, because 
we controlled for number of words. Instead the findings might be 
reflecting a more substantive difference for the active students’ 
potency of thought integration, complexity and communication 
style, beyond the observation that they are communicating more, 
compared to the overall learner population. Table 1 shows the 
discourse features that were predictive of learning performance 
for both the All Learner and Active Learner models. As can be 
seen from Table 1, all five levels of discourse were predictive of 
learning performance for the All Learner models, and four of the 
five levels were predictive of learning in the Active Learner 
models. Specifically, learners who engaged in more expository 
style discourse with referential and deep level cohesive 
integration, abstract language, and simple syntactic structures 
performed significantly better in the course.  

Narrative discourse expresses events and actions performed by 
characters that unfold over time, as is typical in everyday oral 
communication, folktales, drama, and short stories [35]. In 
contrast to narrative, expository language is decontextualized and 
generally informs the audience about new concepts, broad truths, 
and technical material as in the case of academic articles and 
college textbooks. The genre of a text can be particularly 
revealing with regard to its difficulty. For example, narrative text 
is substantially easier to read, comprehend, and recall than 
informational or expository text [16]. From a constructionist 
theory [19,20] view, this is because expository discourse 
frequently presents abstract categories and less familiar 
information that require learners to have extensive background 
knowledge about the topics in order to generate the inferences 
necessary for comprehension [39]. As a reminder, our measure of 
narrativity/expository is a single continuum, wherein higher 
numbers indicate narrative style discourse and lower numbers 
indicate expository style discourse. Thus, the negative findings for 
Narrativity (Table 1) can be extrapolated to conclude that learners 
who articulated their responses in a more expository style, 

mirroring the informational nature of their class material, 
extracted enough information about the subject to generate 
inferential processing. Such interpretation is in line with other 
research showing knowledgeable students develop more 
comprehensive representations from material than less 
knowledgeable students [27], and can inferentially relate the 
information they derive from text better than readers with less 
background knowledge.  

In line with Kintsch’s [23] construction-integration theory, Coh-
Metrix distinguishes between multiple types of cohesion which 
fall under two main forms, namely textbase (i.e. referential 
cohesion) and situation model cohesion (i.e. deep cohesion). 
Referential or textbase cohesion is primarily maintained through 
the bridging devices, i.e. the overlap in words, or semantic 
references. In this context, the findings for referential cohesion 
suggest that learners who perform better, construct their messages 
using more bridging devices   
A theory of situation model cohesion has been described by [45] 
that characterizes it as knowledge elaborations that are product of 
incorporating information derived from the explicit texts with 
background world knowledge. Coh-Metrix analyzes the situation 
model dimension on causation, intentionality, space, and time 
[26]. With regard to the findings for deep cohesion, this suggests 
that students who are learning are engaging in deeper integration 
of topics with their background knowledge, generating more 
inferences to address any conceptual and structural gaps, and 
consequentially increasing the probability of comprehension. The 
results for syntax show that simple syntactic structures were 
associated with better performance. However, this finding was not 
significant in the Active Learner model. 

Table 1. Descriptive Statistics and Mixed-Effects Model 
Coefficients for Predicting Performance with Language 

Measure All Learner Model Active Learner Model 

 M SD β SE M SD β SE 

Narrativity  0.00 1.00 -.20** .02 -0.23 0.69 -.60** .07 

Deep  
Cohesion 

0.00 1.00 .08** . 02 0.27 0.55 .19* .08 

Referential 
Cohesion 0.00 1.00 .08** . 02 -0.26 0.64 .35** .07 

Syntax 
Simplicity  

0.00 1.00 .07** . 02 0.36 0.67 .08 .07 

Word  
Concreteness  

0.00 1.00 -.13** . 02 -0.25 0.51 -.35** .09 

Note: * p < .05; ** p < .001. Mean (M). Standard deviation (SD). 
Fixed effect coefficient (β). Standard error (SE). All Learner 
Model N= 1754, Active Learner Model N= 471. 

Coh-Metrix measures psychological dimensions of words that 
influence language complexity. As a reminder, our measure of 
word concreteness is a single continuum, wherein scores are 
higher when a higher percentage of the content words are 
concrete, are meaningful, and evoked mental images – as opposed 
to being abstract. Thus, the negative findings for word 
concreteness show learners who engaged using more abstract 
language performed significantly better in the course. There are 
interesting interpretations from the view of Petty and Cacioppo’s 
Elaboration Likelihood Model (ELM) [29]. The ELM outlines 
several factors that affect both the ability and motivation to 
elaborate on arguments contained in messages. If ability to 
process is impaired, or motivation to process is low, the 
elaboration and thought density of the learners’ communication 
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would likely suffer. With the exception of syntax ease, the 
findings suggest students who adopt central route linguistic 
characteristics perform significantly better than those who use 
peripheral linguistic features.  

4.2 Discourse and Social Centrality     
Next, we investigated the relationship between learners’ discourse 
patterns and their position in the social network. The likelihood 
ratio tests indicated that the All Learner models for Closeness, 
Betweenness and Degree yielded a significantly better fit than the 
null random effects only models with χ2(5) = 135.74, p = .001, 
R2

m = .07, R2
c = .93, χ2(5) = 25.63, p = .0001, R2

m = .01, R2
c = .91, 

and χ2(5) = 62.19, p = .0001, R2
m = .02, R2

c = .94, respectively. 
Similarly, for the Active Learner models, the likelihood ratio tests 
indicated that Closeness, Betweenness and Degree yielded a 
significantly better fit than the null models with χ2(5) = 38.39, p = 
.0001, R2

m = .08, R2
c = .94, χ2(5) = 45.92, p = .0001, R2

m = .09, R2
c 

= .94,  and χ2(5) = 63.78, p = .0001, R2
m = .12 and R2

c = .96, 
respectively. Similar to the results for performance, the model 
comparisons imply that the discourse features were able to add a 
significant improvement in predicting the learners’ social 
centrality above and beyond participant characteristics. In line 
with this, across the three All Learner models, our features 
explained about 92% of the predictable variance, with 10% of the 
variance being accounted for by the linguistic features. However, 
the discourse features were able to explain a total of 29% of 
predictable variance in active learners’ social centrality. Again, 
this suggests discourse more accurately predicts active learners’ 
position than less active learners. The details of the All Learner 
and Active Learner models are reported in Table 2 and Table 3. 
Interestingly, the pattern of discourse features associated with 
learners’ social centrality differed from the one observed for 
students’ performance in the MOOC. Instead, learners who 
garnered central positions in the network engaged in narrative 
discourse with lower referential cohesion, abstract words and 
simple syntactic structures. With the exception of word 
abstractness, this pattern is indicative of informal communication.  

Across all learners, higher closeness centrality is characterized by 
more narrative style discourse with less overlap between words 
and ideas (i.e. low referential cohesion), simple syntactic 
structures and abstract words. For active learners, the pattern is 
similar, with only narrativity and referential cohesion being 
significant. The conventional interpretation of closeness centrality 
indicates the efficiency of an individual in passing the information 
directly onto all other individuals in the social network [12]. Due 
to the nature of MOOC centralized forums, it can be inferred that 
shorter distance to all the learners can be obtained, if the 
individual participates in many various discussion threads. 
Therefore, individuals who are more active and initiate more 
topical messages yielding replies from many other learners, or 
reply to many other discussions, would use language 
characterized by simpler structures, narrative style, and lower 
referential cohesion. Similar pattern for higher narrativity and 
lower referential cohesion has been observed in the discourse of 
learners with high degree and betweenness centrality in a 
distributed MOOC – a course where learner interactions take 
place on social media, rather than on the course platform [22]. 
Although conventionally betweenness centrality is associated with 
the brokering of information between sub-groups, this is 
questionable in the context of an online open centralized 
discussion forum.  
These results suggest that learners who attained a more prominent 
social centrality position used more conversational style 
discourse. Most noteworthy is that these results do not mirror the 

pattern observed for high performing learners. On the contrary, 
linguistic profiles of high performing learners are characterized by 
formal discourse that uses expository style language (i.e. negative 
relationship with narrativity), and more surface and deep level 
cohesive integration (i.e. positive relationship with referential and 
deep cohesion) (Table 1). 
 Table 2. All Learner Mixed-Effects Model Coefficients for 
Predicting Social Network Centrality with Language 

Measure Closeness  Betweenness Degree 

 β SE β SE β SE 

Narrativity  .070* .03 .03 .03 .07** .02 

Deep Cohesion .008 .02 .01 .02 -.02 .02 

Referential Cohesion -.15** .03 -.02 .03 -.06** .02 

Syntax Simplicity  .13** .03 .09* . 03 .06* .02 

Word Concreteness  -.09** .03 -.03 . 02 -.05* .02 

  Note: * p < .05; ** p < .001. Mean (M). Standard deviation 
(SD). Fixed effect coefficient (β). Standard error (SE). N= 1754. 

Table 3. Active Learner Mixed-Effects Model Coefficients for 
Predicting Social Network Centrality with Language 

Measure Closeness  Betweenness Degree 

 β SE β SE β SE 

Narrativity  .32** .07 .17* .07 .21** .06 

Deep Cohesion -.06 .08 .02 .08 .05 .08 

Referential Cohesion -.33** .07 .11 .07 .09 .07 

Syntax Simplicity  .07 .07 .42** .07  .47** .07 

Word Concreteness  .14 .09 -.07 .09 -.06 .09 

    Note: * p < .05; ** p < .001. Mean (M). Standard deviation 
(SD). Fixed effect coefficient (β). Standard error (SE). N= 471. 

5. GENERAL DISCUSSION 
This paper adopted a novel approach, which uses language and 
discourse as a tool to explore its association with two established 
measures of learning, namely traditional academic performance 
and social centrality. Specifically, we explored the extent to which 
characteristics of discourse diagnostically reveal the performance 
and social position of learners as they interact in a MOOC. The 
findings present some methodological, theoretical, and practical 
implications for the educational data mining and learning 
analytics communities. First, as a methodological contribution, we 
have highlighted the rich contextual information that can be 
gleaned from combing deeper level linguistic analysis and SNA. 
Particularly, discourse features add a significant improvement in 
predicting both the performance and social network positioning in 
MOOC forums.  

Secondly, the results pose some important theoretical and 
practical implications for transferring analytic approaches to 
scaled environments without careful consideration. The results 
indicate that learners who performed significantly better engaged 
in more expository style discourse, with surface and deep level 
cohesive integration, abstract language, and simple syntactic 
structures. However, linguistic profiles of the centrally positioned 
learners differed from the high performers. Learners with a more 
significant and central position in their communication network 
engaged using a more narrative style discourse with less overlap 
between words and ideas, simpler syntactic structures and abstract 
words. In other words, high performers and those with central 
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positions in the network are not necessarily the same individuals. 
The misalignment between the linguistic features associated with 
improved performance and more centrally located network 
positions is captured by the discrepant pattern for narrative, 
referential and deep cohesion. These three discourse features are 
inversely related with high performance and centrality in 
networks. This difference has important implications because 
these linguistic dimensions are strongly associated with 
comprehension according to construction-integration and 
constructivist theories.  

The study also suggests that in open online environments two 
established measures of learning: traditional academic 
performance and social centrality reflect different learning 
outcomes. Academic performance represents a snapshot of 
students’ mastery of the subject, and is one way of accessing the 
state of subject comprehension. Positioning in social network 
represents a snapshot of the participation processes and social 
learning activities. In this study, we demonstrate that the skills 
associated with these two learning-related outcomes differ.  

It could be speculated that the observed misalignment between 
linguistic performance and social network position in the analyzed 
open online course, shows the difference in communication 
patterns of formal and informal learning environments. Formal 
learning environments have a clearer start and end, and often 
require participation related to the subject matter, as embedded in 
tasks, or course design. In open learning environments, adult 
learners can opt in and opt out of the learning situations. The issue 
is further complicated by the discussions being held by the 
learners on MOOC forums on various topics: from subject matter, 
to technical troubleshooting, or clarification of administrative 
issues. Centralized forums of MOOCs are more than a social 
learning space; they are also a communication space. As a result, 
learners’ high activity on a number of issues during one or two 
weeks of the course may result in a more central position in the 
network of learners, but may not necessarily indicate that the 
learners engaged with the content, or demonstrated the required 
understanding of the subject at the end of the course.  
It is unclear from this study what relationship should be deduced 
between learning and social centrality measures within in the open 
online environments. At the minimum, the findings suggest that 
the social positioning in a network of learners in a MOOC may 
not be equivalent with measured academic performance. Further 
research is needed to understanding what analytical approaches, 
such as SNA, are reflecting in emerging educational 
environments.  
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ABSTRACT 
The current study investigates the degree to which the lexical 

properties of students’ essays can inform stealth assessments of 

their vocabulary knowledge. In particular, we used indices 

calculated with the natural language processing tool, TAALES, to 

predict students’ performance on a measure of vocabulary 

knowledge. To this end, two corpora were collected which 

contained essays from early college and high school students, 

respectively. The lexical properties of these essays were then 

calculated using TAALES. The results of this study indicated that 

two of the linguistic indices were able to account for 44% of the 

variance in the college students’ vocabulary knowledge scores. 

Additionally, the significant indices from this first corpus analysis 

were able to account for a significant portion of the variance in the 

high school students’ vocabulary scores. Overall, these results 

suggest that natural language processing techniques can inform 

stealth assessments and help to improve student models within 

computer-based learning environments.  

Keywords 

Intelligent Tutoring Systems, writing, Natural Language 

Processing, feedback 

1. INTRODUCTION 
Writing is a complex cognitive and social process that is 

important for both academic and professional success [1]. As 

contemporary societies grow increasingly reliant on text sources 

to communicate ideas (e.g., emails, text messages, online reports, 

blogs), the importance of developing proficiency in this area is 

more important than ever. Unfortunately, acquiring writing skills 

is no simple task – as evidenced by the many students who 

underachieve each year on national and international assessments 

of writing proficiency [1, 2, 3, 4]. Indeed, this text production 

process is complex and relies on the development of both lower 

and higher-level knowledge and skills, ranging from a strong 

knowledge of vocabulary to the strategies necessary for tying their 

ideas together [5, 6, 7].  

To develop the skills that are required to produce high-quality 

texts, students need to be provided with comprehensive 

instruction that targets their individual strengths and weaknesses. 

In particular, this instruction should explicitly describe and 

demonstrate the skills and strategies that will be necessary during 

each of the phases of the writing process. Additionally, it should 

offer students opportunities to receive summative and formative 

feedback on their work, while engaging in deliberate practice. 

This form of deliberate practice is an important factor in students’ 

development of strong writing skills [8, 9], because it can promote 

self-regulation of the planning, generation, and reviewing 

processes [9]. Unfortunately, however, deliberate practice 

inherently relies on individualized writing feedback. This is often 

difficult for teachers to provide, as they are faced with large class 

sizes and do not have the time to provide thorough comments on 

every essay that a student writes.  

As a result of these classroom needs, researchers have developed 

computer-based writing systems that can provide students with 

feedback on their writing [10]. These systems have been used for 

both classroom assignments and high-stakes writing assessments 

to ease the burden of individualized essay scoring [11]. 

Specifically, automated essay scoring (AES) systems evaluate the 

linguistic properties of students’ essays to assign them holistic 

scores [12, 13]. These systems use a multitude of natural language 

processing (NLP) and machine learning methodologies to provide 

these essay scores, and previous research suggests that they are 

often comparable to human raters [11, 13, 14, 15]. 

To provide students with greater context for the scores on their 

essays, AES systems are commonly incorporated into educational 

learning environments, such as automated writing evaluation 

(AWE) systems [16, 17] and intelligent tutoring systems (ITSs) 

[18]. These systems not only provide students with summative 

feedback on their essays (i.e., holistic scores), they also provide 

formative feedback and writing instruction. In order to be 

successful, these systems must contain algorithms that can 

provide individualized feedback that is relevant to students’ 

individual skills.  

Importantly, these computer-based writing environments rely on 

linguistic features to assess the quality of the individual essays 

submitted to the systems. Although the scores are generally valid 

and reliable, the systems rarely consider student-level information 

(e.g., their knowledge, skills, or affect) when providing feedback 

based on these scores. This can pose critical problems when 

developing adaptive components for the systems. As an example, 

consider two students, Mary and John, who both write essays that 

receive holistic scores of “3” from an AWE system. While Mary 

is able to clearly argue her point in the thesis and topic sentences, 

 

 

Proceedings of the 8th International Conference on Educational Data Mining 258



 

her essay is weakened by simplistic language and sentence 

constructions. John, on the other hand, employs sophisticated 

vocabulary and eloquent sentences throughout his essay; however, 

he does a poor job of explaining his position on the argument. In 

this example, both students received the same score from the 

system; however, their essays were affected by different student-

level strengths and weaknesses. Mary may have suffered from 

lower vocabulary knowledge and general language skills, whereas 

John may not have developed adequate planning and organization 

strategies.  

One way to accommodate these individual differences is to 

develop user models based on students’ characteristics, beyond 

simply their scores on essays. These models can provide more 

specific instruction and feedback that are tailored to students’ 

strengths and weaknesses. One individual difference that may be 

particularly important to consider in these student models is 

vocabulary knowledge. Previous studies have shown that 

vocabulary knowledge plays a major role in the writing process, 

as it is strongly correlated with the scores assigned to students’ 

essays [5, 19]. In the current paper, we examine the efficacy of 

NLP techniques to inform stealth assessments of this knowledge. 

In particular, we examine whether the lexical properties of 

students’ essays can accurately model their scores on a 

standardized measure of vocabulary knowledge. Ultimately, our 

aim is to use these measures to provide more individualized 

tutoring to student users.  

1.1 Stealth Assessments 
In order to provide a more personalized learning experience (e.g., 

individualized instruction and feedback), computer-based learning 

environments must rely on repeated assessments of performance 

as students interact with the system. These measures can provide 

important information about students’ knowledge states and 

learning trajectories, which can help to increase the adaptivity of 

these systems. Despite the importance of these assessments, 

however, they are not particularly conducive to robust student 

learning. In particular, constantly exposing students to 

questionnaires and tests can disrupt their learning flow [20] and 

subsequently harm their performance on later tasks.  

As a response to this assessment problem, researchers have placed 

an emphasis on the development of methods that can accumulate 

information about student users without persistently disrupting the 

learning task [20, 21]. In particular, researchers have proposed the 

development of stealth assessments. These assessments are 

intended to measure students’ performance and knowledge 

without requiring any explicit testing. Typically, these stealth 

assessments are embedded within the learning task itself and, as a 

result, are not able to be detected by students [22].  

Within the context of computer-based learning environments, 

these stealth assessments can be informed by a wealth of 

information that can be easily logged in the system. These data 

can range from the speed at which someone is typing to the 

trajectories of their mouse movements. Snow and colleagues 

(2014), for example, developed stealth assessments of agency 

within a reading comprehension tutoring system [23]. They found 

that students who exhibited more systematic patterns of behavior 

in the system produced higher quality self-explanations compared 

to students who were more disordered in their choice patterns. 

They stated that this measure of behavior patterns could serve as a 

stealth assessment of agency in adaptive learning environments. 

Overall, stealth assessments can serve as a viable solution to the 

assessment problem, as they can be informed by a wide variety of 

data types to model the characteristics of student users (e.g., their 

skills, attitudes, etc.) [23, 24].  

Importantly, after they have been developed, these stealth 

assessments can be used to enhance student models. Models of 

students’ performance and attitudes are typically embedded in 

ITSs as a means to provide more individualized instruction and 

feedback [25]. In these systems, student users are represented by 

continuously updating models that are representative of their own 

knowledge and performance in the system. Thus, once the system 

has the ability to reliably assess students’ particular skill sets, it 

can adapt in precise ways that can enhance the overall efficacy of 

the instruction [26].  

1.2 Natural Language Processing 
Natural language processing (NLP) tools provide a means through 

which researchers can develop stealth assessments of student 

characteristics [24]. In addition, these tools can help researchers to 

investigate the relationships between individual differences and 

the learning process at a more fine-grained size. By calculating 

indices related to multiple levels of the text (e.g., lexical, 

syntactic, discourse), researchers can look beyond simple 

measures of holistic quality (i.e., essay scores) and begin to 

examine and model the components of the writing process more 

thoroughly [27]. These models of student performance can then 

allow researchers and educators to provide students with more 

effective instruction that specifically targets their individual 

needs. 

Broadly, NLP involves the automated calculation of linguistic text 

features using a computer program (or programming language) 

[28]. Thus, the focus of NLP primarily rests on the use of 

computers to understand, process, and produce natural language 

text for the purpose of automating certain communicative acts 

(e.g., providing technical support) or for studying communicative 

processes (e.g., examining the linguistic properties of readable 

texts). This technique can serve as a powerful methodological 

approach for researchers who are interested in examining 

particular aspects of the writing process [27] or for many other 

domains in which students produce natural language.  

Researchers have employed NLP techniques within a variety of 

domains and contexts for the purpose of developing a better 

understanding the learning process [7, 24, 29, 30, 31]. For 

example, Varner, Jackson and colleagues (2013) used NLP tools 

to calculate the extent to which students’ self-explanations of 

complex science texts contained cohesive elements [31]. Results 

from this study indicated that better readers produced more 

cohesive self-explanations than less skilled readers, indicating that 

automated indices of cohesion could potentially serve as a proxy 

for the coherence of students’ mental text representations. In 

another study, Graesser and colleagues (2011) developed multiple 

components of text readability using NLP tools [29]. These 

components related to different dimensions of text complexity, 

such as narrativity, concreteness, and referential cohesion. 

Through the use of NLP tools, these researchers were able to 

develop components that provide multidimensional information 

about texts and the specific properties that influence students’ 

ability to comprehend these texts successfully. 
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1.2.1 NLP and Writing 
With regards to the writing process, NLP can serve as a 

particularly beneficial tool, as it can provide explicit information 

about students’ processes and performance on the learning task. 

Accordingly, these NLP techniques have been used in previous 

research on writing, primarily with the goal of modeling human 

ratings of text quality [14, 30, 32]. In one particular study, 

Crossley and McNamara (2011) examined the linguistic indices 

that were significantly related to quality ratings of timed, prompt-

based essays. Results of this study revealed that higher quality 

essays contained more sophisticated language, greater lexical 

diversity, more complex sentence constructions, and less frequent 

words. In a similar analysis, Varner and colleagues (2013) 

investigated differences between the linguistic indices associated 

with teachers’ ratings of essay quality and students’ self-

assessments of their own essays [30]. This analysis suggested that 

students were less systematic in their self-assessments than 

teachers, at least in relation to the linguistic characteristics of the 

essays. Additionally, students’ ratings were related to different 

linguistic features than the essay ratings of their teachers.  

Overall, the results of these (and many other) studies suggest that 

NLP can serve as a powerful resource with which researchers can 

model the writing process at a more fine-grained size. In 

particular, NLP tools can potentially help researchers to develop 

better models of the individual differences that are important to 

writing proficiency (e.g., vocabulary knowledge), as well as for 

any other domain in which students produce natural language.  

1.3 The Writing Pal 
The Writing Pal (W-Pal) is an intelligent tutoring system (ITS) 

that was designed to provide explicit writing strategy instruction 

and practice to high school and early college students [18, 33] 

Unlike typical AWE systems, W-Pal places a strong emphasis on 

the instruction of writing strategies, as well as multiple forms of 

practice (i.e., strategy-specific practice and holistic essay writing 

practice).   

The strategy instruction in W-Pal covers all three phases of the 

writing process: prewriting, drafting, and revising. Within W-Pal, 

these strategies are taught in individual instructional modules, 

which include: Freewriting and Planning (prewriting); 

Introduction Building, Body Building, and Conclusion Building 

(drafting); and Paraphrasing, Cohesion Building, and Revising 

(revising; see Figure 1 for a screenshot of the main W-Pal 

interface). Each of these instructional modules contains multiple 

lesson videos, which are each narrated by an animated 

pedagogical agent. In these videos, the agent describes and 

provides examples of specific strategies that are important for 

writing. 

After viewing these lesson videos, students unlock multiple mini-

games, which allow them to practice the strategies in isolation 

before applying them to complete essays. Within the W-Pal 

system, students can engage with identification mini-games, 

where they are asked to select the best answer to a particular 

question, or generative mini-games, where they produce natural 

language (typed) responses related to the strategy they are 

practicing.  

One of the key features of the W-Pal system is its AWE 

component (i.e., the essay practice component). This system 

contains a word processor where students can write essays in 

response to a number of SAT-style prompts (teachers also have 

the option of adding in their own prompts to assign to students). 

Once a student has completed an essay, it is submitted to the W-

Pal system. The W-Pal algorithm [14] then calculates a number of 

linguistic features related to the essay and provides summative 

and formative feedback to the student (see Figure 2 for a 

screenshot of the W-Pal feedback screen). The summative 

feedback in W-Pal is a holistic essay score that ranges from 1 to 6. 

The formative feedback in W-Pal provides information about 

strategies that students can employ in order to improve their 

essays. Once they have read the feedback, students have the 

option to revise their essays based on the feedback that they were 

assigned. 

 

Figure 2. Example of W-Pal Feedback 

2. CURRENT STUDY 
The purpose of the current study is to investigate the degree to 

which the lexical properties of students’ essays can inform stealth 

assessments of their vocabulary knowledge. Ideally, these 

assessments will serve to inform student models in the Writing Pal 

system and contribute to its adaptability in the form of more 

Figure 1. Main Interface of the W-Pal System 
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sophisticated scoring algorithms, feedback, and adaptive 

instruction. To this end, two corpora were collected which 

contained essays from early college and high school students, 

respectively. The lexical properties of these essays were then 

calculated using the Tool for the Automatic Analysis of Lexical 

Sophistication (TAALES) [34]. TAALES is an automated text 

analysis tool that provides linguistic indices related to the lexical 

sophistication of texts. We used this tool in the current study so 

that we could investigate the relationships between students’ 

vocabulary knowledge and the lexical properties of the essays. We 

hypothesized that these lexical indices would be significantly 

related to vocabulary knowledge and that they would provide 

reliable measures of vocabulary knowledge across two distinct 

student populations.  

2.1  Primary Corpus 
The primary corpus for this study is comprised of 108 essays 

written by college students from a large university campus in 

Southwest United States. These students were, on average, 19.75 

years of age (range: 18-37 years), with the majority of students 

reporting a grade level of college freshman or sophomores. Of the 

108 students, 52.9% were male, 53.7% were Caucasian, 22.2% 

were Hispanic, 10.2% were Asian, 3.7% were African-American, 

and 9.3 % reported other ethnicities. All students wrote a timed 

(25-minute), prompt-based, persuasive essay that resembled what 

they would see on an SAT. Students were not allowed to proceed 

until the entire 25 minutes had elapsed. These essays contained an 

average of 410.44 words (SD = 152.50), ranging from a minimum 

of 84 words to a maximum of 984 words. 

2.2  Vocabulary Knowledge Assessment 
Students’ vocabulary knowledge was assessed using the Gates-

MacGinitie (4th ed.) reading comprehension test (form S) level 

10/12 [35]. This assessment is a 10-minute task, which is 

comprised of 45 simple sentences that each contains an underlined 

vocabulary word. Students were asked to read each sentence and 

then select the most closely related word (from a list of five 

choices) to the underlined word within the sentence. 

2.3 Text Analyses 
To assess the lexical properties of students’ essays, we utilized the 

Tool for the Automatic Analysis of Lexical Sophistication 

(TAALES). TAALES is an automated text analysis tool that 

computes 135 indices that correspond to five primary categories 

of lexical sophistication: word frequency, range, n-gram 

frequencies, academic language, and psycholinguistic word 

information [34]. These categories are discussed in greater detail 

below (see 34 for more thorough information). 

Word frequency indices are indicative of lexical sophistication, 

because high frequency words are typically learned earlier in life, 

are processed more quickly, and are indicative of writing quality 

(i.e., with high frequency words indicating lower quality writing). 

There are two primary forms of frequency measures: frequency 

bands and frequency counts. Frequency bands measure the 

percentage of a text that occurs in particularly frequency bands 

(e.g., whether they are in the most frequent 1,000 words, 2,000 

words in a frequency list, etc.). Frequency counts employ 

reference corpora and calculate the frequency of the words in a 

target text within the reference corpus.  

Range indices are indicative of how widely used a particular word 

or family of words is. Thus, unlike frequency indices, range 

indices do not simply calculate a raw count of a word in a 

particular list or corpus. Rather, range indices measure the number 

of individual documents that contain that word in order to 

determine the extent that it is used broadly. Range has been used 

to successfully distinguish the frequent verbs produced by L2 

speakers of English from the frequent verbs produced by native 

English speakers [36].  

N-gram frequencies emphasize units of lexical items rather than 

single words. In particular, n-grams consist of combinations of n 

number of words (e.g., the bigram “years ago”) that frequently 

occur together. Bigram lists have been shown to be predictive of a 

speaker or writer’s native language, as well as the quality of a 

given text.  

Academic language indices measure the degree to which a text 

contains words that are found infrequently in natural language 

corpora, but frequently in academic texts. A number of academic 

word lists have been calculated to measure the words that are 

commonly used in academic texts, such as textbooks and journal 

articles. Thus, these indices provide a measure of how academic a 

text is compared to more typical texts.  

Psycholinguistic word indices provide information about the 

specific characteristics of the words used in texts. These 

properties have been shown to be related to lexical decision times, 

lexical proficiency, and writing quality. TAALES focuses on five 

particular properties of words: concreteness (i.e., perceptions of 

how abstract a word is), familiarity (i.e., judgments of how 

familiar words are to adults), imageability (i.e., judgments of how 

easy it is to imagine a word), meaningfulness (i.e., judgments of 

how related a word is to other words), and age of acquisition (i.e., 

judgments of the age at which a word is typically learned).   

2.4 Statistical Analyses 
Statistical analyses were conducted to investigate the role of 

lexical properties in assessing and modeling students’ vocabulary 

knowledge scores. Pearson correlations were first calculated 

between students’ scores on a vocabulary knowledge measure and 

the lexical properties of their essays (as assessed by TAALES). 

The indices that demonstrated a significant correlation with 

vocabulary knowledge scores (p < .05) were retained in the 

analysis. Multicollinearity of these variables was then assessed 

among the indices (r > .90). When two or more indices 

demonstrated multicollinearity, the index that correlated most 

strongly with vocabulary knowledge scores was retained in the 

analysis. All remaining indices were finally checked to ensure that 

they were normally distributed.  

A stepwise regression analysis was conducted to assess which of 

the remaining lexical indices were most predictive of vocabulary 

knowledge. For this regression analysis, a training and test set 

approach was used (67% for the training set and 33% for the test 

set) in order to validate the analyses and ensure that the results 

could be generalized to a new data set. To additionally avoid 

overfitting the model, we chose a ratio of 15 essays to 1 predictor, 

which allowed 7 indices to be entered, given that there were 108 

essays included in the analysis.  

A final linear regression analysis was conducted to determine the 

extent to which these indices could model the vocabulary 

knowledge of students in a different population. In particular, we 

investigated whether the lexical sophistication indices that were 

retained in the previous regression model (i.e., the regression 
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model for the college students) accounted for a significant amount 

of the variance in a second set of students’ (i.e., the high school 

students) vocabulary knowledge.  

3. RESULTS 

3.1 Vocabulary Knowledge Analysis for the 

Primary Corpus 
Pearson correlations were calculated between the TAALES 

indices and students’ Gates-MacGinitie vocabulary knowledge 

scores to examine the strength of the relationships among these 

variables. This correlation analysis revealed that there were 45 

linguistic measures that demonstrated a significant relation with 

vocabulary knowledge scores and did not demonstrate 

multicollinearity with each other. To avoid overfitting the model, 

we only selected the 7 indices that were most strongly correlated 

with vocabulary knowledge. These 7 indices are listed in Table 1 

(see Kyle & Crossley for explanations of each variable) [34]. 

A stepwise regression analysis was calculated with these 7 

TAALES indices as the predictors of students’ vocabulary 

knowledge scores for the students in the training set. This 

regression yielded a significant model, F (2, 76) = 29.296, p < 

.001, r = .660, R2 = .435. Two variables were significant 

predictors in the regression analysis and combined to account for 

44% of the variance in students’ vocabulary knowledge scores: 

mean age of acquisition log score [β =.92, t(2, 76)=6.423, p < 

.001] and normed count for all academic word lists [β =-.36, t(2, 

76)=-2.539, p = .013]. The regression model for the training set is 

presented in Table 2. The test set yielded r = .600, R2 = .360, 

accounting for 36% of the variance in vocabulary knowledge 

scores. 

 

Table 1. Correlations between Gates-MacGinitie vocabulary 

knowledge scores and TAALES linguistic scores 

TAALES variable r p 

Mean age of acquisition log score .614 <.001 

Mean range (number of documents that a 

word occurs in) log score -.562 <.001 

Spoken bigram proportion -.511 <.001 

Mean unigram concreteness score -.492 <.001 

Mean frequency score (bigrams) -.488 <.001 

Mean frequency log score -.476 <.001 

Normed count for all academic word lists .402 <.001 

   

Table 2. TAALES regression analysis predicting Gates-

MacGinitie vocabulary knowledge scores 

Entry Variable added R2 Δ R2 

Entry 1 Mean age of acquisition log score .387 .387 

Entry 2 

Normed count for all academic 

word lists .435 .048 

 

The results of this regression analysis indicate that the students 

with higher vocabulary scores produced essays that were more 

lexically sophisticated. The essays contained words that were 

acquired at a later age, such as the words vociferous or ubiquitous, 

which are predicted to be learned later than words such as toy and 

animal. The essays also contained a greater proportion of 

academic words that are frequently found in academic texts, such 

as financier or contextualized, rather than household words such 

as bread and house. Hence, better writers use words that are found 

in academic, written language, rather than more common, 

mundane language. Notably, these two indices, age of acquisition, 

and academic words, are likely to correlate with indices related to 

the frequency or familiarity of words in language. However, in 

this case, they more successfully captured students’ vocabulary 

knowledge from their writing samples compared to simple 

frequency or familiarity indices. 

3.2 Generalization to a New Data Set 
Our second analysis specifically tested the ability of the linguistic 

indices to predict the Gates-MacGinitie vocabulary knowledge 

scores of students in a completely separate population. To address 

this question, we collected a test corpus of essays written by high 

school students and analyzed the lexical properties of these 

essays. Specifically, we calculated the mean age of acquisition log 

score and the normed count for all academic word lists, as these 

were the two indices retained in the previous regression model. 

These indices were then used as predictors in a regression model 

to predict students’ vocabulary knowledge.  

3.3 Test Corpus 
The test corpus in this paper was collected as part of a larger study 

(n = 86), which compared the complete Writing Pal system to the 

AWE component of the system. Here, we focus on the pretest 

essays produced by these participants. All participants were high-

school students recruited from an urban environment located in 

the southwestern United States. These students were, on average, 

16.4 years of age, with a mean reported grade level of 10.5. Of the 

45 students, 66.7% were female and 31.1% were male. Students 

self-reported ethnicity breakdown was 62.2% were Hispanic, 

13.3% were Asian, 6.7% were Caucasian, 6.7% were African-

American, and 11.1% reported other. All students wrote a timed 

(25-minute), prompt-based, argumentative essay that resembled 

what they would see on the SAT. Students were not allowed to 

proceed until the entire 25 minutes had elapsed. These essays 

contained an average of 340.84 words (SD = 124.31), ranging 

from a minimum of 77 words to a maximum of 724 words. 

Finally, these students completed the same vocabulary knowledge 

assessment as the students in the previous corpus. 

3.4 Vocabulary Knowledge Analysis for the 

Test Corpus 
The two TAALES indices (i.e., mean age of acquisition log score 

and the normed count for all academic word lists) were entered as 

predictors of students’ Gates-MacGinitie vocabulary knowledge 

scores. This regression yielded a significant model, F (2, 83) = 

8.521, p < .001, r = .413, R2 = .170. Only one of the variables was 

a significant predictor in the regression analysis: mean age of 

acquisition log score [β =.54, t(2, 83)=3.666, p < .001]. This 

model suggests that the regression model generated with the 

primary corpus partially generalized to a new data set. One of the 

indices accounted for a significant amount of the variance in 

students’ vocabulary knowledge scores. However, this variance 

was smaller than the variance accounted for in the primary corpus.  
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4. DISCUSSION 
Computer-based writing systems provide students with learning 

environments in which they can receive writing instruction and 

engage in deliberate practice [10]. One of the major difficulties 

that developers of these systems face, however, is the ability to 

provide instruction and feedback that is personalized to individual 

student users. Developers of these systems often rely on NLP 

techniques to assess the quality of individual essays; however, it 

has been relatively unclear whether these NLP techniques can be 

used to assess relevant individual differences among students.   

In the current study, we used NLP techniques to develop stealth 

assessments of students’ vocabulary knowledge. Vocabulary 

knowledge is an important component of the writing process [5, 

19]; thus, our aim was to determine whether we could assess and 

model individual differences in this knowledge by calculating the 

lexical sophistication of students’ essays. Specifically, an 

automated text analysis tool was used to analyze the lexical 

properties of the essays. This tool (TAALES) provided 

information about the lexical sophistication of the essays at 

multiple levels (e.g., word frequency, range, n-gram frequencies, 

academic language, and psycholinguistic word information). The 

results revealed that these indices were able to significantly model 

students’ vocabulary knowledge scores. Additionally, these 

findings were able to predict students’ vocabulary scores on a 

separate data set.  

The TAALES correlation analysis revealed that there were 45 

lexical sophistication indices that significantly correlated with 

students’ vocabulary knowledge. This is important, because it 

indicates that individual differences in students’ vocabulary 

knowledge could be detected by analyzing the lexical items that 

students used in their essays. Further, the regression analyses 

revealed that the psycholinguistic word information and academic 

language indices provided the most predictive power in the model 

(as opposed to simple measures of word frequency or familiarity), 

with indices of age of acquisition and academic words accounting 

for 44% of the variance in the vocabulary scores. Thus, students 

with greater vocabulary knowledge tended to produce essays with 

words that are judged to be acquired later in life and were more 

academic in nature. 

Importantly, the follow-up regression analysis revealed that these 

two TAALES indices accounted for a significant amount of the 

variance in vocabulary scores for a separate corpus of student 

essays. In particular, the age of acquisition variable was able to 

account for approximately 17% of the variance in students’ 

vocabulary knowledge scores. This finding provides confirmation 

that the automated lexical sophistication indices could be used 

across two separate data sets to model vocabulary knowledge.  

It is important to note, however, that this variable accounted for a 

significantly smaller amount of the variance in this test corpus 

than in our primary corpus. This suggests that individual 

differences may manifest in the properties of students’ essays in 

different ways depending on the specific context. For instance, in 

this study, the students who produced essays for the two corpora 

were in college and high school, respectively. Thus, variations in 

vocabulary knowledge might have influenced the high school and 

college students’ writing process differentially based on the other 

knowledge, skills or strategies that they had available to them. 

The results of this follow-up analysis suggest, therefore, that 

computer-based learning environments may need to rely on 

separate models for students from different populations. Although 

the same techniques may be able to be used for all student groups 

(e.g., the use of NLP), the specific indices in the models may need 

to be modified across different populations.  

Overall, the results from the current study suggest that NLP 

indices can be utilized to develop stealth assessments of students’ 

skills. When taken together, two indices of lexical sophistication 

accounted for nearly half of the variance in students’ vocabulary 

knowledge scores. These findings are important, because they 

indicate that students’ individual differences can manifest in the 

ways that they produce essays. Thus, linguistic analyses of essays 

(and any other natural language input) may provide useful 

information about individual students’ knowledge and skills. 

Here, we only analyzed students’ vocabulary knowledge at pretest 

(i.e., before they received any training or feedback). In the future, 

additional studies will be conducted to specifically examine how 

these stealth assessments of vocabulary knowledge will change 

throughout training and how they will serve to inform consistently 

updating student models.   

An additional area for future research lies in the assessment of 

other individual difference variables. In the current study, we 

solely analyzed the lexical properties of students’ essays because 

we were focusing on one particular individual difference measure: 

vocabulary knowledge. In future studies, however, it will be 

important to consider additional linguistic indices that may be 

related to other specific constructs of interest. For instance, if we 

aim to model students’ attitudes during writing practice, lexical 

sophistication indices may provide little valuable information. 

Instead, we may turn to measures of semantic information, such as 

the tone or themes found in the essays. Similarly, if we are 

assessing students’ reading comprehension skills, it may be more 

fruitful to include cohesion indices, which describe the degree to 

which information in a text is explicitly connected.  

In conclusion, the current study utilized the NLP tool, TAALES, 

to investigate the efficacy of NLP techniques to inform stealth 

assessments of vocabulary knowledge. Eventually, we expect that 

this stealth assessment will enhance our student models within the 

W-Pal system and allow us to provide students with more pointed 

feedback and instruction. More broadly, the current study suggests 

that NLP techniques can (and should) be used to help researchers 

and system developers build stealth assessments and student 

models in computer-based learning environments. These models 

can ultimately be used to provide more personalized and adaptive 

computer-based instruction for students.  

While a wealth of studies awaits to answer myriad questions on 

how to construct the most powerful models of individual 

differences without having to administer the tests, this is a strong 

step forward in demonstrating the feasibility of such stealth 

measures.  
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ABSTRACT
Vocabulary knowledge is crucial to literacy development and 
academic success. Previous research has shown learning the 
meaning of a word requires encountering it in diverse informative 
contexts. In this work, we try to identify “nutritious” contexts for 
a word – contexts that help students build a rich mental 
representation of the word’s meaning. Using crowdsourced ratings 
of vocabulary contexts retrieved from the web, AVER learns 
models to score unseen contexts for unseen words.  We specify 
the features used in the models, measure their individual 
informativeness, evaluate AVER’s cross-validated accuracy in 
scoring contexts for unseen words, and compare its agreement 
with the human ratings against the humans’ agreement with each 
other.  The automated scores are not good enough to replace 
human ratings, but should reduce human effort by identifying 
contexts likely to be worth rating by hand, subject to a tradeoff 
between the number of contexts inspected by hand, and how many 
of them a human judge will consider nutritious.

Keywords
Vocabulary learning, crowdsourcing, automated scoring, 
regression models.

1. INTRODUCTION
Years of research on vocabulary learning have found that 
vocabulary is a bottleneck to comprehension [1], shown that 
vocabulary instruction benefits students’ word learning and text 
comprehension [2-5], and identified several principles of effective 
vocabulary instruction [6-12].  The principle relevant here is that 
vocabulary learning requires exposure to diverse informative 
example contexts in order to develop a rich mental representations
of word meanings and their relations to other words.

This paper describes AVER (“Automatic Vocabulary Example 
Rater”), an attempt to automatically identify “nutritious” contexts 
– example uses of a word that should help in learning its meaning. 
(Aver is itself a vocabulary word that means assert.) This work is 
part of a larger project that supplied our training and test data in 
the form of target vocabulary words, example contexts in which 
they occur, and human ratings of their nutritiousness.  The 

contexts were retrieved from the web by DictionarySquared.com,
an online high school vocabulary tutor that searches the web for a 
given target word in order to find candidate contexts that contain 
it.  DictionarySquared aims to pick contexts a few dozen words
long, preferring to start and end at boundaries between sentences, 
paragraphs, or HTML blocks. 

This paper describes how AVER trains and evaluate models to 
predict the nutritiousness of such contexts, based on human 
ratings crowdsourced using Amazon Mechanical Turk.

Ideally AVER would identify a set of examples that maximizes 
the amount of actual student learning from a given number of 
contexts, taking into account the diversity of multiple contexts for 
the same word, and possibly even their relation to example 
contexts for other target vocabulary words to learn. However, this
paper focuses on the initial problem of predicting the suitability of 
individual contexts, using crowdsourced human estimates instead 
of students’ subjective ratings of contexts, or objective measures 
of their actual learning gains.

1.1 Relation to Prior Work
Some previous work has addressed the problem of finding 
suitable example contexts to support vocabulary learning, but 
differed in one or more respects from the work reported here.  
REAP [13] selected examples from an already-vetted corpus, 
based on specified selection criteria such as student interests.  
VEGEMATIC [14] constructed 9-word contexts centered on a 
given target vocabulary word by concatenating overlapping 5-
grams from the Google n-gram corpus, based on heuristic 
constraints and preferences; only some of them were good enough 
to use, but hand-vetting them was faster than composing good 
examples by hand.  Follow-on work [15] extended VEGEMATIC 
to generate contexts for a particular sense of a target word.  
AVER also seeks to identify example contexts suitable for 
vocabulary learning, but addresses a different goal than both these 
projects:  instead of applying explicit hand-crafted heuristics, 
AVER learns to predict crowdsourced ratings by human judges.

The rest of the paper is organized as follows. First we describe our 
data set.  Then we describe the features we used, tried but 
dropped, or identified but didn’t implement.  Next we describe 
and evaluate how AVER rates contexts.  Finally we conclude.

2. DATA SET
The data for this work consists of a vocabulary word and a context 
that contains at least one instance of the vocabulary word and that 
illustrates usage of the vocabulary word.  The overall data set 
includes 75,844 contexts for 1,000 vocabulary words, comprising 
100 words from each of 10 difficulty bands based on their 
Standardized Frequency Index [16], a measure of log frequency in 
a text corpus, adjusted by dispersion across multiple domains.
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Dr. Margaret G. McKeown, an international expert on vocabulary 
learning and instruction, rated 93 contexts based on three criteria 
– the typicality of the usage of the vocabulary word in the context, 
the degree to which the context constrains the meaning of the 
vocabulary word, and the comprehensibility of the context for 
students.  Thus the expert provided three ratings of each context, 
one on each criterion, ranging from 1 (very poor) to 5 (very good).  
These data helped in developing a rating scale.  However, it 
would have been infeasible to obtain expert ratings of enough 
contexts to train good models.

Therefore, using Amazon Mechanical Turk, 13,270 contexts were 
each rated by 10 amateur raters who passed a brief test of their 
performance on this task: “Based on context, rate how helpful the 
text is for helping a high school student understand the meaning 
of the target word.  A helpful context is one that reinforces a 
word's meaning and is understandable to high school students.”
Contexts ranged in length from 18 to 137 words, with median 63.

Raters differed in how many contexts they rated, ranging from 
several to hundreds.  They rated contexts on a 5-point scale: 

4 = Very Helpful: After reading the context, a student 
will have a very good idea of what this word means.

3 = Somewhat Helpful

2 = Neutral:  The context neither helps nor hinders a 
student's understanding of the word's meaning.

1 = Bad: The context is misleading or too difficult.

0 = Otherwise inappropriate for high school students. 

We used the mean of their 10 ratings to label our training and 
testing data.  Inter-rater standard deviation averaged 0.81, so 
standard error averaged 0.27.  We labeled the 4107 contexts with 
mean rating at or above 3 as “good,” and the 9150 contexts with
mean rating below 3 as “bad.”

3. FEATURES USED
The remaining 62,574 contexts were not rated by humans.  To rate 
their nutritiousness automatically, AVER uses the human-labeled 
data to train and test regression models to predict the ratings of 
unseen contexts for unseen words, or to predict the probability 
that a context is “good,” i.e., its rating is greater than or equal to 3.

To train these models, we extract features of the vocabulary word 
and context we consider likely to be informative in predicting its 
human rating. We normalize every feature as a z-score by 
subtracting the mean value for that feature and dividing by its 
standard deviation.  By translating all feature values onto a 
common scale, normalization makes their regression coefficients 
comparable.  Normalization does not affect a feature’s correlation 
with Turker ratings or other features because correlation is 
invariant under constant addition or multiplication.  We assign a 
z-score of zero to features with undefined values, so that they 
have no impact on model output.

To describe various types of features, illustrate their values, 
explain their meaning, and discuss the intuition underlying them, 
we will use the following example context for the vocabulary 
word alleviate, with mean Turker rating = 3.7, i.e. quite good:

It is ironic that students are pressured to do well in 
school in order to continue participating in 
extracurricular activities, yet these after school activities 
are just what they need to relieve stress. Sports clubs and 

even being involved in student government can help 
alleviate stress. They allow us to get away from school 
pressure and enjoy ourselves.

3.1 Comprehensibility
Our goal is to help students learn the typical usage of a vocabulary 
word by providing them with example contexts. If the example 
contexts are too difficult to understand, they will not be very 
helpful to students. Thus indicators of comprehensibility are 
useful features in predicting the rating of a context.

Rarer words are typically harder.  The log frequency of alleviate,
i.e., the log of its unigram count (1,596,620) divided by the total 
number of tokens (1,024,908,267,229) in the Google n-grams
corpus, is –13.4 (z-score = –0.090), placing it in the third most 
common of 10 word bands (z-score = 0.150). This feature of the 
target word is the same for all its contexts, but helps control for 
target word frequency in general models to predict context ratings. 

The more and longer the words in a context, the harder it is to 
understand.  The example context has 58 words (z-score = –0.235,
which on average are 5.1 letters long (z-score = 0.358), not 
counting spaces or punctuation.

Flesch-Kincaid scores for reading ease and grade level are widely 
used to assess readability, and we compute them for contexts:

Reading ease =  . . ×   . ×   
Grade level =. ×   + . ×   .
A higher reading ease score characterizes text as easier to read 
and understand. The reading ease score ranges from 0 to 100.  The 
reading ease score for our example context is 47.18, indicating 
that it is moderately difficult (z-score = –0.015). Flesch-Kincaid 
scores depend on how syllables, words, and sentences are 
counted, and hence differ from one implementation to another, but 
not by much.  Thus Microsoft Word reports a reading ease of 48.6 
for this paragraph.

A higher grade level score indicates a context that is more 
difficult to read and understand. The grade level roughly translates 
to the number of years of education required to understand the 
context.   The grade level score for our example context is 11.48
(z-score = –0.217), compared to 11.2 in Microsoft Word. 

Mean human ratings correlated 0.009 with log of target frequency, 
0.023 with word band, –0.082 with context length, –0.039 with 
average word length, 0.043 with reading ease, and –0.030 with 
grade level.

3.2 Local Predictability
AVER extracts local predictability features from a 9-word context 
centered on the target word (e.g. student government can help 
alleviate stress . They allow). They estimate the probability of the 
target word given a local context containing the target word.  Five 
of these local contexts are 5 words long, four are 4 words long, 
three are 3 words long, two are 2 words long, and the target itself 
can be considered a 1-word context, so there are 15 probabilities.
The submitted version of this paper used all 15 of these 
probabilities as features.
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To estimate these probabilities, AVER uses the Google n-grams
tables [16] based on over a trillion words from the web.  These 
tables specify the frequency of every word unigram, bigram, 
trigram, 4-gram, and 5-gram with at least 40 occurrences.  Thus 
AVER can use them to estimate such conditional probabilities up 
to a context length of 5 words.  For example, it would estimate the 
conditional probability of alleviate given the 5-word local context 
government can help ____ stress as a fraction whose numerator is 
the frequency of the 5-gram government can help alleviate stress
and whose denominator is the summed counts of all 5-grams of 
the form government can help * stress.

AVER log-transforms the probability estimates to reduce their 
enormous dynamic range, and normalizes the log probabilities as 
z-scores, which it uses as features to measure local predictability. 

If the numerator is zero, AVER smoothes it to 1. The numerator 
is zero for 88% to 93% of the 5-word contexts, varying by the 
position of the target word.  E.g., help alleviate stress . They is 
not in the 5-gram table. The numerator is zero for 68% to 78% of 
the 4-word contexts, 33% to 44% of the 3-word contexts, and 8% 
to 9% of the 2-word contexts.

What if the denominator is zero (e.g. no 5-grams of the form 
government can help * stress are listed in the 5-gram table)?  The
denominator is zero for 82% to 86% of our 5-word contexts that 
contain the target word; the percentage varies by its position in the 
context.  Likewise, the denominator is zero for 47% to 57% of the 
4-word contexts, and 33% to 44% of the 3-word contexts.  

In the submitted version of this paper, we translated the resulting 
undefined probability into a z-score of zero, so that it would 
neither increase nor decrease the output of our predictive models.  
However, the effect was that some features, especially for 5-
grams, were mostly zero in the training data.  Could we do better?

Inspired by a reviewer comment, we implemented a new version, 
called AVER.b (b for “backoff”) based on an idea from statistical 
language modeling:  in the absence of data about a particular n-
gram, back off to successively shorter n-grams. For instance, if 
the denominator is zero because no 5-grams of the form 
government can help * stress are in the 5-gram table, AVER.b 
looks for 4-grams of the form government can help * or can help 
* stress.  If AVER.b finds both, it backs off to whichever yields a 
higher probability for the target word, on the assumption that it is 
more informative. If it finds neither, it backs off to trigrams, then 
bigrams, then finally the unigram alleviate. 

For our example, 5-word contexts of the form can help * stress .
are the only ones listed in the 5-gram table, with frequency 109 
for alleviate, 455 for reduce, 329 for relieve, and 49 for with.  The 
numerator 109 and denominator 942 yield log probability –2.16.
For the other 4 positions, AVER.b backs off to 4-grams.  Its 4-
gram table yields non-zero denominators for 4-word contexts of 
the form help * stress . (4829), can help * stress (6484), and 
government can help * (6765).  It yields non-zero numerators for 
help alleviate stress . (330) and can help alleviate stress (325) but 
zero for government can help alleviate, which it smoothes to 1, 
yielding respective log probabilities of –2.68, –2.99, and –8.82.
AVER.b finds no 4-grams of the form * stress . They, so it backs 
off to 3-grams, using the count of alleviate stress . (2120) as
numerator and the number of 3-grams of the form * stress .
(1599767) as denominator, yielding log probability -6.63. 

To speed up such computations, we had years earlier indexed each 
table by various sequences of n-gram positions designed to 

quickly retrieve all rows matching the values specified for any 
subset of positions.  Table 1 lists these indexes, which took weeks 
of computer time to build because the tables have so many rows. 

Table 1:  Indexes constructed for Google n-grams tables

Table: # rows: Indexed by:

unigram 13,588,391 1, frequency

bigram 314,843,401 12, 21

trigram 977,069,902 123, 312, 23

4-gram 1,313,818,354 1234, 234, 314, 412, 24, 34

5-gram 1,176,470,663 12345, 5432, 3145, 2541, 1523, 432

For instance, to look up the count of the 5-gram government can 
help alleviate stress efficiently, both versions of AVER use the 
index 12345.  This count is the numerator for estimating the 
probability of alleviate at word 4 given a 5-word context.  To find 
all 5-grams of the form government can help * stress, AVER uses 
the index 1523.  If it finds any, it sums their frequencies as the 
denominator.  If not, AVER.b backs off as described above.  It 
then uses the index 1234 to look up the 4-grams government can 
help alleviate and can help alleviate stress as well as 4-grams of 
the form government can help *.  AVER uses the index 412 to 
find 4-grams of the form can help * stress. 

This method if necessary estimates the conditional probability of 
alleviate given the local bigram context help ____ as the bigram 
frequency of help alleviate divided by the summed frequency of 
all bigrams of the form help *. However, there are 28,578 
bigrams of this form, and it takes non-trivial time to retrieve them 
in order to compute their summed frequency of 270,480,813.  
Instead, both versions of AVER would approximate this sum as 
the unigram frequency of help, namely 271,840,666, which it can 
retrieve quickly from a single row of the Google unigram table.  
This over-estimate includes all bigrams of the form help * that 
occurred fewer than 40 times in the Google n-grams corpus and 
hence do not appear in the Google bigrams table. This 
approximation is possible only if the blank falls at the start or end 
of the n-gram.  Thus it can approximate the number of trigrams of 
the form can help * or * stress ., but not help * stress.  The
approximation was not necessary for 4- or 5-grams because they 
typically have many fewer rows in the n-gram table.

A target word can occur at n different positions in a word window 
of size n, with a separate probability for each window size and 
position within the window, represented as a log probability. 
Consequently, original AVER’s local predictability features 
consist of 1 + 2 + 3 + 4 + 5 = 15 different log probabilities. For 
our example context, their respective z-scores are –0.090; –0.120,
0.740; 0.431, 1.340, –6.775; 0, 0.972, 0.909, –0.351; and 0, 0, 
0.603, 0, 0.  The z-scores of zero reflect the sparsity of n-grams as 
n increases.

The relative weights of these 15 z-scores reflect the overall local 
predictability of the target word alleviate in the local context
student government can help alleviate stress . They allow.
AVER sets these weights empirically as part of optimizing the 
weights for all our features, not just these 15. Correlations of the 
15 features with human ratings range from 0.138 for logP(target 
w1 | ___ w1) to –0.009 for logP(target w1 w2 w3 w4 | ___ w1 w2 
w3 w4).  I.e., before stress, alleviate is likelier to occur, but before 
stress . They allow, the word alleviate is a bit less likely to occur.
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In contrast, AVER.b uses just five local predictability features, 
one for each position in a 5-word context. In our example, their 
respective z-scores are 0.071, 1.006, 1.157, 0.944, and –0.457.  
The third value is largest, i.e. can help __ stress . is the 5-word 
context that most strongly predicts alleviate.  The five features 
correlate with mean Turker ratings at 0.055, 0.038, 0.065, 0.042, 
and 0.062.  

To estimate the probability of the target word at word i given a 5-
word window, AVER.b uses n-grams whose length ni varies by 
the amount of backoff. To reflect the relative specificity of the 
evidence for each estimated probability, we tried weighting it by

but it made model fit slightly worse, so we decided not to weight 
by n-gram length.  Perhaps weighting it differently would help.

3.3 Topicality
Topicality features measure relatedness of the target vocabulary 
word to other content words in the context. The intuition behind 
using such features is that a context containing a typical usage of 
the target vocabulary word is likely to contain other content words 
that co-occur frequently with the target vocabulary word or are 
distributionally similar to it, i.e. tend to co-occur with the same 
words that the target word co-occurs with.  The DISCO tool [17]
at www.linguatools.de measures the co-occurrence of two words 
within 3 words of each other (“S1”) and their distributional 
similarity (“S2”) in a specified corpus, such as the British 
National Corpus (BNC), which contains 119 million tokens and
122,000 unique content words in “samples of written and spoken 
language from a wide range of sources, designed to represent a 
wide cross-section of British English, both spoken and written, 
from the late twentieth century” [18]. AVER uses DISCO to 
compute co-occurrence and distributional similarity between the 
target vocabulary word and each content word in the context.

To score the overall topicality of a context for the target word, we 
must aggregate the relatedness scores for the individual context 
words.  Typically only a few of the context words are strongly 
related to the target word.  Consequently, the overall average 
relatedness of the context dilutes their influence.  Instead, AVER 
averages relatedness over just the most related k words of the 
context.  In informal tests of different values of k, the average of 
the top 5 relatedness scores did best at predicting human ratings.

Thus AVER computes two topicality scores for a context.  The 
co-occurrence z-score for our example context is 5.063.  Context 
words that tend to co-occur with the target vocabulary word
‘alleviate’ include ‘pressure’ and ‘stress’.  The distributional 
similarity z-score for our example context is 1.497.  The context 
word with the highest distributional similarity to ‘alleviate’ is 
‘relieve’. DISCO’s S1 and S2 scores based on BNC correlated 
with mean human context ratings at 0.060 and 0.025, respectively. 

4. FEATURES TRIED BUT ABANDONED
We now discuss several features that we experimented with but do 
not use in AVER, either because they hurt predictive accuracy in 
informal small experiments, or because they were too complex to 
compute efficiently.

4.1 Topicality Based on Google N-grams 
As explained above, AVER computes context typicality using 
DISCO co-occurrence and similarity scores based on the British 
National Corpus.  These scores suffer from data sparsity in the 

case of less-frequent words.  In contrast, the Google n-grams
corpus is based on over 10,000 times as much text, namely a 
trillion words of Web text.  Not only is this corpus four orders of 
magnitude larger than BNC, it is also more relevant to the 
example contexts because they too consist of Web text.

Although the Google n-grams corpus is already in the form of n-
grams rather than the text they are based on, its size makes it 
computationally expensive to compute similarity scores from it,
so in previous work we had precomputed and indexed a table of 
the number of n-grams containing a given pair of words at a 
distance of 1, 2, 3, or 4 words, and those n-grams’ summed 
frequency.  However, this table has 921,643,327 rows.  Despite 
efficient indexing, a target word’s co-occurrences take 
considerable time to look up – over 30 seconds for alleviate.  To 
compute distributional similarity with reasonable speed, we 
therefore estimated it from the first few hundred rows.  
Unfortunately, the resulting feature harmed rather than helped 
model accuracy.  To compute more predictive estimates of co-
occurrence and distributional similarity based on Google n-grams, 
it might help to sample them more judiciously, and to adjust better
for differences among target words to make estimates comparable.

4.2 Language Model Probability
To quantify the likelihood of a given context occurring in English,
we used a language model trained on English text using the 
NLTK language model package at www.nltk.org. The motivation 
for this feature was to penalize contexts that contain ill-formed or 
incomplete sentences.  We dropped this feature because it did not 
improve predictive accuracy, but maybe other variants of it might.

4.3 Weighted Human Ratings 
Apart from different features that we tried out but did not include 
in the final model, we also investigated methods to improve the 
accuracy of the labels computed by averaging 10 raters’ ratings of 
each context.  These methods weighted the average based on each 
rater’s degree of agreement with expert ratings of other contexts.  
The more closely the rater agreed with the expert on the contexts 
they both rated, the more accurately we expected the rater to rate 
contexts that the expert did not rate.

However, most raters did not overlap with the expert in terms of 
which contexts they rated.  We therefore extended the method 
transitively to rate such raters based on their degree of agreement 
with raters who had non-zero overlap with the expert, and on how 
closely those raters agreed with the expert on the contexts they 
both rated.

We also used the overlapping contexts to train a model to predict 
a rater’s expected degree of agreement with the expert, based on 
features of the rater such as the total number of contexts he or she 
had rated.  We hoped to use this model to predict agreement with 
the expert even for raters with zero overlap.  However, the expert 
rated only 93 contexts, so very few raters overlapped with the 
expert.  Even they overlapped too little to accurately estimate the 
rater’s agreement with the expert.  We therefore abandoned the 
approach of rating raters by their actual or expected agreement 
with the expert, and using it to weight the individual ratings 
averaged to rate a given context.  Rating raters might be effective 
given a larger sample of expert ratings, and greater overlap of the 
raters with the expert. 

5. FEATURES FOUND BUT NOT USED
Based on expert linguistic analysis of over 200 contexts whose 
human and automated ratings differed drastically, we identified 
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some syntactic and semantic features not exploited by the current 
models, and likely to improve them.

5.1 Syntactic Features
Additional syntactic features of a context could be computed by 
parsing it with the Stanford parser, and extracting them from the 
parse tree with Tsurgeon and Tregex, using the tools at 
nlp.stanford.edu/software/corenlp.shtml [19].
commondatastorage.googleapis.com/books/syntactic-
ngrams/index.html [20] is a corpus of syntactic n-grams that 
provides counts of dependency tree fragments, which could be 
used to rate the plausibility of the parse and to infer likely 
dependency relations among context words.  If for some reason 
part-of-speech tagging the context is feasible but parsing it is not, 
its dependency relations could be inferred from its part-of-speech 
n-grams [21]. 

Informative syntactic features include the direct object of a target 
verb, e.g. abdicate in Edward abdicated the throne, and the 
objects of prepositions following a target word, e.g. keen in They 
are very keen on education.  Another syntactic feature comes 
from coordinate constructions, e.g., it is characterized by 
inconsistency and vagary.  The coordinated conjuncts are likely 
to be semantically similar or even synonymous.

It might also be useful to incorporate syntactic information into 
the current n-gram features.  In particular, disaggregating n-gram
features by the target word’s part of speech in the context would 
exploit systematic statistical differences between parts of speech.  
For instance, if the target word is a verb, its subject is likely to 
precede it, and shed semantic light on what sorts of agents can 
perform the verb.  Conversely, if the target word is an adjective, 
the noun phrase after it illustrates what the adjective can modify.

5.2 Semantic Features
Our analysis of misrated contexts found that spuriously low 
similarity ratings are often caused by lack of co-occurrences due 
to sparse data for less-frequent words.  This deficiency might be 
addressed by augmenting BNC data with definitions, Wordnet 
gloss examples, and Google n-grams, provided the computational 
issues discussed earlier are satisfactorily addressed.  For example, 
if we use Google n-gram features only where BNC data is too 
sparse, they might not pose such computational bottlenecks.  
Likewise, we could complement DISCO metrics of semantic 
similarity with features based on WordNet links from a target 
word to any of its synonyms, antonyms, hypernyms, and 
hyponyms that occur in the context.

6. AUTOMATED RATING OF CONTEXTS
AVER and AVER.b use the features described above in two types 
of models to rate contexts automatically for a given target word.  
The linear regression model predicts the mean human rating of a 
context.  The logistic regression model is a binary classifier:  it 
predicts whether a context is “good” (rated 3 or above) or “bad” 
(below 3).

We could run these models on all 75,844 contexts, but we can 
evaluate the models only on the 13,270 contexts rated by humans. 
To estimate the performance of both models on unseen data, we 
therefore use 5-fold cross-validation: We split the target words 
randomly into 5 equal subsets so as to partition the contexts into 5 
subsets (“folds”) with no overlap in target words between folds.  
For each fold we train both models on the other 4 folds, measure
their performance on the held-out fold, and average over the held-

out folds to estimate predictive accuracy on unseen target words – 
including the 62,574 unrated contexts, assuming they’re similar.

To estimate performance fairly on unseen target words, it is
essential to avoid overlap in target words between folds.
Otherwise even if contexts do not overlap across folds, overlap in 
target words causes overfitting and inflates estimated performance 
on unseen data, especially if the training and test sets contain very 
similar contexts.  Our initial results suffered from this problem 
before we eliminated overlap in target words across folds.

For the original AVER, the correlation between predicted and 
actual mean human ratings is 0.180 for the linear model and 0.178
for the logistic model. The Area Under Curve (AUC) for the 
original AVER is 0.600, significantly better than the 0.5 expected 
from a random baseline.

The linear model predicts mean human ratings, so it optimizes the 
correlation of predicted to actual ratings. The logistic model 
classifies contexts as good or bad, so it optimizes the number of 
misclassified contexts.  Consequently correlation is higher for the 
linear model, whereas AUC is higher for the logistic model.

Unfortunately, AVER.b fared considerably worse.  Its predictions 
correlated with actual ratings at only .093, with AUC only 0.563.  
Accordingly we focus on the results for the original AVER.

Table 2 shows the original AVER linear model’s coefficients for 
each normalized feature.  According to this analysis, the features 
in boldface are reliable at p < .05 (*), .005 (**), or .0005 (***).

Table 2: Coefficients of linear model for (original) AVER

Feature Coefficient
WordBand –.5691
Flesch-Kincaid Reading Ease ***   .1220
Flesch-Kincaid Grade ***   .0627
Average word length ***   .0520
Unigram logP(t) * –1.017
Bigram logP(t w1 | __ w1) ***   .0621
Bigram logP(w1 t | w1 __) **   .0188
Trigram logP(t w1 w2 | __ w1 w2) *** –.0394
Trigram logP(w1 t w2 | w1 __ w2) .0070
Trigram logP(w1 w2 t | w1 w2 __) *** –.0053
4gram logP(t w1 w2 w3 | __ w1 w2 w3) .0088
4gram logP(w1 t w2 w3 | w1 __ w2 w3) .0213
4gram logP(w1 w2 t w3 | w1 w2 __ w3) –.0109
4gram logP(w1 w2 w3 t | w1 w2 w3 __) ***   .0398
5gram logP(t w1 w2 w3 w4 | __ w1 w2 w3 w4) * –.0297
5gram logP(w1 t w2 w3 w4 | w1 __ w2 w3 w4) –.0002
5gram logP(w1 w2 t w3 w4 | w1 w2 __ w3 w4) .0193
5gram logP(w1w2w3 t w4 | w1 w2 w3 __ w4) * –.0283 
5gram logP(w1 w2 w3 w4 t | w1 w2 w3 w4 __) .0017
Co-occurrence (DISCO S1) ***   .0340
Distributional Similarity (DISCO S2) ***   .0674
Intercept *** 2.5079

As Table 2 shows, unigram log probability of the target word was
by far the strongest predictor of human ratings, and negative:  
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contexts for rarer words get lower ratings, which may reflect that 
the less frequently the target word appears in the Google n-grams
corpus, the less likely it is to have good example contexts on the 
web.  As expected, Reading Ease is a positive predictor:  readable 
example contexts are likelier to help students.  Surprisingly, the 
coefficients for word length and grade level are positive even 
though in isolation they correlate negatively with ratings.  Perhaps 
they reflect positive effects exposed after other predictors account 
for the negative effects, or are simply artifacts of including 
correlated predictors in the model.  Several n-gram based metrics 
of local predictability in the form of conditional probability of the 
target given the surrounding context are significant, but it is not 
clear why some are positive and others are negative. Fewer 
features based on longer n-grams are significant, presumably due 
to sparseness in the corpus.  Finally, both topicality indicators are 
significant positive predictors:  contexts relevant to a target word 
are likelier to be nutritious for learning it.

Although AVER.b’s results were worse, they are easier to 
interpret, and differ from the original AVER. Table 3 shows 
AVER.b linear model’s coefficients for each normalized feature.  
According to this analysis, the features in boldface are reliable at 
p < .05 (*) or .0005 (***); one feature is suggestive at p < .1 (.).

Table 3:  Coefficients of linear model for AVER.b

Feature Coefficient

WordBand *** 0.0508

Flesch-Kincaid Reading Ease *** 0.0567

Flesch-Kincaid Grade * 0.0328

Average word length * -0.0199

Unigram logP(t) 0.0052

logP(t w1 w2 w3 w4 | __ w1 w2 w3 w4) *** 0.0241

logP(w1 t w2 w3 w4 | w1 __ w2 w3 w4) -0.0039

logP(w1 w2 t w3 w4 | w1 w2 __ w3 w4) *** 0.0415

logP(w1w2w3 t w4 | w1 w2 w3 __ w4) . -0.0152

logP(w1 w2 w3 w4 t | w1 w2 w3 w4 __) *** 0.0321

Co-occurrence (DISCO S1) *** 0.0483
Distributional Similarity (DISCO S2) 0.0031

Intercept *** 2.5823
For AVER.b, WordBand is significant and Unigram is not, just 
the opposite of the original AVER.  One reason may be that the 
AVER.b’s context probabilities back off to unigram probability 
for the 8%-9% of 2-word contexts not listed in the bigram table. 
Reading Ease, Grade, and Word Length are significantly positive
in both models.  The five context probabilities show a striking 
pattern: the first, middle, and last positions in a 5-word context 
are highly predictive, whereas the other two are not.  One 
candidate explanation is that target words tend to be adjacent to
function words that provide much less specific information about 
them. However, the five features have similar correlations with 
Turker ratings, ranging from 0.038 to 0.065.  A simpler 
explanation is that successive contexts make correlated 
predictions, and regression assigns the shared variance to just one.

Finally, DISCO S1 was highly significant in both models, but 
DISCO S2 was significant in the original AVER but not AVER.b.  
It is not obvious how to explain this difference based on the 

difference in representation of local context features, i.e., how 
backoff would steal variance from distributional similarity.

To compare the cross-validation results for the original AVER to 
a random baseline, Figure 1 shows the ROC for the percentage of 
good contexts (rated 3 or above) accepted against the percentage 
of bad (rated below 3) contexts accepted, as the acceptance 
threshold on the logistic model’s output probability varies.

Figure 1:  ROC curve for % good vs. % bad contexts accepted
Figure 2 plots the percentages of all the good and bad contexts 
accepted as the probability threshold decreases from 0.8.

Figure 2:  % of contexts accepted vs. probability threshold
As Figure 3 shows, the difference in percentages peaks at 15.2%:  

Figure 3:  % good – % bad vs. probability threshold
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However, bad contexts outnumber good ones, so even when the 
percentage accepted out of all the good contexts exceeds the 
percentage accepted out of all the bad contexts, the accepted 
contexts contains a higher percentage of bad than good contexts, 
and this imbalance worsens as the threshold decreases, as Figure 4 
shows.  

Figure 4:  # of contexts accepted vs. probability threshold

As Figure 5 shows, at a threshold of 0.476, the ratio of good to 
bad contexts reaches a local peak of 0.911 – over twice as high as 
0.449, the overall baseline ratio of good contexts to bad contexts.  
However, at such a high threshold, only 4.4% of the contexts are 
accepted: 278 (6.8%) of the 4107 good contexts and 305 (3.3%) 
of the 9150 bad contexts.  Thus there is a tradeoff between the 
number and quality (% good) of the accepted contexts.

Figure 5:  Ratio of good to bad contexts accepted
Visualizing the accuracy of the predicted ratings requires a 
different type of plot because predicting ratings is not a 
classification task. Accordingly, Figure 6 shows the distribution 
of errors in rating good and bad contexts as a histogram of 

predicted minus actual ratings, binned to the nearest 0.1.  Figure 6 
reflects the fact that there are many more bad than good contexts.  
It shows that almost all the errors in ratings are less than 1 in size.

Figure 6:  Histogram of errors in rating contexts

7. CONCLUSION
This paper presented and evaluated two models for predicting 
human ratings of example contexts for learning vocabulary. In 
contrast to prior work that used manually specified, explicitly 
operationalized criteria to evaluate contexts, both models 
approximate the implicit criteria underlying human judgments.  
Given the wide range of phenomena in language, the diversity of 
criteria that affect the nutritiousness of example contexts, and 
humans’ limited ability to articulate these criteria explicitly and 
operationalize them precisely, models trained on human ratings 
have the potential to surpass hand-crafted models, just as machine 
learning has surpassed hand-crafted classifiers in other domains.

The AVER system reported here is just an initial step toward this 
goal:  it rates contexts reliably more accurately than chance, but 
not by very much.  Its features are shallow, based on local or bag-
of-words statistics rather than deeper linguistic structures such as 
dependency graphs.  Future work should develop more 
sophisticated features.  Our analysis of example contexts with 
large discrepancies between actual and predicted ratings exposed 
some promising syntactic and semantic features, informed by 
human understanding of what makes particular contexts useful to 
learners or not.

Second, supervised learning from labeled data is only as good as 
the quality of the labels.  The larger project of which this work is 
a part has already revised the training and selection of raters. 
However, even expert labels are only a proxy for what actually 
helps real students.  Definitive labels should be grounded 
empirically in data on how much different students learn about 
different words from different example contexts.  To be practical,
this approach will require considerable amounts of data – even 
more so if it tries to model individual differences among students, 
not just what works well overall on average.
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Third, we rated example contexts in isolation, but learning a 
word’s meaning requires encountering it in diverse contexts, not 
just repeated encounters in the same context, because students 
learn different aspects from different contexts.  Optimizing the 
entire sequence of encounters will require identifying what those 
different aspects are, what sorts of contexts help in learning which 
aspects, and how learning is affected by their order and how they 
are related.

Besides accelerating the practical task of selecting good example 
contexts to teach vocabulary, machine-learned models may 
eventually shed new light on what properties make example 
contexts nutritious for learning vocabulary, thereby improving our 
understanding of human vocabulary learning and instruction. 
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ABSTRACT
Social identity threat refers to the process through which
an individual underperforms in some domain due to their
concern with confirming a negative stereotype held about
their group. Psychological research has identified this as
one contributor to the underperformance and underrepre-
sentation of women, Blacks, and Latinos in STEM fields.
Over the last decade, a brief writing intervention known as
a values affirmation, has been demonstrated to reduce these
performance deficits. Presenting a novel dataset of affirma-
tion essays, we address two questions. First, what linguistic
features discriminate gender and race? Second, can topic
models highlight distinguishing patterns of interest between
these groups? Our data suggest that participants who have
different identities tend to write about some values (e.g.,
social groups) in fundamentally different ways. These re-
sults hold promise for future investigations addressing the
linguistic mechanism responsible for the effectiveness of val-
ues affirmation interventions.

Keywords
Interventions, Natural Language Processing, Achievement
Gap

1. INTRODUCTION
In the American education system, achievement gaps be-
tween Black and White students and between male and
female students persist despite recent narrowing. This is
true in STEM fields in particular, with the underachieve-
ment leading in turn to problems with underemployment
and underrepresentation more generally. Women, for exam-
ple, make up a scant 28% of the STEM workforce [1].

While we acknowledge that the reasons for underachieve-

∗tar2119@columbia.edu; Corresponding Author

ment and underrepresentation are numerous and complex,
social identity threat has consistently been shown to be one
factor which contributes to these problems and features a
psychological basis [32]. Social identity threat refers to the
phenomenon in which an individual experiences stress due to
concerns about confirming a negative stereotype held about
his or her social group. For instance, Black students are
stereotyped to be less capable in academic settings than
White students. Therefore, a Black student who is aware
of this stereotype may feel psychologically threatened, lead-
ing to changes in affect, physiology, and behavior[17, 35, 27,
5].

The description of a psychological process that partly ac-
counts for these achievement gaps opens the door to possible
psychological interventions. Indeed, a brief, relatively sim-
ple intervention derived from self-affirmation theory known
as a values affirmation has been shown to diminish these
achievement gaps - especially when delivered at key transi-
tional moments, such as the beginning of an academic year
[6, 4]. The values-affirmation intervention instructs students
to choose from a series of values, and then reflect on why
this value might be important to them. The intervention
draws on self-affirmation theory, which predicts that a fun-
damental motivation for people is to maintain self-integrity,
defined as being a good and capable individual who behaves
in accordance with a set of moral values [31].

Accumulating evidence indicates that this intervention is ef-
fective in reducing the achievement gap. For instance, stu-
dents who complete the intervention have shown a blunted
stress response [8] and improved academic outcomes longi-
tudinally [4], as well as in the lab [13, 26]. There is also evi-
dence that these affirmations reduce disruptive or aggressive
behavior in the classroom [33, 34].

In short, research has definitively shown that values affirma-
tions can reduce achievement gaps. However, the content of
the essays themselves has not been as thoroughly examined.
While some studies have examined the content of expres-
sive writing for instances of spontaneous affirmations [7], or
examined affirmations for instances of certain pre-defined
themes (e.g., social belonging [28]), these efforts have been
on a relatively small scale, and have been limited by the
usual constraints associated with hand-annotating (e.g., ex-
perimenter expectations, annotator bias, or excessive time
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requirements).

The goal of this paper is to explore the content of values af-
firmation essays using data mining techniques. We explore
the differences in the content of affirmation essays as a func-
tion of ethnic group membership and gender. We are moti-
vated to address these questions because ethnicity and gen-
der, in the context of academic underperformance and the
affirmation intervention, are categorical distinctions of par-
ticular interest. Identifying as Black or as a woman means
that one is likely to contend with negative stereotypes about
intelligence, which in turn puts the individual at risk of ex-
periencing the negative effects of social identity threat. The
content of the essays produced by individuals under these
different circumstances could lead to insights on the struc-
ture of threat or the psychological process of affirmation.
Additionally, we hope to eventually use information from
this initial study to create affirmation prompts which are
tailored to individual differences. That is, it may be ben-
eficial to structure the values-affirmation in different ways
depending on the particular threatening context or identity
of the writer.

We will explore these issues from two different perspectives.
First, we investigate the latent topics of essays using La-
tent Dirichlet Allocation (LDA) [2], which is a generative
model that uncovers the thematic structure of a document
collection. Using the distribution of topics in each essay,
we will present examples of topics which feature strong and
theoretically interesting between-group differences. Second,
we approach the question of between-group differences in
text as a classification problem. For instance, given certain
content-based features of the essays (e.g., topics, n-grams,
lexicon-based words), how well can we predict whether an
essay was produced by a Black or White student? This ap-
proach also allows us to examine those features which are
the most strongly discriminative between groups of writers.
Finally, classification will allow us to closely compare the
relative strength of each model’s features with respect to
differences between groups.

2. DATA
Our data come from a series of studies conducted on the
effectiveness of values affirmations. For the datasets that
have resulted in publications, detailed descriptions of the
subjects and procedures can be found in those publications
[4, 5, 27, 28]. The unpublished data follow nearly identical
procedures with respect to the essay generation.

As an illustrative example of the essay generation process,
we describe the methods from Cohen et. al [4]. This study,
conducted with seventh-graders, featured a roughly equal
number of Black and White students who were randomly
assigned to either the affirmation condition or a control con-
dition. The affirmation intervention was administered in the
student’s classrooms, by teachers who were blind to condi-
tion and hypothesis. Near the beginning of the fall semester,
students received closed envelopes from their teachers, who
presented the work as a regular classroom exercise. Written
instructions inside the envelope guided students in the af-
firmation condition to chooose their most important values
(or, in study 2, their top two or three most important values)
from a list (athletic ability, being good at art, being smart or

getting good grades, creativity, independence, living in the
moment, membership in a social group, music, politics, re-
lationships with friends or family, religious values, and sense
of humor), while control students were instructed to select
their least important value (two or three least important val-
ues in study 2). Students in the affirmation condition then
wrote about why their selected value(s) are important to
them, while students in the control condition wrote about
why their selected values might be important to someone
else. All students quietly completed the material on their
own.

The other samples in our data include both lab and field
studies and feature methods largely similar to those just
described. Across all studies, participants completing the
affirmation essays are compared with students who do not
suffer from social identity threat as well as students who
complete a control version of the affirmation. Our datasets
feature students of college age, as well as middle school stu-
dents. Below we show two examples of affirmation essays
(one from a college student and one from a middle school
student) and a control essay (middle school student):

Affirmation Essay (college student): My
racial/ethnic group is most important to me when
I am placed in situations that are alienating or
dangerous or disrespectful. Since coming to Yale
a school much larger than my former school where
I feel my minority status that much more sharply
or feel like people are judging me because I have
dark skin I have placed a much higher value on
being black. I work for the Af-Am House. I am
involved in Black groups and most of my friends
are Black. But often being black holds me down
and depresses me because people are surprised at
how much like them I can be and I dont think Im
pretty. Its stressful to have to avoid stereotypes
like being late or liking to dance or being sexual.
I dont want people to put me in a box labeled
black Girl 18. I am my own person.

Affirmation Essay (middle school student:)
Being smart and getting good grades is impor-
tant to me because it is my path to having a
succesful life. Independence is also important be-
cause I don’t want to be like everybody else. I
want to be special in my own way. I want to be
different.

Control Essay: I think that being good in art
can be important to someone else who likes and
enjoys art more than I do. I also think this be-
cause there are people who can relate and talk
about art by drawing and stuff like that but I
don’t.

In total, we were able to obtain 6,704 essays. Of these, our
analyses included all essays which met the following criteria:

1. The essay was an affirmation essay (not control). We
opted to exclude control essays because the psycholog-
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ical process behind the generation of a control essay
is fundamentally different from the process that gen-
erates an affirmation essay. We are interested in the
affirmation process, and including control essays in a
topic model, for instance, would only add noise to the
signal we are interested in exploring.

2. The writing prompt did not deviate (or deviated only
slightly) from the writing prompt most widely used
across various studies [4]. For example, most of the
essays used prompts mentioned above (e.g., athletic
ability, religious values, independence). We excluded
prompts such as reflection on President Obama’s elec-
tion, since they are of a different nature.

Including only the essays which met the above criteria re-
sulted in a final dataset of 3,097 essays. Given that some
individuals wrote up to 7 essays over the period of their
participation, the 3,097 essays came from 1,255 writers (425
Black, 473 White, 41 Asian, 174 Latino, 9 other, 83 un-
recorded; 657 females, 556 males, 42 unrecorded). The ma-
jority of these writers (n = 655) were from a field study
in which 8 cohorts of middle school students were followed
over the course of their middle school years. The remainder
were from several lab-based studies conducted with samples
of college students. Before modeling, all essays were prepro-
cessed by removing stop words and words with frequency
counts under four. We also tokenized, lemmatized, and au-
tomatically corrected spelling using the jazzy spellchecker
[11].

The essays varied in length (median number of words = 39,
mean = 44.83, SD = 35.85). Some essays are very short (e.g.,
2 sentences). As we describe in the next section, this posed
some interesting opportunities to test different methods of
modeling these essays, especially with regard to using topic
models.

3. MODELS FOR CONTENT ANALYSIS
To explore the differences in the content of affirmation essays
as a function of ethnic group membership and gender we
used several methods to model essay content.

Latent Dirichlet Allocation (LDA). Graphical topic mod-
els such as LDA [2] have seen wide application in compu-
tational linguistics for modeling document content. Such
topic models assume that words are distributed according
to a mixture of topics and that a document is generated
by selecting a topic with some mixture weight, generating
a word from the topic’s word distribution, and then repeat-
ing the process. LDA specifies a probabilistic procedure by
which essays can be generated: the writer chooses a topic zn
at random according to a multinomial distribution (θ), and
draws a word wn from p(wn|zn, β), which is a multinomial
probability conditioned on the topic zn (θ ∼ Dir(α)). The
topic distribution θ describes the portion of each topic in
a document. One drawback of the current LDA framework
is that it assumes equal contribution of each word to the
topic distribution of a document θ. Since many of our writ-
ers tended toward using repetitive language (e.g., miming
the essay prompt), we used a modified version of LDA to
model our essays, which uses a tf-idf matrix instead of the

Figure 1: An example essay from a college-aged
writer. Words have been highlighted to show their
topic assignments

standard word-count matrix [21]. This allows words that
are more unique in their usage to take on greater weight in
the topic model. We settled on a model with 50 topics, as
this provided a good fit to our data, and topics with good
subjective interpretability. Given that a primary goal of our
analysis was to investigate the topics, we prioritized inter-
pretable topics over statistical fit when necessary. Figure 1
shows the affirmation essay written by the college student
given in Section 2, where words are highlighted to show their
topic assignments. This example includes three topics, one
of which is clearly related to ethnic group (red text), while
the other two are somewhat more ambiguous. Section 4
shows some of the learned topics, an analysis of the topic
distributions as a function of gender and race, and the re-
sults of using the topic distributions as additional features
for classification experiments (gender, ethnicity, and gender-
ethnicity).

Weighted Textual Matrix Factorization (WTMF). Topic
models such as LDA [2] have been successfully applied to rel-
atively lengthy documents such as articles, web documents,
and books. However, when modeling short documents (e.g.,
tweets) other models such as Weighted Textual Matrix Fac-
torization (WTMF) [10] are often more appropriate. Since
most of our essays are relatively short (2̃-3 sentences), we
use WTMF as an additional method to model essay content.
The intuition behind WTMF is that it is very hard to learn
the topic distribution only based on the limited observed
words in a short text. Hence Guo and Diab [10] include
unobserved words that provide thousands more features for
a short text. This produces more robust low dimensional
latent vector for documents. However, while WTMF is de-
veloped to model latent dimensions (i.e., topics) in a text, a
method for investigating the most frequent words of these la-
tent dimensions is not apparent (unlike LDA). We therefore
use this content analysis method only for the classification
tasks (gender, ethnicity, gender-ethnicity), with the induced
50 dimensional latent vector as 50 additional features in clas-
sification (Section 4).

Linguistic Inquiry and Word Count (LIWC). Pennebaker
et al.’s LIWC (2007) dictionary has been widely used both
in psychology and computational linguistics as a method for
content analysis. The LIWC lexicon consists of a set of 64
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Table 1: Top 10 words from select LDA topics
Topic3 Topic22 Topic33 Topic43 Topic47

relationship time group religion religious
life spring black church god
feel play white religious faith

independent hang racial god religion
family talk identify treat jesus
support help race sunday believe
time friend ethnic believe belief
friend family certain famous church
through homework culture stick christian
help school history lord earth

word categories grouped into four general classes organized
hierarchically: 1) Linguistic Processes (LP) [e.g., Adverbs,
Pronouns, Past Tense, Negation]; 2) Psychological Processes
(PP) [e.g., Affective Processes [Positive Emotions, Negative
Emotions [Anxiety, Anger, Sadness]], Perceptual Processes
[See, Hear, Feel], Social Processes, etc]; 3) Personal Con-
cerns (PC) [e.g., Work, Achievement, Leisure]; and 4) Spo-
ken Categories (SC) [Assent, Nonfluencies, Fillers]. LIWC’s
dictionary contains around 4,500 words and word stems. In
our analysis we used LIWC’s 64 categories as lexicon-based
features in the classification experiments (Section 4).

4. RESULTS
One of our primary questions of interest is whether we can
discover between-group differences in the content of the es-
says. In order to examine this idea in a straightforward
way, we limit the analyses to only those individuals who
identified as Black or White (2,392 essays from 897 writers).
While there are stereotypes suggesting that Asians and Lati-
nos should perform well and poorly in academic domains,
respectively, many individuals in our samples who identify
with these groups are born in other countries, where the na-
ture of prevailing stereotypes may be different. This is not
true to the same extent of individuals who identify as Black
or White. We thus exclude Asians and Latinos (as well as
those who identified as“other”or declined to answer) for our
between-group differences analyses and classification exper-
iments. Inferential analyses were conducted using R [20],
and figures were generated using the ggplot2 package [36].

4.1 Interpreting Topic Models
We first describe the results of using LDA to see whether
we can detect topics that feature strong and theoretically
interesting between-group differences. Accurately interpret-
ing the meaning of learned topics is not an easy process
[14] and more formal methods are needed to qualitatively
evaluate these topics. However, our initial investigation sug-
gests that participants use common writing prompts to write
about values in different ways, depending on the group to
which they belong.

Table 1 provides the top 10 words from several learned LDA
topics1. Manually inspecting the topics, we noticed that
LDA not only learned topics related to the values given, but
it seemed to be able to learn various aspects related to these

1As noted in section 3, we are unable to investigate WTMF
models in the same fashion.
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Figure 2: Topic3: Most prominent topic. Points
represent fixed effect estimates. Error bars repre-
sent represent +/- 1.96 standard errors. Word size
represents weighting in the topic

values. For example, Topic43 and Topic47 both relate to
religious values but Topic43 refers to religion as it pertains to
elements of the institution (including words such as church,
sunday, and catholic), while Topic47 seems to focus more on
the content of faith itself (indicated by words such as faith,
jesus, and belief). A similar interpretation can be given to
Topic3 and Topic22 — they both refer to relationship with
family and friends, but one focuses on the support and help
aspect (Topic3), while the other seems to refer to time spent
together and hanging out (Topic22). Finally, Topic33 shows
an example where the topic learned is about ethnic group,
even if ethnicity was not a specific value given as a prompt
(rather the more general value of ’membership in a social
group’ was given). Figure 1 shows an example of an essay
and the word-topic assignments, where Topic33 is one of the
topics (ethnic group, shown in red).

In order to identify interesting between-group differences in
topic distributions, we fit a series of mixed-effects linear re-
gressions, with each of the 50 topics as the outcomes of
interest. For each model, we estimated effects for gender,
ethnicity, and the interaction between the two. For the ran-
dom effects component, we allowed the intercept to vary by
writer. Across the 50 models and excluding the intercept,
we estimated a total of 150 effects of interest. Of these, 23
reached the threshold for statistical significance. This pro-
portion is greater than would be expected by chance (p <
.01). Having established that there are real and meaningful
between-groups differences, we more closely examined topics
which had theoretically interesting insights.

For example, Figure 2 shows the most frequent words from
the most prominent topic (Topic3; relationships with family
and friends as basis of support/help) across all essays, along
with differences between groups. The model for this topic
yielded marginal effects of gender (B = .02, SE = .01, p =
.08), with female writers devoting a greater proportion of
their writing to the topic (M = .12, SD = .27) than males
(M = .09, SD = .24). There was also a marginal effect of
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Figure 3: Topic33: effect of ethnicity. Points rep-
resent fixed effect estimates. Error bars represent
represent +/- 1.96 standard errors. Word size rep-
resents weighting in the topic

ethnicity, (B = .02, SE = .01, p = .10), with black writers
(M = .11, SD = .26) devoting more of their writing to the
topic than white (M = .10, SD = .25) writers.

There were also topics which strongly discriminated between
ethnicities. Figure 3 presents findings from one such topic
(Topic33; ethnic group). The model for this topic revealed
the expected main effect of ethnicity (B = .008, SE = .02, p
< .01), with black writers devoting a greater proportion of
their writing to the topic (M = .01, SD = .07) than white
writers (M = .003, SD = .03).

The LDA model also estimated topics that were utilized dif-
ferently by black and white writers, depending on if they
happened to be males or females. For instance, Figure 4
presents a topic which is related to problem-solving. Mod-
eling this topic showed that the interaction between gender
and ethnicity was significant (B = .003, SE = .01, p < .01).
Specifically, for black writers, women wrote more about this
topic (M = .009, SD = .07) than males did (M = .001, SD
= .02, p < .05). For white writers, the difference is in the
opposite direction, and marginally significant, with males
using more of their writing on this topic (M = .009, SD =
.08) than women (M = .004, SD = .03, p = .08). Simi-
larly, the difference for black and white males is statistically
significant (p < .05), whereas the difference is reversed and
marginal for black and white females (p = .11).

The findings from the LDA topic modeling show that there
are between-group differences emerging from the affirmation
essays. To investigate further, in the next section we present
the results of a study where we approach the question of
between-group differences as a classification problem.

4.2 Classification:Gender, Ethnicity, Gender-
Ethnicity

Given certain content-based features of the essays (e.g., dis-
tribution of topics, LIWC categories, n-grams), these exper-
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Figure 4: Topic23: Interaction between Gender and
Ethnicity. Points represent fixed effect estimates.
Error bars represent represent +/- 1.96 standard
errors. Word size represents weighting in the topic

iments aim to classify essays based on the writer’s ethnic-
ity and/or gender: Black vs. White (Ethnicity classifica-
tion), Female vs. Male (Gender classification), and Black-
Male vs White-Male and Black-Female vs. White-Female
(Ethnicity-Gender classification). In all classification exper-
iments we use a linear Support Vector Machine (SVM) clas-
sifier implemented in Weka (LibLINEAR) [9]. We ran 10-
fold cross validation and for all results we report weighted
F-1 score. As features we used TF-IDF (words weighted by
their TF-IDF values)2; LDA (topic distributions are used
as additional features); WTMF (the 50 dimensional latent
vector used as 50 additional features) and LIWC (LIWC’s
64 word categories are used as features).

The classification results are displayed in Table 2. We notice
that all features give similar performance per classification
task. In general, the results were better for the gender classi-
fication task (best results 74.09 F1 measure), while the worse
results seems to be for the ethnicity classification (best result
66.37 F1). None of the classification tasks showed significant
differences as a function of the included features (p > .05).

However, the aspect we were more interested in was to ana-
lyze the most discriminative features for each classification
task with the hope of discovering interesting patterns for
between-groups differences. The top 10 discriminating fea-
tures from each classification type on the TF + LDA +
LIWC features are presented in Table 3. There are several
interesting observations when analyzing these results. First,
supporting the results of the classification experiment, we
see that unigrams feature prominently. We also note that
LIWC features are largely missing from the top ten, with
the only exception being the 10th feature for males in the
gender classification. LDA topics, on the other hand, appear
as strongly distinguishing in 3 of the 4 classification tasks.
Further, in terms of content, the discriminative features sup-

2We experimented with presence of n-grams but using TF-
IDF gives better results.
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Table 2: SVM Results - cell contents are number of P/R/F1

Features
Classification

Gender Ethnicity Bl vs Wh Female Bl vs Wh Male
TF-IDF 73.38/73.38/73.33 71.34/67.91/65.13 73.43/69.70/67.97 75.26/70.76/67.29

TF-IDF + LDA 73.48/73.46/73.40 70.54/68.41/66.37 73.29/69.62/67.90 74.72/70.85/67.63
TF-IDF + WTMF 73.52/73.46/73.37 71.72/68.00/65.11 73.11/70.02/68.55 74.62/70.59/67.23
TF-IDF+LIWC 74.07/74.0/73.92 72.07/68.08/65.10 73.49/69.78/68.07 75.20/70.85/67.45

TF-IDF+LDA+LIWC 74.09/74.09/74.04 71.38/68.58/66.24 73.49/69.78/68.07 74.98/71.02/67.82

Table 3: Most discriminative features from classifiers with TF-IDF+LDA+LIWC as features
Gender Ethnicity

Female Male Black White

softball verry race Topic15-relationship, creative
jump available result Topic25-music, play, enjoy
swim football heaven younger

happier Topic26-play, soccer barely less
horse score disappoint weird

cheerleader language romantic Topic17-humor, sense, laugh
doctor lazy NBA larger

Topic14-music, relax moreover outdoor rock
boyfriend baseball africa tease
reason LIWC27-affect double (game double dutch) heavy

Females Males
Black White Black White

double (game double dutch) decorate Topic22-spring, hangout Topic25-music, play, enjoy
above rock NBA Topic17-humor, sense, laugh
ill guitar race Topic2-reply, already, told
race peer head larger
thick horse motive sit
south handle health cheer
option grandparents apart rock
lord saxaphone phone skate
result crowd award handy
york less famous holiday

port some of the results from the topic model analysis. For
instance, topic 33 (ethnic group) is the most discrimina-
tive, non-unigram feature for ethnicity, and is the 56th most
strongly associated feature with Black writers overall. It is
also the most discriminative, non-unigram feature for the
female-ethnicity classification, as the 44th most strongly as-
sociated feature with Black female writers. However, this
topic does not show up for the Black vs White male classifi-
cation. The topic results (Figure 3) also indicate a somewhat
stronger relationship for Black vs. White Females.

We also notice that there are strong effects related to sports.
In particular, some of the most discriminative features are
consistent with social expectations regarding participation
in various types of sports. Females, for instance, are more
likely to write about softball, swimming, and jumping rope,
whereas males are more likely to write about football and
baseball. Similar differences can be seen for ethnicity (NBA,
double dutch), and gender-ethnicity classifications (females:
double dutch, horse; males: NBA, skate).

5. RELATED WORK
As mentioned in the introduction, there have been some
smaller-scale investigations into the content of affirmation

essays. For instance, Shnabel et al.[28] hand-annotated a
subset of the data presented here for presence of social be-
longing themes. They defined social belonging as writing
about an activity done with others, feeling like part of a
group because of a shared value or activity, or any other ref-
erence to social affiliation or acceptance. Their results indi-
cate that the affirmation essays were more likely to contain
such themes than control essays, and that Black students
who wrote about belonging themes in their affirmation es-
says had improved GPAs relative to those who did not write
about social belonging. A subsequent lab experiment con-
firmed this basic effect and strengthened the hypothesized
causal claim. The data here are consistent with the idea that
social themes are a dominant topic in these essays. Indeed,
the most prominent topic (Topic3) seems to be a topic that
directly corresponds to social support (see Table 1). Fur-
ther, even a cursory glance at the topics we have included
here will show that references to other people feature promi-
nently - a pattern that is also true for the topics we have
not discussed in this paper.

One other finding of interest concerns the discriminative
ability of LIWC. Only for the gender classification did LIWC
categories appear among the discriminative features. There
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are many studies that show gender differences in LIWC cat-
egories [25, 19, 24, 16], to say nothing of the broader litera-
ture on differences in language use between men and women
[15, 12]. However, there is far less consistent evidence for
differences in LIWC categories as a function of ethnicity
[18]. That our results indicate features from LDA are more
discriminative for ethnicity suggests the utility of a bottom-
up approach for distinguishing between these groups. How-
ever, it should be noted that, in general, classification per-
formance on ethnicity was not as good as classification on
gender.

Finally, we also note that this is one of a small, but growing
number of studies directly contrasting LIWC and LDA as
text modeling tools [30, 22, 25]. While this other work tends
to find that LDA provides additional information which re-
sults in improvements to classification performance in com-
parison to LIWC, our do not display this pattern. It is not
clear why this may be, although we suspect that frequent
misspellings present in our data could lead to some of the
discrepancy.

6. CONCLUSIONS
We used data mining techniques to explore the content of
a written intervention known as a values affirmation. In
particular, we applied LDA to examine latent topics that
appeared in students’ essays, and how these topics differed
as a function of whether the group to which the student be-
longed (i.e., gender, ethnicity) was subject to social identity
threat. We also investigated between-groups differences in
a series of classification studies. Our results indicate that
there are indeed differences in what different groups choose
to write about. This is apparent from the differences in topic
distributions, as well as the classifier experiments where we
analyzed discriminative features for gender, ethnicity and
gender-ethnicity.

Why might individuals coping with social identity threat
write about different topics than those who are not? Some
literature shows that racial and gender identity can be seen
as a positive for groups contending with stigma [29]. The
model of optimal distinctiveness actually suggests that a cer-
tain degree of uniqueness leads to positive outcomes [3]. This
suggests that if an individual from a stigmatized group per-
ceives their identity to be unique, it may be a source of pride.
In the current context, this could be reflected in an increase
of writing devoted to the unique social group students are a
part of (i.e., African American). On the other hand, there
is some evidence that individuals downplay or conceal iden-
tities they perceive to be devalued by others [23]. This work
would suggest that students in our data would choose to
write about what they have in common with others. Our
work here seems to provide some support for the former,
but we have not addressed these questions directly, and so
cannot make any strong claims.

Looking forward, we intend to investigate the relationship
between essay content and academic outcomes. Do stig-
matized students who write about their stigmatized group
experience more benefit from the affirmation, as would be
suggested by the optimal distinctiveness model? This work
could provide data that speak to this issue. Furthermore, we
hope to model the trajectory of how the writing of an indi-

vidual changes over time, especially as a function of whether
they completed the affirmation or control essays. Given that
values affirmations have been shown to have long-term ef-
fects, and our data include some individuals who completed
multiple essays, exploration of longitudinal questions about
the affirmation are especially intriguing. We also intend to
model the essays using supervised-LDA, which would allow
us to jointly model the topics with the grouping informa-
tion. Last but not least we plan to investigate whether there
are differences between the middle school students and the
college-level students.
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ABSTRACT
Question-answer (Q&A) is fundamental for dialogic instruction, 
an important pedagogical technique based on the free exchange of 
ideas and open-ended discussion. Automatically detecting Q&A is 
key to providing teachers with feedback on appropriate use of 
dialogic instructional strategies. In line with this, this paper 
studies the possibility of automatically detecting segments of 
Q&A in live classrooms based solely on audio recordings of 
teacher speech. The proposed approach has two steps. First, 
teacher utterances were automatically detected from the audio 
stream via an amplitude envelope thresholding-based approach. 
Second, supervised classifiers were trained on speech-silence 
patterns derived from the teacher utterances. The best models 
were able to detect Q&A segments in windows of 90 seconds with 
an AUC (Area Under the Receiver Operating Characteristic 
Curve) of 0.78 in a manner that generalizes to new classes. 
Implications of the findings for automatic coding of classroom 
discourse are discussed. 

Keywords
Dialogic instruction, teacher feedback, professional development, 
live classrooms, speech, learning 

1. INTRODUCTION 
Dialogic instruction, a form of classroom discourse based around
the free exchange of ideas and open-ended discussion, is 
considered to be an important pedagogical approach to increase 
student engagement [11] and improve student achievement [24].
However, the quality of implementation of dialogic instruction in 
classrooms varies widely. Recent research has demonstrated the 
importance of formative assessment of teacher use of dialogic 
instruction in classrooms [10]. Providing formative feedback 
based on what actually occurs in classrooms allows teachers to 
focus their efforts on improving the quality of dialogic instruction 
over time. Providing formative feedback efficiently, accurately, 

and automatically on a day-to-day basis will ensure that teachers 
receive the feedback they need to better incorporate dialogic 
instructional practices into their classrooms. However, large-scale 
efforts to assess the quality of classroom discourse have relied on 
manual, labor-intensive, and expensive excursions into 
classrooms. The automation of classroom discourse analysis to 
inform personalized formative assessment and training programs 
has the potential to transform teachers’ use of dialogic instruction 
and thereby improve student outcomes. This is the overarching 
goal of the current project, called CLASS 5.  

The CLASS 5 project is focused on automatically analyzing 
classroom discourse as a means of providing feedback to teachers. 
CLASS 5 is intended to be a modern adaptation of the traditional 
model of requiring trained observers to manually code classroom 
discourse, an unsustainable task for providing day-to-day 
feedback for professional development. The automated analyses 
are grounded in the coding scheme of Nystrand and Gamoran 
[6,19], who observed thousands of students across hundreds of 
middle and high school English Language Arts classes. They 
found that the overall dialogic quality of classroom discourse 
through teacher’s use of authentic questions (questions without 
prescripted responses), uptake (integration of previous speaker’s 
ideas into future questions), and classroom discussion had 
positive effects on student achievement. The Nystrand and 
Gamoran coding scheme has been validated in multiple studies 
across a multitude of classrooms [2,7,17,18], hence, we are 
optimistic that by automating this coding scheme, we will 
replicate the well substantiated results of finding positive effects 
of dialogic instruction on student achievement. In the remainder 
of this section, we provide a brief overview of the Nystrand and 
Gamoran coding scheme, review prior work on automated 
classroom discourse analysis, and provide a brief overview of the 
present study, which is focused on automatically detecting 
question-answer (Q&A) segments via audio recordings of teachers 
during normal classroom instruction. 

1.1 Coding Classroom Discourse 
The Nystrand and Gamoran [6,19] coding scheme can be 
subdivided into three key ‘tracks,’ of increasingly fine granularity: 
1) episodes, which refer to the activity/topic being addressed by 
the teacher; 2) segments, seventeen categories that represent 
possible techniques used to implement the episode; and 3) 
questions asked by teachers or students embedded within 
segments [19]. Each track can be further understood by its own 
nuance and properties. For example, many classes typically begin 
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and end with procedural episodes (i.e., “getting started”; 
“preparing to leave”) with one or more instructional episodes 
permeating the core of the class. All episodes consist of one or 
more segments, which can be broadly subdivided into four 
categories: classroom management activities, direct instruction, 
seatwork, and tests and quizzes. Questions are coded along 
dimensions of authenticity, uptake, and cognitive level as 
elaborated in [19]. 

Our current focus is on classifying key segments in classroom 
discourse. Of the seventeen segment categories the most frequent 
segments are lecture (including film, music, or video), Q&A, 
reading aloud, supervision/helping, and small group work [19].
Lecture incorporates instances where a teacher speaks for at least 
30 seconds on a topic unrelated to the procedural aspects of 
running a class (discussing assignment instructions, for example, 
would not be considered lecture). Q&A segments include a 
question or series of questions which are non-rhetorical, non-
procedural, and non-discourse management questions. Reading 
aloud segments consist of students reading aloud. 
Supervised/helping segments occur when teachers help students 
complete individual work. Small group work segments occurs 
when a group of students participates in some activity. 

Discussions constitute an important, but rare, segment of 
particular relevance to dialogic instruction. According to the 
coding scheme, discussion segments consist of a free exchange 
among three or more participants that lasts longer than 30 
seconds. Discussions typically include relatively few questions. 
Questions that are asked tend to focus on clarification of ideas. 
Discussions are typically initialized when a student makes an 
observation, rather than asking a question, and another student or 
a teacher asks for clarification on that observation. In contrast, 
Q&A segments usually consist of three parts – an initiation, a 
response, and an evaluation (IRE). The most common example of 
these parts begins with a teacher question, followed by a student 
answer, and then a teacher response to the student’s answer. The 
teacher’s response is often perfunctory (e.g. ‘right’ or ‘wrong’) –
and sometimes non-vocalized (i.e., a nod) [16,18].

Q&A and discussion segments have traditionally positively 
correlated with achievement, and it is recommended that teachers 
should attempt to maximize use of these segments [19]. As 
mentioned above, discussion segments are rare in classrooms. In
Nystrand’s observations there was on average less than one 
minute of discussion per class [19]. Traditionally Q&A segments 
have dominated between 30% - 42% of class time [19]. In fact, 
when discussion does occur it tends to do so in the midst of Q&A 
segments. Therefore, the present study focuses on the automated 
detection of Q&A segments as an initial approach to automating 
the coding of classroom discourse. 

1.2 Related Work 
The closest work in this area stems from research by Wang and 
colleagues. In particular, Wang et. al. [26] used teacher and 
student speech features obtained by the Language Environment 
Analysis system (LENA) [5] to analyze discourse profiles from 1st

to 4th grade math classes. LENA is a wearable system which 
records and measures the quality of language produced by and 
directed at young children. Wang et. al. had two trained coders 
listen to 30-second audio windows and classify if the window 
represented discussion, lecture, or group work. Coders also 
provided their confidence in their annotation on a scale of 1 to 3 

(1 indicating a lack of confidence and 3 indicating very 
confident).  
LENA was adapted to assess when teachers were speaking, 
students were speaking, speech was overlapping, or there was 
silence. Wang et al. [25] previously found that LENA coded many 
student utterances as teacher utterances and modified LENA to 
improve its voice detection accuracy by changing the 
categorization algorithm to account for volume as an indicator of 
the distance between the speaker and the microphone. Their 
precision for teacher speech detection ranged from 0.95 – 0.99 
and their precision for student speech detection ranged 0.70 to 
0.86. 
They then trained a random-forest classifier to classify the 30-
second windows based on the results of speech segmentation. 
They used one coder’s confidence labels of 3 for training data. 
This constituted 62% of the windows. They validated their model 
on all of the windows (including the training windows), but with 
the annotations provided by a different coder. The coders agreed 
on 83% (Kappa 0.72) of the annotations, so there was 
considerable overlap between training and testing data. Their 
model achieved an accuracy of 83% (Kappa of 0.73) in 
discriminating between lecturing, discussion, and group work. 
Although Wang et. al. [26] reported success at classifying 
classroom discourse at course-grained levels, their audio solution 
was focused on what occurred in the context of individual 
windows, rather than using the broader classroom context to code 
segments. Further, according to Wang’s coding, discussion 
occurred approximately 33% of the time, indicating their 
definition of discussion was much more inclusive than the 
Nystrand & Gamoran coding scheme [6,19]. Their definition of 
discussion, which involved students and teachers having 
conversations about the learning content on the whole class level 
(the conversation should be accessible to the majority of students 
in class), is not incorrect, but more closely aligns with our 
definition of Q&A segments. In addition, their validation method 
did not include an independent class-level hold-out set, thus 
evidence for generalizability to new classes is unclear. 

1.3 Current Study 
The present study takes inspiration from Wang et al.’s pioneering 
work, but also differs from it in significant ways. The LENA 
system is a research-grade solution and is thereby cost prohibitive 
and might not be scalable. This raises the question of whether 
classroom discourse can be automatically analyzed using more 
cost effective consumer-grade sensors. Of particular interest is 
addressing which signals are needed for accurate automatic 
classification of classroom discourse. Teachers lead dialogic 
instruction and one possibility is the only signals needed to 
capture classroom activity are signals that capture teacher activity. 
Since teachers may be anywhere in a classroom, data needs to be 
collected from a device that accompanies their movements with 
high fidelity. One attractive candidate for such a sensor is a 
microphone to record teacher speech, which is the approach 
adopted here.  

Recording teacher speech is not a difficult task, but distilling the 
signal into appropriate features for classification of Q&A 
segments is more complicated. Thus, we first focused our efforts 
on teacher utterance detection in an attempt to find the onsets and 
offsets of teacher speech. Features extracted from these onsets and 
offsets, signaling periods of speech and rest, were then used to 
train classifiers to discriminate Q&A segments from all other 
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segments combined (i.e., Q&A vs. “other” discriminations). Note 
that all classification is done by analyzing these utterance onsets 
and offsets in an attempt to establish the accuracy of Q&A 
segment classification using a minimalistic approach. 

The key differences between the present approach and Wang’s 
previous work include: (a) our use of a consumer-grade 
microphone rather than the LENA system; (b) segments are coded 
during live classrooms, so that the overarching classroom context 
can be incorporated in the coding; (c) we study Q&A segment 
classification by exclusively focusing on the teacher speech 
signal; and (d) our models are validated across class sessions, 
thereby ensuring generalizability to new classes. 

The remainder of the paper is organized as follows. First, we 
discuss our data collection, which involved coders trained in 
Nystrand’s coding scheme collecting data from three teachers in 
21 class sessions over the course of a semester (Section 2). We 
recorded teacher speech using a headset microphone and the 
audio signal was temporally synchronized with the human 
codings. Next, we developed an amplitude envelop-based 
utterance detection approach to segment the teacher audio into 
periods of speech and rest (Section 3). Then, supervised classifiers 
were used to detect Q&A segments from features extracted by the 
utterance detection algorithm (Section 4). Implications of our 
findings towards the broader goal of automating the analysis of 
classroom discourse at multiple-levels are discussed (Section 5). 

2. Data Collection 
Audio recordings were collected at a rural Wisconsin middle 
school during literature, language arts, and civics classes. The 
recordings were of three different teachers: two males – Speaker 1 
and Speaker 2 – and one female – Speaker 3. The recordings 
spanned classes of about 45 minutes each on 9 separate days over 
a period of 3-4 months. Due to the occasional missed session, 
classroom change, or technical problem, a total of 21 classroom 
recordings were available for analyses. During each class session, 
teachers wore a Samson AirLine 77 ‘True Diversity’ UHF 
wireless headset microphone that recorded their speech, with the 
headset hardware gain adjusted to maximum. This microphone 
was chosen for its high noise-cancelling ability and is not cost-
prohibitive ($300 per unit). Audio files were saved in 16 kHz, 16-
bit mono .wav format. Teachers were recorded naturalistically 
while they taught their class as usual.  
Two observers trained in Nystrand et. al.’s dialogic coding 
technique [19,20] were present in the classroom during 
recordings. Observers used a specialized coding software 
developed by Nystrand [15] to mark episodes, segments, and 
teacher’s dialogic questions with the appropriate labels, as well as 
start and stop times as the class progressed. Later, these same 
observers reviewed the recordings to ensure labels were accurate 
and engaged in discussion until all discrepancies were resolved. 
Table 1 lists the proportion of time spent on each of the segments. 
We note that Q&A segments were the most frequent, while 
discussions were highly infrequent. Other somewhat frequent 
segments include small group work, supervised/helping, and 
lecture/film/video/music. The subsequent analyses focus on 
detecting the 28.6% Q&A segments from all other segments 
combined. 

Table 1. Proportion of class time on each segment 

Segment Proportion
Question/answer 0.286
Small Group Work 0.160
Supervised/helping 0.158
Lecture/film/video/music 0.150
Reading Aloud 0.093
Procedures and directions 0.091
Supervised/monitoring 0.019
Silent Reading 0.017
Other 0.012
Unsupervised seatwork 0.006
Class interruption 0.003
Game 0.002
Discussion 0.001

3. TEACHER UTTERANCE DETECTION
Our overall objective was to use teacher speech to detect instances 
of question-and-answer using recorded audio from classrooms. 
Before this could be done, recorded audio needed to be distilled 
into instances of teacher speech vs. rest (silence or no speech).
Thus, we developed and validated an utterance detection method 
as discussed below. 

3.1 Method 
Our first assumption was that all sound was voice because teacher 
speech was recorded from a high-quality noise-canceling headset 
microphone, all sound was voice and that no advanced voice 
activity detection (VAD) techniques were required1. Thus, a 
simple binary procedure was used for utterance detection. The 
amplitude envelope of the teacher’s low-pass filtered speech was 
passed through a threshold function in 20 millisecond increments. 
Where the amplitude envelope was above threshold, the teacher 
was considered to be speaking. Where the amplitude envelope 
was below threshold, the teacher was assumed to not be speaking. 
Any time speech was detected, that speech was considered part of 
an utterance, meaning there was no minimum threshold for how 
short an utterance could be. Utterances were marked as complete 
when speech stopped for 1000 milliseconds (1 second). A typical 
result of this automatic utterance labeling method is depicted in 
Figure 1. 

Figure 1: A 45-minute class recording (top) is depicted, while a 
small portion of the recording is enlarged for a detailed view 
(bottom). The upper track visualizes the .wav form of the audio. 
The lower track visualizes detected utterances. 
                                                                
1 We also experimented with off-the-shelf voice activity detection 

algorithms [22], with comparable, if not slightly inferior, results. 
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The speech delimiter and threshold were both low to ensure all 
speech was detected, resulting in no known cases of missed 
speech. This process resulted in 8662 utterances, which we call 
potential speech utterances. An examination of a subset of these 
potential speech utterances indicated that there were a large 
number of false alarms. These were mainly attributed to instances 
of background noise permeating the audio. Common examples of 
background noise that the microphone picked up included voices 
of students who were being exceptionally loud, sounds from a 
film or audio clip being played in the classroom, and sounds of 
the teacher’s breathing.
A two-step filtering approach was taken to eliminate the false 
alarms. First, potential utterances less than 125 milliseconds in 
length (12% in all) were deemed to be too short to contain 
meaningful speech and were eliminated. Second, the remaining 
potential speech utterances were submitted through an automatic 
speech recognizer (Bing Speech) in an effort to identify the false 
alarms. Bing Speech [13] is a freely available, cloud-based 
automatic speech recognition service which supports seven 
languages. Bing returns a recognition result and a confidence 
score for that speech. Instances where Bing rejected the speech or 
where it returned no transcribed text were considered to be false 
alarms. After eliminating the false alarms, we were left with a total 
of 5502 utterance (64% of the 8662 potential utterances). 

3.2 Validation 
A small study was conducted to evaluate the aforementioned 
utterance detection method. A random sample of 500 potential 
utterances was selected and manually annotated for speech/non-
speech. Speech was defined to include all articulations (i.e., “um”, 
“hm”, “sh”, etc) in addition to normal spoken segments. Potential 
speech utterances that included noise (i.e., loud students) in 
addition to teacher speech, the utterance was deemed as being a 
spoken utterance since it contained teacher speech. In total, 63% 
of potential utterances contained teacher speech and 37% did not.
Thus, the effective false alarm rate prior to discarding utterances 
less than 125 milliseconds in length and accepted by Bing Speech 
was 37%. 
Table 2 presents the confusion matrix obtained when using the 
125 millisecond utterance duration threshold and Bing Speech to 
eliminate false alarms in the sample of 500 potential utterances.
The filtering approach was highly successful, resulting in a kappa 
of 0.93 (agreement between computer-detected teacher utterances 
and human-detected teacher utterances). We note a substantially 
high hit and correct rejection rates and very low false alarms and 
miss rates. This was deemed to be sufficiently accurate for the 
present goal of detecting Q&A segments from teacher speech. 

Table 2. Descriptive Statistics of Utterances 

Predicted
Actual Speech Non-Speech
Speech 0.96 (hit) 0.04 (false alarm)
Non-Speech 0.03 (miss) 0.97 (correct rejection)

4. CLASSIFYING Q&A SEGMENTS 
Segments were coded in the classrooms of three teachers in 21
classes by trained coders over the course of a semester. Our goal 
was to differentiate Q&A segments, which are key for dialogic 
instruction, from all other types of segments (a binary Q&A 
segment vs. "other” classification task). Features for Q&A 

segment classification were obtained from the automated teacher 
speech utterance detection approach discussed above. 

4.1 Method 
4.1.1 Creating and labeling instances
Audio was sectioned into non-overlapping windows of 30, 45, 60, 
75, and 90 seconds in length. Each window was assigned a label 
of “Q&A” or “other” based on the annotations by the trained 
coders (see Section 2). In some cases, there was overlap, defined 
as a window with multiple segment labels (e.g., first 20 seconds 
are Q&A and the last 10 seconds are lecture). For windows with 
overlap, the label of “Q&A” or “other” was assigned based on the 
label of the majority segment (e.g., Q&A in the example above).  
Table 3 presents the number of windows and the proportion of 
windows that contain overlap for each window size. As expected, 
the proportion of windows with overlap increases as window size 
is increased. 

Table 3. Number of instances and proportion of 
instances with overlap 

Window N N (with 
overlap)

Proportion
with overlap

30 seconds 1886 163 0.09
45 seconds 1253 145 0.12
60 seconds 937 126 0.13
75 seconds 748 126 0.17
90 seconds 620 112 0.18

Note: N = Total number of windows in a dataset  

4.1.2 Feature Engineering 
Features were based on teacher utterance detection as discussed in 
Section 3. The features attempt to capture the temporal speech 
patterns that teachers use in Q&A segments as defined by the 
initiation (speech), response (rest), and evaluation (speech) 
pattern of Q&A discussed in Section 1.1. They include: 1) number 
of utterances, 2) mean utterance duration, 3) standard deviation of 
utterance duration 4) minimum utterance duration 5) maximum 
utterance duration, 6) number of rests, 7) mean rest duration (rests 
were the intervals of silence between utterances), 8) standard 
deviation of rest duration, 9) minimum rest duration, 10)
maximum rest duration, and 11) window number, the number of 
windows into a class session.

4.1.3 Model Building 
Supervised classifiers were built using the Waikato Environment 
for Knowledge Analysis (WEKA) [9] an open source data mining 
tool. Models were cross validated on the class level to ensure 
generalizability across class sessions. In each fold, a random 67% 
of the classes were used for training and the remaining 33% were 
used for testing. This process was repeated for 25 iterations and 
the classification accuracy metrics was averaged across these 
iterations. A large number (N = 43) of standard classifiers were 
tested because of a lack of knowledge regarding what classifier 
works best for this type of data. 
Various data treatments were applied in order to determine which 
combination resulted in the best model. First, tolerance analysis 
was used to eliminate features that exhibited multicollinearity [1]. 
Second, four feature selection algorithms: 1) Information Gain 
Ratio (Info-Gain) [14], 2) RELIEF-F [12], 3) Gain-Ratio [21],
and 4) Correlation-based Feature Selection (CFS) [8] were used 
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(on training data only) to select either 25%, 50%, or 75% of the 
top features (the specific percentage of features was another 
parameter). Third, the data was Winsorized by setting outliers 
greater than 3 standard deviations from the mean to the 
corresponding value 3 standard deviations from the mean. Finally,
synthetic minority oversampling technique (SMOTE) [4] was 
applied to the training data by creating synthetic instances of the 
minority Q&A class until the classes were balanced. Testing data 
was not sampled. 

4.2 Results 
4.2.1 Best Models 
Classification accuracy was evaluated with area under the receiver 
operating characteristic curve (AUC), a metric bounded on [0, 1] 
with 1 indicating perfect classification and 0.5 indicating chance 
level classification. Table 4 presents an overview of the AUCs 
associated with the best models for each window size. The mean 
AUC across all windows was 0.73 (SD = 0.05). Classification 
accuracy was greater for longer window sizes with the best results 
obtained for the 90 second window. This model used a logistic 
regression classifier and had 5 features (discussed below). Table 5 
presents the confusion matrix for this 90 second window model. 
The main source of errors appear to be misses rather than false 
alarms. 

Table 4. AUC for best models at each window size 

Window Size AUC

30 secs 0.67 (0.04)

45 secs 0.69 (0.05)

60 secs 0.75 (0.04)

75 secs 0.75 (0.04)

90 secs 0.78 (0.05)

Note: Standard Deviation in parenthesis 
Table 5. Confusion matrix for best model using class-level 

cross-validation 

Predicted

Actual Q&A Other Priors

Q&A 0.78 (hit) 0.22 (false alarm) 0.26

Other 0.36 (miss) 0.64 (correct rejection) 0.74

4.2.2 Robustness to Overlap 
One concern was whether classification accuracy was degraded 
due to instances where Q&A segments overlapped other segments 
within a window. As presented in Section 4.1, the larger the 
window size, the greater proportion of instances that contain 
overlap. To study the effect of overlap, we built another set of 
models with overlapping segments removed. 
Performance of models without overlapping windows was
consistent compared to models with overlapping windows (see 
Table 4). Mean AUC for the models built without overlap was 
0.74 (SD = 0.04) compared with mean AUC from Section 4.2.1: 
0.73 (SD = 0.05). Thus, our best models were robust to instances 
where Q&A segments overlapped with other segments within a 
window.  

4.2.3 Feature Analysis 
We analyzed the five features used in the best model (90 second 
window). These features were 1) number of utterances, 2) mean 
utterance duration, 3) maximum utterance duration, 4) mean rest 
duration, 5) maximum rest duration. Table 6 presents the mean 
and standard deviation for these top features across the four most 
frequent segments (see Table 1). All non-Q&A segments included 
a fewer number of utterances, shorter utterance durations, and 
fewer silences (rest). For lecture/media this was likely a result of 
the all-inclusiveness nature of lecture/media which could include 
instances of only speech, a traditional lecture, or instances of no 
speech (e.g., when a film is played). For group work, this was 
likely because speech consisted of clarifying instructions or 
addressing individual group concerns. Supervised/helping was 
likely similar to group work, but rather than group concerns, 
individual concerns were addressed. 
Table 6. Mean and standard deviation for features across most 

frequent segments  

Feature Q&A Lecture/
Media

Small 
Group 
Work

Supervised/
Helping

Number of 
utterances

10.45 
(4.82)

4.86 
(5.16)

8.90 
(4.32)

7.38 
(4.46)

Mean 
utterance 
duration

5.19 
(4.15)

3.23 
(4.37)

2.76 
(1.83)

2.80 
(1.92)

Maximum 
utterance 
duration

14.62
(9.85)

7.77 
(9.44)

7.80 
(5.69)

8.14
(7.02)

Mean rest 
duration

5.40 
(4.67)

38.71 
(37.26)

12.22 
(19.23)

17.57 
(24.77)

Max rest 
duration

15.92 
(11.71)

50.42 
(33.53)

27.91 
(22.31)

35.51 
(25.60)

Note: Standard Deviation in parenthesis  

5. General Discussion  
Dialogic instruction is considered to be an important pedagogical 
approach for promoting learning and engagement in classrooms. 
However, analyzing the effective use of dialogic instruction in 
classrooms has traditionally required the presence of trained live 
coders and is inherently non-scalable. In the present paper, we 
considered the possibility of automating the coding of classroom 
discourse. As an initial step, we focused on automatically 
detecting question-and-answer (Q&A) segments, an important 
component of dialogic instruction, using teacher speech. We were 
able to detect instances of Q&A from teacher speech with 
moderate success in live classrooms. In this section, we compare 
our results to previous work in this area, discuss major findings, 
limitations of the present study, and consider next steps with this 
research. 

5.1 Comparing with Previous Work 
Our goal was to compare our approach, which only uses features 
from teacher speech, with models from Wang et al. [26], which 
were based on teacher speech, student speech, overlapping 
speech, and silence. A perfect comparison is complicated due to 
many differences across approaches, most importantly with 
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respect to how classroom activities were coded and how the 
models were validated. In particular, coders in the Wang et al. 
study annotated their data using 30-second intervals and specified 
a confidence level for each annotation. This allowed them to train 
their models on only the high-confidence labels. In comparison, 
we used a variety of different window sizes and our labels did not 
include a confidence level. 
Our best model, which used a logistic regression classifier, had a 
kappa of 0.32, which is much lower than Wang et al.’s kappa of 
0.77. To equate models, we also experimented with using a 
random forest model [3], used by Wang et al. Using a random 
forest model and validating at the class-level resulted in an AUC 
of 0.71 (SD = 0.04) and a lower kappa of 0.25 (SD = 0.07).
However, we noted that Wang et al. validated their data using 
both training and testing data, while our models were validated on 
held-out class sessions. In other words, 62% of their testing data 
contained training instances. We attempted to replicate their 
validation approach by randomly selecting 62% of training 
instances for inclusion in the testing data. This drastically 
increased the AUC to 0.87, with a Kappa of 0.57.  
In conclusion, although our model’s performance is lower than 
Wang et al’s, there are many possible reasons for this difference.
For example, differences in our definitions of Q&A, their coding 
of each window devoid of context (which could lead to 
misinterpreting a window due to lack overall of context), different 
recording setups (LENA vs. microphone), different class 
structures (elementary mathematics vs. middle-school literature, 
language arts, and civics classes), and so on. Future work needs to 
equate these differences so the two approaches can be compared 
more equitably. 

5.2 Major Findings 
We were moderately successful in detecting Q&A segments 
despite considerable challenges associated with automatically 
recording classroom discourse using only teacher speech recorded 
via a headset microphone. Our major contribution is the use of 
consumer grade equipment to filter teacher utterances from non-
teacher utterances in a noisy classroom environment. We found 
that we could use those utterances to develop and validate Q&A 
segment detectors in classrooms using only teacher speech.  
Our approach consisted of two steps. Step 1 involved segmenting 
teacher utterances and Step 2 involved analyzing speech-silence 
dynamics from this segmentation to train classifiers suitable for 
discriminating Q&A segments from all other coded segments. For 
utterance detection, we used an amplitude enveloping approach to 
identify a large subset of potential teacher utterances and filtered 
them based on both duration and by submitting them to a web-
based automatic speech recognizer (Bing Speech). We validated 
the utterance detection approach using a sample of 500 potential 
speech utterances randomly sampled from three teachers and 21 
class sessions. We reliably and accurately discriminated speech 
from non-speech (kappa of 0.93) and this was accomplished 
despite the complexities of teacher utterance detection in noisy 
classrooms such as loud student speech, classroom disruptions,
the use of media (i.e., video, music), and non-articulations of the 
teacher (such as breathing).  
For Step 2, we built models to classify instances of Q&A from 
other instructional activities using speech-silence dynamics from 
the utterance segmentation. The best model was a logistic 
regression classifier trained on speech and silence features in 90
second windows which yielded an AUC of 0.78 when validated at 

the class-level. We also built models without overlap in order to 
determine their effect. The models without overlap were equitable 
to models with overlap, indicating our models were robust to this 
issue. Finally, we analyzed the top features from our best model 
and the main finding was that Q&A segments were associated 
with more teacher speech and fewer rests compared to the other 
segments.

5.3 Limitations and Future Work 
This study was not without its limitations. First, data was 
collected from three teachers who taught different subjects. 
However, this is a small number of teachers and all taught at the 
same school, so replication with a larger and more diverse sample 
is warranted. Second, discussion is a key indicator of dialogic 
discourse in classrooms [19], but our data set had only one 
instance of discussion, which lasted 77 seconds. Thus models 
could not be built for this key activity. Finally, our method 
focuses on a coarse-grained measure of classroom discourse. 
Future research is needed before a fine-grained analysis of the 
types of questions being asked in Q&A segments can be done (see 
Samei et al. [23]). When we use Bing to filter speech, it returns 
recognition results which could potentially be used for these fine-
grained analysis. This is an important item for future work.  
In general, future data collection should include more teachers,
schools, social environments, and class diversity. Future work 
should also consider ways to capture student speech in an equally 
cost effective way. One possibility would be to record the entire 
room with a boundary microphone. However, it should be noted 
that every additional sensor increases the complexity of data 
collection and raises the threshold of adaptation in terms of cost 
and complexity of use. For example, if using a boundary 
microphone to capture student speech, a teacher needs to learn 
where best to position the microphone. However, a headset 
microphone only requires a teacher to turn it on and wear it.
Nevertheless, we anticipate much improved results in Q&A 
detection when student speech is available. 

5.4 Concluding Remarks 
The overall purpose of this research was to automate the coding of 
classroom discourse and the present paper made some advances in 
this direction. As Nystrand et al. found [19], professional 
development activities focused on increasing the quality of 
dialogic instruction can have measurable effects on student 
achievement. The automated classroom discourse analysis 
techniques developed here can contribute to this goal by 
providing daily feedback to teachers for their professional 
development. Although this feedback alone may allow teachers to 
better reflect on their classroom instruction, it remains to be seen 
whether this increases their use of appropriate techniques for 
dialogic instruction. If not, tracking key components of dialogic 
instruction allows for interventions to increase dialogic instruction 
in classrooms. The research presented here represents an 
important initial step toward these goals, the next step involving 
an analysis of individual question-events at a more fine-grained 
level.
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ABSTRACT
In this paper, we propose a visual saliency algorithm for
automatically finding the topic transition points in an ed-
ucational video. First, we propose a method for assign-
ing a saliency score to each word extracted from an edu-
cational video. We design several mid-level features that
are indicative of visual saliency. The optimal feature com-
bination strategy is learnt from a Rank-SVM to obtain an
overall visual saliency score for all the words. Second, we
use these words and their saliency scores to find the prob-
ability of a slide being a topic transition slide. On a test
set of 10 instructional videos (12 hours), the F-score of the
proposed algorithm in retrieving topic-transition slides is
0.17 higher than that of Latent Dirichlet Allocation (LDA)-
based methods. The proposed algorithm enables demarca-
tion of an instructional video along the lines of ‘table of
content’/‘sections’ for a written document and has appli-
cations in efficient video navigation, indexing, search and
summarization. User studies also demonstrate statistically
significant improvement in across-topic navigation using the
proposed algorithm.

Keywords
visual word saliency, ranking, topic transition, educational
videos, video demarcation and indexing

1. INTRODUCTION
The rapid growth of online courses and Open Educational
Resources (OER) is considered to be one of the biggest turn-
ing points in education technology in the last few decades.
Many top-ranked universities and educational organizations
across the world are making thousands of video lectures
available online for no cost either in the form of Massively
Open Online Courses (MOOCs) or as open access mate-
rial. A few national governments have also formulated poli-
cies to record classroom lectures from top-tier colleges and
make them freely available online (e.g., National Program of

∗Equal contribution.

Technology Enhanced Learning (NPTEL)[1] in India). This
online content can either assist classroom teaching in educa-
tional institutions with limited resources or aid out-of-class
learning by the students.

As the amount of this online material is increasing rapidly
(tens of thousands of hours of video currently), it is impor-
tant to develop methods for efficient consumption of this
multimedia content. Developing methods for summariza-
tion [2, 3], navigation [4] and topic transition[5, 6, 7, 8], for
educational videos are now active areas of research.

One of the most challenging areas of research is to auto-
matically identify time instances where a particular topic
ends and a new one beings (i.e., topic transitions) in an
educational video. Consider this real-classroom example:
Professors often teach multiple topics within a lecture (of,
say, 60-75 minutes). For example, in a lecture video1 on
support vector machine (SVM), the professor might cover
the definition of version space, motivation for SVM, primal
formulation, dual formulation, support vectors and perhaps
end the lecture with kernel formulation. When a student is
viewing this video lecture s/he might only be interested in
the part where the professor is discussing, say, the dual for-
mulation for SVM. This frequently happens when only a few
topics of the video are relevant for the student or when the
student wants to revise particular concepts for an upcoming
assessment. In such a situation the student would typically
‘guesstimate’ the location with multiple back and forth nav-
igations of the video. [Indeed, in a large-scale study on the
EdX platform, authors in [9] found that certificate earning
students, on an average, spend only about 4.4 minutes on a
12-15 minute-long video and skip about 22% of the content.]
Finding these topic transition points in long videos can be
extremely difficult and time-consuming. On the other hand,
if the lecture videos can be automatically annotated with
the locations where the topic is changing (e.g., dual formu-
lation start point, primal formulation start point, etc.), the
student can easily navigate through these locations and find
the topics of interest efficiently.

A human expert familiar with the topic of a lecture can
manually go through each lecture video and label the topic
transition points. However as the quantity of online video
lectures increases, manually labelling topic transition points
for all of them is going to be a highly time consuming and
expensive process. Demarcating these topic transitions is
straightforward in written documents as the authors tend to

1https://www.youtube.com/watch?v=eHsErlPJWUU
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create table of contents or sections and subsections. Video
lectures, by the very nature of the medium, don’t have such
demarcation. It is the goal of this research work to automat-
ically identify these topic transitions in educational videos
and highlight these ‘sections’ to the end user.

In this paper, we propose a novel approach where the visual
content of a lecture video is analyzed to determine the transi-
tion points. In the proposed approach, the visually salient or
important words are extracted from the frames of an educa-
tional video and these words along with their saliency scores
are used to identify the points where the topic is changing in
the video. Two major novel contributions of this work are:

1. Visual saliency of words: Since we use the visual
content in an educational video to find out the topic
transition points, one major challenge was to figure out
the visual cues that are most important for determin-
ing the transition points. Intuitively it is clear that the
words used in the slide frames 2 and their distribution
can be used to determine the change of topics. How-
ever we also figured out that how a word is used in a
particular slide provides significant cues regarding the
word’s significance in topic transition. For example, if
a word is bold and located towards the top or left of the
page, they contribute more in the topic transition than
words which are located at the bottom right corner of
a slide. An underlined word is usually more important
than other words in a slide frame. To capture these vi-
sual characteristics, we propose seven novel mid-level
features for the words present in educational videos.
These features are called underlineness, boldness, size,
capitalization, isolation, padding, and location. Once
we extract all of these features for a word they are com-
bined using a weight vector to create a saliency score
corresponding to every word in the video. To learn this
optimal weight vector we propose a novel formulation
of the Rank-SVM algorithm [10] on human-annotated
salient words (described in Section 4).

2. Topic transition: Once we extract the words and
their corresponding saliency scores from a video, the
next step is to find the topic change points. The
saliency scores are used to estimate (a) how many
novel yet salient words are introduced in each slide
(referred to as Salient-Word-Novelty), and (b) num-
ber of lower saliency words in earlier slides that occur
with higher saliency (referred to as Relative Saliency),
for a particular slide. We propose novel methods for
visual content-based across-slide computation of these
two features for every slide and formulate a posterior
model to estimate the probability that a given slide is
a topic transition slide.

Note that the proposed approach is applicable for educa-
tional videos where slides are fully or at least partially used
as word recognition accuracy for hand-written text in im-
ages is extremely poor and still an open research problem.
We observed that a sizable majority of the OER is based on
slideware.

2Throughout the paper by slide frame/slide we mean the
frames of an education video where the teacher is displaying
a slide. We also assume that the power point (.ppt) slide file
is not separately available along with the video.

Figure 1: Pipeline of the proposed system. Figure also shows
the corresponding section numbers where details of each com-
ponent are explained.

The performance of the proposed approach in identifying
topic transition locations was evaluated on 10 different lec-
ture videos with a total duration of 12 hours chosen from the
NPTEL set. The proposed approach outperforms the topic
transition points derived using the well-known topic mod-
elling approach [11] by an F-score of 0.17 (0.6 to 0.77 where
the maximum possible F-score is 1). User studies demon-
strate statistically significant improvement in across-topic
navigation using the proposed algorithm.

2. RELATED WORK
Topic segmentation of instructional videos is an active area
of research. All the work however focuses on analysing the
filming aspects of the video and not the educational content.

Authors in [5] proposed a method for high level segmentation
of topics in an instructional video using the variation in the
content density function. The key contributing factors which
manipulate the content density function are shot length, mo-
tion and sound energy. This work is extended in [6], where a
thematic function is introduced to capture the frequency of
appearance of the narrator, frequency of the superimposed
text and narrator’s voice over. The thematic function is used
along with the content density function in a two tiered hier-
archical algorithm for segmenting the topics. The authors in
[7] propose hidden markov model (HMM) based approaches
for topic transition detection. First audio-visual features
are extracted from shots in a video and each shot is classi-
fied into one of the five classes: direct-narration, assisted-
narration, voice-over, expressive-linkage and functional link-
age. Direct-narration/assisted-narration/voice-over implies
segments where the narrator is seen in the video or not.
Functional linkage is captured by large superimposed text
or music playing in background. Expressive linkage is used
to create the mood for the subject being presented, e.g.,
houses with fire images in fire safety videos. Then a two
level HMM is trained using a training dataset and topic
transition points are found out.

All of these approaches were developed mainly for videos
used in industries to train people and to convey instructions
and practices, e.g., fire safety video. However OER videos,
where the teacher goes over the content of slides, are very
different from these kinds of videos. The camera captures
the teacher and the content interchangeably with the con-
tent being more on focus. OER videos do not have music
playing in background, images for mood creation, variation
in sound energy or significant amount of motion. Thus all
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of these prior methods will not be applicable for the educa-
tional videos of our interest. More importantly, none of these
methods capture the actual content or their characteristics
like saliency to model the topic change.

The proposed solution for topic transition will also drive
other applications related to educational videos such as non-
linear navigation [4] and summarization [2, 3] which are also
active areas of research.

3. SYSTEM OVERVIEW
A pipeline of the proposed system is shown in Figure 1. In
the next two sections (Section 4 and Section 5), we describe
the technical detail of each of the components shown in the
figure. The input to the system is uniformly sampled frames
extracted from an educational video.

4. VISUAL SALIENCY
In this section, we discuss the steps involved in assigning
visual saliency scores to words present in slides.

4.1 Word Recognition and Text Post-processing
The first step of our pipeline is to recognize words in frames
from an educational video. Recognizing text from images [12]
is an extremely hard problem and continues to be an ac-
tive area of research in computer vision/image processing.
Words recognition usually involves two steps, first, localiza-
tion of text in the frame, and then identification of text in
the localized regions. In our proposed approach, we have
used the algorithm proposed by Neumann et al [13] for lo-
calizing text in frames and the open source OCR engine
Tesseract [14] to identify or recognize the words in the local-
ized regions. The recognized words and their corresponding
locations will serve as the input to the next part of our
system. We perform stop words removal and words stem-
ming as a text post-processing step on the recognized words.
Stop words (‘and’, ‘it’, ‘the’, etc.)[15] do not contribute to-
wards the context or topic of the document. Thus remov-
ing them reduces the complexity of system without affecting
any downstream processing. Also, all words are stemmed to
obtain their base or root form (e.g., stemming the words
‘played’, ‘playing’, ‘player’ to ‘play’) to further reduce the
complexity.

4.2 Saliency Feature Computation
In this step, we compute the visual features of words that
helps in determining their saliency. For computing visual
features, OCR outputs, i.e., the recognized words and their
locations (bounding boxes) are used. Based upon the analy-
sis of several educational videos (different from the ones used
in experiments) taken from NPTEL and edX, we formulated
several visual features such as location, boldness, underline-
ness, capitalization, isolation, padding and size, that are in-
dicative of visual saliency. In this section, we provide a way
to quantize them and in the next section, a formal frame-
work is proposed that combines them to predict the overall
visual saliency of a word. The visual feature extraction pro-
cedure for each of the words is described below:

• Location feature (u1): This feature captures the loca-
tion information of a word in a slide. Generally, words
which are located towards the top and left of a page are
more important than the words located at the bottom and

right corner of a page. We use two one dimensional Gaus-

sian distributions (f(x, µ, σ) = 1

σ
√
2π
e
−(x−µ)2

2σ2 ) to com-

pute this feature. The mean of the first Gaussian distri-
bution is set to be the left most point of an image (giving
maximum score to left-most words) and the mean of the
second Gaussian distribution is set to be the top most
point of an image (giving maximum score to the top most
words). The variance is chosen as 0.25 times the width of
image and 0.16 times the height of image respectively for
the two Gaussian distributions. These parameters are se-
lected using a small validation set. For each word, top-left
corner(X-Y coordinate) of its bounding box is chosen as
variables in the Gaussian distributions. The location fea-
ture is given by the product of the scores obtained from
the two Gaussian distributions. If a word moves away
from the top left corner of an image, the location feature
value gradually decreases.

• Boldness feature (u2): It is usually true that if a word
in a slide is relatively bolder than other words in the slide
it is an important word. For computing boldness feature,
first the word image is binarized. Then, the number of
pixels which are foreground (i.e., the pixels which are part
of the written text) are found. The pixel count is normal-
ized with the number of characters present in the word
to obtain the boldness feature. Thus, the boldness fea-
ture captures the average number of pixels occupied per
character in a word.

• Underlineness feature (u3): A word is underlined in
a slide if the teacher wants to highlight that particular
word. In this work, we use Hough Transform [16] of an
image to detect line segments present in that image. Since
we are only interested in horizontal or near-horizontal line
segments, all other line segments are removed from consid-
eration. We use another post-processing step to remove
all the horizontal line segments which are too close to
the margin. Then, all the words which are immediately
above the remaining horizontal/near-horizontal line seg-
ments are assigned a non-zero score for the underlineness
feature. Note that the underlineness feature for a word
is binary denoting whether an underline is present below
the word or not.

• Capitalization feature (u4): If all the characters of a
word are in upper case, then a word is assigned a non-
zero score for the capitalization feature. This feature is
also binary.

• Isolation feature (u5): The isolation feature represents
how isolated a word is in the slide. The hypothesis is that
fewer the number of words in a slide, the more important
the words present in it and similarly, the fewer the number
of words in a line of a slide, more important the words
in that line. For example, often in title slides only a title
word or a phrase is present in the center of the slide. And,
the title word instances are more important than their
corresponding instances elsewhere. Suppose, a word w is
present in line l of a slide, then the isolation feature for
word w is computed as follows -

u5(w) =
1

No. of lines in a slide×No. of words in line l
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• Padding feature (u6): In educational slides teachers
often end a concept and start talking about another con-
cept starting at the same slide. In those cases, they tend to
keep usually more space before or after the title line of the
new concept. We introduce a novel feature called padding
to capture that information. For a word, padding feature
is computed as the amount of empty space available be-
low and above the line in which the word is present. Free
space above is computed as number of pixels present be-
tween the current line and the previous line. Similarly, free
space below is computed as the number of pixels present
between the considered line and the next line. The sum
is then normalized by the height of the image (slide) and
the average line gap in the slide.

• Size feature (u7): This feature captures the size of word
in the slide. Words appearing with larger font are gener-
ally more important than the words appearing appear-
ing with relatively smaller fonts. We denote the size of a
word (size feature) as the height of the smallest character
present in that word.

We normalize each of the visual features using 0-1 normal-
ization across the entire video. The weighted sum of the
normalized scores represents overall saliency of the words
in frame. The weights are obtained using Rank-SVM[10],
which we describe in the next subsection.

4.3 Learning to Rank Using Rank-SVM
In this subsection, we learn the relative importance of the
visual features to predict the overall saliency of words. The
weights determine how much each visual feature contributes
to the overall saliency of a word. The weights were learnt by
collecting a training dataset from 10 users over 5 videos. 10
slides were randomly selected from each video (hence, total
of 50 slides) to collect the training set. Each slide has been
shown to 3 users and thus, a single user provides data for 15
unique slides. For each slide, the user was asked the follow-
ing question - “What are the salient words present in that
slide that describe the overall content of the slide?”. Gen-
erally, the number of salient words per slide vary between
2-12 depending upon the user and the slide. To overcome
inter-user subjectivity, a word is accepted as salient only
if it is marked as salient by atleast 2 users. Since in each
slide users considered the selected words more salient than
the words which were not selected, we can consider them
as pairwise preferences. These pairwise preferences can be
used in a Rank-SVM framework to learn the corresponding
feature weights.

Let u = [u1u2 . . . u7] denote the visual saliency feature vec-
tor and w = [w1w2 . . . w7] denotes the weight vector to be
learnt for a particular word. Also, let D denotes the set of
words and Ds denotes the set of salient words present in
slide S. Consider two words i and j such that i ∈ Ds and
j ∈ D−{Ds} and their visual features are ui and uj respec-
tively. Then the weights learnt should satisfy the saliency or-
dering constraints (pairwise preferences by users): wTui >
wTuj , ∀i, j. For each slide S, we will have |Ds| × |D−{Ds}|
number of constraints. Our goal is to learn saliency ranking
function r(u) = wTu such that the maximum number of
the following pairwise constraints are satisfied:

wTui > wTuj , ∀(i, j) ∈ (Ds,D − {Ds}),∀S (1)

While the above optimization problem is a NP-hard prob-
lem, it can be solved approximately by introducing negative
slack variables similar to SVM classification. This leads to
the following optimization problem:

min (
1

2
||wT ||22 + C

∑
ξ2ij) (2)

s.t. wTui > wTuj + 1− ξij ; ∀(i, j) ∈ (Ds,D − {Ds}),∀S
ξij ≥ 0

The above formulation is very similar to the SVM classifi-
cation problem but on pairwise difference vectors, where C
is the trade-off between maximizing the margin and satis-
fying the pairwise relative saliency constraints. The primal
form of above optimization problem is solved using New-
ton’s method [10, 17]. It should be noted that the above
optimization problem learns a function that explicitly en-
forces a desired ordering on the saliency of words provided
as training data. Now for any new word with feature vec-
tor u, the saliency score can be obtained by computing the
dot product of u with w (i.e., wTu). Some example frames
from different videos with the detected words and their cor-
responding saliency scores are shown in Figure 2. Note that
the words ‘Torsional’ and ‘Waves’ are part of the title of
the slide in Figure 2a and are visually more salient. Hence,
they have received higher scores. Similarly, in Figure 2b,
the word ‘Concepts’ has received the highest saliency score.

5. TOPIC TRANSITION
In this section, we discuss the steps of the topics transition
part of our proposed approach. Words from different slides
are clustered and unique slides are extracted before we com-
pute probability that given slide is a topic transition slide.

5.1 Clustering of Recognized Words
The text localization and recognition in uncontrolled/wild
settings is an extremely hard problem to solve. In case of
educational videos, word recognition result is not always per-
fect and is inconsistent across the slides due to changes in
lighting conditions, poor frame quality (noise and low reso-
lution), positioning of mouse pointer over frames, presence
of special symbols, punctuation, typography due to italics,
spacing, underlining, shaded background and unusual type-
faces. For e.g., Word ‘algorithm’ is recognized as ‘algorlthm’
in one slide and ‘algorithm’ in another slide. One simple ap-
proach to tackle this problem is to use a vocabulary and
force the words to be one of the in-vocabulary words. How-
ever in many practical scenarios, it is often difficult to come
up with a vocabulary of all words which can be present in
the video (some of the technical words and proper nouns
may not be present in the vocabulary). So, instead of using
a vocabulary, we propose to use agglomerative hierarchical
based clustering approach to cluster words that are same
but recognized differently across slides.

Agglomerative hierarchical clustering [18] is a bottom-up
clustering method and involves the following steps: (i) as-
signing each word to a different cluster, (ii) evaluation of
all pair-wise distances between clusters, (iii) finding the pair
of clusters with the shortest distance, (iv) merging the pair
of clusters, (v) updating the distance matrix, i.e., comput-
ing the distances of this new cluster to all the other clusters,
and (vi) repeat until a pair of clusters can be found with dis-
tance less than a predetermined threshold. In our system,
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(a) A frame from Video1 (b) A frame from Video2

Figure 2: Figure showing the visual saliency scores of words on few of the slides sampled from NPTEL educational videos.
Note that the words which are visually more salient based on boldness, underlineness, size, location, isolation, padding and
capitalization have received higher scores.

we have used Damerau-Levenshtein distance [19] normalized
by the product of the length of the two words as the dis-
tance metric (substitution, deletion and insertion cost used
in the Damerau-Levenshtein distance are 1). To measure
the distance between a pair of clusters, we compute the av-
erage distance (average-link hierarchical clustering) between
all possible pairs of words in two clusters. Also, it must be
noted that the words belonging to the same cluster will be
considered as the same word for any further processing.

5.2 Unique Frame Extraction
One more novel contribution of this paper is to find out
unique frames from an educational video. Unique frame ex-
traction step finds all the unique frames (slides) in an edu-
cational video. Unique frames are identified from uniformly
sampled frames of a video based on a criterion defined using
pixel difference and the number of words (i.e., word clusters)
matched. In case of educational videos, unique slides cannot
be directly extracted by just comparing the adjacent slides
as the same slide may be present in later portions of the
video also (for e.g., in a typical video lecture, there will be
frames of a slide followed by frames of a professor discussing
the slide and then, again few frames of the same slide). In-
stead we compare each frame (beginning from start frame)
with all the previous frames of a video and mark it as dupli-
cate if the pixel difference threshold is less than γ or more
importantly if the words overlap ratio is greater than thresh-
old ρ with any of the previous slides. If a frame is found to
be duplicate to a previous slide, it is removed from the set
of possible unique slides. The pseudo code of our unique
frame detection approach is provided in Algorithm 1. Using
words overlap ratio along with pixel difference as the simi-
larity metric makes our algorithm robust to change in light-
ing conditions, partial occlusions by the teacher and noisy
video capturing methods. We note that our pipeline ignores
all non-content (lecturer) frames in the video, where no text
region is detected using the text detection algorithm. Hence,
the output of the unique frame selection algorithm is all the
unique slides present in the actual video. From this section
onwards, term ‘slides’ or ‘frames’ will be used to refer to the
unique slides in the video.

5.3 Content-based Features for Slides
In this subsection, we describe features which we propose to
determine the topic transition probabilities. We have stud-

Algorithm 1 Finding unique frames in a video

Input: Uniformly sampled frames {Sm}, m = 1, 2, . . . ,M
Output: Unique frames {St}, t = 1, 2, . . . , T and t ∈
{1, 2, . . . ,M}
Approach:

uniqueFrames ← []
for i ← 1 . . .m do

isUnique ← true
for j ← 1 . . . i− 1 do

if pixelDiff(Si, Sj) ≤ γ OR wordsOverlap(Si, Sj) ≥
ρ then

isUnique ← false
break

end if
end for
if isUnique AND detectedWordList(Si)6= ∅ then

uniqueFrames.append(Si)
end if

end for

ied an extensive number of educational videos from different
resources such as NPTEL, Coursera and EdX to figure out
how a new topic is introduced in educational videos. There
are two most common methods to introduce a new topic.
Often a teacher while introducing a new topic, uses a few
salient and novel words (the name of the new topic) in the
slide. For example, the name of the new topic might be
bold, placed on top of the page or might be underlined.
Thus saliency of novel words definitely indicates how likely
a new topic will start in a slide. Our first feature salient
word novelty tries to capture how many novel but salient
words are introduced in a slide.

Sometimes the teacher also refers to the names of the top-
ics to be discussed later in the video by either enlisting
all the topics in the video or in context with some other
topics. However these occurrences usually happen with rel-
atively lower saliency. Eventually when the topic discus-
sion begins, the name of that topic is introduced with much
higher saliency. Although these words are not novel they
can still indicate topic change. Our second feature rela-
tive saliency is designed to capture if a word which was
present earlier with lower saliency reappears in a particular
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slide with higher saliency. We have found that these two fea-
tures extensively cover the topic change scenarios in MOOC
videos. We quantify these two features as follows:

Let us denote the unique slides obtained from previous step
as set, S = {S1, S2, S3, . . . , ST } and the words present in
slide St as set,Wt = {wt1, wt2, wt3, . . .wt|St|}. Also, consider a
function, V :W×S → R (where, W =

⋃
j{Wj}) that takes

a word and a slide as input, and returns the saliency of the
corresponding word as output. For each slide, salient word
novelty and relative saliency features (described below) are
computed based upon the saliency of novel and non-novel
words present in the slide. A word is novel with respect
to a slide if it is not present in the previous few slides of
a given slide, and non-novel if it is present in the previous
few slides. Those previous few unique slides constitute the
neighbourhood of a given slide (for e.g, if neighbourhood size
is 4, then S2, S3, S4, S5 will constitute the neighbourhood of
slide S6). Let us denote the neighbourhood of slide St by
Nt =

⋃
(t−|N t|)≤j<t

{Sj} and the words present in neigh-

bourhood as WNt =
⋃
j∈Nt{Wj}. We have used |N t| = 4

for all the videos in our experiments.

Salient Word Novelty (f1) (for novel words): This feature is
computed using only saliency of novel words present in the
slide. Lets define a vector Ft = {V (v1, t), V (v2, t), V (v3, t),
. . .} such that vj ∈ WNt ∩ Wt and V (vj , t) ≥ V (vj+1, t)},
i.e, Ft is the ordered list of only novel words sorted by their
saliency scores. Then the feature f t1 corresponding to slide
St is computed as follows:

f t1 = zFt (3)

where z is weight vector. We wanted to take the number of
novel words as well as their visual saliency both into account
while designing this feature. We noted that the initial few
(2-4) words’ saliency matter most in determining new topics.
If the number of novel words is high, we want our feature
to ignore the saliency of all words except the first few high
saliency novel words. Thus, we have used z as an exponen-
tial decay function which makes it more generalizable than
just taking the average or maximum or sum of novel word
saliency scores.

Relative Saliency (f2) (for non-novel words): This feature is
computed using relative saliency of non-novel words present
in the slide. Lets define a set Ft = {v | v ∈ WNt ∩Wt}
containing non-novel words for slide St, then the feature f t2
is computed as follows:

f t2 =
∑
v∈Ft

max{V (v, j) | j ∈ Nt}
V (v, t)

(4)

where max{V (v, j) | j ∈ Nt} denotes the maximum saliency
of word v in neighbourhood Nt of slide St. Lower the value
of this feature, higher is the chance that new topic begins
here. Lower value of this feature implies that a word is
present in this slide with higher saliency as compared to its
neighbourhood. This feature is designed in such a way that
if higher number of words reappear in a slide we reduce the
topic change probability for that slide.

Bigrams. For computing features f1 and f2, we also use
bigrams along with the individual words present in slide. A

bigram is a sequence of any two adjacent words in a slide.
We denote the visual saliency of a bigram as the maximum
visual saliency of the two words that form the bigram. Then
a bigram is treated just as another word with some saliency
score, and the notion of novel and non-novel word is appli-
cable to bigrams as well. Use of bigrams helps us in treating
phrases in a systematic way.

5.4 Posterior Modelling
Once we have the 2-dimensional feature (f t = [f t1 f

t
2], 1 ≤

t ≤ T ) extracted from each of the unique slides, posterior
probability of each slide being a topic transition slide is com-
puted. We label the topic transition slides as 1 and non
topic-transition slides as 0. We use Gaussian distribution
to model the likelihood. Thus, the poster distribution of a
slide St being a topic transition slide given observation f t

is given below. First we define two Gaussian distributions
which we will use to compute the posterior probability.

• N (µ1, σ1): Since we want to maximize the first feature
we define a Gaussian distribution centred around the
maximum value of f t1. So µ1 = maxt(f

t
1) and σ1 is set

to be twice the standard deviation of f t1.

• N (µ2, σ2): Since we want to minimize the second fea-
ture another Gaussian distribution is defined centred
around the minimum value of f t2. So µ2 = mint(f

t
1)

and σ2 is also set to be twice the standard deviation
of f t2.

We compute the final probability as:

P (St = 1|f t) =
P (f t|St = 1)× P (St = 1)

P (f t)
(5)

∼= P (f t|St = 1)× P (St = 1)

(assuming feature independence and uniform prior over slides)

= P (f t1|St = 1)× P (f t2|St = 1)

= P (f t1|µ1, σ1)× P (f t2|µ2, σ2)

where P (f t1|µ1, σ1) denotes the probability of obtaining f t1
from N (µ1, σ1) and P (f t2|µ2, σ2) denotes the probability of
obtaining f t2 from N (µ2, σ2). Intuitively this implies that
if f t1 is higher and f t2 is lower for a particular slide, the
posterior probability of that slide being a topic transition
slide will also be higher.

6. BASELINE METHODS
In this section, we discuss the LDA based topic modelling
techniques [11] that can be used for detecting topic transi-
tion points. We have used two different versions of LDA:

• LDA: Latent Dirichlet Allocation (LDA) is a gener-
ative model that explains the set of observations us-
ing hidden topics. In LDA, each document can be
considered as a mixture of topics. In our work, each
unique slide is used as a document and the visual words
present in it are used as words. Each slide is assigned
a topic by maximizing over the topic likelihoods ob-
tained from LDA. Then, we find out the slides where
the topic is changing from the last slide.

• LDA with proposed saliency: We also compare
with another version of LDA where the saliency scores
obtained by our approach (Section 4) are used as the
weights of the words in the slides. We refer to this
method as LDA with proposed saliency.
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7. EXPERIMENTAL RESULTS
In this section, we evaluate our approach to detect topic
transition points on publicly available NPTEL educational
videos. We compare the proposed approach with well-known
Latent Dirichlet Allocation based topic modelling technique
[11]. We also perform a user study to evaluate the efficiency
and effectiveness of our approach for finding topic starting
points in educational videos and provides a quick way of
navigating though videos in a non-linear fashion.

7.1 Dataset
The experiments were conducted on 10 NPTEL educational
videos. The duration of each of these videos is around 1-
1.5 hours; giving us total 12 hours of video content for ex-
periments. NPTEL videos usually have a large amount of
diversity. Lighting conditions, slide orientations and style,
camera angle, video resolution, and lecturer positioning in
the slides (for e.g., on few occasions lecturer occupies bot-
tom right part of the slide and sometimes full frame) vary
significantly across the NPTEL videos. In few of the videos,
the lecturer uses printed text instead of using slides. Also, in
4 of the selected videos, along with slides, lecturer also uses
handwritten text in the presentation. In 2 other videos, the
lecturer writes on slides during the presentation. All these
scenarios make word recognition and thus, the identification
of topic transition points extremely challenging and diffi-
cult. Examples of few of the slides from different educational
videos can be seen in Figure 2. Ground truth annotation of
the topic transition points in this dataset are obtained from
humans who are experts in the respective topics.

7.2 Evaluation
The proposed approach in this paper assigns a visual saliency
score to each word in the video. The mid-level visual fea-
tures extracted in Section 4.2 are combined using the weight
vector obtained in Section 4.3. The weights obtained us-
ing our training set are 1.1250 (boldness), 1.0015 (location),
0.6605 (underlineness), 0.6050 (size), 0.4612 (capitalization),
0.2291 (isolation), 0.0232 (padding). We observe that bold-
ness and location features have higher weights compared to
the other feature weights indicating that these two features
are perhaps more important in determining the overall vi-
sual saliency.

Next, we use these saliency scores to assign a probability for
each unique slide being a topic transition slide. We generate
the ranked list of slides sorted by their ‘being a topic tran-
sition slide’ probabilities. We compute the precision and re-
call for all top n elements of the ranked list, where n varies
from 1 to the length of the ranked list. In our analysis,
we have used F-Score to measure the performance. F-Score
considers both precision and recall of the method while scor-
ing. In this context, precision is the number of correct topic
transition points retrieved (within the top n elements of the
ranked list) divided by the total number of retrieved topic
transition points, and recall is the number of correct topic
transition points retrieved divided by the total number of
ground truth topic transition topics. The F-score is defined
as the harmonic mean of precision and recall:

F-Score = 2× Precision×Recall
Precision+Recall

(6)

While the recall measures how well the system can retrieve
the true ground truth topic transitions, and high precision

Figure 3: Comparison of proposed approach with LDA and
LDA (with visual saliency) topic modelling techniques over
10 NPTEL videos. The proposed method significantly out-
performs LDA by 17%.

ensures that it does not over-predict the true topic transi-
tions, the F-Score measures the overall performance of the
approach. F-Score is 1 in the ideal case (when the algorithm
is perfect and when both precision and recall are 1). Fol-
lowing the norm regarding F-score usage[7], we also report
the best F-score obtained from the ranked list. Similarly,
for LDA and LDA with proposed saliency, we compute the
precision and recall of the topic transitions with respect to
ground truth topic transition points and get the F-Score.

In Figure 3, we provide the comparison of our approach
with the LDA based techniques. We find our approach gives
an average F-score of 0.77 where LDA gives an F-Score of
0.58 ± 0.018 and LDA with proposed saliency gives an F-
Score of 0.60 ± 0.021 over 10 videos. The standard devia-
tion values reported show the variation in LDA performance
due to different number of topics. We vary the number of
topics from 3 to 8 for both versions of LDA. Our method
achieves an absolute improvement of 0.17 (relative improve-
ment 28%) over state-of-the-art topic modelling technique
LDA for topic transition detection in educational videos.
Statistical significance of the improvement was also esti-
mated using t-tests (t(10) = 4.31, p = 0.0003). This clearly
shows the importance of visual saliency of words present in
slides and how they can be used to detect topic transitions.
We distinguish slides based on the relative saliency of their
words, thus the temporal progression of saliency captures
the transitions more accurately. We have also observed that
the combination of two features novel word saliency and rel-
ative saliency performs the best and absence of any one of
them deteriorates the performance.

7.3 User Study
We conducted a 6-participant 3-video user study to evalu-
ate effectiveness and efficiency of the proposed system and
compared it with the baseline transcript+youtube style ren-
dering based interface (similar to the EdX interface) where
the text is hyperlinked with the corresponding location in
the video where it is spoken.

All the 6 participants had engineering degrees, exposure to
online videos and had not seen these videos. The three
videos were of 60, 49 and 56 minutes each. We design the
video interface where we show the markers for topic transi-
tion points in the video timeline (Figure 4). For each video,
we show the top-15 topic transition points obtained using
the proposed approach. Each topic transition marker in
Figure 4 corresponds to the first occurrence of the corre-
sponding topic transition slide in the video. Each partici-
pant was presented one video with the proposed interface
and one other video with the baseline interface. Thus, each
video + interface combination was evaluated by two differ-

Proceedings of the 8th International Conference on Educational Data Mining 295



Figure 4: Proposed video interface which shows the markers
for topic transition points in the video timeline. Hovering
the mouse over a marker shows the thumbnail of the corre-
sponding topic transition slide.

ent users. For each video, the users were given a list of 5
topics and asked to navigate to the starting point of each of
these topics. They were allowed to go back and forth in the
video multiple times to identify these topic locations. These
5 topics were randomly chosen from the ground truth topics
given by the human experts (Section 7.1).

The total time taken by the participant to answer all the
questions along with the number of correctly answered ques-
tions was measured. The answer is considered to be correct
if the timestamp given by the participant is within a window
of ±10 seconds of the ground truth location. We observed
that the average time taken by the participants to correctly
answer one question is 50.07±14.38 sec using our interface
and 98.75±47.75 sec using the baseline interface. The pro-
posed interface leads to statistically significant time savings
in navigating to required topics as compared to the base-
line interface (t(6) = -2.78, p = 0.027). The percentage of
correctly answered questions using our interface is 76.67%
(out of 30 question instances) as compared to only 60% in
baseline interface. Thus, the proposed interface shows both
efficiency and effectiveness of our system.

8. CONCLUSION
In this paper, we propose a system for automatically detect-
ing topic transitions in educational videos. The proposed al-
gorithm has two novel contributions: (a) a method to assign
saliency score to each word on each slide, and (b) a method
to combine across-slide word saliency to estimate the poste-
rior probability of a slide being a topic transition point. The
proposed method shows a F-Score improvement of 0.17 for
detecting topic transition points as compared to the LDA-
based topic modelling technique. We also demonstrate the
efficiency and effectiveness of the proposed method in a video
navigation interface to navigate through various topics dis-
cussed in a video.

While the focus of this work is to analyze the visual con-
tent to identify topic transitions, the text transcript of the

videos can also be analyzed. In the absence of manually
generated text transcripts, Automatic Speech Recognition
(ASR) techniques can be used. The accuracy of ASR out-
puts, especially given the wide variety of speaker accent and
topics will be a bottleneck in their use of downstream anal-
ysis. We are currently working on combining these multiple
modalities of video, speech and text to further improve the
topic transition estimation.
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ABSTRACT
In Massive Open Online Courses (MOOCs), struggling learn-
ers often seek help by posting questions in discussion fo-
rums. Unfortunately, given the large volume of discussion
in MOOCs, instructors may overlook these learners’ posts,
detrimentally impacting the learning process and exacer-
bating attrition. In this paper, we present YouEDU, an
instructional aid that automatically detects and addresses
confusion in forum posts. Leveraging our Stanford MOOC-
Posts corpus, we train a set of classifiers to classify forum
posts across multiple dimensions. In particular, classifiers
that target sentiment, urgency, and other descriptive vari-
ables inform a single classifier that detects confusion. We
then employ information retrieval techniques to map con-
fused posts to minute-resolution clips from course videos;
the ranking over these clips accounts for textual similarity
between posts and closed captions. We measure the per-
formance of our classification model in multiple educational
contexts, exploring the nature of confusion within each; we
also evaluate the relevancy of materials returned by our
ranking algorithm. Experimental results demonstrate that
YouEDU achieves both its goals, paving the way for intelli-
gent intervention systems in MOOC discussion forums.

1. INTRODUCTION
During recent years, many universities have experimented
with online delivery of their courses to the public. Hun-
dreds of thousands of learners across the world have taken
advantage of these Massive Open Online Courses (MOOCs).
While MOOCs are certainly more accessible than physical
classes, the virtual domain brings with it its own challenges.

Lacking physical access to teachers and peer groups, learn-
ers resort to discussion forums in order to both build a sense
of belonging and to better understand the subject matter at
hand. Indeed, these forums could in theory be rich reflec-
tions of learner affect and academic progress. But, with
MOOC enrollments so high, forums can seem unstructured
and might even inhibit, rather than promote, community
[17]. It becomes intractable for instructors to effectively
monitor and moderate the forums. Learners seeking to clar-
ify concepts might not get the attention that they need, as
the greater sea of discussion drowns out their posts. The
lack of responsiveness in forums may push learners to drop
out of courses altogether [27].

The unattended, confused learner might revisit instructional
videos in order to solidify his or her understanding. Yet
video, a staple of MOOCs, is tyrannically linear. No table
of contents or hyperlinks are available to access material in
an organized fashion. Often presented with more than one
hundred ten-to-fifteen-minute videos, learners might become
discouraged when they realize that they will have to re-view
footage to patch holes in their knowledge.

We concerned ourselves with solving the problems related
to discussion forums and videos that arise when confusion
goes unaddressed. In this paper, we present YouEDU, a uni-
fied pipeline that automatically classifies forum posts across
multiple dimensions, staging intelligent interventions when
appropriate. In particular, for those posts in which our clas-
sifier detects confusion, our pipeline recommends a ranked
list of one-minute-resolution video snippets that are likely
to help address the confusion. These recommendations are
computed by using subsets of post contents as queries into
closed caption files. That the snippets be short is important;
[10] found that, regardless of video length, learners’ median
engagement time with videos did not exceed six minutes.
Individual learners may watch beyond the minute we rec-
ommend, should they wish.

In order to enable YouEDU’s classification phase, we hired
consultants to tag 30,000 posts from three categories of Stan-
ford MOOCs: Humanities and Sciences, Medicine, and Edu-
cation. The set, dubbed the Stanford MOOCPosts Dataset,
is available to researchers on request [2]. Besides describ-
ing the extent of confusion, each entry in the MOOCPosts
set indicates whether a particular post was a question, an
answer, or an opinion, and gauges the post’s sentiment and
urgency for an instructor to respond. In detecting confusion,
our classifier takes into account the predictions of five other
constituent classifiers, one for each of the variables (save
confusion itself) encoded in our dataset.

The online teaching platforms that Stanford uses to dis-
tribute its public courses gather tracking log data comprising
hundreds of millions of learner actions. We use a subset of
these data as features for our confusion classification. Some
of these data are also available in anonymized form to re-
searchers upon request [1]. Until very recently, the data
requisite for our classification approach—the MOOCPosts
corpus and this additional metadata—simply did not exist.
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The remainder of this paper is organized as follows. We ex-
amine related work in Section 2, present the MOOCPosts
corpus in Section 3, and sketch the architecture of YouEDU
in Section 4. In Sections 5 and 6 we detail, evaluate, and dis-
cuss YouEDU’s classification and recommendation phases.
We close with a section on future work and a conclusion.

2. RELATED WORK
Stephens-Martinez, et al. [21] find that MOOC instructors
highly value understanding the activity in their discussion
forums. The role of instructors in discussion forums is inves-
tigated in [22], which finds that learners’ experiences are not
appreciably affected by the presence or absence of (sparse)
instructor intervention. The study did not, however, allow
for instructors to regularly provide individual feedback to
learners. Instructors interviewed in [12] stress the need for
better ways to navigate MOOC forums, and one instructor
emphasizes in particular the benefits to be reaped by using
natural language processing to reorganize forums.

Wen, et al. [24] explore the relationship between attrition
and sentiment, using a sentiment lexicon derived from movie
reviews. Yang, et al. [27] conduct an investigation into the
relationship between attrition and confusion. While [27] also
presents a classifier for confusion, our classification approach
differs from theirs in that it operates on a larger dataset and
uses a different set of features, including those generated by
other classifiers. Chaturvedi, et al. [7] predict instructor
intervention patterns in forums. Our work is subtly different
in that we predict posts that coders—who carefully read
every post in a set of courses—deemed to be urgent, rather
than learning from posts that the instructors themselves had
responded to. The classification of documents by opinion
and sentiment is treated in [20] and [4].

Yang, et al. [26] propose a recommendation system that
matches learners to threads of interest, while Shani, et al.
[19] devise an algorithm to personalize the questions pre-
sented to learners. The need for intervention systems to
address confusion in particular is highlighted in [27]. Closed
caption files were used in the Informedia project [23] to index
into television news shows. To the best of our knowledge,
the same has not been done in the context of MOOCs.

3. THE STANFORD MOOCPOSTS CORPUS
Given that no requestable corpus of tagged MOOC discus-
sion forum posts existed prior to our research, we set out to
create our own. The outcome of our data compilation and
curation was the Stanford MOOCPosts Dataset: a corpus
composed of 29,604 anonymized learner forum posts from
eleven Stanford University public online classes. Available
on request to academic researchers, the MOOCPosts dataset
was designed to enable computational inquiries into MOOC
discussion forums.

Each post in the MOOCPosts dataset was scored across six
dimensions—confusion, sentiment, urgency, question, answer,
and opinion—and subsequently augmented with additional
metadata.

3.1 Methodology: Compiling the Dataset
We organized the posts by course type into three groups:
Humanities/Sciences, Medicine, and Education, with 10,000,

10,002, and 10,000 entries, respectively. Humanities/Sciences
contains two economics courses, two statistics courses, a
global health course, and an environmental physiology course;
Medicine contains two runs of a medical statistics course, a
science writing course, and an emergency medicine course;
Education contains a single course, How to Learn Math.

Each course set was coded by three independent, paid oDesk
coders. That is, three triplets of coders each worked on one
set of 10,000 posts. No coder worked on more than one
course set. Each coder attempted to code every post for his
or her particular set. All posts with malformed or missing
scores in at least one coder’s spreadsheet were discarded.
This elision accounts for the difference between the 29,604
posts in the final set, and the original 30,002 posts.

Coders were asked to score their posts across six dimensions:

• Question: Does this post include a question?

• Opinion: Does this post include an opinion, or is its
subject matter wholly factual?

• Answer: Is this post an answer to a learner’s question?

• Sentiment: What sentiment does this post convey, on
a scale of 1 (extremely negative) to 7 (extremely posi-
tive)? A score of 4 indicates neutrality.

• Urgency: How urgent is it that an instructor respond
to this post, on a scale of 1 (not urgent at all) to 7
(extremely urgent)? A score of 4 indicates that in-
structors should respond only if they have spare time.

• Confusion: To what extent does this post express con-
fusion, or the lack thereof, on a scale of 1 (expert
knowledge) to 7 (extreme confusion)? A score of 4
indicates neither knowledge nor confusion.

Coders were given examples of posts in each category. The
following was an example of an extremely urgent post:

The website is down at the moment https:
//class.stanford.edu/courses/Engineering/
Networking/Winter2014/courseware seems down
and I’m not able to submit the Midterm. Still
have the “Final Submit” button on the page, but it
doesn’t work. Are the servers congested? thanks
anyway

And

Double colons “::” expand to longest possible 0’s
If the longest is 0, will the address be considered
valid ? ( even if it doesn’t make sense and there
is no room for adding 0’s) Can someone please
answer ? Thanks in advance

was given as an example of a post that was both confused
(6.0) and urgent (5.0).

We created three gold sets from the coders’ scores, one for
each course type. We computed inter-rater reliability using
Krippendorff’s Alpha [11]. For a given post and Likert vari-
able, the post’s gold score was computed as an unweighted
average of the scores assigned to it by the subset of two
coders who expressed the most agreement on that particu-
lar variable. Gold scores for binary variables were chosen
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Humanities Medicine Education
Urgency 0.657 0.485 0.000*

Sentiment -0.171 -0.098 -0.134
Opinion -0.193 -0.097 -0.297
Answer -0.257 -0.394 -0.106

Question 0.623 0.459 0.347

Table 1: Correlations with Confusion. The urgency and question
variables are strongly correlated with confusion. All correlations,
save the one denoted by *, were significant, with p-values < 0.01.

by majority votes across all three coders. We refer readers
to our write-up in [2] for a more detailed treatment of our
procedure and the complete inter-rater reliability results.

3.2 Discussion
We found significant correlations between confusion and the
other five variables. In the humanities and medicine course
sets, confusion and urgency were correlated with a Pearson’s
correlation coefficient of 0.657 and 0.485, respectively. In all
three subdivisions of the dataset, confusion and the ques-
tion variable were positively correlated (0.623, 0.459, and
0.347), while the sentiment, opinion, and answer variables
were negatively correlated with confusion. Table 1 reports
the entire set of correlations.

That questions and confusion were positively correlated sup-
ports the finding in [25] that confusion is often communi-
cated through questions. The negative correlations can be
understood intuitively. Confusion might turn into frustra-
tion and negative sentiment; as discussed in [16], confusion
and frustration sometimes go hand-in-hand. If a learner is
opining on something, then it seems less likely that he or
she is discussing course content. And we would hope that
learners providing answers are not themselves confused.

4. YOUEDU: DETECT AND RECOMMEND
YouEDU1 is an intervention system that recommends edu-
cational video clips to learners. Figure 1 illustrates the key
steps that comprise YouEDU. YouEDU takes as input a set
P of forum posts, processing them in two distinct phases:
(I) detection and (II) recommendation. In the first phase,
we apply a classifier to each post in P , outputting a subset
Pc consisting of posts in which the classifier detected con-
fusion. The confusion classifier functions as a combination
classifier in that it combines the predictions from classifiers
trained to predict other post-related qualities (Section 5).

The second phase takes Pc as input and, for each confused
post pm ∈ Pc, outputs a ranked list of educational video
snippets that address the object of confusion expressed in
pm. In particular, for a given post, the recommender pro-
duces a ranking across a number of one-minute video clips by
computing a similarity metric between the post and closed
caption sections. In an online system, of course, learners
may choose to watch beyond the end of the one-minute
snippet—the snippets effectively function as a video index.

5. PHASE I: DETECTING CONFUSION
We frame the problem of detecting confusion as a binary
one. Posts with a confusion rating greater than four in the
MOOCPosts dataset fall into the “confused” class, while all

1Our entire implementation is open-source.

Figure 1: YouEDU Architecture. YouEDU consists of two
phases: post classification and video snippet recommendation.
The dotted-line module is under construction (see Section 7).

other posts fall into the “not confused” class. We craft a
rich feature space that fully utilizes the data available in
our MOOCPosts dataset, choosing logistic regression with
l2 regularization as our model.

5.1 Feature Space and Model Design
Our feature space is composed of three types of inputs, those
derived from the post body, post metadata, and other clas-
sifiers. The confusion classifier we train functions as a com-
bining layer that folds in the predictions of other classifiers;
these classifiers are trained to predict variables correlated
with confusion. We expand upon each type of input here.

5.1.1 Bag-of-Words
We take the bag-of-words approach in representing docu-
ments, or forum posts. The unigram representation, while
simple, pervades text classification and often achieves high
performance [6]; we employ l2 regularization to prevent over-
fitting [18]. Each document is represented in part as a vector
of indicator variables, one for each word that appears in the
training data. A word is a sequence of one or more alphanu-
meric characters or a single punctuation mark (one of {. , ;
! ?}).

Documents are pre-processed before they are mapped to vec-
tors. We use a subset of the stop words published by the
Information Retrieval Group at the University of Glasgow
[14]. Words omitted from the stop word list include, but are
not limited to, interrogatives, words that identify the self
(“I”, “my”), verbs indicating ability or the lack thereof, nega-
tive words (“never”, “not”), and certain conjunctions (“yet”,
“but”). We ignore alphabetic case and collapse numbers,
LATEX equations, and URLs into three unique words.

5.1.2 Post Metadata
The feature vector derived from unigrams is augmented with
post metadata, including:

• The number of up-votes accumulated by the post. We
rationalized that learners might express interest in posts
that voiced confusion that they shared.

• The number of reads garnered by the post’s thread.

• Whether the poster elected to appear anonymous to
his or her peers or to the entire population. It has
been shown that anonymity in educational discussion
forums enables learners to ask questions without fear of
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judgement [9], and our dataset demonstrates a strong
correlation between questions and confusion.

• The poster’s grade in the class at the time of post
submission, where “grade” is defined as the number of
points earned by the learner (e.g., by correctly answer-
ing quiz questions) divided by the number of points
possible. The lower the grade, we hypothesized, the
more likely the learner might be confused.

• The post’s position within its thread—we hypothesized
that learners seeking help would create new threads.

5.1.3 Classifier Combination
In Section 3, we demonstrated that confusion is significantly
correlated with questions, answers, urgency, sentiment and
opinion. As such, in predicting confusion, we take into ac-
count the predictions of five distinct classifiers, one for each
of the correlates. The outputs of these five classifiers are fed
as input to a combination function [3]—that is, a classifier
for confusion—that determines the confusion class for posts.

For a given train-test partition, let Dtrain be the training
set and Dtest be the test set. Let Hq, Ha, Ho, Hs, and Hu

be classifiers for the question, answer, opinion, sentiment,
and urgency variables, respectively. We call these classifiers
constituent classifiers. Each constituent is trained on Dtrain,
taking as input bag-of-words and post metadata features.

Let Hc, a binary classifier for confusion, be our combination
function. Like the constituent classifiers, Hc is trained on
Dtrain and takes as input bag-of-words and metadata fea-
tures. Unlike the constituents, when training, Hc also treats
the ground-truth labels for the question, answer, opinion,
sentiment, and urgency variables as features. When test-
ing Hc on an example d ∈ Dtest, the constituent classifiers
each output a prediction for d. These five predictions—and
not the ground-truth values—are appended to the vector v
of bag-of-words and metadata features derived from d. In
particular, if vh is a vector of length five encoding the pre-
dictions of the constituent classifiers, then the concatenation
of v and vh is the final feature vector for Hc.

A few subtleties: Hs uses an additional metadata feature
that the other classifiers do not—the number of negative
words (e.g., “not”, “cannot”, “never”, etc.). Hq, Ha, Hu,
and Hc treat the number of question marks as an additional
feature, given the previously presented correlations; [27] also
used question marks in predicting confusion. And while Hq,
Ha, and Ho are by nature binary classifiers, Hs and Hu are
multi-class. They predict values corresponding to negative
(score < 4), neutral (score = 4), and positive (score > 4),
providing Hc with somewhat granular information. Going
forward, we refer to the confusion classifier that uses all the
features described in this section as the combined classifier.

5.2 Evaluation and Discussion
In this section, we evaluate and interpret the performance
of the combined classifier in contrast to confusion classi-
fiers with pared-down feature sets, reporting insights gleaned
about the nature of confusion in MOOCs along the way.

We quantify performance primarily using two metrics: F1

and Cohen’s Kappa. We favor the Kappa over accuracy be-

cause the former accounts for chance agreement [8]. Unless
stated otherwise, reported metrics represent an average over
10 folds of stratified cross-validation.

Table 2 presents the performance of the combined classifier
on the humanities and medicine course sets. As mentioned in
Section 3, both sets are somewhat heterogeneous collections
of courses, with a total of nearly 10,000 posts in each set.
In our dataset, not-confused posts (that is, posts with a
confusion score of at most 4) outnumber confused ones—
only 23% of posts exhibit confusion in the humanities course
set, while 16% exhibit confusion in the medicine course set.

5.2.1 The Language of Confusion Across Courses
Table 3 presents the performance of the combined classifier
on select courses, sorted in descending order by Kappa. Our
classifier performed best on courses that traded in highly
technical language. Take, for example, the following post
that was tagged as confused from Managing Emergencies,
the course on which our classifier achieved its highest per-
formance (Kappa = 0.741):

At what doses is it therapuetic for such a patient
because at high doses it causes vasoconstrition
through alpha1 interactions, while at low doses
it causes dilation of renal veins and splachinic
vessels.

The post is saturated with medical terms. A vocabulary
so technical and esoteric is likely only used when a learner
is discussing or asking a question about a specific course
topic. Indeed, inspecting our model’s weights revealed that
“systematic” was the 11th most indicative feature for con-
fusion (odds ratio = 1.23) and “defibrillation” was the 15th

(odds ratio = 1.22). Similarly, in Statistical Learning, “so-
lutions” was the sixth most indicative feature (odds ratio =
1.75), and “predict” was the ninth (odds ratio = 1.65).

A glance at Table 3 suggests that our classifier’s performance
degrades as the discourse becomes less technical. Posts like
the following were typical in How to Learn Math, an educa-
tion course about the pedagogy of mathematics:

I am not sure if I agree with tracking or not. I
like teaching children at all levels ... In a normal
class setting the lower level learners can learn
from the higher learners and vice versa. Although
I do find it very hard to find a middle ground.
There has to be an easier way.

The above post was tagged as conveying confusion. The
language is more subtle than that seen in the posts from
Managing Emergencies, and it is not surprising that we saw
our lowest Kappa (0.359) when classifying How to Learn
Math. In this course, learners tended to voice more confusion
about the structure of the class than the content itself—
“link”, “videos”, and “responses” were the fourth, fifth, and
seventh most indicative features, respectively.

Examining the feature weights learned from the humanities
and medicine course sets provides us with a more holistic
view onto the language of confusion. Domain-specific words
take the backseat to words that convey the learning pro-
cess. For example, in both course sets, “confused” was the
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Course Set
Not Confused Confused

Kappa
Precision Recall F1 Precision Recall F1

Humanities 0.898 0.943 0.919 0.778 0.642 0.700 0.621
Medicine 0.924 0.946 0.935 0.699 0.589 0.627 0.564

Table 2: Combined Confusion Classifier Performance, Course Sets.

Course # Posts (% Confused) F1: Not Confused F1: Confused Kappa
Managing Emergencies 279 (18%) 0.963 0.771 0.741

Statistical Learning 3,030 (30%) 0.909 0.767 0.677
Economics 1 1,583 (23%) 0.933 0.741 0.675

Statistics in Medicine (2013) 3,320 (21%) 0.916 0.671 0.589
Women’s Health 2,141 (15%) 0.933 0.506 0.445

How to Learn Math 9,878 (6%) 0.970 0.383 0.359

Table 3: Combined Confusion Classifier Performance, Individual Courses. Our classifier performed best on courses whose discourse
was characterized by technical diction, like statistics or economics. In courses like How to Learn Math that facilitated open-ended and
somewhat roaming discussions, our model found it more difficult to implicitly define confusion.

word with the highest feature weight (odds ratios equal to
3.19 and 2.97 for humanities and medicine, respectively). In
the humanities course set, “?”, “couldn’t”, “report”, “ques-
tion”, “haven’t”, and “wondering” came next, in that order.
The importance of question-related features in particular is
consistent with [25] and with the correlations in the MOOC-
Posts dataset. In medicine, the next highest ranked words
were “explain”, “role”, “understand”, “stuck”, and “strug-
gling”. Table 4 displays the most informative features for
the humanities and medicine course sets, as well as How to
Learn Math and Managing Emergencies.

5.2.2 Training and Testing on Distinct Courses
We ran a series of experiments in which we trained the com-
bined classifier on posts from one course and then tested it
on posts from another one, without cross-validation. The
results of these experiments are tabulated in Table 5.

Our highest Kappa (0.629) was achieved when training on
Statistics in Medicine 2013 and testing on Statistics in Medicine
2014 ; this makes sense, since they comprise two runs of the
same course. Many instructors plan to offer the same MOOC
multiple times [12]. Ideally, an instructor would tag but one
of those runs, allowing an online classifier to truly shine. Yet
even if such tagging were infeasible, our experience learning
and testing on similar courses, such as two different statistics
courses, suggests that an online classifier might well exhibit
good performance. Performance might suffer, however, if the
domains of the training and test data are non-overlapping,
as is the case in the last two experiments in Table 5.

5.2.3 Constituent Classifiers and Post Metadata
Figure 2 illustrates the performance of each constituent clas-
sifier when cross-validating on the humanities and medicine
course sets, as well as on the education course. The con-
stituent question classifier outperformed all the others by
a large margin, likely because the structure of questions is
fairly consistent. Note that the constituent classifiers were
not themselves fed by a lower level of classifiers; if we were
attempting to predict, say, sentiment instead of confusion,
we could try to improve over the performance shown here
by creating a sentiment combination function that was in-
formed by its own set of constituent classifiers.
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Figure 2: Constituent Classifier Performance. Confusion(cmb) is
the combined classifier.

The combining function of our combined classifier consis-
tently determined that the constituent classifiers for the
question and urgency variables were particularly indicative
of confusion (see Table 4). Figure 3 shows the results of an
ablative analysis in which one constituent classifier was re-
moved from the combined classifier at a time, until we were
left with a classifier with no constituent classifiers (call it a
flat classifier). The flat classifier performed worse than the
combined classifier in the two course sets and the education
course. For both course sets, the urgency constituent seemed
to be the most helpful of the five constituents—we would ex-
pect that instructors would prioritize posts in which learners
were struggling to understand the course material. However,
the same was not true for How to Learn Math, which is con-
sistent with the fact that no significant correlation between
confusion and urgency was found (see Section 3).

The post position metadata feature also contributed posi-
tively to the classifier’s performance—removing it from the
flat classifier for medicine dropped the Kappa by 0.03. The
other metadata features, however, did not appear to con-
sistently or appreciably affect classifier performance, and so
we chose to omit them from our ablative analysis. (Though
Table 4 shows that the number of question marks was an
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Humanities Medicine How to Learn Math Managing Emergencies
constituent:urgency (6.59) constituent:question (4.05) constituent:question (6.64) constituent:urgency (2.47)
constituent:question (3.47) confused (2.98) constituent:urgency (2.13) constituent:question (2.34)

confused (3.20) explain (2.71) hoping (1.94) ? (1.73)
? (3.14) role (2.41) link (1.76) metadata:#? (1.54)

couldn’t (2.40) understand (2.36) available (1.63) hope (1.40)
report (2.23) stuck (2.27) responses (1.62) what (1.31)

Table 4: Most Informative Features, Odds Ratios. Features prefixed with “constituent:” correspond to constituent predictions, while
those prefixed with “metadata” correspond to post metadata features. All other features are unigram words.

Training Course Test Course Kappa
Stats. in Med. (2013) Stats. in Med. (2014) 0.629

Stat. Learning Stats. 216 0.590
Economics 1 Stats. in Med. (2013) 0.267

Stats. in Med. (2013) Women’s Health 0.175

Table 5: Nature of Confusion Across Domains. Training and
testing on similar courses typically resulted in high performance.

Figure 3: Ablative Analysis, Kappas. No Question is the com-
bined classifier without the question constituent; No Answer is
No Question without the answer constituent; and so on.

informative feature in the Managing Emergencies course.)

6. PHASE II: RECOMMENDING CLIPS
6.1 The Recommendation Algorithm
In this section, we describe how YouEDU recommends in-
structional material for a forum post that has been labelled
as confused by Phase I. Every course can be thought of as a
collection of several video lectures. Each video lecture on av-
erage is about 12-14 minutes long. We focus on the problem
of identifying a ranked list of snippets, S, for each confused
post. Each snippet si in S is a tuple (video id, seek minute)
where video id is an identifier for the recommended video
and seek minute is the time in the video to which the learner
must seek and start playing the video. We would not nec-
essarily need to recommend an end minute in a deployed
setting (learners could choose when to stop watching).

Phase II of YouEDU is divided into an offline indexing phase
and an online retrieval phase. We define a bin as a time-
indexed section of a video. Each bin bi contains the tran-
scribed text content of the video at a minute-long time in-
terval i. We define binscore(w, b) of a word w and bin b as
the number of times word w appears in bin b. We formulate
video recommendation to learners as a classical information
retrieval problem. In classical IR, the goal is to retrieve the
top documents that match a user’s query. In our case, the
query corresponds to a confused post, and the document
corresponds to a bin. We want to retrieve a ranked list of

bins that addresses the content of the confused post.

6.1.1 Offline—Indexing Pipeline
In the indexing pipeline, we first divide each video into
bins. We then use a part-of-speech tagger [5] to pre-process
each bin. Nouns and noun-phrases tend to produce key-
words that typically express what the content is about [13].
Hence, we represent a bin as a triplet (video id, start min,
noun phrase list) where noun phrase list is a collection of
only the nouns and noun-phrases in the bin.

We scan through each of the pre-processed bins and build
an index from each word to the corresponding bin that the
word appears in. This index would enable us to retrieve the
list of bins Bw that corresponds to time epochs in the entire
course when the word w was discussed. We also maintain
a data structure that keeps track of binscore(w,b) for every
word and bin. The constructed index and data structures
are serialized to disk and are used by the retrieval phase.

6.1.2 Online—Retrieval and Ranking:
In the online phase, we take as input confused posts, pro-
cessing each with a part-of-speech tagger. Similar to the
technique we used for bins, we represent each post as a list of
its constituent nouns and noun-phrases. Scanning through
each of the words in the pre-processed post, we add bin b to
the candidate set of retrieved bins if at least one term in the
pre-processed post was mentioned in b. Since we have the
index constructed offline, we can use it to prune candidates
from a large number of available videos (and hence, bins) in
the corpus.

We convert each post and bin into a V dimensional vec-
tor, where V is the size of the vocabulary computed over
all words used in all lectures of the course. In this vec-
tor, the value on the dimension corresponding to word wi

is binscore(wi,bin). We define simscore(P,B) as the cosine
similarity of the post and the bin.

simscore(P,B) =
P ·B√

V∑
i=1

P 2
i

√
V∑

i=1

B2
i

(1)

For each candidate bin Ci in the list of candidates C, we
compute simscore(Ci, post). We rank all bins in C by their
simscore values and return the ranking.

6.2 Evaluation
We evaluated our ranking system on the 2013 run of the
Statistics in Medicine MOOC, offered at Stanford Univer-
sity, which had 24,943 learners. We chose a random sample
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of queries from our MOOCPosts dataset for that course.
We ran each of those posts through Phase I of YouEDU and
chose 20 random posts from the posts that were labeled as
confused. For each of those confused posts our algorithm
produced a list of six ranked video recommendations (that
is, six bins, or one-minute snippets). We then randomized
the order within each group of six, obscuring the algorithm’s
ranking decisions. Four domain experts in statistics at Stan-
ford independently evaluated the relevance of each snippet
to its respective post; the ratings of one expert were unfortu-
nately lost due to technical difficulties. This process induced
a human-generated ranking, which we then compared to the
algorithm’s rank order. The rating scale given to the raters
is described below:

2: Relevant. The recommended snippet precisely address
the learner’s confusion.
1: Somewhat relevant. The recommended snippet is
somewhat useful in addressing the learner’s confusion.
0: Not Relevant: The recommended snippet does not ad-
dress the learner’s confusion.

6.2.1 Metrics
We used two metrics to evaluate the relevancy of our rec-
ommendations: NDCG and k-precision.

Normalized Discounted Cumulative Gain (NDCG): NDCG
measures ranking quality as the sum of the relevance scores
(gains) of each recommendation. However, the gain is dis-
counted proportional to how far down the document is in the
ranking. The underlying intuition is that the gain due to a
relevant document (say, relevance score of 2) that appears
as the last result should be penalized more than it would
be if it appeared as the first result. Hence, the DCG metric
applies a logarithmic discounting function that progressively
reduces a document’s gain as its position in the ranked list
increases [15]. The base b of the logarithm determines how
sharp the applied discount is.

If reli is the gain associated with the document at position
i, the DCG at a position i is defined recursively as

DCG(i) =

{
reli i < b

DCG(i− 1) + reli
logb i

otherwise
(2)

Since we want a smooth discounting function, we set b to 2.
We use a graded relevance scale of 0, 1 and 2, correspond-
ing to the types listed above, and computed the DCG for
the ranked recommendations we obtained for each confused
post. The ideal value of DCG (IDCG) is defined as the DCG
based on the ideal ranking as judged by the raters. To obtain
the IDCG, we sort the rankings given by the raters in de-
creasing order of relevance scores and compute the DCG of
the sorted ranking. This corresponds to the maximum the-
oretically possible DCG in any ranking of the recommenda-
tions for that post. We normalize the DCG for our ranking
by the IDCG to get the Normalized DCG (NDCG):

NDCG(i) =
DCG(i)

IDCG(i)
(3)

If there are n recommended documents, then we report
NDCG(n) as NDCG, the overall rating for the ranking.

Rater NDCG k-precision k=1 k=2 k=3
Rater1 0.66 0.66 0.61 0.62
Rater2 0.90 1.0 0.97 0.97
Rater3 0.82 0.55 0.52 0.52
Avg 0.79 0.74 0.70 0.70

Table 6: NDCG and k-Precision for recommendations

Precision at top k: We define the precision of a ranking R
with n recommendations as the fraction of the recommen-
dations that are relevant. The precision at k of a ranking
R is defined as the precision of R restricted to its first k
recommendations.

6.2.2 Results
Our results across the raters are summarized in Table 6. Our
average precision at k=1 is 0.74. This intuitively means that
on 74% of cases, the first video that we suggest to a learner
(as a recommendation for his or her confused post) is a rel-
evant video. The values at k=2 and k=3, at 0.70, are en-
couraging as well. Our NDCG numbers are high, indicating
that we perform relatively well compared to the IDCG.

7. FUTURE WORK
The work we presented here is a first step; many opportu-
nities for future work remain. We are actively investigating
whether we can strengthen our snippet ranking further by
considering which video portions learners re-visited several
times. This analysis catalogs the number of views that oc-
curred for each second of each instructional video in a course.

Another thrust of future work will use the question and an-
swer classifiers to connect learners to each other. The chal-
lenge to meet in this work is to identify learner expertise
by their answer posts, and to encourage their participa-
tion in answering questions related to their expertise. As
in YouEDU, auxiliary data, such as successful homework
completion, will support this line of investigation.

A third ongoing project in our group is the development
of user interfaces for both instructors and learners. Using
our classifiers, we have been experimenting with interactive
visualizations of our classifiers’ results. The hope is, for
example, to have instructors see major forum-borne evidence
of confusion in a single view, and to act in response through
that same interface.

Video recommendations are not the only source of help for
confused learners. Many online courses are repeated during
multiple quarters. It should therefore be possible for our sys-
tem to search forum posts of past course runs for answers to
questions in current posts. Also, not all confusion is resolv-
able through videos. For example, difficulty in operating the
video player is unlikely to have been covered in the course
videos. Identifying such posts is an additional challenge.

8. CONCLUSION
We presented our two phase workflow that in its first phase
identifies confusion-expressing forum posts in very large on-
line classes. In a second phase, the workflow recommends
excerpts from instructional course videos to the confused au-
thors of these posts. Our approach utilizes new datasets of
human tagged forum posts, data from learner interactions
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with online learning platforms, and video closed caption files
that are produced in concert with the videos for hearing-
impaired learners. Evaluations of our classifiers and recom-
mendations show that both phases of YouEDU perform well,
and provide insight into the manifestations of confusion.

As novel online teaching methods are developed, the same
underlying challenges will need to be met: keeping learn-
ers engaged, allowing them to feel like members of a com-
munity, and maximizing instructor effectiveness in the diffi-
cult environment of large public classes. Teaching online to
very large numbers of learners from diverse backgrounds is
formidable. But the potential benefits to underserved popu-
lations should encourage the investigative effort required for
further research efforts.
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in MOOC discussion forums: What does it tell us?
Proceedings of Educational Data Mining, 2014.

[25] N. Wilson. Learning from confusion: Questions and
change in reading logs. English Journal, pages 62–69,
1989.

[26] D. Yang, M. Piergallini, I. Howley, and C. Rose.
Forum thread recommendation for massive open
online courses. In Proceedings of 7th International
Conference on Educational Data Mining, 2014.

[27] D. Yang, M. Wen, I. Howley, R. Kraut, and C. Rosé.
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ABSTRACT
Instructional content designers of online learning platforms
are concerned about optimal video design guidelines that
ensure course effectiveness, while keeping video production
time and costs at reasonable levels. In order to address the
concern, we use clickstream data from one Coursera course
to analyze the engagement, motivational and navigational
patterns of learners upon being presented with lecture videos
incorporating the instructor video in two styles - first, where
the instructor seamlessly interacts with the content and sec-
ond, where the instructor appears in a window in a portion
of the presentation window.

Our main empirical finding is that the video style where
the instructor seamlessly interacts with the content is by
far the most preferred choice of the learners in general and
certificate-earners and auditors in particular. Moreover, learn-
ers who chose this video style, on average, watched a larger
proportion of the lectures, engaged with the lectures for a
longer duration and preferred to view the lectures in streamed
mode (as opposed to downloading them), when compared
to their colleagues who chose the other video style. We
posit that the important difference between the two video
modes was the integrated view of a ‘real’ instructor in close
proximity to the content, that increased learner motivation,
which in turn affected the watching times and the propor-
tion of lectures watched. The results lend further credi-
bility to the previously suggested hypothesis that positive
affect arising out of improved social cues of the instructor
influences learner motivation leading to their increased en-
gagement with the course and its broader applicability to
learning at scale scenarios.

1. INTRODUCTION
Lecture videos constitute the primary source of course con-
tent in the massively open online courses (MOOCs) offered
by platforms such as Coursera and EdX. Not surprisingly
they are also the most-used course component (compared to

quiz submissions and discussion forum participation)[4, 12,
17]. Owing to the asynchronous and virtual nature of teach-
ing and learning in these environments, lecture videos com-
prise the only channel through which learners have access
to their instructors, an important factor affecting student
motivation, satisfaction, and learning [19].

The important role of lecture videos as the primary content-
bearers of a course results in instructional content designers
rightly concerned about optimal video design guidelines that
ensure course effectiveness; of having video lectures that
maximize student learning outcomes while keeping video
production time and costs at reasonable levels [9].

A recent study addresses some aspects of these concerns by
comparing learner engagement patterns with video lectures
across courses in the context of MOOCs [9]. The outcome
of the study was a set of broad recommendations answer-
ing the concerns at a broad level. In particular, one of the
take-away messages was to include the instructor’s head in
the presentation at opportune times by means of a picture-
in-picture view of the instructor. From the perspective of
this past work, our current study is a more focused version
of [9]. Using the case of a Coursera course that concurrently
made its video lectures available in two modes (the modes
differ in ways in which they present a view of the instruc-
tor), the current study is unique in that it seeks to refine
the recommendations made in [9]. We do this by observ-
ing how learners interact with the course in a MOOC-sized
community. The central component of the current study
is an empirical analysis of the course logs to highlight the
differences and similarities between the motivational, navi-
gational and engagement tendencies of the users who inter-
act with the two available lecture modes. The uniqueness
of the study is that the same set of lectures is available in
two modes, which permits us to see if there are navigational
behaviors and engagement patterns that are supported by
specific video types.

Our empirical findings in this study are summarized below:
When comparing users who watched the lectures in only one
video mode,

1. We observe that learner group preferences of one mode
over the other differ considerably with a ratio of 10:1.

2. Learner group preferences of the video mode for view-
ing lectures directly translate to differences in the pro-
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portion of available lectures watched, engagement times
with the videos (via differences in watch times) and in
the manner in which videos are watched (streamed vs.
downloaded) between the two groups.

3. Certificate earners and auditors (learners who primar-
ily engage with a course by only watching videos) were
more likely to choose one video mode over the other.

In addition, analyzing users who watched video lectures in
both modes (switching twice - from one mode to the other
and back to the mode first used),we notice that the disparity
in preference persists (as noted above in the case of users
who watched only one video mode), although the within-
user differences in engagement times and the proportion of
lectures watched were not statistically significant.

While many factors could be at play here, and while propos-
ing the need for further studies to confirm our hypothesis,
we posit that the video mode preferred by the majority of
learners who use only one mode has the following advantage;
it offers an integrated, rather than separated, access to the
instructor’s eye-gaze (whether the instructor is looking at
the student or the content) and gestures in close proximity
to the lecture content that results in a better learning expe-
rience for the learners via the availability of more realistic
social cues.

2. RELATED WORK
MOOCs are criticized for their high attrition rates and are
alluded to as a learning environment where a majority of stu-
dents are passive lurkers who do not actively engage with
the course. The low levels of engagement and completion
could, in part, be attributed to the demand of the MOOC
environment. MOOCs require students to be autonomous
learners, who can remain motivated despite low levels of in-
structor presence in the course, the feeling of isolation and
the unclear sense of purpose in an asynchronous learning
environment. Unfortunately, aside from a handful of inter-
actions in online discussion forums, the pre-recorded videos
are the only chances for an instructor to create a sense of
presence in a MOOC environment.

Prior analyses of MOOCs (e.g. [4]) have found that students
spent the majority of their time watching lecture videos and
that many students are auditors whose course interaction is
limited primarily to watching video lectures [12]. It then
follows that the design of effective videos is a critical com-
ponent not only for learning effectiveness but also for the
success of the course in terms of making the material acces-
sible not just to certificate earners but also to auditors.

The design of effective video lectures, however, is informed
by studies in psychology, cognitive science and online learn-
ing. Recent findings suggest that a richer instructor-student
interaction in an online course is afforded by video-based ses-
sions when compared to courses with only audio narration
[3]. In addition, studies on online learning reveal that learn-
ers need to have a sense of relatedness to their instructors
and that this sense is often communicated through informa-
tion that is superfluous to the learning objectives [19, 5]. For
instance, the presence of a humanoid pedagogical agent, be
it in the form of an avatar or a cartoon figure, in a computer

aided learning environment can improve a student’s learning
experience [6].

While the importance of non-verbal modalities of interaction
(via gestures and eye-gaze) in human-human communication
has long been recognized [18, 1], only recently are non-verbal
modalities being harnessed in virtual communication scenar-
ios (e.g., access to the course instructor in a window at the
corner of the presentation screen in a video lecture). It is
likely that increasing access to non-verbal communication
can improve the instructor’s sense of presence in an online-
only learning environment such as a MOOC, and thus im-
prove students’ learning and their desire to stay engaged in
their learning.

Clark and Mayer [6] emphasize the effectiveness of bringing
instructor non-verbal modalities to the presentation because
they encourage deeper engagement with the lecture content
and trigger social responses in the learner [16, 7]. How-
ever, empirical evidence on its effect on learning outcomes
is largely inconclusive [14, 15].

The effect of the instructor’s face in visual attention, in-
formation retention and learner affect has been explored in
studies such as [11, 2]. In [11] it was found that including an
instructor’s face in a presentation resulted in positive affec-
tive response in learners which in turn influenced the time
devoted to learning. However, access to the instructor’s face
had no specific effect on attention or retention. In [2], an
analysis of the perceptions of students being presented with
two modes of video lectures incorporating the instructor’s
face in the presentation is available. Results suggested that
having access to the instructor’s gestures were potentially
related to increased user satisfaction. Both these studies
were not conducted in MOOC-scale environments and had
a small subject pool ([11] had n=22, and [2] had n=60).

In [9] the results of a retrospective study based on course
logs of MOOCs showed the effect of different video lectures
produced in different styles on the engagement patterns of
learners. Based on a large dataset, results indicated that
video lectures that involved a talking head were more en-
gaging to the students than lectures without a talking head.
The recommendation based on these results was to include
the instructor’s head in the presentation at opportune times
by means of a picture-in-picture view of the instructor.

This study is set with a similar goal such as that of [9] -
that of understanding learners’ navigational and engagement
patterns with different modes of video presentations. The
different modes are chosen in a way that afford access to the
instructor as recommended in [9]. This permits us to see if
there are navigational behaviors and engagement patterns
that are supported by specific video types.

Three factors set this study apart from prior related stud-
ies. First, we compare two modes of lecture videos with
access to the instructor in the same course. Second, the
two video modes are available to the learners over a reason-
able duration (three weeks/22 lectures) thus permitting the
analysis over a longer duration compared to studies [11] and
[2]. Third, the setting is a realistic learning at scale setting
where students rely solely on video instruction.
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3. METHOD
We conducted a retrospective study of the engagement, moti-
vational and navigational patterns of learners as a response
to video lectures presented in two styles. The learners were
enrolled in the Coursera course on programming massively
parallel processors offered from January to March 2014.

(a) PiP mode (b) Overlay mode

Figure 1: Screenshots of the two video modes of the lectures

3.1 Video Styles
Today’s advancement in video capture technology allows for
ways of improving an instructor’s presence in the online
classroom by including the instructor’s face in the presenta-
tion at substantial reductions in video production costs. The
video lectures for the course were available in two modes:
the picture-in-picture mode and the overlay mode both pro-
duced in non-studio settings by the instructor and recorded
simultaneously. The audio quality for both modes was ex-
cellent and similar.

Picture-in-picture mode: Presentation creation technolo-
gies can embed a video of the instructor inside a presenta-
tion, with the instructor appearing inside a window along-
side the content window. In this course, the instructor win-
dow appears in the lower left corner of the presentation. We
will refer to this video style as the PiP mode (see Figure 1a
for a screenshot of this mode). The size of the instructor’s
video is limited by the constraints of window placement in
the presentation screen.

Overlay mode: New screen capture tools are able to cap-
ture only the instructor’s video without the background and
overlay the video of the instructor into a presentation such
as PowerPoint slides much like the green screen technology
used in weather forecasts. As a result of this overlay and the
screen capture technology, the instructor is able to interact
with the content seamlessly by pointing at relevant sections
via gestures. In addition, the instructor appears in a much
closer proximity to the content window, and in a larger rel-
ative proportion compared to the instructor appearing in a
window alongside the content window (PiP mode above).We
will refer to this video style as the overlay mode (refer to Fig-
ure 1b for a screenshot). Notice how the instructor appears
beside the content on the left.

The first 22 lectures, which constituted the material of the
first three weeks of the course, were offered in these two
modes. Both modes were available in the video lectures page
on the course wiki during the entire duration of the course
and were available for streamed view as well as for download.
The average duration of the videos was 19.23 min. The file
size of a lecture in overlay mode was about 1.2 times that
of its corresponding PiP version. When the course began
the course syllabus had a note about the availability of the

lectures in two modes for the first three weeks and that the
students were free to choose the format of their choice.

Because this was a retrospective study and not a controlled
study, rather than assigning users to watch a given mode,
we observed how students used the resources and interacted
with them. The users1 were classified into three groups
based on the lecture modes they viewed (a user who clicked
to view at least one lecture was counted in the group). There
were users who viewed the lectures of the first 3 weeks only
in the PiP mode (we call this group the PiP group, N =
899), those who viewed them only in the overlay mode (we
call this group the Overlay group, N = 5740) and those
who viewed them in both modes (the Both group, N =
3791). We compare the groups with respect to the analysis
variables described below.

3.2 Analysis Variables
We created the following sets of analysis variables to reflect
aspects of engagement, motivation and navigation.

Engagement: Because our analysis was based on the course
logs, a true measurement of learner engagement is impossi-
ble. We approximate engagement via two proxy measures:

Video watching time (wtime): This is the total length of

time that a student spends viewing video lectures (lectures
1 to 22) and we use it as the main index of engagement.
This measure is limited in scope because it only provides
information for streamed lecture views. Moreover, it has no
indication whether the engagement with the video is an ac-
tive one or a passive one (as in playing it in the background).

Discussion forum visits following a lecture view (dfvisit): We

use a visit to the discussion forum (either to begin a thread,
comment on an existing post or view a related post) imme-
diately following a lecture (within 30 minutes) as an index
of engagement. This reflects the intent of the learner to be
open to aspects of the lecture beyond what is available in
the video lecture.

Motivation: A limitation of this retrospective study was
that access to learners’ motivation (by interviewing a sample
of learners, for instance) was unavailable. As a proxy to
measuring motivation, we consider the following two indices:

Certificate-earner proportion (certprop): The fraction of
users who went on to earn a certificate.

Coverage (cov): The fraction of lectures (and quizzes) that

the learner viewed (and submitted) is our second measure of
motivation. Again, an important limitation of this measure
is that it only represents the fraction of lectures viewed in the
streamed mode and gives no indication about those viewed
after downloading2.

Navigation: We analyzed the navigation behavior of the

1We only took into account users who did not explicitly drop
the course.
2Analysis of this variable by limiting it to users who only
watched a video streaming would have been a possibility but
for the fact that the sample for PiP was very small (< 30).
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students by observing their interaction with the course com-
ponents. The measures we use are:

Streaming index (SI): In [12] streaming index was used as a
measure of video consumption and is defined as the propor-
tion of overall lecture consumption that occurs online on the
platform (streamed), as opposed to off-line (downloaded),

Streaming Index(SI) =
streamed lecture consumption

total lecture consumption
.

Here we use it as a measure of video access.

Discussion forum activity (dfview and dfpost): The discus-
sion forum constitutes a highly under-utilized resource in a
MOOC platform and activities associated with it can be
considered to be an important index of interaction with the
course. Even though this measure involves a minority of
course participants, we compared the number of views and
posts by the users in the two groups to see if users of a video
group show a tendency to participate more in discussion fo-
rums.

Back-jump proportion (bjprop): As used in [10], we first
define a learning sequence as an ordered sequence of learning
activities and its length as the number of activities in the
sequence. An example of a learning sequence of length two
in one session would be a lecture view followed by a quiz
attempt. For our study, we consider the learning sequences
of the users involving the first 22 lectures and the associated
quizzes limiting the learning activities to lecture views, quiz
attempts and quiz submissions.

A back-jump is a backward navigation in a learning se-
quence. The count of back-jumps indicates the number
of times a student navigated backwards in the learning se-
quence and is suggestive of a departure from a linear learning
sequence. In our case, this would be from a lecture to a lec-
ture release earlier (lecture 4 to lecture 2) or from a quiz
to a previous lecture (such as quiz 3 to lecture 2.3). Back-
jump proportion is the number of back-jumps divided by the
length of the learning sequence of the student. In [10], this
measure served as an index of non-linear navigation through
the course material to differentiate field-dependent learners
(those who follow a sequential learning path as laid out by
the content creators) from field-independent learners (those
who resort to a non-linear fashion of exploring the learning
environment) [8, 13], which we use in our study as well.

Other measures of comparison such as that of performance
(in terms of quiz scores and assignment scores) could have
been used here, but the course managed them in a server
whose logs were not available in the Coursera data set.

4. EMPIRICAL OBSERVATIONS
The groups PiP and Overlay (as described in Section 3.1)
are first compared with respect to the analysis variables just
described and the resulting observations are summarized.
Following that we analyze the users in the Both group.

We chose a course-week (as listed in the course wiki) as a
unit and counted the number of video views during that
week. In Figure 2 we see the number of unique views by the
users in each of the groups during the first 3 weeks. Each
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Figure 2: The number of video views in each group (Overlay,
PiP and Both) over the first three weeks of the course.

bar includes the number of unique views of all lectures by a
particular group during that week. What is apparent from
the figure is that, over the three weeks when the lectures
were available in two modes, a majority of views occurred
in the Overlay mode. In addition, it is of interest to note
that even in the third week there was a non-trivial number
of users who watch both the modes. These views could be
attributed both to the late entrants to the course and to
those who switched modes in that week.
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Figure 3: No. of views of each lecture over the duration of
the course.

Another perspective of the views of each group is available
in Figure 3 which shows the number of unique views of the
22 lectures by users in each group. Here again we notice
that the Overlay mode was preferred by the vast majority
of users compared to the PiP mode. It is also interesting
to note from Figure 3 that the number of users who viewed
the lectures in both modes is quite significant (even larger
than the number of views in the PiP mode) for lecture 1 and
then drops drastically for the lectures that follow. This could
be interpreted to mean that users decide on their preferred
mode as early as the first lecture. (In both these plots, the
decrease in the number views is indicative of learner attrition
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through the duration of the course.)

4.1 Analysis Variables Compared
We filtered out all users whose total watching time lasted
less than 110s (approximating individual sessions lasting on
an average shorter than 5s which could have been a result
of users who paused immediately after beginning to watch a
video or navigated to another page). This resulted in groups
of size 385 (PiP), 3725 (Overlay) and 3791 (Both) respec-
tively. Below we summarize the results upon comparing the
analysis variables between the fist two groups.

A majority of the analysis variables considered here have
highly skewed distributions thus deviating from the assump-
tions of normality. Under these circumstances, we resort to
the Mann-Whitney U test to compare the two distributions.
The null hypothesis tested here is not that the medians (or
means) are equal but that the two groups come from the
same underlying distribution. That is to say, we are testing
for equality of location and shape of the distributions, not
for equality of any one aspect of the distribution. Although
the distributions were skewed we tabulate the mean of the
variable for the two groups for the purpose of representa-
tion (see Table 1. The final column of the table indicates
the p-value of the Mann-Whitney test. Statistically signifi-
cant differences between groups are indicated in bold-face.

The Overlay and the PiP group: From Table 1, we ob-
serve that the underlying distributions for watch time, cov-
erage, and streaming index differs significantly between the
two groups. The Overlay group had a larger mean watch
time compared to the PiP group (median watch times=33.65
min. and 21.55 min. respectively). In addition, streaming
is the dominant way of accessing videos for both the groups.
Streamed videos constituted an average 77% of the video us-
age for the Overlay group as opposed to 60% for the PiP
group (respective medians 93% and 66%).

Measure Overlay PiP p-value
Watch time (min) 83.82 63.32 < 0.01
Disc. forum visit 0.29 0.24 0.23
Certificate prop. (%) 8.48 6.75 0.24
Coverage 0.24 0.18 < 0.01
SI 0.77 0.60 < 0.01
Forum post 0.36 0.43 0.80
Forum view 11.86 17.22 0.59
Back-jump prop. 0.09 0.09 0.92

Table 1: Comparison of the measures for the two groups.

The 95% confidence interval of the two medians for wtime
were (26.64, 38.75) for PiP and (49.77, 55.46) for Overlay.
For SI the 95% confidence interval of the two medians were
(0.8332, 0.8333) for Overlay and (0.564, 0.649) for PiP. Be-
cause the two confidence intervals for the medians of each
group were non-overlapping, we infer that the correspond-
ing distributions are different (also indicated by the Mann-
Whitney U test).

This situation lends itself to two possible interpretations.
Either more videos were watched streaming (with the same
number of downloaded videos), or more Overlay videos were
streamed compared to PiP with fewer Overlay videos down-

loaded. Both the interpretations imply that the streamed
view was the primary way in which videos in Overlay mode
were accessed.

As for coverage, we found that users in the Overlay group
viewed a larger proportion of available lectures compared to
their colleagues in the PiP group. Taken together with the
lower coverage for PiP, its lower watch time is then justified
since a smaller proportion of video views were streamed.

Although we noticed an apparent difference in the propor-
tion of certificate earners between the two groups, a two-
sample Z-test indicates that the difference in proportion was
not statistically significant (p= 0.24).

Certificate Earners: We next restricted the analyses to
the certificate-earners of the course, knowing that these were
the most committed users in a course. The results limited to
the certificate earners (N=316 for Overlay and 26 for PiP)
are summarized in Table 2.

Measure Overlay PiP p-value
watch time (min) 233.35 194.57 0.23
Disc. forum visit 1.53 1.69 0.84
Coverage 0.70 0.58 < 0.01
Streaming Index 0.70 0.56 0.02
Forum post 2.25 3.23 0.18
Forum view 76.44 113.08 0.08
Back-jump prop. 0.09 0.05 0.12

Table 2: Comparison of the measures for certificate earners.

We first computed the posterior probability of a certificate
earner choosing one video mode over the other. Using em-
pirical counts, we have the priors of the three groups: the
probability of choosing the Overlay mode is 47%, that of
choosing PiP is 5% and that of choosing Both is 48%. We
also have the likelihoods: the probability that the student is
a certificate-earner given that the student chose Overlay is
8.5%, the probability that the student is a certificate earner
given that the student chose PiP is 6.8% (both from Table
1) and the probability that the student is a certificate-earner
given that the student chose Both is 10.4% (empirically ob-
tained).

Using this information, we calculated the probability that
a certificate-earner chooses Overlay to be 0.43, that he/she
chooses PiP is 0.04 and that he/she chooses Both is 0.53.
This suggests that that a certificate earner is most likely
to try both before settling for one mode. However, among
the two modes, the more likely choice would be the Overlay
mode.

Limiting the comparative analysis to the certificate earners
of the two groups, from Table 2 we notice that the trends ob-
served in the overall comparison are also largely applicable
here with the exception of watch time. A surprising observa-
tion here is that despite the differences in the distributions
for coverage and streaming index, differences in the distri-
butions of the video watching times were not statistically
significant. A likely explanation is that the certificate earn-
ers in the PiP group revisited portions of the same video,
resulting in longer watch times compared to their Overlay
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Figure 4: Histograms of Watch time (left) and Coverage (right) for the two groups compared. Each plot shows the density
corresponding to each bin in the y-axis.

colleagues.

What is new here is that certificate earners in the Over-
lay group show apparently different non-linear navigational
patterns compared to their PiP counterparts as evidenced
by the difference in means. However, the distribution of
back-jump fractions is not statistically significant (p=0.12)
possibly owing to the relatively small sample size of the PiP
certificate earners (n=26).

Auditors: From [12] we know that auditors (defined in that
study as learners who did assessments infrequently if at all
and engaged instead by watching video lectures) are nearly
as engaged and motivated in the course as certificate earn-
ers in terms of using lecture materials in MOOCs and show
similarly high levels of overall learning experience to certifi-
cate earners. Here, we investigate the extent to which users
in the two groups had engagement levels similar to that of
certificate earners.

We identified the auditors by clustering the users using k-
means in the Overlay and the PiP groups by three factors
into 3 classes (certificate earners, auditors, and lurkers):

• coverage (answering the question ‘How many lecture
units were watched?’);

• streaming index (answering the question ‘How were
the lectures watched?’);

• watch time (answering the question ‘For how long were
the lectures watched?’).

We observed that the certificate users fell into a predomi-
nant group, which also included a set of non-certificate users
‘similar’ to the certificate users; these users behaved like the
certificate users with respect to the 3 factors considered here.
We refer to these users as auditors since they used resources
much like the certificate users, except for the fact that they
did not earn a certificate. We noticed that 3.5% of Over-
lay users were auditors in this sense and nearly 6% of users

in the PiP were auditors. The difference in proportion of
auditors was statistically significant (p=0.012), suggesting
that PiP had a larger proportion of auditors compared to
Overlay.

We then calculated the likelihood of an auditor choosing a
specific viewing mode using empirical counts and note that
the probability that an auditor chooses Overlay was 0.86
much greater than the probability that an auditor chose PiP,
which was 0.14.

4.2 The Both group
While a comparison between the Overlay and the PiP groups
served as a type of between-subjects analysis, a within-subjects
type of analysis is afforded by analyzing the Both group.
Although users watched both video modes in this group, to
get a more reliable picture of engagement patterns and video
mode choices, we included only those users who watched at
least half of all the available lectures. With this set-up we
assume that the users had sufficient exposure to the mode
in which they began watching lectures before switching to
the other mode. In addition, they had sufficient opportuni-
ties to experience the second mode and revert back to the
original mode if they chose to do so.

Users in this group watched lectures in both modes and
could be divided into three groups: 1) those who viewed
a set of lectures in one mode and then switched to the other
mode and remained in that second mode for the rest of the
lectures, 2) those who switched twice eventually returning to
watch the remaining lectures in the original mode in which
they began, and 3) those who showed no apparent preference
for one mode over another. For the purpose of our analysis,
we focus on the second of these three groups because the
sample size of the first group was too small (< 30) to draw
meaningful inferences and we had no meaningful analyses to
conduct with the third group.

With this restriction on the users, we were left with 271 users
(34% of the users in Both), of which 241 (89%) watched
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OPO POP p-value
Coverage 0.71 0.61 < 0.01
Streaming Index 0.80 0.57 < 0.01
Watch time (min) 291.69 260.85 0.10
Disc. forum visit 1.83 1.61 0.56
Back-jump prop. 5.6 4.6 0.15
Certificate prop. 0.37 0.63 <0.01

Table 3: Comparison of the mean values of the measures for
the users in the Both group.

most of the lectures in the overlay mode and the remaining
30 watch most of the lectures in the PiP mode. It is clear
that the majority of users in this group began watching the
lectures in the overlay mode, switched to the PiP mode, and
reverted to watching in the overlay mode. We represent this
majority group as OPO and the other group as POP. For
each user in the POP and OPO groups, we computed the
measures of coverage, streaming index and watching time
over the lectures watched in a given mode, yielding a mea-
sure for each video mode watched. We summarize these
measures in Table 3.

We observe from Table 3 that the distributions of coverage
and streaming index for the Overlay mode and PiP mode
differ substantially and that the difference is statistically sig-
nificant. We infer that a larger proportion of lectures were
watched by the users following an OPO pattern compared
to a POP pattern and that the videos in Overlay mode were
streamed, while the videos in PiP mode were mostly down-
loaded. We we notice that the distributions of watch times
were not different between the OPO and POP. This implies
that when the users had a chance to watch both the modes,
their engagement patterns with their ‘preferred’ mode was
similar.

Unlike in the case of the groups that watched only one mode,
a comparison of the proportion of certificate earners between
the two Both groups shows that a larger proportion of POP
were certificate earners and that the difference in proportion
was statistically significant via a two-sample Z-test (p <
0.01).

5. INTERPRETATION OF RESULTS
The present study suggests that learners showed a strong
preference for the Overlay mode over the PiP mode. Com-
paring the user groups that viewed the lectures in only one
mode, we saw that the two groups differed significantly in
their watching times, choice of video access and proportion
of lecture materials viewed. The preference of Overlay was
also exhibited by the users that watched both modes. This
suggests that the Overlay mode was preferred and we hy-
pothesize that these videos appeared more engaging. Taken
in light of the results of studies such as [7], the findings here
could be interpreted to mean that this was the result of a
positive affective response of the learners to social cues in
the learning environment (here the videos). It is likely that
the overlay mode offered several affordances over the PiP
mode – integrated rather than separated access to the in-
structor’s eye-gaze and gestures, the instructor’s proximity
to the slides, and the larger size of the instructor – which

could have yielded differences in social cues available via the
video modes.

This primary social cue that was different between the two
video modes, we hypothesize, was the integrated view of a
real instructor and this is likely to have increased learner
motivation, which then affected the amount of time learners
spent watching a lecture and the proportion of lectures they
watched. Aside from this hypothesis on the difference in the
availability of social cues, in the absence of watching actual
behaviors of the learners affording a more fine-grained char-
acterization of their watching patterns (such as the actual
time users spent watching the video or the amount of time
they spent looking at the instructor’s face) and a qualita-
tive analysis via interviewing users for their opinions about
the videos, the true implications of the difference on the
video watching/consuming patterns cannot be determined.
Another set of experiments to quantify the differences more
specifically in terms of the perceptions of the students via
qualitative and quantitative measures is currently underway
and the results will be a valuable extension to the results of
this study.

Based on empirical estimates of likelihood and priors, both
certificate earners and auditors, two groups most engaged
with the lectures, showed a higher chance of choosing the
Overlay mode suggesting the possibility of this mode be-
ing conducive to the viewing characteristics of these learn-
ers. The higher chance of a certificate earner choosing the
overlay mode over the PiP could be interpreted to mean
that improved access to instructor’s presence is important
to even the most motivated of users of a course in a MOOC
environment.

6. LIMITATIONS AND FUTURE WORK
A primary limitation of this study is the lack of a qualitative
analysis of user affect and satisfaction with the video mode
of their choice. In the absence of the qualitative dimension
to our study, most of the quantitative analysis were done
based on proxy measures of motivation and navigational in-
tent. Moreover, the measures chosen for the quantitative
comparison were approximations based on the course logs
with their inherent limitations. A more controlled study
encompassing both qualitative aspects and more represen-
tative measures of engagement and navigation would shed
more light on design guidelines for video lectures.

Our primary measure of engagement, video watching time,
only measured the overall interaction with videos without
regard to the finer engagement patterns such as the num-
ber of pauses and restarts, segments revisited, and playback
rate changes that characterize a video view session. Incor-
porating these details as part of engagement patterns will
offer a more refined view of patterns of engagement that are
supported by different video presentation styles.

Other aspects for future work in this context would be ex-
ploring the preferences based on differences in demographic
backgrounds of learners3. This would offer key insights about
the preferences of a global audience that MOOCs aspire to

3Although learner IP address information was available,
their potential of being considered as personally identifiable
information precluded their inclusion in the analyses.
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serve. Another important direction for future work is to
explore if the same preferences and outcomes would arise
regardless of the demographics the course topic attracts and
the immediate functionality of seeing the instructor clearly
(i.e content/topic specificity of the course).

7. CONCLUSION
Recognizing the important role that lecture videos play as
primary content-bearers of a course in MOOCs, instruc-
tional designers are justified in their concerns about the
kinds of video presentations that lead to best learning out-
comes, keeping video production costs at reasonable levels.
In this study we compared two video modes that offered the
same set of lectures for a significant duration of a course
in programming parallel processors. We found that a sig-
nificantly large proportion of learners preferred one mode
over the other. We hypothesize that the modes primarily
differed in their ability to make the instructor’s gaze and
gestures more directly accessible to learners and that the
mode that offered more access to instructor’s gestures and
eye-gaze was probably the preferred mode by the vast ma-
jority of learners. We also hypothesize that these users,
possibly owing to the resulting positive affect created by
improving the instructor’s social presence, showed more en-
gagement with the videos (via larger watch times), preferred
the streamed mode of viewing videos (indicating immediacy
in user response) and covered a larger proportion of lectures.
The results also support the possibility that certificate earn-
ers (the most motivated of learners) and auditors (learners
who primarily engage with a course by only watching videos)
showed a higher chance of choosing the video mode offering
better access to instructor’s gaze and gestures, suggesting
that the mode is perhaps conducive to the viewing charac-
teristics of these learners.
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ABSTRACT
User modelling algorithms such as Performance Factors Analysis 
and Knowledge Tracing seek to determine a student’s knowledge 
state by analyzing (among other features) right and wrong 
answers.  Anyone who has ever graded an assignment by hand 
knows that some answers are “more wrong” than others; i.e. they 
display less of an understanding of the skill(s) involved.  This 
investigation seeks to understand the effects of progression 
through wrong answers to right answers in a way to determine 
how the “level” of wrongness affects future performance.  The key 
findings are that A.) where in a series of opportunities a student 
reaches the goal impacts future performance, as does B.) the 
“level” of previous wrongness, even two questions before the 
current opportunity.

Right students are all alike; 
every wrong student is wrong in his or her own way.

(with apologies to Ms. Karenina and Mr. Tolstoy)

1. INTRODUCTION
The use of algorithms to estimate student knowledge based on 
performance on intelligent tutoring systems (ITS) has been around 
for two decades.  Two of the more well-known methods are 
knowledge tracing (KT) [6] and performance factors analysis 
(PFA) [11].  Both models use a student’s right or wrong answers 
and develop a model to estimate the chance that a student has 
“learned” a particular skill.  KT uses Bayes nets to determine four 
parameters per skill; PFA uses logistic regression to determine 
three parameters per skill.  Although the order of correctness is 
incorporated into the models, both use only correctness as their 
input.  Other pieces of information that may be collected by the 
ITS are neglected in these models.

ITS may collect any number of additional pieces of information 
about a student, their actions, their exact answers, etc.  For 
example, Baker et. al. use over 20 features to make their 
predictions [2].  Some even make use of biometrics through 
additional sensors. (See Cavalio and D’Mello’s review of several 
methods [3]. The goal of many of these algorithms is to try to 

make a computer tutor that is at least as responsive, observant, and 
effective as a human tutor would be.  Incorporating more data 
about a student’s affect can be seen as an attempt to give a 
computer access to the information that a human tutor would 
notice.  However, the more detailed that a model becomes, the 
more computationally time-consuming it becomes.  Also, as the 
number of inputs increases, fewer ITS’s can make use of it (as a 
complex set of inputs may not be collected on all systems).  One 
feature that might be incorporated into these algorithms is the use 
of the number of attempts and hints a student uses to answer a 
problem to classify more conditions than binary right and wrong 
and to look for the effect of how long it takes a student to achieve 
a particular classification.

Human teachers often employ the idea of partial credit, both as a 
motivational tool, and as a more accurate measure of knowledge 
(when compared to the binary correctness).  Any teacher who has 
graded papers knows that some wrong answers (and workflow) 
demonstrate a nearly full understanding of a skill, while other 
wrong answers demonstrate a near-total lack of understanding.  
The idea of using dynamic testing (that is, a testing medium that 
gives hints to and tracks the number of attempts made by students) 
has been around since at least the 1980’s.  Bryant, Brown and 
Campione [5] compared traditional testing (binary correctness) to 
dynamic testing (tracking how many hints students needed to be 
successful).  Others (e.g. Grigorenko and Sternberg) reviewed this 
kind of dynamic testing (among other methods) [8] and concluded 
that dynamic testing provides a more accurate measure [12]

Unfortunately, some ITS’s can only determine the “worthiness” of 
a wrong answer if all wrong answers are somehow programmed 
in.  Some ITS’s do make use of pre-programmed wrong answers, 
but partial credit may or may not be given. Efforts before this one 
have been made to use partial credit to measure student knowledge 
[16]. E.g., in ASSISTments1, wrong answers may be programmed 
to give a student a particular message, but A.) students are still 
marked completely wrong (and given no credit) and B.) all of 
these wrong answer messages must be programmed into the 
problems (which is incredibly time-intensive).

A more common method of assigning partial credit in ITS’s is to 
give partial credit based on the number of attempts it takes a 
student to get the right answer [1] and/or the number of hints a 
student uses [9].  This is much faster to program, and does not 
require looking at all possible wrong answer to determine which 
ones show a limited understanding of the skill (as opposed to no 
understanding of the skill).  The basic argument would be that a 
student who is “only slightly wrong” might figure out her mistake 

1 ASSISTments is an online learning system primarily for math,
based out of Worcester Polytechnic Institute. 
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after only one wrong attempt, while a student who is “very wrong” 
might need several hints and several attempts before he can get the 
problem right. We are not analyzing specific wrong answers in 
this treatment; we using a student’s partial credit history to modify 
the probability of that student getting the next question correct.

In this paper, we are analyzing a dataset from ASSISTments from 
the years 2012-2013.  (The dataset contains ~ 500K student-
problem instances; the content is mainly middle-school 
mathematics.)  We analyze the student entries for patterns of 
attempts, hints use, and a simplistic order of actions to determine 
“bins” of students.  We are also able to analyze the data to seek 
patterns of moving through bins (that is, as a single student uses 
more or less assistance on subsequent problems), and when in a 
particular opportunity count a bin (or sequence of bins) is 
encountered.  We build off of our earlier work presented at the 
Learning Analytics & Knowledge Conference, 2015.

1.1 Background 
In our previous work [13], we built off of other works that looked 
at attempt use, hint use (Assistance Model – AM – [15]), and 
simple sequence of action (Sequence of Action model – SOA – [7 
and 17]), and modified and combined these models to make our 
own.  We looked at the combination of number of attempts used to 
get the right answer, hint use, whether the “bottom-out hint” 
(BOH) was used, and a simplistic order of actions.  In our model, 
the values for each parameter were:

attempt use: 1, 2, 3, 4, (5+)
hint use: 0, 1, 2, (3+)
first action: hint or attempt
BOH: used or not used

This gave us 35 different combinations.  By analyzing the 
similarities of actions and future performance - defined as the 
average next problem correctness (NPC) and found by using pivot 
tables on 80% of the dataset, the 35 bins were combined into only 
16.  This gave us the “Fine-Grain Action” model (FGA).  Table 1 
shows the bins and re-grouped bins, and the NPC values.

Table 1a: The Fine-Grain-Action model 
1st action = attempt

1 att. 2 att. 3 att. 4 att. 5 + att.

0 hint 0.8156
Bin 1

0.7380
Bin 2

0.6771
Bin 3

0.6380
Bin 4

0.6211
Bin 5

1 hint ----- 0.7012
Group A

0.6321
Group C

2 hint -----
0.5812

Group E3+ 
hint -----

BOH 0.5099
Group G

Table 1b: The Fine-Grain-Action model 
1st action = hint

1 att. 2 att. 3 att. 4 att. 5 + att.
0 hint ----- ----- ----- ----- -----

1 hint 0.7083
Bin 6

0.6192
Group B

0.5702
Group D

2 hint 0.5250
Bin 11 0.4688

Group F3+ 
hint

0.4118
Bin 16

BOH 0.3396
Group H

1.2 Research Questions
Extending from our previous analysis, we have three questions we 
want to address here:
1.) What is the significance of the bins?

a) What is the statistical significance of the different bins?  E.g.
are bins “x” and “y” (arbitrary names) reliably different?

b) Can the bins be re-grouped into larger groups without loss 
of predictive power?  (E.g. Why 16?  Why not 35 or 3?)

2.) Can the sequence of students moving through “Super Bins” 
be used to make more accurate predictions?  (E.g. Is there a 
difference in expected outcome when comparing a student 
who moves from Super Bin 3 to 1 vs. 5 to 1?)

3.) Should all wrong answers be treated equally?  Can we use 
reasonably simple and replicable methods to identify what 
student actions demonstrate different levels of understanding 
of the material?
a) Is there an impact of bin sequence and / or opportunity 

count on predicted outcome?

2. METHODS 
2.1 Creating the “SuperBins” (Method 1) 
A quick glance at the next problem correctness (NPC) values in 
Table 1 shows that some bins are very nearly equivalent.  When 
displayed in the above format, local values vary enough to warrant 
the bins.  However, when put in order by bin values (which are 
just the mean NPC for instances falling into that category), we can 
now run a simple t-test (two tailed) analysis to compare one bin to 
the one that comes immediately after.  This gives us Table 2.

Table 2: The bins from the FGA reordered and 
showing the p-value that compares one bin to the one 
immediately below.  

Bin NPC stdev n p-value Ordinal

1 0.8156 0.3878 215,870 < 0.0001 1st

2 0.7380 0.4397 22,229 0.0055 2nd

6 0.7083 0.4545 1,958 0.5827 3rd

A 0.7012 0.4577 3,414 0.0162 4th

3 0.6771 0.4676 5,616 0.0009 5th

4 0.6380 0.4806 2,326 0.7168 6th

C 0.6321 0.4822 1,408 0.4941 7th

5 0.6211 0.4851 2,518 0.9416 8th

B 0.6192 0.4856 407 0.1339 9th

E 0.5812 0.4934 4,011 0.8154 10th

D 0.5702 0.4950 114 0.3782 11th

11 0.5250 0.4994 541 0.4851 12th

G 0.5099 0.4999 40,652 0.0781 13th

F 0.4688 0.4990 465 0.1252 14th

16 0.4118 0.4922 289 0.0141 15th

H 0.3396 0.4736 13,989 ----- 16th

In Table 2, the p-value analysis comparing the bin of that line to 
the one below it allows us to identify natural break points and 
groups.  Bins are regrouped according to these break points. That 
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is, bins are grouped together as long as two bins fail to be 
statistically different.  This gives us five “SuperBins” (Table 3). 

It may seem somewhat arbitrary to keep bins 16 and H separate 
(with a p-value of 0.0141), while grouping A and 3 together (with 
a p-value of 0.0162).  We could argue that we used a deciding 
value of 0.015, but that would be an arbitrary value.  The real 
reason for keeping 16 and H separate is that the action of using the 
bottom out hint (and using a hint as the first action) seems to be 
different than any other combination of actions and should be kept 
separate.  Throughout the rest of this analysis, we will see that the 
results of keeping this bin separate as its own SuperBin gives us 
more predictive ability.

This gives us a useful and relevant way to regroup bins that are not 
reliably different.  One can easily make the argument against the 
16 bins in FGA that, if two bins are not statistically different, why 
have them?  By combining statistically similar bins, there is more 
meaning (in prediction) to assigning a particular value for the next 
problem correctness, even if the recombination “smooths over” the
different ways that a student could arrive at a particular prediction.  

Table 3: The five “SuperBins” with their predictive 
values, and relevant statistics.  The colors are used 
consistently throughout the paper for clarity sake.
SuperBin NPC stdev n p-value

1 0.8156 0.3878 215,870 << 0.0001

2 0.7380 0.4398 22,229 << 0.0001

3 0.6902 0.4624 11,015 << 0.0001
4 0.5297 0.4991 52,731 << 0.0001

5 0.3396 0.4736 13,989 ----

If we use the colors to remake a condensed Table 1, we can see 
that the SuperBins are locally consistent within the FGA.  This is 
significant in that it suggests that, although many of the 16 bins 
from FGA may be statistically similar, these similarities (and 
differences) occur logically throughout the chart. (See Table 4.)  

Table 4: FGA color coded according to SuperBins.
Hints 1 att. 2 att. 3 att. 4 att. 5+ att.

0 Bin 1, 
0.816

Bin 2,  
0.738

Bin 3, 
0.677

Bin 4, 
0.638

Bin 5, 
0.621

1 Bin 6, 
0.708

Grp A 0.701 Grp C 0.632
Grp B 0.619 Grp D 0.570

2 Bin 11 
0.525

Grp E 0.581
Grp F 0.469

3+ Bin 16 
0.412

Grp E
Grp F

BOH
attempt 1st Grp G 0.510

hint 1st Grp H, 0.340

It is also worth noting that, although the bin numbers that went 
into the SuperBins may seem random, there is a pattern.  SuperBin 
1 consists of students who get a problem right. SB2 is populated 
by only students who made only one wrong attempt (and used no 
hints) before getting the answer right on their own.  SB3 comes 
from three bins that represent only a small number of attempts / 
hint use.  SB4, which incorporates the bulk of the FGA bins, is 
anything left, except for using the bottom-out hint, with the first 
action being hint use.  We can now use these SuperBins as the 
identifier of “wrongness”.  

In ASSISTments, a must get the right answer before moving onto 
the next question, no matter how many attempts they make or 
hints they use.  Clearly, a student who makes one wrong attempt 
and then gets the answer right with no hints demonstrates that their 
thinking was “less wrong” than a student who makes a series of 
attempts and uses many hints before getting to the correct answer.  
SuperBins give us a working definition of “wrongness”. 

2.2 Impact of previous bin; 2 SuperBin (2SB) 
combinations (Method 2)
Looking at the sequence of students “moving” through SuperBins
can help us to better understand how a student’s knowledge on a 
skill is changing.   As we look at a student’s performance on one 
skill, progression through SuperBins would indicate that the 
student’s knowledge is improving; most humans would call this 
“learning.”  Likewise, a student who gets an answer right, and 
then regresses could have “slipped” (to use KT terminology 
loosely).

The first (and simplest) method to look at the impact of previous 
SuperBins on future success is to look at two-bin combinations.  
That is, after the first problem, we will look at not just the 
SuperBin a student falls into on opportunity n, but also the 
SuperBin they were in on opportunity (n-1).  This gives 25 
different combinations.  Our naming convention is 
(current).(previous).  Thus, 2.1 is a student who is in SuperBin 2 
(used one wrong attempt before getting a problem right on the 
second try) and was in SuperBin 1 (got the problem right on the 
first attempt).  To use knowledge tracing language, 2.1 could 
represent a “slip”.  Two-SuperBin code 1.2 is a student who was 
in SuperBin 2 and has improved to SuperBin 1.  Two-SuperBin 
codes run from [(1.1-1.5) - (5.1-5.5)].

Table 6 (next page) illustrates the impact of the previous 
question’s “wrongness” on the outcome after the current question.  
For instance, if we compare the values of the 1.x family, we 
should not be surprised that the 1.1 (two correct in a row) has the 
highest probability of success on the next problem.  However, the 
four other two-bin combinations (1.2-1.5) all have (statistically 
significantly) different predictions for the next problem.  That is, 
how wrong a student was on the previous question can be an 
indicator for how likely they are to get a question right, even after 
they have gotten one right.

Perhaps the best demonstration of the importance of using a partial 
credit metric (of some sort) is to compare the predicted outcomes 
for 2.2 and 5.5.  In both cases, the students would be marked 
wrong on two consecutive problems.  However, a student who 
manages to make a mistake and then correct themselves with no 

Table 5: Meaning (in terms of attempt and hint use) and 
interpretation of “wrongness” of the five SuperBins

SuperBin Meaning “Wrongness”

1 Student got it right Right

2 Student made one wrong attempt, 
and then got it right.

Barely 
wrong

3 Student used a few attempts, and 0 
or 1 hint.

Partially 
wrong

4 Student used many attempts and/or 
hints.

Significantly 
wrong

5 Student could not start without a 
hint, and needed the answer.

Completely 
wrong
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aid (twice) is (un-surprisingly) much more likely to get the next 
problem correct than one who needs the answer given to them 
(and won’t even start without a hint).  A student in 2.2 has a nearly 
70% chance of success on the next problem, while a student in 5.5 
has a mere 16.7% chance!  Without looking at partial credit, they 
would be marked equally wrong.

2.3 Impact of opportunity count on 2SB 
combination predictions (Method 3)
The data set we are analyzing has been limited to only up to 
opportunity counts of 20.  (This was done to speed the analyses.)  
Even with 25 two-SuperBin combinations, there was enough 
information in the data set to run a linear regression on the effect 
of when a two-SuperBin combination was reached.  E.g. there is a 
difference between students who reach 1.1 (two right in a row) on 
opportunity 2 versus opportunity 20.

To create this model, pivot tables in excel were used to find the 
average next problem correctness (NPC) on two-SuperBin 
combinations that fall on particular opportunities.  Although not 

all two-SuperBin combinations were achieved on all opportunities, 
there was enough information to run a linear regression.  This, of 
course, gives an intercept and slope.  The model was applied using 
the regression, not by using the actual calculated values.

2.4 Impact of 3 SuperBin (3-SB) combinations 
(Method 4)
Just as the state of the previous SuperBin could have an effect on 
future performance, it is conceivable that the SuperBin two 
opportunities back could have an effect.  Consider the following 
two hypothetical students and their first three SuperBins:

Table 7: Two hypothetical students and 
their SuperBin values on three questions.
Student Q1 Q2 Q3 Q4
Alice SB 2 SB 1 SB 1 ?
Barney SB 5 SB 1 SB 1 ?

Intuitively, we would expect Alice to have a higher probability of 
success on question 4 than Barney.  Alice almost got the first 
question right, while Barney needed to use the bottom out hint 
(and used a hint as his first action). Although they both got 
questions 2 and 3 correct, their performances on question 1 are 
drastically different.  To user models such as KT and PFA, 
however, they were both equally “wrong” on question 1.

To identify a 3-SuperBin combination, we will use the two-
SuperBin code and add a decimal, we would have 
(current).(previous)(n-2) or [1.11-5.55]; this gives 125 three-
SuperBin combinations.  In the example above, after question 3
(and as the model predicts their correctness on question 4), Alice 
would be in 1.12, while Barney is in 1.15.

We are now looking at 125 combinations; some of these 
combinations have too few instances to have a prediction value 
that is reliable. 47 out of 125 3-SB combinations have fewer than 
100 instances; eight combinations have 10 or fewer instances.
Instead of using 125 different values (many of which would 
unreliable), we will use a linear regression to approximate values 
for the impact of the (n-2) SuperBin. However, it is a slightly 
complex process.

In order to have “smooth” regressions, some assumptions are 
made:
1.) The effects can be modelled linearly.  E.g., for the regression 

to the (n-1) SuperBin prediction = intercept + 
slope*SuperBin (n-1). 

2.) The effect of the (n-2) SuperBin value will be similar in 
pattern to the effect of SuperBin (n-1), but reduced in effect.  
(In other words, we would expect that 1.1x to follow the 
basic pattern of 1.x, but with a smaller change in values)

3.) Even though many of the three-SuperBin combinations are 
unreliable due to small numbers of instances, the average 
slope of a “family” could be used to deduce the effect size 
that is applied to the pattern found in assumption 2. 

To create the model, five regression lines (one each for 1.x, 2.x, 
3.x, 4.x, and 5.x) were created by simply using the average next 
problem correctness as the y-values and the decimal (previous 
SuperBin) as the x-values.  

Next, twenty-five regressions were run for 1.1x - 5.5x.  Although 
many of the three-SuperBin combinations were too small to be 
reliable, we used the average slope from a “family” (e.g. 1.3x) to 
adjust the effect from the two-SuperBin combination regressions.  
E.g., the regression lines for 1.1x - 1.5x were found and averaged.  

Table 6: Two SuperBin Combinations.  Code 1.x refers to 
students who are currently in SuperBin 1 and who were in 
SuperBin x on the last problem.  “Families” (1.x, 2.x, etc.) 
are color coded according to current SuperBin.  Codes 
without decimal (bolded) are values from Table 3.  The p-
values compare a 2SB to the one below it.

2SB NPC n p-value
1 0.816 215,870

1.1 0.840 121,317 < 0.0001
1.2 0.806 15,440 < 0.0001
1.3 0.775 7,085 < 0.0001
1.4 0.703 26,109 < 0.0001
1.5 0.655 4,317 -----
2 0.738 22,229

2.1 0.783 11,421 < 0.0001
2.2 0.699 2,137 0.5322
2.3 0.688 1,016 < 0.0001
2.4 0.608 2,850 0.4391
2.5 0.587 373 -----
3 0.690 11,015

3.1 0.733 4,799 < 0.0001
3.2 0.637 796 0.3058
3.3 0.611 674 0.3582
3.4 0.590 1,433 0.5120
3.5 0.567 233 ------
4 0.530 52,731

4.1 0.617 19,044 < 0.0001
4.2 0.551 2,321 0.5579
4.3 0.561 1,336 < 0.0001
4.4 0.434 15,452 < 0.0001
4.5 0.380 3,263 ------
5 0.340 13,989

5.1 0.540 2,155 0.8180
5.2 0.548 228 0.2658
5.3 0.491 165 < 0.0001
5.4 0.332 3,165 < 0.0001
5.5 0.167 4,429 -----
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To approximate the slopes of 1.1x-1.5x, the slopes of 1.x - 5.x 
were used, but multiplied by the ratio of the average (1.1x-1.5x) to 
the average (1.x - 5.x).  Since the intercepts from (1.x-5.x) might 
not have the same meaning when compared to (1.1x - 1.5x), the 
intercepts from the three-bin regressions were left as is. Table 8
(below) shows the 2-SuperBin regressions (found using the values 
in Table 6), followed by the actual regression values for one of the 
3-SuperBin families, and the idealized slopes.

2.5 First Possible Opportunity Count
Lastly, when fitting our methods (many of which would have to be 
some combination of the above four versions), we decided to 
separate SuperBins and combinations by the first available 
opportunity count, and all others.  In our numbering scheme, we 
used a “dummy code” of 09 to designate that we are looking at the 
average of NPC for only the first available opportunity count.  See 
next section for examples which may help.

2.6 Method Examples 
We now arrive at the methods by which our model is applied.  To 
see the differences between the methods, it may be useful to look 
at the same hypothetical sequence of SuperBins for two imaginary 
students and compare the different methods. (See Table 9, next 
page.) In all methods below, we compare “Chuck” and “Denise” 
and the parameters that would be used to predict their success.  It’s 
important to note that method 1 identifies the SuperBin into which 
each student is placed on questions 1-4; this does not change 
throughout the methods.

The simplest method uses only the average NPC for all SuperBins, 
and pays no attention to opportunity count or SuperBin 
combinations.  This is Method 1.  This can be thought of as a 
simplified FGA.

The prediction for (e.g.) question 5 is based solely on the 
SuperBin value for question 4.  SuperBin values are modified by a 
multinomial logistic regression based on skill.  This gives a total 
number of parameters as 5 + 1/skill.

In method 2, the prediction of NPC for question 1 is based on the 
average value for the SuperBin, but only including values from the 
first opportunities.  (The “dummy code” of 09 is used to indicate 
first opportunity only.)  All questions from then on use the value 
for the two-bin combinations.  This gives a total number of 
parameters of 30 + 1/skill.  (Five for SBx.09, and 25 for 1.1-5.5, 
plus the regression to skill)

In method 3, the prediction of NPC from question 1 is based on 
SuperBin at first opportunity, while all others are based on the 
regression to opportunity count values.  This gives a total number 
of parameters of 55 + 1/skill.  (Five for SB x.09, and 50 for the 
intercept and slope of the 25 different two-SuperBin combinations, 
plus the regression to skill)

In method 4, the prediction of NPC for question 1 and 2 are based 
on SuperBin x.09 and 2-SuperBin combinations x.y09.  For 
question 3 and on, the prediction is based on the linear regression 
to the SuperBin of (n-2).  This gives a total number of parameters 
of 65 + 1/skill.  (Five for SB x.09, 25 for 2SB combo x.y09, 25 for 
the intercepts, five for the slope of 1.x-5.x, and five for the slope 
modification parameter, plus the regression to skill).  The slope 
and intercept in the regressions in method 4 are not the same as 
those in method 3.

A demonstration of the application of all four methods can be 
found in Table 9 below. Method 1, being simply the single 
SuperBin prediction identifies a “score” or “condition” for the 
hypothetical students.  The other methods start with this 
information. 

Table 9: Hypothetical application of four different methods; it is important to note that 
the methods are different, but the results of “Chuck” and “Denise” are not. “X.09” (or 
“X.Y09”) is a code meaning prediction values are derived from the first available bin 
only.  E.g. “1.09” uses only the scores from SuperBin 1 and the first opportunity.

Method 1: SuperBin Only (“SB_1”)

Student Q1 Q2 Q3 Q4 Q5

Chuck SB1 SB2 SB1 SB1 ...

Denise SB5 SB3 SB1 SB2 ...

Method 2: Two-SuperBin combinations (“SB_2”)

Student Q1 Q2 Q3 Q4 Q5

Chuck SB 1.09 2SB (2.1) 2SB (1.2) 2SB (1.1) ...

Denise SB 5.09 2SB (3.5) 2SB (1.3) 2SB (2.1) ...

Method 3: Two-SuperBin combinations, with opportunity regression (“SB_3”)

Student Q1 Q2 Q3 Q4 Q5

Chuck SB 1.09 b(2.1) +m(2.1)*2 b(1.2) + m(1.2)*3 b(1.1) + m(1.1)*4 ...

Denise SB 5.09 b(3.5) +m(3.5)*2 b(1.3) + m(1.3)*3 b(2.1) + m(2.1)*4 ...

Method 4: Two-SuperBin combinations, with third bin regression (“SB_4”)

Student Q1 Q2 Q3 Q4 Q5

Chuck SB 1.09 2SB (2.109) b’(1.2) + m’(1.2)*1 b’(1.1) + m’(1.1)*2 ...

Denise SB 5.09 2SB (3.509) b’(1.3) + m’(1.3)*5 b’(2.1) + m’(2.1)*3 ...

Table 8: demonstration of 
idealization of regression to 
third bin using second bin 
regression values.
2 SB
“family”

m b

1.x -0.047 0.898
2.x -0.048 0.818
3.x -0.038 0.741
4.x -0.059 0.686
5.x -0.096 0.704

3 SB
“family”

actual

m
actual

b
actual

1.1x -0.032 0.913
1.2x -0.031 0.845
1.3x -0.025 0.089
1.4x -0.034 0.778
1.5x -0.018 0.695
3 SB
“family”

idealized

m
idealized

b
actual

1.1x -0.023 0.913
1.2x -0.023 0.845
1.3x -0.018 0.089
1.4x -0.029 0.778
1.5x -0.047 0.695
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3. RESULTS
In order to better show methods, many of the tables that would be 
considered “results” are found throughout the paper.  We hope this 
does not inconvenience the reader too much at this time.

Tables 1 through 5 show that a statistical analysis of student 
actions (based on next problem correctness) can simplify a 
complex table, while still retaining meaningful groupings of 
student actions.  In our last paper, we argued that not only should 
hint use and attempt count be used in the model, but a simple 
action-order analysis should be included. We can point out that the 
regrouping process does not contradict this conclusion.  Had group 
A not been split from group B, the model might not have fared so 
well.

Table 6 demonstrates that there is an effect of the previous 
SuperBin that will modify the prediction of the current SuperBin.  
For example, we can see that students in SuperBin 1 who were just 
in SuperBin 5 have almost a 20% (absolute) less chance of success 
on the next problem when compared to a student who was in 
SuperBin 1 twice running.  This may not be too surprising, as 
SuperBin 1 represents getting the answer right.  However, there is 
still a roughly 15% (absolute) difference in expected outcomes 
between 2SB 1.2 and 1.5.  Both of these represent a student who 
got a problem wrong, and then got the next right.  Algorithms such 
as KT or PFA would treat these conditions as identical.

When analyzing the 2SB combinations, the pattern is amazingly 
clear: the impact of wrongness does not disappear after one 
question, and the different levels have different (and predictable) 
impacts.  Being in SuperBin 5 on the previous problem gives a 
student a worse outcome than 4; 4 is worse than 3, etc.  There are
only a few deviations from this pattern throughout Table 6.  The p-
value analysis indicates that the differences are reliable most of 
the time; that is, the patterns appear to be reliable, although a 
larger dataset is needed to state that definitively across all patterns. 

One interpretation of the pattern of effect from the previous 
SuperBin would be that students in SuperBin 5 have more to learn 
than those in SuperBin 4, and that even getting the next question 
right is not a clear sign of having learned the knowledge 
component.  The summary table (Table 5) gives another
interpretation on this: the students in SuperBin 5 needed a hint 
before they even got started, and then needed the answer to finish.  
Clearly, these students are nowhere in the same state of learning as 
a student who makes one mistake and fixes their answer on their 
own (SB2).

This differentiation of “wrongness” demonstrates the power of 
looking at non-binary correctness. Perhaps the most dramatic 
observation is that a student who is wrong twice, but corrects 
themselves each time (2SB combination 2.2) is very different from 
a student who cannot start without a hint and cannot get to the 
correct answer on their own (2SB combination 5.5).  To treat these 
two states as the same (wrong twice running) is to give up on 
information that can help differentiate a student who is nearly 70% 
likely to be correct on the next problem, verses one who as a 
paltry 16.7% chance (2.2 vs 5.5).

With these new predictions, we can compare predictions to other 
models.  In Table 10, we compare the scores from RMSE, AUC, 
and R-squared.  This shows that not only is the “SuperBin” 
method as valid as the FGA model (tying in two out of three 
metrics), taking opportunity regression (method 3) and 3-SB 
regression both improve on the basic SuperBins idea (method 1).

One table that a reader might be missing is one detailing the 
relation of 2SB to opportunity.  Rather than add an eleventh table, 
we will summarize as: the R2-values for the regressions ranged 
from 0.832 to 0.001; some are clearly not reliable.  However, 
given the results in Table 10, we think that accounting for 
opportunity count by linear regression to the 2SB combinations is 
a worthwhile first approximation.

Table 10: Analysis of various knowledge models.  
Baseline predicts the average value of the training set.  
For AUC, 1.0 is ideal; 0.5 is no better than random.
RMSE: 0.00 is ideal; 0.5 is no better than random.
R2: 1.00 is ideal, 0.0 is no better than random.
Method AUC RMSE Rsqr
Baseline (predict mean) 0.500 0.446 0.000
PFA [11] 0.653 0.426 0.058
KT [6, 4, 10] 0.710 0.413 0.115
SOA [7, 17] 0.708 0.426 0.087
AM [15] 0.714 0.422 0.103
FGA [13] 0.715 0.400 0.128
SB method 1 0.715 0.411 0.128
SB method 3 0.726 0.407 0.142
SB method 4 0.727 0.406 0.145
Avg (methods 3 & 4) 0.728 0.406 0.145

4. CONCLUSIONS
The regrouping of 16 bins of the FGA into 5 “Super Bins” does 
not adversely affect the predictive power of the model (in two out 
of three metrics). In fact, by having fewer bins, we are able to 
look at history in a way we would not have, had we kept the 16 
bins of the Fine-Grain Action model. This gives us a chance to 
improve on the FGA.

We can conclude that not all wrong answers2 are equal, and that 
there is value to be gleaned from analyzing different wrong 
answers. The impact of “how wrong” an answer is has an effect 
even up to two answers later.  That is, your “wrongness” two 
questions back can be used to make a better prediction for your 
next problem.  (It is possible that wrongness further back could be 
used, but it would require a dataset that is larger by orders of 
magnitude.)

Not only is the combination of “wrongness” useful in making 
predictions, so too is the opportunity on which a student achieves 
a combination.  That is, a student who gets the first two questions 
right is (usually) more likely to get the third right than a student 
who gets the 11th and 12th questions right is to get the 13th correct.

It is perhaps not too surprising that this method is able to 
outperform established models such as PFA and KT.  (And we 
will freely admit that the previous statement is limited only to this 
one dataset; more research is needed to definitively make this 
statement.)  PFA and KT use only the information in binary 
correctness.  A new model that outperforms existing models by 
using additional information does not negate the previous models; 
it merely shows that this information is worth incorporating into 
models of user knowledge.

2 Or, more precisely, combinations of student actions that are 
treated as wrong answers; actual analysis of wrong answers is left 
to another paper.
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4.1 Answers to the Research Questions
1.) The bins from FGA were useful, but needed to be regrouped.  
Regrouping by next problem correctness (and t-test analysis) kept 
local and logical groupings that yield meaningful descriptions of 
wrongness.

2.) The level of wrongness that a student demonstrates has an 
effect on more than just the current question.  This effect is clear 
and reliable on the next problem and may impact the following.

3.) Not all wrong answers are identical.  Knowledge estimation 
models such as KT and PFA leave out “levels” of wrongness that 
can be used to make a more accurate prediction of student success.

The paraphrased Anna Karenina quote at the start of the paper 
summarizes both our hypothesis and our findings: A careful 
analysis of wrong answers will help improve knowledge 
estimation models.

4.2 Novel Contributions
This paper seeks to show that there is information to be gained by 
treating different kinds of wrong answers as different.  Presented 
herein is a statistical method of differentiating student actions into 
groups of actions that represent meaningful differences in 
performance.  Use of these groups in a knowledge modelling 
algorithm can improve the results of the predictions, without 
needing continuous values (as in [14]). 

4.3 Future Work
Although all of the linear regressions can be considered first-order 
approximations, the idealization of the third bins may be perhaps 
only a zeroth-order.  As more data becomes available, we may be 
able to bypass the idealization and simply use 125 different 
parameters that are statistically reliable. Beyond improving the 
results of this model, the incorporation of other models that seek 
to use information from incorrect answers should bolster the 
performance of the model(s). 
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ABSTRACT
Evidence has shown that student’s attention is a crucial fac-
tor for engagement and learning gain. Although it can be
accurately assessed ad-hoc by an experienced teacher, con-
tinuous contact with all students in a large class is difficult
to maintain and requires training for novice practitioners.
We continue our previous work on investigating unobtrusive
measures of body-language in order to predict student’s at-
tention during the class, and provide teachers with a support
system to help them to “scale-up” to a large class.

Our work here is focused on head-motion, by which we aim
to mimic large-scale gaze tracking. By using new computer
vision techniques we are able to extract head poses of all
students in the video-stream from the class. After defining
several measures about head motion, we checked their signif-
icance and attempted to demonstrate their value by fitting a
mixture model and training support vector machines (SVM)
classifiers. We show that drops in attention are reflected in
a decreased intensity of head movement. We were also able
to reach 61.86% correct classifications of student attention
on a 3-point scale.

Keywords
computer vision, head movement, attention, classroom

1. INTRODUCTION
One of the early studies of attention in classrooms showed
that only 46% of students pay attention during the class [4].
Later studies raised that estimation to a more optimistic
but still insufficient 67% [20]. This means that in practice
the teachers are lecturing half-empty classrooms, even if all
chairs are occupied. How can we help the teachers learn to
recognize which chairs are empty?

Processing of social cues comes natural in human-to-human
communication, but still remains an object of much research
and few technical applications. The ambiguity of the medium
limits our attempts, but in the scenarios where body lan-
guage becomes the dominant form of expression, we are in-
clined to dig further into the matter. One such scenario is
the classroom. We argue that computer vision (CV) tech-
nologies, in combination with machine learning approaches
give us tools to scale-up teacher’s attention to every student
in the classroom, regardless of the class size. This would
provide the teachers with a timely opportunity to address
lower attentive class areas and draw students into the lec-
ture, encouraging teacher’s reflection in action.

Behaviour of people in large groups is unpredictable to an
observer in most situations. The overwhelming amount of
information forces us to focus on few individuals who we
deem as the representatives of the group, and mental effort
and training are required to re-divide the attention equally
among many subjects [7]. In case of a lecture, teachers are
active participants, splitting their attention between per-
sonal actions, material presentation and orchestration of the
whole process [8].

In this work we started from the success of eye-tracking in
predicting focus and tried to generalize it to students’ head
movement in the classroom. Birmingham et al [3] illustrate
the social aspect of gaze – given an image, people first anal-
yse the gaze, then the head and finally the posture of the
people in the image to collect information about where to
focus their attention. Langton [13] showed that we combine
the input from head and eyes into a single stimulus. These
two observations together gave us the ground to consider
head orientation as i) informative to other humans, and thus
potentially also for our algorithms; ii) an approximation of
human gaze on larger scales of motion.

In this paper we present our process for extracting head
motion and pose features from videos of classroom audience,
and our initial set of analysis of the features’ quality. We will
try to answer if there is a general connection between head
motion and attention level? What are the features of head
motion that we can use in predicting attention? How do
these features change with attention levels? And finally, can
we use these features to predict students attention levels?

Proceedings of the 8th International Conference on Educational Data Mining 320



2. RELATED WORK
The umbrella of affective computing [15] has been growing
in the last 15 years, and expanding the domains of it’s appli-
cation. The emerging sub-field of Social Signal Processing
(SSP) [24, 25] made a major point of emphasizing that en-
coding human social and cultural information might raise
the performance of the machine algorithms aimed at un-
derstanding behaviour (e.g. analysing large sport gathering
[6]).

In case of human attention, it is attributed with the ability
to modulate or enhance the selected information source ac-
cording to the state and goals of the perceiver, and that the
“perceiver becomes an active seeker and processor of infor-
mation, able to intelligently interact with their environment”
[5] and can be highly relevant in a learning environment [14].
Roda et al [19] already tried to incorporate the attention in-
dication as one of the inputs in human-computer interaction,
but early attempts in the classroom were not formulated as
a technology which can be wide-spread, due to their com-
plexity [1].

Detecting and displaying the gaze direction, as one of the key
indicators of focus of attention, was shown to be both useful
in making the interaction feel more natural [23], and indica-
tive of the material comprehension [21] in on-line environ-
ments. Lacking the possibility of capturing gaze in a real-life
scenario, Ba et al [2] demonstrated that we can estimate the
VFOA (visual focus of attention) in meetings successfully
based on the head pose. In the similar scenario Stiefelhagen
et al [22] showed that head orientation contributes 68.9% in
the overall gaze direction (where is the attention directed)
and achieved 88.7% accuracy at determining the focus of at-
tention. This gives us the indication that head motion has
potential as a focus indicator, but it does not come with-
out problems. Deeper exploration of head motion depicts
it as an ambiguous indicator. Heylen’s overview [10] shows
that head-signals are either very contextual-dependant or
are complementary signal to the main information channel
(usually – talking).

Our conclusion from the literature overview is that head
motion has the potential as a low-resolution measurement
which we can passively acquire to determine the attention
level and/or direction of another person. To fully decode
it we need contextual information which will be unavailable
in our approach of passive/unobtrusive data collection [16].
The features we hope to find need to be positioned in the
middle between measurable and context-dependant.

3. METHOD
Training and validation of our head detector/pose estima-
tor pipeline was detailed in our previous work [17]. We will
give a quick overview of the experiment setup and detection
pipeline, and focus on the steps and problems we encoun-
tered in the later stages of data extraction.

3.1 Experiment design
We collected a total of 6 recorded sessions with 2 classes
(demographic information shown in Table 1). Each class-
room was observed with several cameras positioned above
teacher’s head around the blackboard area of the classroom
(camera view of the classroom is shown in Figure 1). The

Figure 1: Examples of gaze detections, showing the
classroom during the lecture.

cameras were synchronized and each student visible in the
video was annotated with an unique ID (maintained over
all recorded sessions) and a rectangular area of the video
which the student occupies. Given that the angle of the face
detected is relative to the camera viewpoint, we introduced
angle offsets for each student. If a student was visible from
several cameras, best quality recording was used.

Class Size F.ratio Mean attend. Sess Cams
1 62 35.48% 39.34(σ = 1.15) 3 5
2 43 34.88% 27.5(σ = 6.55) 3 4

Table 1: Statistics of the two captured classes, show-
ing the number of students, percentage of female
students, attendance, number of sessions recorded
and number of cameras used.

Similar to attention probing used in earlier experiments [4]
we asked students to fill out the questionnaire about their
attention during the class. At four different times the classes
were interrupted and students recorded their attention on a
Likert scale from 1–10 (details of the questionnaire design
are presented in [17]). The distribution of all collected an-
swers is shown in Figure 2. From each of the 6 processed
classes we recorded 4 measurements of attention per stu-
dent, associated to the time period before our interruption,
duration of 7-10 minutes. In order to turn the problem into
a classification one, we labelled the values of the students’
responses as low (reported attention 1–4), medium (5–7) or
high attention (8–10), based on our observations of attention
distribution (regions marked in Fig.2).

3.2 Video analysis
The head-pose detection and pose estimation was built on
top of the part-based model for head detection published
by Zhu et al [26] which was re-trained for lower resolution
images and different head poses on the AFLW dataset [12].
We trained a geometrical head-pose estimator (focusing on
horizontal angle or “pan” of the head) by using the dlib li-
brary [11]. The precision of the estimators was checked on
the Pointing’04 dataset [9]. Each detection consists of the
assumed rectangle of face area, estimated angle of the face
(“pan”) and score (detector confidence).

The major problem for reaching the meaningful measure-
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Figure 2: Histogram of all reported levels of atten-
tion with the used limits to designate the low (red
zone, <5), medium (yellow 5-7) and high (green, 8-
10) levels of attention.

ments was the instability of the detector/estimator output.
The measurements were very noisy since the feature extrac-
tion step was not formulated as a tracker, which would pro-
vide temporal consistency. The second problem came from
the setup itself — given the location of the cameras (around
the black-board, visible in Figure 1), the subjects sit closely
together. This causes a considerable amount of i) inter-
personal occlusions and ii) gaps in detection and iii) miss-
assignment of detection instances (visualized in Figure 3a).

Simple attempts to pick the best-scoring detection within
the region did not yield a stable output, given that on most
occasions the head of the neighbouring student would wan-
der into the region and take over as the best detection. Fit-
ting prior distributions (2D Gaussians) for expected head
locations also did not improve the assignment, as students
usually create 2 or 3 mixtures of points (depending on their
sitting poses), which is indistinguishable from the case when
two people occupy the given space.

Finally we settled for the formulation with labelled GMM
(Gaussian Mixture Model). By taking sparsely sampled de-
tections over time (one frame every 2 seconds) and accumu-
lating all the detections, we depicted the overall probability
of detecting faces in different positions of the camera view.
The “labelled” part consists of manually specifying the rele-
vance of each mixture in the probability, by either labelling
the mixture as a specific person or miss-detection. With this
we could filter-out all the irrelevant detections for a specific
person by only considering detections which were assigned
to one of the person-related clusters in the GMM (Figure
3b).

To improve the precision of the GMM fits, before training
the model we eliminated the outlier points by thresholding
the minimal number of neighbours a point needs to have in
order for it to be further considered. This is possible due
to the fact that the people remain in distinct positions for
long periods of time, causing dense groupings of detections.
The threshold was dynamically determined for each video,

by eliminating the 0.5% of points with lowest number of
neighbours. The major role of the GMM filtering step was to
eliminate false positives, as the clusters could not always be
mapped one-to-one to an individual. Additional constraints
during the GMM training phase could solve this problem.

After filtering out the miss-detections, temporal consistency
was ensured by using a simplified Kalman filter approach –
the next detection is expected to be in the close proximity of
the previous detection. If no detections were observed within
a specified radius from the previous detection, the radius is
increased for the next processed frame and no detection is
reported, simulating the increase in uncertainty. The major
differences from the Kalman filter is the absence of motion
model (the face is expected to remain at the same place)
and the lack of probability propagation. This enabled us
to use only the real detections and not estimates, which is
relevant in order to model the heads in a bow-down position.
The region growing was preferred over moving Gaussian in
order to put a hard limit on the detections which can be
considered.

After each processed person in the video, to make sure that
the detection would not be used two times, we removed the
detection after it has been assigned to a person. This turns
the algorithm into a greedy approach, and making the or-
der in which the persons are processed important. We chose
to process the persons from front-to-back given that each
person sitting closer to the cameras is more likely to be cor-
rectly detected. After extracting detection tracks for each
person, values of the detection rectangle position and gaze
angle are smoothed with a “sliding window” approach.

3.3 Features extracted
The input features used in our predictions were largely based
on the information extracted from the cameras, but not ex-
clusively. All features used are shown in Table 3.3. As we
noted before, the time and spatial arrangement also plays
significant role in the attention estimation [18], so we in-
cluded the information about the distance of the student
from the teacher (distance and row fields), and time of the
sample within the class (period).

We tried to model the eye contact in the class with the
percentage of time that we detected the student’s face in
the video. Initial assumption is that this would allow us to
measure the time the student spent looking down just by
noting how long was the head absent. The noise in the mea-
surement originates from the false negatives of the detector,
which is dominantly influence by the distance from the cam-
era. Even though we resorted to using zoom-lenses for the
distant people in the class (which makes the measurements
comparable even on the capture level to the people in the
front rows), there still was a significant correlation between
the row in which the student sat and percentage of time de-
tected (r = −0.1867, p = 0.009), although it was weaker
than the correlation with the Cartesian distance from the
teacher (r = −0.2137, p = 0.002) which encodes width as
well as depth of the classroom.

“Head travel” records the total accumulated head travel in
the horizontal plane. We ignored the potential head-travel
in the periods when we did not detect the face of the stu-
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dent. In order to neutralize the potential influences of per-
son’s rhythm and distance from camera, we also included a
normalized version of the measure, by using all the measure-
ments of a single person to determine the mean and scaled
it with the variance of those measurements. Samples with a
single measurement were excluded.

We modelled the focus of the student with 3 connected mea-
sures of stillness – number of still periods, mean duration of
the still period and percentage of time spent still. Stillness
was defined as periods during which the head changes are
less than 10◦, and where the head’s angle does not move
away from the initial angle more than 10◦ (in order to pre-
vent slow drifting to be classified as stillness). “Stillness
periods” are defined as non-overlapping periods of minimum
duration of 5 seconds, in which the stillness condition is true.
From there we get the first two measures by counting the
number of such periods and their mean duration. Percent-
age of time spent still is the ratio of time classified as being
still over the duration of the attention period.

All measurements were considered per attention period and
per person in order to associate the features to the labels
acquired from the questionnaire. In case of regressions/ cor-
relation tests, we also tested the correlation of the measures
after the logit transformation, by first bounding the value
scopes (finding minimum and maximum values for all mea-
surements and scaling them to the 0.1 – 0.9 interval) and
applying the loge

(
p

1−p

)
.

4. RESULTS AND DISCUSSION
4.1 Features
First significance tests showed the correlation between the
pure attention level with the percent of time the person was
detected (Pearson’s r = 0.1158, p = 0.01, 577 samples).
This can be explained with the idea that engaged students
will maintain more contact with the activities in the class-
room. Apart from being more visible, students head travel
did not show significant difference on the overall scale. We
expected this as the measurement itself can be easily affected
by noisy measurements, even though we did take steps in
smoothing the data.

Head travel became significant when testing its potential
to measure the change in behaviour. After eliminating the
individual differences with normalization of head travel, we
found that positive changes in attention were reflected in
increase in head travel (Pearson’s r = 0.21, p < 0.01, 236
samples), as shown in Figure 4.

Of the measures of stillness, only “percentage of time spent
still” recorded a significant, but very weak correlation (Pear-
son’s r = 0.09, p = 0.02). After comparing it with the
“percentage of time detected” we found a very high and sig-
nificant correlation between the two measures (r = 0.91,
p < 0.01), which does not allow for great significance of the
measure. We kept the measures for further testing.

4.2 Models
Next step in demonstrating the usefulness of the features
was to try to predict the attention levels based on their
combinations. After initial attempts with linear regression

Figure 4: Change in normalized head travel corre-
lated to the change in attention. Red line represents
the linear fit. Pearson’s r = 0.21, p < 0.01. Number
of samples 236. Noise added for the visualization
after the linear fit.

which were not successful, we switched to the mixture model.
Our mixed model for logit attention (A) with period (P), row
(R), number of still periods (N) and head travel normalized
(H) takes form

L(A) = 1.061 − 0.060P − 0.128R+ 0.012N − 0.035H.

Although its predictive power (R2
random = 0.54 andR2

fixed =
0.05) is limited, significance encourages further investigation
of more advance supervised learning methods.

With that in mind, we tried an exhaustive search of all fea-
ture combinations and SVM parameters to achieve the best
prediction of the three categories of“labelled attention”– low
(100 samples), medium (270 samples), high (246 samples).
Training of the classifiers was repeated in several rounds
(500 iterations) with random drawing of training and test-
ing samples, while making sure that the ratio of samples for
each output category is maintained (roughly 16%, 44% and
40%). Our training procedure was based on the 80–20 split
— 80% of the data used for training, and 20% data for test-
ing the prediction of the trained classifier. To evaluate SVM
parameters during the training we additionally split the 80%
used for training into another 80–20 split. This gives us the
final data configuration — 64–16–20 split, where 64% of the
data was used for training, 16% for evaluating the SVM pa-
rameters during the training, 20% for the final evaluation of
the trained classifier.

For each combination of features we iterated over the SVM
parameters with sampling step of 0.1 (kernel type considered
- linear, polynomial, rbf, and their relevant parameters). On
the top scoring feature combinations we applied gradual re-
finement of the parameter sampling step (step size was re-
duced down in sequence 0.1, 0.01, 0.001 around the best
scoring parameter values from the previous round). Four
best scoring classifiers are given in Table 3, with the best
result of 61.86% correct classifications (Cohen’s kappa 0.30)
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Figure 5: Transition probabilities between the three
attention levels (low, medium, high).

on the independent test set.

Our concern was that the main informative source would
rely on the Detection percentage or Percentage still, the two
being highly correlated. This did happen in the early train-
ing attempts, but the features are not represented in the
final set of classifiers (Detection percentage is used in the
10th best classifier). All of the best classifiers included a
similar mix of features – head motion representatives, and
some indications of distance and time of the class. Normal-
ized head-travel measurements and Mean duration of still
periods appears to be the most salient feature (both used in
3 of the 4 detectors).

Even though we saw no significant correlation of attention
with class period in the feature analysis, we also tested the
“attention labelled” for Markov property and got highly in-
formative transitions probabilities shown in Figure 4.2. The
trend of remaining in the same state with lower possibilities
of transition to neighbouring, although not directly relevant
to the attention level definitely puts additional constraints
on the predictions. In order integrate this knowledge into
our model, the next step was to connect our SVM predic-
tions (observational model) and temporal consistency (tran-
sition probabilities) into a Hidden Markov Model, but due
to time constraints we are unable to report the results in

this publication.

5. CONCLUSION
The goal of this study was not only to answer questions
about the link between student’s movement and attention,
but also to investigate to what extent can we approximate
these variables by current techniques, without manual an-
notation. We defined a number of head metrics that can
be extracted from a video of the audience attending a class.
Considering measures that are “global” in nature (not rely-
ing on specific events such as gesturing, nodding etc.) we
have shown that the change in head motion usage corre-
lates with the change in reported level of attention. We also
experimentally confirmed that higher percentage of head de-
tection mirrors higher time spent in contact with the class-
room events, indicating higher attentiveness.

For classification tasks, we found that head measurements
alone were not enough to give us definitive answers about
the person’s attention. Each of the high-scoring classifiers
used other contextual cues which related person’s actions to
the temporal or spacial domain (e.g. class period, distance).
Also, in this report we did not explore social-level cues – how
the students actions are contrasted against their immediate
environment or general classroom population. We have ex-
pectations that these features will provide further contextual
information, which will raise the precision of predictions.

Apart from the “global” measurements, we are also look-
ing to explore discrete gestures which can be detected with
the system (e.g. nodding, yawning, turning), of which only
“bowing the head down” was used at this stage, encoded
within the “percentage of time detected”. The problem that
we perceive is that the noise of the measurements was evi-
dent in the current setup, and that relying on the features
which are more sensitive will depend on further improve-
ments in the computer vision algorithms.

Our current conclusion is that the technology shows promise
and that future investigations will bring higher accuracy and
new tools to the classrooms. Our future work will try to
work in parallel on finding more meaningful measures, and
coordinate with the teachers to determine the best way to
present the found information back to the teaching process.
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a) b)

Figure 3: Processing of detections. a) Overlaps between subjects areas. Each graph edge shows neighbouring
students areas and potential for miss-assignment of detections. b) All detections over the duration of the
class, coloured depending on the cluster to which they were assigned.

Feature name Description Valid samples

Period Period of the class (1–4), associated with the attention 776
Distance Distance from the teacher on a Cartesian plane of the classroom 776
Row Student’s row in the classroom 776
Detection percentage Percentage of the recorded time that the student was detected 668
Head travel Accumulated changes (deltas) of the head horizontal rotations over time. 496
Head travel (norm.) Head travel normalized over the measurements of the specific person

in the class.
482

Number of still periods Number of periods (of minimal duration of 5 seconds) during which the
head movement can be considered still

668

Mean still period duration Mean duration of the still period (as defined in the previous row) 618
Still time percentage Percentage of time within the attention period during which the head was

still.
668

Attention Reported level of attention (1–10) 715
Attention labelled Attention reports mapped to categories low, medium, high 715

Table 2: Features used in the analysis.

Kernel Features Score Cohen’s kappa

RBF(c=1.31, g=0.0211) Distance, Head travel norm., Num. still periods 61.86% 0.30
RBF(c=1.21, g=0.11) Period, Row, Head travel norm., Mean duration still 61.72% 0.32
RBF(c=1.11, g=0.061) Head travel norm., Mean duration still 60.42% 0.28
RBF(c=1.4, g=0.04) Period, Distance, Row, Mean duration still 59.23% 0.30

Table 3: Classifier scores for predicting “attention labelled”. Score given represent the prediction score on
the 20% test sample. Parameters of the kernels are abbreviated as c - penalty for the error term; g - gamma.
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ABSTRACT 

The efficacy of animated data visualizations in comparison with 

static data visualizations is still inconclusive. Some researches 

resulted that the failure to find out the benefits of animations may 

relate to the way how they are constructed and perceived. In this 

paper, we present visual analytics (VA) tool which makes use of 

enhanced animated data visualization methods. The time is an 

important variable that needs to be modeled in VA. VA methods 

like Motion Charts show changes over time by presenting 

animations in two-dimensional space and by changing element 

appearances. The tool is primarily designed for exploratory analysis 

of academic analytics and supports various interactive visualization 

methods which enhance the Motion Charts concept. We evaluate 

the usefulness and the general applicability of the designed tool with 

a controlled experiment to assess the efficacy of the described 

methods. To interpret the experiment results, we utilized one-way 

repeated measures ANOVA.  

Keywords 

Animation; motion charts; visual analytics; academic analytics; 

experiment. 

1. INTRODUCTION 
Higher education institutions have a strong interest in improving the 

quality and the efficacy of the education.  In [1], hundreds of higher 

education executives were surveyed on their analytic needs. 

Authors resulted that the advanced analytics should support better 

decision-making, studying enrollment trends, and measuring student 

retention. They also pointed out that management commitment and 

staff skills are more important in deploying academic analytics (AA) 

than the technology. In [2], authors concluded that the increasing 

accountability requirements of educational institutions represent a 

key for unlocking the potentials of AA in order to effectively 

enhance student retention and increase graduation levels. The 

authors also resulted that AA facilitate creation of actionable 

intelligence to enhance learning and student success, however, it is 

highly dependent on the quality of the accountability. The authors 

utilized AA for developing several predictive models of student 

enrollment and retention, and for identifying students being at the 

risk. They also highlighted three critical success factors–executives 

committed to decision-making based on the evidence, staff members 

with adequate data analysis skills and the flexible and effective 

technology platform. However, the authors also warned that more 

elaborated accountability can raise several privacy issues, faculty 

executive’s involvement, and data administration. 

The principal goals can be achieved by using educational data 

mining methods, as emphasized in [3]. The application of data 

mining (DM) techniques in higher education systems have some 

specific requirements not present in other areas, as pointed out in 

[4]. Common DM methods were developed independently of 

visualization techniques. However, some key ideas influenced the 

research in the DM field. It resulted into the recent research topic 

called visual analytics (VA). Google Analytics, released in 2005, 

made a real progress in web-based interactive analytics. In 2007, 

Hans Rosling presented a TED talk demonstrating the power of 

animations to show the story in data. In 2009, Tim O’Reilly 

emphasized that data analysis, visualizations, and other techniques 

for searching patterns in data are going to be an increasingly 

valuable skill set [5]. While some researches resulted that 

animations appeared better than static visualizations in enhancing 

learning, an elaborate examination of the studies revealed a lack of 

equivalence between animated and static visualizations in content 

[6]. Also, the failure to ascertain the benefits of animations in 

learning may also relate to the way how they are constructed, 

perceived, and conceptualized [7].  

Visualizations are common methods used to gain a qualitative 

understanding of data prior to any computational analysis. By 

displaying animated presentations of the data and providing analysts 

with interactive tools for manipulating the data, visualizations allow 

human pattern recognition skills to contribute to the analytic process. 

The most commonly used statistical visualization methods (e.g. line 

plots, or scatter plots) generally focus on univariate or bivariate 

data. The methods are usually used for tasks ranging from the 

exploration to the confirmation of models, including the presentation 

of the results. However, fewer methods are available for visualizing 

data with more than two dimensions (e.g. motion charts or parallel 

coordinates), as the logical mapping of the data dimension to the 

screen dimension cannot be directly applied. Data exploration and 

interactive visualizations of multivariate data without significant 

dimensionality reduction remains a challenge. Animations represent 

a promising approach to facilitate better perception of changing 

values. In [6], authors pointed out that animations help to keep the 

viewer’s attention. Visualizations and animations can also facilitate 

the learning process [8]. 

We develop visualization methods for multivariate data analyses that 

are adapted for academic settings. In this paper, we show the 

importance of data visualizations for successful understanding of 

complex and large data. In the next section, we examine 

characteristics of changes using Motion Charts (MC). Subsequently, 

we present several papers successfully utilizing MC for data 

visualization and analysis. This is followed by the elaborate 

description of our VA tool. Further, we conducted an empirical 

study with 22 participants on their data comprehension to compare 

the efficacy of static and animated data visualizations. We then 
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discuss the implications of our experiment results. Finally, we draw 

the conclusion from the experiment and outline future work. 

2. EXAMINE CHARACTERISTICS OF 

CHANGE 
Although a snapshot of the data can be beneficial, presenting 

changes over time provides a more sophisticated perspective. The 

efficacy of animated transitions for common statistic data 

visualizations such as bar charts and scatter plots was examined in 

[9]. The authors extended the theoretical model of data 

visualizations and introduced the taxonomy of transition types. 

Subsequently, they proposed design principles for creating effective 

transitions and illustrated the application of these principles in a 

dynamic visual system. Finally, they conducted two controlled 

experiments to assess the efficacy of various transition types, 

finding that animated transitions can significantly improve the visual 

perception. The visualization challenge posed by each of these 

experiments was to keep the viewer’s attention during transitions. 

The survey resulted that viewers found animations more helpful and 

engaging. Unlike transition animations, which primarily help users to 

stay in the context, trend animations convey the meaning. While a 

transition animation moves from a still view to a new still view, a 

trend animation moves continuously between states. One early use 

of animations in visualization was for an algorithm animation. Kehoe 

et al. [10] describe a study that demonstrated that animations could 

help and noted that it improved the motivation of making a difficult 

topic more approachable. The study suggested that using animations 

for trend understanding could be valuable.  

Animations allow knowledge discovery in complex data and make it 

easier to see meaningful characteristics of changes over time. To 

reduce the cognitive load and improve tracking accuracy, the target 

states of all transitioning elements should be predictable after 

viewing a fraction of the animation. The proper use of the 

acceleration should also improve the spatial and temporal 

predictability. A perceptual study in [11] provides evidence that 

animations and divergence motions are easier to understand than 

rotations. Animations with unpredictable motion paths or multiple 

simultaneously changing elements result in the increased cognitive 

load. Contrarily, simple transitions reduce confusion and improve 

clarity. In [12], authors concluded that animation stages should be 

long enough for accurate change tracking as well as to decrease the 

number of errors. However, too slow animations can 

disproportionately prolong the analytic phase and subsequently 

reduce the engagement. 

Generally, effective analyses depend on the consistent and high-

quality data. In [9], authors concluded that the correctly designed 

animations significantly improve the visual perception at both the 

syntactic and the semantic level. Visualizations are often engaging 

and attractive, but a naive approach can confuse analysts. 

Visualizations are just representations of the data which may or may 

not represent the reality. As Few pointed out in [13], computers 

cannot make sense of the data, only people can.  The perception of 

animations can also be problematic because of severe issues with 

timing and the overall complexity that can occur during transitions as 

pointed out in [14].  Misleading results can be obtained if animations 

violate the underlying data semantics. 

MC is a dynamic and interactive visualization method that enables 

analysts to display complex and quantitative data in an intelligible 

way. The dynamic refers to the animation of rich multidimensional 

data changing over time. The interactive refers to dynamic 

interactive features which allow analysts to explore, interpret, and 

analyze information concealed in complex data, as presented in [15]. 

MC displays changes of element appearances over time by showing 

animations in a two-dimensional space. An element is basically a 

two-dimensional shape representing one object from the dataset. 

The variable mapping is one of the most important parts of the 

exploratory data analysis and no optimal method for mapping the 

data to variables is available. Naturally, the data mapping have a 

significant impact on the data comprehension and analysts should be 

free to choose variable mapping according to their intentions. Both 

the data characteristics and the investigative hypothesis influence 

the variable mapping.  

3. APPLICATIONS OF MOTION CHARTS 
Visualization tools represent an effective way how to make 

statistical data understandable to analysts, as showed in [16]. MC 

methods proved to be useful for data presentation and the approach 

was verified that can be successfully employed to show a story in 

data [17] or support decision making [18]. In [19], authors utilized 

MC for both the interpretation of results for better comprehension 

and the analysis when detecting topics of tweets. Several web-

based data analysis tools allowing analysts to interactively explore 

associations, patterns, and trends in data with temporal 

characteristics are available. In [20], authors presented a 

visualization of energy statistics using an existing web-based data 

analysis tools, including IBM's Many Eyes, and Google Motion 

Charts. In [15], authors presented a Java-based infrastructure, 

named SOCR Motion Charts, designed for exploratory analysis of 

multivariate data. SOCR is developed as a Java applet using object-

oriented programming language. The authors successfully validated 

this visualization paradigm using several publicly available datasets 

containing housing prices or consumer price index.  

A pair of online assessments designed to measure students’ 

computational thinking skills were presented in [21]. The 

assessments represent a part of a larger project that brings 

computational thinking into high school STEM classrooms. Each 

assessment included interactive tools that highlight the power of 

computation in the practice of the scientific and mathematical 

inquiry. The computational tools including Google Motion Charts 

used in the assessments enabled students to analyze data with 

dynamic visualizations and explore concepts with computational 

models.  

Successful visualizations of language changes using the diachronic 

corpus data were presented in [22]. In two case studies, authors 

illustrated recent changes in American English. In the first study, 

they visualized changes in a diachronic analysis of nouns and verbs. 

In the second study, they showed structural changes in the behavior 

of complement-taking predicates. They emphasized that MC are 

useful for the analysis of multivariate data over time and concluded 

that viewing the resulting data points in separate time slices offers a 

proper representation of the complex linguistic changes. 

In [23], authors incorporated examples using recent business and 

economic data series and illustrated how MC can tell dynamic 

stories. They utilized a database of Bureau of Labor Statistics which 

publishes data on inflation, prices, employment, and many other 

labor related subjects. For the first analysis, they utilized the data 

about Current Employment Statistics and presented differences 

between the perception of common static tables and graphs, and the 
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dynamic nature of MC. They concluded that the static presentation 

style serves well the purpose of relaying accurate and non-biased 

quantitative data to analysts. Subsequently, they utilized the same 

data, but imported them to Google Docs. By loading the Motion 

Charts Gadget within the spreadsheet, they generated MC and 

visualized several areas of Labor Statistics. They emphasized that 

the benefit of MC lays in displaying complex multidimensional data 

changing over time on a single plane with the dynamic and 

interactive features. Users are then allowed to easily explore, 

interpret, and analyze the information in the data. They concluded 

that MC is an excellent and interesting way how to present valuable 

information that may be otherwise lost in the data. 

The report on the implementation of AA in a new medical school 

can be found in [24]. Authors pointed out that analytics address two 

challenges in the curriculum: providing the evidence of the 

appropriate curriculum coverage and assessing the student 

engagement during the clinical placement. The paper describes tools 

and approaches applied on the data gained from their web-based 

clinical log system. The authors utilized common data visualization 

methods and examined their potentials to generate important 

questions. They also examined the value of a flexible approach to 

select the tools, the need for relevant skills, and the importance of 

keeping the viewer’s attention. Subsequently, they utilized more 

sophisticated visualization methods, namely MC and Tree map. 

Using MC, they mapped several important variables including entry 

date, frequency of entries, clinical problems, the level of 

involvement, and the level of confidence. The authors appreciated 

the benefits of comparison of the variation of the frequency of 

entries, the confidence, and the level of involvement between 

students. The authors concluded that AA analysis using 

visualizations have already been a critical enabler of educational 

excellence, but there is undoubtedly further potential. 

A beneficial feature for better visual perception of changes in time-

series analysis is presented in [25]. Initially, the author highlighted 

the need for effective ways to examine quantitative data that 

changes over time and also noted that according to several studies, 

more than 70 percent of all business charts display time-series 

information. Then, the author emphasized both the benefits and the 

drawbacks of common data visualization methods, namely line plots 

and bar charts. Subsequently, the author described issues with the 

time-series analysis and presented capabilities of MC. The author 

pointed out that patterns of changes over time can take many 

meaningful forms and introduced a new feature, called visual trails, 

specially designed for MC. The feature allows seeing the full path 

for each variable from one point in time to another. It can be used 

for overcoming visual perception limitations of MC and allows 

analysts to examine degree of change, shape, velocity, and direction 

of change. Finally, the author conducted the experiment as an 

evaluation of the proposed improvement. 

4. THE EDAIME TOOL 
The preliminary version of the EDAIME tool was presented in [26]. 

We also described the results originated from the analysis of AA 

data. We utilized the data stored in the Information System of 

Masaryk University. The motivation to develop an enhanced version 

of MC was to improve its expression capabilities, as well as to 

facilitate analysts to depict each student or study as a central object 

of their interest. Moreover, the implementation enhances the 

number of animations that express the students’ behavior during 

their studies more precisely. We validated usefulness of the 

developed methods with a case study where we successfully utilized 

the capabilities of the tool for the purpose of confirming our 

hypothesis concerning student retention. Although, we concluded 

that the methods proved to be useful for analytic purposes, more 

adjustments are needed.  

Two main challenges are addressed by the presented VA tool. 

EDAIME enables visualization of multivariate data and the 

qualitative exploration of data with temporal characteristics. The 

technical advantages over other implementations of MC are its 

flexibility and the ability to manage many animations simultaneously. 

The Force Layout component of D3
1
 provides the most of the 

functionality behind the animations and collision detection utilized in 

the interactive visualization methods. Technical aspects of enhanced 

MC methods are elaborately described in [27]. Investigated data 

can be imported directly using the tool. In cases where datasets 

have missing values at the beginning or the end, the missing values 

are extrapolated from nearby data. In other cases, gaps are filled 

with interpolated values. For the purposes of the MC analysis, it is 

not important that the data are not entirely accurate. 

In two figures below, two examples of our enhanced MC methods 

can be seen. We already utilized the methods to verify a hypothesis 

concerning student retention. Figure 1 depicts a snapshot of the 

method captured in the second semester. Each element represents a 

field of study and consists of a pie chart. It allows analysts to 

investigate another data dimension easily. Each pie chart animates a 

relationship between finished and unfinished studies where the 

green sector quantifies the complete ones, and the red sector 

quantifies the others. Figure 2 represents a snapshot of the second 

method utilized for the same dataset also captured in the second 

semester. The large clusters of elements represent the particular 

field of study consisting of small elements that represent individual 

students. Therefore, the size of the cluster of elements corresponds 

to the number of students enrolled in the particular field of study. 

The size of the small elements determines the number of credits 

gained by students in the particular semester of the study. Besides 

the study progress, the animations are also utilized to express the 

study termination, the change of the mode of study and the change 

of the field of study. During the animation process, dropout students 

turn red and fall down the chart in the semester when they left the 

study. The stroke-width of the elements represents states of the 

study and the element color represents attributes of the study. 

When animations are used for exploratory analysis of unfamiliar 

data, analysts do not know what elements are important and play 

the animation hoping that something emerges. Analysts may 

determine areas that look promising and replay the animation 

several times focusing on each of the potentially interesting areas in 

depth. This can become an issue, perhaps making trend animations 

slower and more error prone for analyses. If there is a lot of 

variability in the data, there will be a lot of random motions, making 

hard to perceive trends. If there are too many elements, a clutter 

and counter-trends can easily intricate an observation. In the next 

section, we describe several user interface features that may solve 

some of these issues. Naturally, all methods using animations have 

several limitations, but appropriately designed user interface 

features can considerably aid visual inspection of data. 

                                                             

1
 http://d3js.org/ 
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4.1 User Interface Features 
The EDAIME tool offers several beneficial configurable interactive 

features for a more convenient analytic process. User interface 

features are highly customizable and allow analysts to arrange the 

display and variable mapping according to his or her needs. 

Available features include a mouse-over data display, color and plot 

size representation, traces, animated time plot, variable animation 

speed, changing of axis series, changing of axis scaling, distortion, 

and the support of statistical methods. 

 

Figure 1. EDAIME snapshot: clusters of students . 

 

 

Figure 2. EDAIME snapshot: additional dimension using pie 

charts. 

 

The focus-plus-context technique allows to interactively exploring 

objects of interest in detail while preserving the surrounding context. 

More precisely, if an analyst zooms in for detail, the chart area is 

too big to full overview. Contrarily, if an analyst zooms out the 

screen to see the overall chart area, the tiny but potentially 

important characteristics can disappear. Generally, distortions are 

particularly beneficial to overcome the aforementioned issues. The 

circular distortion magnifies the area around the mouse pointer, 

while leaving the chart area unaffected for the context. This 

distortion is useful especially to distinguish individual elements in a 

cluster. However, the area near the circumference of the elements 

is then compressed. Therefore, it is not suitable for representing 

quantitative values. However, a function which magnifies the details 

continuously in order to avoid such local errors exists. It applies the 

distortion to each dimension separately which results in Cartesian 

distortion. If elements overlap each other during the animation, it will 

be more difficult to track their paths. Using the jitter feature, a 

better visual perception of data can be obtained by adding small 

random quantities to all elements’ values before displaying them. As 

mentioned earlier, it is not important that the data are not entirely 

accurate for the purposes of a trend analysis. 

Regardless of the power of a human brain, a memory is limited. It is 

difficult to reconstruct the past events from a memory, to recapture 

the sequence of events and details of each moment. The tool 

provides analysts with the ability to select particular elements and 

show a trace for each of the selected elements as it progresses. 

This is particularly useful in verifying apparent anomalies noticed 

during an animation. The traces show elements at each location and 

sizes for each time point. The traces are then connected with edges 

to help clarify their sequences. Analysts can observe any interesting 

element while the previous states are still fresh in their memory. 

Anomalies emerge and can be examined even without animations, 

so analyses may be faster and less error prone. Points that move 

continuously through a range of values appear as clear trends. One 

key challenge must be addressed in the design of this view. The 

trend line direction must be made visually expressive, because there 

is no animation to indicate the direction. We solved this problem by 

using element transparency, fading from mostly transparent in the 

earliest elements to mostly opaque in the latest elements in the 

sequence. In order to perceive the flow direction even for smaller 

elements we employed the same approach with lines connecting the 

elements. In addition, it was necessary to render larger bubbles first 

to avoid occluding smaller bubbles. As described in [25], traces are 

particularly useful to reveal the nature of change and can help to 

examine the magnitude, shape, velocity, and direction of changes.  

The support of statistical methods is also useful for examining the 

nature of change. The statistics provide simple summaries that form 

the basis of the initial description of the data and also serve as a part 

of a more extensive analysis. We implemented several measures 

that are commonly used to describe a dataset, i.e. measures of 

central tendency or measures of variability. The measures may be 

beneficial when identifying meaningful data characteristics of 

changes over time. We utilized both the univariate and the bivariate 

statistical methods. Input parameters for statistical methods consist 

of investigated MC variables. When an animation is running, each 

statistical measure is computed for every element on the 

background. Any combination of measure and variable can be 

selected using the user interface. The list of univariate measures 

includes coefficient of variation, skewness, mean, variance, standard 

deviation, median absolute deviation, median, geometric mean, and 

interquartile range. The mouse-click event on any element will 

extract an interactive HTML table on the right side of the chart 

area. The table consists of the measure computed for every element 

sorted in the descending order of the specified variable. If analysts 

select a row, the corresponding element will be highlighted. More 

precisely, the other elements are either transparent or hidden. 

Bivariate measures can be applied to any pair of variables. The list 

of bivariate measures includes sample covariance, sample 

correlation, and paired t-test. 

Proceedings of the 8th International Conference on Educational Data Mining 330



The layout of the EDAIME user interface is presented in Figure 3. 

Using control, analysts can pause and advance the animation or 

change the speed. The Play, Pause, and Restart buttons are situated 

in the upper right corner next to the chart area. Above the buttons, 

the time slider is situated. Analysts can grab the time slider control 

to adjust the playback speed. Traces control is situated beneath the 

control buttons and it allows selecting elements of the interest to 

show their traces. This makes the selected elements more 

distinguishable and solves clutter issues.  

 

 

Figure 3. The EDAIME user interface layout. 

5. EXPERIMENTATION 
Any quantitative research of AA also requires a preliminary 

exploratory data analysis. Though useful, MC involves several 

drawbacks in comparison with common data visualization methods. 

Thus, empirical data is needed to evaluate its actual usability and 

efficacy.  

In this section, we describe the experiment for the purpose of 

evaluating the efficacy of the enhanced MC methods implemented 

in EDAIME. We present the results including a detailed discussion. 

Twenty-two subjects (9 females, 13 males) with the average age of 

31.6 (SD = 6.8) participated in our experiment. The participants 

ranged from 24 to 46 years of age. All participants came from 

professions requiring the use of data visualizations, including college 

students, analysts, and administrators. The experiment was 

conducted using standard desktop PCs. All subjects performed the 

experiment on an Intel Core i3 PC with 4 GB of RAM running 

Windows 7 or Fedora Core 20. Each PC had a 24” LCD screen 

running at the resolution of 1920 x 1080. We prefer Chrome as a 

web browser as it excellently supports HTML5 and CSS3 

standards. 

We performed a study to validate the usefulness and the general 

applicability of the enhanced version of MC in comparison with 

common data visualization methods when employed to analyze study 

related data. The experiment used a 4 (visualization) x 2 (size) 

within-subjects design. The visualizations varied between the static 

and the animated methods. The static methods were represented by 

line plots (LP) and scatter plots (SP) which were generated for 

each semester. The animated methods were represented by the 

standard MC with the basic user interface (BMC) and the 

enhanced MC with advanced user interface features (EMC) 

described in the previous section. The size of datasets varied 

between small and large ones with the threshold of 500 elements. 

For the experiment, we utilized study related data about students 

admitted to bachelor studies of the Faculty of Informatics Masaryk 

University between the years of 2006 and 2012. 

5.1 Hypotheses and Tasks 
We designed the experiment to address the following three 

hypotheses: 

 H1. BMC methods will be less effective than static 

methods when used for small datasets, and more 

effective when used for large datasets. In other words, 

the participants will be (a) faster and (b) make fewer 

errors when analyzing large datasets using BMC 

methods. 

 H2. EMC will be more effective than the other methods 

for all datasets. In other words, the participants will be (a) 

faster and (b) make fewer errors when using EMC 

methods for all dataset sizes. 

 H3. The participants will be more effective with small 

datasets than with large datasets. In other words, the 

participants will be (a) faster and (b) make fewer errors 

when analyzing small datasets. 

In each trial, the participants completed 16 tasks, each with 1 to 5 

required answers. Each task had students’ IDs as the answer. 

Several questions have more correct answers than requested. The 

participants were asked to proceed as quickly and accurately as 

possible. In order to reduce learning effects, the participants were 

told to make use of as many practice trials as they needed. We also 

instructed them to practice until they had reached the desired 

performance level. Moreover, the participants had access to the tool 

several days before the experiment. 

Sample of tasks: 

 Select 4 students whose rate of enrolled credits was 

faster than their rate of obtained credits. 

 Which student had the most significant decrease of the 

average grade?  

 Select 5 students with the significant increase of the 

number of credits.  

 Select 3 students whose average grade increased first 

and decreased later. 

 Which student had the most significant increase in the 

number enrolled credits? 

The participants selected answers by selecting student IDs in legend 

box located in the upper right from the chart area. In order to 

complete the task, two buttons can be used–either “OK” button to 

confirm the participant’s choice or “Skip Question” button to 

proceed to the next task without saving the answer. There was no 

time limit during the experiment. For each task, the order of the 

datasets was fixed with the smaller ones first. This also allowed the 

participants to build their skills as they proceeded. 
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5.2 Study Method 
The experiment used a 4 (visualization) x 2 (size) within-subjects 

design. Each experiment block was preceded with a training session 

in which we showed the subjects the correct answers after they 

confirmed it to allow participants to get familiarized with the settings 

and UI. It was followed by 16 tasks (8 small dataset tasks and 8 

large dataset tasks in this order). After that, the subjects completed 

survey with questions specific for the visualization. Each block 

lasted about 2 hours. The subjects were screened to ensure that 

they were not color-blind and understood common data visualization 

methods. We also attempted to balance gender. The study results 

are divided into three sections: accuracy, completion time, and 

subjective preferences. To test for significant effects, we conducted 

repeated measures analysis of variance (ANOVA). Only significant 

results are reported. Post-hoc analyses were performed by using 

the Bonferroni technique.  

5.3 Accuracy 
Since some of the tasks required multiple answers, accuracy was 

calculated as a percentage of the correct answers. Thus, when a 

subject selected only three correct answers from five, we calculated 

the answer as 60 % accurate rather than an incorrect answer. The 

analysis revealed several significant accuracy results at the .05 

level. The type of visualization had a statistically significant effect 

on the accuracy for large datasets (F(1.930, 40.535) = 25.655, p < 

0.001). Figure 4 illustrates graph of the mean accuracy of 

visualizations for large datasets including error bars that show the 

95% confidence interval. Pair-wise comparison of the visualizations 

found significant differences showing that both animated methods 

were significantly more accurate than the static methods. EMC was 

more accurate than LP (p = 0.001). EMC was also more accurate 

than the BMC (p < 0.001). LP were more accurate than SP (p = 

0.016). For small datasets, visualizations were not statistically 

distinguishable, except for SP which had lower accuracy than other 

methods. Also, the subjects were more accurate with small datasets 

(F(1, 21) = 38.679, p < 0.001) as can be seen in Figure 5.  

5.4 Task Completion Time 
An answer was considered to be incorrect if none of the correct 

answers was provided. In terms of time to task completion, we also 

observed a statistically significant effect (F(1.764, 37.044) = 43.875, 

p < 0.001). Post-hoc tests revealed that BMC was the slowest for 

both dataset sizes. For large datasets, the LP was faster than the 

EMC (p < 0.001). EMC and SP were not statistically 

distinguishable. The mean time for LP was 76.36 seconds compared 

to 85.95 seconds for the EMC–about 13% slower, 88.59 seconds 

for the SP–about 16% slower, and 91.64 seconds for the BMC–

about 20% slower. For small datasets, static methods were 

significantly faster than animated. Pair-wise comparison of the 

visualizations found significant differences between all of them 

except for EMC and SP. LP were the fastest for all datasets. EMC 

was slower than the LP (p < 0.001) and faster than the BMC (p < 

0.017). The mean time for BMC was 70.18 seconds compared to 

67.6 seconds for the SP–about 3% faster, 66.55 seconds for the 

EMC–about 6% faster, and 61.36 seconds for the LP–about 14% 

faster. 

 

 

Figure 4. Mean accuracy of answers per visualization 

method. 

 

 

Figure 5. Mean accuracy of answers per dataset size.  

 

5.5 Subjective Preferences 
For each experiment block, the subjects completed a survey where 

the subjects assessed their preferences regarding analyses. The 

subjects rated the static and animated methods on a ten-point Likert 

scale (1 = strongly disagree, 10 = strongly agree). Using RM-

ANOVA, we revealed statistically significant effects (F(1.696, 

35.611) = 80.1332, p < 0.001). Post-hoc analysis found that EMC 

was significantly more helpful than other methods, more precisely 

BMC (p < 0.001) and LP (p< 0.001). The obtained results are 

presented in Table 1, indicating the resulted mean values of the 

preferences for each question. 

The significant differences indicate that animated methods were 

judged to be more helpful than the static methods. The subjects 

significantly preferred the LP to use for small datasets. However, 

animated methods were judged to be more beneficial than static 

methods for large datasets (p < 0.001). The results also showed that 

Proceedings of the 8th International Conference on Educational Data Mining 332



animated methods were more entertaining and interesting than the 

static methods (p < 0.001). 

 

Table 1. The resulted mean values of the preferences . 

 LP SP BMC EMC 

The visualization was helpful in 

answering the questions. 

5.41 4.27 6.86 7.55 

I found this visualization 

entertaining and interesting. 

5.36 5.14 7.14 8.05 

I prefer visualization for small 

datasets. 

6.70 4.41 5.59 5.82 

I prefer visualization for large 

datasets. 

5.90 5.18 7.41 8.32 

 

6. DISCUSSION 
Our first hypothesis (H1) was that BMC would outperform both the 

static methods for large datasets and will be less effective when 

used for small dataset. This hypothesis was confirmed only partially. 

BMC methods were more accurate than the static methods, but 

contrary to the hypothesis, the static methods proved to achieve 

better speed than the BMC for the both dataset sizes. Moreover, 

the methods were not statistically distinguishable in terms of 

accuracy for small datasets. The second hypothesis (H2) expected 

that EMC will be more effective than the other methods for all 

dataset sizes. The hypothesis was only partially confirmed as well. 

EMC was the most accurate method for all datasets. Contrary to 

the hypothesis, LP was the fastest method for all datasets. We also 

hypothesized that the accuracy will be higher for smaller datasets 

(H3). The hypothesis H3.a was supported, because the subjects 

were faster with small datasets. The mean time for large datasets 

was 85.64 seconds and for small datasets was 66.42 seconds. The 

hypothesis H3.b was also supported, because the subjects 

committed fewer errors with small datasets when compared with 

large datasets. Generally, the accuracy is the issue for static 

visualizations when large datasets were employed. 

The EDAIME tool facilitates users to utilize the enhanced MC 

methods with advanced interactive features. After the experiment, 

multiple subjects reported that they make use of advanced user 

interface features and spent a lot of time exploring the data during 

the practice trials. In the final discussion, the several subjects 

reported that the animations were entertaining and interesting. 

Contrarily, several subjects reported that for large datasets as the 

number of elements rose they experienced increasing difficulty to 

identify and remember the element of their interest that they were 

following and without user interface features it would be hard to 

handle it. The overall accuracy was quite low in the study with 

average about 70%. However, only three questions were skipped. 

The study supports the intuition that using animations in analysis 

requires convenient interactive tools to support effective use. The 

study suggests that EMC leads to fewer errors. Also, the subjects 

found MC methods to be more entertaining and exciting. They 

slightly preferred it to the static method. The evidence from the 

study indicates that the animations were more effective at building 

the subjects' comprehension of large datasets. However, the 

simplicity of static methods was more effective for small datasets. 

These observations are consistent with the verbal reports in which 

the subjects refused to abandon the static visual methods generally. 

This finding illustrates that interest in animations does not preclude 

the subjects’ appreciation of common methods. Overall, the 

participants would prefer to utilize both types of visual methods. 

Results supported the thoughts that MC does not represent a 

replacement of common statistic data visualizations but a powerful 

addition. 

7. CONCLUSION AND FUTURE WORK 
Commonly used static methods have principal limitations in terms of 

the volume and the complexity of the processed data. Animations 

are substantially transparent techniques that can present a good 

overview of the complex and large data. MC presents multiple 

elements and dimensions of the data on a single two-dimensional 

plane. The main contribution lies in enabling critical questions about 

data relationships and characteristics. 

In the EDAIME tool, we enhanced the MC concept and expanded 

it to be more suitable for AA analyses. We also developed an 

intuitive, yet powerful, user interface that provides analysts with 

instantaneous control of MC properties and data configuration, along 

with several customization options to increase the efficacy of the 

exploration process. The tool provides a smart, convenient, and 

visually appealing way to identify potential correlations between 

different variables. We validate the usefulness and the general 

applicability of the designed tool with the experiment to assess the 

efficacy of the described methods in comparison with visual static 

methods.  

The study suggests that animated methods lead to fewer errors for 

the large datasets. Also, the subjects find MC to be more 

entertaining and interesting. The entertainment value probably 

contributes to the efficacy of the animation, because it serves to 

hold the subjects' attention. This fact can be useful for the purpose 

of designing methods in learning settings. The more entertaining a 

method is, the easier it is to concentrate on the process and the 

more information can be acquired. The study also indicates that we 

need to appropriately adjust analytic tools when we begin to process 

time-varying, high-dimensional data. Especially, we need to focus on 

user interface features.  

The current limitations of the tool are predominantly originated in the 

use of HTML5 standard, because there are still serious 

performance problems in several web browsers. Thus, only a 

certain number (generally less than 1000) of data points may be 

effectively visualized using animations. Features enabling effective 

data manipulation are essential. The additional representation of the 

data using enhanced MC methods gives analysts more possibilities 

in exploring the data.  

We plan to create the synergy of EDAIME animated methods with 

common DM methods to follow the VA principle more precisely. 

We already implemented a standalone EDAIME method utilizing 

decision tree algorithm providing visual representation. We prefer 

decision trees because of their clarity and simplicity to comprehend. 
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ABSTRACT
Deep Thought is a logic tutor where students practice con-
structing deductive logic proofs. Within Deep Thought is
a data-driven mastery learning system (DDML), which cal-
culates student proficiency based on rule scores weighted by
expert-decided weights in order to assign problem sets of
appropriate difficulty. In this study, we designed and tested
a data-driven proficiency profiler (DDPP) method in order
to calculate student proficiency without expert involvement.
The DDPP determines student proficiency by comparing rel-
evant student rule scores to previous students who behaved
similarly in the tutor and successfully completed it. This
method was compared to the original DDML method, pro-
ficiency based on average rule scores, and proficiency based
on minimum rule scores. Our testing has shown that while
the DDPP has the potential to accurately calculate student
proficiency, more data is required to improve it.

Keywords
Data-driven, Tutoring system, Student classification

1. INTRODUCTION
Data-driven methods, methods where each step and calcula-
tion is based on analyzing a set of historical data, have been
used to great effect to improve individualized computer in-
struction. They have been used in intelligent tutoring sys-
tems to accurately predict student behavior and improve
learning outcomes. In contrast to individualized tutoring
systems based on developing complex and context specific
models of behavior, data-driven systems reduce the need for
expert involvement to design the system, and can poten-
tially adapt to new users without refinement of a behavioral
model. This is because data-driven systems analyze previ-
ous student data in order to model student behavior and
determine the best course of outcome in the tutor. There-
fore, developing a data-driven intelligent tutoring system is
based on gathering data, and developing the methods the
system uses to analyze and react to student behavior.

Figure 1: The Deep Thought DT3 logic tutor. Stu-
dents apply logic rules (axioms) to premises to de-
rive new statements until the conclusion (at the bot-
tom) is justified. The right window displays the
proof in standard list format.

We have been incrementally augmenting the Deep Thought
logic tutor (Fig. 1) with data-driven methods for formative
feedback and problem selection to improve student learning
and reduce tutor dropout. Our long term goal is to create
an intelligent tutor for logic proof construction that is fully
data-driven and can adapt to students learning logic with
varying curricular requirements without the need for fur-
ther expert input. To this end, the next step in our work is
to replace the expert-authored assessment parameters built
into our problem selection system with a data-driven pro-
ficiency calculation that approximates the original system’s
performance.

Deep Thought utilizes a data-driven mastery learning sys-
tem (DDML) consisting of 6 strictly ordered levels of proof
problems. Each level is split into a higher proficiency track
with a lower number of complex problems, and a lower pro-
ficiency track with a greater number of simpler problems.
The first level of problems are the same for all students, and
are used to estimate their initial proficiency. Proficiency is
calculated using the knowledge tracing of all rule-application
actions taken in the tutor. These action scores are compared
to the average score thresholds of corresponding problems
solved by past exemplars – students who have successfully
completed the entire tutor, and have therefore demonstrated
sufficient proficiency in the subject matter (Fig. 2).
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Exemplars (Historical)  

1st Interval Problems 

Knowledge Tracing of all steps in P1 to Pl 

P(G) 
P(S) 

P(L0) P(T) P(T) 

KCs KCs KCs 

Last 
Step Step Step 

… 

… 

… P1 P2 Pl … P1 P2 Pl 

2nd Interval Problems 
… Interval 

Performance 

Compare step to best possible step, update KCs 

KC 1 KC 2 … KC n 
Exemplar 1 0.35 0.12 … 0.67 
Exemplar 2 0.42 0.33 … 0.59 

… … … … … 
Exemplar m 0.37 0.28 … 0.73 
AVERAGE 0.46 0.26 … 0.71 

KC Thresholds sent to DDML 

Figure 2: The DDML’s threshold builder. Knowl-
edge components (KCs) for each exemplar are up-
dated using action steps from an interval set of tutor
problems. The KC score averages at each interval
are used as thresholds in the DDML system.

The difference between each action score minus its threshold
is weighted by the expert-decided priorities of those actions
within the level (Eq. 1). The sign of the resulting score
determines placement in either the higher (+) or lower (−)
proficiency track. On each subsequent level the system will
first estimate a student’s proficiency and then assign them to
the higher or lower proficiency track based upon their prior
performance. This system was shown to increase student
completion and reduce tutor dropout over unordered and
hint-based versions of Deep Thought [10].

Level l End Proficiency =

sign

 rulen∑
i=rule0

(scoreSignl,i × rulePriorityl,i)

 (1)

Since the current DDML system uses expert-decided pri-
orities for each of the rule application actions when calcu-
lating a student’s proficiency, any new problems or levels
added to the system will require expert involvement to de-
termine which rules were prioritized in each new or altered
level. This paper describes a study to develop a data-driven
method of determining student proficiency that can replace
the current expert-decided rule priorities in Deep Thought.
This Data-driven Proficiency Profiler (DDPP) uses the clus-
tering of exemplar scores at each level interval for each rule,
weighted by primary component importance, to classify ex-
emplars into types of student progress through the tutor.
New students using the tutor will be assigned to a profi-
ciency track based on comparison to existing types.

The DDPP method is compared alongside proficiency cal-
culations using the minimum rule scores and average rule
scores of exemplars, also weighted by primary component
importance, to see how these methods compare to each other
and to the expert authored system. We hypothesize that the
DDPP will perform more accurately than the minimum or
average methods of student proficiency classification. This
would allow Deep Thought to be used in other classrooms
where the pedagogical method and problem-solving ability
of the class may be disparate from the current exemplar data

from Deep Thought.

Our results show that proficiency calculation using average
rule scores performs more accurately than proficiency calcu-
lated based on minimum rule scores. In addition, the DDPP
method performs more accurately than the average method
in some parts of the tutor, while it is less accurate in other
parts. Unfortunately, the DDPP system does not yet reach
the accuracy of the original system overall in calculating stu-
dent proficiency. We conclude that more data is required in
order for the DDPP to properly approximate the accuracy
of the original system’s proficiency calculation.

2. RELATED WORK
2.1 Data-driven Tutoring
An early example of a data-driven intelligent tutor is the
Cognitive Algebra Tutor[12]. Here the authors introduce an
algebra tutor which models student behavior based on the
cognitive theory ACT-R and student data gathered from
several previous studies. The Cognitive Algebra Tutor was
several years and studies into development at this time, and
the result is an example of a mostly-realized data-driven tu-
tor. The tutor as it stood improved student performance,
and the authors noted that although it over-predicted stu-
dent performance, it would be improved the more data was
collected. However, this system still took a long time and
a great deal of expert involvement to design and improve.
Conversely, developing a data-driven method of student as-
sessment would reduce this time and effort, since it would
be based on analyzing previous data rather than developing
and improving on a cognitive model.

Later analyses on the potential benefits, and recommenda-
tions, for using data-driven methods to develop intelligent
tutoring systems have focused on improving the modelling
of student behavior rather than using data to improve on
student assessment. Koedinger et al[7] give a very detailed
overview on developing data-driven intelligent tutoring sys-
tems, and techniques for incorporating data in a useful way.
They discuss optimizing the cognitive model using learning
factors analysis; fitting statistical models to individual stu-
dents; modeling student mood and engagement by modeling
off-task behaviors, careless errors, and mood; and improv-
ing how the tutor selects actions for the student via MDP
or POMDP. In a later work[8] the authors compare and
contrast current data-driven methods for intelligent tutor-
ing and discuss the potential for these methods to improve
MOOCs. They go over the success cases for using data to
improve tutors and coursework, in particular cognitive task
analysis.

There have been several recent studies that demonstrate the
potential for data driven methods to result in tutors that
more accurately assess student performance and react to stu-
dent behavior. Lee and Brunskill[9] examined the benefits
and drawbacks to basing model parameters on existing data
from individual students in comparison to data from an en-
tire population, specifically as it pertained to the number of
practice opportunities a student would require (estimated)
to master a skill. The authors estimated that using indi-
vidualized parameters would reduce the number of practice
opportunities a student would need to master a skill. Gon-
zalez et al.[4] demonstrated a data-driven model which au-



tomatically generated a cognitive and learning model based
on previous student data in order to discover what skills
students learn at any given time, and when they use skills
they have learned. The resulting model predicted student
behavior without the aid of previous domain knowledge and
performed comparably to a published model.

Data-driven intelligent tutors not only have the potential
to more accurately predict student behavior, but interpret
why it occurs. For instance, Elmadani et al. [2] proposed
using data-driven techniques to detect student errors that
occur due to genuine misunderstanding of the concepts (mis-
conception detection). They processed their data using FP-
Growth in order to build a set of frequent itemsets which rep-
resented the possible misconceptions students could make.
The authors were able to detect several misconceptions based
on the resulting itemsets of student actions. Fancsali[3] used
data-driven methods to detect behaviors that usually de-
tract from a student’s experience with an ITS (off-task be-
havior, gaming the system, etc).

2.2 Cluster-based Classification
Cluster-based classification has several advantages when ap-
plied to data-driven tutoring. New educational technolo-
gies may reveal unexpected learning behaviors, which may
not yet be incorporated in expert-decided classification pro-
cesses. For example, Kizilec et al. [5] clustered MOOC
learners into different engagement trajectories, and revealed
several trajectories that are not acknowledged by MOOC
designers. In addition, experts classify using their percep-
tion of the average students’ performance[11] [13]. This per-
ception may be different from the actual participant group.
Cluster-based classification methods, however, are able to
classify and update classifications based on actual student
behaviors.

Moreover, previous studies have shown that personalized tu-
toring based on cluster-based classification not only helps
learning, but improves users’ experience. Klasnja-Milicevic
et al. [6] gave students different recommendations on learn-
ing content based on their classified learning styles. As a
result students who used hybrid recommendation features
completed more learning sessions successfully, and perceived
the tutor as more convenient. Despotovic-Zrakic et al. [1]
adapted different course-levels, learning materials, and con-
tent in Moodle, an e-learning platform, for students in dif-
ferent clusters. Results showed that students with adapted
course design had better learning gain, and a more positive
attitude towards the course.

However, the majority of previous work clustered students
solely on their overall performance statistics. In contrast,
our method clusters students based on their application of
specific knowledge components throughout the tutor.

3. METHODS
The Data-driven Proficiency Profiler (DDPP) is a system
which calculates student proficiency at the end of each level
in Deep Thought based on how a given student performs
in comparison to exemplars who employed similar problem
solving strategies (see Fig. 3), with rule scores weighted as
determined through principal component analysis. Based
on how similar exemplars were assigned in subsequent lev-

els, the DDPP can determine the best proficiency level for
a new student. In contrast to the DDML system previously
employed, this proficiency calculation and rule weighting is
entirely data-driven, with no expert involvement. We hy-
pothesize that the DDPP based calculation will perform
more accurately when compared to average and minimum
methods.

3.1 Data-driven Problem Profiler
We first determined similar problem solving strategies among
the exemplars by clustering the exemplars’ rule scores (KCs)
based on hierarchical clustering. For the initial single-point
distance measure we used Euclidean squared distance, while
for the hierarchical clustering algorithm we used cluster cen-
troids to determine the distance between individual clusters.
As a result each exemplar is assigned to a set of n clusters
(where n is equal to the number of KCs), as shown in the
table in Fig. 3.

Expert weighting was replaced by principal component anal-
ysis (PCA) of the frequency of the rules used for each exem-
plar for each level, accounting for 95% variance of the results.
PCA is typically used to reduce the dimensionality of a data
set by determining the most influential factors in the data
set. The influence of a given factor is based on how much
that factor contributes to the variability in the data. We use
PCA analysis on the Deep Thought data set to determine
which rules were most important to success in the tutor at
each level. Rules which account for 25% of importance and
higher are considered most important for completing a level.
This percentage was determined through testing, and is the
percentage that maximized accuracy. For each rule, its PCA
importance value is the new weight for that rule score. Un-
like expert authored weights, these rule score weights are
based on each rule’s importance as determined by the data.

When a new student uses the tutor, the student’s rule scores
are calculated throughout the level. At the end of each level,
the DDPP looks at each student’s individual rule score and
assigns it to a cluster for that rule. The DDPP then finds
which clusters the scores for the most important rules fall
into for that level (based on the same PCA based weighting),
and then classifies that student into a type based on the set
of clusters the student matches (see Fig. 3, right). Finally
the system assigns the student to a proficiency track based
on data from the matching type of exemplars, and how those
exemplars were placed in the next level. The more exemplars
we have of a given type, the stronger the prediction we can
make for a new student. In the event that a new student
doesn’t match an existing type in the exemplar data, their
proficiency is calculated using the average scores. Average
scores are used as a default because, as shown in the results,
for most levels it is a better prediction approximation than
using the minimum scores.

3.2 DDPP Advantages
In the original system, the student proficiency was deter-
mined based on one set of rule thresholds and a set of ex-
pert authored weights. However as a result, the system
didn’t take varying student problem-solving strategies into
account. The data is based on students who completed the
tutor, who have therefore shown the level of mastery re-
quired to successfully complete Deep Thought. However the
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Figure 3: The Data-Driven Proficiency Profiler. (Left) At each level interval, exemplar KC scores are
clustered, and exemplars are assigned a cluster for each KC Score. (Center) KCs that make up 25% of
importance in the current level are used to assign exemplars to types. (Right) New student scores are
assigned to clusters, and compared to existing types to determine next level path.

scores are averaged over all the students at the end of each
level. By taking the average of these student scores at this
point, we’re still assuming only one successful problem solv-
ing strategy for completing each level in the tutor. However
while most strategies might be the same for earlier levels,
there may be a variety of strategies in later levels that can
still result in successful completion.

The DDPP method accounts for that possible variety in
problem solving methods. In using an unsupervised cluster-
ing method, we’re able to account for different clusters while
not knowing how many clusters there are for each rule. By
clustering the scores, we’re essentially looking for different
strategies that utilize particular rules and determining these
strategies based on the student data. Once we determine
which strategy a new student is utilizing, we can look to the
data again to see how exemplars who employed a similar
strategy were placed in the tutor and how they performed,
thus determining the best way for the tutor to react to that
particular student. Using PCA based weights allows us to
weight rule scores based on rule importance as determined
by previous students who completed the tutor, rather than
expert determination.

3.3 Evaluation
Testing was performed on data collected from two courses
using Deep Thought with the DDML system. The first was
a Philosophy deductive logic course (n = 47) using Deep
Thought as a regular assignment over the course of a 15-
week semester. The second was a Computer Science dis-
crete mathematics course (n = 84), using Deep Thought
as a two week assignment during the course’s 4-week logic
curriculum. From the students in these data, 26 of the Phi-
losophy students (55%) and 50 of the Computer Science stu-
dents (60%) completed the tutor, and were used as exem-
plars for the compared methods. By completing all levels in
Deep Thought, these students have demonstrated sufficient
mastery of the skills needed for introductory proof problem-
solving.

By using data from both Computer Science and Philosophy
based teaching methods for propositional logic, we expand

the range of problem solving strategies analyzed and exem-
plar types determined. This allows us to test the tutor’s
performance across different classroom conditions, and de-
termine whether the methods for proficiency path placement
are effective for students in different disciplines that use dif-
ferent teaching methods.

The DDML system used the average of exemplar rule scores,
weighted by expert-authored end of level rule priorities, to
calculate student proficiency. In total there were 19 in-
dividual rule actions in Deep Thought on which students
were evaluated. Based on the results of this calculation,
the DDML system determines whether to send a student on
the higher or lower proficiency path in the next level. The
system also allowed for the possibility of students switch-
ing proficiency paths in situations where the student cannot
complete the level on the path they were originally assigned.
Because students can switch paths in the middle of a level,
we can determine if they finish the current level on the same
path they were assigned. If the student did not finish the
level on the same proficiency path, it is an indication that
the DDML system may have initially assigned the student
to the wrong proficiency path. Therefore we can calculate
the accuracy of the original system by determining how of-
ten students who completed the entire tutor changed pro-
ficiency paths throughout. Given SsameTrack as the num-
ber of students who finished a level on the same proficiency
track, and Stotal as the total number of students who com-
pleted the level, the path prediction accuracy for each level
(LevelAccuracy) is calculated as follows:

LevelAccuracy =
SsameTrack

Stotal
(2)

The LevelAccuracy for each level is added together to de-
termine the path prediction accuracy. This calculation tells
us, for students who completed the entire tutor, how well
the original system predicted the paths for them to continue
on. This serves as a basis of comparison between the DDPP
and the original DDML system.
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3.3.1 Minimum & Average
The average rule scores are the set of average scores for
each rule in each level. Minimum scores are the smallest
scores in the exemplar data set for each rule in each level.
This calculation is based on the assumption that if a stu-
dent scores at least at this minimum for a given rule in that
level, the student should be able to perform as well as an
exemplar throughout the tutor. The difference between the
current DDML system and average score or minimum score
based proficiency calculation is that the DDML weighted
scores with expert-decided rule priorities, while average or
minimum weighted average or minimum scores with PCA-
determined weights. Calculating proficiency based on aver-
age and minimum scores offers insight into how introducing
PCA to students’ performance baseline changes the predic-
tion accuracy.

4. RESULTS
The prediction accuracy of the minimum, average, and DDPP
methods were calculated for the 76 exemplars from the Phi-
losophy and Computer Science data sets. Ten-fold cross val-
idation was used to train and test the methods across the
combined data. We focus on the results of the path pre-
diction accuracy described in section 3.3 as a basis of com-
parison between the original system, the DDPP, proficiency
based on average scores, and proficiency based on base min-
imum scores. These results are in tables 1, 2, and 3.

4.1 Path Prediction Accuracy
Table 1 shows the path prediction accuracy of the DDML
system, the DDPP system, average score assessment, and
minimum score assessment across all the students in the Phi-
losophy and CS courses. The original system accuracy was
very high, ranging from 75% at the end of level 3 to 88.2%
at the end of level 1. The DDPP was somewhat accurate,
ranging from 61.8% path prediction accuracy at the end of
level 4 to 67.1% path prediction accuracy at the end of level
2. While these accuracies are not nearly as high as in the
original system, they are very good considering that, unlike
the original system, path prediction in the DDPP is entirely
data-driven. It should also be noted that the DDPP was
more consistent in its accuracy, only varying by at most 5%
between levels (in comparison to the original DDML system,
which ranged in accuracy by 9.3%).

Table 1: Path prediction accuracy of the original
DDML system, the DDPP system, average score as-
sessment, and minimum score assessment, for both
Philosophy and CS students at the end of each level

Original DDPP Average Minimum
Lvl 1 88.2% 65.8% 65.8% 35.5%
Lvl 2 85.5% 67.1% 73.7% 18.4%
Lvl 3 75.0% 63.2% 60.5% 69.7%
Lvl 4 78.9% 61.8% 64.5% 40.8%
Lvl 5 78.9% 64.5% 59.2% 59.2%

Overall the original system predicted paths more accurately
than the DDPP, average, or minimum methods across all
levels. The minimum method was least accurate across all
levels. In comparison to the average method, the DDPP
was more accurate than the average method at the end of

levels 3 and 5. The DDPP was equally as accurate as the
average method at the end of level 1, and less accurate at the
end of levels 2 and 4. However, some of the lower accuracy
was likely due to the distribution of exemplars across the
two courses. Recall that the CS students made up a higher
proportion of the analyzed exemplars than the Philosophy
students. Analyzing the path prediction accuracy by the
individual course reveals more detail on the path prediction
accuracy.

4.2 Philosophy & CS Accuracy
In the case of the Philosophy students, where proportionally
fewer of the students were selected as exemplars, the DDPP
system was more accurate than the original system on every
set of levels except for the end of level 5 (see Table 2). In
comparison to the average calculation method, the DDPP
was only more accurate at the end of level 3. At the end
of levels 1 and 5, the DDPP was as accurate as the average
method, and at the end of levels 2 and 4 the DDPP was less
accurate.

Table 2: Path prediction accuracy of the original
DDML system, the DDPP system, average score as-
sessment, and minimum score assessment, for Phi-
losophy students

Original DDPP Average Minimum
Lvl 1 76.9% 80.8% 80.8% 23.1%
Lvl 2 65.4% 69.2% 76.9% 19.2%
Lvl 3 50.0% 84.6% 80.8% 38.5%
Lvl 4 65.4% 69.2% 76.9% 30.8%
Lvl 5 53.8% 46.2% 46.2% 26.9%

In the CS course, where proportionally more of the students
were selected as exemplars, not only was the original system
far more accurate than it was for the entire set of students
overall, but the DDPP path accuracy was much worse in
some places. However, in comparison to the average method,
the DDPP method was only less accurate in level 2. In all
other levels the DDPP was either more accurate than the
average method (levels 3 and 5) or equally as accurate (levels
1 and 4).

Table 3: Path prediction accuracy of the original
DDML system, the DDPP system, average score as-
sessment, and minimum score assessment, for Com-
puter Science students

Original DDPP Average Minimum
Lvl 1 94.0% 58.0% 58.0% 42.0%
Lvl 2 96.0% 66.0% 72.0% 18.0%
Lvl 3 88.0% 52.0% 50.0% 86.0%
Lvl 4 86.0% 58.0% 58.0% 46.0%
Lvl 5 92.0% 74.0% 66.0% 76.0%

4.3 Discussion
In the original DDML method, the weight of each rule was
determined by domain experts. Our results show that when
replacing the original weights by weights determined through
principal component analysis in the average score method,
the prediction accuracy increases for all levels in the phi-
losophy class, but decreases for all levels in the computer
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science class. This may because the experts were computer
science students and teachers, who prioritized rules with the
performance of computer science students in mind. When
the real participants were philosophy students, Principal
Component Analysis outperformed experts because it prior-
itized rule based on the performance of the real participants.
It’s possible that expert involvement may be constrained by
the expert’s background, whereas a data-driven approach is
more flexible when adapting to the diversity of participants.

When comparing the path prediction accuracy of the original
method to the DDPP, our result shows that the DDPP cal-
culated student proficiency with more accuracy in the case
of the Philosophy students, but less accuracy overall or in
the case of the Computer Science students. It is likely that
these results are a product of the limited, uncontrolled na-
ture of the dataset. Only 76 exemplars were chosen overall,
and of those exemplars a disproportionate number of them
were selected from the computer science course. We no-
ticed in the data that the students in the Computer Science
course had KC weights that were vastly different than the
expert weights. This means the students in the Computer
Science course were showing some unorthodox problem solv-
ing strategies, particularly in the earlier levels. With enough
data and more students with varying strategies, the DDPP
could more accurately assign other students who employ
different proof solving strategies. However for this limited
dataset, it is possible that there were not enough students
employing the same unorthodox strategies that a type could
be determined.

Table 4: The average number of types found per
level during training (exemplars), and the number of
students typed during testing (new students). There
were a total of 76 students in the data set.

Level 1 2 3 4 5
Avg. Types

Found (Train)
14 13 21 17 26

# Types
Matched (Test)

0 4 2 2 10

Table 4 shows the average number of types found in the
training dataset, and the number of students matched to a
type during testing. While there were several types found
in the training step, far fewer students could be matched
to a type in the testing step. This would explain the lower
accuracy in the DDPP system, as well as why it performed
similarly to the average method; it is likely that many of the
students in the test set could not be classified into a type,
which would result in the DDPP using the calculation based
on average scores to determine student proficiency.

That said, the DDPP is still very accurate considering that,
in all aspects of proficiency calculation, it is completely data-
driven. Its accuracy when applied to the students in the
Philosophy class in particular shows the potential for this
system to be useful in different classroom conditions. The
clustering step at each level produced between 14 and 26
possible types of exemplars to compare students to, com-
pared to what would have been 76 individual students in the
original system. This results in a system of proficiency cal-
culation that, given more data, has the potential to calculate

student proficiency just as accurately and more efficiently as
the original.

5. CONCLUSIONS & FUTURE WORK
We have presented a fully data-driven student proficiency
calculator, the Data-driven Proficiency Profiler (DDPP). The
DDPP clusters exemplar student data into types, attempts
to classify new students into one of the exemplar types, and
calculate proficiency based on exemplars who employed sim-
ilar problem strategies. We hypothesized that the DDPP
would be more accurate than proficiency calculated using av-
erage scores or minimum scores. Instead, our results showed
that the DDPP performed about as well as the average
method overall, and did not approximate the accuracy of
the original system. However our data set was very limited,
and the high accuracy the DDPP achieved for the Philos-
ophy students shows this system has potential once more
data can be acquired.

In the future, we would like to be able to test this system
with more data. The more students use the system, the
greater the data set we will be able to use and the more
conclusions we will be able to draw on the qualities of the
DDPP system. In particular we will analyze in greater de-
tail the types found on each level and the differences between
each type in terms of problem solving strategy. We can also
determine the importance, in depth, of certain rules to each
level and the problems within it based on student problem
solving strategies. Our final step is to implement the DDPP
into Deep Thought and use it to direct students through the
levels. Implementing the DDPP into Deep Thought will al-
low us to test whether, ultimately, the DDPP is an accurate,
data-driven proficiency calculation.
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ABSTRACT
Intelligent tutoring systems and computer aided learning en-
vironments aimed at developing problem solving produce
large amounts of transactional data which make it a chal-
lenge for both researchers and educators to understand how
students work within the environment. Researchers have
modeled student-tutor interactions using complex networks
in order to automatically derive next step hints. However,
there are no clear thresholds for the amount of student data
required before the hints can be produced. We introduce a
novel method of estimating the size of the unobserved in-
teraction network from a sample by leveraging Good-Turing
frequency estimation. We use this estimation to predict size,
growth, and overlap of interaction networks using a small
sample of student data. Our estimate is accurate in as few
as 10–30 students and is a good predictor for the growth
of the observed state space for the full network, as well as
the subset of the network which is usable for automatic hint
generation. These methods provide researchers with metrics
to evaluate different state representations, student popula-
tions, and general applicability of interaction networks on
new datasets.

1. INTRODUCTION
Data-driven methods to provide automatic hints have the
potential to substantially reduce the cost associated with
developing tutors with personalized feedback. Modeling the
student-tutor interactions as a complex network provides a
platform for researchers to automatically generate next step
hints. An Interaction Network is a complex network repre-
sentation of all observed student and tutor interactions for a
given problem in a game or tutoring system. In addition to
their usefulness for automatically generating hints, interac-
tion networks can provide an overview of student problem-
solving approaches for a given problem.

Data-driven approaches cannot reliably produce feedback
until sufficient data has been collected, a problem often re-
ferred to as the Cold Start problem. The precise amount of

data needed varies by problem and environment. However,
some properties of Interaction Networks allow us to esti-
mate how much data is needed. Eagle et al. explored the
structure of these student interaction networks and argued
that networks could be interpreted as an empirical sample
of student problem solving [5]. Students employing similar
problem-solving approaches will explore overlapping areas
of the Interaction Network. The more similar a group of
students is, the smaller the overall explored area of the in-
teraction network will ultimately be. Since we expect dif-
ferent populations of students to have different interaction
networks, and different domains to require varying amounts
of student data before feedback can be given, good metrics
for the current and predicted quality of Interaction Networks
are important.

In this work, we adapt Good-Turing frequency estimation
to interaction level data to predict the size, growth, and
“hintability”of interaction networks. Good-Turing frequency
estimation estimates the probability of encountering an ob-
ject of a hitherto unseen type, given the current number
and frequency of observed objects [8]. It was originally de-
veloped by Alan Turing and his assistant I. J. Good for use
in cryptography efforts during World War II. In our con-
text, network states (vertices) are the object types, and the
student interactions (edges) leading to those states are ob-
servations.

We present several metrics, derived from Good-Turing fre-
quency estimation. Our hypotheses are that these metrics:
H1: Predict the probability that a student interaction will
result in a state which was not previously observed H2: De-
scribe the proportion of the network that has been observed
for a population H3: Predict the expected size and growth
of an interaction network when additional student data is
added H4: Provide a quantitative comparison of different
state representations for their ability to represent greater
proportions of the network H5: Are useful for comparing
different populations of users in how they explore the prob-
lem space

Additionally, we use the metrics to explore the subset of the
interaction network that is useful for providing automati-
cally generated hints. This provides us with estimates of the
size, growth, and coverage of automatically generated hints.
We find that our metrics quickly become accurate after col-
lecting a sample of about 10 students. This has value as a
metric to compare the quality of the interaction networks,
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and will aid future researchers in determining an adequate
state representation. We also show how two experimental
groups, despite having the same amount of network cover-
age, have substantially different numbers of unique states.
This supports previous work, suggesting that different pop-
ulations of students produce different interaction networks
[5], which has broad implications for generating hints as well
as using the networks to evaluate student behavior.

1.1 Previous Work
Creation of adaptive educational programs is costly. This is,
in part, because developing content for intelligent tutors re-
quires multiple areas of expertise. Content experts and ped-
agogical experts must work with tutor developers to identify
the skills students are applying and the associated feedback
to deliver [13]. In order to address the difficulty in author-
ing intelligent tutoring content, Barnes and Stamper built
an approach called the Hint Factory to use student data to
build a Markov Decision Process (MDP) of student problem-
solving approaches to serve as a domain model for automatic
hint generation [18]. Hint Factory has been applied in tutor-
ing systems and educational games across several domains
[7, 14, 6], and been shown to increase student retention in
tutors [19].

Early work with the Hint Factory method used a Markov De-
cision Process constructed from students’ problem-solving
attempts. Eagle and Barnes further developed this struc-
ture into a complex network representation of student in-
teractions with the system, called an Interaction Network
[5]. Complex networks are graphs or networks which con-
tain non-trivial topological features unlikely to appear in
simple or random networks. The Interaction Network rep-
resentation can be used as a visualization of student work
within tutors. The effectiveness of Interaction Networks as
visualizations was shown by Johnson et al. who created
a visualization tool InVis to aid instructors in analyzing
student-tutor data [11].

Other approaches to automated generation of feedback have
attempted to condense similar solutions in order to address
sparse data sets. One such approach converts solutions into
a canonical form by strictly ordering the dependencies of
statements in a program [15]. Another approach compares
linkage graphs modelling how a program creates and mod-
ifies variables, with nested states created when a loop or
branch appears in the code [10]. In the Andes physics tutor,
students may ask for hints about how to proceed. Sim-
ilarly to Hint Factory-based approaches, a solution graph
representing possible correct solutions to the problem was
used. However their solution space was explored procedu-
rally rather than being derived from student data, and they
used plan recognition to decide which of the problem deriva-
tions the student is working towards [20].

Interaction networks are scale-free networks. This is a prop-
erty of complex networks whose degree distribution is heavy-
tailed, often a power law distribution. In practice, this
means that a few vertices have degree that is much larger
than the average, while many vertices have degree some-
what lower than average [5]. Eagle et al. argued that stu-
dents with similar problem solving ability and preferences
would travel into similar parts of the network, resulting in

some states being more important to the problem than oth-
ers [5]. Using these “hub” states, sub-regions of the network
corresponding to high-level approaches to the problem were
derived. These sub-regions captured problem-solving differ-
ences between two experimental groups [4].

2. METHODS AND MATERIALS
For the purposes of this work, we are using datasets from
three different environments to build our interaction net-
works. Summaries of these datasets are found in Table 1.
The first dataset is from the Deep Thought tutor, used in
previous work by Stamper et al. [19]. This dataset was col-
lected for a between groups experiment investigating the use
of data-driven hints, so we split the dataset into two groups,
DT1-C, the control group from that experiment, and DT1-
H, the group that received hints. We selected this dataset
to explore and evaluate H5.

The second dataset comes from the game BOTS. Here, we
have the same students and interactions represented in two
different ways: First. using codestates (the programs users
wrote) and second using worldstates (the output of those
programs). The advantages and disadvantages of these state
representations were explored in previous work by Peddy-
cord and Hicks [14]. We split this dataset into two groups
as well (BOTS-C and BOTS-W) one for each state repre-
sentation used. We selected this dataset for evaluation of
H4.

Our third and largest dataset comes from an updated ver-
sion of the Deep Thought tutor, called Deep Thought 3.
Unlike with the other datasets, Deep Thought 3 features an
AI problem selection component [12]. This means that not
all students will have had access to all problems. In addi-
tion, there is a larger number of problems in this dataset.
We selected this dataset, as the larger number of problems
effectively splits student data across multiple networks. H1–
H3 are relevant towards measuring the quality of networks
produced for new problems.

Table 1: Dataset summary: the total number of stu-
dents in the dataset, the number of distinct prob-
lems, and the average number of students repre-
sented in each network.

Dataset Total N Num Problems Mean Net N

DT1-H 203 11 83.73
DT1-C 203 11 63.82
DT3 341 59 78.41
BOTS-C 125 12 99.75
BOTS-W 125 12 99.75

2.1 Constructing an Interaction Network
An Interaction Network is a complex network representation
of all observed student and tutor interactions for a given
problem in a game or tutoring system. To construct an In-
teraction Network for a problem, we collect the set of all
solution attempts for that problem. Each solution attempt
is defined by a unique user identifier, as well as an ordered
sequence of interactions, where an interaction is defined as
{initial state, action, resulting state}, from the start of the
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problem until the user solves the problem or exits the sys-
tem. The information contained in a state is sufficient to
precisely recreate the tutor’s interface at each step. Simi-
larly, an action is any user interaction which changes the
state, and is defined as {action name, pre-conditions, post-
conditions}. In Deep Thought, for example, an action would
be the logical axiom applied, the statements it was applied
to, and the resulting derived statement. Figure 1 displays
two Deep Thought interactions. The first interaction works
forward from STEP0 to STEP1 with action SIMP (sim-
plification) applied to (Z ∧ ¬W ) to derive ¬W . The second
interaction works backward from STEP1 to STEP2 with ac-
tion B − ADD (backwards addition) applied to (X ∨ S) to
derive the new, unjustified statement S.

Figure 1: Example of state to state transitions
within the Deep Thought (DT1) propositional logic
tutoring system.

Once the data is collected. we use a state matching function
to combine similar states. In Deep Thought, we combine
states that consist of all the same logic statements, regard-
less of the order in which those statements were derived.
This way, the resulting state for a step STEP0, STEP1, or
STEP2 in Figure 1 is the set of justified and unjustified state-
ments in each screenshot, regardless of the order that each
statement was derived. In BOTS, two state matching func-
tions were used: one which combined states based on the
code in students’ programs, and another which instead used
the output of those programs. Similarly, we use an action
matching function to combine actions which result in simi-
lar states, while preserving the frequency of each observed
interaction.

2.2 Providing Hints
Stamper and Barnes’ Hint Factory approach generates a
next step Hint Policy by modeling student-tutor interactions
as a Markov Decision Process [18]. This has been adapted
to work with interaction networks by using a Value Itera-

tion algorithm on the states [5]. We generate a graph of
all student interactions, combining identical states using a
state matching function. Then, we calculate a fitness value
for each state. We assign a positive value (100) to each goal
state, that is a state configuration representing a solution to
the problem. We assign an error cost (-5) for error states.
We also assign a small cost to performing any action, which
biases hint-selection towards shorter solutions. We then cal-
culate fitness values V (s) for each state s, where R(s) is the
initial fitness value for the state, γ is a discount factor, and
P (s, s′) is the observed frequency with which users in state s
take an action resulting in state s′. After this, we use value
iteration [2] to repeatedly assign each state a value based on
its neighbors and action costs, weighted by frequency.

After applying this algorithm, we can provide a hint to guide
the user toward the goal by selecting the child state with the
best value. We can do this for any observed state, provided
that a previous user has successfully solved the problem after
visiting that state. In the original work with Hint Factory
on the Deep Thought tutor, the algorithm was permitted to
backtrack to an earlier state if it failed to find a hint from
the current state. However, not all environments allow the
user to backtrack and there are risks of the backtracking
hints to provide irrelevant information. Because of this in-
consistency across domains, we did not permit backtracking
for the purposes of the comparisons in this paper.

We define a state, S to be Hintable if S lies on a path which
ends at a goal state. We define the Hintable network to
be the subset of the interaction network containing only
Hintable states and edges between hintable states; That is,
the induced subgraph on the set of Hintable states.

2.3 Cold Start Problem
Barnes and Stamper [1] approached the question of how
much data is needed to get a certain amount of overlap in
student solution attempts by incrementally adding student
attempts and measuring the step overlap over a large series
of trials. This was done with the goal of producing automat-
ically generated hints, and solution attempts that did not
reach the goal were excluded. Peddycord et al. [14] used a
similar technique to evaluate differences in overlap between
two different interaction network state representations.

The “Cold Start problem” is an issue that arises in all data-
driven systems. For early users of the system, predictions
made are inaccurate or incomplete [17, 16]. If there are in-
sufficient data to compare to (not enough user ratings, or
not enough student attempts) then the quality of the rec-
ommendations suffers and in some cases no recommendation
can be provided. The term is commonly used in the field
of collaborative filtering and recommender systems, but it
can be used to describe three related issues, the “new user,”
the “new item,” and the “new community” [3] Cold Start
problems. The “new user” problem refers to the difficulty
of making recommendations to a user who has performed
no actions. The “new item” problem refers to the difficulty
of suggesting users visit a newly added, unobserved state.
The new community Cold Start problem refers to situations
where not enough observations exist to make recommenda-
tions for new users. The “new community” definition corre-
sponds most closely to the difficulty of generating hints for
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an entirely new problem in an intelligent tutoring system or
educational game.

To measure our ability to address this problem, we add all
interactions from a single student, one at a time, to the in-
teraction network. This is in order to simulate the growth
of the network. We repeat this process for each student,
measuring the performance of our model each time. We
measured the proportion of currently observed states to to-
tal observed states for the entire data set, as well as for the
subset of states from which a goal is reachable. To control
for ordering effects, we repeated this trial 1000 times us-
ing a different random ordering of students each time, and
aggregated the results.

2.4 Good-Turing Network Estimation
We present a new method for estimating the size of the un-
observed portion of a partially constructed Interaction Net-
work. Our estimator makes use of Good-Turing frequency
estimation [8]. Good-Turing frequency estimation estimates
the probability of encountering an object of a hitherto un-
seen type, given the current number and frequency of ob-
served objects. It was originally developed by Alan Turing
and his assistant I. J. Good for use in cryptography efforts
during World War II. Gale and Sampson revisited and sim-
plified the implementation [8]. In its original context, given
a sample text from a vocabulary, the Good-Turing Estima-
tor will predict the probability that a new word selected
from that vocabulary will be one not previously observed.

The Good-Turing method of estimation uses the frequency
distribution, the “frequency of frequencies,” from the sample
text in order to estimate the probability that a new word
will be of a given frequency. Based on this distribution,
the probability of observing a new word in an additional
sample is estimated with the observed proportion of words
with frequency one. This estimate of unobserved words is
used to adjust the probabilities of encountering words of
frequencies greater than one.

We adapt the Good-Turing Estimator to interaction net-
works by using the states with an observed frequency of one
to estimate the proportion of “frequency zero” states. In-
teraction networks represent the observed interactions and
therefore we also use this value to estimate the probability
that a new interaction will transition into a new state. We
use P0 as the expected probability of the next observation
being an unseen state. P0 is estimated by:

P0 =
N1

N
(1)

Where N1 is the total number of frequency 1 states, and N
is the total number of interaction observations. Since N1 is
the largest group of states, the observed value of N1 is a rea-
sonable estimate of P1. P0 can then be used to smooth the
estimation proportions of the other states. The proportion
of states with observed frequency r is found by:

Pr =
(r + 1)S(Nr+1)

N
(2)

where S() is a smoothing function that adjusts the value for
large values of r [8].
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Figure 2: The growth of new states as new students
are added for each problem, for each dataset.

Our version of P0 is the probability of encountering a new
state (a state that currently has a frequency of zero,) on a
new interaction. We also interpret this as the proportion of
the network missing from the sample. We will refer to an
interaction with a unobserved state as having fallen off of
the interaction network. We will use the complement of P0

as the estimate of network coverage, IC , the probability that
a new interaction will remain on the network: IC = 1− P0.

The state space of the environment is the set of all possi-
ble state configurations. For both the BOTS game and the
Deep Thought tutor the potential state space is infinite. For
example, in the Deep Thought tutor a student can always
use the addition rule to add new propositions to the state.
However, as argued in Eagle et. al. [5], the actions that
reasonable humans perform is only a small subset of the
theoretical state space; the actions can also be different for
different populations of humans. We will refer to this sub-
set as the Reasonable State Space, with unreasonable being
loosely defined as actions that we would not expect a human
to take. An interaction network is an empirical sample of
the problem solving behavior from a particular population,
and is a subset of the state space of all possible reasonable
behaviors. Therefore, our metrics P0 and IC are estimates
of how well the observed interaction network represents the
reasonable state space.

3. RESULTS
In order to evaluate the performance of the unobserved net-
work estimator, P0, and the network coverage estimator,
IC , for each problem in each of our 5 datasets we randomly
added students from the sample, one at a time until all stu-
dent data had been included. At each step, T, we recorded
the values of our estimators using only the data that had
been encountered up until then. This simulates a real world
use-case, where additional students are added over time. We
repeated this process 1000 times and averaged the results.
Figure 2 shows the growth of unique states as students are
added for the interaction networks generated by each prob-
lem (line) in each of the five datasets.
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Figure 3: The average absolute error between the es-
timated number of new states and the observed new
states over the number of students for all problems
in each of the four datasets. P0 accurately predicts
the observed values after roughly 10 students, rarely
being off by more than one after that.

3.1 H1: Prediction of New States
In order to evaluate P0 for the prediction of new states
(states that are frequency = 0 on time Ti, but will be fre-
quency = 1 on Ti+1. At each T we add an additional student
and compare the expected number of frequency 1 states,
ES1, vs. the observed number, OS1. Across all five datasets,
Figure 3 shows the differences between the expected and ob-
served number of new states. The PO×Interactions predic-
tion for new states follows closely with the observed number,
the estimates increase in accuracy rapidly over the first ten
students and are rarely off by more than a fraction of a state
afterwards. Figure 4 shows the results of running this pro-
cess on only the hintable portion of the interaction network
for each data set.

3.2 H2: Network Coverage
We have defined network coverage IC as the proportion of
interactions which lie within the previously observed net-
work. Another interpretation is that IC is the probability of
an interaction resulting in a state that has been previously
observed. This value is the complement of P0. Figure 5 and
7 display the results of network coverage and its growth as
additional students are added.

3.3 H3: Predicting Future Network Size
In order to further evaluate the use of P0 and IC we cal-
culated a prediction for the final size of the network, given
the number of students in each dataset, at each time stamp.
The equation for this prediction is:

|V (IN)| = (NewSample ∗ P0) + UT . (3)

Where |V (IN)| is the number of unique vertices (states) in
the final network, NewSample is the number of new interac-
tions added, P0 is the estimation of new states added, and
UT is the number of unique states observed at time T . The
results are averaged across all problems for each dataset and
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Figure 4: For the hintable states, the average differ-
ence between the estimated number of new states
and the observed new states over the number of stu-
dents for all problems in each of the four datasets.
P0 accurately predicts the observed values after
roughly 10 students, rarely being off by more than
one after that.

are presented in figures 8 and 9. This prediction rapidly im-
proves and after roughly 20% of the sample is added, can
accurately predict the final number of unique states for the
network. This combined with the accuracy of P0 reveals the
short term and long term accuracy for the estimator.

3.4 H4: Comparing State Matching Functions
The network coverage metric, IC , allows an easy method of
estimating the differences in state matching functions and
student network overlap. We can use IC with two potential
matching functions, and get an estimate of the remaining
network, to quickly compare different potential state repre-
sentations as well as to find a state generalization that will
allow for a desired amount of network coverage.

The estimate based on the above methods has proven useful
for comparing State Matching functions to help determine
which produces more relevant hints. Figure 6 shows the
BOTS interface, with the user’s program (codestate) and
the game world (worldstate) both illustrated. In previous
work investigating the Cold Start problem on the BOTS
data set, we measured ”coverage” in terms of how much of
the newly added test data was already present in the training
set [9, 14]. Compare this analysis to Figure 5 which shows
the estimated probability that a student’s next action will
result in an observed state, IC . After 100 students, the prob-
ability that a student will generate a new codestate is still
quite high, P0 > .25. In comparison, after the same num-
ber of students, the probability of generating a new world-
state is extremely low, P0 < .02. This result supports both
our intuition and our results from the previous work, that
students will continue to generate new codestates, but that
these different codestates will collapse to previously observed
worldstates.
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Figure 6: An image of the main gameplay interface
for BOTS. The left hand side of the screen shows
the user’s program, used to derive code states. The
right-hand side shows the game world, where the
program output determines the world states.

3.5 H5: Comparing Populations
Samples from different populations have different resulting
interaction networks. The size of the represented network
can tell us about the similarity of student approaches in the
sample. If students are more alike in the types of actions
they perform, fewer students will be needed to achieve a
similar amount of overlap. We can also see that adding stu-
dents from a dissimilar population will not always increase
estimated network coverage (IC), and can potentially de-
crease it. This has implications about the importance of
building hints for one population and applying it for an-
other. In other work we have already shown that different
groups are likely to visit different parts of the networks [4].
Here we expand on that analysis by showing that the two
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Figure 7: For the hintable network: the estimated
network coverage IC for each of the 5 datasets. Even
the lowest performing hint network BOTS-C reaches
roughly 70% coverage by 100 students.

Table 2: Different populations have different spread
in problem exploration.

Group P0 States Interactions F1

Hint 0.09 514.61 2709.84 250.09
Control 0.10 720.12 3904.92 340.00

groups, while having the same amount of network coverage,
have a different number of unique states. Table 2 shows the
results between the Hint group, which received hints on a
subset of the problems, and the Control group which never
received hints. This corresponds with results from Eagle et
al. [4] in which they uncovered significant differences in the
student overall approaches. This result adds to that an es-
timation of how complete each network was, revealing that
additional data was not likely to change the result. It also
shows some evidence for a trail blazing effect. When pro-
vided hints, students collectively explore a smaller area of
the state space.

3.6 Estimating the effect of filtering
Visualizations must struggle with an ”information to ink”
ratio. There is a trade-off between displaying full informa-
tion and overwhelming the viewer, and displaying only the
most frequent states and potentially misleading the viewer
by eliminating information. InVis, a visualization tool for
exploring Interaction Networks allowed users to filter by fre-
quency[11]. We can use the Good-Turing Estimation to cal-
culate the amount of information removed by filtering fre-
quency of a certain degree. P0 is the proportion of the net-
work missing, IC>r = IC−P1−−r+P0, where r is a threshold
value for removing low frequency states, and P1 −−r is the
sum of P1 through Pr. This should be a useful metric for
visualizations for measuring the amount of network that is
hidden by filtering. It is also useful to show that sometimes
a large number of graphical elements can be removed, with
only a small amount of interaction information lost.
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Figure 8: Prediction of total final number of states,
as observed number of states increases. Note that
for small t, the estimate is very high (up to 300%
over prediction), but becomes fairly accurate after
roughly 20% of the sample is measured.

4. DISCUSSION
Good-Turing Estimation works well in the contexts of in-
teraction networks. We were able to provide an easily cal-
culable estimate of the proportion of the network not yet
observed P0. This value alone is a useful high level metric
for the percentage of times a student interaction results in a
previously unobserved state. The P0 score for the hintable
network is likewise an estimate of the probability that a stu-
dent will “fall off” of the network from which we can provide
feedback. Our network coverage metric IC allows a quick
and easy to calculate method of comparing different state
representations, as well as quantifying the difference. We
believe that this metric can replace the commonly used cold
start method of evaluating the“hintability”of a network. IC
is also valuable to quickly gauge the applicability of a new
domain to interaction networks. The majority of the cal-
culations can be performed on the transactional data. The
growth trends for our five datasets were often clear after
only ten students.

Our network estimators also have implications given our pre-
vious theories on the network being a sample created from
biased (non-random) walks on the problem-space, as the
more homogeneous the biased walkers are, the faster the net-
work will represent the population and the fewer additional
states will be explored. We revisited our previous results [4],
and found that students with access to hints explored less
overall unique states. This implies that the students were
more similar to each other in terms of the types of actions
and states they visited within the problem. Overall, this re-
sult supports the idea that different populations of students
will have different interaction networks. The implications of
this for generating hints are great. Building hints on one
population might not work as well in another, and adding
interventions or hints can dramatically reduce the number of
states visited by the students. Future work should explore
the possibility of having multiple network representations
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Figure 9: Prediction of total final number of goal
states, as observed number of states increases. Note
that for small t, the estimate is very high, but be-
comes an underestimate as t increases. P0 can pre-
dict the number of additional hintable states that
can be added for a additional sample of data.

and choosing to match the student with the one closely re-
sembling them.

As you can see in figure 8, our estimator starts out drasti-
cally overestimating the number of unobserved states in the
network. As we collect data, this eventually becomes a slight
underestimate, eventually converging on the correct number
of states. One explanation for why this might be the case is
the method by which undiscovered states are added to the
network. By using this model for our estimator, we are mak-
ing an assumption that states are selected independently of
one another. At the beginning, when data is sparse, this
assumption is not particularly harmful, since undiscovered
states are relatively common. However, as our dataset be-
comes richer, we underestimate the probability of adding
an unobserved state because we do not take into account
the effect of “trail-blazing” which increases the probability
of adding additional unobserved states after the first. Eagle
and Barnes found that interaction networks had properties
of scale-free networks. [5]. In particular, their degree distri-
butions follow a power law, with a few vertices having much
higher degree than the average for the network. It is likely
that taking into account the scale-free and hierarchical na-
ture of the networks will provide methods to improve on our
estimators.

5. CONCLUSIONS AND FUTURE WORK
We have adapted Good-Turing frequency estimation for use
with networks built from student-tutor interactions. We
found that the estimator for the missing proportion of the
network P0 was accurate in predicting the number of new
states discovered with new data. We also found that we
could accurately measure network coverage with IC for both
the regular network, as well as the network of hintable states.
This provides us with a metric to compare different state
representations as well as determine the suitability of inter-
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action network methods to different tutoring environments.
We were also able to use these metrics to provide accurate
predictions for the size of networks expected given more
data samples, which will be useful for predicting the amount
of additional data needed to provide a desired amount of
hintable network coverage. Finally, we used the estimate of
network coverage to compare different student populations
to show that the addition of hints in one environment had
an effect on the number of states explored by students.

Future work will include expanding on these global measures
of the network and exploring local measures of coverage.
Rather than compute coverage for the entire network we
can use methods such as approach map regioning [4] to find
meaningful sub-networks and calculate the metrics for those.
The region level values of P0 can estimate the “riskyness” of
certain approaches to the problem. The IC metric can direct
attention to parts of the network that are not well explored,
perhaps allowing additional hints to be obtained by starting
advanced users in those areas.
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ABSTRACT 
Spatial skills predict students’ success in STEM domains. This 

paper aims to better understand the difficulties of students with 

low spatial skills in using interactive graphical representations. I 

present a mediation analysis with test and log data from 117 stu-

dents who worked with an intelligent tutoring system for chemis-

try. The analysis is based on (1) a knowledge component model 

that describes knowledge students acquire as they solve problems 

with graphical representations, (2) a search for features that de-

scribe students’ interactions with the representations and that are 

predictive of students’ learning gains, and (3) a structural equation 

model that tests whether these features statistically mediate the 

effect of spatial skills on students’ learning gains. Results show 

that only students’ ability to plan representations before they 

construct them mediates the effect of spatial skills on learning 

gains. This finding suggests that these students may need more 

support before they construct representations. 

Keywords 
Spatial skills, intelligent tutoring systems, interactive representa-

tions, STEM learning. 

1. INTRODUCTION 
Students’ spatial skills predict learning success in STEM domains 

[1, 2]: students with low spatial skills tend to show lower 

achievements in STEM domains and they are less likely to pursue 

careers in these domains. Spatial skills are important for STEM 

learning because many concepts in STEM domains are inherently 

visuo-spatial. For example, astronomers have to visualize the solar 

system, engineers have to visualize interactions among compo-

nents of a machine, and chemists have to visualize movements of 

atoms and electrons. To make these concepts accessible to stu-

dents, instructional materials in STEM domains tend to heavily 

rely on the use of graphical representations [5, 6]. Graphical rep-

resentations are external representations that use visuo-spatial 

features to depict domain-relevant concepts (as opposed to text or 

symbols). As a consequence, students have to make sense of 

visuo-spatial relationships depicted by graphical representations to 

understand abstract concepts in STEM domains [7].  

 

Figure 1. Graphical representations of an oxygen atom: Lewis 

structure, Bohr model, energy diagram, orbital diagram. 

Consider, for example, a student who is learning about atomic 

structure. Figure 1 shows the graphical representations that in-

structional materials typically use to illustrate atomic structure [8]. 

Lewis structures (left) show paired an unpaired valence electrons, 

Bohr models (center-left) show all electrons in atomic shells, 

energy diagrams (center-right) depict electrons in orbitals with 

their energy level, and orbital diagrams (right) show the spatial 

arrangement of non-empty orbitals. To understand atomic struc-

ture, students have to integrate the information depicted in these 

graphical representations into a visuo-spatial mental model of how 

electrons are arranged relative to the atom’s nucleus, and how 

they move according to probabilistic laws.  

Integrating such information into a mental model of the domain-

relevant concepts requires students to hold the relative location of 

the depicted objects in working memory and to mentally rotate 

these objects [9]. The cognitive load imposed by this task is argu-

ably higher for students with low spatial skills than for students 

with high spatial skills [1]. As a consequence, students with low 

spatial skills may fail at this task, which might jeopardize their 

learning success [1, 5, 9]. On the flip side, students with high 

spatial skills are more successful at integrating visuo-spatial in-

formation into mental models, and—consequently—are likely to 

show higher learning gains. Thus, the rich (in spatial skills) get 

richer (in content knowledge). 

Educational technologies such as intelligent tutoring systems 

(ITSs) hold particular promise for breaking the “the-rich-get-

richer” rule and for creating an “everyone-gets-richer” rule, be-

cause they can address the needs of students with low spatial 

skills in several ways. First, ITSs can provide interactive tools that 

students can use to construct representations while receiving assis-

tance and feedback. Such support for learning with interactive 

graphical representations can enhance learning outcomes [10], in 

particular for students with low spatial skills [11]. Second, ITSs 

have the capability to provide individualized support that adapts 

to student characteristics [12]. Adapting instructional support to 

the individual student’s spatial skills has been shown to improve 

their spatial skills [13] as well as their learning of content 

knowledge [14].  

However, before we can design ITSs that tailor support for using 

interactive representations to the needs of students with low spa-

tial skills, we first have to understand what makes this learning 

task difficult for these students. This paper presents a first step 

towards this goal. Specifically, this paper investigates the follow-

ing two questions: (1) Which aspects of problem solving with 

interactive graphical representations are more difficult for stu-

dents with low spatial skills than for students with high spatial 

skills? (2) Which of these difficulties explain why students with 
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Figure 2. Example screen shot of a tutor problem: students construct a Bohr model of oxygen. 

low spatial skills have lower learning outcomes in chemistry? To 

address these questions, I conducted a mediation analysis that 

tested which aspects of students’ problem-solving performance 

account for the effect of spatial skills on learning outcomes. The 

mediation analysis was carried out with a data set obtained from 

an experiment with an ITS for chemistry learning in which stu-

dents had to use interactive tools to construct graphical represen-

tations of atoms. 

2. CHEM TUTOR 
The data set used in this paper was obtained from an experiment 

with Chem Tutor: an ITS for undergraduate chemistry [15]. The 

goal of Chem Tutor is to enhance learning by helping students 

understand graphical representations of abstract concepts [16]. 

Chem Tutor targets foundational concepts of introductory under-

graduate courses, such as atomic structure and bonding. The de-

sign of Chem Tutor is based on surveys with undergraduate chem-

istry students and instructors, interviews and eye-tracking studies 

with undergraduate and graduate students, and extensive pilot 

testing in the lab and the field [15]. Chem Tutor was built with 

Cognitive Tutor Authoring Tools [17], which facilitates rapid 

iterations of prototyping and pilot-testing involved in such user-

centered design approaches.  

In the present experiment, students worked with the atoms and 

electrons unit of Chem Tutor. This unit features interactive tools 

that students use to construct a variety of graphical representations 

of atoms: Lewis structures, Bohr models, energy diagrams, and 

orbital diagrams (see Figure 1). The tutor problems are structured 

as follows. First, students are prompted to think about the proper-

ties of the atom. They can use the periodic table to look up infor-

mation about the atom (e.g., oxygen has eight electrons). Second, 

students are prompted to plan what the given representation will 

look like (e.g., the Bohr model of oxygen should show two 

shells). Third, students use an interactive tool to construct the 

representation of the given atom. Students receive error-specific 

feedback on their interactions (e.g., “The Bohr model shows all of 

the electrons, not only the valence electrons”). Students have to 

construct a correct graphical representation before they can con-

tinue. Fourth, students are prompted to make inferences from the 

given graphical representation about the atom (e.g., the number of 

valence electrons allow to approximate the number of bonds the 

atom forms). Figure 2 shows an example tutor problem in which 

students construct the Bohr model of an oxygen atom. The inter-

face of the problems builds up step-by-step, as shown in Figure 3.  

 

Figure 3. Sequence of screen shots showing how the interface 

updates step by step as students construct an Energy diagram. 
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3. EXPERIMENT 
The experiment investigated whether Chem Tutor helps under-

graduate students learn chemistry. For a detailed description of the 

experiment, refer to [18]. 

3.1 Participants 
117 undergraduate students from a university in the mid-western 

United States participated in the experiment. 79% of the students 

were enrolled in general chemistry for non-science majors. Ac-

cording to the instructor of this course, these students had no 

experience with the graphical representations used in the Chem 

Tutor unit, with the exception of the common Lewis structure. 

13.4% of the students were enrolled in general chemistry for 

science majors, 2.5% were enrolled in advanced general chemis-

try. According to the instructors of these courses, these students 

had experience with all graphical representations used in the 

Chem Tutor unit. The remaining 5% of the students were not 

currently enrolled in a chemistry course.  

3.2 Assessments 
Students’ chemistry knowledge was assessed three times: before 

they started working with Chem Tutor (pretest), after they com-

pleted half of the tutor problems (intermediate posttest), and after 

they completed all tutor problems (final posttest). Three isomor-

phic test forms were used: they asked structurally identical ques-

tions but used different problems (e.g., with different atoms). The 

order in which students received the test forms was counterbal-

anced. The tests assessed reproduction and transfer of the chemis-

try content covered in Chem Tutor. Reproduction items used a 

format similar to the Chem Tutor problems. Transfer items asked 

students to apply the knowledge Chem Tutor covered in ways 

they had not been asked to do in the Chem Tutor problems. The 

tests included items with and without representations. In addition, 

spatial skills were assessed with the Vandenberg & Kuse mental 

rotation ability test [19]. This test presents students with a draw-

ing of an object and asks them to identify which of four other 

drawings show the same object. This task requires spatial skills 

because students have to mentally rotate the given object to align 

it with the comparison objects. This test was chosen because it has 

been used in prior research on the impact of students’ spatial skills 

on STEM learning [1, 2, 4, 5, 7].  

3.3 Procedure 
The experiment took place in the laboratory and involved two 

sessions of about 90 minutes each. Sessions were scheduled no 

more than three days apart. In session 1, students first completed 

the mental rotation test and the chemistry pretest. They then re-

ceived an introduction into using Chem Tutor. Next, they worked 

through half of the problems in Chem Tutor’s atoms and electrons 

unit. At the end of session 1, students took the intermediate chem-

istry posttest. In session 2, students worked through the remainder 

of the tutor problems. At the end of session 2, they took the final 

chemistry posttest. All students worked on the tutor problems at 

their own pace and were able to finish the assigned tutor problems 

in the available time.  

3.4 Results 
Results from the analysis of the test data show that there were 

significant learning gains on the chemistry knowledge test, 

F(2,230) = 6.18, p < .01. A regression of students’ spatial skills on 

learning gains (i.e., performance on the posttest, controlling for 

pretest performance) showed that spatial skills were a significant 

predictor of learning gains (β = .34, p < .01), such that students 

with high spatial skills showed higher learning gains than students 

with low spatial skills.  

4. OPEN QUESTIONS 
The finding that students with lower spatial skills had lower learn-

ing gains as the result of an intervention that relies on graphical 

representations is not surprising: it aligns with prior research on 

the role of spatial skills in STEM learning [1, 4, 5, 9]. It is con-

ceivable that working with interactive graphical representations 

requires students to make sense of how abstract properties of 

atoms can be translated into visuo-spatial elements of graphical 

representations. It is well documented that this is more difficult 

for students with lower spatial skills [1, 4, 5, 9].  

A first question that remains thus far unanswered, however, is 

how these difficulties affect how students interact with tutor prob-

lems. There are several aspects of the problems in Chem Tutor 

that may be more difficult for students with low spatial skills. 

First, these students may struggle with the first part of the tutor 

problems: identifying properties of atoms. Students with low 

spatial skills may have trouble retrieving facts that describe prop-

erties of atoms because they cannot imagine what an atom looks 

like. They might also struggle in using resources such as the peri-

odic table to retrieve this information. Second, students with low 

spatial skills may struggle with the planning part of the tutor prob-

lems, because this step requires them to think about how proper-

ties of an atom can be visualized. Third, it is possible that these 

students struggle more when constructing graphical representa-

tions because they have to translate text-based information into 

visuo-spatial elements of the graphical representations. Finally, it 

is possible that these students struggle more in using representa-

tions to make inferences about the atom because this requires 

them to imagine how the visualized properties determine dynamic 

behavior of electrons (e.g., electron movement) and of atoms 

(e.g., tendency to form bonds).  

A second question that remains open is how these difficulties 

relate to learning gains. While it is possible that all of the aspects 

just described are more difficult for students with low spatial 

skills, some difficulties may play a larger role than others in ex-

plaining why these students show lower learning gains. Under-

standing which difficulties account for the fact that students with 

lower spatial skills show lower learning gains will enable us to 

provide more appropriate support for these students. 

5. FEATURE SELECTION 
To investigate why spatial skills predict students’ learning gains 

as they work with interactive graphical representations, I used a 

structural equation model to conduct a mediation analysis. Struc-

tural equation models provide a unified framework to test media-

tion hypotheses, estimate total effects, and separate direct from 

indirect effects. The first step in constructing a structural equation 

model is to determine candidate mediator variables to be included 

in the model. To do so, I first investigated how best to represent 

the knowledge students acquire as they are working on the tutor 

problems by comparing different knowledge component models. 

Second, I used the knowledge component model to generate a 

number of features that describe student performance during prob-

lem solving. Third, I searched for features that are predictive of 

learning outcome, using linear regressions.  

5.1 Knowledge component model 
First, I constructed a knowledge component model that adequately 

describes knowledge students acquire when working with interac-

tive representations to learn about atomic structure. Knowledge 

components are “acquired units of cognitive function or structure 

that can be inferred from performance on a set of related tasks” 

[19]. I contrasted the following knowledge component models:  
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1. A single-step baseline model that treats all problem-solving 

step as one skill; 

2. A step-type model that does not distinguish between the 

graphical representation used in the given problem but dis-

tinguishes between step types (i.e., providing information 

about atoms, planning the graphical representation of the at-

om, constructing graphical representations, and making in-

ferences about the atom; see Figures 2 and 3); 

3. A representation-construct model that distinguishes between 

the graphical representation used in the given problem (i.e., 

Lewis structure, Bohr model, energy diagram, and orbital di-

agram; see Figure 1) for the step in which students are asked 

to construct the graphical representation, but that does not 

distinguish between graphical representations for the remain-

ing step types; 

4. A step-type / representation model that distinguishes be-

tween the graphical representation used in the given problem 

for each step types except for providing information about 

atoms. 

Each model was evaluated as to how well it predicts student be-

havior during problem solving. Following standard practice in ITS 

research [19, 20], I considered each step in a given tutor problem 

as a learning opportunity for the particular knowledge component 

involved in the step. Student behavior was assessed based on 

whether a student solved the step correctly (i.e., without hints and 

without errors). To evaluate model fit, I used the Additive Factors 

Model (AFM) in the PSLC DataShop [20]. As a metric for model 

fit, I used 3-fold item-stratified cross validation [21]. Table 1 

shows the root mean squared errors (RMSEs) for each knowledge 

component model. The step-type / representation model had the 

best model fit. Hence, this knowledge component model was used 

as a basis to generate features that describe students’ learning 

about atomic structure with interactive graphical representations. 

Table 1. RMSEs for knowledge component models. 

Knowledge com-

ponent model 

Knowledge 

components 

Item-stratified RMSE 

(lower is better) 

Single-step  base-

line model 
1 0.464794 

Step-type model 4 0.375733 

Representation-

construct model 
7 0.372553 

Step-type / repre-

sentation model 
13 0.363908 

5.2 Feature generation 
Based on the step-type / representation model, I generated features 

that describe how students interact with the tutor problems. Stu-

dents’ problem-solving behaviors can be described based on the 

outcome (proportion of incorrect first attempts, proportion of hint 

requests at the first attempt, proportion of total incorrect attempts, 

proportion of total hint requests) and based on durations (time 

spent per step in total, time spent on steps with first correct at-

tempt / steps with at least one incorrect attempt, time spent before 

first attempt, time spent before first attempt if it was a correct / 

incorrect attempt). Additionally, when students use an interactive 

tool (e.g., to construct representations) they can make a large 

variety of errors. Thus, the number of different error types when 

constructing representations is another measure of interest. To 

generate features, I computed these metrics for each knowledge 

component, yielding a total of 134 features (i.e., four outcome-

based and six duration-based set of metrics for each of the 13 

KCs, plus number of mistake types for constructing each of the 

four representations). 

5.3 Search for predictive features 
Since it is impractical to include all 134 features in a structural 

equation model, it was necessary to narrow down the number of 

features to consider. The most interesting features when investi-

gating the role of spatial skills on learning outcomes are those 

features that are predictive of students’ learning outcomes. To find 

predictive features, I conducted linear regressions on each set of 

features (i.e., proportion of correct steps, time spent on correct 

steps, etc.), computed for the given KCs. It was necessary to con-

duct separate regressions for each set of feature because the fea-

ture sets are not independent of one another. For example, the 

total incorrect attempts subsume the first incorrect attempts. 

Learning outcomes on the final posttest was the dependent varia-

ble in each linear regression model. Pretest performance was 

included as a predictor in all regression models. Regressions were 

conducted using 10-fold cross-validation. I used the results from 

the regression analyses to determine what characterizes predictive 

features. To do so, I compared the standardized coefficients and 

significance of features based on the metric they used and based 

on the KC they described. Table 2 shows the results for the re-

gression analyses. 

The goal of the selection procedure was to identify a set of predic-

tive features that are independent of one another. Overall, features 

based on knowledge components related to planning, constructing, 

and making inferences were predictive of learning outcomes. 

However, features based on retrieving information about atoms 

were not predictive of learning outcomes. Thus, atoms steps were 

excluded from further analysis. Among the outcome-based fea-

tures, those using proportion of incorrect first attempts and those 

using proportion of total incorrect attempts were equally predic-

tive of learning outcomes. However, when excluding atoms steps, 

the features based on proportion of incorrect total attempts were 

slightly more predictive than those based on incorrect first at-

tempts. Thus, features based in incorrect total attempts were se-

lected for further analysis. Features based on proportion of hint 

requests at first attempt and proportion of total hint requests had 

low predictive value because hint use was generally low. Thus, 

these features were excluded. Features describing error types 

while constructing representations had high predictive value. 

Thus, these features were selected for further analysis. Among the 

duration-based features, those based on time spent on steps with 

at least one incorrect attempt as a metric were selected because 

they were more predictive than the other duration-based features.  

Based on these findings, the following variables were selected for 

the structural equation model: 

 Average duration of planning steps with at least one incorrect 

attempt (plan_timeError) 

 Average duration of representation-construction steps with at 

least one incorrect attempt (repr_timeError) 

 Average duration of inference steps with at least one incor-

rect attempt (infer_timeError) 

 Proportion of total incorrect attempts on planning steps 

(plan_incorrect) 

 Proportion of total incorrect attempts on representation-

construction steps (repr_incorrect) 

 Proportion of total incorrect attempts on inference steps 

(infer_incorrect) 

 Number of error types on representation-construction steps 

(repr_errorTypes) 
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Table 2. Standardized coefficients for mediators in regression models, using color gradients to illustrate the strength of association 

with performance on the final posttest. 

predictor outcome-based features duration-based features 

 

total  

incorrects 

incorrect 

1st attempt 

error-

Types 

total step 

duration 

correct step 

duration 

error step 

duration 

before 1st 

attempt 

before 1st 

correct 

before 

1st error 

pretest 0.275 0.281 0.307 0.364 0.356 0.258 0.334 0.372 0.305 

atom -0.002 -0.027 
 

0.013 0.009 -0.076 0.006 -0.007 -0.054 

planning-

Bohr 
0.112 0.082 

 
-0.137 0.018 -0.039 0.068 0.024 0.016 

planning-

Energy 
-0.393 -0.112 

 
-0.163 -0.001 0.230 0.075 0.036 0.025 

planning-

Lewis 
-0.116 -0.114 

 
-0.025 -0.006 -0.048 -0.118 -0.093 -0.046 

planning-

Orbital 
0.018 0.112 

 
-0.004 0.112 -0.118 -0.066 0.07 -0.071 

construct-

Bohr 
-0.028 0.230 -0.201 -0.080 -0.053 -0.050 0.031 -0.103 0.062 

construct-

Energy 
-0.030 -0.174 -0.093 0.269 -0.144 0.003 0.087 -0.086 -0.155 

construct-

Lewis 
0.203 -0.053 -0.169 -0.109 0.025 -0.113 -0.077 0.029 -0.158 

construct-

Orbital 
-0.028 -0.119 0.139 0.056 0.045 -0.166 -0.211 0.064 -0.202 

inference-

Bohr 
-0.030 0.011 

 
-0.080 -0.138 -0.114 -0.017 -0.046 0.059 

inference-

Energy 
-0.121 -0.064 

 
0.269 0.196 0.091 0.121 0.064 0.116 

inference-

Lewis 
0.071 0.040 

 
0.169 0.013 -0.093 -0.023 0.025 0.053 

inference-

Orbital 
-0.140 -0.147 

 
-0.107 -0.044 -0.106 0.075 0.039 0.010 

Average of 

absolute 

values 

0.112 0.112 0.182 0.132 0.083 0.108 0.094 0.076 0.095 

 

6. STRUCTURAL EQUATION MODEL 
The goal of the structural equation model was to investigate why 

students with low spatial skills show lower learning gains. The 

structural equation model allows testing whether students’ prob-

lem-solving behaviors statistically mediate the effect of spatial 

skills on learning gains. To carry out this analysis, I considered 

the variables that I identified as predictive of students’ learning 

outcomes as potential mediators of the effect of spatial skills on 

learning outcomes at the final posttest, controlling for pretest. 

6.1 Model Search 
Since there are many models that might describe the nature of the 

effect of spatial skills on learning outcomes, I conducted a model 

search. Because a factor analysis indicated that the chemistry 

content pretest and the mental rotation ability test load onto sepa-

rate factors that correlate weakly, I assumed that pretest and spa-

tial skills are independent. I assumed that pretest is prior to the 

mediators and to the final posttest, that spatial skills are prior to 

the mediators and to the final posttest, and that mediators are prior 

to the final posttest. For the mediators, I assumed that planning is 

prior to constructing representations, which is prior to making 

inferences. Even under these constraints, there are at least 249 

distinct models that are consistent with these assumptions. Figure 

4 shows the fully saturated model that would be compatible with 

these assumptions. A fully saturated model contains all possible 

edges (or “effects”) compatible with the assumptions. Therefore, 

Figure 4 illustrates the search space of models: the search was 

conducted among models that had all, none, or a subset of the 

edges in the fully saturated model.  

 

Figure 2. Fully saturated model consistent with the assump-

tions. Mediators are highlighted in blue and organized by tiers 

(1 = planning; 2 = representation-construction, 3 = inference). 
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To search for models that are theoretically plausible and con-

sistent with the data, I used the Tetrad V program’s1 GES algo-

rithm along with background knowledge constraining the space of 

models searched [22] to those that are theoretically tenable and 

compatible with my assumptions [23]. In the model search, each 

edge shown in Figure 4 is evaluated as to whether including it 

yields a better model fit than not, and whether it is a statistically 

reliable effect. As Figure 4 illustrates, there are many distinct 

models consistent with the background knowledge and that are 

plausible tests for the mediation hypothesis. Yet, it is important to 

know which of these models fits the data best, because parameter 

estimates and the statistical inferences we make about them are 

conditional on the model being true. Parameter estimates of mod-

els that do not fit the data well are scientifically unreliable. Thus, 

searching for the model that is most consistent with the data en-

sures that the parameters of the model can be trusted. 

To conduct the model search at a technical level, I represented the 

qualitative causal structure of each model by a Directed Acyclic 

Graph (DAG). If two DAGs entail the same set of constraints on 

the observed covariance matrix,2 then they are empirically indis-

tinguishable. If the constraints considered are independence and 

conditional independence, which exhaust the constraints entailed 

by DAGs among multivariate normal varieties, then the equiva-

lence class is called a pattern [23, 24]. The GES algorithm is 

asymptotically reliable,3 and outputs the pattern with the best BIC 

score.4 The pattern identifies features of the causal structure that 

are distinguishable from the data and background knowledge, as 

well as those that are not. The algorithm’s limits lie primarily in 

its background assumptions involving the non-existence of un-

measured common causes and the parametric assumption that 

causal dependencies can be modeled with linear functions. The 

outcome of the model search is a structural equation model model 

that (1) is theoretically plausible, (2) fits the data well, and (3) 

contains only edges that describe statistically reliable effects. 

6.2 Results 
Figure 5 shows a model found by GES, with unstandardized pa-

rameter estimates. Table 2 shows standardized parameter esti-

mates. Each edge is evaluated as to whether it is a reliable effect 

using t-tests, assuming an alpha-level of .05. A Bonferroni correc-

tion of the p-values is not necessary in a structural equation model 

because the significance tests are not independent. Table 2 shows 

the results from these tests. Altogether, the model fits the data 

well5 (χ2 = 32.77, df = 27, p = .21).  

                                                                 

1 Tetrad, freely available at www.phil.cmu.edu/projects/tetrad, 

contains a causal model simulator, estimator, and over 20 model 

search algorithms, many of which are described and proved as-

ymptotically reliable in [24]. 

2 An example of a testable constraint is a vanishing partial correla-

tion, e.g., XY.Z = 0. 

3 Provided the generating model satisfies the parametric assump-

tions of the algorithm, the probability that the output equiva-

lence class contains the generating model converges to 1 in the 

limit as the data grows without bound. In simulation studies, the 

algorithm is quite accurate on small to moderate samples. 

4 All the DAGs represented by a pattern will have the same BIC 

score, so a pattern’s BIC score is computed by taking an arbi-

trary DAG in its class and computing its BIC score. 

5 The usual logic of hypothesis testing is inverted in path analysis: 

a low p-value means the model can be rejected. 

Table 3. Parameter estimates (PE) for all edges and result of t-

tests assessing whether the PE is significantly different from 0.  

Edge from… to… PE t p 

infer_timeError infer_incorrect .0124 3.2999 .0013 

plan_incorrect final_posttest -.1116 -2.4706 .0150 

plan_incorrect infer_incorrect .3704 6.3202 < .001 

plan_incorrect plan_timeError 4.6959 3.7759 < .001 

plan_incorrect repr_incorrect 3.0573 9.5622 < .001 

plan_incorrect repr_timeError 19.8158 2.8253 .0056 

plan_timeError infer_incorrect -.0079 -2.2244 .0281 

plan_timeError infer_timeError .2706 3.1104 .0024 

plan_timeError repr_timeError 1.8936 4.7591 < .001 

pretest_content final_posttest 0.2293 2.9336 .0040 

pretest_content plan_incorrect -.4975 -3.1908 .0018 

repr_incorrect infer_incorrect .0329 2.6633 .0088 

repr_incorrect repr_timeError 11.068 7.529 < .001 

repr_timeError infer_timeError .0394 3.1303 .0022 

repr_timeError repr_errorTypes .0083 8.6891 < .001 

spatial_skills final_posttest .147 1.9078 .0589 

spatial_skills plan_incorrect -.4102 -2.6326 .0096 

spatial_skills plan_timeError -3.5242 -1.639 .1039 

The final model shows that spatial skills have a direct positive 

effect on students’ learning outcomes at the final posttest. Fur-

thermore, spatial skills predict students’ problem-solving behav-

iors while they are planning the graphical representation, which, 

in turn, has an effect on outcome-based and duration-based 

measures of problem-solving behaviors while they construct the 

graphical representation and while they make inferences from 

graphical representations about domain-relevant concepts. Only 

the proportion of incorrect attempts on planning steps mediates 

the effect of spatial skills on learning outcomes: plan_incorrect is 

the only variable that mediates the effect of spatial_skills on fi-

nal_posttest. The edge from spatial_skills to plan_incorrect shows 

that a student with a perfect score on the spatial skills test makes 

.4102 fewer incorrect attempts per step than a student with the 

lowest possible score on the spatial skills test. The edge from 

plan_incorrect to final_posttest means that a student who makes 

one incorrect attempt per step scores 11.16% lower on the final 

posttest than a student who makes no incorrect attempts (control-

ling for pretest performance). In sum, the mediated effect of spa-

tial_skills to final_posttest through plan_incorrect is .4102 * .1116 

= .0458. Incorrect attempts while planning representations only 

partially mediate the effect of spatial skills on learning outcomes, 

because there is a direct effect of .147 from spatial_skills to fi-

nal_posttest. Yet, making more incorrect attempts while planning 

graphical representations explains a considerable portion (about 

25%) of the effect of spatial skills on learning outcomes. 

7. CONCLUSIONS 
The goal of the mediation analysis was to investigate (1) which 

aspects about working with interactive representations are harder 

for students with low than with high spatial skills and (2) which of 

these aspects explain why students with low spatial skills show 

lower learning gains than students with high spatial skills. With 

respect to the first question, results show that spatial skills have an 

effect on all aspects of students’ problem-solving behaviors, 
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Figure 3. Final structural equation model with unstandardized parameter estimates. Green values show means. 

except for looking up information about the atoms: planning, 

constructing, and making inferences from graphical representa-

tions. Spatial skills affect outcome-based measures of perfor-

mance as well as duration-based measures of performance. Yet, 

the structural equation model shows that planning has a central 

role: students’ ability to plan graphical representations has an 

impact on all further problem-solving behaviors as students con-

struct graphical representations and make inferences about do-

main-relevant concepts based on the graphical information. With 

respect to the second question, results show that planning is the 

only aspect that mediates the effect of spatial skills on learning 

gains. The difficulties that students with low spatial skills have in 

constructing representations and in making inferences may merely 

be symptomatic—they do not explain why these students show 

lower learning gains. Only the fact that students with low spatial 

skills tend to struggle more in planning representations explains 

why they benefit less from interactive representations. 

Why might students’ ability to plan graphical representations be 

so strongly affected by their spatial skills? Planning a representa-

tion requires students to describe what the representation should 

look like, based on the properties of the atom. This task requires 

them to mentally picture visuo-spatial features based on text-

based information about the atom’s properties. This takes more 

cognitive effort for students who struggle with such visuo-spatial 

tasks. Hence, these students are at risk of cognitive overload dur-

ing planning, which jeopardizes learning. Perhaps difficulties in 

planning are amplified by the fact that the interactive representa-

tion tool is not visible during the planning step (see Figure 3).  

Why might the ability to plan representations determine students’ 

learning gains? Learning with graphical representations means 

that students have to visualize new information externally while 

integrating this information with their internal mental models of 

the domain-relevant concepts [26]. Planning might play a central 

role because it helps students organize their initial mental model 

of the domain-relevant concepts. Having a well-organized initial 

mental model might facilitate integration of new information into 

this model: learning occurs as students expand and repair their 

mental models throughout the learning intervention, for instance 

by self-explaining how the new information relates to their initial 

mental models [27].  

In summary, the findings from the mediation analysis shed light 

into the broader theoretical question of how spatial ability affects 

learning outcomes in STEM. Spatial skills seem to be important 

because students’ benefit from interactive representations depends 

on their ability to mentally visualize abstract concepts before they 

use an external representation to visualize the concept. Mental 

visualization may play a key role in students’ learning of abstract 

concepts because it allows students to integrate new information 

into their mental models. These findings also yield new hypothe-

ses about the practical question of how best to support students 

with low spatial skills. These students might benefit from receiv-

ing additional assistance in planning graphical representations. 

They might benefit from seeing the interactive representation tool 

during the planning steps, so that they can more easily visualize 

the representation. They may also benefit from receiving exam-

ples of successful planning. It would be interesting to investigate 

whether such support increases learning gains for students with 

low spatial skills. In light of the interpretation that planning is so 

important because it helps students organize their initial mental 

models, it would be interesting to conduct a think-aloud study to 

assess whether, indeed, helping students plan representations 

facilitates mental model integration. 

Several limitations of the present analysis need to be discussed. 

First, performance on planning steps only partially mediates the 

effect of spatial skills on learning outcomes. Thus, there might be 

other mediators that we did not assess. Further research is needed 

to investigate other aspects of problem solving that explain why 

students with low spatial skills tend to show lower learning gains. 

Second, the data is correlational: it is impossible to randomly 

assign students to having “low” or “high” spatial skills. As in any 

correlational data set, there may be other unknown factors that 

affect the effects of interest. Third, the structural equation model 

assumes linear relations between the variables in the model. This 

assumption is reasonable but not infallible. Finally, the analysis is 

based on a sample of 117 students. Even though that is sizable 

compared to many ITS studies, model search reliability increases 

with sample size, but decreases with model complexity. Hence, it 

is impossible to put confidence bounds on finite samples [21].  

To conclude, the mediation analysis presented in this paper yields 

new insights into why students with lower spatial skills struggle in 
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learning with interactive graphical representations. It seems that 

planning representations is a crucial aspect of learning success. 

This finding yields new hypotheses about what types of interven-

tions these students may benefit from. Even though the present 

paper merely presents a first step towards better understanding the 

mechanisms that underlie the “the-rich-get-richer” rule in STEM 

domains, it may help us address the unfortunate fact that students 

with low spatial skills tend to show lower achievements in STEM 

domains and they are less likely to pursue careers in these do-

mains. In other words, this paper is a first step towards creating an 

“everyone-gets-richer” rule for STEM learning. 
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ABSTRACT
Bayesian Knowledge Tracing (BKT) has been in wide use for 
modeling student skill acquisition in Intelligent Tutoring Systems 
(ITS). BKT tracks and updates student’s latent mastery of a skill 
as a probability distribution of a binary variable. BKT does so by 
accounting for observed student successes in applying the skill 
correctly, where success is also treated as a binary variable. While 
the BKT served the ITS community well, representing both the 
latent state and the observed performance as binary variables is, 
nevertheless, a simplification. In addition, BKT as a two-state and 
two-observation first-order HMM is prone to noise in the data. In 
this paper, we present work that uses feature compensation and 
model compensation paradigms in an attempt to conceptualize a 
more flexible and robust BKT model. Validation of this approach 
on the KDD Cup 2010 data shows a tangible boost in model 
accuracy well over the improvements reported in the literature. 

Keywords
Cognitive model of student practice, Bayesian Knowledge Tracing. 

1. INTRODUCTION
Bayesian Knowledge Tracing (BKT) is one of the most popular 
student modeling techniques in the field of Intelligent Tutoring 
Systems (ITS). It has been used for 20 years now, and it has 
served the educational community well. Among the major 
weaknesses of BKT are the non-identifiability of the parameters, 
parameter degeneracy [1], and, in general, susceptibility to the 
noise in the naturally-occurring data. BKT is, by definition, a first-
order Hidden Markov Model (HMM) with a binary latent variable 
representing student knowledge and a binary observed variable 
indicating student performance. While representing latent student 
knowledge as a binary variable with known and unknown states has 
been widely accepted by the Intelligent Tutoring Community (ITS), it 
is, no doubt, a simplification. Accounts of the need for a larger 
number of latent states can be found in the literature, including but not 
limited to the work of Aleven et al. [2]. 

Practical issues occur in other fields where first-order HMMs are 
used intensively (e.g., speech recognition, handwriting 
recognition, etc.). In these fields, it is common to adopt various 
compensation measures including model compensation and 
feature compensation [3]. In this paper, we are applying both 

compensation paradigms to create a variant of BKT – Spectral 
BKT – in an attempt to overcome some of BKT’s shortcomings. 
Spectral BKT uses spectral observations – n-grams of the 
consecutive original unary observations of correct and incorrect 
skill application. It also relies on an extended set of latent states. 
While a number of Spectral BKT configurations can be 
conceived, we constructed and empirically tested a setup with 
eight spectral observations (3-grams of original observations) and 
four states. To validate the Spectral BKT approach uses an openly 
available KDD Cup 2010 data set of the 2008-2009 Carnegie 
Learning's Cognitive Tutor data. The resulting improvement is 
well above all reported in the literature. 

2. RELATED WORK
2.1 Bayesian Knowledge Tracing 
Bayesian Knowledge Tracing (BKT) was introduced by Corbett 
and Anderson [4] in 1995. The standard BKT model assumes that 
student knowledge of a particular skill is an unobserved binary 
latent variable that changes based on the binary correctness of the 
observed student performance. Standard BKT has 4 parameters. 
Probability of knowing skill a priori (pInit), probability of 
learning the skill after each opportunity to apply it (pLearn), 
probability of making a mistake when applying an already known 
skill (pSlip), and probability of luckily producing a correct 
response when the skill is not known (pGuess). The probability of 
knowledge decay (pForget) is assumed to be zero in standard 
BKT. In general, a HMM with two states and two observations 
that has a total of 10 numeric values would be said to have 5 
parameters (last value in every row is redundant). However, since 
forgetting is set to zero, BKT is assumed to have 4 parameters. 

A large volume of work has been published on fitting BKT 
models and its variations. Wang and Beck [6] introduced two 
hierarchical factors into BKT to account for and compare class 
and student level parameter variability. Xu and Mostow [7] blend 
BKT approach with logistic regression and create an LR-DBN 
model that is capable of addressing multiple skill coding for a 
single step (something that BKT technically doesn’t, due to 
conditional independence assumptions). González-Brenes et al. 
[8] generalized BKT model to address a feature-rich context 
addressing multiple skills per step, temporal features, and expert 
knowledge. Another work of Pardos and Heffernan is an 
extension of BKT call KT-IDEM [9]. It addressed item variance 
in the data via introducing item difficulty observable nodes. 

2.2 Empirical Problems of BKT 
A noticeable portion of the work on BKT models is devoted to 
discussing problems researchers face when fitting them to the 
data. Baker et al. [1], when talking about the contextual estimation 
of guess and slip parameters in BKT, stipulate that their model is 
less prone to the BKT model degeneracy. What is often meant by 
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degeneracy are the cases when probabilities of slipping and 
guessing assume unjustifiably high values, and this often calls for 
the use of parameter caps. BKT model degeneracy is the artifact 
of the known issue in HMM called label switching [10]. The issue 
is made more convoluted by the fact that forgetting is not allowed 
to vary in BKT and is set to zero. 
Work by Beck and Chang [11] discusses an example of yet 
another problem of BKT – identifiability. There often exists a 
range of parameter value sets that result in the same likelihood 
given the data it’s estimated on. Falakmasir and colleagues [12] 
have encountered the same problem in their previous work on the 
Spectral Learning approach to fitting BKT models. In that work, 
the formulation of the best-fitting parameter search problem was 
transformed into the spectral space, where a global optimum of 
the objective function is guaranteed to be reached. When 
translating the spectral solution back to the HMM space, the 
authors had to define a heuristic to pick the most plausible 
parameters from an infinite set of equally good parameter sets. 

2.3 Theoretical Issues with BKT 
Arguably, it’s the two Markov assumptions and the setup of the 
BKT that result in its known shortcomings. First, is the Limited 
Horizon Assumption states that the probability of being in a state 
at time t depends only on the state at time t-1. This kind of HMM 
is called a first-order HMM since it only has a memory of one 
previous time slice. Second Markovian assumption is the 
Stationary Process Assumption that the conditional distribution 
over the next state given the current state does not change over 
time. Given the fact that BKT has only one parameter to capture 
state transition, student learning rate is forced to remain constant.  

Both, the limited memory, and the constant learning rate are 
simplifications and one can easily construct a case for a more 
flexible representation of skill learning. For example, between the 
unknown state and known state there can be states that capture the 
preliminary stage of learning when the student having just seen 
one or two problems is mostly guessing. Before transitioning to 
the known state, the skill could be in the state that often results in 
slips since student's knowledge is not strong enough. Another 
likely reason for BKT’s limitations is sensitivity to noise. In BKT, 
Gaussian noise is assumed for the latent (knowing the skill) and 
the observed variables. However, when dealing with naturally 
occurring data, the signal to noise ratio might drop considerably. 
As a result, one might arrive at degenerate model parameters.  

There are two main approaches to handling noise in HMM: 
feature compensation and model compensation. In feature 
compensation, the noisy traits (for example, observations) are 
enhanced to remove the effect of the noise. In model 
compensation, the original models are mapped into a new model 
that can be learned from the noisy observations. It has been 
empirically established that feature compensation is simpler and 
more efficient to implement, but model compensation has the 
potential for the greater robustness [3]. 

3. SPECTRAL BKT
In this work, we are attempting to combine feature compensation 
and model compensation to overcome the shortcomings of the 
standard BKT that assumes an ideal noise-free environment and is 
represented by a first-order HMM. We address feature 
compensation by changing the way we treat the observations. 
Instead of a single observation, we are considering n-grams – 
sequences of consecutive observations for the skill, where next n-
gram observation inherits n-1 atomic observations from the 
previous one. In NLP, 3-grams are often successfully used for 

feature compensation and we have empirically found that 3-grams 
work sufficiently well while 2-grams do not. From the 
information-theoretic point of view, the entropy rate of Hidden 
Markov Processes with two states proved to have at most second 
order behavior (captured by second-order HMM) [13]. This 
means that if we consider the data to be generated by a relatively 
noise-free naturally-occurring process and that the skills are fine-
grained enough, we only need to look at 3-grams of the 
observations in order to find the true model. One may use n-grams 
with n greater than 3. However, the computations involved would 
grow exponentially. Figure 1 shows how the original sequence of 
observations is encoded into 3-grams. 

The model compensation is addressed by adding two intermediate 
states between the unknown and known to the original BKT. Once 
the new observations are defined, the new model that we will call 
Spectral BKT (due to the use of spectral observations) can be 
treated as a first order HMM for the purposes of fitting the 
parameters.  

In Spectral BKT, state 1 is the known state and state 4 is the 
unknown state. States 2 and 3 we leave unlabeled at this point. 
Like in the standard BKT, once the student is in the known state 
we assume no un-learning. Moreover, the probability of going 
from the unknown state directly to the known state is zero. Finally, 
once the knowledge transitions from the unknown state, there’s no 
return. Given these assumptions, the sparsity structure changes the 
number of state transition parameters from 1 in standard BKT to 6 
in Spectral BKT. By enforcing the sparsity structure in our 
transition matrix, we guarantee the forward progressing from 
unknown to known in each iteration and prevent the EM 
algorithm from learning degenerate models. We assume no further 
sparsity in any of the 4 priors and 4*7=28 values of the 
observation matrix, we have (4-1)+6+(7-2)*4=37 parameters in 
this particular Spectral BKT conceptualization. 
The transformation of the original data for fitting the new Spectral 
BKT is fairly simple (rf. Figure 1). However, when we talk about 
model predictions, the Spectral BKT produces probability 
distributions over 8 3-gram observations and one has to make 
special arrangements to convert them to 2 (probability of correct 
and of incorrect) in order to compare it with the standard BKT 
algorithm fairly. First, we ordered the spectral observations from 
000 to 111 linearizing a partial order heuristic (rf. Figure 2a). 
According to this heuristic a spectral observation 011 is the 
second best indication of success after observation 111. Spectral 
observation 101 is third best with, potentially, a careless slip in 
the middle. Spectral observations 001 and 110 were a judgment 
call. We have placed 001 before 110, assuming it is an early 
indicator of learning, and 110 is a premature indicator of learning 
with a failure in the end. 

When mapping 8 values to binary success and failure, we came up 
with three rules. A regular rule splits 8 probabilities exactly in 
half and sums of the two groups are the new probability of correct 
and incorrect (third column in Figure 2a). The regular rule can 
also be interpreted as looking at the third bit of each 3-gram A 
strict rule is more stringent about which observation probabilities 
are counted toward success. A relaxed rule is more. Since our 
Spectral BKT produces a first 8-probability predictions starting 
with the third original observation (due to the use of 3-grams), we 
have also devised mapping of the 8 probabilities to produce 
predictions for the first two observations. These mappings are 
given in Figure 2b,c and reference the spectral observations from 
Figure 2a. For example, if the observed data contained 
observations 0, 1, and 0, and the Spectral BKT prediction of 
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correctness was {0, 0, 0.1, 0.1, 0.1, 0.2, 0.2, 0.3}, then, according 
to the regular mapping rules, probabilities of correct for the three 
observations would have been 0.4, 0.3, and 0.2.  

4. DATA
To validate our models we used data from KDD Cup 2010 
donated by Carnegie Learning, Inc. and available for downloading 
at http://pslcdatashop.web.cmu.edu/KDDCup. Of the two datasets 
available we chose Bridge to Algebra. This dataset contains about 
20 million transactions belonging to over 6 thousand students 
working on nearly 150 sections of mathematics curriculum 
practicing around 1650 skills. The dataset contains information 
about curriculum context (unit and section the student is in), 
problem context (problem name and problem step name), 
cognitive skill labels, timing, as well as correctness of the first 
attempt to solve the problem step and assistance information 
(number of hints requested and number of errors). The KDD Cup 
2010 is currently the largest freely available collection of learner 
data. That and the fact that this data was collected by Carnegie 
Learning's Cognitive Tutor that uses BKT model makes it a good 
candidate for testing the Spectral BKT. According to the custom 
of the Carnegie Learning’s Cognitive Tutor, skills were 
considered unique within each curriculum section even if the skill 
label repeated across several sections. Also, we have treated an 
absence of the skill (a null skill) as a special skill. 

5. MODEL VALIDATION
For the purposes of training the models, we have transformed the 
original data with unigram observations into a dataset with 3-gram 
observations. We ran 10-fold student-based and item-based cross-
validations that each produced a set of predictions for the 
transformed 3-gram data. To fit and cross-validate the models we 
used the hmmsclbl tool – a C/C++ utility specially developed to 
work with large data sets and successfully used in [5] (available 
for download at http://github.com/IEDMS/standard-bkt). Standard 
BKT outputs two predictions per data row – probability of correct 
application of the skills in question and the probability of 
incorrect application. Spectral BKT works with 8 spectral 
observations and its predictions come in the form of probability 
distributions of 8 values per row of the predicted data. Spectral 
BKT models predictions were mapped from the 8-values onto the 
2-value probability distribution schema in Figure 2. The summary 
of the cross-validation results for the training dataset is listed in 
Table 1. Here we list the performance of standard BKT next to the 
performance of Spectral BKT model. We only list results the 
relaxed 3-gram-to-unigram mapping, since regular and strict 
mapping performed worse. We tested several solver algorithms 
hmmsclbl supports, including EM and stochastic gradient 
descent. EM gave a consistently better performance, but the 
margin was small: within 1% in accuracy and 0.03 in RMSE. 

When running student-stratified cross-validation, we were 
repeatedly hiding the full data belonging to 10% of the students. 
In item-stratified cross-validation, the transactions belonging to 
problems that we intended to hide could appear in individual 
students’ data in arbitrary locations. For the purposes of item-
stratification, we have marked the data of 10% of the items as 
unobserved but accounted for the opportunity to apply skills. 

Standard BKT model has 4 parameters per skill. Spectral BKT 
model, as per our conceptualization of the transition matrix, has 
37. The number of parameters being an order of magnitude
higher, the AIC and BIC metrics that penalize for that go up 3% 
and 9% (item-stratified cross-validation). In the case of student-
stratified cross-validation, both AIC and BIC are decreaseв by 
21% and 13%. Accuracy and RMSE in case of Spectral BKT 
improve a lot. To the best of our knowledge, the overall accuracy 
of BKT or its variations was never reported to be above 90% on 
the dataset we used and Spectral BKT hits an impressive 92%. 

Recall that we had to back-predict the predictions of Spectral 
BKT for student skill opportunities one and two due to the use of 
3-gram observations. For this purpose, in Table 1 we list the 
additional accuracy and the RMSE values for student skill 
opportunity 1 alone (7% of the data), opportunity 2 alone (6% of 
the data), and opportunity 3 and further (87% of the data). To no 
surprise, the first opportunity prediction of Spectral BKT is 
slightly worse than the one of standard BKT by a margin in the 

Table 1. Comparison of cross-validation results for standard BKT and Spectral BKT 

All opportunities Opportunity 1 Opportunity 2 Opportunity 3+ 

Model Par/skill CV AIC BIC Acc.* RMSE Acc. RMSE Acc. RMSE Acc. RMSE 

BKT 4 item 15380089 15478083 0.8609 0.3293 0.7469 0.4112 0.8099 0.3731 0.8740 0.3181 

Spectral BKT 37 item 15853433 16758456 0.9208 0.2472 0.7472 0.4146 0.8915 0.2940 0.9337 0.2289 

BKT 4 student 13947080 14045074 0.8659 0.3153 0.7435 0.4108 0.8126 0.3665 0.8799 0.3020 

Spectral BKT 37 student 11553442 12458465 0.9196 0.2405 0.7469 0.4130 0.8897 0.2937 0.9325 0.2210 

* For a reference, the majority class accuracy of predicting correct response for every row is 0.8569.

Figure 1. New n-gram observations 

Figure 2. Mapping spectral observations from a distribution 
over 8 probabilities to 2: a) predicting starting with a 3rd 
original observation when two prior observations are 
available. b) & c) predicting original observations 2 and 1. 
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third digit of both accuracy and RMSE, both around 74% and 0.41 
respectively. On the second opportunity prediction, Spectral BKT 
has a decisive edge of almost 9% and 0.08 in RMSE. On the third 
opportunity and further, Spectral BKT has a comfortable 
advantage of around 5% in accuracy and 0.09 in RMSE. 

6. DISCUSSION
The performance of the Spectral BKT demonstrated a tangible 
improvement over standard BKT and only with an incremental 
change in the underlying computations. We attribute the boost in 
predictive performance to the several factors. First, feature 
compensation via considering 3-grams of original observations 
allows for a more stable estimate of the learning process. In a 
sequence of responses {0,1,0,1,1}, the third value of 0 would be 
treated a potential slip by the standard BKT. At the same time, 
Spectral BKT would consider it, as a part of the first triple {0,1,0} 
to be the noisy guessing, and then, in the second triple {1,0,1}, as 
part of the noisy slipping. Finally, in the third triple {0,1,1}, 0 
would be considered to be a part of noise-free learning pattern. 
The fact that there are more than 2 states allows Spectral BKT to 
represent an intermediate configuration of student learning in 
addition to just known or unknown. As a result, Spectral BKT is 
able to deal with the noise in the observations better.  

The interpretation of a new conceptualization of the process of 
learning remains an open question. Having agreed on that state 1 
is the known state and state 4 is the unknown state, we could offer 
several hypotheses of what the remaining middle states are. The 
first hypothesis relates to the linear view of the stages of 
mastering the skill. When a student just started learning and only 
seen a few problems, their knowledge is overly specific, and they 
would end up guessing and failing a lot. We can call this state 3 – 
too-specific. Once the student sees more problems and starts to 
generalize the knowledge, they would still occasionally slip due to 
over-generalization. We can call this state 2 – too-general.  
Our second hypothesis is related to a publication by Aleven and 
colleagues [2]. In this work, authors study the metacognitive 
behavior of students by administering two types of tutors. First, 
the cognitive tutor that implements a mastery learning approach. 
Second, the meta-cognitive tutor used a previously created model 
of effective and ineffective help-seeking behavior in order to 
study the effect of different meta-cognitive traits on learning. 
Authors conclude that the use of the standard BKT model with 
two states might be limiting the capability of the meta-cognitive 
tutor to offer effective help due to lack of intermediate states 
between the known state and unknown state that might give us a 
better insight into student behavior. In the light of the work by 
Aleven et al., the progression of the states could be reflecting an 
interaction of binary latent capturing skill mastery (known, 
unknown) with the binary latent capturing effective use of meta-
cognitive strategies (2 mastery states * 2 metacognitive states = 4 
overall states). To address this hypothesis, one might consider 
step durations (available in the original dataset) or design and run 
a focused investigation like the one in [2]. 

In our work, we used 3-grams of original binary observations, 
giving us 8 new spectral observations and we also used 4 states. 
This particular setup can be changed in the search of a better 
Spectral BKT model. Increasing the number of states could be 
potentially beneficial. However, one must be careful, for as the 
number of states grows, the chance to observe relevant patterns of 
binary observations drops and the Spectral BKT might be under-
defined and this could have problems with performing on unseen 

data whether the patterns missing from the training set are present. 
When there are fewer states that there are spectral observations, 
the states serve the aggregation role. We empirically tried 
configurations of Spectral BKT with 2 states and 4 bigram 
spectral observations that did not result in an improvement over 
standard BKT, as well as a configuration with 8 states and 16 4-
gram spectral observations that did not result in a tangible 
improvement over the configuration we discussed in this paper. 
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ABSTRACT
Student modeling can help guide the behavior of a cognitive tutor 
system and provide insight to researchers on understanding how 
students learn. In this context, Bayesian Knowledge Tracing (BKT) 
is one of the most popular knowledge inference models due to its 
predictive accuracy, interpretability and ability to infer student 
knowledge. However, the most popular methods for training the 
parameters of BKT have some problems, such as identifiability, 
local minima, degenerate parameters and computational cost during 
fitting. In this paper we address some of the issues of one of these 
training models, BKT Brute Force. Instead of finding the parameter 
values that provide the lowest Residual Sum of Squares (RSS), we 
estimate this minimum RSS value from some a priori known values 
of the skill. From there we perform some preliminary analysis to 
improve our knowledge of the relationship between the RSS, from 
BKT-BF, and the four BKT parameters. 

Keywords: Bayesian Knowledge Tracing · BKT Brute Force · RSS 
modeling 

1. INTRODUCTION
1.1 Bayesian Knowledge Tracing 
Bayesian Knowledge Tracing (BKT) [1] is a student model used to 
infer a student’s knowledge given their history of responses to 
problems, which it can use to predict future performance. Using 
students’ responses to questions, which are tagged with the skills 
that the instructor wants the students to learn, the model tells the 
probability a student has mastered a skill.  

BKT is a two state Hidden Markov Model, these states being the 
one in which the student knows a given skill, and the one where the 
student does not. The “knowledge” state is absorbent, implying that 
the student will not forget the skill once it is learned. To calculate 
the probability that a student knows the skill given their 
performance history, BKT needs to know four probabilities:  

L0, the probability a student knows the skill before attempting 
the first problem,  

T, the probability a student, who does not currently know the 
skill, will know it after the next practice opportunity, that is 
the transition probability at each practice opportunity,  

G, the probability a student will answer a question correctly 
despite not knowing the skill,  

S, the probability a student will answer a question incorrectly 
despite knowing the skill.  

According to this model, knowledge affects performance (mediated 
by the guess and slip rates), and knowledge at one time step affects 
knowledge at the next time step: if a student is in the unknown state 
at time t, then the probability they will be in the “knowledge” state 
at time t+1 is P(T). Usually, a separate BKT model is fit for each 
skill and only the first attempt at each question is taken for each 
student. 

1.2 Bayesian Knowledge Tracing – Brute 
Force  
Bayesian Knowledge Tracing – Brute Force [2] (BKT-BF) is an 
algorithm to estimate the values for the BKT parameters. It is a
simple brute force algorithm, where a grid of possible values is set 
so that for each combination of parameters, a RSS value is obtained. 
At the end, the combination of values resulting in the lowest 
Residual Sum of Squares (RSS) value for a skill is the one that will 
be used in BKT. 
In BKT-BF, the RSS is calculated as follows: 

eq. 1 

Where: 

Oi,t is {0,1} depending on the student’s answer to a given 
question,  

students is the number of different students who faced any 
question of a given skill, 

dim is the number of different questions that are tagged with a 
given skill  

Ci,j is the likelihood to produce a correct answer to a question. 
This calculation is derived from the BKT formulas, and it is 
done, for the student i, as follows:  

eq. 2 
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BKT-BF is, however, is very expensive in computational cost, as 
all brute force algorithms are, and does not help the identifiability 
[3] problem from BKT; identifiability results in different 
combinations of parameter values, some of which make no 
theoretical sense, giving similar RSS values. The other most usual 
algorithm is EM [4], which is not as computationally demanding 
but suffers from local minima issues. There are efforts to develop 
methods [5], [6], [7] and [8] that use different techniques to tackle 
the issues we mentioned, however, in this paper we will focus our 
work on BKT-BF. 

Given that BKT-BF is an algorithm that gives good practical 
results, but it is so computationally expensive, the objective of this 
paper is to make accurate estimates of the minimum RSS value for 
any skill. At the same time, this might provide a better 
understanding of the BKT model.  

2. DATA AND METHODS
The data used belongs to the 'Psychology MOOC GT - Spring 2013' 
dataset, accessed via DataShop (pslcdatashop.org) [9]. This course 
was designed by the Open Learning Initiative (OLI), who are 
known for their data driven design [10], [11], this fact and their long 
experience in course design ensure that skills have been properly 
tagged. The course was taken by 5615 students that issued around 
2 million first attempt answers. There were 226 different skills 
identified in the course. The skills map used can be also found in 
[9]

In order to obtain the RSS values, we have used the BKT-BF 
algorithm. Specifically, we have used values from 0.05 to 0.95, 
with a 0.15 step, for L0 and T; for G and S, the bounded approach 
has been taken in order to avoid model degeneracy [5], so we have 
used values from 0.05 to 0.30, with a 0.05 step. Given all this, 1764 
different RSS values were obtained per skill. 

To identify each skill, we have defined three variables: 

dim: number of different questions that are tagged with a given
skill
n: total number of responses on questions tagged with a given
skill. It’s the product of students and dim from eq.1
percent_correct (pc): Percentage of correct answers to
questions tagged with a given skill

These variables have been chosen as they are pieces of information 
that one may have easy access to before computing BKT-BF. 

In order to achieve the aforementioned objective, we will train a 
linear model using the three variables we defined for each skill. 
This model will allow us to make predictions of which will be any 
skill’s minimum RSS, if we were to train it using BKT-BF. To train 
the model, we have extracted the minimum RSS value, resulting 
from the BKT-BF calculations, for each one of the skills, and used 
it as the RSS value for that skill. An example of the data we have 
worked with is shown in table 1. 
It has to be noted, that skills that were tagged in less than 4 different 
questions (dim<4) have been discarded. That results in a sample of 
103 different skills for training and evaluating the model.  

Table 1. Data structure for skills 
dim n pc Skill Grid BKT-BF RSS min

8 4923 79,8% 1 1764 data 795.6
16 11062 89,5% 2 1764 data 1024.5

… … … … … …

The resulting distribution of RSS values is far from being normal,
as it could be expected. However, if instead of using the RSS value,
we compute the Root Mean Squared Error (RMSE) for each skill, 
by taking the square root of the RSS divided by n, the resulting 
distribution is acceptably normal as we can see in the histogram 
shown in Figure 1 and in the Q-Q plot in Figure 2. This latter plot 
assesses normality by displaying the normal theoretical quantiles (x 
axis) and the normal data quantiles (y axis). If the distribution is 
perfectly normal, data would perfectly fit the dotted line.  

Figure 1. Histogram and boxplot of the RMSE distribution 

Figure 2. Q-Q plot of the RMSE 

3. RESULTS
Firstly, a brief summary for the data we have worked with is shown 
in the table 2. 

Table 2. Summary of the data for training the model. 

n dim pc RMSE RSS

min 1738 4.00 0.458 0.187 152.0

Median 5899 8.00 0.821 0.379 811.8

Mean 8556 9.65 0.807 0.373 1235.1

Max 47215 23.00 0.964 0.505 8483.4
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A linear regression has been performed on the RMSE, using n, dim,
pc, some usual transformations, such as using the logarithms and 
the squares of the variables, and the variable interactions as 
predictors. A best subset selection (using the leaps package in R, 
[12]) approach has been taken, resulting the best model the one 
using a second degree polynomial with pc. The results for the linear 
regression estimates are shown in the table 3. 

Table 3. Linear regression results and error metrics 

Variable Estimate Std. Error t value P(>|t|)

Intercept 0.3725 0.0009 415.9 <2e-16

pc -0.6096 0.0091 -67.1 <2e-16

pc2 -0.2545 0.0091 -28.0 <2e-16

Adjusted R2 Residual standard Error

0.981 0.009089

Finally, using a random validation set (75 skills to train the model 
and 28 to test it), we have obtained an adjusted R2 of 0.978, that 
shows a very good predictive ability for the adjusted model.  

In an attempt to have a better knowledge on the relationship 
between the RMSE values and the BKT parameters, we have run a 
preliminary Principal Components Analysis (PCA). The resulting 
biplot of the PCA is shown in figure 3. For the sake of a proper 
understanding of the relationship between the different variables, 
we have eliminated the data labels from the chart. The variance 
explained by the first two Components of PCA is 71.4%. 

Figure 3. Plot of the PCA loadings of RMSE, L0, T, G and S 

In the chart, we can see how the RMSE is highly correlated with 
the slip parameter. At the same time, the parameters G and T seem 
to be highly inversely correlated, which is something that one can 
expect as the more likely it is to learn a skill, the less likely it is that 

you might be guessing the outcome. However, the most noticeable 
aspect is the orthogonality between T, G and RMSE. In the PCA 
context, orthogonality is related to poorly correlated variables. If 
that was to be true, it could imply that T and G have little or no 
effect in terms of RMSE variation. We have also calculated and
drawn the biplots for each skills’ RMSEs, using all BKT-BF data 
points, not just the minimums, and their results lead us to similar 
conclusions than the ones obtained from figure 3. 

4. DISCUSSION AND CONCLUSIONS
We have been able to find a linear model that allows us to estimate 
the minimum RSS value for the training of the BKT parameters. 
Using this, we might be able to find a quicker convergence using a
modified version of BKT-BF, so that the computational cost will 
be reduced. Even though that the model has been developed using 
the RMSE instead of the RSS, the model will also be useful for 
predicting the latter as the only difference is a transformation 
involving dim and n. 

We are aware that, in the BKT-BF calculations, we are using a step 
much larger than the one recommended by the algorithm. This 
shouldn’t be a problem with the conclusions we reached because 
we are not using BKT-BF for estimating the BKT parameters, but 
to generate data with which we train a model for estimating the 
minimum RSS for any skill.

The very high performance of the model, in terms of adjusted R2,
may be indicating that BKT works better when the percentage of 
correct answers is very high, as the RSS decreases. This has some 
implications in the BKT model because if the percentage of correct 
answers is very high, there might not be much room for T and G in 
the model. We would only be trying to adjust the probability of 
already knowing the skills before doing the course and the 
probability of slipping.  

To be more certain about the conclusions stated here, the following 
steps have to include using, at least, a different dataset to shed some 
light around the suspicions that arise on the influence of T and G in 
the BKT model. A deeper analysis beyond an exploratory PCA is 
also required. 
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ABSTRACT
This study investigates the issue of the goodness of fit of
different skills assessment models using both synthetic and
real data. Synthetic data is generated from the different
skills assessment models. The results show wide differences
of performances between the skills assessment models over
synthetic data sets. The set of relative performances for the
different models create a kind of “signature” for each specific
data. We conjecture that if this signature is unique, it is a
good indicator that the corresponding model is a good fit to
the data.

1. INTRODUCTION
There exists a large array of models to represent and as-
sess student skills. Item Response Theory (IRT) is prob-
ably the most established method. It dates back to the
1960’s and is still one of the prevailing approaches (see [1]).
But many other methods have been introduced in recent
years. Among them is the family of models that rely on slip
and guess factors [12, 11], such as the DINA (Deterministic
Input Noisy And-Gate), DINO (Deterministic Input Noisy
Or-Gate), and other variants (see [7]). Other approaches
are based on the Knowledge Space theory of Doignon and
Falmagne [10, 8], which does not directly attempt to model
underlying skills but instead rely on observable items only.
Finally, recent methods based on matrix factorization have
also emerged in the last decade [16, 15, 5, 2]. They factorize
the student per item results matrix into the linear product
of the so called Q-matrix (skills required per item) and the
skills mastery matrix.

We undertook the effort of comparing prevailing and widely
different methods to assess skills. The comparison is based
on each method’s ability to predict item/task outcome. How-
ever, in addition to providing a comprehensive comparison
of skills assessment approaches, this research also aims to de-
velop a method that uses synthetic data to characterize item
outcome data and yield insights about this data’s ground
truth structure. Beyond the obvious expectation that the

model behind the generation of synthetic data will outper-
form all others on this data set, we conjecture that the rel-
ative performance of all other methods will be unique and
can represent a kind of “performance signature” that char-
acterizes this type of data. Therefore, if a data set from
a real setting reflects that signature, it would constitute a
good indicator that the corresponding model is a good fit.

This work is an extension of [3], and is similar in its general
principles to the approach of Rosenberg-Kima and Pardos
[13], who take the likelihood of a model’s parameter space as
a signature instead of the performance of different techniques
as we do here. Their idea is that the likelihood function of
two parameters of Bayesian Knowledge tracing is a unique
characterization of a data set. If the likelihood function of
synthetic data generated with estimates of these parameters
from real data has the same “signature” as the likelihood
function of that real data, then the model is a good fit.

2. SKILLS ASSESSMENT METHODS
We compare a total of seven different skills assessment meth-
ods. We briefly describe them here and refer the reader to [7]
and [6] for details. They can be grouped into four categories:

(1) The single skill Item Response Theory (IRT) approach.
IRT is a well known framework based on logistic regres-
sion and represents student proficiency by a single skill
(although we also find multiple skills version of IRT,
MIRT).

(2) The POKS (Partial Order Knowledge Structrures) rep-
resents the order in which items are learned and uses
a Naive Bayes framework to make inferences based on
this order. It does not represent latent skills, but a Q-
matrix can be used aposteriori on the estimated item
outcome to assess skills.

(3) The matrix factorization approach decomposes the ma-
trix of m students by n items into the product of m
students by k skills representing the latent skills as-
sessment, and an k by n Q-matrix.

(4) The multi-skills family of DINA/DINO approaches are
equivalent to a binary matrix factorization framework,
where the skill outcome is a boolean product of binary
vectors, but they also contain guess and slip param-
eters. In the DINA version, the boolean product is
based on the AND operator, whereas DINO is based
on the OR operator.
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Finally, as a baseline for comparison we also consider the
Expected value as the simplest model. It takes into account
the mean item difficulty and student ability to compute the
expected score of the corresponding item. The mean diffi-
culty is the average success rate of an item obtained from the
training data, while the student ability is the mean success
rate obtained from the observed data. The Expected value
is the geometric mean of the product of these two means.

3. METHODOLOGY
The performance of each method is assessed on the basis of
10-folds cross-validation, and on observing all items from a
student except the one that is to be predicted. For each fold,
each item in the set is taken as a target prediction once.

For the IRT and POKS models, the parameters of each mod-
els are trained and the testing is based on feeding the models
with all but one question. A probability of mastery is ob-
tained and rounded, resulting in a 0/1 error loss function.
We report the mean accuracy as the performance measure.
The R package ltm is used for parameter and skills estima-
tion.

For the other models, they rely on a Q-matrix to estimate
the remaining item outcome. For the linear conjunctive and
compensatory models, the Q-matrix needs to be normalized
such that if all skills for an item are mastered, the inner
product of the skills mastered vector and the skills required
will be 1. Here too, results are rounded for obtaining a 0/1
loss function. Normalization of the Q-matrix is not neces-
sary for the DINA and DINO models.

4. DATA SETS AND SYNTHETIC DATA
GENERATION

The performance of the methods is assessed over a total of
14 data sets, 7 of which are synthetic, and 7 are real data.
They are listed in table 1), along with the number of skills
of their Q-matrix, their number of items, the number of the
student respondents, and the average score. Table 1 also
reports the Q-matrix used. To make these data sets more
comparable to their real counter part we used Q-matrices
and other parameters from real data sets to generate syn-
thetic datasets.

Of the 7 real data sets, only three are independent. The
other 4 are variations of a well known data set in fraction
Algebra from Tatsuoka’s work [14]. The real data sets were
obtained from different sources and are freely available from
the CDM and NPCD R packages. The Q-matrices of the
real data sets were made by experts.

The synthetic data sets are generated from their underlying
respective skills assessment model.

For POKS, the structure was obtained from the Fraction
data set and the conditional probabilities were generated
stochastically, but in accordance with the semantic con-
straints of these structures and to obtain an average success
rate of 0.5.

For IRT, the student ability distributions was obtained from
the Fraction data set, and the item difficulty was set to

Data set
Number of Mean

Score

Q
-m

a
tr

ix

Skills Items Students

Synthetic

1. Random 7 30 700 0.75 Q01

2. POKS 7 20 500 0.50 Q02

3. IRT-Rasch 5 20 600 0.44 Q04

4. DINA 7 28 500 0.31 Q5

5. DINO 7 28 500 0.69 Q6

6. Linear Conj. 8 20 500 0.24 Q1

7. Linear Comp. 8 20 500 0.57 Q1

Real

8. Fraction 8 20 536 0.53 Q1

9. Vomlel 6 20 149 0.61 Q4

10. ECPE 3 28 2922 0.71 Q3

Fraction subsets and variants of Q1

11. 1 5 15 536 0.53 Q10

12. 2/1 3 11 536 0.51 Q11

13. 2/2 5 11 536 0.51 Q12

14. 2/3 3 11 536 0.51 Q13

Table 1: Datasets

reasonable values: averaging to 1 and following a Poisson
distribution that kept most values between 0.5 and 21.

The matrix factorization synthetic data sets of DINO and
DINA were generated by taking a Q-matrix of 7 skills that
contains all possible combinations of 1 and 2 skills, which
gives a total of 28 combinations and therefore the same num-
ber of items. Random binary skills matrix were generated
and the same process was used for both the DINO and DINA
data sets. Item outcome is then generated with a slip and
guess factor of 0.1.

A similar process was followed to generate the Q-matrices
and the skills matrices S of the linear matrix factorization
data sets

Note that the first 3 models do not rely on any Q-matrix for
the data generation process, but the DINO/DINA and ma-
trix factorization assessment methods still require one. To
define these Q-matrices (denoted Q0x in table 1, a wrapper
method was used to first determine the number of skills ac-
cording to [4], then a Q-matrix was derived with the ALS
method (see [9]).

All data sets are considered static in the sense that they
represent a snapshot of student test performance data. This
corresponds to the assumption that the student has not mas-
tered new skills during the process of assessment, as we
would expect from data from learning environments. This
assumption is common to all models considered for this
study.

1Done by generating random numbers from a Poisson dis-
tribution with lambda parameter set to 10 and dividing by
10.
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Figure 1: Item outcome prediction accuracy results. Each plot reports the prediction accuracy of the different techniques,
whereas each bar shows the percentage difference in accuracy from the Expected value baseline (square root of item × student
average success rates).

5. RESULTS AND DISCUSSION
Figure 1 shows the difference between the performance of
each technique and the Expected value accuracy as com-
puted by the geometric mean: square root of item × student
average success rates. An error bar of 1 standard deviation
is reported and computed over the 10 random sampling sim-
ulation runs and provides an idea of the variability of the
results. Also reported is the performance of random data
with a 0.75 average success rate.

As expected, when the generative model behind the syn-
thetic data set is the same as the skills assessment technique,
the corresponding technique’s performance is generally the
best. Exceptions are found for the linear conjunctive case,
where the corresponding technique performance comes sec-
ond. For real data, the performance of many techniques is
often lower than the Expected value baseline. This is likely
due to the fact that all but one item is observed, the target,
and therefore the Expected value is a reliable predictor.

The most consistent performance across the synthetic data
sets are those of POKS and IRT, with POKS showing a
greater accuracy on average. This consistency also transfers
to the real data sets, although the differences are smaller and
the Expected value method performance is sometimes better
than the IRT one. But as mentioned the good performance
of the Expected value may well depend on the relatively high
number of observations for each data sets (1 less than the
total number of questions per data set).

Also worth noticing is that the random data set has a flat
performance across techniques which corresponds to the dom-
inant class prediction. This is not necessarily surprising, but
it is reassuring in a sense to know that they all perform the

same in the face of random data and this performance is
indeed the best that could be obtained.

For the independent real data sets, the differences between
techniques are less divergent and closer to the Expected
value technique, although the best performers are still sig-
nificantly better than the Expected value for the Fraction
(POKS and DINA) and Vomlel (POKS) data sets. However,
for the ECPE data set, the pattern corresponds closely to
that of random data: The Expected value performance is
close to the dominant class performance, and all techniques
are aligned towards this performance. One possibility is that
all student perform more or less the same and therefore no
technique is good at discriminating high/low performers.

The results from the subsets of the Fraction data shows that
the pattern of the Fraction performance data set repeats
over Fraction-1, Fraction-2/1 and Fraction-2/2, in spite of
the different number of skills and different subsets of ques-
tions. However, it differs substantially from Fraction-2/3
for the NMF conjunctive performance which reaches that of
the NMF compensatory one. This is readily explained by
the fact that the Q-matrix of this data set has the property
of assigning a single skill to each item, in which case the two
matrix factorization techniques become equivalent.

As mentioned, the performance of the Expected value tech-
nique is high for real data, and systematically close to the
best performers, POKS and DINA, which only have 2–4%
better performance than the Expected value. Note that this
is still substantial because we have to look at this difference
relative to the remaining error (about 20%), but it is far
less than for the synthetic data sets, especially on a relative
difference basis.
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6. CONCLUSION
This study relies on the assumption that better skills mod-
els result in better item outcome prediction. The results do
show wide differences in the performance of the techniques
for different synthetic data sets. For real data sets, the dif-
ferences are smaller, though still significant, especially in
terms of relative residual errors. Based on the results, we
could conclude that POKS and DINA would provide more
accurate estimates of skills.

Let us return to the comparison of real vs. synthetic data and
to the conjecture that this comparison can help determine
whether a specific skill model corresponds to the ground
truth of some data set. This is a complex question but some
clear hints are given in the results. There is a clear evidence
in the DINA vs. DINO performance of figure 1 data that, if
a Q-matrix is conjunctive vs. disjunctive, the results show
a much better the fit to the corresponding model. Evidence
is also some evidence to the claim that unidimensional data
sets, i.e. a domain for which a single skill best characterizes
the performance data, are best modelled by the IRT single
skill IRT or the skill-less POKS models, and the multi-skills
NMF conjunctive and DINA approaches do rather poorly.
Conversely, multiple skills data sets of the DINO/DINA and
linear family of models are better characterized by multi-
skills approaches, and the IRT single skill performance is
much lower in relative terms.

Another interesting finding is that random data does have
a signature of its own: all methods converge towards the
score of the majority class. Now, this result could stem
from a set of highly similar response patterns from students,
but it is clearly different from, for example, the Fraction-
2/3 data set, for which all methods have relatively similar
performance but they are all well above the majority class
condition (AVG Success rate).

Therefore, we do conclude that there is evidence to support
the claim that the relative performance of the different skills
modelling approaches do create signatures over data sets and
can yield some evidence about the ground truth. And if we
accept this perspective, then we can also conclude that the
real data sets we studied do not correspond to any of the
prototypical synthetic data sets. The ground truth may in-
volve correlations between skills, which we did not take into
account. Or, the Q-matrices we have studied are not faithful
to the reality and, for example, may involve combinations
of conjunctive and disjunctive skills. In fact, many expla-
nations can be evoked, but the hope is that by looking at
the relative performances of each method we can gain some
insights of the best explanations.
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ABSTRACT
Machine Learning methods for Performance Prediction in
Intelligent Tutoring Systems (ITS) have proven their ef-
ficacy; specific methods, e.g. Matrix Factorization (MF),
however suffer from the lack of available information about
new tasks or new students. In this paper we show how
this problem could be solved by applying Transfer Learning
(TL), i.e. combining similar but not equal datasets to train
Machine Learning models. In our case we obtain promis-
ing results by combining data collected of German fractions’
tasks (517 interactions, 88 students, 20 tasks) with their non-
exact translation of a previously American US version (140
interactions, 14 students, 16 tasks). In order to do so we also
analyze the performance of MF based predictors on smaller
ITS’ samples evaluating their usefulness.

Keywords
Transfer Learning, Intelligent Tutoring Systems, Matrix Fac-
torization, Vygotsky Policy Sequencer

1. INTRODUCTION
One of the main uses of Educational Data Mining in Intel-
ligent Tutoring Systems (ITS) is Performance Prediction,
which aims to ameliorate the student’s model by under-
standing whether a student mastered a specific set of skills
or not. Specific methods, e.g. Matrix Factorization (MF),
suffer from the lack of available information about new ITS
tasks or new students imposing challenging requirements on
organizing trials. This happens because the algorithm is
personalized, i.e. there is one model for each student in-
teracting with the system and one for each task one can

practice with. If no data are available for one task or for
one student no prediction can be computed, this problem is
called the cold-start problem. Moreover, first data for new
tasks in ITS applications are obligatorily collected in a spe-
cific sequence, which is generally fixed or rule-based. As a
consequence more interaction data are available for the first
tasks in the sequence whereas just a few are available for
the last ones making the prediction for specific tasks more
challenging. In the FP7 iTalk2Learn project1 we developed
a domain independent sequencer [9] for one of our use cases
based on MF Performance Prediction. One of this use cases
is a German translation of Fraction Tutor (FT) a web-based
Cognitive Tutor for fractions developed by Carnegie Mel-
lon University2. Our data collection for the German version
(88 students, 20 tasks, 517 interactions) represents, to the
best of our knowledge, one of the smallest dataset used to
train a MF based recommender for Performance Prediction
in ITS. We also possess the data collected with the original
US American version (16 tasks, 14 students and 140 inter-
actions), which, according to common practice, should be
discarded. In this paper we want to:

• Show, that we can use two different but comparable
datasets (the German and English ones) to ameliorate
Performance Prediction.

• Analyze in detail the effects of a small dataset on the
performances of MF used as performance predictor.

• Propose a practical solution to the data collection to
reduce data sparsity.

The paper is structured as follows. the second and third
section describe the state of the art and the theory behind
the performance predictors we used. In Sec. 4 the data
collection, translation and preprocessing is described. In the
Experiment Section we discuss the usefulness and measure

1www.iTalk2Learn.eu
2https://mathtutor.web.cmu.edu/
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the performances of MF based predictors. Then we conclude
the Section combining the English and German datasets to
evaluate the feasibility of Transfer Learning approaches to
exploit generally discarded data in ITS.

2. RELATED WORK
As we did not have access to the required skills information
in [7, 8], MF and the VPS sequencer presented in [9] are used
for Performance Prediction. MF has many applications, its
most common use is for Recommender Systems and recently
this concept was extended to Performance Prediction and to
sequencing problems in ITS [10, 9], but all experiments were
done with simulated students’ interactions or offline exper-
iments. In [7], we showed how the VPS sequencer could be
integrated and worked in a large commercial ITS. A similar
analysis on MF was done in [5] where Performance Predic-
tion was tested on a small dense dataset (each student saw
each task). The performance predictors were standard Col-
laborative Filtering techniques, where the best one perform-
ing resulted to be Biased Matrix Factorization (see Section
3.1 for more details). In this paper, we possess even less
interactions. Not only the students did not interact with
all available tasks, but sometimes they also solved less than
three tasks. We try to solve this problem with Transfer
Learning (TL)3. In contrast to classical Machine Learning
methods, TL methods exploit the knowledge accumulated
from auxiliary data to facilitate predictive modeling con-
sisting of different but similar patterns in the current data
[2]. Auxiliary data could mean additional information de-
scribing the state of the system and/or data collected with
a second slightly modified version of the same system (e.g.
using equal movies from different movie rating datasets and
transfer the knowledge [4]). In this case correctly done trans-
fer of knowledge, i.e. using similar but not equal datasets, is
required and could improve the performance of predictors in
classification and regression tasks ([4]) by considering pre-
viously unused data. This approach becomes particularly
helpful when recollection is expensive or impossible. How-
ever TL was never applied to ITS data. Consequently, in
Sec. 5.3 we evaluate the feasibility of applying TL to our
use case to get a better Performance Prediction.

3. MATRIX FACTORIZATION BASED PRE-
DICTORS

We use MF to predict the students performance. The matrix
Y ∈ RS×T can be seen as an incomplete table of T tasks and
S students. This matrix is used to train the system. MF is
the approximation of this incomplete matrix by decompos-
ing it in two smaller matrices W ∈ RS×K and H ∈ RT×K .
The elements of the two matrices are called latent features
and are learned with gradient descend.
Using the available entries (e.g. the score recorded from pre-
vious tasks) the missing entries can be computed by means
of very fast optimization algorithms. In our experiments we
use MF and a simple variation of MF, the Biased Matrix
Factorization (BMF) which uses three additional variables:
the global average performance µ, the student (user) bias bs
and the task (item) bias bt. For predicting students perfor-
mance the following equation is used (for MF without the

3From now on we will refer to Machine Learning’s Transfer
Learning as TL in order not to mix it with the students’
transfer learning

bold variables):

pt,s = µ+ bs + bt +

K∑
k=1

wskhtk, (1)

t represents a task, s a student, k the latent features and
K represents the total number of latent features. The opti-
mization function is represented by:

min
ws,ht,bt,bs

∑
s,t∈D

(yts − ŷts)2+λ
(
‖W‖2 + ‖H‖2 + ‖bt‖2 + ‖bs‖2

)
(2)

with D the set of collected task student interactions. The
final goal of the algorithm is to minimize the Root Mean
Squared Error (RMSE) on the set of known scores.
In order to evaluate the performances of BMF and MF gen-
erally simple models like Global Average (GA, using the
Global Average Score (GAS) of the students as prediction
value) are used. To check which is the contribution of the
Biases of the BMF to the performance of the MF we use
the model called Biases, which has Eq. 2 as optimization
function and Eq. 1 as prediction function, but with K = 0.

4. DATA COLLECTION AND ITS CHARAC-
TERISTICS

In this section we describe the ITS we used, the data collec-
tion and what was done to connect Fraction Tutor and MF
approaches.

4.1 Data collection and sequencing
We have carefully translated the English/US American FT
tasks into child-friendly German and iteratively adapted to
German students’ needs. As a result of the translation and
adaption process the US American and the German tasks
are not 100% identical and we are using TL according to
the definition in Sec. 2 and exploiting the knowledge from
the auxiliary Englis dataset to ameliorate the German Per-
formance Prediction.
We used three different sequences to have an equal number
of interactions for each task, each sequence using a different
order of task categories (6 categories). The interleaved se-
quence starts with one task of each category (hierarchically)
and repeats this process. The second sequence refers to the
so called blocked practice sequence where first all tasks of
category I need to be solved, then category II and so on.
Last is the mixed sequence that has a coincidental order.
In order to collect log data and train the MF for the FT we
conducted a study with students (i.e. fifth graders) in class-
rooms (i.e. 21-28 students per class) in Germany. Students
of three classes (88 students) of a German Gymnasium could
interact with FT which was integrated in the iTalk2Learn
platform 4.
The US American data were collected when students (14 of
one class) interacted with the US American version of FT [3].
To these students tasks were proposed in a single sequence.
All of them completed at least half of the sequence.

4.2 Dataset characteristics
4The iTalk2Learn platform is a Plug-In platform used to
integrate different components. In our case: FT tasks,
database, and simple fixed sequencer.
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Figure 1: a) German scores b) English scores, c)
combined German and English scores

For exploring the task cold-start problem for the German
and English datasets (described in Sec. 1) we assigned to
each task IDs from 0 to 23, where German and English tasks’
(0-15) translations have the same ID. As a result we have: 14
interactions for IDs 0−6, 11 for ID 7 ((7; 11)), (8; 10), (9; 8),
(10; 6), (11; 2), (12; 2), (13; 1), (14; 1), (15; 1). For the Ger-
man data the interactions are more spread out because of
the three different sequences which were used: (0; 38),(1; 59),
(2; 36), (3;0), (4;73), (5;47), (6;5), (7;0), (8;22), (9;29), (10;3),
(11;0), (12;22), (13;32), (14;0),(15;0), (16;24), (17;32), (18;12),
(19;26), (20;29), (21;28), (22;0), (23, 2). There are IDs only
used in the English data: (3, 7, 11, 15). The tasks (11, 14, 15,
22, 23) have less than 2 interactions for the German and En-
glish datasets and are removed in the preprocessing. Thanks
to the different sequences we have a sufficient number ([6])
of interactions for most tasks. For the English experiments
we removed the last tasks, since there were too few interca-
tions.
For the students’ cold-start problem the dataset can be con-
sidered as sparse. The English dataset should be less in-
fluenced by the students’ cold-start problem, because each
student interacted at least with 7 tasks.
In order to have a continuous score measure as we had in [9]
we used following equation to compute the score:

score = 1−
(

#hints

#totalnumhints
+ (#incorrect ∗ 0.1)

)
(3)

If the score is less than zero we set the score to 0 avoiding
negative scores. For the German (a)), English (b)) and Ger-
man+English (c)) data we computed the score Histogram
to measure how much the data is unbalanced (See Fig. 1).
Both datasets are very unbalanced but by combining the
two datasets we can achieve a more balanced distribution.
We will explain in the Experiment Section how this is influ-
encing the models’ performances.

5. EXPERIMENTS
To split the data in test and train set we used Leave One
Out (LOO) for each student; which is a common approach
to split for small datasets (here we used the last task seen by
the student). To evaluate the error we measure the RMSE
averaged over five experiments to avoid the influence of the
random initialization of the model parameters on the model
performances. The standard deviation of the error for the
models prediction lies around 10−3, which is normal for

Figure 2: a) RMSE German, b) RMSE English

HL ≥ 3 ≥ 4 ≥ 5 ≥ 6 ≥ 7 ≥ 8
GAS 0.673 0.673 0.673 0.673 0.673 0.673

# test students 88 72 53 38 26 22
# interactions 517 501 482 467 455 451

Table 1: GA and test size German data

movie recommender datasets and small datasets. For each
experiment we used the models described in sec. 3 (GA, MF,
BMF). For finding the best hyperparameters we used Grid
Search (learning rate: [0.01, 0.09] stepsize 0.01; regulariza-
tion: [0.001, 0.009] stepsize 0.001, [0.01, 0.09] stepsize 0.01,
[0.1, 0.9] stepsize 0.1; num. iterations: 100−300 stepsize 20;
num. latent features: 2−100 stepsize 10). Moreover for each
experiment we computed the performance Global Average
Score (GAS) and report the number of students whose data
are used.

5.1 Cold-start problem, MF Utility and Intra-
Student Variance

For our experiments we studied different History Lengths
(HL), i.e. the number of interactions the student had with
the ITS, and we deleted the students with a HL less than 2.
Starting with HL ≥ 3 we continued removing the students
with HL ≤ 4, HL ≤ 5, etc. until HL ≤ 8. We kept the
same train data and just removed the test data, so the test
set shrinks while increasing the HL requirements. GAS and
number of test students are reported in Tab. 1. Table a) in
Fig. 2 lists the RMSE for the German dataset.
The performances as well as the behavior of Biases, BMF
and MF are coherent with the one reported in [10]. For
HL ≤ 5 Biases, MF and BMF have not sufficient informa-
tionto predict the performances (see a) in fig. 2). Keeping
students with HL ≤ 5 in the train influenced BMF neg-
atively. The small gain between BMF and Biases can be
explained with the performances of MF which are almost
always worse than GA ones. This is coherent with MF and
BMF behaviors where generally Biases give a strong con-
tribution to the model performances. We can say that the
Performance Prediction of GA was positively influenced by
having all data in the train set, since it can be computed
on a more robust statistic. BMF and MF are in general in-
fluenced by data of students with short history negatively
at the beginning, although, for students with a longer his-
tory, these data can be used to ameliorate performances.
Next we evaluate the performances of Biases/MF/BMF on
an even smaller dataset: the English one. The performances
also of GA are quite good, although Biases, MF, and BMF
clearly outperform it (see b) in Fig. 2). GA prediction abil-
ity is due to the fact that the dataset is highly unbalanced;
with a majority of samples with 0 score the probability that
a sample of this dataset is similar to the GAS is higher.
Fig. 2 shows that BMF outperforms the Biases and the re-
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Figure 3: a) RMSE GerEng, b) RMSE EngGer

sults are better than the German ones. According to our
previous experience, we think that the difference in the per-
formances (comparing experiments with same HL to avoid
the cold-start problem contribution) is due to the variance
between the different elements of the students’ population
under study. In our previous work [1] we showed the negative
impact of intra-class variance in the performance of classi-
fiers with small data samples. This applies in our opinion
to the case because the intra-student variance of the Ger-
man data, collected in three classes from different schools,
should be higher than the intra-student variance of the En-
glish dataset that was collected in one class only.

5.2 Transfer Learning
To test the possibility to use English data to ameliorate the
German prediction performances, we combined the English
and German datasets as follows. In this experiment the data
from an English task and its translation are considered by
the MF as the same task. When combining the German and
English datasets (See Table a) in Fig. 3), the performances
of GA drop to approximately 0.5 because the most samples
are almost equally distributed between 0 and 1 with a GAS
around 0.56. To prove feasibility of TL we ran more experi-
ments starting with the best results of the previous Sections.
We added the English data to the German train set Table a)
in Fig. 3), where the addition of the English data in training
is always taking to a contribution for HL ≥ 6.
The same amelioration cannot be seen when adding the Ger-
man data to the English train, since adding the German
data increases the intra-student variance worsening the En-
glish model performances (Table b) in Fig. 3, and Tab. 2).

BMF + HL ≥ 3 ≥ 4 ≥ 5 ≥ 6 ≥ 7 ≥ 8
German 0.386 0.370 0.334 0.322 0.355 0.292
GerEng 0.389 0.375 0.331 0.321 0.344 0.288
English / / / / 0.235 0.218
EngGer / / / / 0.273 0.275

Table 2: Comparison of BMFs perfromances for all ex-

periments.

6. CONCLUSIONS
In this paper we proposed a practical solution to the data
collection to reduce data sparsity, by proposing tasks with
different sequences. Moreover, we analyzed in detail the ef-
fects of a small dataset on the performances of MF used as
performance predictor. Thanks to these analyses it was also
possible to determine the utility of MF based performance
predictors and sequencing in new ITS’ tasks. Considering
the Utility of BMF in comparison to GA, before having at
least 7 interactions for a student it would be better to use

GA as performance predictor. With using TL we already
get better results for BMF with HL ≥ 5. This should hold
theoretically also for the use of the VPS, although an ex-
periment with online model update is required for a full
evaluation. Finally, we proposed to exploit generally dis-
carded data exploiting the concept of TL. As future work
we will investigate more advanced methods to perform TL
on small datasets and try to ameliorate performances of the
first BMF predictions (HL ≤ 5).
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ABSTRACT
The field of EDM has focused more on modeling student
knowledge than on investigating what sequences of different
activity types achieve good learning outcomes. In this pa-
per we consider three activity types, targeting sense-making,
induction and refinement, and fluency building. We inves-
tigate what mix of the three types might be most effective
in supporting robust student learning. To do so, we col-
lected data from students in grades 4 and 5 who completed
sequences of activities in largely random order. Students sig-
nificantly improved from pretest to posttest, suggesting that
incorporating all three types can support learning gains. Us-
ing hierarchical linear modeling, we found that students who
get relatively more fluency problems achieve higher posttest
scores. This finding suggests that fluency-building activi-
ties are most effective in helping students learn, although
our data do not allow us to conclude that fluency alone is
sufficient. This work represents a step towards better under-
standing what combination of different learning mechanisms
may best support robust learning.

1. INTRODUCTION
Intelligent tutoring systems (ITSs) have been very effective
at enhancing student learning [12, 6]. They typically pro-
vide step-level support for complex problem solving such
as correctness feedback, next-step hints, and error-specific
feedback. ITSs also provide individualized problem selec-
tion [11, 3]. It is interesting to consider ITS effectiveness
from the perspective of the Knowledge-Learning-Instruction
(KLI) framework [5]. KLI posits that three mechanisms
of learning—sense-making (SM), induction and refinement
(IR), and fluency-building processes—may all be important
for robust learning (persistent learning that supports future
learning) in any complex domain. However, existing ITSs
typically focus only on the IR mechanism through the pro-
vision of scaffolded, tutored problem solving. It is possible
that providing support for all three learning mechanisms will
lead to more robust learning. Supporting the three learning

mechanisms would however require a wider range of activity
types than typical ITSs offer, to add or enhance support for
SM and fluency. Further, it would require that we answer
key questions of how and when to provide the different activ-
ity types to different learners in an individualized manner,
which may itself depend on the student’s learning process
so far.

In this paper we take a preliminary step towards answering
these questions. Fractions Tutor [8] is a web-based intel-
ligent tutoring system for fourth and fifth grade fractions
learning. We significantly extended the Fractions Tutor to
support all three learning mechanisms. We then collected
data from over 600 students with constrained random prob-
lem sequences. This allowed us to do a preliminary analysis
to understand the contributions of activities targeting the
three different learning mechanisms. We did this by fitting
a hierarchical linear model (HLM) to our data to see how
posttest scores are influenced by the proportion of each ac-
tivity type in problem sequences as well as looking at the
correlation of each activity type with posttest scores. A
challenge in drawing conclusions from our data is that the
mix of activity types each student was presented with was
correlated with the number of problems each student did,
but despite this challenge, we show that fluency-building
activities are more effective for robust learning.

There has been related work on how to combine two different
types of activities, such as worked examples and problem-
solving practice [10]. More recent work on MOOCs has an-
alyzed the effectiveness of different activity types chosen by
the student (instead of the tutor) [4, 2]. More relevant to
the current work is prior work on SM and fluency processes
in the Fractions Tutor [8, 9]. While that work also uses hier-
archical linear modeling [9], their model includes predictors
corresponding to experimental conditions, whereas we have
random trajectories with no experimental conditions. Using
random sequences gives us the potential to compare a wider
variety of relative compositions and sequences of activity
types than a standard experimental study.

Finally, prior EDM work has looked at the related problem
of how to measure the relative efficacy of different activities
[1, 7]. While these works deal with a very similar problem
to ours, they differ in at least two main respects from the
present work. First, their models consider the efficacy of dif-
ferent activities in performance while being tutored, whereas
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Figure 1: Sample IR (left), SM (center), and fluency (right) activities.

we are interested in robust learning (i.e. performance on a
posttest). Second, they only consider which individual ac-
tivity is best rather than what mix of activities is best. Our
modeling approach could in theory suggest optimal mixes of
activity types, although we find that in this case the best
fitting model reduces to one that can only suggest the rel-
ative efficacy of each activity type. It would be worthwhile
to compare our findings with the results we can obtain from
these models as next steps of our work.

2. METHODS
2.1 Fractions Tutor
For this work, our Fractions Tutor covered topics empha-
sized in the Common Core1: making and naming fractions,
fraction equivalence and comparison, and fraction addition.
For each topic, we designed three activity types designed to
promote each of the KLI learning mechanisms. KLI does not
provide strict design guidelines and so we now describe how
our designed activities targeting each learning mechanism
are in line with KLI’s definitions.

Under KLI, IR processes are non-verbal learning processes
that improve the accuracy of knowledge [5]. Activities to
promote IR processes emphasized procedural learning and
practice via fine-grained task decomposition and step-level
guidance and feedback, as is typical of ITSs [11]. An IR
activity for a procedure for the comparison of two fractions
is shown in Figure 1, on the left.

In KLI, SM processes are “explicit, verbally mediated learn-
ing in which students attempt to understand or reason” [5].
Our SM activities included instructional videos designed to
promote conceptual understanding of targeted fractions top-
ics. The videos were divided into small segments and in-
terspersed with brief supporting problem-solving exercises.
Each SM activity concluded with a drag-and-drop fill-in-
the-blank question designed to help students self-explain the
underlying concepts. An example SM activity for the cross-
multiplication procedure is shown in Figure 1 (center). Un-

1The Common Core State Standards determine the math
curriculum for students from kindergarten through high
school in most US states: http://www.corestandards.org/.

like the IR activities that teach the application of this pro-
cedure, the SM activities were designed to help students un-
derstand why a certain procedure (e.g., cross-multiplication
to compare and order fractions) is effective.

Finally, under KLI, fluency-building processes are non-verbal
processes that strengthen memory and enable students to
apply their procedural knowledge faster and more fluently [5].
Thus the fluency activities were designed to promote the
development of rapid reasoning about fractions and fluent
performance on minimally-decomposed problem-solving ex-
ercises. Whereas students received support from the tutor
via step-level hints in IR activities and video-replays in SM
activities, neither were available in fluency activities. See a
sample fluency activity in Figure 1, on the right.

2.2 Activity Selection
Since we wish to be able to understand a broader range of
activity orderings and mixes rather than a small fixed set, we
presented activities to students in a semi-randomized order.
A semi-randomized order was chosen as a compromise be-
tween two potentially competing objectives. The first is to
enhance student learning broadly and for the students that
participated in this initial data collection. This objective
would push us towards selecting an activity order that draws
upon existing research on effective sequencing and satisfies
commonly assumed topic orderings. Our second objective is
to be able to find effective (potentially adaptive) orderings
that may fall outside of the reach of standard procedures. To
balance these two competing objectives, we chose to provide
students with activity sequences that initially satisfy a pre-
requisite structure over activity types and topics (designed
by the authors). Students could be presented with any ac-
tivity whose prerequisites had already been presented. This
ensured some semantic ordering, e.g. students would not be
presented with addition problems before being introduced
to the concept of a fraction! However, only a fixed set of
26 problems have prerequisites; once a student finishes the
first 26 problems, the student is randomly presented with
problems from a large pool of remaining problems.
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Figure 2: Simulation of potential activity type or-
derings. Each column represents a sequence of activ-
ity types for a student who was given 100 problems.

2.3 Data Collection
We collected data from students using the tutor in eight
schools spanning two school districts. Students took a pretest,
used the tutor for several sessions, and then took a posttest.
The pretest and posttest consisted of 16 items covering con-
ceptual and procedural understanding over skills involved
with the three topics. Items were developed by building off
of Common Core standards and prior assessment items de-
veloped for the Fractions Tutor. For our data analysis we
used data from students who started each of the pretest and
posttest (639 students).

3. ANALYSIS AND RESULTS
Our ultimate objective for this initial analysis was (1) to
evaluate if the new tutor helped students improve their un-
derstanding of the material, and (2) to determine what static
mix of activity types (SM, IR, and fluency) has the most ef-
fective learning outcomes.

3.1 Learning Gains
The mean pretest score is 5.82±3.19 and the mean post test
score is 8.23 ± 2.78 (both out of 16). Students significantly
improved from pretest to posttest (paired t-test, t(638) =
27.67, p < 10−110). The effect size was d = 1.09, which
is considered a large effect size. These results demonstrate
that our assortment of activity types can support learning
gains, even when those activities are largely randomized.

3.2 Correlation of Variables
Exploratory data analysis revealed a substantial variation
in both the number of activities done (mean: 49.6 ± 30.9)
and the amount of time students had with the tutor (mean:
183.2 ± 82.3 minutes). Due to the prerequisite structure
and semi-randomized ordering used, the number of activities
and amount of time spent on the tutor influenced the rela-
tive proportion of each activity type that the students com-
pleted. To see this we can look at a set of possible simulated
sequences that could have been given to students: Figure 2
shows 100 such sequences of 100 problems each. We can

Predictor Pearson’s r Partial Pearson’s r p-value

SM -0.48 -0.15 5.8 ∗ 10−4

IR 0.26 -0.033 1

Fluency 0.44 0.18 5.0 ∗ 10−6

Table 1: Pearson’s r between proportion of problem
types and posttest scores, along with partial correla-
tion coefficients when controlling for the number of
problems done and amount of time spent on the tu-
tor and Bonferroni corrected p-values for the partial
correlations. Predictor variables represent the pro-
portion of problems done by the student that were
SM, IR, or F.

observe that students completing 26 problems or less would
only receive SM and IR problems. In addition, because the
total number of SM activities was fewer than the other two
types of activities, if a student did a very large number of
activities, the fraction of activities he/she completed would
eventually be dominated by IR and fluency.

To help tease apart the strong correlation between the num-
ber of problems and the distribution of activity types com-
pleted, we computed the partial correlation between the pro-
portion of problems belonging to each activity type and the
posttest score, controlling for both the total number of prob-
lems done as well as the amount of time spent by the student.
The results are shown in Table 1.

The decrease in magnitude between the raw correlation and
partial correlation for each activity type tells us that the
number of problems done and total time spent on the tutor
accounts for some of the correlation with post test, as ex-
pected. More interestingly, the proportion of fluency prob-
lems is significantly positively correlated with the posttest
scores even after considering the number of problems done
and time spent. This suggests that having relatively more
fluency problems is beneficial for students, beyond the fact
that the students who did more fluency problems tend to
have completed more problems; we will verify this with our
hierarchical linear modeling. On the other hand, the pro-
portion of SM problems is significantly negatively correlated
with the posttest score even after accounting for time and
number of problems.

To limit the extent to which students who got more time
tended towards a certain mix of activity types, we restricted
our subsequent analysis to only those students from one
school district who had 150-200 minutes of tutor time in
between pretest and posttest (resulting in 268 students).

3.3 Impact of Activity Proportions
The second key issue we wished to investigate was how stu-
dent learning may be influenced by the mix of different ac-
tivity types that they complete. To address this issue, we
used hierarchical linear modeling to predict posttest scores
as a function of the mix of SM, IR and fluency problems
that a student completed. In the analysis below, we con-
sider two-level HLMs that treat the class the student is from
as a level-2 variable. Using a two-level model resulted in a
better fit than just using linear regression. (We tried adding
school as a level-3 variable, but this did not improve the
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Predictor Coefficient p-value

Intercept 12.97 5.4 ∗ 10−9

Pretest Score 0.59 < 1.0 ∗ 10−15

Proportion SM -11.20 9.0 ∗ 10−8

Proportion IR -7.67 .021

Table 2: The coefficients of the HLM and their sig-
nificance with a Bonferroni correction for doing four
t-tests. (Satterthwaite approximations were used to
compute the degrees of freedom.)

fit.) After trying a variety of models, we found that the
best fitting model (in terms of cross-validated RMSE) was
one of the simplest. The best model used only three predic-
tor variables: pretest score, proportion of SM problems, and
proportion IR problems. (Note that proportion of fluency
problems is not a necessary predictor since the three propor-
tions sum to one.) The coefficients for the level-1 variables
of the HLM and their p-values are given in Table 2. We see
the coefficient for the proportion of SM and the coefficient
for the proportion of IR were significant and negative. Thus
our model suggests fluency is the most effective activity type
(since minimizing the proportion of IR and SM maximizes
the posttest score) followed by IR, which agrees with our
partial correlation analysis. The apparent lack of efficacy of
SM problems may be because these items were substantially
more time consuming for students to complete than the two
other activity types. Thus even if SM problems are use-
ful, their relative effectiveness per time spent may be lower
than more active problems. This is also supported by recent
results on the benefit of learning by doing [4].

If our model generalized to all possible sequences, it would
suggest that students should do as many fluency problems
as possible and not do any SM or IR problems. To allow for
non-trivial mixes of activity types, the model would need to
include interaction terms between the proportions of differ-
ent activity types. Such models had statistically insignifi-
cant coefficients and worse fits than the model presented.

Nonetheless, it is important to note that any student who
did fluency problems in our study necessarily also did SM
and IR problems due to the prerequisite structure. There-
fore we cannot reliably evaluate the value of a sequence con-
sisting of only a single activity type using our model; such a
sequence is very different from sequences the students actu-
ally received. Rather, the conclusion we can draw from our
model is that if we were able to provide additional tutoring
to students who already did many problems using our tutor,
we should probably just give them more fluency problems.

Notice that our model includes no term for the total number
of problems a student did (which we know correlates well
with the posttest score). When adding such a term to our
model, the fit was worse and the coefficient for that term
was both small and statistically insignificant. This implies
that the proportion of fluency problems is a better predictor
than the number of problems a student did!

4. CONCLUSION
We have extended an existing ITS to include activity types
that support all three learning mechanisms posited by the
Knowledge-Learning-Instruction framework. In a large-scale

classroom study, our ITS had learning gains with a large ef-
fect size. A preliminary analysis indicates that students who
have a high percentage of fluency problems have the largest
posttest scores, suggesting that fluency-building activities
are most effective in helping students learn. However, many
open questions remain. To what extent are SM and IR prob-
lems necessary? Does the appropriate mix of activity types
differ for different topics (e.g. making fractions vs. fractions
addition)? We hope to address these questions as we work
towards our goal of learning personalized policies that best
support robust student learning.
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ABSTRACT
This paper discusses Multi-Feature Hierarchical Sequential
PAttern Mining, MFH-SPAM, a novel algorithm that ef-
ficiently extracts patterns from students’ learning activity
sequences. This algorithm extends an existing sequential
pattern mining algorithm by dynamically selecting the level
of specificity for hierarchically-defined features individually
for each pattern. Consequently, MFH-SPAM operates on a
larger space of patterns in the activity sequences. In this
paper, we employ a differential version of MFH-SPAM to
extract a small set of patterns that best differentiate stu-
dents with different learning behavior profiles in the Betty’s
Brain system. Our results illustrate that: (1) MFH-SPAM
identifies important patterns missed by traditional sequence
mining approaches; and (2) the differential patterns provide
additional information for characterizing learning behaviors.
This has implications for developing targeted and adaptive
scaffolding in open-ended learning environments.

1. INTRODUCTION
Open-Ended Learning Environments (OELEs [4,7]) present
students with a challenging problem-solving task, along with
resources and tools for solving the task. Students have the
choice to explore, and, therefore, can evolve their solutions in
a variety of ways. In previous work, we proposed a theory-
based approach called coherence analysis (CA) [7] for an-
alyzing student behavior in OELEs. Experimental results
showed that grouping students using the CA metrics pro-
duced distinct behavior profiles that are discussed in greater
detail in Sections 3 and 4. To date we have established the
stability and usefulness of our CA measures across extended

periods of student work, which does not make this approach
directly applicable to adaptive scaffolding as students work
in the OELE. To address this problem, our goal has been
to use sequence mining methods to find students’ activity
patterns that are indicators of their behavior profiles. In
this paper, we present a case study illustrating that action
patterns derived using a novel hierarchical sequence mining
approach followed by differential analysis enable classifica-
tion performance on a par with the groupings derived using
CA. Occurrence of individual action patterns can be easily
detected online, and future work will assess their utility for
early identification of behavior profiles and contextualized
scaffolding in OELEs.

In the Betty’s Brain OELE [5] each action performed by a
student has a number of accompanying features that capture
context and consequences of the action. In past work, we
used pre-processing methods to select specific features and
the level of granularity for each feature to generate ‘flat’ se-
quences for pattern mining [2]. This largely ad hoc process
resulted in our running many different mining analyses, but
often missing potentially important patterns. Other work,
such as Plantevit et al. [6], has addressed some aspects of
the search in large feature spaces. They define a two-phase
technique that first determines frequent combinations of fea-
tures and levels of specificity in hierarchical representations
to pre-processes multi-feature (hierarchical) sequences into
a ‘flattened’ representation. While this approach provides
clear advantages over numerous mining analyses with ad
hoc feature and granularity choices, many frequent patterns
can still be missed due to the initial flattening phase.To ad-
dress this issue, we have developed a novel Multi-Feature,
Hierarchical Sequential PAttern Mining algorithm (MFH-
SPAM).

MFH-SPAM extends the sequence mining algorithm SPAM [1]
to simultaneously operate on the entire feature space of ac-
tion sequences for pattern mining. In this work, we start
with MFH-SPAM, and then apply a classifier wrapper method
[3] to discover a small subset of mined patterns that are use-
ful for differentiating students across the CA-derived learn-
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ing behavior profiles. We have evaluated MFH-SPAM and
other traditional sequence mining approaches in this behav-
ior profile classification task using data from a recent study
with the Betty’s Brain OELE. Results show that MFH-
SPAM consistently outperforms traditional sequence min-
ing approaches on this task. Further, the differential pat-
terns provide additional information for characterizing stu-
dent learning behaviors, which has implications for develop-
ing targeted and adaptive scaffolding in OELEs.

2. MFH-SPAM APPROACH
Our approach to efficient mining of Multi-Feature, Hierar-
chical (MFH) sequences extends the SPAM algorithm [1]
by directly working with the MFH representation of actions
during the mining process. To illustrate this representation,
we consider a generic set of possible items/actions to make
up sequences (A, B, or C) with an additional feature (e.g., a
measure of the action’s outcome) that can take on values of
+ or − at the most general level. In this example, + values
for the outcome feature can be further specified as either
+Big or +Small at the next level of the hierarchy. There-
fore, an individual action might be represented as B+Big,
and both B+Big and B+Small actions could be more gener-
ally represented as B+ by abstracting the outcome feature
to the more general + level. Further, B+Big, B+Small, and
B- actions could all be represented as simply a B action by
ignoring the outcome feature entirely. We represent one ac-
tion followed by another in a sequential pattern using the
→ symbol, such as A → B to indicate A followed by B.
Itemsets (i.e., co-occurring items in the sequence) are sur-
rounded with parentheses, such as (A,B) to indicate both
A and B occurring at the same position in a sequence (i.e.,
simultaneously).

The core SPAM [1] algorithm searches the space of possi-
ble sequential patterns by incrementally extending the cur-
rent pattern (starting with an empty pattern) in a depth-
first manner. For each pattern in the search, SPAM gener-
ates the potential “child” patterns by applying one of two
types of extensions to the current pattern: 1) a Sequence-
extension step (S-step), which appends an item to the end
of the sequence (occurring after the last item/itemset), or 2)
an Itemset-extension step (I-step), which adds an additional
item to the last itemset in the current pattern. For each pat-
tern considered, SPAM calculates the number of sequences
in which the pattern occurs using a vertical bitmap repre-
sentation, explained in more detail later. If the number of
sequences in which the new pattern is contained is less than
the specified support threshold, SPAM rejects the pattern
and does not consider any subsequent extensions to it.

MFH-SPAM augments SPAM with two new pattern exten-
sion steps in the pattern search: Feature extensions (F-
steps) and Hierarchical extensions (H-steps). During an F-
step, MFH-SPAM adds an additional feature to the last item
of the current sequence using one of the most general values
in the feature hierarchy. For example, the possible exten-
sions to the pattern A → B with an F-step would result in
A→ B+ or A→ B-. During an H-step, MFH-SPAM selects
the last feature of the last item of the current sequence and
specifies its value at one level deeper in the feature hierarchy.
For example, the possible extensions to the pattern A→ B+

with an H-step would result in A→ B+Big or A→ B+Small.

In addition to these two new extension steps in MFH-SPAM,
we define a corresponding extension to the vertical bitmap
approach employed in SPAM to efficiently calculate the sup-
port for a new pattern1. For each data sequence, SPAM ini-
tially defines a bitmap for each possible item (e.g., A, B, and
C) that represents the locations of that item in the sequence
with a value of 1 (all other locations have a value of 0). For
example, the sequence A → B → B would be represented
with an A bitmap of [1 0 0], a B bitmap of [0 1 1], and a
C bitmap of [0 0 0]. As SPAM generates patterns, it com-
bines item bitmaps to produce pattern bitmaps in which 1’s
represent the endpoints of the corresponding pattern in the
sequences. Consequently, for a trivial, single-item pattern
like A, the pattern bitmap is exactly the same as the initial
item bitmap.

For an S-step extension of a pattern (e.g., extending A to
A→ B), SPAM first transforms the current pattern bitmap
([1 0 0]) to indicate where the extension to the current pat-
tern could occur. This is performed by shifting the bitmap
to make each location following the occurrence of a 1 in the
pattern bitmap a 1 (indicating a candidate location for the
additional item being added in the S-step) and making all
other locations 0 (e.g., resulting in the bitmap [0 1 0]). In
other words, A→ B exists in the sequence if B exists in the
candidate location of the second position in the sequence.
To complete the S-step (e.g., for A to A → B) SPAM per-
forms a bitwise AND operation on the transformed pattern
bitmap and the item (B) bitmap, resulting in the new pat-
tern bitmap of [0 1 0] indicating that the pattern A → B
exists and ends at the second position in the sequence.

We extend the SPAM bitmap procedure in F- and H-steps
by first creating bitmaps for each possible feature value (at
every level of the hierarchy) in the sequence, just as SPAM
does with each possible item. Thus, if the original sequence
were A- → B+Big → B+Small, we would have a − bitmap
of [1 0 0], a + bitmap of [0 1 1], a +Big bitmap of [0 1 0],
and a +Small bitmap of [0 0 1]. The bitmap operations for
F- and H-steps are then analogous to those for S-steps ex-
cept without the bitmap shift2 and using the feature value
bitmap corresponding to the chosen extension. For example,
applying an F-step to add the outcome feature with a value
of + to the pattern A → B, producing A → B+, would
correspond to [0 1 0] (the pattern bitmap) AND [0 1 1] (the
feature value bitmap), giving the new pattern bitmap [0 1
0], indicating that this pattern does occur in the example
sequence and ends at the second position in the sequence.
With the additional F- and H-steps, as well as correspond-
ing bitmap operations for calculating support, MFH-SPAM
extends SPAM to efficiently search the space of possible pat-
terns in MFH sequences. Finally, to choose a small subset
of the frequent patterns identified by MFH-SPAM (or by
SPAM for the experimental comparison) that differentiate
the pre-defined learning profiles, we apply a classifier wrap-

1In the algorithm description, we describe only the case in
which no gaps are allowed between items in the pattern,
however, implementing more general gap constraints works
in the same manner as with extensions to the original SPAM
algorithm
2No shift is necessary because the candidate location is for
adding further detail to the last item in the current pattern
rather than adding an item after it.
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per method [3]. Using a greedy approach, the classifier wrap-
per iteratively identifies the best pattern to include next3.

3. DATA AND EVALUATION METHODS
The data presented in this paper comes from a study of 98
students from four middle school science classrooms using
Betty’s Brain for six weeks [7]. Six coherence measures were
employed to describe the quality and quantity of various
problem-solving activities for each student, and hierarchi-
cal clustering with these measures identified three primary
clusters of students characterized by different behavior pro-
files [7]. In total, 87 of the students fell into one of these
three clusters, and the other 11 students exhibited behavior
profiles indicative of either extreme confusion or disengage-
ment. The primary clusters were defined as:(1) Frequent
researchers and careful editors, who spent large proportions
of their time viewing sources of information and did not
edit their maps very often; (2) Strategic experimenters, who
spent a fair proportion of their time viewing sources of infor-
mation, but often did not take advantage of this information;
and (3) Engaged & efficient students, who edited their maps
very frequently, and usually supported by information from
previous activities.

To generate MFH activity sequences for mining, we catego-
rized learning actions into seven primary categories, defined
hierarchically (these categories are discussed in more de-
tail in [2]): Reading resource pages; Searching the resources
for keywords; causal Map Editing; Querying the teachable
agent, Betty; having Betty take a Quiz; asking Betty to Ex-
plain her answer; or taking Notes or causal link annotations
(LinkEval) indicating whether a link is believed to be cor-
rect. To capture the context associated with these actions,
we use additional features: (1) the “Length” dimension (ap-
plied to Read actions) indicates whether the student spent
enough time on the page to have read a significant amount
of the material (Full) or only spent a brief period of time on
the page (Short) [2]; (2) the “Previous (Full) Read” dimen-
sion indicates whether the student has previously done an
in-depth (“Full”) read of the page or not; (3) the“Supported”
dimension indicates whether or not an EditLink action was
based on either recently viewed reading materials or quiz
results [7], with supported actions denoted by Sup and un-
supported actions denoted by NoSup; and (4) the “Map
Score Change” dimension indicates what effect an EditLink
action had on the quality of the student’s map - whether the
quality improved (denoted by +), worsened (denoted by −),
or did not change (denoted by =).

We evaluate our MFH-SPAM approach with comparison
to four alternative approaches: Flattened Features (SPAM)
first flattened all activity sequences using all features and
the greatest level of action specificity and then used SPAM
to generate candidate patterns (e.g., this approach would
consider the pattern LinkRem+

Sup → LinkAdd-
NoSup, but

it would not consider the more general pattern LinkEdit
→ LinkEdit); Actions-only (SPAM) considered only the fre-
quent patterns at the most general level of specificity and did

3A limit of 10 patterns and an increase of at least 0.1% in
performance over the previous pattern set was used in our
implementation of the wrapper. A stratified 5-fold cross-
validation approach was used for building the classifier in
the wrapper with F1 score for evaluation.

not consider any additional features; MFH-SPAM Baseline
by Frequency used our MFH-SPAM algorithm to generate
candidate patterns and simply selected the 10 most frequent
patterns; and Coherence Metrics classified students using
the coherence measures. The performance of each approach
was evaluated as the average F1 score of the resulting classi-
fier using 10-fold cross-validation. We chose decision trees as
the classifiers and performed this analysis at mining support
thresholds ranging from 1.0 to 0.5 in increments of 0.02.

4. RESULTS

Figure 1: Classification performances of MFH-
SPAM and alternative approaches

Figure 1 illustrates the performances of the classifiers built
using the candidate feature sets mined in each approach. At
each level of support, MFH-SPAM achieved an average F1
score that was much higher than the scores produced by the
other sequence mining methods. When using a particularly
high mining support threshold, the Flattened Features ap-
proach achieves performance close to that of MFH-SPAM,
but its performance decreases dramatically as the support
threshold is reduced (and the search space is increased). One
striking result from this analysis is that MFH-SPAM’s per-
formance is on par with the performance of the classifier
trained with the features used to perform the original clus-
tering that defined these behavior profile classes. Further,
Table 1 presents the five patterns chosen most frequently
across the 10 cross-validation folds at a support threshold
of 0.9. Considering these top patterns, it is clear that the
first three patterns could not have been identified without
MFH-SPAM, as they involve multiple levels of hierarchies
and feature specificity.

Interestingly, the top MFH-SPAM patterns all involve var-
ious forms of causal link edits. This suggests that the way
a student went about building their map, as opposed to the
way they navigated the resources and investigated Betty’s
quiz results, was the most useful in predicting their overall
learning behavior profile. However, the edit actions, through
the support feature, can also incorporate the action’s rela-
tionship to reading and quiz actions. In other words, what
was most helpful in predicting a student’s cluster was not the
way they acquired information (either from the resources or
quiz results), but how they applied previously acquired in-
formation to editing their maps. When comparing frequency
of use across the three groups, their relative magnitudes are
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Table 1: Pattern Frequency Mean (Std Dev) by Cluster for MFH Wrapper with Support 0.9
Pattern Researchers Experimenters Efficient

LinkRem+
Sup → LinkEdit 2.6 (2.5) 3.6 (3.0) 14.3 (8.4)

LinkEdit+Sup → LinkAdd 2.3 (1.9) 2.5 (2.6) 12.0 (6.5)

LinkEdit+NoSup → LinkEdit 3.3 (2.9) 16.4 (16.9) 15.6 (12.3)
LinkEdit– → LinkEdit– 3.7 (3.1) 17.5 (16.0) 18.3 (16.2)
LinkAdd– 15.3 (7.2) 28.6 (12.1) 43.5 (21.6)

compatible with the behavior descriptions; e.g., researchers
and careful editors make the least number of these edits; en-
gaged & efficient students have the most; and strategic ex-
perimenters fall in between. This confirms that the engaged
& efficient students, who exhibited the best learning behav-
iors and the largest learning gains [7], are broadly distin-
guished from the other groups by more map editing overall:
ineffective and effective; supported and unsupported. The
usage distributions for these patterns also revealed inter-
esting characteristics about strategic experimenters. These
students performed patterns with supported edits far less
frequently than engaged & efficient students. Conversely,
they performed patterns with unsupported edits far more
frequently than researchers and careful editors. Thus, even
though the engaged & efficient students made several unsup-
ported and ineffective edits, it would seem that their overall
edit distribution is far more favorable to achieving better
map scores (and in their case, better pre-post gains on do-
main knowledge) than that of the strategic experimenters.

To better characterize these three groups, we followed up on
previous experimental results [2] and further analyzed the
top behavior pattern: (1) LinkRem+

Sup → LinkEdit that
indicates an effective map correction behavior (removing an
incorrect link with supporting evidence) followed by further
editing. Overall, an average of 19% (s.d. 9%) of the en-
gaged/efficient students’ total number of link edits involved
this pattern versus 9% (s.d. 8%) for researchers/careful-
editors and 9% (s.d. 7%) for strategic experiments. This
behavior of incorporating effective map correction in periods
of extended map editing appears to be a key characteristic
of the engaged/efficient students. Further analysis also sug-
gested that engaged/efficient students were relatively more
likely to follow this pattern with a quiz to evaluate their re-
vised map than the researchers/careful-editors and strategic
experimenters. This may indicate a greater propensity for
the engaged/efficient students to effectively combine evalu-
ation of the causal map with map construction and correc-
tion. In summary, going back to OELE characteristics, the
engaged and efficient students seem to be better at explor-
ing the problem-solving space, and in distinguishing correct
and incorrect approaches to solving complex problems.

5. DISCUSSION AND CONCLUSIONS
MFH-SPAM provides a comprehensive approach to mining
OELE activity sequences by efficiently covering the entire
MFH action-feature space to generate patterns. Results
showed that MFH-SPAM consistently outperforms tradi-
tional sequence mining approaches on a behavior profile clas-
sification task. Further, analysis of the MFH-SPAM pat-
terns illustrated that a nice, compact way for differentiat-
ing these student groups, while retaining high accuracy, was

in their approach to map construction and refinement us-
ing various forms of editing actions. Overall, these results
showed the importance of behavior patterns identified by
MFH-SPAM and illustrated the potential to use these pat-
terns to better characterize and ultimately scaffold student
learning. In general, effective virtual agents for adaptive
scaffolding in OELEs like Betty’s Brain may do well to fo-
cus on behavior patterns to gain an understanding of how
students’ apply their acquired knowledge (e.g., from reading
the resources and studying quiz results) to build and refine
models. Detection of specific suboptimal (not using acquired
information well) or erroneous behaviors in this context may
provide the needed cue for effective scaffolding.
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ABSTRACT
In this paper we consider discrimination-aware classification of 
educational data. Mining and using rules that distinguish groups 
of students based on sensitive attributes such as gender and 
nationality may lead to discrimination. It is desirable to keep the 
sensitive attributes during the training of a classifier to avoid 
information loss but decrease the undesirable correlation between 
the sensitive attributes and the class attribute when building the 
classifier. We illustrate, motivate, and solve the problem, and 
present a case study for predicting student exam performance 
based on enrolment information and assessment results during the 
semester. We evaluate the performance of two discrimination-
aware classifiers and compare them with their non-discrimination-
aware counterparts. The results show that the discrimination-
aware classifiers are able to reduce discrimination with trivial loss 
in accuracy. The proposed method can help teachers to predict 
student performance accurately without discrimination. 

Keywords
Predicting student performance; association rule mining; decision 
tree; discrimination-aware classification

1. INTRODUCTION 
Educational data often contains sensitive attributes such as age, 
gender and nationality. Mining such data may generate 
discriminating rules. For example, if our goal is to predict the 
exam mark of current students, and in the historic dataset used for 
training of the prediction algorithm, males have achieved 
significantly higher exam marks than females, a prediction rule 
using the attribute gender may be generated. It may produce high 
accuracy but we cannot use it for providing feedback to students 
or other decision making, as it can be seen as discriminating based 
on gender, which is unethical and also against the law. Sensitive 
attributes such as gender should be used as an information carrier
and not as distinguishing factors [1]. In this paper we consider 
building discrimination-aware classification models for predicting 
student performance. 
The task of discrimination-aware classification can be defined as 
follows [2; 3]: given a labelled dataset and an attribute S, find a 
classifier with high accuracy that does not discriminate on the 
basis of S. There are two approaches to deal with this problem: 1)
not using the sensitive attribute to build the classifier and 2)

modifying the classification algorithm by integrating a
discrimination-aware mechanism to reduce discrimination. The 
first approach, simply removing the sensitive attribute from the 
training data, results in information loss and also typically doesn’t 
solve the problem as other attributes are correlated with the 
sensitive attribute, and will discriminate indirectly. In this paper, 
we develop and apply methods from the second group which 
incorporate discrimination awareness during the building of the 
classifier and use information from the sensitive attribute without 
causing discrimination. 
There are two important aspects that need to be considered when 
applying discrimination-aware classifiers in educational settings. 
Firstly, adjusting the classifier to reduce discrimination typically 
leads to lower predictive accuracy. Given this trade-off between 
accuracy and discrimination, our aim is to build a classifier with 
lower discrimination without significant loss in accuracy.
Secondly, the output of the classifier should be easy to understand 
and use by teachers and students. Therefore, we consider 
classifiers based on decision tree and association rules, which 
generate sets of rules to guide prediction and decision making. 
Our contribution can be summarized as follows: 

We illustrate and motivate the problem of discrimination-
aware classification for mining educational data, and show its 
importance and challenges in educational data mining. 
Discrimination-aware classification has not been studied for 
educational data mining and our main goal is to raise the 
awareness of the community to this problem. 

We introduce our recently proposed classification method 
Discrimination-aware Association Rule classifier (DAAR) 
[4]. DAAR uses the novel Discrimination Correlation 
Indicator (DCI) to measure the discrimination severity of an 
association rule and select non-discriminatory rules. 

We consider the task of predicting the student exam 
performance in a first year computer programming course. 
We apply two discrimination-aware classifiers: our method 
DAAR and the state-of-the-art Discrimination-Aware 
Decision Tree (DADT) [3], and compare their performance 
with standard non-discrimination-aware association rules and 
decision tree. We show that both DAAR and DADT are able 
to produce non-discriminatory rules with minimum loss in 
accuracy.  

2. RELATED WORK 
Mining educational data to predict student performance has 
gained increasing popularity. Romero et al. [5] predicted the final 
student mark based on the Moodle usage data such as the number 
of passed and failed quizzes, number of completed assignments, 
number of sent and read messages on the discussion board and the 
time spent on the assignments, quizzes and discussion board. In 
their subsequent work [6], the same group studied predicting the 
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student grade (pass or fail) based on the student participation in a 
discussion forum, using a number of machine learning algorithms, 
in the middle and at the end of the semester. Kotsiantis et al. [7]
applied an ensemble of classifiers to predict the exam grade (pass 
or fail) from assessment data during the semester in an online 
informatics course. Lykourentzou et al. [8] predicted dropouts and 
completers in e-learning courses on computer networks and web 
design, using demographic and assessment data. 

The discrimination-aware classification problem was introduced 
in by Pedreshi et al. [2] and Kamiran and Calders [9].
Discrimination-aware naïve Bayes approaches were proposed in 
[1] and discrimination-aware decision trees were developed in [3].

In this paper, we investigate discrimination-aware classifiers for 
mining of educational data. We apply our recently proposed 
discrimination-aware classifier based on association rules and also 
a discrimination-aware decision tree. We show how these 
algorithms can be applied for predicting student performance in a
first year programming course, discuss the results, and raise the 
awareness of the Educational Data Mining community to the 
importance of discrimination-free classification.  

3. METHODOLOGY 
In this section we describe the main principles of the two 
discrimination-aware classifiers: our method DAAR and the state-
of-the-art DADT. Both classifiers are designed to decrease the 
discrimination of the predictive model with minimal impact on the 
accuracy. They are based on the popular and successful 
association rule classifiers and decision trees, which produce rules 
that can be easily understood and directly applied by teachers and 
students. 

3.1 Association Rule Classifiers and DAAR 
Association analysis discovers relationships among items in a
dataset. An association rule takes the form X  Y, where X and Y
are disjoint item sets [10]. Two measures, support and confidence,
are used to evaluate the quality of an association rule. Given a 
dataset containing N instances and an association rule X  Y, the 
support and confidence of this rule are defined as: 

where  is the frequency of an item set . High-quality rules 
have high support and confidence. 
Classification Based on Association (CBA) [10] uses association 
rules to solve classification problems. In a standard association 
rule, any attribute which is not included in X, can appear in Y
while in CBA only class attributes can appear in Y.  

3.1.1 DCI Measure 
To measure the degree of discrimination for an association rule, 
we propose a new measure called DCI. Given a rule X  y and a 
sensitive attribute S, DCI is defined as: 

where  is the probability of the class to be y
given the value of the sensitive attribute S is .
When S is a binary or multi-valued attribute, the specific S value 
in the rule is considered as , and the  includes the set 
of all attribute values except the one which appears in the rule. For 
example, if the rule is “gender = female, degree = CS
assessment = low”, where gender is the sensitive attribute, then 

 refers to female, and  refers to male. The DCI for this 
rule will be: 

When the sensitive attribute does not appear in that rule, we 
define DCI to be 0.
Therefore, DCI has a range of [0, 1) and its interpretation is the 
following: 

If DCI is 0, the rule is free of discrimination. DCI is 0 when 
the probability of the class value to be y is the same for 
different values of the sensitive attribute S. 
If DCI is not 0, the higher the value, the more discriminatory 
the rule is with respect to the sensitive attribute S. Thus, the 
DCI value is monotonically increasing with the discriminatory 
severity of a rule.  

3.1.2 DAAR 
DAAR uses DCI together with minimum confidence and support 
to efficiently select non-discriminatory rules. DAAR’s algorithm 
is shown in Figure 1.

DAAR starts from the set of 2-item rules (i.e. the rules with one 
attribute value and the class attribute), which is the base case, and 
merges with other 2-item rules iteratively until it gets the k-item 
rules, where k is the upper bound for the number of items in the 
rule. In each iteration, the rules are filtered by confidence, support 
and DCI. To classify new instances, DAAR uses majority voting 
based on the number of rules that predict the same class. If the 
vote is tied, the DCI sum for all rules for each class is compared 
and the class with lower sum (i.e. less discrimination) is selected.  

3.2 Decision Tree and DADT 
Decision Trees (DTs) are one of the most popular machine 
learning algorithms. The standard DT algorithm uses information 
gain to select the best attribute at each step as a root of the 
tree/subtree, until all examples in the subset belong to the same 
class, in which case it creates a leaf node labelled with this class. 
DTs can be seen as generating a set of mutually exclusive rules –
each path from the root of the tree to a leaf node is one rule, and 
each rule is a conjunction of attribute tests. DADT is a 
discrimination-aware version of DT introduced by Faisal et al. in 
[3]. The tree is constructed in two phases. In the first phase, it 
generates a tree by using a new splitting criterion: IGC-IGS. IGC 
is the standard information gain (Information Gain regarding the 

Figure 1. DAAR’s Algorithm
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Class label) and IGS is Information Gain regarding the Sensitive 
attribute, defined as: 

                        
where S is the sensitive attribute, is 
the entropy of set D with respect to S and Pi is the proportion of 
items with the ith value of the sensitive attribute. 
As the aim is to have higher IGC but lower IGS, the difference 
IGC-IGS is an appropriate criterion. In the second phase, the 
leaves are relabeled to decrease the discrimination severity to less 
than ε (where ε is a non-discriminatory constraint), while 
sacrificing as little accuracy as possible. Experiments on census 
income datasets showed that DADT can produce a tree with a 
lower discrimination while maintaining accuracy [3].  

4. EXPERIMENTS AND RESULTS 
We consider the task of predicting exam performance in a fist year 
programming course. We compare the performance of the 
discrimination-aware classifiers DAAR and DADT with their 
standard non-discrimination-aware counterparts CBA (standard 
AR) and C4.5 (standard DT).  

4.1 Dataset and Experimental Setup 
Learning computer programming is difficult as it requires a lot of 
practice with feedback, and a very precise way of thinking. It is 
easy for students to fall behind, especially since introductory 
computer programming courses have a large number of students. 
Predicting students at risk of failing or not performing well is 
highly desirable. 
Our evaluation is conducted using data from a first year computer 
programming course at an Australian University with 220 
students. Our goal is to predict the exam performance, high or 
low, based on the student grades on the assessments during the 
semester and some enrolment attributes such as country of 
residence, degree name and if the student is local or international. 
A description of the attributes and their values is given in Table 1. 

Table 1. Description of Attributes 

Attribute Description
Number of 
Attribute 

Values

Country Country of permanent residence: 
{Australia, Brazil, China, …} 26

Degree
Name of the degree the student is 
enrolled into: {Bachelor of Science, 
Bachelor of Engineering,…}

27

Local Indicates if the student is Australian or 
not: {Local, International} 2

a1_grade The grade of assessment 1 during 
semester: {HD, D, CR, P, F} 5

a2_grade The grade of assessment 2 during 
semester: {HD, D, CR, P, F} 5

a3_grade The grade of assessment 3 during 
semester: {HD, D, CR, P, F} 5

a4_grade The grade of assessment 4 during 
semester: {HD, D, CR, P, F} 5

a5_grade The grade of assessment 5 during 
semester: {HD, D, CR, P, F} 5

Exam Exam performance during examination 
period: {high, low} 2

The grades for the 5 assessments during the semester are the 
standard grades used at the university defined as follows: HD
(High Distinction, mark of [85, 100]), D (Distinction, mark of [75, 
84]), CR (Credit, mark of [65, 74]), P (Pass, mark of [50, 64]) and 

F (Fail, mark below 50). The exam performance is defined as high
if the exam mark is 65 or higher (i.e. HD, D or CR), and low if it 
is below 65 (i.e. P or F). There were 105 students in the high
group and 115 in the low group. 
We selected the exam grade as a variable to predict rather than the 
final grade in the course, as the exam is the major assessment 
component (worth 50% and covering all topics) and it is also 
independent of the assessment components during the semester, 
while these components contribute to calculating the final grade 
for the course. 
Among the 8 predictors, we consider country as the sensitive 
attribute, which means that we would like to avoid discrimination 
based on the student nationality. Originally, this attribute had 26 
different values, with 5 or less number of students for most of the 
countries, so we aggregated these values into three groups: 
Australia, China and Others. The number of students in each 
group was 127, 54 and 39, respectively. 

4.2 Results and Discussion 
To evaluate the performance of the classification methods, we use 
10-fold cross validation in all experiments. We report both the 
average value and the standard deviation for the 10 folds. As 
predictive accuracy measures, we use both classification accuracy 
and F-measure.  
To assess the discrimination severity of the classifier, we calculate 
a discrimination score. In [1] a discrimination score for a binary 
sensitive attribute S with values S1 and S2, and class values C+ and 
C- is defined as:  

As our sensitive attribute has three values, we extend this 
definition to multi-valued attribute with m (m>2) values. We 
compute the score for each value  and then average the m
scores:  

where  represents all the attribute values other than .
If the score is 0, there is no discrimination. Otherwise, a higher 
score corresponds to a higher discrimination severity.  

4.2.1 DAAR 
Table 2 presents the accuracy results and discrimination score for 
the standard AR and DAAR. We can see that DAAR was able to 
decrease the discrimination score of AR from 0.2831 to 0.2653. 
The trade-off was a slightly lower accuracy - DAAR achieved 
73.92% accuracy, which is 4.72% lower than AR’s accuracy. 

Table 2. Results for Standard AR and DAAR 
Standard AR DAAR

Mean Std. Mean Std.
Accuracy 78.64% 0.0037 73.92% 0.0128
F-measure 0.7863 0.0037 0.7389 0.0131
Disc. score 0.2831 0.0109 0.2653 0.0163

Table 3 shows some representative and interesting rules produced 
by DAAR with their confidence, support and DCI. These rules are 
very compact, easy to understand and apply by teachers.  
Table 4 shows the rules with high confidence and support that 
were filtered out by DAAR, as they were discriminatory with 
respect to the sensitive attribute country. 
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Table 3. Sample Rules Produced by DAAR 
Rules Conf. Sup. DCI

a1_grade=CR exam = low 1.0 0.01 0
degree= Bachelor of Commerce, 
a4_grade=HD exam = high

1.0 0.01 0

a4_grade=F exam = low 1.0 0.19 0
degree= Bachelor of Engineering &
Bachelor of Science, a5_grade=HD 

exam = high
0.84 0.08 0

Table 4. Discriminatory Rules Removed by DAAR 

Rules Conf. Sup. DCI
country=Other exam = high 0.62 0.12 0.17
country=CH exam = low 0.77 0.18 0.26
country=Others, a5_grade=HD,
a4_grade=HD exam = high 0.83 0.08 0.17

4.2.2 DADT 
The trees produced by the standard DT and DADT are shown in 
Figure 2 and Figure 3, respectively. The standard DT achieved 
accuracy of 83.46% but it used the sensitive attribute country and 
its discrimination score was 0.2298. DADT achieved a slightly 
lower accuracy of 82.73% without using the sensitive attribute. 
Thus, DADT is able to avoid discrimination with a minimum loss 
in accuracy. Both DTs included the attribute a4_grade as a root of 
the tree, which shows the importance of this attribute for 
predicting exam performance. 

Figure 3. Tree Produced by DADT 

4.2.3 Discussion 
In terms of overall performance, all four methods had reasonable 
accuracy, from 73.92% to 83.46%, with the DT-based classifiers 
outperforming the AR-based classifiers. All classifiers generated a
small set of rules that are easy to understand and use by teachers. 
The AR classifiers used more attributes in the rules which, for our 
case study, provided additional insights about the important 
attributes in predicting student performance and providing 
feedback to students. 
In terms of discrimination, we can see that both DAAR and 
DADT decreased the severity of the discrimination compared to 
their standard counterparts, with trivial loss in accuracy.

Specifically, DAAR removed the rules with higher DCI values 
and reduced the discrimination score, and DADT using IGC-IGS 
as an attribute selection criterion, built a DT without using the 
sensitive attribute country. 

5. CONCLUSIONS 
Educational data often contains sensitive attributes, which should 
only be used as information carriers rather than factors to 
distinguish students and potentially discriminate them. We 
investigated discrimination-aware classification for mining of 
educational data, with a case study in predicting student exam 
performance based on enrolment information and assessment 
marks during the semester, in the context of a computer 
programming course. We applied our discrimination-aware 
method DAAR, which is based on association rules, and also 
DADT, a discrimination-aware decision tree method, and 
compared DAAR and DADT with their non-discrimination-aware 
alternatives. The experiment results showed that both DAAR and 
DADT decreased the discimination with minor impact on the 
predictive accuracy. Both classifiers generated a small set of rules 
that are easy to understand and use by teachers and students. The 
discrimination-aware classifiers can be used for any classification 
tasks in educational settings, such as identifying students at risk, 
to provide timely feedback and intervention. 
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ABSTRACT
Completion rates for massive open online classes (MOOCs) are 
notoriously low, but learner intent is an important factor. By 
studying students who drop out despite their intent to complete the 
MOOC, it may be possible to develop interventions to improve 
retention and learning outcomes. Previous research into predicting 
MOOC completion has focused on click-streams, demographics, 
and sentiment analysis. This study uses natural language 
processing (NLP) to examine if the language in the discussion 
forum of an educational data mining MOOC is predictive of 
successful class completion. The analysis is applied to a 
subsample of 320 students who completed at least one graded 
assignment and produced at least 50 words in discussion forums. 
The findings indicate that the language produced by students can 
predict with substantial accuracy (67.8 %) whether students 
complete the MOOC. This predictive power suggests that NLP 
can help us both to understand student retention in MOOCs and to 
develop automated signals of student success.  

Keywords
Natural language processing, MOOCs, student success 

1. INTRODUCTION
The sheer size of student populations in massive open online 
classes (MOOCs) requires educators to rethink traditional 
approaches to instructor intervention and the assessment of 
student motivation, engagement, and success [11]. As a result, a 
good deal of MOOC research has focused on predicting or 
explaining attrition and overall student success. Most research 
assessing student success in MOOCs has involved the 
examination of click-stream data. Such data provides researchers 
with evidence of engagement within the course and activities 
associated with individual course goals [6]. Additional approaches 
to assessing student success include the use of sentiment analysis 
tools to gauge students’ affective states [15, 16] and individual 
difference measures such as student backgrounds and other 
demographic variables [5]. 

In this paper, we explore the potential for natural language 
processing (NLP) tools that include but also go beyond sentiment 
analysis to predict success in an educational data mining MOOC. 
Our goal is to develop an automated model of MOOC success 
based on NLP variables such as text length, text cohesion, 
syntactic complexity, lexical sophistication, and writing quality 
that can be used to predict class completion. Thus, in line with 
Koller et al. [7], we hope to better understand the language 
produced by MOOC students, especially differences in the 
language between those students that complete a course and those 
that do not. Using NLP variables affords the opportunity to go 
beyond click-stream data to examine student success and allows 
the personalization of predictive variables based solely on the 
language differences exhibited by students. Such fine-grained 
content analyses may allow teachers to monitor and detect 
evidence of student engagement, emotional states, and linguistic 
ability to predict success and intervene to prevent attrition. 

1.1 NLP and MOOC Success 
Researchers and teachers have embraced MOOCs for their 
potential to increase accessibility to distance and lifelong learners 
[7]. From a research perspective, MOOCs provide a tremendous 
amount of data via click-stream logs within the MOOC platform. 
These data can be mined to investigate student learning, student 
completion, and student attitudes. Typical measures include 
frequency of access to various learning resources, time-on-task, or 
attempt rates on graded assignments [14]. Less frequently mined, 
however, are data related to language use [15, 16]. 
NLP refers to the examination of texts’ linguistic properties using 
a computational approach. NLP centers on how computers can be 
used to understand and manipulate natural language texts (e.g., 
student posts in a MOOC discussion forum) to do useful things 
(e.g., predict success in a MOOC). The principal aim of NLP is to 
gather information about human language understanding and 
production through the development of computer programs 
intended to process and understand language in a manner similar 
to humans [3]. Traditional NLP tools focus on a text’s syntactic 
and lexical properties, usually by counting the length of sentences 
or words or using databases to compare the contents of a single 
text to that of a larger, more representative corpus of texts. More 
advanced tools provide measurements of text cohesion, the use of 
rhetorical devices, syntactic similarity, and more sophisticated 
indices of word use. 
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In MOOCs, the most common NLP approach to analyzing student 
language production has been through the use of sentiment 
analysis tools. Such tools examine language for positive or 
negative emotion words or words related to motivation, 
agreement, cognitive mechanisms, or engagement. For instance, 
Wen et al. [16] examined the sentiment of forum posts in a 
MOOC to examine trends in students’ opinions toward the course 
and course tools. Using four variables related to text sentiment 
(words related to application, cognitive words, first person 
pronouns, and positive words), Wen et al. reported that students’ 
use of words related to motivation had a lower risk of dropping 
out of the course. In addition, the more students used personal 
pronouns in forum posts, the less likely they were to drop out of 
the course. In a similar study, Wen et al [15] reported a significant 
correlation between sentiment variables and the number of 
students who dropped from a MOOC on a daily basis. However, 
Wen et al. did not report a consistent relation between students’ 
sentiment across individual courses and dropout rates (e.g., in 
some courses negative words such as “challenging” or 
“frustrating” were a sign of engagement), indicating a need for 
caution in the interpretation of sentiment analysis tools. 

2. METHOD
The goal of this study is to examine the potential for NLP tools to 
predict success in an EDM MOOC. Specifically, we examine the 
language used by MOOC students in discussion forums and use 
this language to predict student completion rates. 

2.1 The MOOC: Big Data in Education 
The MOOC of interest for this study is the Big Data in Education 
MOOC hosted on the Coursera platform as one of the inaugural 
courses offered by Columbia University. It was created in 
response to the increasing interest in the learning sciences and 
educational technology communities in learning to use EDM 
methods with fine-grained log data. The overall goal of this 
course was to enable students to apply each method to answer 
education research questions and to drive intervention and 
improvement in educational software and systems. The course 
covered roughly the same material as a graduate-level course, 
Core Methods in Educational Data Mining, at Teachers College 
Columbia University. The MOOC spanned from October 24, 2013 
to December 26, 2013. The weekly course comprised lecture 
videos and 8 weekly assignments. Most of the videos contained 
in-video quizzes (that did not count toward the final grade).  

All the weekly assignments were automatically graded, numeric 
input or multiple-choice questions. In each assignment, students 
were asked to conduct an analysis on a data set provided to them 
and answer questions about it. In order to receive a grade, students 
had to complete this assignment within two weeks of its release 
with up to three attempts for each assignment, and the best score 
out of the three attempts was counted. The course had a total 
enrollment of over 48,000, but a much smaller number actively 
participated; 13,314 students watched at least one video; 1,242 
students watched all the videos; 1,380 students completed at least 
one assignment; and 710 made a post in the weekly discussion 
sections. Of those with posts, 426 completed at least one class 
assignment; 638 students completed the online course and 
received a certificate (meaning that some students could earn a 
certificate without participating in the discussion forums at all).  

2.2 Student Completion Rates 
We selected completion rate as our variable of success because it 
is one of the most common metrics used in MOOC research [17]. 
However, as pointed out by several researchers, learner intent is a 

critical issue [5, 6, 7]. Many MOOC students enroll based on 
curiosity, with no intention of completing the course. The 
increased use of entry surveys is no doubt related to this inference 
problem. In the present analysis, however, we do not have access 
to this information. Therefore, we compute completion rates based 
on a smaller sample of forum posters as described below. 
“Completion” was pre-defined as earning an overall grade average 
of 70% or above. The overall grade was calculated by averaging 
the 6 highest grades extracted out of the total of 8 assignments. 

2.3 Discussion Posts 
We selected discussion posts because they are one of the few 
instances in MOOCs that provide students with the opportunity to 
engage in social learning [11, 16]. Discussion forums provide 
students with a platform to exchange ideas, discuss lectures, ask 
questions about the course, and seek technical help, all of which 
lead to the production of language in a natural setting. Such 
natural language can provide researchers with a window into 
individual student motivation, linguistics skills, writing strategies, 
and affective states. This information can in turn be used to 
develop models to improve student learning experiences [11]. In 
the EDM MOOC, students and teaching staff participated in 
weekly forum discussions. Each week, new discussion threads 
were created for each week's content including both videos and 
assignments under sub-forums. Forum participation did not count 
toward student’s final grades. For this study, we focused on the 
forum participation in the weekly course discussions. 

For the 426 students who both made a forum post and completed 
an assignment, we aggregated each of their posts such that each 
post became a paragraph in a text file. We selected only those 
students that produced at least 50 words in their aggregated posts 
(n = 320). We selected a cut off of 50 words in order to have 
sufficient linguistic information to reliably assess the student’s 
language using NLP tools. Of these 320 students, 132 did not 
successfully complete the course while the remaining 188 students 
completed the course. 

2.4 Natural Language Processing Tools 
We used several NLP tools to assess the linguistic features in the 
aggregated posts of sufficient length. These included the Writing 
Assessment Tool (WAT [9]), the Tool for the Automatic Analysis 
of Lexical Sophistication (TAALES [8]), and the Tool for the 
Automatic Assessment of Sentiment (TAAS). We provide a brief 
description of the indices reported by these tools below. 

2.4.1 WAT 
WAT was developed specifically to assess writing quality. As 
such, it includes a number of writing specific indices related to 
text structure (text length, sentence length, paragraph length), 
cohesion (e.g., local, global, and situational cohesion), lexical 
sophistication (e.g., word frequency, age of acquisition, word 
hypernymy, word meaningfulness), key word use, part of speech 
tags (adjectives, adverbs, cardinal numbers), syntactic complexity, 
and rhetorical features. It also reports on a number of writing 
quality algorithms such as introduction, body, and conclusion 
paragraph quality and the overall quality of an essay. 

2.4.2 TAALES 
TAALES incorporates about 150 indices related to basic lexical 
information (e.g., the number of tokens and types), lexical 
frequency, lexical range, psycholinguistic word information (e.g., 
concreteness, meaningfulness), and academic language for both 
single words and multi-word units (e.g., bigrams and trigrams). 
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2.4.3 TAAS 
TAAS was developed specifically for this study. The tool 
incorporates a number of language-based sentiment analysis 
databases including the Linguistic Inquiry and Word Count 
database (LIWC [10]), Affective Norms for English Words 
(ANEW [1]), Geneva Affect Label Coder (GALC [13]), the 
National Research Council (NRC) Word-Emotion Association 
Lexicon [12], and the Senticnet database [2]. Using these 
databases, TAAS computes affective variables related to a number 
of emotions such as anger, amusement, fear, sadness, surprise, 
trust, pleasantness, attention, and sensitivity. 

2.5 Statistical Analysis 
The indices reported by WAT, TAALES, and TAAS that yielded 
non-normal distributions were removed. A multivariate analysis 
of variance (MANOVA) was conducted to examine which indices 
reported differences between the postings written by students who 
successfully completed the course and those who did not. The 
MANOVA was followed by stepwise discriminant function 
analysis (DFA) using the selected NLP indices that demonstrated 
significant differences between those students who completed the 
course and those who did not, and did not exhibit multicollinearity 
(r > .90) with other indices in the set. In the case of 
multicollinearity, the index demonstrating the largest effect size 
was retained in the analysis. The DFA was used to develop an 
algorithm to predict group membership through a discriminant 
function co-efficient. A DFA model was first developed for the 
entire corpus of postings. This model was then used to predict 
group membership of the postings using leave-one-out-cross-
validation (LOOCV) in order to ensure that the model was stable 
across the dataset. 

3. RESULTS

3.1 MANOVA 
A MANOVA was conducted using the NLP indices calculated by 
WAT, TAALES, and TAAS as the dependent variables and the 
postings by students who completed the course and those who did 
not as the independent variables. A number of indices related to 
positing length, number of posts, use of numbers, writing quality, 
lexical sophistication, n-gram use, and cohesion demonstrated 
significant differences (see Table 1 for the MANOVA results). 
These indices were used in the subsequent DFA. 

The results indicate that those who completed the course, even 
though course completion depended solely on success on 
technical assignments, tended to be better writers (i.e., received 
higher scores based on the essay score algorithm in WAT), to use 
a greater variety of words, to write more often with more words, 
and with greater cohesion. They also used more words relevant to 
the domain of the course, more concrete words, more 
sophisticated words, words with more associations to other words, 
and more common bigrams and trigrams.  

3.2 Discriminant Function Analysis 
A stepwise DFA using the indices selected through the 
MANOVA retained seven variables related to post length, lexical 
sophistication, the use of numbers, cohesion, and writing quality 
as significant predictors of whether a student received a certificate 
or not. These indices were Average post lengths, Word age of 
acquisition, Cardinal numbers, Hypernymy standard deviation, 
Situational cohesion, Trigram frequency, and Essay score 
algorithm. The remaining variables were removed as non-
significant predictors. 

Table 1. MANOVA Results Predicting Whether Students 
Completed the MOOC 

Index F η2 
Essay score algorithm 13.071** 0.039 
Type token ratio 12.074** 0.037 
Number of word types 11.371** 0.035 
Number of posts 10.919* 0.033 
Average post length 10.596* 0.032 
Concreteness 10.017* 0.031 
Cardinal numbers 10.081* 0.031 
Trigram frequency 9.445* 0.029 
Bigram frequency 8.903* 0.027 
Number of sentences 8.451* 0.026 
Frequency content words 8.219* 0.025 
Situational cohesion 8.041* 0.025 
Hypernymy standard deviation 7.643* 0.023 
Word meaningfulness 7.378* 0.023 
Lexical diversity 6.180* 0.019 
Average word length 5.150* 0.016 
Essay body quality algorithm 4.409* 0.014 
Logical connectors 3.915* 0.012 
Word age of acquisition 3.854* 0.012 

** p < .001, * p < .050 

The results demonstrate that the DFA using these seven indices 
correctly allocated 222 of the 320 posts in the total set, χ2 (df=1) 
= 46.529 p < .001, for an accuracy of 69.4%. For the leave-one-
out cross-validation (LOOCV), the discriminant analysis allocated 
217 of the 320 texts for an accuracy of 67.8% (see the confusion 
matrix reported in Table 2 for results and F1 scores). The Cohen’s 
Kappa measure of agreement between the predicted and actual 
class label was 0.379, demonstrating fair agreement. 

Table 2. Confusion matrix for DFA classifying postings 

predicted 

 
actual - Cert +Cert F1 score 

Whole set - Certificate 91 41 0.650 
+Certificate 57 131 0.728 

LOOCV - Certificate 87 45 0.628 
+Certificate 58 130 0.716 

4. DISCUSSION AND CONCLUSION
Previous MOOC studies have investigated completion rates 
though click-stream data and sentiment analysis tools. The current 
study adds another tool for examining successful completion of a 
MOOC: natural language processing. The tools assessed in this 
study show that language related to forum post length, lexical 
sophistication, situational cohesion, cardinal numbers, trigram 
production, and writing quality can significantly predict whether a 
MOOC student completed an EDM course. Such a finding has 
important implications for how students’ individual differences 
(in this case, language skills) that go beyond observed behaviors 
(i.e., click-stream data) can be used to predict success.  

Overall, the results support the basic notion that students that 
demonstrate more advanced linguistic skills, produce more 
coherent text, and produce more content specific posts are more 
likely to complete the EDM MOOC. For instance, students were 
more likely to complete the course if their posts were shorter (i.e., 
more efficient), used words that are less frequent or familiar (i.e., 
higher age of acquisition scores), used more cardinal numbers 
(i.e., content specific), used words that were more consistent in 
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terms of specificity (i.e., less variance in terms of specificity), 
produced posts that were more cohesive (i.e., greater overlap of 
ideas), used more frequent trigrams (i.e., followed expected 
combinations of words), and produced writing samples of higher 
quality (i.e., samples scored as higher quality by a automatic essay 
scoring algorithm). Interestingly, none of our affective variables 
distinguished between students who completed or did not 
complete the EDM MOOC. This may be the result of the specific 
MOOC under investigation, a weakness of the affective variables 
examined, or a weakness of affective variables in general.  

The findings have important practical implications as well. The 
linguistic model developed in this paper through the DFA could 
be used as a prototype to monitor MOOC students and potentially 
identify those students who are less likely to complete the course. 
Such students could then be target for interventions (e.g., sending 
e-mails, suggesting assignments or tutoring) to improve 
immediate engagement in the MOOC and promote long-term 
completion.  

The results reported in this study are both significant and 
extendible to similar datasets (as reported in the LOOCV results). 
They also open up additional research avenues. For instance, to 
improve detection of students who might be unlikely to complete 
the MOOC, follow-up models that include click-stream data could 
be developed and tested. Such models would likely provide 
additive power to detection accuracy. One concern with the 
current model is that it requires language samples for analysis. 
This suggests that NLP approaches like this one may be even 
more useful in classes that have activities such as collaborative 
chat, a feature now emerging in some MOOCs.  
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ABSTRACT
Predicting the success or failure of a student in a course or
program is a problem that has recently been addressed using
data mining techniques. In this paper we evaluate some of
the most popular classification and regression algorithms on
this problem. We address two problems: prediction of ap-
proval/failure and prediction of grade. The former is tackled
as a classification task while the latter as a regression task.
Separate models are trained for each course. The exper-
iments were carried out using administrate data from the
University of Porto, concerning approximately 700 courses.
The algorithms with best results overall in classification were
decision trees and SVM while in regression they were SVM,
Random Forest, and AdaBoost.R2. However, in the classi-
fication setting, the algorithms are finding useful patterns,
while, in regression, the models obtained are not able to beat
a simple baseline.

Keywords
Regression, Classification, Academic Performance

1. INTRODUCTION
Recently, the University of Porto (UPorto) identified mod-
elling of the success/failure of students in each course as one
of its priorities. The goal is to use the models for two tasks:
make predictions for the individual performance of students
in courses and understand the factors associated with suc-
cess and failure. These models are relevant to five levels
of decision, namely: Course teacher, Program Director, De-
partment Director, Faculty Director and University Rector.
Course teachers and program directors can use the models
to identify students at risk and devise strategies that can

reduce the risk of failure. Also, program directors as well
as department directors can find them useful in designing
program syllabus. Finally, the top levels of university man-
agement can use these models to understand general trends
and behaviours in student performance, which can lead to
new or adapted pedagogical strategies.

The fact that models are needed for different levels of deci-
sion requires that these models have different granularities.
In other words, course teachers and program directors are
able to work with a few or a few dozen models, respectively.
However, the other levels of management would have to deal
with hundreds, maybe even thousands of models, which is
not feasible. On the other hand, each course presents dif-
ferent particularities which makes the creation of a unique
model to predict academic success for all the courses, an ex-
tremely hard task. Such a model would have to aggregate
the different factors that influence success in very different
courses. Therefore, we train a model separately for each
course.

So far, the results obtained and the domain-specific con-
straints provide a satisfactory justification for the choice of
decision trees. However, there is a need to understand the
impact of this choice in the predictive accuracy of the algo-
rithms, namely when compared with others. Additionally,
although the problem of predicting if a student will pass
or fail (classification task) is relevant for all levels of man-
agement of the university, the related problem of predicting
the actual grade (regression task) may provide additional
useful information. Therefore, this study also considers a
comparative analysis of different regression algorithms. This
comparison will also address the question of whether the fea-
tures that are useful for classification are equally useful for
regression.

The main contributions of this paper are: 1) to compare the
predictive accuracy of different algorithms on the problems
of predicting the performance of students in both classifi-
cation (predicting success/failure) and regression (predict-
ing the grade) tasks, particularly when comparing with de-
cision trees, which have some other properties that deem
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Figure 1: Experimental Setup

them suitable for this problem; 2) to assess whether the
features which have obtained positive results in the classi-
fication task, and that represent essentially administrative
information, are also useful to predict the grades.

The remainder of this paper is structured as follows. Sec-
tion 2 presents related work. Section 3 describes the exper-
imental set-up and methodology for both classification and
regression models. Section 4 presents the results followed by
section 5 with the conclusions and future work.

2. RELATED WORK
Predicting students’ performance has been an issue studied
previously in educational data mining research in the con-
text of student attrition [24, 23]. Minaei-Bidgoli [13] used
a combination of multiple classifiers to predict their final
grade based on features extracted from logged data in an
education webbased system.

Pittman [15] performed a study to explore the effectiveness
of data mining methods to identify students who are at risk
of leaving a particular institution. Romero et al. [16] focused
on comparing different data mining methods and techniques
for classifying students based on their Moodle (e-learning
system) usage data and the final marks obtained in their
respective programmes. The conclusion was that the most
appropriate algorithm was decision trees for being accurate
and comprehensible for instructors. Kabakchieva [10] also
developed models for predicting student performance, based
on their personal, pre-university and university performance
characteristics. The highest accuracy is achieved with the
neural network model, followed by the decision tree model
and the kNN model.

Strecht, Mendes-Moreira and Soares [20] work predicted the
failure of students in university courses using an approach
to group and merge interpretable models in order to replace
them with more general ones. The results show that merging
models grouped by scientific areas yields an improvement in
prediction quality.

3. METHODOLOGY
To carry out the experiments, a system with four processes
was developed following the architecture presented in Fig-
ure 1. The first process creates the data sets (one for each
course in the university) from the academic database, con-
taining enrolment data. The courses data set were then used
by two processes to create classification and regression mod-
els for each course using various algorithms. These models
were evaluated using suitable performance metrics (different
for classification and regression) that are collected to allow
analyses and comparison by the final process.

3.1 Data Extraction
This process extracts data sets from the academic database
of the university information system. The analysis done
focuses on the academic year 2012/2013. A total of 5779
course data sets were extracted (from 391 programmes).
The variables used were: age, sex, marital status, nation-
ality, displaced (whether the student lived outside the Porto
district), scholarship, special needs, type of admission, type
of student (regular, mobility, extraordinary), status of stu-
dent (ordinary, employed, athlete, . . .), years of enrolment,
delayed courses, type of dedication (full-time, part-time),
and debt situation. The target variables are approval for
classification and final grade for regression.

The final grade in these data sets is stored as a numerical
value between 0 and 20. However, there are some special
cases in which the grade is given as an acronym (e.g, RA
means fail because of dropout), which is not feasible for
regression. In such cases, in which a student failed, we con-
verted the grade to 0.

3.2 Creation and evaluation of models
Two processes trained a set of models for classification
and regression respectively for each course using differ-
ent algorithms. For classification we have used k-Nearest
Neighbors (kNN) [9], Random Forest (RF) [2], AdaBoost
(AB) [7], Classification and Regression Trees (CART) [3],
Support Vector Machines [21], Näıve Bayes (NB) [12] and
for regression we used Ordinary Least Squares (OLS) [18],
SVM, CART, kNN, Random Forest, and AdaBoost.R2
(AB.R2) [8].

This selection of algorithms was based on the most used
algorithms for general data mining problems [22]. In this
set of experiments a standard values of parameters was used.
As baseline in classification we defined a model which always
predicts failure. For regression, the baseline model predicts
the average grade of the training set of a given course.

Models were evaluated using the k-fold cross-validation
method [19] with stratified sampling [11]. The distribution
of positive and negative instances is not balanced, thus it is
necessary to ensure that the distribution of students in each
fold respect these proportions. Failure is the positive class
in this problem and we used F1 score for evaluation [5]. All
regression models used 10-fold cross validation and the Root
Mean Squared Error (RMSE) as evaluation measure [4].

Training and evaluation of models was replicated for each
course. Courses with less then 100 students were skipped.
This resulted in around 700 models for each algorithm in
both classification and regression.

3.3 Performance Analyses
In both classification and regression, the algorithms were
compared by placing box plots side by side relating to F1
and RMSE respectively. To get a better perspective of the
distribution of results, violin plots are presented together
with the box plots. The longest horizontal lines inside the
boxes refer to the median while the shortest refer to the
average. A few descriptive statistics were also collected and
presented in tables.
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Figure 2: F1 score for each classification algorithm

In order to statistically validate the results obtained in the
experiments we have used the Friedman test as suggested
by Demšar to compare multiple classifiers [6]. We have used
the typical value of 12 groups of models often referred as
data sets in this context.

4. RESULTS
This section presents the results obtained by running exper-
iments to train models for both classification and regression.

4.1 Classification
Figure 2 presents the F1 score distribution of models across
algorithms. Table 1 presents some basic statistics about the
results. Algorithms are ranked by descending order of values
of the average and standard deviation of F1 scores.

The first fact that stands out from Figure 2 is that none
of the algorithms present exceptional results. Albeit this,
some of them seem to systematically outperform the base-
line, namely SVM, CART and NB.

Table 1 confirms that SVM is the algorithm with the best
performance, clearly outperforming the baseline. Not only it
provides the highest average F1 score, 0.60±0.17, but some-
times it also achieves a maximum F1 score of 1.0, while the
maximum score of the baseline is 0.94. Finally, although the
minimum score is lower than the baseline’s (0 vs. 0.08), the
standard deviation is lower (0.17 vs. 0.20) which indicates
that overall, it obtains more robust results.

Similar observations can be made for CART and NB. The
performance of RF and AB is very similar to that of the
baseline, while kNN is worse. The results of Random For-
est, in particular, are surprising as this algorithm usually
exhibits a very competitive performance [17].

In spite of the showing some systematic differences, the re-
sults are, overall, not very different. This is confirmed by
the results of the Friedman test, χ2(6) = 2.6071, p = 0.8563,
as the p-value is very high.

4.2 Regression
Figure 3 presents the distribution of RMSE values of models
obtained by the algorithms. Table 2 presents some basic
statistics about the results. The algorithms are ranked by
ascending order of RMSE values.

As in classification, it is also quite straightforward that none
of the algorithms present exceptional results. Also in this
case, there is one algorithm which performs clearly worse

Table 1: Classification models results (F1)

Rank Algorithm Avg Std Dev Max Min

1 SVM 0.60 0.17 1.00 0.00

2 CART 0.56 0.17 1.00 0.00

3 NB 0.55 0.16 1.00 0.00

4 RF 0.45 0.22 0.93 0.00

5 AB 0.45 0.21 0.92 0.00

6 Baseline 0.45 0.20 0.94 0.08

7 kNN 0.42 0.24 0.93 0.00

Figure 3: RMSE for each regression algorithm

than the baseline, CART (Table 2). Unlike classification,
all violin plots show exactly the same shape, i.e., equally
sized upper and lower tails. Therefore, differences are more
related to overall performance (i.e. location). This shows
that to compare models it is enough to consider the average
and standard deviation.

The differences in performance are even smaller than in clas-
sification. However, Table 2 suggests that SVM was the best
algorithm with an average of 4.65±1.19, but the standard de-
viation is quite large (1.19) taking into account the RMSE
of the baseline (4.92). These observations are confirmed by
the Friedman test (χ2(6) = 3.3697, p = 0.7612). In the case
of regression, the value of the RMSE is interpretable, as it
is in the same scale as the target variable. All algorithms
obtain an error around 5, which is very high according to
the scale (0 to 20).

In light of the results obtained in the classification setting,
this is somewhat surprising, since the independent variables
are the same and many of the algorithms used are based
on the same principles.1 Further analysis of the results is
necessary to understand them and to identify possibilities to
improve the results.

1Although this must be interpreted carefully as it is arguable
to say that, for instance, SVM for classification and regres-
sion are the same algorithm.

Table 2: Regression models results (RMSE)

Rank Algorithm Avg Std Dev Max Min

1 SVM 4.65 1.19 8.54 1.03

2 RF 4.69 1.10 7.66 1.06

3 AB.R2 4.69 1.02 7.96 1.07

4 kNN 4.72 1.12 7.96 1.10

5 Baseline 4.92 1.11 7.59 1.00

6 OLS 4.84 1.19 9.75 1.06

7 CART 5.46 1.26 8.68 1.22
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5. CONCLUSIONS
Positive results were obtained on the classification approach
where the goal is to predict whether a student will pass or
fail a course. Surprisingly, however, the results on the regres-
sion approach, where the goal is to predict the grade of the
student in a course, were bad. Additionally, we found no sta-
tistical evidence that the differences in performance between
the algorithms are significant, although some trends are ob-
served. Further analysis is necessary to better understand
these results, which could lead to ideas for improvement. As
a complement of the problems studied in this work, it should
be interesting to predict an interval for a grade [1].

Some algorithms are more sensitive to parameter tuning
than others. Thus it is not guaranteed that they ran with the
best configuration. As future work, some optimisation could
be made using an automate tuning methodology. In addi-
tion, feature selection and feature weighting can be carried
out which has proven to yield good results in educational
data [14].

Although the feature set used in the experiments provided
some interesting results in classification, the same did not
happen in regression. Thus, new features could be added.
Features related to academic goals, personal interests, time
management skills, sports activities, sleep habits, etc. are
worthwhile investigating.
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ABSTRACT
Continuously tracking students during a whole semester plays
a vital role to enable a teacher to grasp their learning situ-
ation, attitude and motivation. It also helps to give correct
assessment and useful feedback to them. To this end, we
ask students to write their comments just after each les-
son, because student comments re�ect their learning atti-
tude towards the lesson, understanding of course contents,
and di�culties of learning. In this paper, we propose a new
method to predict �nal student grades. The method em-
ploys Word2Vec and Arti�cial Neural Network (ANN) to
predict student grade in each lesson based on their com-
ments freely written just after the lesson. In addition, we
apply a window function to the predicted results obtained in
consecutive lessons to keep track of each student's learning
situation. The experiment results show that the prediction
correct rate reached 80% by considering the predicted stu-
dent grades from six consecutive lessons, and a �nal rate
became 94% from all 15 lessons. The results illustrate that
our proposed method continuously tracked student learn-
ing situation and improved prediction performance of �nal
student grades as the lessons go by.

Keywords
PCN Method, Word2Vec, ANN, Comment Mining, Grade
Prediction

1. INTRODUCTION
Learner performance assessment is a continuous and an inte-
gral part of the learning process [4]. During studying, exams
are used to help teachers know how good students are learn-
ing, as well as to help them �nd out the di�culties with
the course. However preparing a good exam is a laborious
and resource demanding work, so it's still hard to obtain
assessment by exams over all periods of a semester.

Thus, in the past four decades, researchers have been work-
ing on predicting individual or group performance in courses
for getting assessments. By accurate predictions, we can
detect students who have di�culties with the courses early,
and help them improve [1].

To control students' learning behavior and situations, previ-
ous studies have used various regular assessment methods,

such as e-learning logs, test marks and questionnaires. The
current study proposes a new method to predict student
grades. Our method is based on students' free-style com-
ments collected after each lesson.

K.Goda, S.Hirokawa, and T.Mine [3] [2]proposed the PCN
method to estimate student learning situations from free-
style comments written by the students. The PCN method
categorizes the comments into three items: P (Previous ac-
tivity), C (Current activity), and N (Next activity).

In this paper, we apply the Word2Vec method to the com-
ments data to get a vector representation of each comment.
Then we use an arti�cial neural network (ANN) model to
predict student grades based on the vectors. The experi-
ments were conducted to validate the proposed methods by
calculating the F-measure and accuracy for each lesson. Af-
ter acquiring a prediction result for each lesson, we applied
a window function and a majority vote method to get a
�nal prediction result based on multiple lessons. The ex-
periment results illustrate that the prediction correct rate
reached 80% by considering the predicted student grades
obtained from six lessons, and the �nal rate became 94%
from all 15 lessons.

Contributions of this paper are threefold. First, we pro-
pose a new method to predict �nal student grades by using
Word2Vec and ANN. Second, we improve the prediction per-
formance by considering the results obtained in consecutive
lessons. We show as the size of the lessons increases, the
prediction performance becomes better. Third, we conduct
experiments to illustrate the e�ectiveness of the proposed
methods. The experiment results show the validity of the
proposed methods.

2. RELATED WORK
Extensive literature reviews of the Educational Data Mining
(EDM) research �eld are mainly focused on retention of stu-
dents, improving institutional e�ectiveness, enrollment man-
agement and alumni management. In the past four decades,
a considerable amount of research has gone into predicting
individual or group success in exams and courses.

Schoor and Bannert [7] studied sequences of social regula-
tory processes (i.e. individual and collaborative activities of
analyzing, planning...aspects) during collaborative sessions
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and their relationship to group performance. They used pro-
cess mining to identify process patterns for high versus low
group performance dyads. The result models showed that
there were clear parallels between high and low achieving
dyads in a double loop of working on the task, monitoring,
and coordinating.

Liu and Xing [5] aimed to develop a predictive model of
student behavior by an ensemble approach composed of cre-
ation of sampled sets, generation of base models, and selec-
tion of base models to be aggregated for obtaining the �nal
ensemble model. The solution required less computation re-
source, had satisfying prediction performance and produced
prediction models with good capability of generalization.

Di�erent from the above studies, Goda et al. [3] proposed
the PCN method to estimate students' learning situations
with their free-style comments written just after a lesson.
They applied Support Vector Machine (SVM) to the com-
ments for predicting �nal student results in 5 grades. The
experiment results illustrate that as student comments get
higher PCN scores, prediction performance of student grades
becomes better. Sorour et al.[8] applied machine learning
technique: arti�cial neural network (ANN) and made it
learn the relationships between comments data analyzed by
Latent semantic analysis(LSA) and the �nal student grades.
They constructed a network model to each lesson. The av-
erage prediction accuracy of student �nal grades was 82.6%.
In this study, as an extension of Sorour et al. [8], we fo-
cused on using di�erent text mining method Word2Vec com-
bined with the ANN model to get prediction on each lesson,
and obtain prediction results based on consecutive multiple
lessons. Our method outperformed the method of Sorour et
al.[8].

3. METHODOLOGY
3.1 Collecting Comments
In this research, we used the same comment data as Sorour
et al.[8]. The comments were collected after each lesson in
a course including 15 lessons. 123 students attended this
course. They were asked to �ll in three simple questionnaire
items about their learning status. Goda et al. [3] called
the three items, P (Previous), C (Current) and N (Next)
items. In this paper, we mainly focus on the C (Current)
comments. Table 1 displays the real number of comments
in each lesson that we analyzed. On average there is 111.13
comments in each lesson.

Table 1: Number of comments for each lesson
Lesson Num Lesson Num Lesson Num
1 100 6 116 11 107
2 121 7 104 12 109
3 118 8 103 13 107
4 115 9 107 14 111
5 123 10 111 15 121

3.2 Comments Data Preparation

3.2.1 Comments Data Preprocessing
This step covers all the preparations required for construct-
ing the �nal dataset from the initial data. Our method
used a Japanese morphological analyzer Mecab1 to analyze
1http://sourceforge.net/projects/mecab/

C comments, extract words and part of speech. In this ex-
periment, we only used noun, verb, adjective and adverb.
The number of words appeared in the comments is about
1400 in each lesson, and the number of words in all the
comments without duplication is over 430 in each lesson.

3.2.2 Word2Vec
Word2vec is a popular neural network based approach to
learning distributed vector representations for words released
by Google in 2013. This tool adopts two main model ar-
chitectures, Continuous Bag-of-Words (CBOW) and Skip-
Gram[6].

3.3 Training Phase
After the previous step and before we applied ANN to train
the data, we have some pretreatments for preparing training
data for ANN.

We have got a list of vocabularies and their corresponding
vectors after the previous step. Now we need to �nd out all
the words one student have used in his/ her comment which
existed in the vocabulary list, and add the vectors indicating
these words up to get a �nal vector for that student.

After obtaining a list of vectors for each student, we need to
proceed the training phase with the list. In this research, we
used a three-layered Arti�cial Neural Network to estimate
student grades. In our work, we used FANN Libraries2 to
build our network model. We took the results from the
former step and put them into the input layer of ANN. For
all the lessons, we applied the same model with 0.1 learning
rate and 0.3 momentum.

3.4 Test Phase
To predict student grades, we used 5 grade categories instead
of real marks to classify �nal student marks.

Table 2: 5 Grades Categories
Real Marks Grades Num of Students
≥ 90 S 21
80-89 A 41
70-79 B 23
60-69 C 17
≤ 60 D 21

Since in each lesson, there exist some students who did not
�ll in questionnaires, we can't predict their grade. In these
cases, we treat them as grade D instead.

After training the ANN model, we proceed the test phase
to get prediction results of �nal student grades in each les-
son. In the test phase, we evaluated prediction performance
(Accuracy, F-measure) by 10-fold cross validation. We sep-
arated comments data by using 90% as training data and
the rest 10% as test data. The procedure was repeated 10
times and the results were averaged. Afterwards, we apply
an window function and the majority vote method to obtain
a continuous prediction. The details of the window function
and the majority vote method will be described in Section
4.1.

2http://leenissen.dk/fann/wp/
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Figure 1: Accuracy for di�erent grades Figure 2: Average accuracy and F-measure of all the grades
in each lesson

Figure 3: Average TP rate based on di�erent de�nitions Figure 4: TP rate for di�erent length of consecutive lessons
from lesson 1

4. PREDICTION PERFORMANCE
4.1 Measure of Prediction Performance
We de�ne the majority vote method and the window func-
tion as follows:

Let G be a set of grades {g0, g1, g2, g3, g4}; each element of
G corresponds to each grade, i.e., g0, g1, g2, g3, and g4 corre-
spond to S, A, B, C, and D, respectively. LetMVk(m,n) be
the function of Majority Vote of student k from lessons m to
n . MVk(m,n) returns a set of predicted student k's grades
whose occurrence frequency from lessons m to n became the
greatest. We de�ne MVk(m,n) in De�nition 1.

De�nition 1. MVk(m,n)

MVk(m,n) = argmax
gi∈G

f(k, gi)(m,n)

where f(k, gi)(m,n) returns the occurrence frequency of pre-
dicted grade gi of student k from lessons m to n.

For example, if the predicted grades of student 1 from lessons
1 to 3 are respectively S (=g0), A (=g1), and S (=g0), then
f(1, g0)(1, 3) = 2 and f(1, g1)(1, 3) = 1 . So, MV1(1, 3)
returns {g0}. If the predicted grades of student 1 from
lessons 1 to 3 are respectively S(=g0), A(=g1), B(=g2), then
f(1, g0)(1, 3) = 1, f(1, g1)(1, 3) = 1, and f(1, g2)(1, 3) = 1.
So, MV1(1, 3) returns {g0, g1, g2}.

Function δ returns a score according to the results returned
by a Majority Vote functionMV (m,n) de�ned in De�nition
1. Three δ functions: δ1, δ2, and δ3, are de�ned in De�ni-
tions 2, 3, and 4. Here we use the notation |.| that denotes
the cardinality of a set. For example, if MV1(1, 3) returns
{g0, g1, g2}, then |MV1(1, 3)| = 3.

De�nition 2. δ1

δ1(MVk(m,n)) returns 1 if gk is the actual grade of student
k, gk ∈MVk(m,n) and gl 6∈MVk(m,n) such that |l−k| > 1,
0 otherwise.

For example, we assume that the actual grade of student
k is g0, if MVk(m,n) = {g0, g1}, then δ1(MVk(m,n)) = 1.
If MVk(m,n) = {g0, g2} then δ1(MVk(m,n)) = 0, because
|2− 0| > 1.

De�nition 3. δ2
δ2(MVk(m,n)) returns

1
|MVk(m,n)| if gk ∈MVk(m,n) where

gk is the actual grade of student k, 0 otherwise.

De�nition 4. δ3
δ3(MVk(m,n)) returns 1 if gk ∈MVk(m,n) and |MVk(m,n)| =
1, 0 otherwise.

Next, we de�ne TP (m,n) that returns True Positive (TP)
rate from lessons m to n in De�tion 5.

De�nition 5. TP (m,n)

TP (m,n) =

∑Ns
k=1 δ(MVk(m,n))

Ns

where Ns is the number of students.

Now we de�ne function WF (s), which returns the average
TP rate in s consecutive lessons, in De�tion 6. Here s de-
notes the length of consecutive lessons, i.e. the number of
lessons.

De�nition 6. WF (s)

WF (s) =

∑N−s+1
k=1 TP (k, k + s− 1)

N − s+ 1
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where N is the number of all lessons in a course, 15 in this
research.

For example, when N = 15, WF (1) to WF (15) are com-
puted as follows:

WF (1) =
TP (1, 1) + TP (2, 2) + ..+ TP (15, 15)

15

WF (2) =
TP (1, 2) + TP (2, 3) + ..+ TP (14, 15)

14

WF (3) =
TP (1, 3) + TP (2, 4) + ..+ TP (13, 15)

13
. . .

WF (14) =
TP (1, 14) + TP (2, 15)

2

WF (15) =
TP (1, 15)

1
= TP (1, 15)

4.2 Results in Each Lesson
We examined the same model on all the students with di�er-
ent �nal grades. Results are shown in Figures 1 and 2. Fig-
ure 1 displays the plot of accuracy results of students with
di�erent grades in each lesson. Table 3 shows the average
overall prediction accuracy and F-measure for the di�erent
grades. As for accuracy, the result of grade D is the high-
est, which scores 89.5%, and the lowest average is grade A,
which scores 79.1%. Also, according to Figure 2, lesson 1
has the highest accuracy and F-measure, while lesson 4 has
the lowest results.

Table 3: Average accuracy and F-measure for di�erent
grades

Grades Accuracy F-measure
S 87.3 65.6
A 79.1 71.3
B 85.0 62.6
C 88.5 57.2
D 89.5 62.3

Average of all grades 85.9 63.8

4.3 Results after Using Window Function and
Majority Vote

Before we apply the window function to all the consecutive
lessons, we �rst treat all the students who did not describe
comments as Grade D. After this step, it also ensures that
for each lesson, every student has one predicted grade. After
we get the prediction result in each lesson, we apply the
window function and the majority vote method to get a
continuous track of student performance.

Here, we only consider TP rates. First we investigated the
e�ect of size s of WF (s) by varying the value of s from 1 to
15. As we can see, in Figure 3, the TP rate was increased
as the value of s increased. As an example of the results,
even though the strictest way of counting the correct case
by De�nition 4, the correct rate still raised over 80% after
considering more than six lessons. In addition, with all the
lessons, the correct rates all reached over 90%. And with
De�nition 2 and 3, they both reached 94%. The results by
De�nition 4 reached 92.7%.

Figure 4 shows the result of TP rate from TP(1, 1) ,TP(1,
2),TP(1, 3) to TP(1, 15) with three di�erent de�nitions.

With the growing of window function size, the TP rate raised
over 80% with more than 7 lessons, which is slightly lower
than the average.

Considering the results of Figures 3 and 4, we can say the
both results took similar tendency that the TP rates became
greater as the size of lessons increased.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we discussed the prediction method of student
grade based on the C comments data from Goda et al. [3].
We applied the Word2Vec and ANN methods to the com-
ments to obtain prediction of their grades in each lesson.
Then we used the window function and the majority vote
method to improve the prediction results based on consecu-
tive multiple lessons. The experiment results illustrate the
validity of the proposed method.

This study expressed the correlation between self-evaluation
descriptive sentences written by students and their academic
performance by predicting their grade. Especially when us-
ing prediction results obtained in consecutive lessons, the
prediction result has quite high credibility. This could help
giving feedback to students during the semester to help stu-
dents achieve higher motivation and know their learning con-
ditions better.

However, there still remain some room for improving pre-
diction results in each lesson. In the future, we will try to
apply better models to achieve higher accuracy in predicting
student grades.
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ABSTRACT
Creativity is a relevant skill for human beings in order to
overcome complex problems and reach novel solutions based
on unexpected associations of concepts. Thus, the education
of creativity becomes relevant, but there are not tools to au-
tomatically track the creative potential of learners over time.
This work provides a novel set of behavioural features about
creativity based on associative skills. These associations are
processed to define two models that depict students’ creative
potential. This way, we have reached an acceptable accuracy
rate in the classification of creative potential, hence we have
found concrete evidence regarding the ability to automati-
cally predict the creative potential of students based on their
association capabitilies.

1. INTRODUCTION
Creativity generally emerges when people face a problem-
atic or new situation, where constraints and concepts are
probably unknown. An intensive search of novel solutions
is required to solve real problems. This search can be done
by exploration, transformation or combination of concepts.
Therefore, there is a need of new associations of concepts to
reach unknown solutions [7].

Nowadays, students are the centre of their learning when
solving authentic problems, and creative skills provide stu-
dents adaptation abilities to overcome heuristic environment,
where nor the path to the solution nor the solution are
known and therefore, you need to establish strategies to
achieve the goal. In this context, the intensive use of tech-
nology by students to produce web searches and social data
is a rich source of information to learn how students be-
have [2], thus a monitoring framework of creativity, based
on associative features, becomes feasible.

A set of creative challenges have been applied to 64 students
of sixth grade in two primary schools in Spain. First, we have
applied an “unusual uses” test as a measure of creativity.

After that, we have applied two “word association” tasks in
order to depict their associative skills over time, similarly to
[4]. Based on data captured from these activities we have
extracted a set of relevant features regarding to creativity in
order to model the user behaviour.

Our hypothesis bases on the fact that the local frequency
of words and the time when they came out provide relevant
information about originality. Also, we set that time pro-
vides a measure about fluency and that part of speech gives
information about flexibility.

We have tested the strength of features associated to creativ-
ity with a supervised classification approach. We propose a
model to track the creative potential of students based on
their associative skills, but it still requires a more power-
ful set of semantic features and a learning algorithm that
works properly with sequential data. However, the devel-
oped model provides an acceptable accuracy rate (over 81%
in the best case) and outperform a Bag-of-Words approach.

(Sec-2) describes the concept of creativity and provides for-
mal definitions of existing models (Sec-3). (Sec-4) defines
the experiment carried out to collect data and evaluates the
predictability of proposed models. Then, we present the
main results using these models (Sec-5) and provide a dis-
cussion regarding the monitoring of creativity (Sec-6). Fi-
nally, we summarize our contributions and outline future
works (Sec-7).

2. BACKGROUND
Creativity is a mental process based on associations in our
mind and it has been characterized by: fluency, flexibil-
ity, originality and elaboration. The conceptual model of
creativity of Amabile [1] defines a general process to solve
problems that is grouped in three phases: a conceptualiza-
tion phase to establish several problem definitions; a search
phase to reach concepts, make new associations and estab-
lish new solutions; and a development phase to implement
a solution and to update the knowledge. The model also
introduces relevant skills related to creativity: associative
and executive, which have been studied against the creative
performance [4].

Mednick [7] proposed an associative theory of creativity where
affirms that a creative person is able to find new solutions
to real problems making as many associations as possible
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(fluency), as diverse as possible (flexibility) and as unex-
pected as possible (originality). Benedek et al. have found
a positive relation between fluency and creativity [4].

There are some procedures to measure the creativity [8] [4].
Generally, it is measured by an unusual uses test, where
each participant must achieve as many uses as possible for
a particular object (e.g. a brick) in a short period of time,
and the expert evaluation of creativity is based on a Likert-
scale of fluency, flexibility and originality. This methods
do not include measures of the creative potential obtained
during data from the process to carry out the activity (i.e.
search on the Web, social networks, etc.) and, thus there is
an opportunity to model the creativity to implicitly depict
students’ behaviour.

A word association task makes visible the association skills
by retrieving as many words as possible with respect to a
query word, in a short period of time. This task is an heuris-
tic process of word retrieval, where a user defines an asso-
ciation model Qu in order to provide words wi, in a certain
time ti and related to a query word qs (Eq-1).

Qu(qs) = [(w1, t1), (w2, t2), . . . , (wn, tn)]∀wi ∈Wu (1)

Moreover, each user defines an heuristic measure h∗u based
on a hidden similarity measure Su (Eq-2).

h∗u(qs, w) = Su(qsj , w|t) | u ∈ U (2)

Even heuristic is hidden, we can derive an empirical model
through a set of association features [4].

2.1 Computational Models of Creativity
In art, a search behaviour analysis based on a visual creative
task has been developed to figure out the hidden process
[5]. A computerized aesthetic composition task was imple-
mented in order to capture the search flow followed by each
participant to design a new image. Thus, the user actions
are used to depict the heuristic applied in the search process.

In education of creativity, a personalized creativity learning
system (PCLS) based on decision trees has been proposed
[6]. Nevertheless, they are not focused in track the creativity,
but in enhance the process to teach creativity. The purpose
of the PCLS is to adapt the student path based on a set of
creativity measures and demographic information (gender,
college, etc.).

3. MODEL OF WORD ASSOCIATIONS
We have defined two user models: the Bag-of-words (UBoG)
and the Features of Creativity (UFoC).

3.1 Bag-of-Words for Association Tasks
The bag-of-words (BoW) is a basic model to describe the
content of documents in the information retrieval domain
(Eq-3).

BoG(dj) = (f(w1), f(w2), . . . f(wn))∀wi ∈W (3)

Where dj is a document, f(wi) is a function that defines
the relation of the word wi with the document dj and wi is
in the dictionary W . This model provides a measure of the
originality of words. A document dj can be defined as the
set of all associated words that users have provided against
a query word qs (Eq-4).

dj(q
s) =

|U|⋃
k=1

Qk(qs) (4)

And, the word frequency wf (Eq-5) is defined as an origi-
nality measure of the word regarding each document and a
relative time measure [3].

wf(wi) =

|D|∑
j=1

[ f(wi, dj)

max{f(w, dj)|w ∈ dj}
× ti
|T |
]

(5)

We define a model of the user based on BoW (Eq-6), where
W

u
is the set of all words provided by the user u.

UBoW =

|W |⋃
i=1

{
wf(wi) , w ∈W

u

0 , otherwise
(6)

3.2 Features of Creativity
We measure Fluency as the time variance of each query word
of the user as you can see in the Eq-7, where Tu is the set
of timestamp of each answer of the user u to the query word
qs.

tuv (qs) = var[(t1), (t2), . . . , (tn)]∀ti ∈ Tu (7)

We measure Flexibility as the variance in the Part of Speech
(PoS) of associated words (Eq-8), where Wu are the answers
of the user u to the query word qs.

PoSu
v (qs) = var[PoS(w1), . . . , PoS(wn)]∀wi ∈Wu (8)

We define Originality through two features based on the
word frequency: 1) the variance of the word frequency (Eq-
9), where Wu is the set of answers of the user u to the query
word qs.

wfu
v (qs) = var[f(w1, dj), . . . , f(wn, dj)]∀wi ∈Wu (9)

And 2) the dot product of frequency and time (Eq-10)
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t.fu(qs) = [
t1
|T | , . . . ,

tn
|T | ] · [f(w1, dj) . . . f(wn, dj)] (10)

Hence, we define a feature vector fvu(qs) integrating the
Equations 7, 8, 9 and 10, as follows:

fvu(qs) = [tuv (qs), PoSu
v (qs), wfu

v (qs), t.fu(qs)] (11)

Finally, we model the user behaviour UFoC (Eq-12) con-
catenating the feature vector fvu of each association task
(Eq-11), where |Q| is the set of all association tasks driven
by the query words qsi .

UFoC =

|Q|⋃
i=1

fvu(qsi ) (12)

4. EXPERIMENTAL SETUP
This work aims to model the hidden heuristic in association
tasks based on the behaviour of creative people. We have
designed a practical experiment based on a Web platform
to generate a novel dataset that relates associative skills of
users and their creative potential. We applied this experi-
ment on sixth grade students from two different schools in
Spain, in a relation of 67% from one school and 33% from
the other. The whole sample was composed by 47% of male
and 53% of female.

The experiment involved two creative challenges developed
during a class: unusual uses and word association tasks.
First, the users were asked to: write down as many unusual
uses as possible for the object ‘Shoe’ during 60 seconds. With
this task we captured data about the divergent thinking po-
tential of each user and, thus, we can compute a measure
of their creative potential. The users were also asked to:
write down as many associated words as possible for a ‘Book’
(‘Door’) during 60 seconds.

In order to form the dataset, the platform has registered the
query object, the unusual uses listed by students and the
timestamp for each use. It also has saved the query words,
the associated words provided by students and the times-
tamp of each word. These data is represented by equation
1. Demographic data collected from each student includes
age, gender and country.

In addition, a label about their creativity was provided based
on the unusual uses challenge and the intrinsic characteris-
tics of creativity. Two reviewers labelled each user as cre-
ative or non-creative using a Linkert-scale (5) of flexibility,
fluency and originality. Accordingly, a labelled dataset was
defined to perform a supervised learning of the creative be-
haviour of users. The dataset structure is depicted in the
Table 1.

We have modelled the user behaviour (Sec-3) using the mod-
ified Bag-of-Words (BoW ) and the Feature of Creativity
(FoC ). We have designed a two-class supervised learning

Table 1: User information in dataset
Attribute Description
Gender The user gender
Age The user age
Country The user country
Creative tag Creative (+) or No creative (-)
Unusual Uses A set of tuples (use, time) per object
Associations A set of tuples (word, time) per query

Table 2: Dataset statistics
Avg. Attr.
per minute

Creative (53%) No Creative (47%)
M (35%) F (65%) M (60%) F (40%)

#Uses ’Shoe’ 3.33 4.20 4.88 4.10
#Asoc ‘Book’ 6.67 6.05 5.30 5.73
#Asoc ‘Door’ 5.92 5.77 4.5 4.18

Age of Students
11 12 11 12

#Uses ’Shoe’ 3.94 3.33 3.91 4.00
#Asoc ‘Book’ 6.42 4.67 5.52 5.33
#Asoc ‘Door’ 5.93 4.67 4.72 5.33

Diccionary Size (# unique words)
Global ‘Libro’ ‘Puerta’

247 127 129

experiment and trained a set of learning algorithms: Näıve
Bayes (NB), Decision Tree (dTree), Support Vector Machine
(three kernels) and Random Forest (rTree). In order to eval-
uate the accuracy of the learning algorithms we performed a
cross-validation method. Thus, we have iteratively divided
the dataset in k subsets, where the k − 1 subsets were used
to train the algorithms and the last one was used to vali-
date the prediction quality based on its accuracy. Finally,
we have performed an analysis of accuracy results against
the percentage of the instances used in the cross-validation
method.

5. RESULTS
By applying the challenges, a dataset was defined based on
Eq-1. We highlight that creative students are more fluent
than non-creative ones and younger students provide more
associated words per minute. We have also defined a global
dictionary with all associated words W provided by users
and local dictionaries (W qs) for each association task. A
more detailed information is shown in the Table 2

We have analysed the size of the dataset, because the fea-
tures are based on statistics. In the figure 1a you can see the
accuracy of the UBoW model, which approximately ranges
in 10 points at each model. The results of the model are
similar for different sizes of the dataset, so this model can
be seen independent of the size of the dataset. In the figure
1b we show the accuracy of the UFoC model, which generally
increases with respect to the size of the dataset, except in
the case of the tree-based method. This model can be seen
as dependent of the dataset size and it should improve as
the dataset grows.

The most stable algorithms are the kernel-based (SVM) be-
cause they fit more precisely with the features of creativity.
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(a) (b)

Figure 1: Accuracy performance against different sizes of dataset: The strength of a) UBoW and b) UFoC .

Also, we reach high levels of accuracy in the classification
of creative behaviour based on a simple set of features and
a moderate number of available samples, which reach up to
81% in the UFoC .

6. DISCUSSION
The work by Jennings et al. is a not context free proposal
(art) and, it is too invasive for students [5]. The associative
actions of users are mined to figure out the hidden strategy
of users through a design task. We define a model based
on a ordinary task of word association that is common in
problem-solving contexts, web searches and social networks.
Therefore, the provided models can be applied in active
learning contexts where students make associations. The
proposal of Lin et al. [6] is seeking to improve the learning
of creativity by recommendation in a personalized tutoring
system. We propose a complementary work to identify the
creative potential and, thus, it could be possible to provide
better learning paths to students based on such prediction.

The bag-of-words approach UBoW has reached an acceptable
accuracy level, but it has a high variance. The features of
creativity approach UFoC is more stable and it has a growing
accuracy along the number of samples. This model is based
on a small number of features, which are highly related with
the theoretical features of creativity: fluency, frequency and
originality.

7. CONCLUSION
We have proposed two user models to identify creative stu-
dents when they associate words: UBoW and UFoC . These
models outline the creativity of students over time by ex-
ploiting their word associations (Web search, Social Net-
work, etc). Thus, we depicted that it is possible to learn
a classifier based on associative features with an acceptable
accuracy. We have developed a dataset that relates the as-
sociation skills and the creative potential of students.

In the future we will integrate the sequentially of associ-
ations, so there is the possibility to use sequential learn-
ing algorithms. The flexibility could be described using the
sense/meaning of the word as a more informative similarity.

Finally, we have depicted that a higher number of instances
improves performance, then a more diverse set of samples
should be considered.
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ABSTRACT
As adaptive tutoring systems grow increasingly popular for the 
completion of classwork and homework, it is crucial to assess the 
manner in which students are scored within these platforms. The 
majority of systems, including ASSISTments, return the binary 
correctness of a student’s first attempt at solving each problem. 
Yet for many teachers, partial credit is a valuable practice when 
common wrong answers, especially in the presence of effort, 
deserve acknowledgement. We present a grid search to analyze 
441 partial credit models within ASSISTments in an attempt to 
optimize per unit penalization weights for hints and attempts. For 
each model, algorithmically determined partial credit scores are 
used to bin problem performance, using partial credit to predict 
binary correctness on the next question. An optimal range for 
penalization is discussed and limitations are considered.    

Keywords
Partial Credit, Student Modeling, Next Question Correctness, 
Adaptive Tutoring Systems, Maximum Likelihood, Grid Search 

1. INTRODUCTION
Adaptive tutoring systems provide rich feedback and an 
interactive learning environment in which students can excel, 
while teachers maintain data-driven classrooms by using the 
systems as powerful assessment tools. Simultaneously, these 
platforms have opened the door for researchers conducting 
minimally invasive educational research at scale while offering 
new opportunities for student modeling. Still, they are commonly 
restricted to measuring performance through binary correctness on 
each problem. Arguably the most popular form of student 
modeling within computerized learning environments, Knowledge 
Tracing, is rooted in the binary correctness of each opportunity or 
problem a student experiences within a given skill [1]. Knowledge 
Tracing (KT) drives the mastery-learning component of renowned 
tutoring systems including the Cognitive Tutor series, allowing 
for real time predictions of student knowledge, skill mastery, or 
next problem correctness [4].  Similar modeling methods consider 
variables that extend beyond correctness but rarely escape the 
binary nature of the construct, including Item Response Theory 
[2] and Performance Factors Analysis [9]. By restricting input to a 

binary metric across questions, these modeling techniques fail to 
consider a continuous metric that is commonplace for many 
teachers: partial credit.   

Partial credit scoring used within adaptive tutoring systems 
could provide more individualized prediction and thus establish 
models with better fit. It is likely that binary correctness has 
remained the default for learning models due to the inherent 
difficulty of defining a universal algorithm to generalize partial 
credit scoring across platforms. Some of the onus may also fall on 
users’ familiarity with current system protocol; students tend to 
avoid using system feedback regardless of the benefits it may 
provide because requesting feedback results in score penalization. 
However, the primary goal of these platforms is generally to 
promote student learning rather than simply acting as an 
assessment tool, and thus, binary correctness is flawed. 

The present study considers data from ASSISTments, an 
online adaptive tutoring system that provides assistance and 
assessment to over 50,000 users around the world as a free service 
of Worcester Polytechnic Institute. Researchers have previously 
used ASSISTments data to modify student-modeling techniques 
in a variety of ways including student level individualization [7], 
item level individualization [8], and the sequence of student 
response attempts [3]. Previous work has also shown that naïve 
algorithms and maximum likelihood tabling methods that consider 
hints and attempts to predict next problem correctness can be 
successful in establishing partial credit models meant to 
supplement KT [10; 11].  More recently, algorithmically derived 
partial credit scoring resulted in stand-alone tabled models using 
data from only the most recent question and yet showing goodness 
of fit measures on par with KT at lower processing costs [6]. 
However, we hypothesize that some conceptualizations of partial 
credit may lead to better predictive models than others. Rather 
than subjectively defining tables or algorithms, a data driven 
approach should be considered. Thus, considering student 
performance within the ASSISTments platform, the current study 
employs a grid search on per unit penalizations of hints and 
attempts to ask: 
1. Based on penalties for hints and attempts dealt per unit, is it

possible to algorithmically define partial credit scoring that
optimizes the prediction of next problem correctness?

2. Does the optimal model of partial credit differ across
different granularities of dataset analysis?

Establishing an optimal partial credit metric within ASSISTments 
would allow teachers using the tool to more accurately assess 
student knowledge and learning, while allowing students to alter 
their approach to system usage by taking advantage of adaptive 
feedback. The optimization of partial credit scoring would also 
enhance student modeling techniques and offer a new approach to 
answering complex questions within the domain of educational 
data mining. 
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2. DATA
The ASSISTments dataset used for the present study is comprised 
solely of assignments known as Skill Builders. This type of 
assignment requires students to correctly answer three consecutive 
questions to complete the problem set. Questions are randomly 
pulled from a large pool of skill content and are typically 
presented with tutoring feedback, most commonly in the form of 
hints. The dataset has been de-identified and is available at [5] for 
further investigation. 

The dataset used in the present study is a compilation of Skill 
Builders from the 2012-2013 school year, containing data for 
866,862 solved problems. Recorded data includes students’ 
performance on the problem (i.e., binary correctness, hint count, 
attempt count), variables that identify the problem itself (i.e., 
problem type, unique problem identification number) and 
information pertaining to the assignment housing the problem 
(i.e., unique identifiers for assignments, skill type, teachers, and 
schools).  The dataset was representative of 120 unique skills and 
24,912 unique problems, solved by 20,206 students.  

On average, students made 1.53 attempts per problem (SD = 
15.08). The minimum number of attempts was 0 (i.e., a student 
who opened the problem and then left the tutor), while the 
maximum number of attempts was a daunting 12,246 (i.e., a 
student who hit ‘Enter’ repeatedly for a prolonged period of time, 
likely out of frustration or boredom). Students made a total of 
1,324,226 attempts across all problems. The majority of problems 
(74.9%) had just one logged attempt per student (typically correct 
answers), while 15.1% of problems carried only two logged 
attempts.   

Hint usage among all students averaged 0.61 hints per 
problem (SD = 1.29). The minimum number of hints used was 0 
(i.e., no feedback requested), while the maximum number of hints 
used was 10.  Interestingly, the maximum number of hints 
available for any particular problem was 7.  Thus, a handful of 
students who logged more than 7 hints were accessing the tutor in 
multiple browser windows (i.e., cheating). On average there were 
3.22 hints available per problem (SD = 0.89). The majority of 
problems contained 3 hints (44.6%), 4 hints (28.9%), or 2 hints 
(18.2%). Although there were 2,768,299 hints available across all 
problems, students only used 529,394 hints, or approximately 
19% of available feedback. Bottom out hints, or those providing 
the problem’s solution, were only used on 146,742 (16.9%) of 
problems.  

Additional analyses were performed on the 261,787 problems 
that students answered incorrectly out of the original 866,862 
problems solved. Within this subset of data, students made an 
average of 2.75 attempts per problem (SD = 27.40). Students also 
used an average of 2.02 hints (SD = 1.63). This subset of 
problems had 860,131 total hints available, of which students used 
528,644 hints (61.5%).  

Hint usage would likely increase if partial credit scoring was 
implemented within the ASSISTments platform. In many 
classrooms, binary first attempt scoring has created an 
environment in which students are afraid to use hints although 
they would benefit from feedback, as they know they will receive 
no credit. Further, the dataset suggests that once students are 
marked wrong, they are more likely to jump through all available 
hints and seek out the answer (56% of incorrect first attempts led 
to bottom out hinting). This reflects another substantial downfall 
in the system’s current protocol: once the risk has passed, so has 
the drive to learn. The implementation of partial credit scoring has 
the potential to alleviate this misuse.  

3. METHODS
The present study presents an extensive grid search of potential 
per hint and per attempt penalizations. The full dataset was used 
to define partial credit scores algorithmically based on per unit 
penalizations ranging from 0 to 1 in increments of 0.05 for both 
hints and attempts. Thus, for each solved problem in the dataset, 
441 partial credit scores were established based on each possible 
combination of per unit penalization. For example, in a model in 
which each attempt earned a penalization of 0.05, and each hint 
earned a penalization of 0.1, a student who made three attempts 
and used one hint would receive a penalty of 0.25 ((3x0.05) + 
(1x0.1)), effectively scoring 0.75 on that problem. This process 
was used to score each problem in the dataset for each possible 
penalty combination, with a floored per problem score of 0 
(students could not receive negative scores). This method was 
similar to that presented by Wang & Heffernan in the Assistance 
Model [10] which established a tabling method to calculate 
probabilities of next problem correctness based on combinations 
of hints and attempts that resulted in twelve possible bins or 
parameters. 

For each of the 441 partial credit models, a maximum 
likelihood tabling method was employed using five fold cross 
validation.  Within each model, a modulo operation was used on 
each student’s unique identification number to assign students to 
one of five folds. Note that this method resulted in folds that all 
represented approximately 20% of students in the dataset. 
Maximum likelihood probabilities for next problem correctness 
were then calculated for each partial credit score within each 
model.  Table 1 presents an average of test fold probabilities for 
the model in which each attempt and each hint are penalized 0.1. 
For instance, a student using two attempts (2 x 0.1) and one hint 
(1 x 0.1) would be penalized 0.3, thus falling into the score bin of 
0.7 (PC Score). Following through with this example, based on 
11,174 problems solved that fit this scoring structure, the average 
of known binary performance on the following problem was 
0.599. This value becomes the prediction for next problem 
correctness for students scoring 0.7 on the current problem.  

Using the maximum likelihood probabilities for next problem 
correctness within each test fold as predicted values, residuals 
were then calculated by subtracting predictions directly from 
actual next problem binary correctness (i.e., 1 – 0.725 = 0.275; 0 –
0.571 = -0.571).  This approach was used rather than selecting an 
arbitrary cutoff point to classify a prediction as correct or 
incorrect in the binary sense (i.e., values greater than or equal to 
0.6 serve as predictions of correctness) because it reduced the 
potential for researcher bias. 

Table 1. Probabilities averaged across test folds for the model 
in which the penalization per hint and per attempt is 0.1 

PC Score n Max. Likelihood NPC 
0 149,504 0.467 

0.1 422 0.571 
0.2 685 0.581 
0.3 1,055 0.578 
0.4 1,784 0.574 
0.5 3,442 0.583 
0.6 6,623 0.585 
0.7 11,174 0.599 
0.8 18,679 0.662 
0.9 49,972 0.725 
1.0 476,523 0.802 
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4. RESULTS
For each model, residuals were used to calculate RMSE, R2 & 
AUC at three levels of granularity: problem level, student level, 
and skill level. Heat maps are only presented here for RMSE, as 
the other metrics established almost identical maps. Metrics 
representing greater model fit are depicted using the purple end of 
the spectrum, while those representing poorer fit are represented 
using the red end of the spectrum. Further, a series of ANOVAs 
were conducted to compare each set of models within the same 
penalization level for attempts and hints. For example, the 21 
models in which attempt penalty was set to 0.2 were compared to 
all other sets of attempt penalty models to investigate significant 
differences across penalties. This method was used rather than 
comparing each model with all other models using paired samples 
t-tests, as the resulting 194,481 analyses (4412) would greatly 
inflate the rate of Type I error without unrealistic corrections.  

Initial analysis was performed at the problem level; residuals 
were calculated for each problem that contained next problem 
correctness metrics and goodness of fit measures were averaged 
across the dataset. Each metric followed a similar structure in 
which low attempt penalties appear to result in better fitting 
models, while hint penalty does not appear to be significant. Thus, 
partial credit scoring algorithms using lower penalties for attempts 
were better at predicting next problem performance, as depicted in 
Figure 1. The ANOVA results depicted in Table 2 suggest that 
differences in attempt penalty models were significant. Thus, the 
set of models with per attempt penalties of 0.1 differed 
significantly from the set of models with per attempt penalties of 
0.8. Differences among hint penalty models were not reliably 
significant. Figure 1 also suggests that the current binary scoring 
protocol used by ASSISTments results in predictive models that 
are inadequate. First attempt binary correctness is the equivalent 
of the model in which per attempt and per hint penalty are both 
set to 1, or the upper right corner of each heatmap). This model 
resulted in consistently poor fit metrics, suggesting that modeling 
techniques such as KT should employ continuous or binned 
partial credit values as input as they enhance next problem 
prediction ability. It has not yet been investigated how this 
alteration would change the prediction of other variables 
commonly predicted through KT, such as latent student 
knowledge or skill mastery. 

Student level analysis was undertaken using a subset of the 
original data file.  At this granularity, goodness of fit metrics were 
calculated for each student and averaged across students to obtain 
final metrics for each of the 441 models.  As the ASSISTments 
system measures completion of a Skill Builder as three 

Table 2. ANOVA results for groups of attempt and hint 
penalty models at each level of analysis 

Attempt Penalty Hint Penalty 
Level Min Max F p R2 F p R2 

Problem 
   RMSE .430 .435 302.70 .000 .935 0.95 .519 .043 
   AUC .626 .655 295.46 .000 .934 1.14 .304 .052 
   R2 .070 .091 304.34 .000 .935 0.95 .525 .043 
Student 
   RMSE .424 .429 222.49 .000 .914 1.34 .149 .060 
   AUC .578 .593 208.19 .000 .908 1.42 .106 .063 
   R2 .096 .110 374.52 .000 .947 0.80 .715 .037 
Skill 
   RMSE .423 .429 517.85 .000 .961 0.55 .944 .026 
   AUC .624 .647 250.17 .000 .923 0.72 .805 .033 
   R2 .073 .090 510.96 .000 .961 0.49 .971 .023 
Note. For all models, df = (20, 420). 

consecutive correct answers, a number of high performing 
students had limited opportunity counts within skills. For students 
with too few data points, it was not possible to calculate R2 and 
AUC. Therefore, student level analysis incorporated 7,429 
students from the original dataset, or 651,849 problem logs. 
Answering our second research question, it appears as though the 
region of optimal partial credit values observed at the problem 
level remains consistent at the student level, as shown in Figure 2. 
ANOVA results depicted in Table 2 show reliably significant 
differences across attempt penalty models but not across hint 
penalty models.   

Skill level analysis was also undertaken using a subset of the 
original data file. One skill did not have enough data based on a 
low number of users and high mastery within those users, and was 

Figure 1. Problem Level RMSE 

Figure 2. Student Level RMSE 

Figure 3. Skill Level RMSE 
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excluded from skill level analysis, resulting in a file with 119 
skills. At this granularity, goodness of fit metrics were calculated 
for each skill and averaged across all skills to obtain final metrics 
for each of the 441 models.  Results are depicted in Figure 3. The 
heat map shows that the region of optimal penalization has grown 
more concise, showing optimal fit among models with low per 
hint and per attempt penalties (< 0.3). ANOVA results depicted in 
Table 2 again suggest reliably significant differences in all metrics 
across attempt penalty models but not across hint penalty models. 

Post-hoc analyses were conducted on ANOVA results using 
multiple comparisons to examine significant differences between 
attempt penalty and hint penalty model groups when considering 
problem level AUC. Using a Bonferroni correction to reduce Type 
I error, this process resulted in a series of significance estimates 
for penalty group comparisons (i.e., all models where attempt 
penalty is 0.1 compared to all models where attempt penalty is 0.3 
results in a non-significant difference, p = 0.88). Results 
suggested that models close in penalty were less likely to differ 
significantly than models with greater difference in penalty. For 
instance, models with an attempt penalty of 0.1 were significantly 
different than those with an attempt penalty of 0.4, but were not 
significantly different than those with an attempt penalty of 0.2. 
This information can be used to help optimize partial credit 
penalizations, as it may be more motivating and productive for 
students to receive smaller penalizations. Such information could 
also allow systems like ASSISTments to define a range of 
possible penalizations that could then be refined by the teacher, 
providing all users with a greater sense of control. 

5. DISCUSSION & CONTRIBUTION
The initial findings of a grid search on partial credit penalization 
through per unit hint and attempt docking suggest that the 
implementation of partial credit within adaptive tutoring systems 
can be established using a data driven approach that will 
ultimately produce stronger predictive models of student 
performance while enhancing the way adaptive tutoring systems 
are used by students and teachers.   

Our first research question was answered with a resounding 
“Yes,” certain algorithmically derived combinations of partial 
credit penalization are better than others when used to predict next 
problem performance.  Optimal partial credit models were visible 
in heat maps spanning three levels of data granularity and 
remained relatively consistent across granularities, thus answering 
our second research question. ANOVAs revealed that differences 
in attempt penalty models were consistently significant across 
dataset granularities, while differences in hint penalty models 
were not reliable. This finding is likely due to the fact that hint 
usage is lower and less distributed than attempt count across 
problems in the dataset, and it is possible that this finding would 
diminish in a system that more readily promoted the use of 
tutoring feedback without penalization, or a system already 
employing partial credit scoring.   

The partial credit models that we define here as optimal, based 
on their ability to predict next problem performance, were models 
with per hint and per attempt penalties of 0.3 or less. Additional 
analyses revealed that at the problem level, there should be no 
reliable difference in predictive ability of a model penalizing 0.3 
per attempt from a model penalizing 0.1 per attempt, with variable 
hint penalization. This finding suggests that less penalization is 
just as effective, offering an opportunity to consider student 
motivation and affect when defining a partial credit algorithm.  
This grid search also revealed that partial credit metrics 
outperform binary metrics when predicting next problem 

performance, as previously shown in [6].  Thus, it is possible to 
improve prediction of student performance within adaptive 
tutoring systems simply by implementing partial credit scoring. It 
should also be noted that a leading limitation of the approach 
presented here is that we have only been predicting next problem 
correctness, rather than latent variables such as skill mastery or 
student knowledge. It is possible that optimizing partial credit 
would also provide benefits for the prediction of latent effects, but 
further research is necessary in this domain.  
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ABSTRACT
Current schemes to categorise MOOC students result from a
single view on the population which either contains the en-
gagement of the students or demographics or self reported
motivation. We propose a new hierarchical student cate-
gorisation, which uses common online activities capturing
both engagement and achievement of MOOC students. A
first level is based on the online engagement with the course
structure, i.e., whether they take part in graded activities or
not. Based on this criterion, we divide students into two ma-
jor categories: active students and viewers. The second lev-
els are based on the different activities typically performed
by the students in these two categories. For the “active stu-
dents”we categorise them based on their final result. For the
“viewers”, we further divide the category based on their en-
gagement quotient, i.e., how much of the course content they
follow and whether they involve with the non-mandatory ex-
ercises in the course or not. Further, in this contribution we
analyse the behaviour of the students in different categories
to highlight the basic differences among them.

Keywords
Student categorisation, Student achievement, Massive open
online courses, Student engagement

1. INTRODUCTION
The global wave of free, large and virtual courses attracts
an incredibly diverse student population. With this diver-
sity comes a huge variety of online behaviours. For data
scientists it is a challenge to find categories that are suitable
for sampling the whole population. It is also important to
keep the categorisation scalable and robust.

To the best of our knowledge, there exist only a few categori-
sation schemes, mostly based on what emerges as a pattern
of behaviour from MOOC students. These categories are
based on the students’ motivation [10] or engagement pat-
terns [6, 7, 9, 4, 3, 5] or demographics [2, 1].

Based on student motivation (their “stated intent”) of the
students, [10] categorised the students, No-shows, Observers,
Casual Learners and Completers. Where No-shows only reg-
ister, Observers want to know about how a MOOC looks
like, Casual Learners want to learn a few things only, and
Completers want to earn a finishing certificate.

There are many categorisation schemes depending on en-
gagement patterns. [6] categorised students in Completing,
Auditing, Disengaging and Sampling students based on their
activities which range from watching majority of lectures
and submitting all the assignments (Completing) to watch-
ing only one or two lectures and no assignment submissions
(Sampling). In a connectivist MOOC setting, [7] categorised
students into Active (students who adapt well to the con-
nectivest pedagogy), Passive (frustrated ones) and Lurkers
(who actively follow the course but do not interact with any-
one). Phil Hill first categorised MOOC students into Lurkers
(ones who only enrol or sample the course), Active (fully en-
gaged with the course material, quizzes and forums), Passive
(only consume the content, did not participate in forums)
and Drop-ins (consumed only a part of the course as an Ac-
tive student) [5]. Later he revised his categories and divided
the Lurkers into No-shows and Observers [3, 4].

Petty and Farinde [9] used the engagement categories from
[8] to categorise students in an online mathematics course.
These categories, based on the students’ engagement pat-
terns into critical thinking, were Clarification, Assessment,
Inference, and Strategies.

The other dimension used to categorise students is to look
at the demographics. For an electrical engineering course
[2] categorised students based on their country of origin,
education qualifications and backgrounds. Looking at the
demographics of University of Pennsylvania’s Open Learn-
ing Initiative [1] also categorised MOOC students based on
their country of origin and educational background as [2]
did. However, [1] added a few more categories based on
gender, age and employment status of the MOOC students.

One common feature about these categorisation schemes is
that they all consider only one of the dimensions of student
behaviour, for example, engagement with the course content
or forums or demographics or motivation. In this contribu-
tion, we present a novel categorisation scheme that considers
both the engagement and the achievement of MOOC stu-
dents. We further report on the different patterns shown by
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the students from different categories. Moreover, the cate-
gories like Completing [6] and Active [4] are more than just
engagement patterns; they also represent a mixed popula-
tion of students with some achievement “flag”. Therefore,
we propose to further divide this category into subcategories
based on the students’ achievement.

2. RESEARCH QUESTIONS
In this study, we ask two main research questions:
Question 1: How can we categorise the MOOC students
into categories that reflect both their achievement and en-
gagement?
Question 2: What are the basic differences in the online be-
haviour of the students representing populations from differ-
ent categories? More specifically, we are interested in find-
ing the different ways to succeed in a MOOC which leads
us to the following research questions. Question 2.1 How
does the engagement with the course content relate to the
achievement? Question 2.2 How does the timing of engage-
ment i.e., the engagement with the course structure relate to
the achievement? Question 2.3 How does the effort during
graded assignments relate with the achievement?

3. COURSE DETAILS
For this analysis we chose four courses from Coursera. The
courses were basic JAVA and C++ both at the fundamental
levels and as an introduction to object oriented program-
ming. The courses were in French and were developed at
École Polytechnique Fédérale de Lausanne, Switzerland. All
the courses were basic level programming courses. All the
courses had 7 weeks of lecture material. All the courses
had programming assignments to grade the students. Also
they had additional non-graded quizzes for practice. All
the courses had the last deadline in the 11th week from the
beginning of the course. They also had soft deadline for
the programming assignments after which the effective sub-
mission score reduced to 50 % of the actual score. All the
courses were open after the final deadline as well.

4. CATEGORIES
We propose a hierarchical categorisation scheme. The first
reason for having a few second levels in the scheme is to be
able to include the achievement of MOOC students in the
analysis of online behavioural patterns. The existing cate-
gorisation schemes lack on this front. They put the comple-
tion of the course as the only criterion for having a category,
which oversimplifies the different levels of achievement. Hav-
ing more levels for the students’ achievement enables us to
identify the different trends to succeed in a MOOC.

We have two first level categories: active students and view-
ers (based on whether the student participated in the grades
assignments or not). Active students are subcategorised
based on their achievement levels and viewers are subcat-
egorised based on their further engagement with the course
content. The motivation for subcategorising viewers was to
have equally distributed categories so that none of the cate-
gories have a vast majority of the student population. This
improves the generalisation of the categorisation schemes
beyond the courses we chose to establish the categories.

We divide the whole student population in two major cat-
egories. First, those students who actively participate in

the course, i.e., they take part in the assessment processes.
We simply call these students “Active students”. The active
students get an achievement label at the end of the course.
Second, those students who just watch the videos from the
course (irrespective of the number of videos they watch).
We call these students “Viewers”. The viewers do not get
any achievement label at the end of the course.

We further divide the active students based on their achieve-
ment labels that they get at the end of the course. Active
students can either be “failed”, “normal”, or “distinction”.
The levels of“normal and distinction students may vary from
on course to another, but for the courses we chose the crite-
ria is the same for differentiation of these two subcategories
of active students. Moreover, all the data for the active stu-
dents is collected between the start week of the course and
the last week of the assignment submission deadline.

Figure 1: Hierarchy used in the present categorisa-
tion scheme.

The viewers, are further divided based on two factors. First,
the amount of videos they watch; and second, whether they
assess their learning by the means of the non-mandatory
quizzes (in-video quizzes or regular non-graded quizzes) or
not. Using the first factor, we divide the students into: 1.
“wiki viewers” (if a student watches less than 10% of the
videos). 2. “dropouts” (if a student watches between 10%
and 70% of the videos). 3. “completers”(if a student watches
more than 70% of the videos).

Using the second factor, we divide the the student into “Ac-
tive Viewers” and “Passive Viewers”. Since the courses were
open even after the last assignment deadline, we consider
the data till date of data export from Coursera (20th week)
for analysing the behaviour of the viewers.

5. VARIABLES
We used the following variables to analyse the behaviour of
the students in different categories:

5.1 Active students
For analysing the differences in the activities among different
achievement levels of Active students we defined the First
submission score: the average score of the first attempt of
all the programming assignments, as a proportion of max-
imum attainable score for each assignment. First action
week: the first week of any kind of activity after register-
ing for the course, once the course had started. Activ-
ity span: the difference in weeks between the first activ-
ity (as described in the previous item) and the last activity.
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Progress within programming assignments: the differ-
ence between the two consecutive submissions for the same
assignment, as a proportion of maximum attainable score for
each assignment. Average number of attempts for each pro-
gramming assignment. Proportion of videos watched Delay
in watching the lectures: the time difference in weeks,
between the time when the video was released online and
the time the students watched it for the first time. Num-
ber of forum Views. Procrastination index: the ratio
of the time difference between the submission time and the
hard deadline and time difference between assignment being
posted online and the hard deadline.

5.2 Viewers
For analysing the differences across the viewers’ subcate-
gories, we use only four of the above mentioned variables:
first action week, delay in watching the lectures, activity
span and the number of forum views.

6. RESULTS
In this section, we describe the differences between the differ-
ent levels of active subcategories and viewer subcategories.

6.1 Active students
Concerning the lecture activities, the number of lectures
watched by the failed students is significantly lower than
the students having normal passing grades or the students
with distinction F [(2, 9914) = 741.95, p < .001]. The lecture
delay (overall and across the 7 weeks of lectures) decreases
significantly as we move from distinction to normal to failed
students [F (2, 9914) = 91.43, p < .001].

Concerning assignment submissions, we see many differences
across the three achievement levels. The first submission
score decreases significantly as we move from distinction to
normal to failed students [F (2, 9914) = 210.65, p < .001].
Number of attempts decreases significantly as we move from
failed to distinction to normal students [F(2,2,9914)=222.86,
p < .001]. The average improvement in two consecutive sub-
missions for the same assignment is significantly higher for
the students with distinction than the students with normal
and failed levels [F (2, 9914) = 101.58, p < .001]. Moreover,
the average procrastination index for the students with dis-
tinction level is significantly lower than the students from
other two subcategories [F (2, 2, 9914) = 343.83, p < .001].

The probability of achieving a higher grade decreases as the
first action week approaches the 11th week [χ2(N = 9917) =
201.73, p < .001]. The activity span for failed students is
significantly smaller than passed students (normal and dis-
tinction) the course [F (2, 2, 9914) = 972.68, p < .001]. If
we look at the forum views, the average number of forum
views decreases significantly as we move from distinction to
normal to failed students [F (2, 2, 9914) = 135.42, p < .001].

6.2 Viewers
The viewer subcategories are based on two factors; first,
how much video content they watch and second, whether
they participate in non-mandatory quizzes or not. Here we
present the results of the different activities for the viewer
subcategories. The wiki-users tend to be passive viewers

and completers tend to be active users [χ2(N = 35, 193) =
4322.85, p < .001].

We observed an interaction effect of the two viewer sub-
categories on the first action week [F (2, 35187) = 95.60, p <
.001] . For passive wiki-users and completers the first ac-
tion week is significantly higher than the active wiki-users
and completers. However, we see the opposite trend for the
active and passive dropout viewers.

There were two single effects for the two viewer sub-categories
on the activity spans. The activity span is more for the ac-
tive viewers than the passive viewers [F (1, 35191) = 1484.3, p <
.001]. Also, the activity span increases significantly as we
more from wiki-users to dropouts to completers [F (2, 35190) =
1919.63, p < .001].

There was an interaction effect of the two viewer sub-categories
on the lecture delays [F (2, 35187) = 67.50, p < .001]. For
passive wiki-users and completers the first action week is sig-
nificantly higher than the active wiki-users and completers.
However, we see the opposite trend for the active and passive
dropout viewers.

7. DISCUSSION
We show that there are clear differences across the subcat-
egories of active students and viewers. Active students are
further subdivided into failed, normal and distinction cate-
gories. In section 3.1, we can see that the three categories are
very different in terms of lecture, assignment, forum activi-
ties as well as their timing of these activities. What emerges
from the results that the final achievement label that the ac-
tive students get depends on a number of factors: 1) initial
score, 2) engagement with the course content and forums,
3) efforts in assignment submissions and 4) timing of the
activities. The variables we chose to differentiate among the
achievement subcategories cover all these factors.

The distinction students get higher scores in their first sub-
missions for the graded assignments than the normal and
failed students, they improve more than the other two cat-
egories within two consecutive submissions for the same as-
signments and hence they reach the maximum attainable
grade in fewer attempts. This reflects the effect of the ini-
tial score and efforts on the achievement level (Question
2.2). On the other hand, in spite of having similar im-
provements to the failed students the normal students get a
better achievement level because of submitting more num-
ber of times. This shows the relationship between efforts
and achievement (Question 2.3). Moreover, the distinc-
tion students have lower procrastination index for all the
assignments than the other two categories. This reflects the
relation between engagement with the structure (Question
2.3) and the achievement level.

The students who pass the course (distinction and normal)
watch more videos than the students who fail. This simply
reflects the fact that the students who pass the course en-
gage more with the course content than those who fail the
course, and establishes a relation between the engagement
with the course content and achievement (Question 2.1).
More interesting fact is that there is almost no difference
between the distinction and normal students in terms of en-
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gagement with the course content, however, there is a big
difference in the delays that the students display in watching
the video lectures. The distinction students have a smaller
delay, especially in weeks 2 to 6, than the normal students.
This shows the that there is a effect of engagement with the
course structure (Question 2.2) on the achievement level.

Furthermore, the distinction students visit forums more of-
ten than the students from other two categories and the
passed students (distinction and normal) have longer activ-
ity span than the failed students. It also reflects the effect
of engagement on the achievement level (Question 2.1).

We see some peculiar behavioural patterns for viewers. One
clear relation we see is between the engagement level and the
activity span of the viewers. The passive users have smaller
activity span than the active users. This simply translates
to the fact that the people who assess their knowledge in
some manner they tend to engage longer with the course
content. We observed this fact for all the viewers.

The wiki-users have a very short activity span. This could
be explained in two ways: either they started the course very
late and realised that they can not pass the course and hence
they left; or, they look for very specific content, look at a few
videos for the required content and leave the course. The
second behaviour is very similar to a Wikipedia user who
looks for a very specific piece of information, obtains it and
leaves the website. This was the main reason we called this
category wiki-users. The passive wiki users start the course
very late (only earlier than the passive completers), have an
activity span of less than a week, i.e., they visit the course
for some very specific content, then leave the course, this
behaviour is closer to what we called a wiki-user’s behaviour.

The completers display very interesting patterns, viewers in
this category watch more than 70% of the video lectures.
The difference in the activity spans of passive and active
completers is about 4 weeks, this can be explained by the
fact that the passive completers are only interested in the
content and not in any kind of self assessment, hence they
go through the whole content at a very high pace.

There are some overlaps between the categories we propose
and the categories proposed by other researchers. For ex-
ample, the wiki-users are similar to the sampling in [6] and
observers in [4, 3]. Similarly, dropouts are a midway (or
a mixed population of) category to disengaging in [6] and
drop-ins in [4]. The passive viewers are similar to auditing
and passive in [6] and [3] respectively. The completing cat-
egory in similar to active students and completers in viewer
population are similar to auditing [6]. However, the main
motivation of putting these two in different categories was
to capture there different activities which are clearly driven
by different motivations, for the active students the main
motivation is to get a certificate and for the completers in
viewer population just want to watch the videos as a source
of knowledge but do not want a completion certificate.

8. CONCLUSIONS
We presented a new MOOC student categorisation scheme.
Its basic idea is to have a hierarchy to categorise MOOC
students. We used both engagement and achievement to

achieve this goal. First, we categorise students into two
broad categories active students and viewers. Active stu-
dents are those who submit graded assignments and viewers
do not take part in this process. Further, we divide active
students into normal, distinction and failed students, based
on their grades; and we divide viewers into active and pas-
sive viewers (whether they attempt quizzes or not) and into
wiki-users, dropouts and completers (based on how many
video lectures they consume).

Throughout our analysis, we highlight the basic activity dif-
ferences between subcategories of active students and view-
ers, proposing a few novel variables, like delay in watching
lectures and procrastination index. We identify the different
paths of success for the active students and different styles
for the viewers. One clear difference between the proposed
categories and existing categories is that in all the existing
categories there is one category that contains a majority of
the student population; whereas in the categories we pro-
pose, there is no such category.

The present categorisation scheme might have long term im-
plications. First, for initiating a feedback system for those
who dropout midway out of a course, we need a benchmark
behaviour to compare against. The online behaviour of the
students who passed and/or the completers in the viewer
categories can be used in such cases. From the differences
among different subcategories we report, it is clear that the
different behaviour tend to start emerging as early as from
the second week. This can be used to proactively help those
students who are lagging behind in their engagement with
the course content and course structure.
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ABSTRACT
This paper reports on results of applying process discovery
mining and sequence classification mining techniques to a
data set of semi-structured learning activities. The main
research objective is to advance educational data mining to
model and support self-regulated learning in heterogeneous
environments of learning content, activities, and social net-
works. As an example of our current research efforts, we ap-
plied temporal data mining analysis techniques to a PSLC
DataShop data set [17, 18, 19, 20]. First, we show that
process mining techniques allow for discovery of learning
processes from student behaviours. Second, sequential pat-
tern mining is used to classify students according to skill.
Our results show that considering sequences of activities as
opposed to single events improved classification by up to
230%.

1. INTRODUCTION
The Learning Performance Support Systems program (LPSS)
at the National Research Council Canada aims at deliver-
ing a personal learning environment (LPSS.me), software
algorithms, and prototypes to enable Canada’s training and
development sector to offer learning solutions to industry
partners that will address their immediate and long-term
skills challenges. The main elements of the personal learn-
ing environment include a common platform architecture,
a personal learning assistant, a personal cloud, learning re-
sources repository network, personal learning records, and
analytics to discover and assess competencies. The program
is at an early stage of development.

One of the main thrusts within this research program seeks
to advance and apply educational data mining to model
and support self-regulated learning in heterogeneous envi-
ronments of learning content, activities, and social networks.
Our initial position points towards a complementary use
of latent knowledge estimation and performance prediction
methods [3], and temporal data mining methods. A main
research trend in educational data mining consists of ana-

lyzing students’ performance within intelligent tutoring sys-
tems, focusing on the correctness of previous questions or
the number of hints and attempts students needed in order
to predict their future performance [6]. Predictive math-
ematical models resulting from this analysis characterize,
through parameter values, some information contained in
the sequence of actions leading to student performances,
but do not represent explicitly those sequences. Over the
years there has been a growing interest to examine explicitly
learning sequences as a complementary approach. Process
and sequence mining have been applied for the analysis of
content sequencing and curriculum sequencing [5, 15], group
behaviour sequences in collaborative software development
tasks [16], problem solving behaviours over a shared tabletop
[14], as well as self-regulated learning and meta-cognition [7].

The remainder of this paper consists of a short presentation
of temporal data mining, followed by process mining and se-
quence mining analyses of a semi-structured inquiry learning
activity data set [17, 18, 19] obtained from the Pittsburgh
Centre for Science and Learning DataShop [8]. We show
that process mining techniques allow for the discovery of
learning processes, and that sequential pattern mining can
used to identify the level of skill exhibited by each student.

2. TEMPORAL DATA MINING
Temporal data mining refers to the extraction of information
and knowledge from potentially large collections of temporal
or sequential data [12]. According to Laxman and Sastry [9],
sequential data refers to any type of data where data points
are explicitly ordered, either by time stamps or some other
sequencing mechanism. This includes data such as moves in
a chess game or commands entered by a computer user, but
also other forms of data that are not explicitly time-stamped
but are still otherwise ordered, such as text or protein se-
quences.

Temporal data is often divided into two categories: sequences
that consist of continuous, real-valued data points taken at
regular intervals, which are referred to as time series data,
and sequences that may be represented by compositions of
nominal symbols from a particular alphabet, which are re-
ferred to as temporal sequences [2]. As the field of time se-
ries analysis has a long history with many established tech-
niques, the more recent field of temporal data mining instead
focuses on information extraction from temporal sequences.

Given a set of temporal sequences, the general tasks of tem-
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poral data mining consist of 1) prediction, 2) classification,
3) clustering, 4) search and retrieval, and 5) pattern discov-
ery. These tasks can be accomplished using a number of
established techniques in the area. A few of the more preva-
lent techniques include: A) Sequential pattern mining: The
goal of sequential pattern mining [1] is to identify highly fre-
quent sequences that appear within a database of ordered
items or events; B) Sequence classification: Sequence clas-
sification [11] attempts to assign a candidate sequence to
one of possibly several classes of existing sequences, typi-
cally according to either similarity or common features such
as frequent sub-sequences; C) Episode mining: Frequent
episodes [13] are sets of partially ordered events that are
found to occur close together frequently and consistent with
the specified partial order; and D) Process mining: Process
mining refers to the extraction of process-related informa-
tion from event logs [21]. Process mining algorithms are
used to build a model of the business process by represent-
ing the different ways cases in the process can be executed.
However, there are some key differences between business
processes and learn flows [4].

3. TEMPORAL EDM ANALYSIS
To demonstrate the potential of temporal data mining in
the analysis of educational data, we conducted a study uti-
lizing process mining and sequential pattern mining to dis-
cover learning processes and to identify the level of student
skill using a data set [17, 18, 19] taken from the Pittsburgh
Science of Learning Center DataShop [8]. This data set
contains data on 148 middle school students performing ac-
tivities logged while working within a micro-world, where
students engage in “scientific inquiry” to study liquid phase
change. Here, the students form hypotheses and conduct
experiments as they investigate whether container size, heat
level, substance amount, and cover status affected the boil-
ing/freezing point of water, or the time it took to freeze/boil.
All students’ fine-grained actions were attributed a time
stamp and recorded by the system. These actions included:
interactions with the inquiry support widgets, interactions
with the simulation including changing simulation variable
values and running/pausing/resetting the simulation, and
transitioning between inquiry tasks [18].

Given that we are mostly interested in the discovery of self-
regulated learning, the fact that students had a moderate
degree of freedom to choose their own procedures for con-
ducting experiments, less than in purely exploratory learn-
ing environments though [19], was an interesting data set
for studying sequences of student behaviours and how they
correlate with student success.

3.1 Process Mining and Discovery
Process mining offers a set of techniques and tools to dis-
cover sequential patterns represented as workflows. The
analysis in this section was performed using the Inductive
visual miner [10]. We were interested to discover, from the
log of students inquiry activities, similar process models to
the one depicted in Figure 1. For this discovery analysis,
we limited ourselves to the whole data set, and we did not
try to distinguish between groups of students. The purpose
was to explore and compare the actual processes that stu-
dents followed to the expected process from the author of the
learning environment given in Figure 1, rather than suggest

alternative learning processes. The log file contained 29679
events for 147 students. The overall distribution of inquiry
activities indicated that 58.1% were spent in analysis, 19.1%
in experiment, 18.4% in hypothesis formation, and 4.4% in
observation.

Figure 1: Intended learning paths during scientific
inquiry.

As indicated in Figure 1, the intended learning process con-
tains many possible loops while students progress in their
scientific inquiry. Figure 2 and Figure 3 show respectively
discovered process models from the transactions log using
100% of the events and sequences, and the top 70% most
frequent events and sequences. From the visual compari-
son of the process model for 100% of the data (Figure 2),
and the intended process of Figure 1, it is clear that there
is a lot of variability in students transitioning between in-
quiry steps, given that the model is mostly disjunctive, with
sequences resulting from loops. However, after leaving out
the 30% most infrequent events and event sequences from
the data, we discover a process model, Figure 3, that has
some resemblance to the intended inquiry process, repre-
senting explicitly the sequence of hypothesize to experiment
or analyze. Notice that the observation inquiry step is not
part of the model because of the low frequency of its related
events, which indicates a difference with the intended learn-
ing process, or more accurately, a tendency by the students
to avoid the observation stage.
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Figure 2: Process model using 100% of events and
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Another element of interest was the sequence of problems
students address during their inquiry. The overall distri-
bution of student activities within those problems were rel-
atively balanced with 30.7% in “container size”, 24.9% in
“amount of substance”, 23.0% in “level of heat”, and 21.4%
in “cover status”. Figure 4 shows a process model includ-
ing 100% of events and event sequences. The process model
clearly indicates a bias towards starting from the container
size problem, followed by equivalent choices from the three
other problems. This is likely a consequence of the the con-
tainer size being the default value at the start of the inquiry
session, which is a restriction on the student self-regulated
learning processes.
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Figure 4: Process model of problems sequence us-
ing 100% of events and event sequences (from left
to right: container size, amount of substance (top),
cover status (middle), level of heat (bottom)).

Interestingly though, one would expect that the inquiry steps
would be grouped (follow each other closely) within each
problem. An inspection of a process model for an event
classifier including the combination of both inquiry steps
(hypothesize, observe, experiment, analyze) and problems
(container size, amount of substance,level of heat, cover sta-
tus) with 100% of events and sequences reveals only three
groups of steps and not four as one would expect. In Fig-
ure 5, 1) the leftmost group is focused on inquiry steps ap-
plied to container size, and amount of substance, 2) the mid-
dle group to level of heat, amount of substance, and cover
status, and 3) the rightmost group to cover status. This dis-
tribution of steps indicates that the four problems were not
explored completely independently by the students, which
manifest a strategy to explore concurrently the effect of dif-
ferent factors. However, this strategy might be different
when comparing students with good and poor results and
should be explored in a subsequent analysis.
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Figure 5: Three groups of problems and inquiry
steps combination sequences.

3.2 Sequence classification
The second phase of our study was to explore the potential
of sequential pattern mining in the identification of the level
of skill exhibited by each student. Since sequences of stu-
dent activity in the data set were not explicitly labelled as
“skilled”, “unskilled”, etc., we considered two other metrics
to measure skill exhibited: 1) number of times the student
got an answer wrong, and 2) total time taken to complete
the experiments. We used leave-one-out cross validation,
applying our sequence classification learning algorithms on
the training set and attempting to classify each test student
as having either the high/low number of incorrect answers,
or high/low time to complete, depending on the test.

Figure 6 shows the results of classifying students as “high
number of incorrect steps”. Success of the classifiers are mea-
sured by likelihood ratio (LR), which indicates how much
more likely a positive example will be classified as positive
than a negative example. The left-hand chart shows the suc-
cess in classifying whether a student is in the bottom 50% in
terms of number of incorrect answers, for varying maximum
sequence size. Thus, a maximum sequence size of 1 repre-
sents the case where sequential relations are not considered,
and only the presence/absence of certain actions are used
for the classification. Observe that the LR is close to 1 in
this case, meaning that we are no more likely to classify a
positive case as positive or negative. The LR then increases
steeply by 230% to 2.3 as sequences of size 2 are considered,
before levelling off at about 1.75 for size 3 and greater. The
right-hand chart then demonstrates how the classifier im-
proves as we use sequences (max size 4) to classify students
into the categories of worst 50%, 40%, 30%, 20% and 10%.
Figure 7 depicts the results similarly for classifying students
as “long time to complete”. While not as dramatic, the posi-
tive effect of utilizing sequential information is demonstrated
here as well.
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Figure 6: LR for classifying as “high number of in-
correct steps”.
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Figure 7: LR for classifying as “long time to com-
plete”.

4. CONCLUSION
One of the main thrusts within the Learning Performance
Support Systems program (LPSS) at the National Research
Council Canada seeks to advance and apply educational data
mining to model and support self-regulated learning in het-
erogeneous environments of learning content, activities, and
social networks. The program is at an early stage of develop-
ment and our initial position points towards a complemen-
tary use of latent knowledge estimation and performance
prediction methods [3], and sequence mining methods. In
order to support the validity of our argument that sequential
data analytics holds great potential for the analysis of stu-
dent knowledge and skill acquisition, we demonstrated the
application of discovery process mining and sequence mining
in classifying students according to success using a data set
of semi-structured learning activities [17, 18, 19] taken from
the Pittsburgh Science of Learning Center DataShop [8].

Using process mining tools we were able to discover in-
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quiry learning patterns in relationships with inquiry learn-
ing steps, learning problems, and a combination of those.
Our analysis showed some differences between the semi-
structured process intended by the developers of the learning
environment and the actual processes followed by the stu-
dents. We also showed that process mining techniques allow
for the discovery of learning processes, and that considering
sequences of events as features we can improve classifica-
tion by up to 230% over considering single, non-sequential
events. Given the learning process patterns discovered in
the initial analysis of the students inquiry activity log, the
next process mining discovery analysis will be to compare
the inquiry processes of students having low and high correct
outcomes.
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ABSTRACT
Online adaptive tutoring systems are increasingly being used
in classrooms as a way to provide guided learning for stu-
dents. Such tutors have the potential to provide tailored
feedback based on specific student needs and misunderstand-
ings. Bayesian knowledge tracing (BKT) is used to model
student knowledge when knowledge is assumed to be chang-
ing throughout a single assessment period. The basic BKT
model assumes that the chance a student transitions from
”not knowing”to ”knowing”after each item is the same, with
each item in the tutor considered a learning opportunity. It
could be the case, however, that learning is actually context
sensitive; context in our analysis is the order in which the
items were administered. In this paper, we use BKT mod-
els to find such context sensitive transition probabilities in
a mathematics tutoring system and offer a methodology to
test the significance of our model based findings. We employ
cross validation techniques to find models where including
item ordering context improves predictive capability com-
pared to the base BKT models. We then use regression
testing to try to find features that may predict the effective-
ness of an item ordering.

Keywords
Item Ordering, Bayesian Knowledge Tracing, Item Difficulty

1. INTRODUCTION
Online adaptive tutors are increasingly being used in class-
rooms as supplements to traditional instruction. Some sys-
tems, such as the ASSISTments [4] platform used for middle
school math subjects, provide scaffolding or hints to students
upon request or when the student answers a question incor-
rectly. In this paper, we focus on employing the Bayesian
knowledge tracing (BKT) model of student learning but with
the hypothesis that learning could be context sensitive. In
this case, the context is the order that items of a particular
skill are administered in.

2. BACKGROUND
2.1 ASSISTments Data
The data set analyzed in this paper comes from use of the
ASSISTments platform in AY 2012-2013. The data set is
publicly available and is rich with information that has been
mined by other research projects [7] [9]. In this paper, we
focus on the Skill Builder sequences used in ASSISTments,
where a problem set consists of items given in a random or-
der, generated from a set of templates. Items generated from

Figure 1: Example of an item in the ASSISTments
database

these templates are assumed to be answerable with knowl-
edge of a single underlying knowledge component (KC). For
example, one problem set might contain three item tem-
plates. Each template can be populated with a set of num-
bers to generate an item; thus many different items can be
derived from a single template. The number of templates per
problem set varies; in this paper, we look at problem sets
with between 2 and 6 templates. The number of items deliv-
ered to the student depends on the student’s performance;
in the Skill Builder set, mastery is assumed to occur after
three consecutive correct responses. Each template in a Skill
Builder sequence has an associated method of assistance; it
is either a hint template or a scaffolding template. Scaffold-
ing templates are bundled with a set of simpler questions to
guide the student through the ideas in the item, while hint
templates have guiding statements available to assist the
students (usually the final hint provides the exact answer to
the item).

3. METHODS AND ANALYSIS
3.1 Bayesian Knowledge Tracing
Bayesian knowledge tracing [3] assumes a binary represen-
tation of student knowledge. Figure 2 depicts a BKT model
representation as a hidden Markov model (HMM). The ba-
sic BKT model is shown inside the dashed portion of the
figure. O1 through O4 are binary indicators of correctness
at opportunities 1 through 4. K1 through K4 represent the
latent knowledge of the KC (assumed to be 0 or 1) at oppor-
tunities 1 through 4. In between each Ki and Ki+1, there is
an arrow representing a probability of transition, or learn-
ing. Guess and slip parameters can be assumed to be equal
among all items or can be item-specific [10].

3.2 Item Ordering Effects
The Skill Builder sequences in the ASSISTments platform
pick from a set of templates at random to generate items for
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Figure 2: BKT Model. The dashed portion repre-
sents the basic BKT model, and the Q nodes repre-
sent the item order modification.

the student. However, it is our hypothesis that there may ex-
ist pedagogically more advantageous orderings of problems
than the default random orders. Data mining and learning
analytics techniques have been used to create process models
and determine the most effective order of events for learners
in online science education [8], as well as for finding patterns
where students exhibited patterns of self-regulated learning
[6]. Investigating the effects of item ordering can help both
researchers and teachers, bridging the gap between educa-
tional theory and practice.

The BKT model could be extended to model a transition
probability per particular item ordering. For example, one
student might receive items from templates in the order of
(3, 1, 2, ...) while another student might receive items from
templates in the order of (1, 3, 2, ...). Over a number of
such permutations, the BKT model could estimate a sepa-
rate transition probability associated with items in the order
(3, 1) as opposed to (1, 3). Figure 2 depicts how this new
model might be formulated as an HMM, where items in the
order of (3, 1, 2) are seen by the student. Note that the
probability of knowledge at K3 is influenced by seeing ques-
tion 3 followed by question 1. Other students will be given
items in different and random orders, allowing for all possi-
ble combinations of item order pairs to be analyzed. This
model is drawn from work by Pardos and Heffernan [9]. We
extend this work by finding significant improvements in pre-
dictive accuracy with the item order model by looking at
the mean absolute errors produced by both the basic BKT
and the item order model.

3.3 BKT model fitting
Among the Skill Builder response sets (SBs) from the 2012-
2013 ASSISTments data set, we only looked at sets with
more than 2000 student responses, more than 250 students,
and between 2 and 6 (inclusive) templates. There were 112
Skill Builders that met these criteria, with 130,496 student
response streams and 606,948 responses. Two BKT models,
estimated using the XBKT code base, were fit to each of
the 112 SBs. The first model was standard BKT (baseline),
where every item was assumed to have the same transition
probability. In our standard BKT model, every template
type was allowed to have its own guess and slip parameters.
The second model allowed for both different guess and slips
per template and different transition probabilities based on
the previous two items administered. We enabled different
guess and slips per template for our baseline model so that

any difference between models would be attributed to the
different item order learning transitions. Additionally, we
modeled a transition probability for each template specifi-
cally when that template was the first item administered in
the sequence.

3.4 CV prediction to identify item orders of
interest

To obtain statistical confidence in the generalization of a
certain item ordering to unobserved students, we performed
5-fold cross validation (CV) on the data. This process starts
by fitting both base and item order BKT models on a ran-
domly selected 80% of student response data, and then using
the trained models to predict student responses in the held
out 20%, called the test set.

By comparing the predicted responses to the actual responses,
Mean Absolute Errors (MAE) were obtained for both the
base and the item order models. The error rates were then
compared using a paired t-test for each possible item order.
Out of the 1789 possible item orders among all Skill Builder
problem sets, 605 item orders were found to have statistically
significant error differences between the two predictive mod-
els at the .05 level. Among the 605 item orders, 157 had their
responses predicted better by the base BKT model (by an
average rate of .0138), while the remaining 448 item orders
had their responses predicted better when using the item
order model (by an average rate of .0173). It is important
to note that the item orders in this section include ordering
situations where the same template is administered twice
in a row. The result that a portion of the item orders had
better response prediction when using the base BKT model
is not surprising, considering that each addition of a single
new template to an SB increases the number of potential
item orders dramatically. Thus, as the number of templates
increases, the number of responses per item order decreases,
resulting in less data per parameter for the model to learn
from. The occurrence of 448 item orders whose responses
were better predicted by the item order model suggests that
the item order model could be able to uncover effective (or
ineffective) item orderings.

Figure 3 shows the distribution of learn rates from both the
basic and the item order BKT models. In the basic BKT
model, a learn rate represents the rate at which a student is
expected to learn (if they did not already know it) the latent
knowledge component after seeing any item. In the item or-
der BKT model, learn rates are modeled per item order pair,
thus representing the rate a student is expected to learn a
knowledge component after seeing a particular order of two
items. The combination of the item order model with the
cross validation approach provides a procedure that can de-
termine when the item order model provides more accurate
predictions compared to the base BKT model. Such a proce-
dure can reveal when an item ordering might be considered
effective or ineffective.

3.5 Regression analysis
Regression analyses (212,858 student responses) were run on
the 448 item orders found to be significantly better fitting
from the cross validation approach in order to find predictors
of the item order learn rates. For the regression analyses,
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Figure 3: Distribution of learn rates

we extracted template level features from both templates in
an item order. Features included are: average time to first
response (milliseconds), percent correct on first problem at-
tempt, average number of attempts, problem type (text re-
sponse or radio button/multiple choice), difference in time to
first response between Template A and Template B (where
Template A is the first item in an ordering), difference in per-
cent correct between Template A and Template B, whether
Template A offered hints or scaffolding as assistance, and
the individual learn rates for Templates A and B.

In our first model, stepwise regression was used regressing
item order learn rate on these features (R2=.17, F = 46.19,
p<.01). The only features that were found to be significant
at the .05 level were the learn rate of Template A, which
had a negative effect on item order learn rate for the pair (β
= -0.13, p = .01), and the learn rate of Template B, which
had a positive effect (β = .502, p < .01) in the model.

Our second model only included item orderings where Tem-
plate A was a scaffolding problem (R2=.37, F = 11.47, p <
.01). All of the features from the first model were included
except for problem type due to lack of variation. Features
unique to scaffolding problems were added as potential pre-
dictors: problem type of the associated sub-questions and
percentage of scaffolding problems (including sub-questions)
answered correctly. Average attempts on Template A (β =
.93, p < .01) and the learn rate for Template B (β = .58, p <
.01) had a positive effect on the item order learn rate. When
the scaffolding for Template A consisted of text responses,
the learn rate of the ordering decreased (β = -.13, p < .01).

The third model was fit using only orders where Template A
was a hint item (R2=.22, F = 20.94, p < .01). Hint features
included percentage of students who went through all the
hints on Template A and average amount of template hints
seen. Average number of attempts on Template A (β = .27,
p < .01), average milliseconds to first response on Template
A (β = < .01, p = .03), percentage of students who accessed
all of the hints on Template A (β = .71, p < .01), learn rate
of Template A (β = -0.16, p <.01), and the learn rate for
Template B (β = .43, p < .01) were significant predictors.

Regression analyses were also conducted to look for feature
predictors of individual template learn rates for the 321 in-
dividual templates included in these 448 orderings. Percent
correct on the template (β = .31, SE = .1, p < .01) and the
item requiring a text response (β = .14, SE = .04, p < .01)
were significant predictors (R2=.06, F = 10.84, p < .01).

The primary unexpected result from the regression findings
is that a lower learn rate of Template A predicts a higher
learn rate for the ordering. It is important to note that

this effect may be due to constraints in our current model.
The individual learn rate of Template A is calculated when
Template A occurs as the first item in a problem set pre-
sented to a student. That Template A is also included as
part of an item ordering pair made up of the first and second
items in the administered problem set. If the learn param-
eter for Template A is high, the knowledge component is
already known (and has already been learned) by the time
we consider the learn rate for the ordering including Tem-
plate A. However, this phenomenon does not occur for tem-
plate B of the item ordering, as Template B would not be
the first template seen by the student in this case. In order
to alleviate the discrepancy between the correlations, single
template learn rates should be calculated from all template
occurrences throughout administration in future work.

3.6 Desirable difficulty
In previous proof-of-concept work [11], a qualitative analy-
sis was performed to examine what might make certain item
orderings more effective than other item orderings. One fea-
ture of item pairs that became obvious was that not all items
had exactly the same level of difficulty. In addition, some
effective orderings contain a harder item first whereas other
effective orderings contain an easier item first. One poten-
tial hypothesis that can help explain this difference in item
ordering and difficulty is that of “desirable difficulties”. In a
series of studies, Bjork and colleagues determined that some
challenges to performance during learning activities may ac-
tually contribute to greater learning [1] [2] [5]. By introduc-
ing “desirable difficulties” that help learners engage in the
active processing of information, learning tasks that may
be perceived as challenging or inefficient may prove more
beneficial in the long run than those completed with high
fluency.

In the case of item orderings where the first problem is more
difficult than the second, the first (more difficult) problem
may introduce a desirable difficulty, leading the student to
learn more than they would with an easier problem. This
learning then carries over into the second problem in the
pair, thus leading to a higher overall rate of learning. This
hypothesis works towards explaining our finding that a lower
learn rate of the first template predicts a higher learn rate
for an item ordering. When the first problem is easier than
the second, this might be an instance where the material is
better learned through a gentler or simpler introduction, as
perhaps the second problem might be more difficult than is
“desirable”. In this case, a student would not properly learn
from the more difficult problem unless it were preceded by
an easier problem that would serve as a scaffold.

Using data from the BKT model to examine this hypothesis,
we looked at how the difference between prior knowledge (at
the start of an SB) and the percent correct on a template (as
a proxy for template difficulty) compared to the probability
of learning using regression. Finding no difference between
a student’s prior knowledge and the percent correct for a
given template might show when an item has an “appropri-
ate” difficulty. In this case, the difficulty of the item closely
matches the prior knowledge of the student. Pedagogically,
for an item to help the student learn, the difference between
the student’s prior knowledge and the item difficulty should
be negative; in other words, the difficulty of the item should
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Figure 4: Scatterplot using template A data

be above the level of the student’s prior knowledge to pro-
mote learning.

Regressing the difference between prior knowledge and item
difficulty (percent correct) on the probability of learning
showed statistical significance at the 0.01 level. This sta-
tistical significance held when using the difference between
prior knowledge at the beginning of an SB and the percent
correct on the first item in a pair (Template A), as well as
the difference between prior knowledge and the percent cor-
rect for the second item in the pair (Template B). Using the
percent correct for Template A to find the difference between
the student’s prior knowledge and the item difficulty had a
correlation of -0.3039 with the probability of learning, while
using Template B had a -0.2146 correlation with the prob-
ability of learning. These correlations are both relatively
high, showing enough relationship between the variables to
warrant further exploration in this area.

Similar to the correlations, the regressions were also run us-
ing percent correct from Template A and from Template B
in the difference between prior knowledge and item difficulty.
For Template A the coefficient for regressing the difference
between prior knowledge and item difficulty (percent cor-
rect) on the probability of learning was -0.187 (R2 =0.09,
F=45.39); using template B, the coefficient was -0.120 (R2=
0.046, F=21.53). The negative correlations, as well as neg-
ative coefficients in each of the regressions, show that the
more negative the difference between prior knowledge and
item difficulty becomes (the larger the difference between
these two variables in the right direction for a “desirable dif-
ficulty”), the greater the probability of learning becomes. A
scatterplot showing the relationship between these variables
can be seen in Figure 4.

4. LIMITATIONS AND FUTURE WORK
The findings from this paper suggest that the item order
BKT model combined with the use of a cross-validation tech-
nique show promise in uncovering learning mechanisms not
apparent when just the base BKT model is used. The cross-
validation approach confirmed that some item order models
had better predictive capabilities compared to the base BKT
models. Thus, statistically reliable suggestions can be made
about item order delivery, and more research into item or-
dering is warranted, especially using such a cross-validation
approach.

The results from the regression were somewhat surprising,
where a lower individual learn rate from the first template
in an ordering predicted a higher overall learn rate for the
ordering. We hypothesize that this could be due to a con-
straint in our item order model, where individual learn rates
of templates were modeled using only instances of that item
when it appeared as the first item in a sequence. This hy-
pothesis can be investigated in future research using a mod-
ified item order model.
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ABSTRACT
A growing body of research suggests that accounting for student-
specific variability in educational data can improve modeling 
accuracy and may have implications for individualizing 
instruction. The Additive Factors Model (AFM), a logistic 
regression model used to fit educational data and discover/refine 
skill models of learning, contains a parameter that individualizes 
for overall student ability but not for student learning rate. Here, 
we show that adding a per-student learning rate parameter to AFM 
overall does not improve predictive accuracy. In contrast, 
classifying students into three “learning rate” groups using 
residual error patterns, and adding a per-group learning rate 
parameter to AFM, substantially and consistently improves 
predictive accuracy across 8 datasets spanning the domains of 
Geometry, Algebra, English grammar, and Statistics. In a subset 
of datasets for which there are pre- and post-test data, we observe 
a systematic relationship between learning rate group and pre-to-
post-test gains. This suggests there is both predictive power and 
external validity in modeling these distinct learning rate groups. 

Keywords
Student learning rate, learning curves, Additive Factors Model 

1. INTRODUCTION
A growing body of research suggests that accounting for student-
specific variability in statistical models of educational data can 
yield prediction improvements and may potentially inform 
instruction. The majority of work investigating the effects of 
student-specific parameters [6, 10, 11, 15] has been done in the 
context of a class of models called Bayesian Knowledge Tracing 
(BKT), a special case of using Hidden Markov Models to model 
student knowledge as a latent variable. 

Logistic regression is another popular method for modeling 
educational data. The Additive Factors Model (AFM) [4] is one 
instantiation of logistic regression that was developed with the 
primary intention of evaluating, discovering, and refining 
knowledge component (KC) models (also referred to as Q-
matrices). In contrast to statistical models of educational data, KC 
models define the knowledge components  (e.g., skills, concepts, 
facts) on which estimates of students’ knowledge are based. AFM 
has parameters modeling KC difficulty, KC learning rate, and 
individual student ability, but it does not have a parameter for 
individual student learning rate. 

Recent work extending BKT models [15] suggests that better 
predictive accuracy is achieved by adding parameters that 
accommodate different learning rates for different students. Here, 
we investigate two different extensions of AFM that model 
student learning rate variability. The first model (AFM+StudRate) 
adds a per-student learning rate parameter to AFM, dramatically 
increasing the number of parameters in the model. We find some 
evidence that this model overfits the training data. For the second 

model (AFM+GroupRate), we introduce a method of classifying 
students into learning rate groups. We then add a per-group, rather 
than per-student, learning rate parameter to AFM and show that 
this model significantly outperforms regular AFM in predictive 
accuracy across 8 datasets spanning various domains. 

Importantly, we move beyond simply evaluating the models in 
terms of their predictive accuracy to assess the external validity of 
the additional parameters. We show that they relate significantly 
to post-test outcomes. Validation and interpretation of statistical 
model parameter fits are a critical step towards successfully 
bridging EDM, the science of learning, and instruction. 

1.1 The Additive Factors Model 
AFM is a logistic regression model that extends item response 
theory by incorporating a growth or learning term. This statistical 
model (Equation 1) gives the probability 𝑝!" that a student i will 
get a problem step j correct based on the student’s baseline ability 
(𝜃!), the baseline difficulty (𝛽!) of the required knowledge 
components or KCs on that problem step (𝑄!"), and the 
improvement (𝛾!) in each of the required KCs with each 
additional practice opportunity multiplied by the number of 
practice opportunities (𝑇!") the student has had with that KC prior 
to the current problem step [4]. 

ln !!"
!!!!"

= 𝜃! + 𝑄!"(𝛽!!∈!"# + 𝛾!𝑇!")       (1) 

AFM accommodates some individualization with the student 
ability parameter but makes the simplifying assumption that 
students learn at the same rate, since the original purpose of AFM 
was to refine KC models [4]. Here, we investigate whether 
extensions of AFM can accommodate variability in student 
learning rates and provide meaningful information about learning 
rate differences. 

2. IDENTIFYING AND MODELING
LEARNING RATE VARIATION 
To explore adding learning rate variation to AFM, we created two 
new models extending AFM. The first model (AFM+StudRate) 
adds a per-student learning rate parameter, and the second model 
(AFM+GroupRate) adds a per-group learning rate parameter 
whereby membership among the three groups is determined using 
the method described in Section 2.1. 

2.1 Student classification method 
To classify students, we sought to identify those who improve—
with each practice opportunity—more (or less) so than would be 
predicted by traditional AFM, which has a per-KC rate parameter 
that already accounts for the learning rate variability that is 
predicted by the KCs present at each opportunity. To do so, we 
examined the patterns in residual errors across opportunity counts 
after the data are fit with traditional AFM. A student whose 
learning curve is steeper than that predicted by AFM will exhibit 
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systematically increasing residual errors; i.e., residuals will 
correlate positively with opportunity count. Conversely, a student 
whose performance consistently increases less per opportunity 
than AFM predicts will exhibit a negative correlation between 
residual error and opportunity count. 

To leverage this feature of residual error to classify students, we 
first fit the baseline AFM model to a full dataset (all students and 
KCs). Then, for each individual student, deviance residuals were 
computed, comparing the AFM model prediction against the 
actual data. Correlation coefficient cut-offs were set for each 
dataset at r > 0.1 for the “steep” learning-curve group and r < -0.1 
for the “flat/declining” learning-curve group. Based on 
exploratory analyses, we selected the most stringent cut-off that 
yielded reasonable group sizes (approximately 50% students 
classified into either the steep or flat groups). The remaining 
students, whose learning curves were reasonably captured by the 
per-KC learning rates specified in AFM, were classified into a 
third “regular” group. 

2.2 AFM+StudRate and AFM+GroupRate 
The model that extends AFM by adding a per-student learning 
rate (AFM+StudRate) is given in Equation 2. It contains the 
parameters of traditional AFM with an additional parameter 
capturing the improvement (𝛿!) by each student with every 
additional practice opportunity. Here, 𝑇!" represents the practice 
opportunity count of a given KC required for a problem step j. 

ln !!"
!!!!"

= 𝜃! + 𝑄!"(𝛽!!∈!"# + 𝛾!𝑇!" + 𝛿!𝑇!")   (2) 

The model that extends AFM by adding a per-group learning rate 
(AFM+GroupRate) is given in Equation 3.  

ln !!"
!!!!"

= 𝜃! + 𝑄!"(𝛽!!∈!"# + 𝛾!𝑇!" + 𝛿!𝑆!"𝑇!")   (3) 

It uses the same parameters as AFM+StudRate except that each 
student’s improvement rate with each additional practice 
opportunity (𝛿!) is derived from a per-group rate (and thus can 
only take on one of three different values). Each student’s group 
membership is specified by 𝑆!", which takes on a value of 1 when 
the student i belongs to group c and a value of 0 otherwise. 

3. EVALUATING MODELS FOR FIT AND
PREDICTIVE ACCURACY 
3.1 Datasets 
To test these statistical models on real educational data and to 
compare their predictive accuracies, we applied them across 8 
datasets from DataShop [8]: Geometry Area 96-97, Cog Model 
Discovery Experiment Spring 2010, Cog Model Discovery 
Experiment Spring 2011, Cog Model Discovery Experiment Fall 
2011, Assistments Math 2008-2009 Symb-DFA, Self Explanation 
sch_a3329ee9 Winter 2008 CL, IWT Self-Explanation Study 1 
Spring 2009, and Statistical Reasoning and Practice - Fall 2009. 
These span a variety of content domains: Geometry, Equation 
solving, Story problems, English grammar, and Statistics. All of 
these datasets are publicly available at http://pslcdatashop.org. 
We selected datasets that had already undergone significant KC 
model refinement via both manual and automated methods [9]. 

3.2 Methods 
Each dataset was pre-processed based on the single-skilled KC 
model that achieved the best item-stratified CV performance 
according to values reported on DataShop. Table 1 lists the names 
of the KC models used and the number of KCs in each model. The 
three AFM models were implemented in R with student ability 

(θi), KC difficulty (βk), and all learning rate parameters modeled 
as random effects, since many datasets used here were 
characterized by non-uniform sparsity in student-KC pairings, due 
to the mastery-based adaptive nature of the tutors from which the 
data originate. Modeling the parameters as random effects also 
reduces the likelihood of over-fitting the data by keeping their 
estimates close to zero. 

The sparsity found in mastery-based datasets is particularly 
extreme at high opportunity counts, and this introduces noise to 
our classification method, which is dependent on good resolution 
across opportunity counts. Thus, we employed a conservative and 
systematic opportunity count cut-off method prior to analyses. 
The number of observations at each opportunity count was totaled 
for each student. Counts at which the average observations per 
student was less than 1 and the number of observations for any 
single student was 1 or fewer were excluded. In other words, at 
the excluded opportunity counts, no student had more than 1 total 
observation, and the majority of students did not have any. This 
excluded a very small percentage of total observations; the 
percent of observations retained are reported in the “Opp Cut-off” 
column of Table 1. In addition, our grouping technique required at 
least 5 observations in order to run the residual-by-opportunity 
correlations, so students who performed fewer than 5 total 
problem steps were excluded from the analyses. The left-most 
column of Table 1 reports the number of students included (with 
the original N in parentheses). 
Models were evaluated for each dataset using Akaike Information 
Criterion (AIC), Bayesian Information Criterion (BIC), and cross-
validation measures. Two types of cross-validation (CV) were 
assessed: item-stratified CV, in which different random folds 
contain different problem steps, and student-stratified CV, in 
which different random folds contain different students (i.e., the 
model is tested on “unseen” students). Due to the random nature 
of the folding process, we repeated ten runs of each type of 10-
fold CV, and the mean RMSEs across each run were used to 
compute the overall means and standard errors (in parentheses) 
reported in Table 2. Any CV results in which AFM+StudRate or 
AFM+GroupRate significantly outperforms regular AFM (as 
assessed by p<0.05 in a paired t-test between mean RMSEs across 
the 10 runs) are denoted with stars. 

3.3 Results 
The results of fitting the three statistical models to all 8 datasets 
are summarized in the right-most columns of Table 1. 

AFM with a per-student learning rate fails to perform consistently 
better than regular AFM either across metrics within any dataset 
or across datasets. With an extra parameter per student, 
AFM+StudRate naturally fits training data better, but the 
evaluation metrics indicate over-fitting that is likely idiosyncratic 
(i.e., resulting in parameter estimates that will not generalize well 
to “unseen” items or students). Even for the AIC metric, which 
incorporates a smaller penalty for extra parameters than BIC, 
AFM+StudRate is better than regular AFM for only half of the 
datasets and only slightly so. By BIC, it is better than regular 
AFM in only one dataset. Cross-validation reveals that 
AFM+StudRate fails to achieve significantly lower RMSEs than 
regular AFM in 14 of 16 cases. 

In contrast, AFM+GroupRate performs best on all 8 datasets by 
AIC, BIC, and item-stratified CV measures. It also performs the 
best on the majority of datasets (6 out of 8) by student-stratified 
CV. The superior performance according to student-stratified CV 
is particularly notable, because the predictions are made on data 
from “unseen” students. That is, no student information (not even 
group membership) is available for the data in the test set. The 
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fact that AFM+GroupRate performs better than regular AFM 
implies that this model is successfully capturing some student-
level variability that produces better, cleaner KC parameters. This 
is not true for AFM+StudRate, which did not achieve significantly 
better student-stratified CV for any dataset. 

4. RELATIONSHIP TO PRE-POST GAINS
Predictive accuracy is often used as a proxy for quality in EDM 
models. Assessing the validity of these student groups beyond 
relevance to model-fitting is equally, if not more, important. To 
do so, we investigated the relationship between group 
membership and post-test outcomes. Four of the datasets tested in 
Section 3 contained pre/post-test data that were accessible via 
DataShop: the three geometry Cog Discovery datasets and the 
IWT 1 dataset. 

For each dataset we ran a simple regression with both pre-test 
score and per-group coefficients (from fitting AFM+GroupRate) 
as predictors of post-test score. Even after taking into account the 
variance explained by pre-test scores, learning rate group 

membership predicts post-test scores significantly for Cog 
Discovery Spring 2010 (p<0.001), Cog Discovery Fall 2011 
(p=0.016), and Cog Discovery Spring 2011 (p<0.001), and 
marginally significantly for IWT 1 (p=0.077). These results 
suggest that group classification predicts unique variance in post-
test outcomes and is thus a valid and interpretable construct. 

5. DISCUSSION
5.1 Conclusions and implications 
In the present work, we investigated two extensions of AFM that 
incorporated learning rate variation: adding a per-student learning 
rate parameter (AFM+StudRate) and adding a per-group learning 
rate parameter (AFM+GroupRate). AFM+StudRate overall did 
not significantly improve upon regular AFM, according to 
predictive accuracy metrics. In contrast, the residual-based student 
grouping method we developed seems to capture meaningful 
differences in learning rate variations. The groups have internal 
validity: adding a per-group learning rate to AFM improved 
predictive accuracy across all datasets based on the vast majority 
of fit metrics. They also have external validity: per-group rate 

Dataset [Domain] 
# Students 

KC Model 
 (# KCs) 

Opp 
Cut-off 

Statistical 
Model AIC BIC Item-Strat 

CV RMSE 
Student-Strat 

CV RMSE 
Geometry 
1996-97 

[Geometry] 
N = 56 (of 59) 

LFASearchAIC 
WholeModel3 (18) 

27 
(99.22%) 

AFM 5039.7 5072.4 .3996 (.0003) .4063 (.001) 

+StudRate 5043.8 5080.5 .3991 (.0004) .4063 (.001) 

+GroupRate 4999.2 5038.4 .3975 (.0003)* .4068 (.001) 

Cog Discovery 
Spring 2010 
[Geometry] 

N = 123 (of 123) 

KTskills.Mcontext.s
ingle.sep.ind.areas 

(42) 

80 
(99.72%) 

AFM 29208.5 29251.7 .3238 (.00003) .3319 (.0001) 

+StudRate 29160.8 29221.3 .3232 (.00002)* .3318 (.0001) 

+GroupRate 29030.1 29081.9 .3230 (.00002)* .3317 (.0001)* 

Cog Discovery 
Spring 2011 
[Geometry] 

N = 65 (of 69) 

KTracedSkills.matc
hed.Fall2011 (7) 

30 
(99.3%) 

AFM 4099.7 4131.5 .3877 (.0002) .4025 (.0004) 

+StudRate 4101.4 4146.0 .3879 (.0002) .4025 (.0004) 

+GroupRate 4077.3 4115.3 .3856 (.0002)* .4017 (.0004)* 

Cog Discovery 
Fall 2011 

[Geometry] 
N = 103 (of 103) 

KTracedSkills.Conc
atenated (15) 26 

(97.87%) 

AFM 3175.9 3208.2 .3104 (.0003) .3194 (.0003) 

+StudRate 3177.8 3223.0 .3108 (.0003) .3198 (.0003) 

+GroupRate 3155.6 3194.3 .3090 (.0002)* .3198 (.0003) 

Assistments 
Symb-DFA 

[Story Problems] 
N = 318 (of 318) 

Main.LFASearch 
Model0 (4) 

11 
(98.81%) 

AFM 6013.1 6046.0 .4265 (.0006) .47008 (.0001) 

+StudRate 6016.9 6062.9 .4267 (.0006) .47008 (.0001) 

+GroupRate 5793.2 5832.7 .4166 (.0006)* .47005 (.0001) 

Self-Explanation 
Winter 2008 

[Equation Solving] 
N = 70 (of 71) 

LFASearchAIC 
Model.r2 (19) 

49 
(98.78%) 

AFM 6201.8 6235.6 .3905 (.0002) .4140 (.0005) 

+StudRate 6201.4 6248.8 .3906 (.0002) .4141 (.0006) 

+GroupRate 6158.9 6199.5 .3889 (.0002)* .4127 (.0005)* 

IWT 1 
Spring 2009 

[English Grammar] 
N = 120 (of 120) 

LFASearchAIC 
WholeModel1 (26) 

11 
(98.64%) 

AFM 6820.8 6854.7 .4134 (.0003) .4392 (.0002) 

+StudRate 6815.2 6862.7 .4128 (.0003)* .4392 (.0002) 

+GroupRate 6752.9 6793.6 .4099 (.0002)* .4389 (.0002)* 

Statistics 
Fall 2009 
[Statistics] 

N = 52 (of 52) 

LFASearchAIC 
Model0 (16) 

30 
(99.81%) 

AFM 2967.8 2999.4 .3090 (.0032) .3250 (.0003) 

+StudRate 2965.5 3009.8 .3105 (.0031) .3250 (.0004) 

+GroupRate 2935.5 2973.5 .3085 (.0029)* .3248 (.0003)* 

Table 1. Dataset details and predictive accuracy metrics for each of the three statistical models fit to datasets. The percent of 
observations retained for analyses are shown in parentheses underneath opportunity cut-off values. Item- and student-stratified CV 
values are mean RMSEs over 10 separate runs of 10-fold cross validation, with standard errors in parentheses. Stars denote models with 
significantly better cross-validation performance (at p<0.05 in paired t-tests of RMSE values across CV runs) than regular AFM. The 
best-performing models by each metric are bolded. 
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coefficients significantly predict each group’s post-test outcomes, 
controlling for pre-test. 

Despite the focus of the AFM+GroupRate model on student-level 
differences, adding the per-group rate parameter produces more 
accurate estimates of KC parameters, based on the model’s 
superior performance in student-stratified CV for the vast majority 
of datasets. The only information the model gets for fitting test 
data in student-stratified CV (“unseen” students whom the model 
has no information about with respect to ability, learning rate, or 
group) are the KC parameters. For this reason, AFM+GroupRate 
may be useful for data-driven refinement of KC parameters, 
which in turn has implications for instruction (e.g., parameter-
setting in Knowledge Tracing based cognitive tutors [14]). 

Compared to other statistical models extending AFM 
(Performance Factors Analysis [12], Instructional Factors 
Analysis [5], Recent Performance Factors Analysis [7]), 
AFM+GroupRate adds relatively few parameters (only three) to 
AFM but achieves consistent and substantive improvements in 
prediction. These three parameters’ coefficient estimates are 
consistently interpretable (the per-group learning rates are ordered 
according to intuitions about each group’s learning curve 
steepness), and the model avoids overloading on the interpretation 
of parameters. 

We conducted extensive post-hoc analyses to interpret what the 
three learning groups actually reveal about student behavior and 
did not find evidence that the groups detect learning speed as an 
inherent trait, per se. For example, high ability students did not 
tend to be in the “steep” group, and low ability students did not 
tend to be in the “flat” group. Rather, the amount of improvement 
per opportunity seems to differ, more generally, depending on 
where the learner is on his/her true learning curve for any given 
skill. That is, the improvement per opportunity may be different 
for the earliest opportunities on a skill than for much later 
opportunities on a skill. Different students’ learning curves within 
cognitive tutor data may vary because they start using the 
cognitive tutor at different points of their true learning curves for 
any given skill, depending on their experience with that skill prior 
to tutor use. We found evidence supporting this notion in post-hoc 
analyses. Considered in conjunction with the lack of evidence for 
a per-student learning rate, our findings contradict the intuitive 
notion that some students naturally learn faster than others. 

5.2 Limitations and future work 
The present results somewhat conflict with a finding from [15] 
that adding a per-student learning rate parameter to BKT yields 
substantial improvements in model fit, though we note that that 
report did not provide an interpretation nor any external validity 
evidence. We did not observe a benefit when adding a per-student 
learning rate parameter to AFM. Further work to compare these 
per-student parameter estimates across AFM and BKT and to 
externally validate the estimates from individualized BKT will 
provide insight into this issue. 

Based on our post-hoc analyses, classification into the 
“flat/declining” group seems to capture high-ability students who 
descend into noisy performance at late opportunity counts 
(indicating boredom and/or “gaming the system” [2]) and low-
ability students who never seem to improve (“wheel spinners” 
[1]). It would be interesting to validate this by seeing whether the 
detectors in [1] and [2] yield the same students when tested within 
the present datasets. 

Another avenue for future investigation is to assess the degree to 
which different learning rate groups would benefit optimally from 
different KC models, via KC model search (as in [13]). 
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ABSTRACT
Along with the advent of MOOCs and other online learning
platforms such as Khan Academy, the role of online educa-
tion has continued to grow in relation to that of traditional
on-campus instruction. Rather than tackle the problem
of evaluating large educational units such as entire online
courses, this paper approaches a smaller problem: exploring
a framework for evaluating more granular educational units,
in this case, short educational videos. We have chosen to
leverage an adaptation of traditional Bayesian Knowledge
Tracing (BKT), intended to incorporate the usage of video
content in addition to assessment activity. By exploring
the change in predictive error when alternately including or
omitting video activity, we suggest a metric for determin-
ing the relevance of videos to associated assessments. To
validate our hypothesis and demonstrate the application of
our proposed methods we use data obtained from both the
popular Khan Academy website and two MOOCs offered by
Stanford University in the summer of 2014.

Keywords
knowledge tracing, educational videos, instructional technol-
ogy, bayesian inference, online education

1. INTRODUCTION
As the relative importance of MOOCs and other online learn-
ing platforms such as Khan Academy has increased, so has
the importance of verifiably sound online pedagogy increased
apace. While many of the lessons learned through a long his-
tory of research on the traditional classroom are applicable
to the online environment, many indicators available during
traditional instruction are not present for a designer of online
material. In order to address the need for scalable and re-
produceable evaluation, we hypothesize that by relating the
use of materials and performance on subsequent assessment
items, we can construct a metric to evaluate the relevance
of those videos, without needing to resort to comparative
studies.

To model student interactions with educational material and
improvement over time, we have chosen to use an adapta-
tion of Bayesian Knowledge Tracing (BKT), a technique de-
veloped and used with Intelligent Tutoring Systems (ITS)
but which has been applied outside of that domain as well.
We seek to incorporate behavior, such as video observation,
which falls beyond the purview of attempting assessment
items. We contrast this extended model with a simpler one
excluding resource usage in order to discover whether videos

contribute to model accuracy, and if some models benefit
more than others.

Our ultimate goal is not to produce high predictive accuracy
for the purposes of predicting students’ latent knowledge,
but rather to provide a quantitative framework for evaluat-
ing video resources. We set out first to prove that there is
a reduction of predictive error when incorporating video re-
sources into BKT analysis, in order to validate the inclusion
of such observations. Second, we propose a metric based on
a combination of both the delta in error between models us-
ing and eschewing video data and the learn rate associated
with a particular video, in order to foreground both those
which appear most relevant, as well as those which may need
attention.

2. RELATED WORK
2.1 Bayesian Knowledge Tracing
Bayesian Knowledge Tracing [1] is used extensively in computer-
assisted instruction environments, intended to approximate
mastery learning. The model in its most basic form is de-
fined by four parameters: P (L0), the prior probability that
a student has mastered a particular KC, or knowledge com-
ponent; P (S), the probability a student who knows a con-
cept will get an associated question wrong, or ’slip’; P (G),
the probability that a student who does not know a con-
cept will correctly ’guess’ the correct answer; and P (T ) the
probability that a student who does not know a particular
KC will learn it after a given observation. Through a pro-
cess of Bayesian inference, an observed correct or incorrect
response to an assessment item can be used to calculate a
posterior probability that a student has mastered the KC.
Using this posterior and P (T ) as described above, a new
prior is calculated, accounting for the probability that the
KC was learned between observations. This process is then
repeated, using the updated estimate, for each subsequent
observation.

We chose to use BKT as a modeling framework as it is
well-studied and possesses relatively well understood prop-
erties, with parameters which are intuitively interpretable
and therefore potentially actionable. Additional work has
been done to extend this basic model of BKT to incorpo-
rate individualized parameters, based on factors depending
both upon individual student properties (see e.g. [7], [2]),
as well as properties of particular assessment items within a
knowledge component [8].
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Source Total Events Distinct KCs
Khan 353,202 176
Economics 689,709 94
Statistics 337,428 70

Table 1: Properties of the three sources

2.2 Online Course Resources
There has been a fair amount of research devoted to studying
the efficacy of videos, forums, and other study aids offered in
online educational contexts. Past work has typically focused
on issues such as student attrition, student interaction, and
building student-facing recommender systems. For example,
Yang et al. described a framework for helping students sift
through the the large volume of forum discussion posts in
order to find content relevant to them [10]. Similar efforts
have been made to provide recommendations for more gen-
eral content, using methods such as social media analysis
and reinforcement learning [5] [9].

Relative to the research on student perception and experi-
ence in the MOOC context, little attention has been paid to
that of the instructor. That is not to say that such work has
been absent. Guo et al. [3] and Kim et. al [4] offer guidance
for the construction of videos used in MOOCs. Explorations
of the application of Item Response theory in a MOOC envi-
ronment [6] similarly offer instructors guidance in evaluating
the efficacy of their assessments using traditional methods.
Yousef et al. constructs an inventory of features, pedagogi-
cal and technological, which contribute to a sense of course
quality. [11]. Yet there remains a relative paucity of re-
search on the quantitative assessment of content outside of
the scope of assessment items.

3. DATA
In order to demonstrate the generalizability of our results,
we leveraged three sources of event log data. Two of our
datasets were taken from Stanford Online courses run using
the edX platform: ’Statistics and Medicine’ and ’Principles
of Economics.’ The third was taken from the popular Khan
Academy Website. See table 1 for details.

The data we obtained from Khan Academy contains obser-
vation events collected over about two years, from June 2012
to February 2014, while both edX courses were offered from
June to September of 2014. Assessment items in Khan are
categorized hierarchically as part of a larger ’exercise’ rep-
resenting a particular skill, and further as a member of a
’problem type,’ describing the template used to generate a
specific problem, while exercises from edX are categorized
as individual problems. For the sake of simplicity we have
chosen to consider each exercise as a separate knowledge
component (KC) for the purposes of training BKT models.

For both the Khan and edX data, there was not an im-
mediately available canonical mapping between videos and
associated problems. By scanning the logs of learner activ-
ity and using a metric combining chronological proximity
of use as well as frequency of associated observation, we
produced a mapping between videos and their related KCs.
Because our goal was not to produce a generative procedure
for semantically associating log events, we chose our method

Figure 1: The Template-Videos Model

to be sufficiently successful without introducing unnecessary
complexity. However, this does introduce possible sources of
error in terms of both overlooked and spuriously constructed
mappings.

4. METHODS
Though the previous section describes the fundamentals of
Bayesian Knowledge Tracing, we employ several extensions
to the model. First, and for all models used in evaluation,
we condition P (G) and P (S) for each observation on which
specific problem template is observed, to model varying tem-
plate difficulty. We will refer to this model as ’Standard
BKT’.

Second, we similarly condition the transition probability
P (T ) on the observed problem template, generating a second
distinct but still video-free ’Template’ model. We include
this model for the Khan data for the sake of completeness,
but note that there is only a single template for each edX
problem in the data and thus the results of this extension
are omitted for both the ’Statistics and Medicine’ and ’Prin-
ciples of Economics’ cases

Third, we extend our model to incorporate video observa-
tions, conditioning P (T ) either on the specific template ob-
served or the specific video, generating the ’Template Videos’
model. The presence of a video observation functions simi-
larly to that of a problem attempt, save that as there is no
associated student response to be considered, a video is asso-
ciated only with a unique P (T ). We simplify the ’Template
Videos’ into a fourth ’Template 1 Video’ model, conditioning
P (T ) only on the presence of either a video or a question,
but not the specific identity of the resource observed.

All models were trained and evaluated using 5-fold cross val-
idation. For each model above, one BKT model was trained
for each of the knowledge components. For each model,
for each fold, each of the KC models was randomly initial-
ized and trained using Expectation Maximization (EM) al-
gorithm to minimize the log likelihood of the observed events
25 times, with the maximally likely resulting model chosen
for that model-fold-model tuple. The metric used to com-
pare the four models is the root mean squared error (RMSE)
taken across all five folds.

5. RESULTS AND DISCUSSION
Tables 2, 3, and 4 describe the results of running the data
through the three analytical models. In each case, the ’Tem-
plate Videos’ and ’Template 1 Video’ models tended to per-
form best, while the ’Template’ model, using the Khan Academy
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data, showed no significant difference from the baseline dis-
tribution. The significance test is performed across the dis-
tribution of RMSE across each of the KC models in each
data-set.

Model Mean RMSE Significance
Pct. Correct .4930 .0000*
Standard BKT .3824 —-
Template .3824 .9448
Template Videos .3810 .0253*
Template 1 Video .3811 .0061*

Table 2: Khan Academy

Model Mean RMSE Significance
Pct. Correct .6243 .0000*
Standard BKT .3824 —-
Template Videos .3715 .0000*
Template 1 Video .3716 .0000*

Table 3: Principles of Economics

Model Mean RMSE Significance
Pct. Correct .5551 .0000*
Standard BKT .3711 —-
Template Videos .3638 .0000*
Template 1 Video .3642 .0000*

Table 4: Statistics and Medicine

Though the tables reflect changes in RMSE aggregated over
all KC models, not all models benefited evenly from the in-
clusion of video resources. Among the Khan data 77 of 193
KCs saw more then a trivial amount of reduction in error,
while in Statistics and Medicine and Economics, the bulk of
the improvement could be seen in 57 of the 94 and 44 out of
70 models, respectively. This asymmetry of improvement is
an expected behavior of the system. Intuitively, in the case
that a particular video resource is either not helpful or ac-
tively harmful to a student in solving a particular problem or
set of problems, this would be reflected in the trained model
as additional noise, leaving the overall RMSE unaffected at
best.

Rather, the presence of a statistically significant, though
perhaps small, decrease in predictive error in some models
is indicative of the soundness of the hypothesis that consid-
ering video usage can offer useful information.

5.1 Highest and Lowest Performing Models
In order to gain an intuition for why some models were bet-
ter described by the inclusion of resources, we chose to con-
sider a selection of the best and worst performers from each
data set under the ’Template-Videos’ condition. By examin-
ing what properties might explain the performance of each
model, we seek insight into what sort of videos appear to
offer the greatest benefits to student performance.

For the highest performing models in the Khan data, the
videos appeared highly relevant to their associated exercises,
often demonstrating solutions in the Khan interface. For ex-
ample, ’The Fundamental Theorem of Arithmetic,’ explains

the manipulation of a bespoke tool created for that partic-
ular exercise, showing the completion of a practice problem
using that tool.

For the low performing Khan models the possible sources of
error mirror the effects seen in the high performing cases.
’Scalar Matrix Multiplication’ and ’Linear Inequalities’, for
example, present video explanation very differently than
their related videos and involve customized input fields, which
may have been a source of trouble.

Though the Principles of Economics and Statistics in Medicine
edX courses are formatted very differently than the lessons of
Khan academy, the distinctions between the best and worst
models are similar. In both cases, the best videos in the
data-set are, while less compellingly visually similar than
the Khan examples, pointedly related to the subsequent as-
sessments. Additionally, most of the associated assessments
allowed students only one attempt, explaining the particu-
larly strong reduction in error when including video infor-
mation.

Perhaps most interesting is that one of the best predicted
models is the ninth question on the final exam of the ’Statis-
tics and Medicine’ course. The content of this question is
nearly identical to content of the video from a couple of
weeks previous, ’Practice Interpreting Linear Regression Re-
sults.’ It is therefore unsurprising to find that the video,
while not explicitly grouped with the exam, is associated
with a very strong learn parameter; students who sought
out the video succeed significantly more often on the assess-
ment.

Two of the videos related to the worst models in the Eco-
nomics set, ’The Spending Allocation Model’, and ’The Fed
and the Money Supply’ are both relatively long, each over
fifteen minutes. Despite their length, each video dwells only
briefly on the subject concerned in the assessment, spending
most of their running time on other topics, with the perti-
nent sections easy to skip or miss. Another worst performer
is one of the first videos in the course, associated with a quiz
with nearly a 90% correctness rate.

Intuitively, an unhelpful video does not contribute to a pre-
dictive model, simply adding additional complexity and noise.
By measuring which videos do and do not contribute con-
structively to predictive accuracy, it may be possible to de-
tect which videos might be most appropriately suggested as
helpful for a learner, and which need revision. In particular,
such results could be useful to an instructor or course man-
ager in navigating what to improve and what to keep when
iterating on a course between offerings.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have demonstrated that the inclusion of
video observations in a KT model can offer information rel-
evant to predicting student behavior, not only in one data-
set, but generalizably across multiple domains. Though the
effect size is small, the statistically significant decrease in
error under the ’Template 1 Video’ and ’Template Videos’
conditions across the three data-sets considered is an en-
couraging sign. It is indicative that there is information to
be gleaned from a learner’s use of video resources. Further,
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Figure 2: Videos from Khan Academy contributing
maximally to model accuracy tended to closely mir-
ror subsequent assessments

as suggested by our investigation of some of the superlative
models, it is possible that the delta in error generated by a
given model, coupled with the associated P(T) for a video
within that model, could be a useful metric for evaluating
video relevance.

One piece missing from this analysis is a canonical associa-
tion of videos to exercises. Though we generated and used
a set of associations, we may have lost information in the
process. Another avenue worth pursuing is the possibility
that some users would benefit strongly from video resources
while others may not. To that end, it would be useful to
examine potential reductions in error that might be made
by individualizing parameters to each KC-Student pair.

An important caveat of this analysis is to note that our
results do not speak to a general ’quality’ of a video, and
indeed that is perhaps beyond the scope of a quantitative
analysis. A video rated poorly by our metrics need not nec-
essarily be a bad video, merely unrelated or unhelpful for
a subsequent assessment task. The importance of this par-
ticular property is a matter of educational policy, and thus
beyond the scope of this paper. Our goal is not to supplant
the role of instructor decisions in course management, only
to support them.
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ABSTRACT 

We are using stealth assessment, embedded in Plants vs. Zombies 

2, to measure middle-school students’ problem solving skills. This 

project started by developing a problem solving competency 

model based on a thorough review of the literature. Next, we 

identified relevant in-game indicators that would provide evidence 

about students’ levels on the various problem-solving facets. Our 

problem solving model was implemented in the game via 

Bayesian networks. To validate the stealth assessment, we ran a 

small pilot study to collect data from students who played 

our game-based assessment and completed an external problem 

solving measure (MicroDYN). Preliminary results indicate that 

problem solving estimates derived from the game significantly 

correlate with the external measure, suggesting that our stealth 

assessment is valid. Our next steps include running a larger 

validation study (in progress) and developing tools to help 

educators interpret the results of the assessment.   

Keywords 

Stealth Assessment, Problem Solving, Game-Based Learning, 

Bayesian Networks 

1. INTRODUCTION 
In this paper, we describe the design, development, and 

preliminary validation of an assessment embedded in a video 

game to measure the problem solving skills of middle school 

students. After providing a brief background on stealth assessment 

and problem solving skills, we describe the game (Plants vs. 

Zombies 2) used to implement our stealth assessment, and discuss 

why it is good vehicle for assessing problem solving skills.  

Afterwards, we present the in-game indicators (i.e., gameplay 

evidence) of problem solving, describing how we decided on 

these indicators and how the indicators are used to collect data 

about the in-game actions of players. While discussing the 

indicators, we show how the evidence is used in a Bayesian 

network to produce an overall estimate for students’ problem 

solving skills. We then discuss the results of a pilot validation 

study, which show that our stealth assessment estimate of problem 

solving significantly correlates with an external measure of 

problem solving (MicroDYN). We conclude with the next steps in 

developing the assessment and practical applications of this work. 

2. BACKGROUND 

2.1 Stealth Assessment 
Good games are engaging, and engagement is important for 

learning. The challenge is validly and reliably measuring learning 

in games without disrupting engagement, and then leveraging that 

information to bolster learning. For the past 6-7 years, we have 

been researching various ways to embed valid assessments 

directly into games with a technology called stealth assessment 

(e.g., [15, 16, 20]). Stealth assessment is grounded in an 

assessment design framework called evidence-centered design 

(ECD) [10]. In general, the main purpose of any assessment is to 

collect information that will allow the assessor to make valid 

inferences about what people know, can do, and to what degree 

(collectively referred to as “competencies” in this paper). ECD 

defines a framework that consists of several conceptual and 

computational models that work in concert. The framework 

requires an assessor to: (a) define the claims to be made about 

learners’ competencies, (b) establish what constitutes valid 

evidence of a claim, and (c) determine the nature and form of 

tasks or situations that will elicit that evidence.    

Stealth assessment complements ECD by determining specific 

gameplay behaviors (specified in the evidence model and referred 

to as indicators) and linking them to the competency model [19]. 

As students interact with tasks/problems in a game during the 

solution process (see Figure 1), they are providing a continuous 

stream of data (captured in a log file, arrow 1) that is analyzed by 

the evidence model (arrow 2). The results of this analysis are data 

(e.g., scores) that are passed to the competency model, which 

statistically updates the claims about relevant competencies in the 

student model (arrow 3).   

 

 

 

 

 

 

 

 

 

 

 

The ECD approach, combined with stealth assessment, provides a 

framework for developing assessment tasks that are explicitly 

 

 

Figure 1.  Stealth assessment cycle. 
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linked to claims about personal competencies via an evidentiary 

chain (i.e., valid arguments that connect task performance to 

competency estimates), and are thus valid for their intended 

purposes. The estimates of competency levels can also be used 

diagnostically and formatively to provide adaptively selected 

levels, feedback, and other forms of learning support to students 

as they continue to engage in gameplay (arrow 4). Given the 

dynamic nature of stealth assessment, it is not surprising that it 

promises advantages, such as measuring learner competencies 

continually, adjusting task difficulty or challenge in light of 

learner performance, and providing ongoing feedback.   

Examples of stealth assessment prototypes, designed to measure a 

range of knowledge and skills—from systems thinking to creative 

problem solving to causal reasoning—can be found in relation to 

the following games: Taiga Park [18], Oblivion [20], and World 

of Goo [17], respectively. For the game Physics Playground 

(formerly Newton’s Playground, see [19]), three stealth 

assessments were created and evaluated in relation to the validity 

and reliability of the assessments, student learning, and student 

enjoyment (see [21]). The stealth assessments correlated with 

associated external validated measures for construct validity and 

demonstrated reliabilities around .85 (i.e., using intraclass 

correlations among the in-game measures such as number of gold 

trophies received for various objects created). Furthermore, 

students (167 middle school students) significantly improved on 

an external physics test (administered before and after gameplay) 

despite no instruction in the game. Students also enjoyed playing 

the game (reporting a mean of 4 on a 5-point scale in where 1 = 

strongly dislike and 5 = strongly like).  

Next, we briefly review our focal competency for this project—

problem solving skills—and discuss the natural fit between this 

construct and particular video games (i.e., action, puzzle solving, 

simulation, and strategy games). 

2.2 Problem Solving Skills 
Problem solving has been studied by researchers for many 

decades (e.g., [3, 7, 11]). It is generally defined as any goal-

directed sequence of cognitive operations [1] and is seen as one of 

the most important cognitive skills in any profession, as well as in 

everyday life [7]. Mayer and Wittrock [9] identified several 

characteristics of problem solving: (a) it is a cognitive process; (b) 

it is goal directed; and (c) the complexity (and hence difficulty) of 

the problem depends on one’s current knowledge and skills. 

In 1984, Bransford and Stein [2] integrated the collection of 

research at that time and came up with the IDEAL problem 

solving model. Each letter of IDEAL stands for an important part 

of the problem solving process: Identify problems and 

opportunities; define alternative goals; explore possible strategies; 

anticipate outcomes and act on the strategies; and look back and 

learn. Gick [4] presented a simplified model of the problem-

solving process, which included constructing a representation, 

searching for a solution, implementing the solution, and 

monitoring the solution. Recent research suggests that there are 

two main facets of problem-solving skills: rule identification and 

rule application [14, 23]. “Rules” are the principles that govern 

the procedures, conduct, or actions in a problem-solving context. 

Rule identification involves acquiring knowledge of the problem-

solving environment, while rule application involves controlling 

the environment by applying that knowledge.  

Can problem solving skills be improved with practice? Polya [12] 

argued that people are not born with problem-solving skills.  

Rather, people cultivate these skills when they have opportunities 

to solve problems. Researchers have long argued that a central 

point of education should be to teach people to become better 

problem solvers [1, 13]. However, there is a gap between 

problems in formal education and those that exist in real life. 

Jonassen [6] noted that the problems students encounter in school 

are mostly well-defined, which contrasts with real-world problems 

that tend to be messy, with multiple possible solutions. Moreover, 

many problem-solving strategies that are taught in school entail a 

“cookbook” type of memorization and result in functional 

fixedness, which can obstruct students’ ability to solve problems 

for which they have not been specifically trained. Additionally, 

this pedagogy can stunt students’ epistemological development, 

preventing them from developing their own knowledge-seeking 

skills [8]. This is where good digital games—which have a set of 

goals and complicated scenarios that require the player to generate 

new knowledge—come in. Researchers (e.g., [22]) have argued 

that playing well-designed video games can promote problem-

solving skills because games require constant interaction between 

the player and the game, usually in the context of solving many 

interesting and progressively more difficult problems. However, 

empirical research examining the effects of video games on 

problem-solving skills is still sparse. Our research begins to fill 

this gap. 

3. PRESENT WORK 

3.1 The Game 
We are using a slightly modified version of the game Plants vs. 

Zombies 2 (Popcap Games and Electronic Arts) as the vehicle for 

our problem solving assessment.  In Plants vs. Zombies 2 (PvZ2), 

players must plant a variety of special plants on their lawn to 

prevent zombies from reaching their house. Each of these plants 

has different attributes. For example, some plants (offensive ones) 

attack zombies directly, while other plants (defensive ones) slow 

down zombies to give the player more time to attack the zombies. 

A few plants generate “sun,” an in-game resource needed to 

purchase more plants. The challenge of the game comes from 

determining which plants to use and where to place them in order 

to defeat all zombies in each level of the game.   

We chose PvZ2 as our assessment environment for two main 

reasons. First, we are able to alter the game because of our 

association with the Glasslab. Glasslab has access to the source 

code for PvZ2, so we can make direct changes to the game as 

needed (e.g., the particular information to be collected in the log 

files). This is important because it allows us to build stealth 

assessments directly into the game itself and to make alterations to 

the design of the game if needed.  Second, PvZ2 requires players 

to apply problem solving skills. Thus, our stealth assessment will 

be able to collect data relevant to problem solving and estimate 

learners’ levels (e.g., low, medium, high) on the facets and 

problem solving as a whole.  However, because problem solving 

is not easily measured, we cannot assess it directly. We instead 

need to define directly observable, in-game indicators of problem 

solving and its associated facets. 

3.2 Problem Solving Model 
Based on a review of the literature, we built a problem solving 

competency model. We divided problem solving into four facets: 

(a) analyzing givens and constraints, (b) planning a solution 
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pathway, (c) using tools and resources effectively, and (d) 

monitoring and evaluating progress. We then identified relevant 

in-game indicators of the four facets (see Section 3.3 for details). 

The rubrics for scoring each indicator and the statistical links 

between the indicators and the competency model variables 

comprise the evidence model. The competency and evidence 

models are implemented together in Bayesian networks. We 

created a unique Bayes net for each game level (42 total) because 

many indicators do not apply in every level and simple networks 

make computations more efficient.  In the Bayes nets, the overall 

problem solving variable, each facet, and the associated indicators 

are nodes that influence each other.  Each of the nodes has 

multiple potential states and a probability distribution that defines 

the likely true state of the variable. The Bayes nets accumulate 

data from the indicators and propagate this data throughout the 

network by updating the probability distributions. In this way, the 

indicators influence our estimates of the student's problem solving 

competency and its associated facets dynamically.   

3.3 Indicators of Problem Solving 
In line with the stealth assessment process, we defined indicators 

for each of the four facets of problem solving by identifying 

observable actions that would provide evidence per facet. This 

was an iterative process which began by brainstorming a large list 

of potential indicators. After listing all potential indicators, we 

evaluated each one for (a) relevance to their associated facets and 

(b) the feasibility of being implemented in the game. We then 

removed indicators that were not closely related to the facets or 

were too difficult or vague to implement. We repeated this process 

of adding, evaluating, and deleting indicators until we were 

satisfied with the list of indicators.   

In total, there are 32 indicators for our game-based assessment: 7 

for analyzing givens and constraints, 7 for planning a solution 

pathway, 14 for using tools and resources effectively, and 4 for 

monitoring and evaluating progress. Examples of indicators for 

each facet are shown in Table 1.   

Table 1. Examples of indicators for each problem solving facet 

Facet Examples of Indicators 

Analyzing 

Givens & 

Constraints 

 Plants > 3 Sunflowers before the second 

wave of zombies arrives 

 Selects plants off the conveyor belt before 

it becomes full 

Planning a 

Solution 

Pathway 

 Places sun producers in the back, offensive 

plants in the middle, and defensive plants 

up front 

 Plants Twin Sunflowers or uses plant food 

on (Twin) Sunflowers in levels that require 

the production of X sun 

Using 

Tools and 

Resources 

Effectively 

 Uses plant food when there are > 5 

zombies in the yard or zombies are getting 

close to the house (within 2 squares) 

 Damages > 3 zombies when firing a 

Coconut Cannon 

Monitoring 

and 

Evaluating 

Progress 

 Shovels Sunflowers in the back and 

replaces them with offensive plants when 

the ratio of zombies to plants exceeds 2:1 

 

3.4 Preliminary Findings 
To test the validity of the stealth assessment of problem solving 

skills, we recruited ten undergraduate students to play PvZ2 for 90 

minutes, as well as complete an external measure of problem 

solving — MicroDYN [5], a computer-based test in which 

participants analyzed the relationships between variables in a 

system and  manipulated those variables to achieve a desired state. 

This comprised our pilot validation study. We correlated the 

MicroDYN scores with our stealth assessment estimates of 

problem solving skill to test for construct validity. The results 

suggest that our game-based assessment is significantly correlated 

with MicroDYN (r = .74, p = .03).  These preliminary findings 

suggest that our problem solving stealth assessment is valid, but 

needs to be further tested with a larger sample size. We are 

currently running a larger validation study with 200 middle-

school students and will have the results from that study in time 

for the EDM conference.   

3.5 Limitations 
There are several methodological issues with this pilot validation 

study.  First, the sample of students was very small.  Second, the 

participants were not from the target population of our 

assessment. This pilot was done with undergraduate students, but 

our target audience is middle school students.  It is unclear if 

similar results will be seen with our target audience. However, 

middle school students do enjoy playing PvZ2 and our external 

measure (MicroDYN) has been successfully tested with that age 

group.  Finally, the participants had a very limited amount of time 

to play the game in the small pilot study. Ninety minutes is only 

enough time to play about 15-20 of the game’s levels. To improve 

the validity and reliability of the stealth assessment, players need 

to engage in gameplay for a longer period of time and over 

multiple sessions.  

4. NEXT STEPS 
This work is still in its early stages and we have a lot to do before 

it can have a meaningful impact on education. We are currently 

running a validation study with 200 middle school students.  

These students are playing PvZ2 over three days, one hour per 

day.  On the fourth day, the students complete MicroDYN [5] and 

a demographic questionnaire.  For every 30 students who 

complete the study, we are examining the results to see if 

adjustments need to be made to our Bayes nets. This provides us 

with multiple opportunities to adjust our Bayes nets throughout 

the course of the validation study. Thus, this larger, ongoing study 

will help us to create a more valid and reliable assessment.  

Our long term goal is to implement the PvZ2 game-based 

assessment in middle school classrooms to help educators 

improve students’ problem solving abilities. As part of this effort, 

we are teaming with Glasslab to create a dashboard that allows 

educators to easily interpret the results of the assessment — 

overall and at the individual facet level. The development of this 

dashboard and other tools to aid the game's implementation will 

occur alongside our ongoing validation study.   

This focus on the validity and practicality of our game-based 

problem solving assessment makes it much more likely that the 

assessment will be both accurate and useful in classroom settings. 

Students can be assessed on problem solving, a key cognitive 

skill, in an engaging environment that presents rich problem 

solving situations and can parse complex patterns of students' 
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actions.  Teachers get a valuable tool that will allow them to 

pinpoint students’ abilities in various aspects of problem solving 

and, in turn, help each student improve their problem solving 

skills.  These benefits stem from our use of evidence-centered 

design, which gives a framework for creating valid assessments, 

and stealth assessment, which gives us the ability to invisibly 

embed such assessments into complex learning environments such 

as games. By embracing evidence-centered design and stealth 

assessment, other researchers can also create complex and 

engaging assessments that meet their specific needs.  
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ABSTRACT
Educational games have the potential to be innovative forms of 
learning assessment, by allowing us to not just study their 
knowledge but the process that takes students to that knowledge. 
This paper examines the mediating role of players’ moves in 
digital games on changes in their pre-post classroom measures of 
implicit science learning. We applied automated detectors of 
strategic moves, built and validated from game log data combined 
with coded videos of gameplay of 69 students, to a new and larger 
sample of gameplay data. These data were collected as part of 
national implementation study of the physical science game, 
Impulse. This study compared 213 students in 21 classrooms that 
only played the game and 180 students in 18 classrooms in where 
the players’ teacher used game examples to bridge the implicit 
science learning in the game with explicit science content covered 
in class. We analyzed how learning outcomes between conditions 
were associated with six strategic moves students made during 
gameplay. Three of the strategic moves observed are consistent 
with an implicit understanding of Newton’s First Law, the other 
three strategic moves were not. Path analyses suggest the 
mediating role of strategic moves on students’ implicit science 
learning is different between the two conditions.   

Keywords
Game-based science learning; Discovery with models; Automated 
detectors; Predictive modeling; 

1. INTRODUCTION
Digital games are garnering increasing attention as potential 
learning environments as the volume of research increases 
indicating games may foster scientific inquiry, problem-solving, 
and public participation in breakthrough scientific discoveries [1]. 
Because nearly all youth and many adults participate in Internet-
based games [2], educators and researchers are trying to tap this 
pervasive vehicle for learning and assessment environments for 
the 21st century [3]. 
Our research group studies how games can be used to improve 
learning of fundamental high-school science concepts (e.g. 
Newton’s laws of motion). Our games use popular game 
mechanics embedded in accurate scientific simulations so that 
through engaging gameplay, players are interacting with digitized 
versions of the laws of nature and the principles of science. We 
hypothesize that as players dwell in scientific phenomena, 
repeatedly grappling with increasingly complex instantiations of 
the physical laws, they build and solidify their implicit knowledge 
over time.  

It is not our intent that these games teach science content 
explicitly, but rather that they engage the learner with scientific 
phenomena allow them to build their implicit understandings 
about these phenomena through gameplay. To measure implicit 
learning in games, we built automated detectors of strategies we 

saw players using in the games [4, 5]. Thus, we address the 
question: Do learners’ strategic moves in the game correspond to 
increased implicit understanding of the science content outside 
the game?  
We also examine the role of the teacher in game-based learning. 
As Jim Gee points out, games rely on what he refers to as the Big 
“G” Game – the surrounding interactions that arise because of and 
support the game [6]. Post-game debriefing and discussions 
connecting gameplay with classroom learning are critical in 
helping students apply and transfer learning that takes place in 
games [7]. Our research attempts to capture the strategies players 
develop during gameplay that may reveal implicit knowledge, so 
that we can help educators seize and leverage that implicit 
learning to support explicit classroom learning. 

Success in this approach will result in a new way to think about 
game-based assessments, starting not from prescribed learning 
outcomes, but from watching what types of strategy development 
actually take place. The final step of this research, reported in this 
paper, is to examine the extent to which strategic moves used 
while playing Impulse mediate changes in classroom measures of 
students’ understanding of the same science content. 

2. THE GAME: IMPULSE
The game Impulse is built for the web and wireless devices. 
Impulse challenges players use an impulse (a click or touch on the 
screen) to move their ball to a goal without crashing into any other 
(ambient) balls on the screen. All the balls have mass and obey 
Newton’s laws of motion. As the levels of the game increase, 
more ambient balls are introduced, with varying mass.  

Impulse is an attempt by designers to immerse a player in what is 
known to physicists as a n-body simulator.  We hypothesize that 
by having to predict the motions of the particles, and their 
reactions to the force imparted by the impulse, the player will 
build implicit knowledge of forces and motions (Figure 1) that we 
could measure through data mining. 
The first 20 levels of the game introduce players to 4 particles of 
different mass, providing 5 levels of experience with each of the 4 

Figure 1: Impulse game 
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particles; across these 5 levels, the number of particles in the 
game space increases from 1 to eventually 10. Beginning in Level 
21, players encounter particles with different masses 
simultaneously. As players reach higher levels with greater 
numbers and variety of masses of particles, they need to “study” 
the particles’ behavior to predict the motion of particles so that 
they can guide their particle to the goal, not run out of energy, and 
avoid collision with other particles. 

3. STRATEGIC MOVES
Our research attempts to capture and automatically assess the 
range of strategies players develop during gameplay. We 
identified a set of 6 strategic moves that we observe players 
making in the game Impulse (Table 1). Three of these strategic 
moves are theorized to constitute evidence of implicit 
understandings of Newton’s First Law: each particle will keep 
moving on its path without an impulse or force from another 
particle. The remaining three strategic moves reflect an 
understanding of the game mechanic, but are not considered 
strong evidence of implicit understanding of Newton’s First Law. 

Table 1. Strategic moves and coding definitions 

Strategic 
Move Coding Definition 

*Float The player particle was not acted upon for more 
than 1 second 

Toward goal The learner intended to move the player particle 
toward the goal 

*Stop/slow
down 

The learner intended to stop or slow the motion 
of the player particle 

*Player path
clear 

The learner intended to move non-player 
particles to keep the path of the player particle 
clear 

Goal clear The learner intended to move non-player 
particles to keep the goal clear 

Buffer The learner intended to create a buffer between 
the player and other particles to avoid collision 

*Evidence of implicit understanding of Newton’s First Law

Video data was collected from 69 high school students, to develop 
automated detectors of these strategies. Every click in randomly 
selected, three-minute video segments, one per student, was coded 
for these strategic moves, with every player action in these video 
segments coded as to which strategy it represented. Two coders 
coded ten videos with Kappa values exceeding 0.70 for all of 
these strategic moves [4, 5]. 

We built classifiers to infer the ground truth labels created by the 
video coders. For each player action a set of 66 features of that 
action were automatically distilled, including the time since the 
last player action and the distance between the player particle and 
goal. These features were then aggregated at the click level to map 
to the labels provided by the video coders [6]. Classifiers were 
created using J48 decision trees within RapidMiner 5.3 that 
mapped the student behaviors in the features distilled from the 
clickstream data to the training labels, cross-validating at the 
student level. All detectors discussed here had cross-validated 
Kappas between 0.51 and 0.86 and A’ between 0.78 and 0.97 [6]. 

4. IMPLEMENTATION STUDY
Having developed these detectors of student strategic moves, we 
then collected a much larger data set to be able to study the 
relationship between in-game strategic moves, pedagogical 
practices, and learning outcomes. To this end, we conducted an 
implementation study [8] to examine the conjecture that implicit 

learning in game play can help prepare students for classroom 
learning.  

Forty-two teachers were assigned to one of three groups (14 per 
group). Teachers could include a maximum of three sections of an 
individual class. Of the 42 teachers who initially agreed to 
participate, 23 teachers completed the study (55 percent), resulting 
in this final sample with complete data: 

Bridge: 180 students in 18 classes in which 8 teachers 
incorporated game examples to bridge game play and science 
content 

Game Only: 213 students in 21 classes in which 10 teachers 
encouraged students to play the game, but provided no in-class 
interaction around the game 

Control: 108 students in 11 classes in which 5 teachers taught the 
science content as they normally do, without games. 

Students took pre-post online assessments with six items, three 
dealing with Newton’s First Law and three dealing with Newton’s 
Second Law. All items were written to be answerable with an 
intuitive understanding of the physics concepts and were piloted 
with think-aloud interviews. Both assessments had a maximum of 
10 points possible. Assessment scores were standardized as Z-
scores and all coefficients are reported in effect sizes.   

Hierarchical linear modeling of data from the 23 teachers (50 
classes) shows a significant positive effect of the Bridge and 
Game Only groups compared to the Control group on student’s 
post-assessment scores after accounting for pre-assessment scores 
[8]. This group effect, however, was significantly moderated by 
whether or not the class was a Honors/AP class (Figure 2). There 
was also a significant main effect for gender, with female students 
receiving lower post-scores than male students. 

Figure 2:  Predicted post-assessment scores across study 
conditions in Honors/AP classes versus non-Honors/AP classes 
(y-axis=standard deviations from the mean post-score, 
accounting for all components of the HLM model) [8]. 

The group effect was significant among students in non-
Honors/AP classes. Among students in Honors/AP classes, Bridge 
students performed better than Game only students but not 
Control students. These results, while intriguing, tell us that the 
Bridge condition was generally best, but do not explain why 
Bridge was better. Did the teachers in the Bridge condition 
promote learning separate from the game? Or did it actually drive 
different behavior within Impulse, making the game a more 
valuable learning experience? 
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5. THE ROLE PLAYED BY IN-GAME
STRATEGIC BEHAVIOR 
The final step in this research, and the specific contribution novel 
to this paper, is to connect in-game measures of implicit science 
learning with external measures of those concepts. Specifically, 
we hypothesize that strategic moves consistent with an implicit 
understanding of Newton’s First Law will mediate changes in 
these external assessments, whereas the other strategic moves will 
not be associated with changes in the pre-post assessments.  

5.1 Apply Automated Detectors 
We applied the automated detectors built with the sample of 69 
students to this larger sample of gameplay data from 393 students 
to detect when learners used each type of strategic move. The 
detectors were applied to every student action during the entire 
duration of gameplay, 1.01 million actions in total. The same log 
data features were automatically distilled for this entire data set as 
for the initial creation of the models. Then this data was inputted 
into RapidMiner 5.3, along with the previously generated W-J48 
decision trees model files, in order to apply the trees to the data. 
The result was a prediction for every click, for each of the 
relevant strategic moves in Table 1, of the detector’s confidence 
that strategy was being used. Every learner action in this game 
was thereby annotated with an estimated probability that the 
learner was using each of the strategic moves.  

Figure 3:  Average probability for each strategic move (y-axis) 
by game level (x-axis) 

Figure 3 shows the average probability for each strategic move at 
each game level. The most prevalent strategic moves were 
Toward Goal and Float, with Float being evidence for implicit 
understanding of Newton’s First Law. The least common strategic 
moves were Stop/Slow Down (evidence for implicit 
understanding) and Buffer. Float reflects the absence of activity 
(on the player particle in the time prior to the click and can co-
occur with any other strategic move.  Stop/Slow Down, in 
contrast, reflects a deliberate attempt by the player to stop or slow 
down the motion of the player particle.  Float and Stop/Slow 

Down both reflect understandings of Newton’s First Law e.g., a 
mass will keep moving until acted upon by a force, but the float 
strategy is a passive move and the stop strategy is an active move. 

Figure 3 also shows evidence of shifts in behavior every 5 levels. 
The cyclical patterns in this data correspond with the planned 
transitions in the game. Every 5 levels, the game reduces the 
difficulty level of the game when a new challenge (e.g., particle 
with a different mass, two particles with different masses) is 
introduced, by decreasing the number of particles in the space (a 
decrease in gameplay challenge which balances for the increase in 
conceptual challenge). However, the reduction in the number of 
particles makes it more likely a player will simply push the 
particle toward the goal, leading to corresponding declines in all 
of the other strategies.  Overall, as the number of particles in the 
game space increases, the average probability of using the simple 
Toward Goal strategy declines while the probabilities of using the 
other strategies increase. 

5.2 Path Models 
Path models were built to estimate the mediating role of each 
strategic move between prior achievement and post assessment 
scores using SmartPLS [9]. As pre-assessment scores and 
Honors/AP enrollment were significantly correlated, they were 
combined into a single latent variable labeled ‘Prior 
Achievement’.  Separate path models were created for the Bridge 
and Game Only conditions (Figures 4 and 5). The standardized 
coefficients appear on the paths and the adjusted R2 values appear 
in the circles. T-values were calculated using a bootstrapping 
process with 1000 samples. 

Among students in Bridge classrooms, the use of the Buffer 
strategy significantly mediates the impact of prior achievement 
and gender on post-scores (adjusted R2 = 0.151, p=0.005).  This 
suggests using the Buffer strategy enhanced Bridge student’s 
understanding of the concepts, beyond what is accounted for their 
prior levels of achievement. In Game Only classrooms, student 
use of the Buffer (adjusted R2 = 0.095, p=0.018), Stop (adjusted 
R2 = 0..149, p<0.001), and Float (adjusted R2 = 0.109, p=0.031), 
strategic moves significantly mediate the relationship between 
prior achievement & gender on post-scores. In these classes with 
no teacher scaffolding of the gameplay, use of the Buffer and 
Float strategies enhanced student’s understanding, but use of the 
Stop strategy diminished their understanding. 

Figure 4:  Full path model—Bridge Classrooms 
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Figure 5:  Full path model—Game Only Classrooms 

In Bridge and Game Only classrooms, once gender differences in 
strategic moves are taken into account, the impact of being a 
Female student on post-scores is no longer significant (coeff=-
0.127 in Bridge classrooms, p=0.108; coeff=-0.021 in Game Only 
classrooms, p=0.759). This suggests the gender main effect found 
in the HLM analyses may be entirely attributable to gender 
differences in gameplay. One potential explanation is that while 
females play games at equal rates as males [2], the types of games 
they play and the amount of time they spend doing so may vary.  
Success in a rapid-fire, reaction time educational game like 
Impulse may require gameplay skills more congruent with games 
more popular among males (e.g, first person shooters) than the 
social, puzzle, and role-playing games females tend to prefer [2]. 

6. DISCUSSION
It is noteworthy that two of the three strategies we anticipated 
reflecting an implicit understanding of Newton’s First Law were 
significant mediators in Game Only classrooms. Player Path 
Clear, a strategic move applied to non-player particles, may not 
have been a significant mediator because it is likely to co-occur 
with Float, a strategic move applied to the player particle. By 
contrast, the other strategies were not significant mediators with 
one exception: Buffer, the simultaneous use of force on more than 
one particle when the particles were in close proximity to each 
other. Sometimes those forces were in direct opposition to the 
other particles (i.e., simultaneous use of the Stop strategy), while 
other times they were not. While Buffer was not a strategic move 
we a priori identified as consistent with an understanding of 
Newton’s First Law, these results suggest it plays a mediating role 
similar to Stop and Float. Use of the Buffer strategy was 
associated with higher post-scores in Bridge and Game Only 
classrooms. 

The negative mediating relationship of the Stop strategy in Game 
Only classrooms is consistent with the HLM findings shown in 
Figure 2, where students in Honors-AP classes did not perform on 
the post-assessment as well as students in non-Honors/AP classes 
[8]. This lack of use of the Stop strategy is consistent with the lack 
of understanding of Newton’s Laws exhibited on the pre-post 
assessments. This suggests that learners who already have a basic 
understanding of the scientific concepts may not be aided by the 
game as a sole intervention. Their improvement in science 
understanding is enhanced when the game and the teacher bridge 
materials are used together. These results reinforce the importance 

of teachers providing bridges between gameplay and science 
content. 

This paper also makes an important contribution to the space of 
problems that can be addressed by EDM. Many projects have 
attempted to detect strategic behavior in online learning. This 
project, by detecting strategic behavior explicitly connected to 
core concepts, and modeling how different classroom activities 
influence in-game behavior, shows how EDM methods can bridge 
understanding of the relationship between what students learn in 
class, and how they behave online. As such, we are able to see the 
concrete impact of classroom activity on gameplay behavior, and 
to measure its scope and manifestations.  

In the long term, then, this combination of methods – automated 
detectors, path analysis, and classroom studies – creates the 
potential to make EDM useful for investigating interventions not 
just online, but in classroom settings as well. 
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ABSTRACT
Teachers/lecturers typically adapt their teaching to respond
to students’ emotions, e.g. provide more examples when
they think the students are confused. While getting a feel of
the students’ emotions is easier in small settings, it is much
more difficult in larger groups. In these larger settings tex-
tual feedback from students could provide information about
learning-related emotions that students experience. Predic-
tion of emotions from text, however, is known to be a diffi-
cult problem due to language ambiguity. While prediction
of general emotions from text has been reported in the lit-
erature, very little attention has been given to prediction
of learning-related emotions. In this paper we report sev-
eral experiments for predicting emotions related to learning
using machine learning techniques and n-grams as features,
and discuss their performance. The results indicate that
some emotions can be distinguished more easily then oth-
ers.

Keywords
Emotion prediction from text, Machine learning, Learning-
related emotions

1. INTRODUCTION
Detecting emotions is important in the learning process [4].
Positive emotions may increase students’ interest in learn-
ing, increase engagement in the classroom and motivate stu-
dents [4]. Additionaly, students who are happy generally are
more motivated to accomplish their learning goals.

Sentiment analysis research has grown considerably in the
last decade, mainly due to the availability of rich text re-
sources such as social networking sites, blogs and micro-
blogs, and product reviews. Despite the name of this area,
sentiment analysis is mostly focused on detection of polarity
(negative or positive sentiment) rather than specific emo-
tions. Thus, there is relatively little research on the predic-

tion of specific emotions from text [2, 3], with even fewer
reports of such research in education [9]. Moreover, from
these studies (both within the educational field and outside
of it), an even smaller number use machine learning to pre-
dict emotion from text, e.g. [2, 3, 9].

In this paper we focus on the prediction of emotions relevant
for learning from students’ textual feedback via Twitter in
a classroom context using machine learning techniques. To
investigate the prediction of the identified emotions from
text, we experiment with several preprocessing methods, n-
gram features, and machine learning techniques.

2. RELATED RESEARCH
There are four main steps to create predictive models from
text with machine learning: preprocessing the data, select-
ing the features, applying the machine learning techniques
and evaluating the results.

Preprocessing the data involves preparing the data and clean-
ing it from unwanted elements which may negatively af-
fect the performance of the machine learning techniques.
Some of the general preprocessing techniques used with ba-
sic text are: tokenization, convert text to lower or upper
case, remove punctuation, remove numbers and, remove stop
words [8].

Preprocessing Twitter data requires additional techniques
due to the presence of emoticons, hashtags and chat lan-
guage. Some of the Twitter-specific data preprocessing tech-
niques from previous research [8, 11] are: removing hashtags,
removing URLs, removing retweets, identifying emoticons,
removing user mentions in tweets, removing Twitter special
characters, and slang/chat language handling.

In relation to specific emotions detection, both general pre-
processing techniques and Twitter-related preprocessing tech-
niques have been used, e.g. removal of stop words and stem-
ming [3], removing URLs [5], and tokenization [5].

Feature selection refers to the process of selecting relevant
features for the particular prediction problem, while elim-
inating the features that are redundant or irrelevant. In
prediction problems where the data is in the form of text,
the most common features are n-grams [7]. The most com-
monly used n-gram for emotion detection is unigrams (one
word) [7]. In contrast, there are very few studies investi-
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gating the use of bigrams (two words) and trigrams (three
words) in emotion prediction. However bigrams and tri-
grams has been used in sentiment analysis of tweets [7]. In
this paper, we investigate the influence of these different n-
grams and their combination on emotion detection.

Various machine learning techniques have been used for po-
larity and emotions prediction from text. In our experiments
we used classifiers previously shown to work well [9]: Naive
Bayes (NB), Multinomial Naive Bayes (MNB), Complement
Naive Bayes (CNB), Support Vector Machines (SVM), Max-
imum Entropy (ME), Sequential Minimal Optimization (SMO),
and Random Forest (RF).

Previous research on emotions related to learning indicates
a variety of emotions experienced by learners [6]. In pre-
vious research [1], we identified from the literature a num-
ber of common emotions that are associated with learning:
amused, anxiety, appreciation, awkward, bored, confusion,
disappointed, embarrassed, engagement, enthusiasm, excite-
ment, frustration, happy, motivated, proud, relief, satisfac-
tion, shame and uninterested.

3. DATA CORPUS
The data was collected from lectures taught in English in
Jordanian universities on different topics: calculus, English
communication skills, database, engineering, molecular bi-
ology, chemistry, physics, science, contemporary history of
the world and architecture.

Twitter was used to collect students feedback, opinions, and
feelings about the lecture. For each tweet, they were asked to
choose one emotion from a set of emotions provided, i.e. the
19 emotions listed in the previous section. Although tweets
were used the language was formal and did not include chat
language or slang, however, they did include emoticons and
hashtags.

A total number of 1522 tweets were collected with their cor-
responding emotion label. There was one label per feedback.
Some of the emotions appeared more frequently than others.
The most frequent emotions that were used in our research
were: Bored (336), Amused (216), Frustration (213), Ex-
citement (178), Enthusiasm (176), Anxiety (130), Confusion
(73), and Engagement (67). The least frequent ones were
discarded due to insufficient data for training and testing
machine learning algorithms: Happy (32), Satisfaction (31),
Appreciation (26), Embarrased (18), Dissapointed (12), Un-
interested (4), Proud (3), Relief (3), Shame (2), Awkward
(1), and Motivated (1).

4. PREDICTION OF EMOTIONS FROM
STUDENTS’ FEEDBACK

Two different preprocessing levels were experimented with:
(a) high preprocessing, which includes: tokenization, con-
vert text to lower case, remove punctuation, remove num-
bers, remove stop words, remove hashtags, remove URLs,
remove retweets, remove user mentions in tweets, and re-
move Twitter special characters; (b) low processing, which
includes: tokenization, convert text to lower case, and re-
move stop words.

The high preprocessing was only used for one of the models
which contained all the emotions combined, due to the low
results that it led to in comparison with the low level of
preprocessing for this model. Consequently, for the other
models only the low preprocessing was experimented with.

The negative influence of preprocessing on the performance
of the models indicates that information that is typically
discarded for polarity prediction has value for the identifi-
cation of specific emotions, as for example in the case of
punctuation [11].

We experimented with different n-grams, i.e. unigrams, bi-
grams, and trigrams, and all combinations between them
to find which n-gram or combination of n-grams leads to
the best performance for the different models. The features
that were experimented with are: Unigrams (UNI); Bigrams
(BI); Trigrams (TRI); Unigrams and Bigrams combined;
Unigrams and Trigrams combined; Bigrams and Trigrams
combined; and Unigrams, Bigrams, and Trigrams combined.

We used the classifiers mentioned previously in section 2 due
to their common use in previous research. Additionally, we
used two common kernels for SVM: radial basis (RB) and
linear (LIN) kernel.

We experimented with all the emotions combined and then
subtracted, in turn, the emotion with the lowest number of
instances. The total number of models experimented with
was 16 models, which are: 7 emotions (All except engage-
ment) + other (8 classes); 6 emotions (7 emotions except
confused) + other (7 classes); 5 emotions (6 emotions ex-
cept anxiety) + other (6 classes); 4 emotions (5 emotions
except enthusiasm) + other (5 classes); 3 emotions (4 emo-
tions except excitement) + other (4 classes); 2 Emotions
(Amused, Bored) + other (3 classes); and each emotion +
other (2 classes).

All the models were tested using 10-fold cross-validation; the
accuracy and the error rate were used to assess the overall
performance of the classifiers, while the precision, recall, and
F-score were used to assess the ability of the classifiers to
correctly identify the specific emotion(s).

The results indicate that the models with a single emotion
perform better than the multi-emotion models in terms of
accuracy, although one has to bare in mind that the baseline
for multi-class models is lower than the baseline for 2-class
models.

The results show that two classifiers performed best in terms
of accuracy: the Support Vector Machine with Radial Basis
kernel (RB), mainly for the 2-class models, and Sequential
Minimal Optimization (SMO), mainly for the multi-class
models. In term of features, unigrams and trigrams were
found to lead to the best performance for the 2-class mod-
els, while unigrams combined with bigrams and trigrams led
to the best performance for the multi-class models.

Despite the fact that accuracy can be useful in predicting the
models performance, it does not indicate how well a classi-
fier can predict specific emotions. As the recall indicates the
percentage of correctly identified instances for a class of in-
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Table 1: Highest recall for each model
Model Tecbnique N-gram Accuracy Error

rate
Precision Recall F-score

ALL Preprocessed ME UNI+BI+TRI 0.32 0.68 0.34 0.33 0.33
ALL W/O Preprocessing ME UNI+BI 0.32 0.68 0.33 0.32 0.32
7 Emotions+ other NB BI+TRI 0.26 0.74 0.24 0.25 0.25
6 Emotions+ other MNB UNI 0.27 0.73 0.27 0.26 0.27
5 Emotions+ other MNB UNI+TRI 0.25 0.75 0.32 0.32 0.32
4 Emotions+ other MNB BI 0.26 0.74 0.29 0.38 0.33
3 Emotions + other ME UNI+BI+TRI 0.51 0.49 0.43 0.36 0.39
2 Emotions+ other ME UNI+BI+TRI 0.57 0.43 0.40 0.51 0.45
Amused CNB TRI 0.49 0.51 0.19 0.70 0.30
Anxiety CNB TRI 0.45 0.55 0.12 0.77 0.21
Bored CNB TRI 0.44 0.56 0.28 0.85 0.42
Confused CNB TRI 0.28 0.72 0.06 0.81 0.11
Engagement CNB TRI 0.24 0.76 0.04 0.68 0.08
Enthuisiasm CNB TRI 0.36 0.64 0.14 0.76 0.24
Excitement CNB TRI 0.37 0.63 0.15 0.86 0.26
Frustration CNB TRI 0.40 0.60 0.19 0.84 0.31

Table 2: Best overall models for identification of specific emotions
Model Tecbnique N-gram Accuracy Error

rate
Precision Recall F-score

Amused CNB Bi+Tri 0.64 0.36 0.24 0.62 0.35
Bored CNB UNI+BI+TRI 0.71 0.29 0.43 0.63 0.51
Excitement CNB UNI+TRI 0.64 0.36 0.21 0.64 0.32

terest, it can be used to assess the ability of the classifiers to
predict emotions; in addition, precision can indicate where
the identification problems occur.

For most of the models with the highest accuracy, the re-
call is extremely low or even 0% in some cases. In addition,
precision is also low for most of the models (with a few ex-
ceptions). For instance in the “engagement + other” model
where the accuracy is 95% and the precision, recall, and
F-score are (0-0.05)% for the emotion class. This indicates
that the high accuracy is due to the correct identification
of the “other” class rather than the correct identification of
emotion(s).

Table 1 displays the best experimental results when focusing
on the recall, i.e. the correct identification of the emotion(s).
In terms of machine learning techniques, Complement Naive
Bayes (CNB) performs best for half of the models, which
could be explain by the ability of this technique to compen-
sate for uneven class sizes. In terms of features, trigrams
led to the best performance in the 2-class models, while un-
igrams combined with bigrams and trigrams led to the best
performance in the multi-class models.

The fact that the models with high recall rates have low
accuracy and low precision values indicates that many in-
stances of the “other” class are wrongly classified as indi-
cating particular emotions. In other words, although the
classifiers have a higher sensitivity for the emotion classes,
they are not precise in distinguishing the “other” class from
the emotion class(es).

When looking at the overall picture and the balance of the
evaluation metrics considered (i.e. accuracy, error rate, pre-
cision and recall), some of the models stand out – these are
presented in Table 2. We found that the best classifier is
Complement Naive Bayes (CNB). When looking at the fea-
tures, one can notice that different combinations of n-grams
led to the best performance for different classifiers. This in-
dicates that a combination of various n-grams instead of a
single n-gram is useful for the prediction of specific emotions
and should be investigated further.

It is not surprising that the best performing models are for
the emotions for which we had larger number of instances
(see section 3), i.e. bored, amused and excitement. Interest-
ingly, the models for excitement performed better that the
ones for frustration, although there were more instances for
frustration than for excitement.

From previous research studies focusing on the prediction of
emotions using machine learning techniques, only one study
was conducted in an educational context [9]. This research
used part-of-speech (POS) tags as features, and more specif-
ically, they experimented with the combination of the follow-
ing part-of-speech tags: verb, adverb, adjective and noun.
They evaluated their models using precision, recall, and F-
score and found that Random Forest performed better than
the other classifiers with a weighted average F-score at 0.638.
Similar to our research they found that the recall score was
higher than the precision. From the emotions that we iden-
tified as relevant for learning from previous literature, they
only looked at anxiety, for which they obtained a precision
value of 0.6 using a LogitBoot classifier. However, this re-
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search was conducted on Chinese text, which has different
characteristics and structures compared with English text.
Moreover, the research was based on text from online chats
and discussion groups. Furthermore, they used in their ap-
proach an affective words base (i.e. lexicon), where each
affective word had a number associated with its degree of
reflection of a particular emotion.

Outside the educational domain, there are very few studies
that looked at the prediction of specific emotions from text
only, which are described below.

One study, which used unigrams and a experimented with
a multi-class model with 5 emotions [3], found that the
Naive Bayes and Support Vector Machine classifiers per-
formed well, leading to an accuracy of 67%. This data, how-
ever, is not representative for other types of text expressing
emotions, as indicated by the low accuracy, i.e. less than
35%, of these models on test sets with other data. Similarly
to the research described above, they also experimented with
lexicons for specific emotions.

Another study which used unigrams as a feature and ma-
chine learning looked at predicting the presence of emotion
versus the lack of emotion [2]; they obtained a maximum
accuracy of 74%. However, they did not discuss the perfor-
mance in terms of identifying the presence of emotion (i.e
recall for the emotion). They have also used lexicons with
emotion-related words.

However, very few studies investigated the use of other n-
grams. Youn and Purver [10] investigated the prediction of
emotions from the Chinese microblog service Sina Weibo; in
their experiments they found that the models with bigrams
and trigrams outperformed the models using unigrams. Sim-
ilarly, our results showed that using all of the n-grams (i.e.
unigrams, bigrams, and trigrams) combined led to the best
identification of emotions for the multi-emotion models. Ad-
ditionally, we found that trigrams led to the best identifica-
tion of emotions for the 2-class models.

While it is difficult to compare the performance of our mod-
els with previous work given the variations in different exper-
imental set-ups (e.g. data origin, language, choice of emo-
tions, choice of features and the use of lexicons), one aspect
that seems to be prevalent in previous research is the used
of lexicons. Consequently, in out future work, we will inves-
tigate the use of such an affective word base for education
and its effect on the prediction models.

5. CONCLUSIONS AND FUTURE WORK
In this paper we conducted several experiments with the
purpose to investigate the prediction of specific emotions re-
lated to learning from students’ textual classroom feedback.
We focused on several learning emotions which were found
to be relevant from previous literature: Amused, Anxiety,
Bored, Confusion, Engagement, Enthusiasm, Excitement,
and Frustration. We experimented with several preprocess-
ing and machine learning techniques, and also with different
combinations of n-gram features.

The models were evaluated using 10-fold cross-validation
and using the following evaluation metrics: accuracy, er-

ror rate, precision, recall, and F-score. The best performing
models were obtained for three particular emotions using
2-class models: amused, bored and excitement. The best
classifier was Complement Naive Bayes (CNB). A combina-
tion in n-grams led to the best performance in most models.

In future work we will investigate the influence on prediction
of a learning-related emotion lexicon; we will also investigate
the relation between learning emotions and polarity.
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ABSTRACT 

The current paper explores possible solutions to the problem of 

detecting affective states from facial expressions during 

text/diagram comprehension, a context devoid of interactive 

events that can be used to infer affect. These data present an 

interesting challenge for face-based affect detection because likely 

locations of affective facial expressions within videos of students’ 

faces are entirely unknown. In the current study, students engaged 

in a text/diagram comprehension activity after which they self-

reported their levels of confusion, frustration, and engagement. 

Data were chosen from various locations within the videos, and 

texture-based facial features were extracted to build affect 

detectors. Varying amounts of data were used as well to determine 

an appropriate window of data to analyze for each affect detector. 

Detector performance was measured using Area Under the ROC 

Curve (AUC), where chance level is .5 and perfect classification 

is 1. Confusion (AUC = .637), engagement (AUC = .554), and 

frustration (AUC = .609) were detected at above-chance levels. 

Prospects for improving the method of finding likely positions of 

affective states are also discussed. 

Keywords 

Affect detection; facial expression recognition; reading 

1. INTRODUCTION 
Educational activities like playing educational games [9], 

interacting with a computerized tutor [4], and comprehending text 

[13] have been linked to affective experiences that potentially 

play important roles in the learning process. Thus, automatically 

detecting and responding to specific affective states can be a 

useful technique for improving educational software [5]. A wide 

variety of approaches have been used to detect students’ emotions 

and tailor instruction to their affective needs (see [8] and [5] for 

reviews). Affect detection is a core challenge that needs to be 

addressed before affect-sensitive instructional strategies can be 

devised. 

Affect detection during interactions with educational technologies 

are a widely studied problem. The two most common approaches 

involve the use of interaction data (e.g., clicks, response times) 

from log files (called sensor-free detection as reviewed in [1]) and 

the use of physiological/behavioral sensors, such as webcams, 

electrodermal sensors, posture sensors, and so on (called sensor-

based affect detection as reviewed in [3]). As an illustrative 

example, Kai et al. [11] built both interaction-based and video-

based affect detectors while students played an educational game 

called Physics Playground [14]. Their data included affect labels 

corresponding to specific moments in the learning session 

(provided by human observers in real-time). The metric of 

performance was A', a close approximation of Area Under the 

ROC Curve (AUC), where A' = .5 is chance level and 1 is perfect 

classification. They were able to detect affective states at levels 

above chance: confusion (A' = .588 for interaction-based, .622 for 

face-based), engaged concentration (A' = .586 interaction, .658 

face), and frustration (A' = .559 interaction, .632 face).  

The aforementioned study highlights two commonalities of affect 

detection during learning from educational software. First, the 

software is typically interactive in nature, thereby providing 

considerable opportunities for external events (e.g., a new 

problem, submission of a response, system feedback, a hint) to 

trigger affective states. Information on these events and students’ 

responses to these events provide valuable information to guide 

affect detection. Second, the data (log-files, videos, etc) used to 

build affect detectors is accompanied by affect labels 

corresponding to specific moments in a learning session. This 

allows label-based segmentation of the data stream and affords 

pinpointing the sections of the data stream for affect detection 

(typically windows of 10-20 seconds before the labels; e.g., [9]). 

Data in some educational contexts are not well suited to creating 

affect detectors. For example, in self-paced reading tasks there are 

not necessarily many key events that are likely to trigger affective 

responses, unlike many educational activities where there is 

frequent feedback and interaction. Similarly, not all educational 

experiences include labeled-data that can be used to pinpoint the 

temporal location of affective states. For example, students might 

self-report their affective states after reading an entire passage or 

viewing an online lecture. This raises the additional challenge of 

how to segment the data stream for affect detection. 

The present paper involves affect detection in the context of a 

noninteractive, but everyday learning task, involving mechanical 

reasoning from illustrated texts [7]. Students were presented with 

a complete text passage with an associated diagram for two 

minutes of study. Students self-reported their affective states after 

each a two minute study session, rather than any specific moment 

in the session. This data raised many challenges. First, interaction 

data was non-existent as there are no page turns or other 

navigation features that can be used to gain information about 

student behaviors. Due to the lack of interaction information, we 

use facial features extracted from videos of students’ faces to 

detect affective states as they processed the text/diagram. Second, 
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without predictable events in the task that could trigger affective 

states and without affect labels during the study session, the 

position within a video where facial expressions of affective states 

are likely to occur is unknown. Rather than analyzing the entire 

video, knowing the location of affective states is important 

because the duration of affective experiences can be short and the 

facial expressions associated with affective states can be even 

shorter [2,6]. To address this problem we explore affect detection 

using different data window sizes and window positions within 

face videos to determine where displays of affect tend to occur 

and how long they last. 

We also studied the role of learning goals on affect detection 

performance. Specifically, students studied the illustrated texts 

under two different instructional conditions. The first was to 

simply learn about a mechanical device (general instructions). 

This was followed by a focused goal that either directed students 

to review key components of the device or to pinpoint a particular 

problem with the device (specific instructions). We anticipate 

differences in affect detection results between the two types of 

instructions because they are expected to engender different levels 

of processing. Thus, we also build separate detectors for the two 

types of instructional goals to determine if there was a notable 

difference in detection performance. 

Our main approach consisted of applying machine learning 

techniques to build detectors of confusion, engagement, and 

frustration with features extracted from facial videos using CERT 

[12], which is a well validated computer vision tool for extracting 

texture-based facial features. Detection results with different 

window sizes and positions show both the potential and the 

difficulty of detecting affective states from face videos when little 

is known about when displays of affect might likely occur. The 

data in this study come from studying instructional texts with 

illustration, and as such is representative of potential real-world 

education scenarios. Thus, determining how to detect affective 

states in this context is important for improving computerized 

education systems. 

2. METHOD 
Data Collection. Data were collected from 88 college students 

from the Psychology subject pool at a large public university in 

the mid-South. These students from diverse backgrounds were 

asked to study illustrated texts about four everyday devices: an 

electric bell, a toaster, a car temperature gauge, and a cylinder 

lock. The illustrated texts were taken from Macaulay’s book, The 

Way Things Work (1988), with text order counterbalanced across 

participants. Each of the general and specific study instructions 

lasted for two minutes. Videos of the students’ faces were 

recorded with webcams mounted on the computer monitors. Upon 

completion of each two-minute study session, students rated their 

levels of engagement, confusion, and frustration on scales of 1 

(very little) to 6 (very much). Students studied all four devices 

with device order counterbalanced across students, thereby 

resulting in 704 videos (88 students × 4 devices × 2 study goals 

per device). 

Three students’ videos were discarded due to recording errors, 

which resulted in 680 usable videos. These videos were then 

analyzed using CERT, which computed the likelihoods of 

occurrence for facial action units (AUs) in every video frame. 

Large outliers in AU likelihoods were found in the last two 

seconds of most videos, which are probably the result of students 

posture shifts in response to the end of the session. The last 2 

seconds were removed to compensate for these anomalies, so each 

video was then exactly 1 minute 58 seconds long. 

Feature Engineering. CERT was able to detect 20 different AUs 

as well as unilateral (one side of the face only) AUs, head 

orientation, and nose position. From the CERT data, windows of 

eight different sizes (2, 3, 6, 9, 12, 15, 20, and 30 seconds) were 

generated. For each size, windows were drawn from the 

beginning, middle, and end of each video. If the window came 

from the beginning or the end of the video, the margin from the 

beginning or the end was equal to the length of the window. 

Figure 1 illustrates examples of windows created in this manner. 

Figure 1. Positions of 12-second windows during the task. 

The AU data of the windows were standardized within each 

student. This was followed by feature generation, in which the 

median, maximum, and standard deviation of the frame-level AU 

likelihoods were computed within each window and used as 

features. Some windows had less than one second of valid data, 

largely because the camera could not capture the student’s face 

when they moved too much, leaned outside the camera’s field of 

view, or when the face was occluded due to gestures. These 

windows were removed from the dataset, as we assumed that an 

affective facial expression would usually be longer than one 

second. Features exhibiting high multicollinearity (variance 

inflation factor > 5) were removed. 

Supervised Classification. The features obtained above were 

used to construct classification models using the Waikato 

Environment for Knowledge Analysis (WEKA), a machine 

learning tool. 

The classification task comprised binary high vs. low affect 

ratings for confusion, frustration, and boredom. The medians of 

the engagement, confusion, and frustration ratings on the 1-6 scale 

were 4, 2, and 1, respectively. We used a median split to discretize 

the affect ratings into “low” and “high”, discarding the median 

instances except in the case of frustration where the median was 1. 

For frustration 1 was used as the “low” label. 

For model validation, leave several out student-level cross-

validation was applied. The training data were randomly chosen 

from two thirds of the students. RELIEF-F feature ranking was 

used to select the most diagnostic features on the training data 

only. The data of the remaining students were used to test the 

generalizability of the classifiers. Each model was trained and 

tested for 150 iterations with random students selected for training 

and testing each iteration to reduce random sampling error. 

Fifteen different classifiers were applied to help determine which 

among the eight window sizes tended to work best. Regression 

analysis was also explored, though the resulted models showed 

little promise and will not be discussed further. 

3. RESULTS 
The best classification models that merged videos recorded during 

both general and specific study instructions are listed in Table 1. 

The AUCs for confusion and frustration were well above chance, 

whereas the AUC for engagement was only slightly higher than 

chance level. 

:12 :24 :53 1:05 1:34 1:46 1:58:00
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It should be noted that there were fewer than 680 instances (the 

total number of usable videos) for these classification models. 

This was largely because instances that captured less than a 

second of data were eliminated and the median splits that were 

performed to ascertain “low” and “high” values resulted in the 

loss of instances with affect ratings at the median. 

General vs. Specific Study Instructions. The best AUCs for 

each video type are in Table 2. We note that for engagement, 

AUCs for individual general-instruction and specific-instruction 

models were higher than when the videos were combined. 

However, for confusion and frustration, it seems that the best 

AUCs are mostly equivalent across both individual videos and 

combined videos. 

Table 2. Comparison of classification performance (AUC) for 

models using only explanation, only review, or both types of data. 

Affective State General Specific Both 

Confusion 0.664 0.606 0.637 

Engagement 0.610 0.580 0.554 

Frustration 0.600 0.620 0.609 

 

Window Position. The best AUCs (for combined models) with 

respect to the three window positions (i.e., beginning, middle, and 

end) are shown in Figure 2. Clear patterns stand out for confusion 

and frustration. The windows taken from the beginning of the 

videos seem to be more effective for confusion than those taken 

from the middle or the end of the videos, whereas the windows 

drawn from the end of the videos may best capture frustration. 

There is no clear pattern for engagement. 

Figure 2. AUC of models using data from different positions 

within videos. 

Window Size. Figure 3 shows the best AUCs as a function of 

window size for the combined models. The window position was 

held constant as the best window position for each affective state 

as noted in Figure 2. Confusion and frustration again show 

interesting patterns. AUC peaks at a certain window size where 

classification is much more successful than the surrounding 

window sizes. The peaks for the AUCs of confusion and 

frustration both occur when the window size is relatively small (9 

seconds for frustration and 6 seconds for confusion). Conversely 

the window size seems to have no notable relationship with AUC 

for engagement. 

Figure 3. AUC of models as window size varies. 

4. DISCUSSION 
The novelty of the contributions in this paper stems from the 

differences between data in this study and previous affect 

detection work. Facial expressions of affect are often related to 

events in an interface (e.g., feedback, new problems), but the 

present study tracked affect in a noninteractive study activity –

comprehension from illustrated texts. Affect labels used for 

detection in this study were given as retrospective judgments 

covering an entire 2-minute study period, so they do not provide 

any information about the appropriate position in the video to 

search for facial expressions. Thus the position of potential facial 

expressions in the face videos is entirely unknown. Unlike related 

studies with affect labels not tied to specific moments in a 

learning session (e.g., [10]), the current research used a subset of 

data from the session rather than considering all data in the 

session. This approach was chosen to better capture the brief 

nature of affective facial expressions. In the remainder of the 

section we discuss our main findings, and highlight limitations 

and avenues for future work. 

Main Findings. The results above show that confusion and 

frustration ratings of the students can be detected with greater 

accuracy than the engagement rating, but that detection was 

successful above chance for all three affective states despite the 

difficulty of identifying a brief affective facial expression within 

the videos. However, if we split the general-instruction videos 

from the specific-instruction videos, the engagement rating may 

be better modeled, especially for the general videos. For 

confusion, a 9-second window at the beginning of the video 

worked best for classification; for frustration, a 6-second window 

at the end of the video was best. There were no clear patterns with 

respect to window position or window size for engagement. 

The results suggest that when given a video with the occurrences 

of different affects unknown, affect ratings for confusion, 

frustration, and potentially engagement can still be well modeled. 

Smaller window sizes such as 6 or 9 seconds can be a good start 

to find such best models for confusion and frustration, which 

parallels the results in previous research [2]. Also, clips taken 

from the beginning of the video may yield good models for 

confusion, and those taken from the end of the video may work 

well for frustration. This seems to suggest that students’ facial 

expressions at the beginning of the 2-minute study session can 

potentially indicate how confused they think they are in the end, 

0.50

0.55

0.60

0.65

Confusion Engagement Frustration

Beginning Middle EndAUC 
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Table 1. Overview of results when general and specific instructional videos were combined. 

Affective State Classifier AUC Accuracy No. Instances No. Features Window Size 

Confusion Updateable Naïve Bayes 0.637 62% 352 65 9 seconds 

Engagement AdaBoostM1 0.554 55% 403 49 20 seconds 

Frustration AdaBoostM1 0.609 64% 356 39 6 seconds 
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and that their facial features at the end of a session may provide 

evidence as to how frustrated they rate themselves to be. It seems 

that when students confront a specific task, their first impression 

or assessment of the difficulties and intricacies of the task can last 

until the end of the task. As they try to understand new concepts 

or to tackle problems, they experience the details of the task that 

they might not have known before. This may be why at the end of 

the task, whether they completely absorb the concepts or solve the 

problems, they may still feel frustrated and challenged and such 

emotions can be detected by analyzing facial expressions. 

The reasons why engagement detection is a difficult task in this 

context may be due to differences in facial expressions of 

engagement between the general and specific study periods. It is 

possible that students’ definitions of engagement may be linked to 

the particular task they are working on. General and specific study 

periods may be essentially different tasks, the former requiring 

students to intake new concepts and the latter challenging students 

to focus on specific aspects of concepts they have learned. Thus 

students may experience and display engagement differently 

between the two study periods, which may explain why model 

performance improved when each period was analyzed 

independently. 

Limitations and Future Work. The results were promising, but 

there are a few limitations to this research. First, the number of 

videos was rather low and around 30% of the windows had to be 

discarded due to difficulties in registering the face (mostly due to 

hand-over face gestures). Also, the videos for the research were 

only 2 minutes long. If the window size is 30 seconds, trimming 

off the beginning and end 30 seconds from a video indicates that 

we only have one minute left for the video and the segments taken 

from this video can be overlapping, which is not ideal. Further 

research should consider a greater number of longer videos, which 

would allow a more thorough search of window positions and 

window sizes, as well as a test of the generalizability of our 

results to longer learning sessions.  

In addition, we adopted a rather arbitrary approach of searching 

the start, middle, and end of each video to identify diagnostic 

affect expressions. In future work, we will delve more deeply into 

the data we already have. The feature selections of models will be 

examined to determine if different AUs are selected for different 

parts of the videos. Additionally, different methods will be 

applied to search for positions in the videos where affective facial 

expressions occur. For example, we may utilize the 9-second 

window size to perform a random sampling across all videos, 

taking segments from random positions within each video to offer 

more insight into how facial expressions can be leveraged for 

affect detection. It may also be possible to develop techniques for 

finding the optimal window position on a per-video basis, for 

example by searching for peaks or valleys in calculated features, 

and using windows of data specific to each video. 

Concluding Remarks. In summary, this paper introduces a 

potential method to detect students’ affective states in non-

interactive instructional contexts when the locations and durations 

of affective facial expressions are unknown. Much work remains 

to be done to improve these techniques, but our results show that 

detecting affective states with these challenging data is certainly 

possible, highlighting the importance of correctly identifying the 

position and length of windows of data within each video. 
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ABSTRACT 

It has previously been shown that the effective use of dialogic 

instruction has a positive impact on student achievement. In this 

study, we investigate whether linguistic features used to classify 

properties of classroom discourse generalize across different 

subpopulations. Results showed that the machine learned models 

perform equally well when trained and validated on different 

subpopulations. Correlation-Based Feature Subset evaluation 

revealed an inclusion relationship between different subsets in 

terms of their most predictive features.  

Keywords 

Classroom Discourse, Machine Learning, Authenticity, Uptake  

1. INTRODUCTION  
Previous research on classroom instruction has shown the positive 

influence of dialogic instruction on student achievement [2].  

Dialogic instruction is a classroom discourse strategy based on the 

free and open exchange of ideas between teachers and students. It 

is hypothesized that dialogic instruction improves achievement by 

increasing student engagement in classrooms [3, 5].   

Previous efforts to carefully quantify teachers’ use of dialogic 

instruction include three major studies by Nystrand and colleagues 

[6]. Nystrand et al.’s approach included coding discourse moves 

with a focus on the nature of question events, which are defined by 

the discourse context preceding and following a question. Question 

events include the question along with the response and optional 

evaluation/follow up. They follow a pattern that mirrors the well-

known initiation response, and evaluation sequence (IRE). This 

coding scheme treats questions as sites of interaction and takes into 

account the response and evaluation. As a result, the questions 

alone do not uniquely determine the dialogic properties of the 

event; instead, they create a context through which dialogic 

properties may be realized.    

In this research, question events were coded with five properties 

that were hypothesized to relate dialogic instruction to student 

achievement: authenticity, uptake, level of evaluation, cognitive 

level, and question source. However, Nystrand and Gamoran found 

that among these variables, authenticity and uptake were the most 

strongly related to student achievement [2, 8]. A question is defined 

as having authenticity when the asker does not have a pre-scripted 

answer, i.e. an open-ended question, which creates a context for 

students to contribute to an open ended discussion.  Uptake occurs 

when one asks a question about something that another person has 

said previously. When teachers exhibit uptake, they incorporate 

student contributions into the discussion, potentially encouraging 

additional student contributions.  

Question properties were live-coded by observers in Nystrand et 

al.’s study, a time-consuming and expensive process requiring 

trained classroom observers. To facilitate research into dialogic 

instruction, we recently developed a machine learning model to 

investigate the extent to which question properties can be 

automatically coded [9]. This previous study showed that machine 

learned models can predict authenticity and uptake as accurately as 

human experts in a setting where the questions are presented 

without the preceding and following context, which was the 

information available to the machine learned model. 

Machine learned models, often referred to as predictors or 

classifiers, are sensitive to the properties of the data set on which 

they are trained. However, in order to perform large scale analysis, 

these models must be applicable to new, larger, and more diverse 

data. An important question in this work is whether the models 

systematically vary their predictions with different subpopulations 

in the data (e.g. different demographics). This systematic variation, 

essentially bias, could lead to incorrect predictions and flawed 

conclusions when the model is applied to a sample drawn from the 

same subpopulation as opposed to different subpopulations and 

indeed any sample where the individuals are spatially or temporally 

correlated may potentially have problems of generalizability.  

Some recent research has focused on examining generalizability of 

EDM models. For example, Baker and Gowda studied the 

difference in student behaviors associated with disengagement in 

urban, suburban, and rural schools and found that urban students 

went off-task more often and exhibited significantly more careless 

behaviors than students in the rural and suburban schools [1]. 

Furthermore, Ocumpaugh et al,  found that models trained on a 

population drawn primarily from one demographic grouping (rural, 

urban, or suburban) do not always generalize to populations drawn 

primarily from the other demographic groupings [7]. 

Generalization can sometimes occur across seemingly distinct 

contexts. For example, San Pedro et al. (2011) found that their 

models of detecting student carelessness were generalizable among 

different tutor interfaces (i.e. with and without an embodied 

conversational agent), as well as different school settings (i.e. 

Philippine high school and US middle school) [10].  

In this paper we investigated the generalizability of two previously 

developed models for predicting authenticity and uptake in 

classroom discourse [9]. 

2. METHOD 
We trained and tested our models using data collected from the 

Partnership for Literacy Study (Partnership). The data set consists 

of question events as recorded by the classroom observers. 

Partnership was a study of professional development, instruction, 

and literacy outcomes in middle school, in which 120 classrooms 

in 21 schools were observed twice in the fall and twice in the spring 
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over two years. The Partnership data set consists of observational 

data which were coded using the CLASS 4.24 computer-based data 

coding program [9]. Inter-rater agreement was approximately 80% 

on question properties with observation-level inter-rater 

correlations averaging approximately .95 [6].   

Some of the teachers received special training in the first year and 

their classes were observed again in the second year. We used 

teacher training to split the data into Pre-training (N=7082) and 

Post-training (N=13655) groups. The school location was coded 

into categories of large and mid-size central city, urban fringe of 

mid-size city, small town rural outside MSA (metropolitan 

statistical area), and rural inside MSA. Based on the number of data 

points in each category, we split the data in two categories: Urban 

(i.e. Mid-size and Large Central City, N=13126) vs. Non-urban (the 

rest of categories, N=10911). Table 1 shows the distribution of 

authenticity and uptake across the different splits.  

Table 1. Proportion of Authenticity and Uptake in different 

subsets and the full data set. 

Category % Authenticity % Uptake 

Non-urban : Urban 54 : 47 23 : 20 

Pre-training : Post-training 39 : 52 15 : 24 

Full-set 50 21 

 

As seen in Table 1, authentic questions were more frequent than 

uptake in general, and the Non-urban group had higher rates of both 

authenticity and uptake than Urban. Overall the distribution of 

authenticity and uptake was similar among Non-urban, Post-

training, and Full-set. Pre-training had the lowest rate of 

authenticity and uptake compared to others. It is also worth noting 

that teacher training was apparently quite effective at increasing 

both authenticity and uptake, as shown by the increase from Pre- to 

Post-training. 

Based on our previous work on automating coding the questions 

with authenticity and uptake [9], we applied machine learning to 

train separate classifiers for authenticity and uptake on each of the 

above subsets. The models use linguistic features utilized in the 

classification of question types [8], including parts of speech, 

manually constructed bags of words (e.g., causal antecedent 

words), and positional information. 

Most of the features are binary and indicate the presence/absence 

of certain keywords or part of speech tags in the question. Other 

features include attributes that show the position of the target 

keyword in the question in addition to presence/absence using four 

values: middle, beginning, end, and none.  For example, if a 

question consisted of four words, e.g. “word1 word2 word3 word4” 

the position of “word1” is captured as beginning and “word4” as 

end, furthermore “word2” and “word3” are both captured as middle 

and if there were only two words in the question, we consider the 

first one as the beginning and the other as the end.  

An example of a feature is causal consequent words, which include 

“outcomes,” “results,” “effects,” etc. Similarly, procedural words 

are defined as a set of keywords including “plan,” “scheme,” 

“design,” etc.  Moreover, part of speech tags, such as determiner, 

noun, pronoun, adjective, adverb, and verb, and certain words such 

as “What,” “How,” and “Why,” were also included in the feature 

set. More complete descriptions and justifications of these features 

for question classification can be found in the mentioned 

references. 

We first trained models on each subset and evaluated their 

performance using 10-fold cross validation within the subset. Next, 

we tested generalizability by training on one subset and testing on 

its dual. For example, a model trained on Urban subset was tested 

on the Non-urban subset and vice versa. Moreover, the models 

trained on the full set of data were also tested on each subset. This 

methodology allows for the following contrasts. First, cross 

validation within a subset establishes a reasonable upper bound on 

performance since training and testing instances, while distinct, still 

come from the same subset. Second, training on one subset and 

testing on its dual subset establishes a reasonable lower bound on 

performance, since accuracy would be determined by shared 

features between the subsets rather than by distinctive properties to 

each subset.  Training on the full data set and testing on subsets 

(thus training and testing on those subsets) allows similar 

comparisons of bias. For example, if training on the full set and 

testing on set A has higher accuracy than testing on set B, we may 

hypothesize that the features of the full model are better aligned 

with the features of A, or the prevalence of category distribution in 

the full set better matches that of A. 

3. RESULTS & DISCUSSION 
We first trained separate models to predict authenticity and uptake 

and evaluated the models using on 10-fold cross validation for each 

subset. For each category (e.g. Urban, Non-urban, etc.) separate 

decision tree models were trained and evaluated using WEKA [4]. 

The models for predicting uptake were trained on a random 

subsample of the data to obtain an even (50-50) distribution. Table 

2 shows the performance of the models along with the performance 

of a model trained on the full set of data.  

Table 2. Performance of the decision tree models trained on 

different data subsets using 10-fold cross validation. 

Training 

Data 

Authenticity Uptake 

Accuracy Kappa Accuracy Kappa 

Non-urban 0.61 0.21 0.59 0.19 

Urban 0.62 0.24 0.60 0.20 

Pre-

training 
0.64 0.24 0.61 0.23 

Post-

training 
0.63 0.26 0.61 0.22 

Full-set [9] 0.64 0.28 0.62 0.24 

 

As seen in Table 2, the models on different splits show comparable 

performances, where the maximum difference on their accuracy is 

0.03 (3%). To examine performance of these models and their 

generalizability across different subsets, we trained models on one 

subset and tested on its dual subset, e.g. Urban – Non-Urban. In 

Table 3, the performance of each model is tested on its dual. 

Additionally, the models trained on full set of data are tested on 

different subsets.  

 

Table 3. Generalizability of models on different splits of data 

(trained on one tested on other). 

Train Test Authenticity  Uptake 

Accuracy  Accuracy  

Non-urban Urban 0.60 0.63 

Urban Non-urban 0.62 0.62 
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Full-set Non-urban 0.70 0.68 

Full-set Urban 0.68 0.68 

    

Pre-training Post-training 0.59 0.62 

Post-training Pre-training 0.60 0.64 

Full-set Pre-training 0.70 0.68 

Full-set Post-training 0.72 0.67 

 

In Table 3, training on one subset and testing on its dual is never 

more than 2 percentage points away from the reverse. Thus the 

results are fairly stable. However there are several patterns of 

differences of interest. First, accuracy for the authenticity models 

when trained on Urban and tested on Non-urban is slightly higher 

than when trained on Non-urban and tested on Urban, however the 

uptake model performs slightly better when trained on Non-urban 

and tested on Urban than the reverse. Moreover, uptake and 

authenticity accuracy were higher for models trained on Post-

training and tested on Pre-training compared to the reverse.  

These results show that the model’s performance when trained on 

one subset and tested on its dual is comparable to the results 

presented in Table 2. These results suggest that Pre-training and 

Non-urban are more likely to be proper subsets of Post-training and 

Urban respectively than the reverse. In other words, Post-training 

and Urban models may (by virtue of having better training data for 

their duals) include features that are effective on Pre-training and 

Urban, however this could also be due to the base rate or prevalence 

of authenticity and uptake in these subsets which needs further 

investigation.   

In order to further examine the models, we compared the confusion 

matrices to illustrate the bias/prevalence of the models. Using the 

confusion matrices of models presented in Table 2 (i.e., 10-fold 

cross validated), we subtracted the confusion matrix when training 

on the Full-set from the others (Figures 1 and 2.) The resulting 

matrices represent the extent to which the confusion matrix of a 

model is different from the baseline model (i.e. Full-set). Each of 

the confusion matrices were separately proportionalized (before 

subtraction) by size of the corresponding subset to make the values 

comparable. Positive values in the figures indicate that the 

associated category occurred more often in the subset than in the 

Full-set. Likewise negative values mean that the category occurred 

less often in the subset than the Full-set.  

 

 

Figure 1. Normalized distance of confusion matrices of 

Authenticity models on subsets from full-set (A=Authenticity, 

N= Non-authentic). 

 

It is seen in Figure 1 that the Urban and Post-training authenticity 

models are the most similar to the Full-set model because their 

differences with the Full-set are close to zero. This suggests that 

these models are not biased with respect to the Full-set. However, 

the Non-urban and Pre-training have larger differences with the 

Full-set model. Non-urban and Post-training subsets have more 

true-positives (Actual=Predicted=A) and less true-negatives 

(Actual=Predicted=N) than the Full-set while the opposite is true 

for Urban and Pre-training. This contrast in true-positive and true-

negatives creates a trade-off in the models which previously 

appeared to be consistent. Specifically, Figure 1 reveals that Pre-

training is more biased towards predicting N (non-authentic 

instances) than A (authentic instances) which may be due to the fact 

that there are fewer authentic instances than non-authentic in the 

Pre-training subset (39% vs. 50%, see Table 1). Conversely, the 

Non-urban model is biased towards A at the expense of N reflecting 

the higher distribution of A in the Non-urban subset (54% vs. 50%, 

see Table 1). Overall, the trade-off between true-positive and true-

negative is symmetric which explains why the overall accuracy of 

the models is not particularly affected despite the differences in 

error patterns. 

 

Figure 2. Normalized distance of confusion matrices of Uptake 

models on subsets from full-set (U=Uptake, N= Non-uptake). 

 

Similar to Figure1, Figure 2 shows the distance between confusion 

matrices of uptake models. The overall distance of uptake models 

on subsets compared to Full-set is lower than the distance of 

authenticity models. Note that the uptake models were trained and 

10-fold cross validated on a subsample with an even distribution 

(50-50) which removes the effect of prevalence on the models. 

Notably, the Non-urban model sacrifices more true-positives at the 

expense of false-negatives which explains the lower accuracy of 

Non-urban in predicting uptake (59% vs. 62%, see Table 2) while 

the rest of models are very close to the Full-set and hold a balanced 

tradeoff between true-positive and true-negative.  

We examined the models in more detail using Correlation-Based 

Feature Subset evaluation (CFS). Specifically, we analyzed the 

frequency of each CFS feature to determine the most important 

CFS features for each subset. Table 4 shows the CFS results for 

each model. The features are presented in groups to show whether 

they were common between the models (shared) or exclusively 

included in one model only.  
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Table 4. CFS results, most predictive features of each model 

grouped based on inclusion.  

Models Authenticity  Uptake 

Urban & Non-Urban 

Shared  Wh, What Why 

Urban only  Be, Judgmental, 

Enablement 

Neg, Pron, 

Causal_Antecedent 

Non-urban only  Disjunction 

Pre-training & Post-training 

Shared  Judgmental, 

What 

Neg, Metacog, 

Pron, Judgemental, 

Why 

Pre-training only  Comparison What 

Post-training only Be, Wh, 

Enablement 

Modal, No, 

Causal_Antecedent 

 

Although the models show similar performance, the most 

predictive features of each model is different, as seen in Table 4. 

However there are also marked commonalities among the groups. 

The features for authenticity on the Non-urban subset, for instance, 

are fully included in the Urban authenticity subset. Thus this 

analysis further supports the interpretation of inclusion suggested 

by the pattern of results in Table 3.  

Similarly most of the features of pre-training are included in the 

post training features, which implies that although teachers’ 

language changed after they received training, the result was that 

their linguistic behavior broadened with training such that their pre-

training behavior was still evident.  

4. CONCLUSION 
We investigated the generalizability of previously presented 

models that predict authenticity and uptake in classroom discourse. 

Overall the results showed that the proposed models’ performance 

is consistent among different subsets of the data set.  However, we 

also found that some subpopulations were potentially more 

representative of the nature of dialogic instruction than others, 

making them better for classifier training.  

The inclusion relationship between our subsets was investigated by 

comparing the confusion matrices of our models which revealed 

that authenticity models of supersets (i.e. Urban and Post-training) 

were closer to the full-set model than their duals. The consistent 

accuracy of the models on different subsets was attributed to the 

tradeoff between true-positive and true-negative predictions which 

was also explained by the prevalence and bias of the subsets 

towards one category. 

We plan to apply our model to new data which is being collected 

currently. The proposed models will be applied with the ultimate 

goal of recording and coding classroom interaction in a fully 

automatic way and generating statistical reports to show effective 

instructional strategies. While the models proposed in this paper 

showed generalizability, another direction of future work is to 

improve the accuracy by adjusting current features and adding new 

predictive features to our models. 
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ABSTRACT 

Engagement during reading can be measured by the amount of time 

readers invest in the reading process. It is hypothesized that 

disengagement is marked by a decrease in time investment as 

compared with the demands made on the reader by the text. In this 

study, self-paced reading times for screens of text were predicted 

by a text complexity score called formality; formality scores 

increase with cohesion, informational content/genre, syntactic 

complexity, and word abstractness as measured by the Coh-Metrix 

text-analysis program. Cognitive decoupling is defined as the 

difference between actual reading times and reading times 

predicted by text formality. Decoupling patterns were found to 

differ as a function of the serial position of the screens of text and 

the text genre (i.e., informational, persuasive, and narrative) but 

surprisingly not as a function of reader characteristics (reading 

speed and comprehension). This underscores the importance of 

mining text characteristics in addition to individual differences and 

task constraints in understanding engagement during reading.  

Keywords 

Coh-Metrix; comprehension; decoupling; engagement; formality; 

genre; mind wandering; reader characteristics; reading; text 

characteristics. 

1. INTRODUCTION 
Engagement during reading is essential for comprehension and 

learning [1]. Methods for gauging engagement include measuring 

time invested in the reading process and eye tracking [2-5]. We 

hypothesize that when mind wandering or other forms of 

disengagement occur, there is a marked decrease in time allocation; 

text characteristics then have little impact on reading times. The 

disjoint relationship between textual demands and time investment 

is termed decoupling. Cognitive decoupling is defined as the 

difference between actual reading times and reading times 

predicted by text characteristics.  

This study investigates how engagement changes as a reader 

progresses through screens of text in moderately lengthy 

documents. Changes are expected to be moderated by 

characteristics of reader and text. Relevant reader characteristics 

included overall reading speed and comprehension; text 

characteristics included text difficulty and genre. 

1.1 Text Difficulty 
Text difficulty can been scaled in a variety of ways, validated by 

predicting grade levels of text and performance on psychometric 

tests of comprehension [6]. The Flesch-Kincaid Grade Level 

formula is a readability assessment based on word length and 

sentence length [7]. The Coh-Metrix tool analyzes text on multiple 

levels of language and discourse using computational linguistics  

techniques [8, 9]. Graesser et al [10] have introduced formality as 

a composite measure of text difficulty based on Coh-Metrix higher 

order principal components. Formality has a high correlation (0.72) 

with Flesch-Kincaid Grade Level. Discourse formality is calculated 

as a mean of five Coh-Metrix principal components having positive 

values for increasing levels of difficulty. These include: (1) 

referential cohesion; (2) deep (causal) cohesion; (3) informational 

content; (4) syntactic complexity and (5) word abstractness. 

Normative values (z-scores) for these 5 factors and formality are 

based on the TASA corpus. These norms are used to compute 

difficulty scores on new texts that researchers wish to analyze. 

1.2 Genre and Order of Information 
Genre is a discourse feature that is expected to influence 

engagement as well as text difficulty. Narrative texts are considered 

the most intrinsically engaging genre for most readers; and least 

difficult, compared with informational texts [6], [9], [11, 12]. 

Persuasive texts lie in-between narrative and informational text in 

expected difficulty and engagement.  

The order of information presented in the text is also expected to 

influence engagement as well as text complexity. Readers begin 

engaged with a text, but may eventually lose interest and disengage 

as the text progresses. Research is needed to document the time 

allocated to texts at different points in the text. Interestingly, basic 

research questions have not yet been investigated at a fine grained 

level. Available research has only compared mind wandering as a 

function of texts that vary in difficulty as entire texts and these  
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Figure 1. Reading Time per Word as a Function of Screen 

Serial Position, Segregated by Genre and Reader Type  

studies are not consistent with respect to mind wandering 

increasing or decreasing with text difficulty [13].  

1.3 Decoupling 
Cognitive decoupling is a discrepancy between textual demands 

and the time a participant invests in reading a text. Decoupling 

increases as a function of the readers’ disengagement with the text. 

Decoupling in this study is measured as the difference between 

actual reading times and times predicted by text characteristics. We 

interpret positive decoupling scores to indicate that a participant is 

investing more time in reading a text than the text characteristics 

demand. According to our assumptions, negative values of 

decoupling represent a participant investing less time than text 

characteristics’ demands. The Coh-Metrix formality z-scores were 

used to measure text difficulty of a text, as normalized by the TASA 

corpus. Analogously, the reading time for each text segment was 

normalized through z-scores for individual readers on the mean 

reading time per word for the text segment under consideration 

(compared with the other text segments for that individual). 

Decoupling is normalized reading times for a particular person 

minus the normalized text difficulty based on the TASA corpus.  

We predict that decoupling scores will become more negative or 

less positive as a reader progresses through a text, corresponding 

with a decrease in engagement. However, previous research [14] 

has not identified the shape of this decreasing function for different 

categories of texts and readers. These effects are predicted to be 

moderated by reader characteristics and genre. 

2. METHODS 
This study had 254 participants in two groups: 128 participated 

online via Mechanical Turk; 126 undergraduate Psychology 

students participated in a lab study.  

Participants were classified according to reading time and 

comprehension using the Nelson Denny assessment with median 

split criteria. Participants read one text from each of three genres in 

counterbalanced order; texts assigned were randomly sampled from 

24 informational, 24 persuasive, and 25 narrative texts. Following 

reading, participants wrote a 75-100 word summary of each text; 

then rated the familiarity, value, and interest for each text.  

Participants used the spacebar to advance through each screen, 

providing reading time measurements Self-paced reading times 

were measured as average time per word in milliseconds for each 

screen of text. The number of words per screen ranged from 79 to 

131, with a mean of 88.8 and a standard deviation of 11.0. The 

number of screens ranged from 10 to 23 per text. 

3. RESULTS 

3.1 Word Reading Times as Function of Text 

and Reader Characteristics 
Mean reading times per word are presented as a function of serial 

position of screens of text, through position 14. Figure 1 shows 

times for informational (1a), persuasive (1b), and narrative texts 

(1c). Participants are segregated into slow versus fast readers and 

high versus low comprehenders.  

In Figure 1, reading time functions are similar for readers with 

differing comprehension levels and reading speeds. We fit linear 

functions to each reader’s times as a function of serial position, 

performing an ANOVA on the slopes. As expected, the slopes were 

negative, reflecting serial reading time decreases. A significant 

effect appeared in the Genre x Reading Time x Comprehension 

ANOVA: the slopes were lower for fast than slow readers, F (1, 

748) = 16.54, p < .001. Intercepts were lower for fast readers, F (1, 

748) = 153.93, p < .001. No other significant effects or interactions 

appeared, indicating individual differences had minimal impact on 

raw reading time functions. Predicted reading time per word on a 

page RT’ follows the function:  RT’ (milliseconds per word) = 536 

-10 * serial position (SP) of screen. 

There did appear to be a dip in early serial positions and then a 

leveling off. Therefore we fit a quadratic equation to the reading 

time data. When averaging over the reader groups, the resulting 
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predictive equation was RT’ = 409 + -23* SP + 88*SP2. The 

improvement in the quadratic equation over the linear function was 

small when fitting curves to mean data points, R2 = 0.97 versus 

0.88, respectively. Moreover, the only coefficient that showed any 

differences in the Genre x Reading Time X Comprehension 

ANOVA was the intercept, which was lower for faster readers, F 

(1, 748) = 79.95, p < .001 In summary, the raw reading times 

showed decreases over serial position and a slight quadratic trend, 

but did not unveil differences in genre or individual differences. 

3.2 Formality as a Function of Text Formality 

and Genre 
It is possible that the above trends in decreasing reading times over 

serial position could be explained by characteristics of the text, as 

opposed to the readers’ strategies (implicit or explicit) in allocation 

of reading time. We conducted an analysis of formality scores as a 

function of serial position, segregating the three text genres. These 

formality scores are plotted in Figure 2 for serial positions 1-14. 

The slopes for each genre were essentially flat as a function of serial 

position, with mean slopes of 0.00, 0.07, and 0.11 for informational, 

persuasive, and narrative texts, respectively. Therefore, decreasing 

trends in reading times cannot be attributed to systematic changes 

in text characteristics over serial positions. 

In contrast, formality scores differed by genre, as consistent in 

previous studies [10]. The mean formality scores were 0.18, 0.09, 

and -0.26 for informational, persuasive, and narrative texts, 

respectively. These differences were significantly different, p < 

.001, showing the predicted ordering of informational > persuasion 

> narrative. Therefore, text characteristics varied over genre but not 

serial position. 

 

Figure 2. Formality as a Function of Screen Position, 

Segregated by Genre 

3.3 Decoupling as a Function of Genre, Serial 

Position, and Reader Characteristics 
It is possible that decoupling, rather than raw reading times, 

provides a more sensitive approach to analyzing disengagement. 

Figure 3 shows the decoupling scores for informational (3a), 

persuasive (3b), and narrative texts (3c). The participants are 

segregated into slow versus fast readers and high versus low 

comprehenders. As in the raw reading times, there did appear to be 

a dip in early serial positions and then a leveling off with a slow 

descent. The only exception was a slight upward trend for the 

narrative texts at the very end. When we fit a linear function to all 

of the participants for all of the texts, the best fit regression line 

yielded an R2 =.63. A quadratic equation had a significant increase 

in variance explained of R2 =.88. The best fit function was 

Decoupling’ = 0.835 -0.204*SP + 0.010*SP2. When we conducted 

a Genre x Reading Time x Comprehension ANOVA, there was 

only one significant effect. There was a significant effect of genre 

for the three coefficients in the quadratic function:  F (2, 748) = 

36.37; F (2, 748) = 8.46, p < .001, F (2, 748) = 11.00, all p < .001. 

There were no significant individual differences (reading speed or 

comprehension) and no interactions. 

4. DISCUSSION 
This study has revealed how reading times and cognitive 

decoupling are significantly influenced by text characteristics, 

namely genre and the serial position of information in the text. The 

pattern of results showed higher engagement (reflected in 

decoupling scores) in the first few screens of text and a subsequent 

decrease over the serial position of the screens. The deepest 

engagement is in the first 200-400 words, then noticeably decreases 

and slowly decreases thereafter (aside from an interesting upsweep 

for narrative texts). The quadratic function captures this trend and 

shows a better fit than a linear trend. It is of course strategically 

wise to pay attention to the early text segments because that is a 

critical point when the situation model is set up [11, 14], and the 

reader can make judgments whether the text is interesting or 

important to continue reading [1]. It is important to acknowledge 

that text difficulty is not comparatively high in early text segments, 

as shown in Figure 2, so increased time allocation at the beginning 

of a text cannot be attributed to text difficulty.  

Regarding decoupling scores, text formality and difficulty show the 

following trend compatible with previous research using Coh-

Metrix [2, 10]: informational > persuasive > narrative. However, 

cognitive decoupling showed the opposite ordering, such that 

readers tended to over allocate reading times to narrative text and 

under-allocate for the difficult informational text. In essence, there 

was a tendency to have lower engagement when the text was more 

difficult. The role of text difficulty has also been found to predict 

mind-wandering during text comprehension [13, 15] and listening 

to lectures [16], but the jury is still out as to (a) whether mind 

wandering is more prevalent in discourse that is very easy or very 

difficult and (b) what level of discourse analysis is most diagnostic 

of mind-wandering. Future research awaits an analysis of the 

impact on decoupling as computed via a deviation between reading 

time and formality and mind wandering. 

5. ACKNOWLEDGMENTS 
The research on was supported by the National Science Foundation 

(1108845) and the Institute of Education Sciences (R305C120001), 

Any opinions, findings, and conclusions or recommendations 

expressed in this material are those of the authors and do not 

necessarily reflect the views of NSF or IES. 

  

Proceedings of the 8th International Conference on Educational Data Mining 450



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. REFERENCES 

[1] Guthrie, J.T., S.L. Klauda, and A.N. Ho. 2013. Modeling the 

relationships among reading instruction, motivation, 

engagement, and achievement for adolescents. Reading 

Research Quarterly. 48, 1, 9-26. 

[2] Franklin, M.S., J. Smallwood, and J.W. Schooler. 2011. 

Catching the mind in flight: Using behavioral indices to 

detect mindless reading in real time. Psychonomic Bulletin & 

Review. 18, 5, 992-997. 

[3] Nguyen, K.-V., et al. 2014. Gotcha! Catching Kids during 

Mindless Reading. Scientific Studies of Reading. 18, 4, 274-

290. 

[4] Ainley, M., S. Hidi, and D. Berndorff. 2002. Interest, 

learning, and the psychological processes that mediate their 

relationship. Journal of Educational Psychology. 94, 3, 545. 

[5] Fulmer, S.M., et al. 2015. Interest-based text preference 

moderates the effect of text difficulty on engagement and 

learning. Contemporary Educational Psychology. 41, 98-

110. 

[6] Nelson, J., et al. 2012. Measures of text difficulty: Testing 

their predictive value for grade levels and student 

performance. Council of Chief State School Officers, 

Washington, DC. 

[7] Klare, G.R. 1974. Assessing readability. Reading Research 

Quarterly. 62-102. 

[8] McNamara, D.S., et al. 2014. Automated evaluation of text 

and discourse with Coh-Metrix. Cambridge University Press.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[9] Graesser, A.C., D.S. McNamara, and J.M. Kulikowich. 2011. 

Coh-metrix providing multilevel analyses of text 

characteristics. Educational Researcher. 40, 5, 223-234. 

[10] Graesser, A.C., et al. 2014. Coh-Metrix measures text 

characteristics at multiple levels of language and discourse. 

The Elementary School Journal. 115, 2, 210-229. 

[11] Graesser, A.C. and D.S. McNamara. 2011. Computational 

analyses of multilevel discourse comprehension. Topics in 

Cognitive Science. 3, 2, 371-398. 

[12] McNamara, D.S., Graesser, A. C., and Louwerse, M. M. 

2013. Sources of text difficulty: Across the ages and genres. 

Assessing Reading in the 21st Century: Aligning and 

Applying Advances in the Reading and Measurement 

Sciences, J.P.S.E.A., Editor. R&L Education: Lanham, MD. 

[13] Feng, S., S. D’Mello, and A.C. Graesser. 2013. Mind 

wandering while reading easy and difficult texts. 

Psychonomic Bulletin and Review. 20, 3, 586-592. 

[14] Kintsch, W. 1998. Comprehension: A paradigm for 

cognition. Cambridge university press. 

[15] Mills, C., et al. 2014. To quit or not to quit: Predicting future 

behavioral disengagement from reading patterns. Intelligent 

Tutoring Systems. Springer. 

[16] Medimorecc, M.A., Pavlik, P., Olney, A., Graesser, A.C., 

and Risko, E.F. The language of instruction: Compensating 

for challenge in lectures. Journal of Educational Psychology, 

in press 

 

 

Figure 3. Decoupling by Formality as a Function of 

Screen Position, Segregated by Reader Type 

Proceedings of the 8th International Conference on Educational Data Mining 451



Semantic Similarity Graphs of Mathematics Word
Problems: Can Terminology Detection Help?

Rogers Jeffrey Leo John
Center for Computational

Learning Systems
Columbia University
New York, NY, USA

rl2689@columbia.edu

Rebecca J. Passonneau
Center for Computational

Learning Systems
Columbia University
New York, NY, USA

becky@ccls.columbia.edu

Thomas S. McTavish
Center for Digital Data,

Analytics & Adaptive Learning
Pearson

Austin, TX, USA
tom.mctavish@pearson.com

ABSTRACT
Curricula often lack metadata to characterize the relatedness
of concepts. To investigate automatic methods for generat-
ing relatedness metadata for a mathematics curriculum, we
first address the task of identifying which terms in the vocab-
ulary from mathematics word problems are associated with
the curriculum. High chance-adjusted interannotator agree-
ment on manual identification of math terms was achieved
by considering terms in their contexts. These terms rep-
resent 13% of the vocabulary in one seventh grade math-
ematics text. Six classification algorithms were compared
to classify math terms for this text. To avoid overfitting to
this curriculum, we relied on a small number of features that
exploit external knowledge sources.

1. INTRODUCTION
Curricula often lack metadata to characterize the related-
ness of concepts. Our ultimate goal is to develop methods for
automatic generation of knowledge graphs for mathematics
from existing curricula. Towards that end, we develop a rep-
resentation for math word problems that allows us to mea-
sure similarities between problems, based on the math termi-
nology they share [14]. In this paper, we present our meth-
ods to automatically identify the math terms. While math-
ematics is a highly structured domain with many sources
that define terms, we found no single source that captured
the mathematics terms as used in the context of this cur-
riculum. Furthermore, several terms that occur in the word
problems, such as independent, chances, and set, are polyse-
mous, but occur more frequently in a “mathematical” sense.
We therefore annotated the full vocabulary as “math” or
“non-math” based on the predominant usage in the curricu-
lum, and found high agreement among annotators. We then
tested six methods for automatic classification.

The vocabulary items to be classified were represented using
a small number of features based on glossaries, web search,
and corpus statistics. Only 13% of the terms in our vocab-
ulary were labeled as “math.” Such data skew is challenging
for many machine learning methods. To address the class
imbalance, we used ensembles of weak learners and support
vector machines (SVMs), weighting errors on the “math”
class more heavily. We found that SVMs were our best clas-
sifiers. The automated methods presented here can enhance
existing math curricula with domain knowledge graphs of
content similarity among word problems.

2. RELATED WORK
Adaptive learning environments (ALEs) have shown promis-
ing results for mathematics and other STEM subjects [18, 5,
1], even when compared with human tutors [24]. For ALE’s,
the domain model is typically created anew but automated
methods have been applied [3] [25]. The latter build con-
cept maps from handbooks about SCORM standards, based
on hand-constructed patterns to match dependency parses,
then use the concept maps to build ontologies. Our work also
derives semantic knowledge from text, aimed at representing
semantic relations among mathematics word problems.

Automated methods have also been used in construction
of educational domain models for assessments [20], stan-
dards [9], and targeted prerequisites for learners [13]. Vari-
ous approaches have been used to represent domain knowl-
edge, including semantic networks with frames and produc-
tion rules [23], or model-tracing architectures to identify
problem-solving steps students take, including incorrect ones
[2]. Model-tracing, inherently reactive, has been extended
with tutorial actions to pro-actively guide students [12]. Other
approaches to automatically generate metadata require ex-
isting domain ontologies [22]. Our goal is to develop a net-
work of relations among problems that could be used pro-
actively by ALEs or teachers to move students through the
curriculum in a way that promotes optimal learning.

To represent mathematics word problems, we create a bag-
of-words (BOW) vector for math words using methods sim-
ilar to terminology identification [10]. In separate work, we
use this vector to create similarity networks among problems
[14]. A range of methods have been used to identify terms
in product reviews [6], concepts in semi-structured data [4],
technical language in patents [15], or domain-specific termi-
nology in general [21]. Much of this work deals with identi-
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Chap. Sec. Exer. Text
2 1 19 The table shows a proportional relationship between x and y. Complete the table.
9 1 11 Solve the inequality x + 1 < 4. Then graph the solutions.

Figure 1: Sample word problems.

fication of multi-word noun-noun compounds of a technical
nature, and ranking them. In contrast, the secondary school
math terminology has few compounds, includes a mix of dif-
ferent parts of speech, and is non-technical. As in [21, 6, 4],
we rely on relative frequency ratio [8] to distinguish the fre-
quencies of words in our corpus from their frequencies in a
large background corpus. Unlike most of this work, apart
from [15], we developed annotation guidelines and measured
interannotator agreement. We find an agreement of 0.81
among three annotators using Krippendorff’s α (see below),
compared to 0.76 (Fleiss’s κ; a similar metric) in [15].

3. DATA: MATHEMATICS EXERCISES
The data consists of 3000 word problems from a Grade 7
mathematics curriculum. The problems, which can incor-
porate images, tables, and graphs, are instantiated through
templates. Figure 1 shows two problem exercises from chap-
ters 2 and 9, with words that evoke math concepts in bold-
face. Note that a template, x{+|−}X{< | >}Y , randomly
generates instances such as x+ 4 > 9 or x+ 1 < 4. Depend-
ing on the number of instance variables and constraints, a
template may generate a bounded or nearly limitless num-
ber of instances. In addition to the exercise itself, which
may contain a few steps that are typically solved via mul-
tiple choice or fill-in-the-blank, learners are able to select a
more detailed guided solution, or to view the steps to solve
a sample problem instance. We created an XML parser to
extract the text from the exercises, the guided solutions, and
sample problems. The vocabulary analysis is based on the
extracted text.

4. ANNOTATION AND RELIABILITY
At 4,495 words (not lemmatized), the curriculum’s vocabu-
lary is relatively small. Removal of typical stopwords leaves
4,283 words. An additional 103 words, while not typical
stop words, have very high frequency across problems (e.g.,
amount, answer, compare) and are not likely to be useful for
measuring semantic similarity among problems.

The terms we are interested in are those that are characteris-
tic of the concepts the students should know to demonstrate
mastery of the curriculum. The three co-authors, working
independently, each labeled an initial sample of 100 words
as math, non-math and other, based on initial guidelines.
Because pairwise agreement can be high when a chance-
adjusted agreement coefficient is low (the so-called paradox
of kappa [11]), agreement was measured using both pair-
wise agreement and Krippendorff’s Alpha [16], a metric that
factors out chance agreement. Initially, pairwise agreement
was 0.93, but Alpha was 0.54, which is rather low. The low
chance-adjusted agreement was mainly due to inconsistency
among annotators in looking at the contexts in which words
were used, and also due to borderline cases. We wrote more
explicit guidelines with examples (4 pages), then labeled two
additional samples of 100 words each, computing agreement
on each sample before proceeding to the next. On the sec-
ond and third samples, pairwise agreement was 0.92 in both

1. Wolfram Mathworld
2. About.com: mathematics
3. Math domains in Google search results
4. Math domains in Bing search results
5. Digits math glossary
6. Relative frequency ratio

Figure 2: Features to represent vocabulary

cases, and Alpha was 0.83 and 0.81. Given the high agree-
ment and consistency across the second and third samples,
we determined the labeling to be reliable. One of the co-
authors labeled the remainder of the vocabulary, yielding
3832 words labeled as non-math, 571 as math and 92 as
other. Only the words labeled as math and non-math were
used to train the classifier.

5. CLASSIFICATION EXPERIMENTS
This section reports results from a suite of classification al-
gorithms applied to the labeled data. To represent the vo-
cabulary for the learner, we engineered features based on
search and glossary information, and on a corpus-based met-
ric. Two challenges for the classification were infrequency
of the positive class (high data skew), and apparent non-
linearity of the class separation. Of six learning algorithms,
those that had best performance were most suited to these
learning challenges, as described further below.

5.1 Feature Representation
We constructed a feature vector representation for the words
with the 6 features listed in Figure 2. All feature values were
scaled to be in the range of 0 to 1.

For the first two features listed in Figure 2, we used the
functionality of Google Custom Search that permits cus-
tomized searches to user-specified domains. For the first
feature we queried mathworld.wolfram.com, and for the sec-
ond we queried math.about.com. The value for each of these
features consists of the total number of query returns, which
can be arbitrarily large.

Google Custom Search can also be configured so that for the
top ten returns to a query, each return consists of a triple
with the url, a list of text snippets containing the term at
that url, and the page title at that url. For the third feature
listed in Figure 2, we query the web using this functionality,
and calculate the feature value based on the triples for the
top ten returns. Each time math, mathematics, or arithmetic
occurs at least once in each element of a triple, a counter is
incremented. The maximum value is thus 30.

Bing is a Microsoft search engine with an interface through
which queries can be made programmatically. The interface
returns the top 50 search results. Like Google searches, each
result contains the relevant URL, snippets, and title of the
page. As in the Google search feature, for the fourth fea-
ture in Figure 2, a counter was incremented whenever math,
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Table 1: Classification Results
Classifier Precision Recall Fscore Sensitivity Specificity G-Mean
adaboost 0.89 0.90 0.89 0.42 0.97 0.64
bagging 0.90 0.91 0.90 0.41 0.98 0.63
rand-forest 0.90 0.91 0.90 0.45 0.97 0.66
SVM-poly 0.89 0.86 0.87 0.68 0.89 0.78
SVM-RBF 0.89 0.87 0.88 0.68 0.90 0.79
logistic regression 0.89 0.90 0.88 0.31 0.98 0.56

mathematics, or arithmetic occurred at least once in a triple
element. Values are in [0,150].

The mathematics curriculum has an associated glossary of
246 math terms. It includes simple terms, e.g., “sphere,”and
compound terms, e.g., “associative property of multiplica-
tion.” The glossary was expanded with the individual words
in compound terms, excluding stop words. Thus for the
compound term “associative property of multiplication”, the
words associative, property and multiplication were added.
In this way, the glossary was expanded to 516 terms. A
boolean feature value was used here to indicate exact occur-
rence of a word in the glossary.

Relative frequency ratio (RFR) measures relative frequency
of a term in reference to a contrastive background corpus
[6, 8]. The frequency of a word wi in a corpus C, expressed
as FR(wi, C), is its count normalized by size of the corpus.
For a domain specific corpus, e.g., a mathematics text, the
frequency of domain-specific terms should be higher than in
a large, background corpus. The formula for RFR is:

RFR(wi) =
FR(wi, DC)

FR(wi, BC)
(1)

where DC is the domain corpus and BC is the background
corpus. We tested RFR with two background corpora: the
Open American National Corpus (OANC: N=22 ×106) and
English Gigaword, Fifth Edition (N=4,033 ×106). Unsur-
prisingly, we found that the size of the background corpus
is critical to the precision of the RFR measures. When we
ranked Digits words by RFR scores using Gigaword, 306 of
the words labeled as “math” occur in the top 1,000 words
compared with 248 using OANC. Therefore we used Giga-
word as the background corpus.

5.2 Classification
The labeled data was randomly split into a training set with
75% of the vocabulary (3301 terms) and a test set with 25%
of the vocabulary (1101 terms). Using logistic regression,
classification results yielded an overall precision of 0.87 and
a recall of 0.88, compared with 0.78 precision and 0.25 recall
for the math class. The low recall of math terms can be
attributed to high class imbalance, where only 13% of terms
are in the math class. Linear SVM also yielded poor results,
suggesting that the classes cannot be linearly separated. To
address the class imbalance, we use class weights for SVM,
where we use polynomial and RBF kernels to address the
non-linearity. Ensembles of weak learners also help with
non-linearity. For each of three ensemble methods, Boosting,
Bagging and Random Forests, we used 1000 Decision Trees.

Evaluation results are reported using precision, recall, f-
measure, and g-mean [17]. The latter, the geometric mean of

accuracy on the positive class (recall, or sensitivity) and ac-
curacy on the negative class (specificity), is high when both
accuracies are high and their difference is small. It is par-
ticularly useful when there are no criteria for constructing a
cost matrix for errors in sensitivity versus specificity.

For the SVM classifiers, we used C=10,000. For the polyno-
mial kernel, the degree was 4 and the class weights assigned
to the math and non-math classes were 270 and 1350 respec-
tively. For the SVM with the RBF Kernel, class weights were
set to 200 and 1100.

6. RESULTS AND DISCUSSION
Table 1 shows the results for the six classification experi-
ments. All the classifiers had high accuracy, due to the high
class imbalance favoring non-math words. Accuracy on the
math words (sensitivity), however, was relatively low for all
but the SVM learners. The ensemble methods had higher
precision on the math words (≥ 0.78) but low sensitivity
(0.41-0.46). The SVM learners had lower precision (about
0.5) and higher sensitivity (0.68). The logistic regression
had very high precision on the math words (0.81) but very
low sensitivity (0.32). For g-mean, all the classifiers had
values above 0.50, indicating respectable peformance. The
two SVM learners, however, had the highest g-means: 0.78
(polynomial kernel) and 0.79 (RBF kernel).

Manual error analysis of math words that were incorrectly
classified by multiple learners indicated that many of the
errors were due to polysemous words that have one or more
non-math senses that occur with non-neglible frequency. This
includes words like point, dependent, and trial. In WordNet
[19], for example, point used as a noun has twenty-five senses,
and fourteen senses used as a verb. Future work on the
classification task will include investigation of features com-
monly used for coarse-grained word sense disambiguation,
where accuracies of 88% have been achieved using lexical,
syntactic and topical features [7] so that we can apply the
same methods to new curricula.

7. CONCLUSIONS
The vocabulary classification task we address, to identify vo-
cabulary that characterizes the semantics of a curriculum,
differs from standard terminology detection, where the fo-
cus is on highly technical compound terms. It also differs
from word sense disambiguation in that we are interested in
binary classification of senses, based on the use of terms for
a given curriculum. We have shown that human annotators
can achieve very high pairwise and chance-adusted agree-
ment. To avoid overfitting to a given curriculm, the features
we used draw on external knowledge sources such as glos-
saries, web search and large background corpora. With rela-
tively few such features and choice of an appropriate learning
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algorithm, we achieve very high accuracy and good sensitiv-
ity, despite the small proportion of the positive class.
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ABSTRACT
This paper reports on an analyis of data from a novel Peer
Instruction application, named DALITE. The Peer Instruc-
tion paradigm is well suited to take advantage of peer-input
in web-based learning environments. DALITE implements
an asynchronous instantiation of peer instruction: after sub-
mitting their answer to a multiple-choice question, students
are asked to write a rationale for their choice. Then, they
can compare their answer to other students’ answers, and
are asked to choose the best peer-submitted rationale among
those displayed. We engaged in an analysis of student be-
haviour and learning outcomes in the DALITE learning envi-
ronment. Specifically, we focus our investigation on the rela-
tionship between student proficiency, how students change
their answers after reading each others’ writings, and the
peer-votes they earn in DALITE. Key results include i) peer-
votes earned is a significant predictors of success in the
course; ii) there are no significant differences between strong
and weak students in how often they switch from the correct
answer to a wrong answer after consulting peer-rationales,
or vice versa; iii) even though males outscore females in con-
ceptual physics questions, females earn as many votes from
their peers as males do for the content they produce when
justifying their answer choices.

Keywords
peer instruction, exploratory data analysis

1. INTRODUCTION
Active learning encompasses a broad movement in mod-
ern pedagogical practices, including any activities which en-
gage the student as a part of the learning process, instead
of passively receiving information during a traditional lec-
ture. Such activities should encourage the student to read,
write and discuss classroom content, as well as engage in

higher order thinking tasks, such as synthesis and evalu-
ation [1]. Active, cooperative, and collaborative learning
practices have been shown to yield greater learning gains
in science in engineering [8]. With the growing presence of
on-line learning through instructional videos and accompa-
nying readings, there is place for web-based activities which
promote the same higher-order learning processes as those
being used in more active classrooms.
This is where our research group found the need to develop
the Distributed Active Learning Technology Integrated En-
vironment (DALITE). The teacher-researchers in our group
wanted a web-based homework system which would go be-
yond simply asking students for the answers to conceptual
questions, by asking them to express the reasoning behind
their thinking. This learning environment was meant to cap-
ture some of the higher-order thinking processes students
engage in when reasoning about new concepts. DALITE is
a system that would provide data on the mechanism of con-
ceptual change, through the writings of students, as well as
their evaluation of each other’s work. What has emerged is
an open source system which is being used in classrooms by
learning science researchers who are also teachers.

Thus far, it has produced a dataset which can reveal new
insights from the data on student production and consul-
tation of answer rationales. Previous analysis of our work
has already shown that students who use DALITE in college
level physics classrooms do as well as those who use other
on-line homework environments [2]. In the current study we
analyze how the data on the production of rationales and
the voting patterns can yield novel indicators of success and
other characteristics of students.

This paper will begin with a description of the related field
of Peer Instruction. The DALITE platform will then be de-
scribed, as well as the most recent dataset collected. The
focus of the analysis and results will be on the relationship
between student proficiency, how students change their an-
swers after reading each others’ writings, and how many
votes they earn for what they write. Finally we will dis-
cuss the potential and challenges that lie ahead, especially
as student models are integrated into the DALITE system.

2. RELATED WORK
2.1 Peer Instruction
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Peer instruction is a classroom practice popularized by Eric
Mazur of Harvard University [3]. In its most common in-
stantiation, the classroom script goes as follows:

1. The teacher displays a multiple choice question to the
whole class, and asks everyone to reflect, and individ-
ually choose what they think is the correct answer.
This is typically done by giving each student a hand-
held clicker, which transmits the answer to a receiver
plugged into the teacher’s computer.

2. The teacher displays a bar chart showing the distribu-
tions of answer choices for the whole class. The stu-
dents are then prompted to discuss their answer choice
with their peers for several minutes, after which they
are given the opportunity to answer the question again
using their clicker.

3. The teacher shows the new distribution of answers.
Typically, after the peer discussion, there is a major
shift towards the correct answer.

Making this a regular practice in class has been shown to
yield higher learning gains [7] and lower dropout rates [4]
compared to conventional, teacher-centered, lecture style
courses. However it is very difficult to capture what is
actually happening during the student discussions. What
is actually being said to convince someone to change their
answer (or at least change their rationale for their answer
choice)? How does that relate to cognitive theories of learn-
ing? DALITE collects information exchanged in written
form through Peer Instruction features embedded within a
web based learning environment, namely answer rationales
and votes. The information hereby collected allows us to
better address the above questions empirically.

3. THE DALITE PLATFORM
DALITE is a web-based drill and practice platform that con-
tains introductory level physics problems. It has an interface
for the student to work on physics problems, and a teacher
interface to manage the learning content.

3.1 Student interface
Students log into DALITE, and work on an assignment which
typically contains four to six multiple choice questions. For
each question, there are three screens they must flip through,
each with the following structure:

1. The question is displayed, and the student selects one
of the multiple choice answers. They are then prompted
to write a couple of sentences that explain why they
selected their answer choice. These little paragraphs
will from now on be referred to as “rationales”.

2. Once a rationale is given, the system presents two
columns: one for their answer choice, and one for an-
other choice to the question. Each column contains
four rationales, written by previous students. The aim
is to give students a chance to reflect on their think-
ing by providing them with an opportunity to compare
and contrast other rationales and change their mind.
The student is prompted to read the rationales from

the two columns, and decide whether they would like
to keep their choice, or switch. What’s more, the stu-
dent is asked to choose one rationale out of the ones
displayed that they best like. They can also simply
cast an “empty ballot”, in effect saying that none of
the other students’ rationales were convincing. This
up-voting process is anonymous.

3. The third screen recaps everything that just happened:
the question is shown, alongside their two answer choices
(one from each of the previous two screens). What’s
more, the rationale they originally wrote is reflected
back to them, right next to a rationale written by an
expert for the correct answer.

3.2 Teacher Interface
When teachers login to the system, they can:

• upload new questions to the database. This requires
that the question be of multiple choice format. The
teacher must specify the correct answer, with a ratio-
nale justifying that answer choice. The teacher must
also identify a “second best answer”, which would be
used for the second column of the second screen (de-
scribed above) should the student answer correctly on
their first attempt. Teachers can also add “tags” to the
question, which describe the content of the question.

• build new assignments based on questions already in
the system.

• observe the results of assignments done by their stu-
dents. The current reporting tool gives the teacher a
mini grade-book for each assignment, where each stu-
dent is a row, and each question is described by two
columns: one for the student’s first answer, and one for
their second answer. Teachers can quickly get a sense
of where the students are getting confused, as cells are
coded green for the correct answer, and red for the in-
correct answer. Transitions from red to green are signs
that the rationales in the database are doing their job
of convincing students to move away from the wrong
answer, while transitions from green to red show that
the students’ conceptual understanding is shallow.

4. THE DATASET
Although DALITE has been in use for the last five years, it
was during the Fall semester of 2013 that a comprehensive
dataset was collected in a systematic manner over the entire
term. The cohort was comprised of 144 students, spread
out in five groups, taught by four different teachers, across
three colleges. The system was used to teach freshman year,
calculus -based Newtonian Mechanics. This is at a level
equivalent to grade 12 in high school in the US and other
Canadian provinces.

4.1 Data from within DALITE
Over the course of the semester, 80 question items were as-
signed by the different teachers, 40 of which were completed
by at least half of the entire cohort, providing data on over
7000 student-item pairs.
Each student-item pair in the dataset includes the initial an-
swer, the rationale, and the final answer. A separate table
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in the database keeps a count of how many peer-votes are
earned by any given rationale.

4.2 Data from classrooms
For each student in the five experimental groups, as well as
one control group (which did not use DALITE), the follow-
ing data was collected inside their classrooms over the course
of the semester:

Pre-Post FCI The Force Concept Inventory (FCI)[5], is
a questionnaire of 30 conceptual questions about the
Newtonian concept of force. The exact same ques-
tionnaire was administered on the first day of class,
and then again on the last day of class, for each of
the groups, in order to compare the learning gain be-
tween the DALITE users and students who did not use
DALITE. The item-by-item results of this question-
naire can be compared to a FCI dataset which holds
the results of more than 13000 students from across
Canada and the U.S.

Midterm & Final Exam Grades The Newtonian Mechan-
ics course commonly has three major themes: Kine-
matics, Dynamics, and Laws of Conservation. This
lines up with the three midterms for which each stu-
dent’s grade is recorded. Finally, for each student,
the final exam grade is broken down by the result on
the multiple choice section (typically more conceptual
questions, and hence more similar to DALITE), and
the long-answer section (typically computations and
problem-solving).

5. RESULTS
During the Fall 2013 study, four experimental groups were
assigned DALITE specifically as homework for their stu-
dents. Following are the key results:

Student Success How well students succeeded on DALITE
questions had 0.50 and 0.60 correlations with their per-
formance on the conceptual, multiple choice part of
their final exam, and the post-semester FCI question-
naire, respectively. This provides some measure of the
reliability of this relatively new homework system.
Also a linear model was fit to predict a student’s final
grade based on statistics from their DALITE account.
The fraction of questions students answered correctly
out of those they attempted, as well as the total num-
ber of votes they accumulated, were both significant
predictors of their final grade in the course (R2 = 0.24,
p<0.001). This predictive power of DALITE emerges
as early as after the first third of the course, meaning
the teacher can get early indicators of which students
are at risk for the midterm.
In a related line of questioning, the data was par-
titioned by gender of the students. Male students
did significantly better than female counterparts in all
measures of conceptual understanding from the class-
room (pre-term FCI score, pre-post term gain on FCI,
conceptual questions on final exam). This is in line
with previous work looking into the gender gap in in-
troductory physics [6]. This gap was found in the

DALITE data as well, with males getting 20% more
of the questions items right (p<0.001).

Patterns in how students change their answer choices
Over the course of the semester, students who started
with the right answer, only switched to the wrong one
1 out of 10 times. However, when they started with
the wrong answer, they switched to the correct answer
3 out of 10 times after reading their peers’ rationales.
This gives some measure of overall quality of the ratio-
nales currently in the database: the rationales to the
wrong answers are not highly persuasive, and there are
at least some rationales for the correct answers which
can convince students to change their minds when they
are wrong.

Factors affecting answer change When the data was sep-
arated into quartiles for the final course grade, it was
found that strong students were as likely as weaker stu-
dents to switch from the right answer to the wrong an-
swer. In addition, the converse was also true: weaker
students were as capable of switching to the right an-
swer when they got it wrong on their first attempt.
There was some effect herein due to the teacher: the
experimental groups that regularly discussed DALITE
homework in class, were significantly more likely to
change their answer when in DALITE. In the group
that used DALITE purely as extra homework, answer
switches were much less likely (p<0.001).This may in-
dicate that the students who are reminded that the
system is a valuable tool, are more engaged with the
system, and take the time to more carefully read each
others’ rationales.
The well known gender gap mentioned, males outscor-
ing females in conceptual physics questions, interest-
ingly disappears if we measure correctness based on
the second attempt: female students choose the wrong
answer 20% more often on their first attempt, but af-
ter reading peer-written rationales, they identify the
correct choice just as often as males.

Who amasses more peer votes? Students from the
stronger half of the cohort earned, on average, more
than two times as many votes as those from the
bottom half. What’s surprising is that this pattern
holds true for the wrong answers as well: even when
the strong students are wrong, they are twice as
convincing as their weaker peers. This is especially
relevant in light of the fact that 1/3 of all the votes
cast over the term were for rationales to wrong answer
choices. In parallel to this finding, when we looked
only at rationales justifying the correct answer choice,
it was found that weak students earned as many votes
as their stronger colleagues. This seems to indicate
that even if a student did not perform as well on
tests, when they were right on a particular conceptual
question, they were able to justify their understanding
as well as stronger students.
The gender gap discussed earlier, was also lost when
looking specifically at the voting data. Even though
males achieve higher grades on conceptual questions,
females of all strengths earn as many votes for their
rationales as the males. This tends to indicate that
females produce content justifying their understanding
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that is as valued by their peers as rationales written
by males.

6. DISCUSSION
The key results described above show the potential for DALITE
to be an effective tool for teachers to probe their students’
deeper understanding of concepts in physics, and identify
students at risk of failing midterms and final exams. The
data on how students change their answers based on the
writings of their peers, and which rationales they vote for,
may give teachers and researchers insight on what words can
trigger conceptual change in different types of students. Fi-
nally, the data shows that students who may not perform
as well on summative evaluations, are still able to produce
valuable content when justifying their understanding.

7. FUTURE WORK
Future directions of research on this project include cap-
turing not just which rationales got voted for, but who is
casting the votes, and in what context. The goal is to ex-
plore what features in student written text have an impact
on changing peer conceptions of scientific concepts. Do stu-
dents learn from stronger students, or only those within their
Vygotskian zone of proximal development [10].

Another important direction would include collaborative fil-
tering techniques, which are traditionally applied to recom-
mender systems, such as in the e-commerce setting, where a
users-by-item ratings matrix is used to predict what items
new users would most likely enjoy. Recently such techniques
have been applied in the context of educational data mining,
where the matrix is now student-by-item performance, and
factorization leads to estimates of the probability of another
student getting a new item correct [9]. With the ratings data
collected, the system may be able to deliver individualized
rationales to different learners with the same misconceptions
to the same question item. What is most promising is how
this open-source tool creates a venue for learning science
researchers to ask questions regarding higher-order learning
processes, such as evaluation and synthesis, and for the EDM
community to test-drive different text mining techniques in
a real classroom setting.
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ABSTRACT
Next generation digital learning environments require deliv-
ering just-in-time feedback to learners and those who sup-
port them. Unlike traditional business intelligence environ-
ments, streaming data requires resilient infrastructure that
can move data at scale from heterogeneous data sources, pro-
cess the data quickly for use across several data pipelines,
and serve the data to a variety of applications. As a solu-
tion to this problem, we have designed and deployed into
production the Learning Analytics Platform (LAP), which
can ingest data from different education systems using stan-
dardized IMS Caliper events. The education events are trig-
gered by student and instructor activity within Caliper in-
strumented learning systems. Once sent to the LAP, events
are transformed and stored in a data store where they can
be used for student, educator, and administrator visualiza-
tions as well as education driven analytics research. Two
McGraw-Hill Education platforms, Connect, used for higher
education, and Engrade, for K-12, are currently instrumented
to send the LAP event data which in turn feeds visualiza-
tions for educational insight. Future plans for the LAP in-
clude collection of education event data from a wide variety
of proprietary and open source education platforms, compu-
tational engines for predictive analytics, and an open API
for third-party analytics using LAP data.

Keywords
Learning Analytics, Event Processing, Heterogeneous Data,
Streaming Data, Parallel Architecture

1. INTRODUCTION
It is the goal of next generation digital learning systems to
use big data and analytics to advance learning outcomes.
These next generation systems should be able to provide
just-in-time feedback to students and educators with an aim
to increase the efficiency and effectiveness of digital educa-
tion. Further, with the increasing instrumentation of all dig-
ital media, digital learning environments should be instru-
mented in a way that allows important education data to be
collected in a standardized fashion for both real-time and
after-the-fact (batched) data analysis. This task requires
large scale processing of streaming data utilizing massively
parallel architectures which may ingest, store, and analyze
data in real-time.

Our solution to this problem is the Learning Analytics Plat-
form (LAP). The LAP is designed to ingest educational data
from present and future education platforms in the form of
standardized events using the IMS Caliper spec [2]. Two
existing education platforms, Connect for higher education
and Engrade for K-12, have already been instrumented to
create and ship Caliper education events to the LAP. Once
ingested by the LAP, the data is transformed and stored for
building of visualizations used for educational reports [4].
These ‘insights’ include several real-time statistics for stu-
dents and educators including time-spent, outcomes, sub-
mission times near due dates, attendance, and class perfor-
mance comparisons. Additionally, messages indicating neg-
ative trends, such as repeatedly starting assignments near
or after the due date, are also presented to the user.

To meet the requirement of providing just-in-time feedback
to students and educators, an analytics platform must also
be have a parallel architecture which may effectively ingest
streaming data. There are several proposed requirements
for a streaming data architecture, including the ability to
handle data imperfections, generate predictable outcomes,
and to guarantee data safety and availability [5]. Addition-
ally, the architecture should be automatically scalable and
fault tolerant for both software and hardware failures, par-
ticularly, it must not lose any event data under any circum-
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stance. Our architecture has the additional requirements
of ingesting data from heterogeneous sources and perform-
ing data transformations using different data pipelines. The
LAP fulfills all of the above requirements in its current ver-
sion with further refinements and additions planned for the
near future.

Details about the LAP are discussed in the following sections
including information about the standardized data format
which was used, IMS Caliper events, as well as specifics on
the LAP architecture and performance. Information regard-
ing future versions of the LAP is also discussed followed by
concluding remarks.

2. STANDARDIZED CALIPER EVENTS
With the continual adoption of digital education systems a
global standard for educational event data, which is gener-
ated from a large diversity of heterogeneous systems, has
become increasingly sought after. While there has been ad-
vancement in this area by the Tin Can API [1], the IMS
Global Learning Consortium has proposed a schema-driven
solution to this problem with their Caliper event spec [2].
JSON-LD (linked data) is used for the Caliper events as a
way to link specific, normalized fields within a set of events
[3]. Using the Caliper events, data from heterogeneous learn-
ing systems can be created, transmitted, and collected for
analysis in a global and standardized fashion.

Caliper events strive to create a generalized framework that
can be utilized by all types of learning events ranging from a
student using an interactive education tool, such as a learn-
ing game, to an educator recording attendance in their class.
The Caliper events are based on the data triple of “Actor”
- “Verb” - “Object”. As an example, the event for a stu-
dent submitting an assessment (homework, quiz, test, etc.)
would have the Actor be the student, the Verb be the sub-
mission of an assessment, and the Object would contain
information on the assessment being submitted, potentially
how long it took to complete.

In order to utilize the Caliper event spec, learning platforms
must be instrumented to create events when actions occur by
either students or educators. Currently the Connect and En-
grade systems are instrumented to to create Caliper events
when actions occur, and to send the events to the LAP.
Instrumentation is unique to the system in question and
greatly depends on how that system’s data is stored. In the
case of Connect, Caliper events are created through a series
of database triggers when actions are taken by students. The
database triggers are automated to create the Caliper events
using tables from their system databases when new infor-
mation is passed to the system from a user. Future plans
include instrumentation of several new external systems, al-
lowing for increasingly rich data in the LAP for analysis and
visualization.

3. ARCHITECTURE
Increasing instrumentation of sensors and digital media re-
quires streaming analytics architectures to analyze data in
real-time. Attention was paid to the development and design
of the LAP architecture to ensure that it met all require-
ments of a parallel streaming system containing both a data
store and an analytics engine. Key features include auto-

scaling fundamental architecture components with varying
load, fault tolerance for both hardware and software fail-
ures, and the ability to process data and have it available
for output API access immediately.

In the simplest of descriptions, the LAP is designed to:

1. Receive learning events from external applications through
an ingestion API.

2. Send raw events directly to long-term storage.

3. Validate each event for expected fields and types.

4. Process the events, which requires application depen-
dent data transformations.

5. Store those events in the data store according to ap-
plication dependent schema.

6. Query the data store and perform transformations and
aggregations as needed for the output API.

Figure 1 displays a high level view of the LAP architecture
with learning events from three separate external applica-
tions coming into the LAP. Once the events are received by
the LAP they are transformed according to an application
specific schema and stored in the data store. When a user
requests an insight visualization, the LAP output API is
called by the external application. This triggers the results
and analytics service to query the data store, aggregate and
transform the data as needed, and pass it to the insight ser-
vice where the data is used to build the appropriate insight
visualization which is then passed to the user.

The ingestion API and collection service are configured to
receive IMS Caliper events sent from external applications
through sensors which have to be implemented in those ex-
ternal applications. To maximize performance over high-
overhead HTTP, several events are sent simultaneously in
an event container. The number of events sent in a single
container can range from one to tens of thousands. Once
a container of events is received it is immediately sent to
a long term storage system for backup purposes. The con-
tainer is then opened and the events within are validated,
transformed into an application specific schema, and sent to
the data store.

The data store utilizes the non-relational database Mon-
goDB, which allows for great flexibility in data model schema.
Events from external applications are not guaranteed to
come into the LAP in chronological order so the data model
schemas were developed to create a deterministic data store
state from events coming in arbitrary order. The data model
employed for the current two applications consists of a two
schema model; one document type holds the student level
data and the other holds the class level data. Building of
the insight visualizations then requires the results service
querying N student documents for a class with N students,
and 1 document per class for a total of N + 1 documents.

The insight service is built external to the LAP to provide
the user with the requested analytical visualization. Once
the data store is queried and the appropriated documents are
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Figure 1: High level view of the LAP architecture. Learning events are passed into the LAP through the
ingestion API and visualizations ’insights’ are produced through the insight service calling the LAP’s output
API. Internally, the LAP consists of a collection service, a data store, long-term storage, and a results service,
which also performs analytics. Several instances of the collection and results services run in parallel.

returned, they are aggregated, transformed, and returned
to the output API to provide the client with data to build
the visualization. This process is very lightweight and fast,
allowing for quick feedback and response to the user who
has just finished an assessment.

The technology used for the LAP was chosen to be lightweight,
reliable, and adaptable for future system iterations. The
collection, results, and insight services were all built using
Node.js which allows for asynchronous communication run
in parallel across several service instances. The analytical
visualizations were built using JavaScript with AngularJS
and D3.js frameworks which provide fast, responsive, and
interactive interfaces that are customizable. The data store
was built using MongoDB with a three member replica set,
allowing for highly available data and low latency access
for both read and write operations. Amazon Web Services
(AWS) were used to host the LAP utilizing load balancing
technologies routed to EC2 instances. An AWS S3 bucket
was used for long-term storage of the raw event containers.
Details pertaining to the performance of the LAP as well as
future plans for the system follow.

4. PERFORMANCE
Performance is very important to the success of the LAP. It
is imperative that the LAP be able to ingest data from sev-
eral external systems during their peak times simultaneously
in a manner which does not delay the real-time analysis on
the output of the system.

In testing the performance of the LAP, two main points
within the system were identified as the potential bottle-
necks. The first of these points is the ingestion of events
from external applications into the LAP while the second is
the querying, aggregation, and analysis done by the results
service prior to returning data to the output API.

For the current two external systems sending data to the
LAP, our anticipated peak load is around 0.1 MB/sec. While

this load is not particularly large, future plans include in-
gesting events from many more external systems, so the de-
sired performance should easily be at least ten times larger
at around 1 MB/sec. To test the performance from event
reception to data store insertion, an automated script was
developed which creates 10 threads with each sending a se-
ries of containers with varying numbers of events to the LAP
running three instances of the collection service. The pro-
cessing time, from data being sent from an external appli-
cation to be inserted into the data store, was then mea-
sured as a function of number of events per container. Fig-
ure 2 displays the results of this test with collection rates
as MB/sec and the number of events per container ranging
from 1 to 1000. The results shown in Figure 2 are informa-
tive for a few reasons. First, it is clear that high collection
rates into the system requires more than one event to be
sent per container. In particular, the LAP can process 0.1
MB/sec or more if the events are sent with at least 4 per
container. To reach our desired bandwidth of ten times our
current peak, 1 MB/sec, requires sending about 75 events
per container or more with three collection instances. The
second realization from Figure 2 is that the collection rate
of the system somewhat flattens out between 500 and 1000
events per container, making it less efficient to process these
larger containers. This effect ultimately has to be weighed
against the network bandwidths in sending events from ex-
ternal applications and has not yet been tested. It should
also be mentioned again that these performance tests were
done with three instances of the collection service. Increased
rates could always be achieved by increasing the number of
collection service instances, but these tests were done to de-
termine collection rates for a static number of instances.

The second potential bottleneck in the LAP is the querying
of the results service and the load on the output API. Cur-
rently the LAP is in a trial mode with tens of thousands of
users. For this relatively low number of users the load on
the output API is not a major concern and detailed perfor-
mance testing has not yet been done. The implementation
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Figure 2: The collection rate of Caliper events, in
[MB/sec], processed by the LAP is shown as a func-
tion of number of events per container. 10 parallel
threads were used to send data to the LAP during
this test, simulating the load from several external
systems sending events simultaneously. The system
tested had 3 instances of the collection service op-
erating in parallel.

of auto-scaling within AWS, however, should easily handle
large spikes in front end usage during peak hours.

5. FUTURE VERSIONS
The current LAP is the first iteration of a production sys-
tem. It supports two external education systems, can sup-
port more than ten times the anticipated peak load, and
has a modest analytics layer within its architecture. The
next version of the LAP is currently being developed with
the goal of supporting many more external systems with to-
tals of tens of millions of users. In addition to increased
user load, the future plans for the LAP include a substan-
tial computational layer, opening up the possibility for richer
analytics, as well as an open API for third party analytics
to be done using LAP data.

The initial success of the current version of the LAP has
led to plans for instrumentation of several new educational
systems so their data may be ingested by the LAP. To be
able to handle the increased numbers of users with the LAP,
several changes and additions are needed. The most drastic
of these changes is switching to a completely AWS system,
fully utilizing Amazon cloud technologies [6]. Moving the
LAP to a full AWS stack will allow for massive scalability
and the ability to store data, perform analytics, and give
support to millions of students, educators, and researchers.
Further, future versions of the LAP will also have the ability
to perform more advanced analytics including predictive an-
alytics, machine learning algorithms, and large distributed
calculations and aggregations. Incorporating a distributed
calculation layer into the LAP will allow for a richer set of
analytics to be performed and thus give the ability for deeper
insight into large educational data sets.

Implementation of an open API for data consumption and

analytics by third parties is also planned for the LAP. One
of the intended features of the LAP is the lack of PII data
held within the data store. The de-identified of the LAP
data allows for third parties to ingest and do analysis on our
data without concern for privacy. Creating an open API for
the LAP will help push the fields of learning analytics and
educational science by allowing researchers greater access to
student and educator data.

6. CONCLUSIONS
We have built a platform able to ingest, store, and ana-
lyze data from external learning applications in a scalable
fashion. Two existing applications, Connect and Engrade
have been instrumented to create and send standardized
Caliper learning events to the LAP. Once received, the learn-
ing events are transformed within customized data pipelines
and stored within a fast data store, implemented using non-
relational MongoDB. Analysis is done on the stored learning
events, creating visualizations of educational insight for stu-
dents and educators. The architecture of the LAP allows
for just-in-time feedback with the insight visualizations to
its users. The current version of the LAP is able to process
and store education events ten times faster than is required
for peak usage by the current two applications interfaced
with the LAP. Future versions are planed for the LAP and
will include a complete backend stack which is hosted by
AWS and able to auto-scale across the entire platform. Ad-
ditionally, an advanced computational layer and open API
are planed for future versions of the LAP. It is our vision
that present and future iterations of the LAP may provide
the analysis, high quality educational data, and predictive
analytics to drive the next generation of education.
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ABSTRACT
Providing students with continuous and personalized feed-
back on their performance is an important part of encour-
aging self regulated learning. As part of our higher educa-
tion platform, we built a set of data visualizations to pro-
vide feedback to students on their assignment performance.
These visualizations give students information about how
they are doing compared to the rest of the class, and al-
low them to compare the time they spent on assignments
across their courses. Included in the feedback are ‘nudges’
which provide guidance on how students might improve their
performance by adjusting when they start or submit assign-
ments. In order to understand what nudges to provide to
students, we analyzed historical data from over 1.4 million
students on over 27 million assignment submissions to find
student performance trends. The data confirmed that stu-
dent performance significantly decreases when assignments
are started on the same day they are due and when they are
submitted after the due date. We used these findings and
the past and current performance of each student to display
nudges relevant for them in their visualizations, highlighting
actionable strategies for improving future performance.

Keywords
self-regulated learning; data visualization; data mining

1. INTRODUCTION
Self-regulation is a trait very often associated with highly
effective learners [6, 1]. Feedback is an important part of
the process of self-regulation, as it allows students to evalu-
ate their performance, to decide what actions might improve
their future performance and to make adjustments to their
learning processes [3, 4]. Feedback can be provided in a vari-
ety of ways, but it is especially effective when it is personal-
ized and given in near real-time. In this paper, we describe
a set of data visualizations we incorporated into our higher
education platform, Connect, to provide students with ex-
actly this kind of continuous, easy to understand feedback

on their assignments to encourage the development of self-
regulated learning.

Specifically, these visualizations allow students to see how
they are doing on assignments as soon as they are graded. In
two easy-to-understand visuals they can see trends in their
performance over the semester, compare their performance
to the rest of the class, and compare the time they spent
on each assignment across courses. In addition to this in-
formation, we use ‘nudge analytics’ to provide personalized
messages to encourage students toward actions that might
improve future performance based on patterns in historical
data [2, 5]. The word ‘nudge’ means to encourage someone
to do something, and nudge messages are an unobtrusive
way to push students toward better behavior, while leaving
the choice to change up to them.

To find relevant nudges, we performed exploratory data anal-
ysis on eight months of student submissions to our higher
education platform, including over 1.4 million unique stu-
dents and over 27 million assignments. Our goal was to find
trends in the data that identify factors that lead to decreased
performance for most students. In this paper, we explore
the assignment submission trends by day of semester, day
of week, hour of day, and started and submitted time.

2. CONNECT INSIGHT FOR STUDENTS
McGraw-Hill Education offers a teaching and learning envi-
ronment, called ‘Connect’, for higher education. This envi-
ronment allows instructors and students to manage assess-
ments, and access ebooks and other instructional materials.
As part of Connect, we built a set of visualizations called
‘Insight’ to help students understand their performance on
assignments. These visualizations provide important feed-
back to students as soon as assignments are graded in a
way that is easy to understand. The interactive nature al-
lows students to make decisions about what actions might
improve their future performance.

The example visualization in Figure 1 answers the question,
‘How am I progressing?’ and shows a student their scores
on assignments in a particular class over time. The yellow
trend line shows the students scores and the blue trend line
shows the class average on assignments. Clicking each data
point opens a right-hand panel with more details, including
the nudges toward better performance if applicable. In the
following sections, we will describe our analysis for deter-
mining these messages in more detail.
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Figure 1: A visualization to answer the question ‘How am I
progressing?’

3. EXPLORATORY DATA ANALYSIS
In this section, we describe our analysis of eight months of
historical data from assignment submissions. The goal of
this analysis is to find trends in student behavior that neg-
atively influence performance. This will help us identify the
nudges that are supported by the data, and can be used to
encourage students towards performance increasing behav-
iors.

We used historical data collected by Connect during the
spring and summer semesters of 2014. This included data
for 80,000 class sections taught by 29,000 instructors to
1,400,000 students. The result is over 27 million assignment
submissions.

The data we used for our analysis was given to us by the
Connect team from their database designed for end users,
and it was not optimized for analytics. Instead, we used
the existing fields for assignment submissions, including the
assignment type (homework, quiz, exam, etc), start date,
completion date, due date and outcome. From this data
we computed a number of derived fields, including the hour
of the day, day of the week and, day of the semester an
assignment was submitted. We also computed the number
of minutes before the due date each assignment was started
and submitted.

Given these attributes, we focused our analysis on trends
in assignment started and assignment submitted times. In
the following sections we explore the assignment submission
trends by day of semester, day of week, hour of day, and
started and submitted time.

3.1 Day of the Semester
First we asked the question, does performance decrease dur-
ing the semester? To start, we looked at the percent of
assignments submitted on each day in our data set. This
shows an interesting repeating pattern of the highest num-
ber of submissions on Monday and the lowest number of
submissions on Saturday. It also shows a drop in submis-
sion volume in the middle of the spring semester, which can
likely be explained by the week long spring break that occurs
during this time period. Other than this decrease, submis-
sion volume remains consistent over both the spring semester
and summer semester.

In order to understand student performance, we looked at
the average score for assignments submitted on each day
in our data set. We see a trend of decreasing performance
toward the end of the spring semester (starting just before

(a) A histogram of the percent of assign-
ments submitted on each day of the week

(b) A plot of the average score for all sub-
missions for each day of the week.

Figure 2

day 100). We see a similar downward trend for scores toward
the end of the summer semester as well.

Unfortunately, there is not a clear delineation between the
spring semester and the summer semester, and between the
summer semester and the following fall semester, as different
schools schedule classes over different time periods. Infor-
mation on when classes start and end is not included in our
data set, so further research is needed to confirm that this
trend exists on a normalized data set.

3.2 Day of the Week
The previous analysis showed that performance decreased
toward the end of the semester, but we also want to know,
does performance decrease on any day of the week? Figure
2a shows the percent of assignments submitted on each day
of the week. This confirms what we saw in the previous
section, that the most number of assignments are submit-
ted on Monday, while the least number of assignments are
submitted on Saturday. Figure 2b shows the average score
for assignments submitted on each day of the week. As ex-
pected, this shows that there is no performance advantage
to submitting on a particular day of the week.

3.3 Hour of the Day
Following this analysis of scores over the semester and week,
the obvious next question to explore was, does performance
decrease when assignments are submitted at particular times
of the day? Figure 3a shows the percent of assignment sub-
mitted during each hour of the day. This shows that most
assignments are submitted between 12pm and 12am, with
an increase around 8pm. While submissions do decrease in
the early morning hours, there are still many submissions
between 12am and 8am.
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(a) A histogram of the percent of assign-
ments submitted during each hour of the
day

(b) A plot of the average score for all sub-
missions during each hour of the day

Figure 3

Figure 3b shows the average score for assignments submitted
during each hour of the day. The average score is similar
between 10am and 11pm, but steadily decreases from 11pm
to 6am before increasing again. The decrease in score is
significant, going from an average score of 89 at the peak
hour to an average score of 46 at the lowest hour.

Unfortunately, this data represents students in many differ-
ent timezones, but the the date fields are all represented in
Eastern local time, where the platform servers are located.
This means that we cannot draw the conclusion that sub-
mitting in the early morning hours leads to lower scores from
these plots. Further work is required to obtain student time
zone information and to clean the data by adjusting dates
to each students local time.

3.4 Start and Submit Time
We also looked at when a student started and submitted as-
signments in relation to the due date to answer the question,
does assignment start time or submission time affect perfor-
mance? Figure 4a is a histogram showing the percent of
assignments started each day before and after the due date.
The zero on the x-axis represents the deadline, so the bar
between -1 and 0 represents all of the assignments that were
started the same day they were due. The interesting trend
in this plot is that most late assignments are started the day
after the due date. This means that most late assignment
could be avoided without drastic behavioral changes.

Figure 4b shows the average grade for assignments started
at different points before and after the due date. The due
date is in the center, and each data point to the left and right
represents a 1-hour range. So the data point at the due date
represents the average score of all of the assignments started

(a) A histogram of the percent of assignments
started each day before and after the due date.
The zero on the x-axis represents the deadline.

(b) A zoomed in version of (b) where each data
point represents a 1-hour range.

(c) A zoomed in version of the left half of (c)

Figure 4

within the last hour before the due date. The point just to
the left of the due date represents all of the assignments
started between 1 and 2 hours ahead of the due date, and so
on. In total, the plot shows one day before and after the due
date. This shows that there is a decrease in average score as
assignments are started closer to the deadline.

For a more detailed view, Figure 4c is a zoomed in view of
Figure 4b , showing just the 24 hour window before the due
date. This makes it clear that average scores significantly
decrease from a high around 90 to just below 75 when started
within an hour of the due date.

Plots for submit time show similar trends and are omitted
due to space constraints.

The previous analysis was done using our complete data set,
but we also wanted to explore whether these trends hold for
each assignment type. We reproduced the plots in Figure
4 for all 14 assignment types used by our platform. We
found that these trends hold for homework, quiz and exam
assignments, but not all assignment types. One example
where it does not hold is for LearnSmart assignments. This
is most likely because Learnsmart assignments are used to
drill students on a set of topics, and take a shorter period
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of time to complete. Students can start them the day they
are due and have plenty of time to complete satisfactorily.

4. DETERMINING DATA-DRIVEN NUDGES
We used this exploratory analysis to determine the nudge
messages used in our visualizations. Based on the analy-
sis above, conclusions could not be drawn about the day of
the semester or hour of the day an assignment is submitted
without further data collection and research, so these mes-
sages come from the trends seen in our exploration of start
and submission time. It is clear that average scores decrease
significantly as assignments are started and submitted closer
to the due date and after the due date. Messages to students
about when to start and when to submit are both similar in
spirit, so we decided to focus our messages on starting early
and avoiding submission after the due date.

We include four types of messages in our visualizations.
When a student submits an assignment after the due date,
they see the following message:

‘Turning this assignment in late cost you <x> points! Stick
to deadlines to help bump up your scores.’

and the amount of time the assignment is late is displayed in
the right hand panel. When there are multiple late submis-
sions over the semester, they will also be shown how many
have been submitted late and the following additional mes-
sage:

‘Looks like a pattern is emerging. Better time management
can help you meet deadlines.’

We also have a pair of messages focusing on starting as-
signments early. When students start a homework, quiz or
exam within one day of the due date and they do not re-
ceive a score of 90 or better, they will receive the following
message:

‘Starting more than one day before the due date could result
in better grades. Give yourself more time!’

If they repeatedly start assignments late, then they will see
how many assignments have been started late and the fol-
lowing additional message:

‘Late starts can lead to lower scores. Start assignments early
and give yourself more time to perform better.’

These messages are designed to nudge students toward ac-
tions that will improve their performance. By providing
explicit feedback about how many points they lost by sub-
mitting late, when they started assignments relative to the
due date, and highlighting repeating behaviors, these mes-
sage encourage students to evaluate their current actions and
provide suggestions for adjusting their behavior to increase
future performance on assignments.

5. CONCLUSIONS AND FUTURE WORK
In this paper we present an exploratory analysis of assign-
ment submission data to find trends in student behavior that
lead to increased performance. The data confirmed that stu-
dent performance significantly decreases when assignments
are started on the same day they are due and when they are
submitted after the due date. We use these trends to develop
data-driven nudges for students, which encourage behaviors
that will help them achieve higher scores on assignments.

Students see these messages when they start assignments on
the same day as the due date, submit after the due date or
repeatedly start or submit assignments late. These nudges
are incorporated into a set of visualizations as part of our
higher education platform, aimed at providing continuous,
personalized feedback to students on their assignments and
encouraging self-regulated learning through highlighting ac-
tionable strategies for increasing performance.

Our analysis revealed several promising avenues for future
research. First, it would be interesting to understand why
there are two particular assignment types that are submitted
much less often than other types. This information could be
used to encourage students to complete these specific assign-
ment types or to alert instructors that these assignments are
not being completed at an alarming rate and perhaps help
them adjust their course to encourage completion.

We also saw potential trends in the analysis of the day of the
semester assignments are completed, but we need to collect
data on course start and end dates in order to clean the data
set. This could lead to nudge messages reminding students
to submit work as the semester progresses and scores tend
to decrease. Similarly, we need to collect time zone informa-
tion for each student so dates can be adjusted to local time
for the analysis of the hour of the day assignments are sub-
mitted. This could lead to messages that remind students
that submitting work in the early morning hours tends to
lead to decreased performance.

In addition to these areas of future work, it would be in-
teresting to do a long-term study looking at the affects of
using our platform with nudge messages to understand how
it affects student behaviors compared to a system that does
not provide nudge messages.
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ABSTRACT 
The field of education is undergoing fundamental change with the 
growing use of data. Fine-scale data collection at the item-response 
level is now possible. Xerox has developed a system that bridges the 
paper-to-digital divide by providing the well-established and easy-to-
use paper interface to students, but digitizes the responses for 
scoring, validating, reporting, and managing data using a range of 
digital technologies. The Ignite™ system supports written responses, 
shading, connecting lines, multiple choice selections, and other 
question types.  For some users, monitoring is at a very fine-grain 
level in both time and skill, while for others the data is used for more 
summative evaluations and strategic planning; one users’ details may 
be another user’s overview. All the reports presented in this 
document use the same basic atomic data elements and associated 
meta-data. The hierarchical nature of the organization of users 
requires that these atomic elements be combined in different ways 
for specialized visual representations, dependent upon the needs of 
the user. 

Keywords 

Visualization in Education, Application, Data Transformation and 
Representations, Field Studies, Ethnography. 

1. INTRODUCTION 
Technology and regulations regarding education have increased the 
availability of student data as well as the need to track student 
performance over time. No Child Left Behind [7], Race-to-the-Top 
[9], and the Common Core State Standards [3] are all efforts within 
the United States that have endeavored to make the tracking of 
student learning growth more measurable. Despite the increase in the 
access to, and need for data and data analysis, the abilities for many 
educators to make use of available data has not kept pace with the 
need [5]. Data analysis requires knowledge and tools to which not all 
educators have easy access [13]. Enabling data to be visualized in 
ways that are familiar to educators will help encourage the use of 
student data to inform student learning and instruction. This paper 
provides one example of how reporting student data in a user 
friendly form, for many levels of users, can help educators to find 
more effective uses for their student data. 

2. BACKGROUND 
2.1 Teachers Changing Their Instruction and 
Their Needs 
Teachers have begun transitioning from curriculum-based instruction 
to student-centered instruction, which shifts the focus to assessing 
students at the beginning, middle and end of an instructional unit. In 
this way, teachers learn what the students already know about a 
particular subject from the start, where to focus needed instruction, 
and collect data throughout the process of their learning growth.  

To help support the shift to utilizing student data to inform day-to-
day instruction in ways that fit more closely into educator’s current 

work processes, Xerox has created the Xerox Ignite™ Educator 
Support System [16]. Ignite™ is a web-based teacher tool for 
printing, scanning and scoring a variety of hand-marked student 
work and also manages the student data and produces personalized 
reports. Student work is generally an assessment (e.g. a quiz or test).  

The item-response level of information is defined as an atomic unit: 
“A student is presented an item on a date by a teacher and provides 
some type of response.” Each part of the atomic element contains 
additional metadata. All the reports present views of the same 
underlying data, but with differing levels of aggregation, dependent 
upon the needs of the user. This paper describes these differing user 
requirements and how a set of consistent and connected graphical 
reports can scale across the needs of these different users and their 
needs for data. 

3. RELATED WORK 
Data and data mining usage in the education domain (educational 
data mining or EDM) is relatively new. The field has grown rapidly 
for just over a decade [1].  

There is a desire that the use of data will foster improvements at all 
levels of education. The desire for data-driven improvement in 
learning is countered by a concern that the use of data by itself will 
lead to too much of a focus on testing rather than teaching [5]. Over 
the years the focus of research has moved more into the field of 
prediction [2], and it may be that the real value will come over time 
when enough longitudinal data is available. 

Public educational institutions have a hierarchical nature. In the 
United States primary schools there is a hierarchy of superintendents, 
principals, team leaders, and classroom teachers all making 
decisions. This hierarchy of users share common tasks including the 
analysis and visualization of data, providing feedback to support 
instructors, recommendations for students, and grouping of students, 
among others. The hierarchical nature of the users within the 
educational organization presents interesting challenges in both 
EDM [2] and in the use of the data. Teachers want easy-to-use 
systems, with a “desire to see assessment results at the level of 
subscales (groups of test items) related to specific standards and at 
the level of individual items in order to tailor instructions.” [6]  
“Decisions are made at all levels of school organization. The 
superintendent makes decisions concerning a school district's goals 
and strategies. Then principals make tactical decisions concerning 
those goals and strategies to accomplish them in relation to their own 
buildings. Department heads and team leaders then make curricular 
and operational decisions to carry out the day-to-day activities of a 
department or unit. And, finally, classroom teachers make decisions 
in their classrooms”. 

Others have investigated the use of visualization in higher education 
situations with limited success [8]. The use of on-line learning tools 
has led to visualizations of curriculum [4], the design of models of 
student learning [10], the use of graph structures to understand 
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patterns of student enrolment [14] and the use of a small set of static 
and interactive visualizations of user data [11].   

4. USERS AND USER REQUIREMENTS 
4.1 Ethnographic Study of Pilot Deployment 
During a technical pilot of the Xerox Ignite™ application, four 
elementary schools in two school districts participated. An 
ethnographic study was conducted to observe teachers’ processes to 
identify challenges with using the pilot tool, and to collect user 
requirements and needs for the system. Observations and open-ended 
interviews [12] were the primary data collection methods to study 
teachers’ assessment practices. Many teachers expressed a desire to 
know how their students were performing in the skills being taught, 
and wanted to understand how well the students understood the 
skills.  

Talks with principals and school district administrators, including 
district data specialists, uncovered another level of requirements [29] 
relating to trend analysis, student growth over time, class-to-class 
and school-to-school comparisons, and progress monitoring. 
Principals and administrators expressed a need to see student data at 
the grade level, reaching from single classrooms, to all classrooms 
for a single grade in a single building, to entire buildings or the entire 
district.  

Just as the assessments are used for different purposes, the users of 
reports have different needs. The users have been segmented into 
three major groups: A single teacher & class, principal or lead 
teacher with several classes within a school, and a district 
administrator looking across multiple schools in the district.    

4.2 Single Teacher / Class 
A teacher working with a class, or a single student in a class, is the 
lowest level of granularity within the current scenario. In this 
situation a teacher has one of two major goals: assessing the success 
or direction of a lesson or helping a single student. 

To assess the success of a lesson plan, a teacher needs to see the 
class average, but also details about the mastery of different skills 
within that teaching unit. In Ignite™, the teacher can group and sort 
the questions on an assessment report according to the metadata 
related to the skills connected to each question.  

To help an individual student, the teacher, student, and often parent 
need fine-scale information about specific mastery of skills. The 
teacher must be able to communicate with the student and parent on 
specific problem areas that need immediate work. 

The data markers for this type of user must reveal information about 
the individual student, and the specific question or skill.  Reports 
must reveal the data at the level of the basic atomic data unit, to the 
level of every item and response by a student to that item. 

4.3 Several Classes within a Grade or School 
A school principal or lead teacher within a grade or subject area 
needs a middle level of data aggregation. A principal is in charge of 
an entire school building, typically covering several grades. A lead 
teacher is typically focused on a single grade, or a single subject 
within a grade. Users at this level are typically looking at the overall 
progress of a cohort and the management of class or group 
affiliations of students. The goal is to best assign students to classes 
or groups and to insure that these classes or groups are on track to 
meet marking period and yearly goals. 

The data markers for this type of user need to reveal information 
about the class statistics and summary information about individual 
students. Reports for this level can also reveal the data so that 
cohorts can be compared, and individual outliers within classes or 
groups can be identified. Skill proficiency can be shown across time 
and across multiple classes within a given group giving a wider view 
of proficiency trends. The skills are grouped at the larger unit or 
quarterly time intervals, and not at the individual skill code level.  

4.4 Across Schools within a District 
District administrators analyse data to determine long-term trends 
and comparisons, to report to state agencies, and to evaluate 
curriculum. Users at this level are more focused on summative and 
high-stakes assessments. These users look across schools, and 
compare their own district with other districts in the area and those 
with similar social and economic demographics. 

The data markers for this class of user need to reveal information 
about the overall aggregate status of a district or school, with visual 
markers at the grade, teacher, or building level. Information about 
individual students is not identified or required. Trends for skills are 
most often limited to subject and grade level expectations. 

5. DESIGN CONSIDERATIONS 
Design choices were made in response to the user requirements 
discussed above.  These design choices fell into two major areas: 
The general usability or workflow, and the visual attributes of the 
reports.  

5.1 Report Selection Workflow 
To produce a report, the user needs to select both a data set and a 
report type.  These selections are not independent; as not all data can 
be rendered as any report, and each report needs an appropriate set of 
data. A linear sequential method was developed to guide the user 
through the report selection process.  

The logical concept of the selection process is shown in Figure 1.  
The first step is the top row of the selection space where the user 
specifies “Who?” i.e. the target user and student aggregation level of 
the report. The second step is the left most column of the selection 
space where the user specifies “What?” i.e. how many assessments 
are to be viewed in the report.  The third step of the selection process 
defines “When?” i.e. is this report for a single instance, or does it 
cover multiple recurrences. These three linear sequential steps allow 
the user to navigate simply through a three-dimensional specification 
space ending with a choice of just a few different eligible reports.  

 (1)Who? 
Teacher / 
Class 

Principal 
or Lead 
Teacher / 
Several 
Classes 

District/ 
Multiple 
Schools (2)What? (3)When? 

Single 
Assessment 

Once 
• Matrix 
• Table 
• Image 

• Matrix 
• Bar 

• Distribution 

 Over 
Time 

• Matrix 
• Line 

• Grouped 
Bar 

• Lines 
• Lines 

     

Portfolio of 
Assessments 

Once • Bar 
• Bar/ 

Scatter 
• Distribution 

Over 
Time 

• Lines • Lines  

 

Figure 1 - Report selection table 
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The layout of the report selection table shown in Figure 1 also aids in 
understanding the automatic aggregation of data according to user 
and data selection.  The different user views for the case of 
aggregating data about a single assessment given once are shown in 
Figure 2.   In all cases, that same single assessment is chosen, but the 
report is different depending upon the scope of classes selected.  A 
teacher meeting with a single student is most interested in the report 

on the left; a table report that provides detailed information about 
each question.  A teacher assessing the progress of an entire class is 
most interested in the report in the middle; a matrix heat map. A 
district administrator, looking at several classes is most interested in 
the report on the right; a distribution report that provides information 
about school and class averages, and some notion of the distribution 
of scores within each class and range of scores within each school. 

The different user views for the case of aggregating data about a 
portfolio of assessments are shown in Figure 3. In all cases, the same 
set of assessments is chosen, but the reports are different depending 
upon the scope of classes selected. A teacher meeting with a student 
and parent is most interested in the report on the left; a single bar 
chart report that provides a student’s performance across a range of 
skills, at a single point in time. A group of teachers meeting to 
discuss the grouping of students is most interested in the report in the 
middle; a bar chart report that provides information about the class 
average, but also the score of each student. A district administrator, 
looking at several classes is most interested in the report on the right; 
a distribution report that provides information about school and class 
averages, and some notion of the range of scores within a class. 

6. REPORT DESIGNS  
There are 6 different basic report styles: (1) image, (2) table, (3) 
matrix heat map, (4) line, (5) bar, and (6) distribution.  Where 
appropriate, report styles were customizable to properly display the 
defined data set selected by the user. 

6.1 Image 
The image report is an image of the scanned and validated 
assessment. This report is the only portrait mode report, and has no 
header or footer information to maximize the actual assessment 
image region. Two examples of this report type are in Figure 4. 

The visual representation exactly matches the physical paper version 
of the assessment. 

The green highlight areas are those questions that were validated by 
the teacher as correct. Responses that were validated as incorrect 
were shown with a red overlay, skipped responses with a yellow 

overlay, and those validated for partial credit were shown in blue.  
The color coding served as a pre-attentive signal to the correctness of 
the student’s answer. 

This report is used by a teacher in individual consultations with a 
student and/or parent. It is a record of the marks the student made on 
the assessment, and how the teacher validated each question.  

6.2 Table 
The table report is a listing of the correct, partial, skipped, and 
incorrect responses to a single assessment, by a single student.  The 
questions are placed in the column corresponding to the scored and 
validated response and include the question number, the question 
description (obtained from metadata), the number of points the 
student earned for the question, and the total number of points 
possible on the question.  The data is presented at the fine-scale 
atomic level, with the use of metadata. By using the metadata about 
the question, the report is applicable to any type of question. If the 
question description metadata is used to encode specific skill 
information, then a quick visual scan down the list reveals common 
skills that have appeared in a single column, or the columns could be 
sorted according to some value(s) in the metadata. 

This report is used by teachers with students and parents. It is easy 
for students to understand that their goal is to make all the questions 
appear in the left-most (correct) column.   

6.3 Matrix heat map 
The matrix heat map report is a visual summary of the responses to 
each question on an assessment, by each student.  The data for each 
student appears in a row, and the data for each question appears in a 
column. At each intersection point there is a graphical representation 
of the student’s response to that question. 

Sorting the rows and columns of the matrix provides the user with a 
quick visual assessment of several different stories [15]. By sorting 
the rows in order of student score, the teacher is able to quickly 
discern who has mastered the skills, and who has not as well as 
identifying which areas where most students are struggling. By 
sorting the columns in order of the correct number of student 
responses, or sorting by the metadata associated with questions, the 
teacher can quickly see what groups of questions or skill sets were 
successfully mastered by the class and which were not. If a particular 
set of question were not mastered by the class, the teacher now has 
this additional piece of information and can decide upon the need to 
re-teach a particular set of skills to that subgroup of students.  

6.4 Bar 
The Bar Chart is used in several instances. For consistency, all bar 
charts use the vertical axis to represent score. The horizontal axis can 
be categorical values of assessments, students, classes, or dates. The 

 

Figure 4 - Image reports where green indicates the area of a 
correct answer and red is an incorrect answer 

 

 

Figure 3 Flow of data aggregation and report type for a 
portfolio of four assessments.  In moving from left to right 
the student specific information is lost and higher level 
distributions are presented. 

 

 

Figure 2 Flow of data aggregation and report type for a 
single assessment given once.  In moving from left to right 
the question detail is lost and the higher level averages are 
presented. 
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bars can be singular or grouped, depending upon the amount of data 
to be displayed. 

6.4.1 Comparing Students or Classes over time 
The collection of scores for a single assessment repeated over time 
can be represented using a bar chart. In this case, the x-axis is a 
categorical list of students or classes. There is a group of bars for 
each student or class, and a bar of each instance in time. 

6.4.2 Portfolio of Assessments 
The portfolio of assessment scores for a single student, a single class, 
or all the classes within a school all use similar representation. The 
common representation provides users with a common mental model 
for scaling across such aggregations. In all these cases, the x-axis is a 
categorical list of assessments. 

For the case of a single student, there is one bar for each assessment.   

For the case of a single class, there is one bar for each class average 
score, and the distribution of student scores are overlaid as a jittered 
scatter plot, where the x-jitter is bounded to the width of the 
corresponding bar 

6.5 Line 
The line chart is used only for trends over time. For consistency, all 
line charts use the vertical axis to represent score. For a single 
assessment, the score can be absolute or percentage, and may be 
aggregated at the student, class, or school level. In all cases, the x-
axis is a categorical list of times, e.g. the date each assessment was 
given. These reports are used to view the progress over time of one 
or more assessments. 

When viewing the portfolio of results over time, each line represents 
a different assessment. The points on the line are the relative score 
achieved on the given assessment at that point in time. The score can 
be a single student, aggregated over a class, or over a school. 

6.6 Distribution   
Reports showing a statistical summary of distributions typically are 
used only by district level users. These types of reports use the 
greatest amount of aggregation of atomic data elements. For 
consistency, all distribution charts use the vertical axis to represent 
score. The x-axis is a categorical list of assessments or schools. The 
markers are groupings of box and whisker plots.  

 

7. CONCLUSION 
We designed and deployed a system that implements a large and 
comprehensive set of reports for use by educators at different levels. 
The system was designed based on ethnographic studies and iterative 
participatory feedback from users, as well as subject matter experts 
on staff. The novel aspect of this work was the creation of a 
complete system that bridges the paper-digital divide, offers views 
into the data at different levels of granularity and aggregation, and  
scales to match a user’s needs and work processes while preserving 
similarity in the selection workflow and report design.  

The reports all used the same underlying fine-grain data element at 
the item-response level by each student, but aggregate the data 
differently dependent on the user’s needs. Users included teachers-
students-parents, lead teachers or principals, and district level 
administrators. These users had needs that required scalability thru 
several levels of data aggregation.   

Report designs focused on the re-use of basic design concepts across 
the different visual representations, thus allowing users to more 
easily traverse the report space by learning a common set of patterns 
and styles. The report selection process follows a linear progression 
of selecting the collection of students, the collection of item-
responses, the time, and finally any visual representation options for 
the data. 
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ABSTRACT
Student login data is a key resource for gaining insight into
their learning experience. However, the scale and the com-
plexity of this data necessitate a thorough exploration to
identify potential actionable insights, thus rendering it less
valuable compared to student achievement data. To com-
pensate for the underestimation of login data importance,
in this paper we performed an exploratory data analysis
of a large educational dataset consisting of 100 million in-
stances of login data from 1.5 million unique students who
attempted 783 thousand assignments. The data were from
a McGraw-Hill Education web-based assessment platforms
called Connect. Different data mining methods were em-
ployed to answers our initial questions regarding students’
login behavior. Most of the findings were consistent with
the intuitive expectations of student login patterns such as
a considerable decline of activity on Saturdays, a visible peak
on Sunday evenings, a high activity in September and Febru-
ary, and an increased activity toward later hours of the day.
However, we also discovered an unexpected result while in-
vestigating the effects of the login activity, the performance
scores, and the attempts. Surprisingly, this analysis showed
a high positive correlation between login activity and per-
formance scores, only up to a certain threshold. This pro-
vided us a new hypothesis on student groupings, which we
explored through a cluster analysis. As a result of our ex-
ploratory efforts, a significant amount of patterns emerged
that not only confirmed previously set forth expectations but
also provided us new hypotheses, which can be leveraged to
improve student outcomes.

Keywords
Exploratory data mining, assessment platform, clustering,
log data, pattern & trend mining

1. INTRODUCTION
An increasing number of higher education institutions are
incorporating online course management platforms, which
creates a tremendous opportunity for monitoring learners’
academic activity. These web-based learning environments
capture immense amounts of login data that could be used
for student monitoring and profiling ([11]). Educational lit-
erature suggests that monitoring students’ academic activity
is a key to a more effective and higher quality education ([2],
[3], [7], [8]). Furthermore, research shows that college stu-
dents would benefit from opportunities of introspection and
cognitive monitoring of their progress in order to engage in
careful academic planning ([1]). Hence, given its scale, these
login data are a promising resource for shedding light onto
students’ academic behavior.

In this paper we explore login data from a McGraw-Hill Edu-
cation’s (henceforth MHE) web-based assessment platform.
These data can serve as a basis for instructors’ personalized
intervention programs and feedback for student efforts to-
ward self-regulated learning. While interest in login data
analysis has been continuously increasing, there is no stan-
dardized way of analyzing this type of data ([9]) due to diver-
sity of the data and uniqueness of research questions. Hence,
we conducted exploratory data analysis without setting a
priori limitations or hypotheses on our data. In Sections 2
through 4, we discuss our methods with detailed descriptions
and their findings. Section 5 contains discussions about our
results and conclusions along with future work.

2. METHODS
2.1 Participants and Materials
Our research data is collected via one of the MHE assessment
platforms called Connect (http://connect.mheducation.
com). Connect is a higher education web-based assessment
and assignment platform, which provides students an online
environment to do their coursework and logs user activity in
order to provide feedback and support to its user needs.

In this paper we explored 100 million instances of user login
data obtained from Connect between June of 2013 and June
of 2014. For this analysis, we used data such as students’ lo-
gin dates, total number of logins, number of attempts on an
assignment and assignment score. Depending on the anal-
ysis, some of these data were aggregated based on time or
grouped by the unique students.
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2.2 Procedures and Methods
To extract the necessary data for our analyses, we used Ora-
cle’s procedural language extension for SQL (i.e., PL/SQL)
[4] and Python programming language [13], along with the
necessary Python libraries to query, wrangle, clean, plot,
and explore our login data. Our data contains the following
attributes: student related data (e.g., student ID, student lo-
gins) and assessment related data (e.g., number of attempts,
assessment score, number of attempts).

3. LOGIN BEHAVIOR ANALYTICS
3.1 Login Behavior
In this section we investigated the trends related to student
logins. Figure 1 visualizes the overall pattern of student
logins over the days of the week. The red line shows the
average number of logins for any given day. This analy-
sis validates the expected pattern of decreasing activity on
Saturdays and increasing activity on Sunday evenings. This
shows students’ tendency to stay away from their homework
assignments on the weekend until late Sunday when they at-
tempt to prepare for the week. This finding is not surprising,
in fact, it confirms the intuitive expectation of student aca-
demic activity on weekends vs. weekdays. If investigated
further (i.e., A/B testing), this information could provide
a basis for notifying students with customized and timely
recommendations via Connect.

Figure 1: Logins by the day of the week. X-axis = Day
of the week from Monday to Sunday; y-axis = Logins (in
millions).

Next, in Figure 2 we investigated the number of logins per
day. While the overall pattern of logins increasing in Fall
through Spring and decreasing in Summer seemed very rea-
sonable, the significant spike in Spring of 2014 seemed out of
ordinary. To understand this unusual pattern, we requested
more information from the Connect marketing team who
explained that the spike in the Spring of 2014 is congruent
with the new marketing effort making Connect assignments
mandatory portion of students’ coursework. This finding
provided a data grounded confirmation of Connect team’s
marketing efforts.

4. PATTERN MINING
& STUDENT PROFILING

For the analyses in this section, we used the average num-
ber of logins per assignment (henceforth logins), the aver-
age score per student (henceforth score), and the average
attempt per assignment (henceforth attempt). In this sec-
tion, we present our analysis of comparing the student login
data with students’ scores on assignments.

Figure 2: Logins by the month. X-axis = Days in months
from 01/01/2013 to 06/25/2014; y-axis = Logins (in mil-
lions).

4.1 Login vs. Score Trends
To continue our data explorations, we decided to further
investigate the potential patterns in the student login and
student assignment score data.

4.1.1 Data Preparation
For this analysis, we looked at a total of 1.5 million users’
assignments scored between June 2013 and June 2014. For
each user, score, login and total number of attempts were
normalized against users’ total number of activities. Fur-
ther, we eliminated some of the outliers by excluding the
users with 1 or no attempts and eliminated users with more
than average 50 logins which removed 100,000 users’ data.
On average, students login 5.5 times, have 1.03 attempts
and have a score of 53% per activity.

4.1.2 Data Analysis
We plotted student logins per assignment vs. student’s me-
dian score (see the green line in Figure 3). In this plot, we
used the median score instead of the mean of the scores in
order to account for the high variability of the distribution of
scores. This figure shows that student median score grows
as the number of logins increases. However, after a cer-
tain threshold, the score tends to decrease as the number of
logins per assignment increases, thus showing the counter-
productivity of the login activity. This contradicts to the
intuitive assumption that more logins result in a better aca-
demic performance.

To further explore the relationship between login and scores,
we performed a piecewise linear regression to identify pos-
sible segments in the data. Fitting a single regression line,
the standard error (SE) of estimate with one regression line
was σest=18. The SE for a model with two regression lines
resulted in σest=12.5. We also tried fitting three regression
lines through, which resulted in a higher SE of σest=16.8.
Therefore, we used a model with two regression lines (see
Figure 3). This resulted in a break at i=4 (i.e., Segment 1
= 0:4 and Segment 2 = 5:50). This suggests two distinct
segments in the data. In the first segment, as the number
of logins increase, the performance improves (slope = 6.48;
correlation = 0.99). However, after a certain threshold, 4
logins, the scores plateaus, and gradually decrease as the
logins increase (slope = -0.45; correlation = -0.93). This
hypothesis is further explored in the next section through
cluster analysis.

4.2 Student profiling
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Figure 3: Piecewise linear model. X-axis = Number of
logins per assignment; y-axis = Median score.

4.2.1 K-Means Clustering Method
Following the hypthesis formed in the previous section, we
explored student login patterns through k -means cluster-
ing. In k -means clustering, data is partitioned into k clus-
ters where each observation is assigned to the cluster with
the nearest mean ([6]). The clustering process starts by
choosing k random observations as initial cluster centroids.
Thereafter, each observation is assigned to the nearest cen-
troid and the new centroids are recalculated using the av-
erage of the data points in each cluster. We selected Eu-
clidean distance as the distance metric in k -means clus-
tering ([5]) where within-cluster sum of squares (hereafter,
WCSS) is the cost function. Representing the data as a set
of N observations {x1, x2, , xn}, where each observation is
a D-dimensional vector of D attributes, k -means clustering
partitions N observations into k clusters {c1, c2, , ck} where
WCSS is minimized as:

argmin

K∑
k=1

∑
X∈ck

‖ X − µk ‖2

where µk is the mean of points in ck. To accommodate the
scale of our dataset, we have selected k -means clustering
method due to its computational speed and efficiency com-
pared to hierarchical clustering. In addition, k -means clus-
tering is a robust approach, which results in non-overlapping
clusters that are very easy to interpret. We have used the
Elbow method ([12]) to identify the optimal number of clus-
ters. In this method, average WCSS is measured as the
number of clusters increase. Having more clusters results in
smaller distances from centroids and hence a smaller aver-
age WCSS. However, the amount of drop is not constant as
the number of clusters increase and the decrease in average
WCSS flattens at a certain k value. This value, called the
elbow metric, creates a break in the elbow graph and is a
good measure for identifying optimal number of clusters.

4.2.2 Clustering Results
In this analysis, we used the same data aggregations for stu-
dents’ login, score and attempts as described in the begin-
ning of this section to explore student groupings according
to their login behavior. The elbow method is used to decide
an optimum number of clusters. Figure 4 shows the average

WCSS value as the number of clusters increases from 1 to
9. The graph nearly flattens after k equals to three, thus
suggesting 3 as the optimal number of clusters.

Figure 4: Elbow metric. k=3; x-axis = Number of clusters;
y-axis = Average WCSS.

We used Scikit-learn python library ([10]) to implement k -
means clustering. Figure 5 shows a 3D scatter plot of the
three attributes used to cluster the data where the data
points are colored by the cluster labels. Figure 5 shows

Figure 5: 3D scatter plot. Cluster 1 (red) = High Achiev-
ers; Cluster 2 (green) = Low Achievers; Cluster 3 (blue) =
Persistent Students; Attempts = x axis; Logins = y axis;
Score = z axis.

three sets of distinct student login profiles. The Cluster 1
(red), whom we label as High Achievers, represent a group of
students with a low number of attempts, a medium number
of logins, and a high score. The Cluster 2 (green), whom we
label as Low Achievers, is the group with a medium num-
ber of attempts, and low number of both logins and score.
Finally, the Cluster 3 (blue), whom we label as Persistent
Students, is the most distinct group with a high number of
both attempts and logins, and a medium score. To quantify
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this information, in Table 1 we have tabulated the count, the
mean and the standard deviation of these three attributes
across each of the three clusters. In addition, we have sim-
plified this content in Table 2.

Table 1: Cluster Statistics. Total = number of observations.
SD = standard deviation.

Table 2: Student groups based on cluster statistics.

Table 2 shows that Cluster 1 (high achievers) includes stu-
dents with the highest score among the three clusters. Low
achievers, Cluster 2, stand out with a very low score and
a low number of logins. This shows a relationship between
the low logins and the low performance scores in students
with very high or very low scores. However, students with
medium score have very high average logins and high aver-
age attempts per activity. This fluctuation between average
score and login indicates a non-linear and non-trivial rela-
tionship between student behavior (number of logins and
attempts) and performance.

5. CONCLUSION & DISCUSSION
In this paper we explored student login data collected from
MHE’s Connect higher education platform. The investiga-
tion of student login activity reveals a non-linear relationship
between student activity and performance. Piecewise linear
regression revealed that students who do better on their as-
signments tend to login more. However, if a student logs in
5 or more times per assignment, their performance tends to
plateau and then deteriorate. Thus, it would be beneficial
for the instructor to intervene at this point as it might indi-
cate that the student has not grasped the concepts required
for the assignment. Finally, investigating student login be-
havior led to identifying three distinct groups of students:
high achievers who login just optimum number of times to
get high score, low achievers, who login very rarely and tend
not to do well, and persistent students who show grit in their
efforts to succeed by logging in and attempting the most but
still perform less than high achievers. The educational value
of such finding is in identifying and encouraging certain ac-
tivity behaviors that are correlated with good performance.

Future work will be concentrating on factors such as the
variability in the students’ scores based on the due date
of the assignments, time spent on assignments, potential
recommendations or instructors actions and effectiveness of
these recommendations via A/B testing. Finally, we will be
attempting to join students academic performance gathered

from Connect to their performance or other institutional
or demographic data in order to predict student academic
success.
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ABSTRACT 

A great deal of research in educational data mining is 

geared towards predicting student performance. Bayesian 

Knowledge Tracing, Performance Factors Analysis, and the 

different variations of these have been introduced and have 

had some success at predicting student knowledge. It is 

worth noting, however, that very little has been done to 

determine what a student’s first course of action will be 

when dealing with a problem, which may include 

attempting the problem or asking for help. Even though 

learner “course of actions” have been studied, it has mostly 

been used to predict correctness in succeeding problems. In 

this study, we present initial attempts at building models 

that utilize student action information: (a) the number of 

attempts taken and hints requested, and (b) history 

backtracks of hint request behavior, both of these are used 

to predict a student’s first course of action when working 

with problems in the ASSISTments tutoring system. 

Experimental results show that the models have reliable 

predictive accuracy when predicting students’ first course 

of action on the next problem. 

Author Keywords 

Educational data mining; intelligent tutoring systems; 

student modeling; student behavior. 

1. INTRODUCTION 

Most educational data mining (EDM) research focus on 

modeling student behavior and performance. Algorithms 

such as Bayesian Knowledge Tracing [1], and Performance 

Factors Analysis [4] have been used to achieve this end. In 

intelligent tutoring systems, it is crucial to be able to 

understand student behavior to provide better tutoring 

practices and improved content selection for these systems. 

Student behavior may provide another means to identify 

low-knowledge or low-performing students and determine 

when to proactively intervene. Previous works show that 

students who are more likely to ask for help on problems 

learn less and perform less. A study on students’ help-

seeking behavior in an SQL tutoring system [3] suggests 

that students who used help very frequently had the lowest 

learning rate and had shallow learning. A study that used 

the sequence of attempts and hint requests to predict student 

correctness found that students who first made attempts on 

problems performed better than those who requested for 

help first [2]. The Assistance Model [6] used the number of 

hints and attempts a student needed to answer a previous 

question to predict student performance. Gaining the 

capability to recognize students’ need for assistance ahead 

of time by looking at students’ pattern of actions could lead 

to more proactive interventions, such as identifying 

prerequisite skills, adapting pedagogical methodologies, or 

gaining insight on student problem solving methodologies. 

With these in mind, we then ask: how do we determine 

when students will ask for help when using an ITS? On the 

exploratory level of model development, what information 

may be useful for developing models that forecast students’ 

need for assistance? In this work, we define two models 

that use information on problem attempts and help requests 

used by students in the ASSISTments tutoring system: (1) 

Attempt/Hint Count model (AHC) makes use of information 

on the number of attempts and hints used by students on a 

question to predict the occurrence of a help request as the 

first action on the next problem, and (2) Hint History model 

(HH) makes use of the history of hint request as the first 

action in preceding questions to predict the occurrence of a 

help request as the first action on the next problem. 

We utilized tabling methods to generate prediction values 

from the information used by each model. Tabling methods 

have been found to be effective alternatives for performing 

predictions using datasets and offer the advantage of being 

computationally inexpensive and easily expandable to 

leverage more features into simple models [2, 7]. 

2. DATASET 

The data used in the analysis is from ASSISTments, an 

online tutoring system maintained at the Worcester 

Polytechnic Institute that provides tutorial assistance if 

students make incorrect attempts or ask for help [5]. The 

dataset is from released ASSISTments data that spans about 

five months within the 2012-2013 school year, containing 
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599,368 student log entries. More details about 

ASSISTments data can be accessed from:  

https://sites.google.com/site/assistmentsdata/how-to-

interpret. 

Analysis for the AHC model was done on problem logs 

with 1 to 5 attempts taken in answering problems, 

accounting for 98% of all data entries (585,926 rows). 

Problem entries with 3, 4, and 5 available hints (AvH) were 

used and these accounted for 70% of the data (415,895 

rows). The resulting dataset contains 420 problem sets and 

12,966 students, totaling to 299,968 entries. The resulting 

dataset was separated into problem groups that differed in 

the number of available hints to avoid comparing the hint 

request behavior of students who had more opportunities to 

hint against students with fewer opportunities to do so. 

Problem 

Group 

Problem 

Sets 
Students 

Dataset 

entries 

3 AvH 285 11,402 169,100 

4 AvH 224 10,282 111,754 

5 AvH 60 4,724 19,114 

Table 1. AHC dataset for each of the problem groups 

For the HH model, we selected entries in the dataset where 

each student sequence had at least 4 rows. The student 

sequence is the sequence of problems that a student 

answered. Sequences had to at least have 4 rows for the HH 

model which looks at the history of hint use, 3 problems 

prior the next problem. The resulting dataset contained 

279,925 entries with 555 problem sets and 12,429 students. 

3. STUDENT ACTION MODELS 

In ASSISTments, students exhibit varying behaviors when 

encountering problems: submitting an answer to a problem 

first (“attempting the problem”), asking for help (hint) first, 

asking for hints after an initial attempt, alternating between 

attempts and requests for hints, or continuously attempting 

a problem until a correct answer has been submitted. These 

behaviors have likewise been observed in [2].  

3.1 Initial Experiments: AHC 

The AHC prediction table maps the number of attempts and 

hints used to the probability that the student attempted or 

asked for a hint on the next problem. The probability is the 

percentage of students who asked for a hint on the next 

problem. Table 2 shows a sample prediction table from 

training data. Table 3 shows a matching scenario using 

Table 2. A value under Hints Taken in Table 2 such as 2/3 

indicates that a student used 2 out of 3 available hints for 

the problem and values on the first column indicate the 

count of attempts. Five-fold cross validation was used to 

train and test the AHC model on the three problem groups. 

Problem set and student-level analyses were done to see 

whether the model generalizes across unseen problem sets 

and students. 

3.2 Secondary Experiment: HH 

For HH analysis, the prediction table was generated by 

using the percentage of hint use as first action in three 

previous problems. Table 4 shows a prediction table from 

training data. Column labels correspond to the number of 

times the first action was an attempt on the problem or a 

hint request. For example, 1H/2A indicates that in three 

prior problems, a total of 1 hint as first action and 2 

attempts as first action were used. Counts of attempts and 

hints as first action were then generated for each column. In 

the table, for those who used a total of 2 hints and 1 attempt 

in three previous problems, there are 3330 instances of 

attempts and 1833 instances of hint requests as first action 

on the next problem. % Hint is the percentage of instances 

of hint use within the bin. Problem set and student-level five-

fold cross validation was used to train and test the HH model. 

 
Previous 3 First Action Hints / Attempts 

0H / 3A 1H / 2A 2H / 1A 3H / 0A 

# Attempt 111017 17219 3330 683 

# Hint 5859 3254 1833 1663 

% Hint 0.0501 0.1589 0.3550 0.7089 

 Table 4. HH Prediction Table 

To analyze whether the number of history points affected 

the predictive power of HH, an additional analysis with four 

problems prior the next problem was done. 

4. RESULTS AND DISCUSSION 

The predictive performance of the AHC and HH models 

were evaluated using root mean squared error (RMSE), 

mean absolute error (MAE), and area under the ROC curve 

(AUC). Additionally, a naïve baseline (BL) model was 

generated for comparison, as we have found no other gold 

standard model for first-course-of-action prediction to 

compare our work with. The BL model uses the percentage 

of hint instances on the students’ second action on all 

problems in the dataset. Table 5 shows a scenario for BL 

prediction. Hint % is the percentage of hint instances in the 

problem entries, which translates to a prediction on the 

students’ first action on the next problem. If a student’s 

second action on the current problem is a hint, the 

prediction for FANP is Hint %, otherwise, use Attempt %. 

The intuition for this is the hypothesis that students who 

have greater tendency to ask for hints on succeeding actions 

may most likely ask for hints in succeeding problems. 

Attempts 

Taken 

Hints Taken 

0 / 3 1 / 3 2 / 3 3 / 3 

1 0.0211 0.1001 0.2213 0.4025 

2 0.0261 0.0558 0.0747 0.1105 

3 0.0237 0.0447 0.0737 0.0916 

4 0.0363 0.0287 0.0743 0.0949 

5 0.0132 0.0263 0.0857 0.0912 

Table 2. AHC Prediction Table 

Student A_C H_C H_T FANP 

92677 1 0 3 0.0211 

92680 2 3 3 0.1105 

Table 3. Matching scenario using Table 2 (Note: A_C = 

Attempt Count, H_C = Hint Count, H_T = Hint Total, 

FANP = First Action Next Problem) 
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PS 3 AHC 3 BL 4 AHC 4 BL 5 AHC 5 BL 

RMSE 0.2075 0.4506 0.1942 0.4910 0.1813 0.5445 

MAE 0.0866 0.4104 0.0763 0.4899 0.0677 0.5403 

ST 3 AHC 3 BL 4 AHC 4 BL 5 AHC 5 BL 

RMSE 0.2799 0.4826 0.1945 0.5023 0.1811 0.4514 

MAE 0.1452 0.4821 0.0758 0.5022 0.0653 0.5729 

a. RMSE and MAE performance for AHC vs. BL across three 

problem groups (3, 4, and 5 available hints) 

 

PS 3 HH 3 BL 4 HH 4 BL 

RMSE 0.2574 0.4697 0.2809 0.4307 

MAE 0.1327 0.4687 0.1572 0.4291 

ST 3 HH 3 BL 4 HH 4 BL 

RMSE 0.2573 0.4821 0.2808 0.4528 

MAE 0.1328 0.4810 0.1580 0.4513 

b. RMSE and MAE performance for HH vs. BL for 3 and 4 

prior problems 

  

PS 3 AHC 3 BL 4 AHC 4 BL 5 AHC 5 BL 

AUC 0.7737 0.7332 0.8043 0.6338 0.7602 0.3338 

ST 3 AHC 3 BL 4 AHC 4 BL 5 AHC 5 BL 

AUC 0.4599 0.7419 0.8056 0.3841 0.7689 0.3223 

c. AUC performance for AHC vs. BL across three problem 

groups (3, 4, and 5 available hints) 

PS 3 HH 3 BL 4 HH 4 BL 

AUC 0.6936 0.4298 0.7357 0.8026 

ST 3 HH 3 BL 4 HH 4 BL 

AUC 0.6989 0.5071 0.7355 0.6458 

d. AUC performance for HH vs. BL for 3 and 4 prior 

problems 

Figure 1. Problem set (PS) and student (ST) level RMSE and MAE performance for AHC, HH, and BL (a and b); 

Problem set and student level AUC performance for AHC, HH, and BL (c and d). 
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4.1 AHC Analysis 
Problem set level findings for both AHC and BL are 

presented in Figure 1a. AHC consistently outperforms BL 

across all problem groups in both RMSE and MAE. Lower 

values for both metrics indicate better model fit. A 

reliability analysis to compare AHC with BL using a two-

tailed paired t-test indicates that the findings are reliably 

different across all problem groups (p=0). The effectiveness 

of the model is likewise seen using the AUC metric (Figure 

1c). AUC values closer to 1 indicate better model fit. It can 

be noted that AHC performance in all metrics are closely 

consistent, suggesting that the model is fairly generalizable 

across problems with varying numbers of hint availability. 

Predictive performance using student level analysis for 

problems with 4 and 5 available hints is fairly consistent 

across all three metrics; however, the model does not 

perform as well for problems with 3 available hints, 

suggesting that AHC may be used to predict the hint request 

behavior of unseen students, provided there is a high 

number of opportunities to ask for help. BL performance 

fails to improve as the number of available hints increase 

for both problem set and student-level analyses. 

4.2 HH Analysis 

A problem set level analysis of the HH model across the 

number of prior history points demonstrates that the HH 

model maintains a fairly consistent level of predictive 

performance across all three metrics. While HH 

significantly outperforms BL in MAE and RMSE, it is 

outperformed by the latter in AUC for 4 history points. This 

may be because the ordering of values in BL’s predictions 

is not as close to the actual as those of HH. This situation 

rarely happens; we may have to try another dataset to 

confirm this behavior. On a student level analysis, HH 

outperforms BL across all values of first action prior history 

points (Figures 1b and 1d). A reliability analysis to compare 

HH with BL using a two-tailed paired t-test indicates that 

the findings are reliably different across all prior hint 

history with p=0. There is a consistency of results for all 

performance metrics for HH, while BL exhibits more 

prominent fluctuation in its results, suggesting that the HH 

model can be feasibly used to predict student hint request 

behavior for both unseen skills and unseen students, as well 

as across the number of first action history points with fair 

reliability.  

5. CONTRIBUTION AND FUTURE WORK 

Results of the experiments suggest that students’ help 

request behavior can be feasibly predicted from data that 

are descriptive of student action information. While the 

methods in this study are a starting point in using action 

information, we feel that such initiatives are worth 

discussing for building up further studies in the field. The 

models provide utility for predicting when students will ask 

for help, using dataset information on problem attempts and 

help requests. Both models predicted students’ first course 

of action when answering problems from an ITS with fairly 

consistent predictive performance and generalizability. 

Future improvements to these models may include the 

accounting of patterns in student actions which may provide 

a rich source of information for possible prediction of need 

for assistance by students (partly explored here with the BL 

model). The dataset used contained other information 

including student response times and skill difficulty and 

exploiting these may provide further insight into factors of 

assistance need to aid in developing a proactive and 

effective early intervention framework. These models 

should be tested on other ITS datasets to determine whether 

these models are consistent across different datasets. 
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ABSTRACT
Human memory has been thoroughly studied and modeled
in psychology, but mainly in laboratory setting under simpli-
fied conditions. For application in practical adaptive educa-
tional systems we need simple and robust models which can
cope with aspects like varied prior knowledge or multiple-
choice questions. We discuss and evaluate several models of
this type. We show that using the extensive data sets col-
lected by online educational systems it is possible to build
well calibrated models and get interesting insight, which can
be used for improvement of adaptive educational systems.

1. INTRODUCTION
Development of intelligent tutoring system and other adap-
tive educational systems is often focused on teaching math-
ematics, physics, and similar domains. The related research
in student modeling is thus concerned mainly with model-
ing skill acquisition. Another interesting area, where adapt-
ability is very useful, is learning of facts [8], particularly in
domains with varied prior knowledge like vocabulary, ge-
ography, or human anatomy. In this context, modeling of
students’ memory is important.

Principles of human memory and their consequences for ed-
ucation have been extensively studied in psychology, e.g., [2,
5, 9, 10]. Models developed in the psychological research are
not, however, easily applicable in practical implementation
of adaptive practice. The purpose of models described in
psychological literature is to describe and explain mecha-
nisms of human memory, e.g., the spacing effect [9]. Experi-
ments are done using lab studies under controlled setting, in
areas with little prior knowledge, e.g., learning of arbitrary
word lists, nonsense syllables, obscure facts, or Japanese vo-
cabulary.

In the context of development of adaptive educational sys-
tems, our goal is more pragmatic – we do not need to capture
all details of human memory, we need a model which will
work well in an adaptive system. A model needs to provide

good input for other modules of an adaptive system (e.g.,
question selection or open learner model). The specific con-
text of our work is an adaptive application slepemapy.cz

for learning geography [8].

Although we can afford to model memory in a simplified
manner, we have to deal with issues like varied prior knowl-
edge, multiple-choice questions (with possibility of guess-
ing), and no control on when students use the system. Com-
pared to laboratory studies online educational systems can
easily collect much more extensive data (millions of answers),
so we can employ machine learning techniques to find fitting
models. Specifically, in our work we use this approach to
detect the dependence of memory activation on time from
previous answer. The standard approach [9] is to make an
assumption about the functional form of such dependence.
We learn the function from the data and it turns out to be
an S-shaped function which cannot be represented symbol-
ically in a straightforward way. The results also show that
there are large differences between learning of facts even in
a seemingly compact domain like geography. These results
may be useful for improving the behaviour of adaptive edu-
cational systems.

2. MODELING
Before we go into the description of models, let us clarify
the context of considered models. In previous work [8] we
described a modular architecture for an adaptive practice of
facts based on three modules: estimation of prior knowledge,
estimation of current knowledge, construction of questions.
Here we focus on improving the estimation of current knowl-
edge by taking timing between answer into account.

Specifically, we assume the following input: for each stu-
dent and repeatedly answered fact (e.g., a country in the
case of our application), we have an initial estimate of the
student’s knowledge of the fact and data about a sequence
of student’s answers. For each answer we consider the cor-
rectness of the answer, the type of question (either open
question or multiple-choice question with a specified num-
ber of options), and time from previous answer (in seconds).
For estimating initial activation we use a variant of the Elo
rating system [4, 13] as specified in [8]. For purpose of this
work this estimation is treated as a black box.

As an output a model provides estimated probability that
the next answer will be correct. This output can be used for
the adaptive construction of questions (in such a way that
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they have appropriate difficulty) [7, 8]. Model parameters
can be also used for presenting feedback to students in the
form of an open learner model.

2.1 Basic Approach
Student models of learning [3] most commonly use either a
binary skill (a typical model of this type is Bayesian Knowl-
edge Tracing) or a continuous skill with probability of cor-
rect answer specified by the logistic function of the skill.
For modeling memory it is natural to use a continuous skill
since memory is build gradually – as opposed, for exam-
ple, to understanding or insight in mathematics, which may
undergo sudden transition from unlearned to learned state
as assumed by Bayesian Knowledge Tracing [1]. Modeling
based on the logistic function was also previously used for
modeling memory [9]. In the following we use the notion of
memory activation instead of skill.

All models that we consider have the following basic form.
Based on the data we estimate memory activation m. Prob-
ability that the next answer will be correct is estimated
using a logistic function: P (m) = 1

1+e−m . In the case
of multiple-choice question with n options the probability
of correct answer is given by the shifted logistic function:
P (m) = 1

n
+ (1 − 1

n
) 1
1+e−m . Note that this functional form

is a simplification, since it does not consider the possibility
that a student answers correctly by ruling out distractors.

2.2 Computing Memory Activation
A basic model applicable under the outlined approach is
a simplified, one-dimensional variant of Performance Factor
Analysis (PFA) [11] (originally PFA was formulated in terms
of skills and vectors, as it uses multiple knowledge compo-
nents). In this model the memory activation is given by a
linear combination of an initial activation and past successes
and failures of a student: m = β + γs + δf , where β is the
initial activation, s and f are counts of previous successes
and failures of the student, γ and δ are parameters that de-
termine the change of the skill associated with correct and
incorrect answers. The basic disadvantage of this simple
approach is that it does not consider the time between at-
tempts; in fact it even ignores the order of answers (it uses
only the summary number of correct and incorrect answers).

ACT-R model [9, 12] of spacing effects can be considered as
an extension of this basic model. In this model the mem-
ory activation is estimated as m = β+ log(

∑
bit

−di
i ), where

the sum is over all previous attempts, values ti are the ages
of previous attempts, values bi capture the influence of cor-
rectness of answers, di is the decay rate, which is computed
by recursive equations [9]. The model also includes addi-
tional modifiers for treating time between sessions. The fo-
cus of the model is on modeling the decay rate to capture the
spacing effect. Studies using this model [9, 12] did not take
into account the probability of guessing and variable initial
knowledge of different items (initial activation was either a
global constant or a student parameter). In the current work
we focus on these factors and for the moment omit modeling
of spacing effects.

Another possible extension [8] of the basic PFA model is to
combine it with some aspects of the Elo rating system [4,
13]; in the following we denote this version as PFAE (PFA

Figure 1: Calibration for the PFAE model with dif-
ferent time effect functions – the y axis shows differ-
ence between observed frequency of correct answers
and average prediction.

Elo/Extended). The estimated memory activation is up-
dated after each answer as follows:

m :=

{
m+ γ · (1 − P (m)) if the answer was correct

m+ δ · P (m) if the answer was incorrect

To include the timing information into this model, we can
locally increase the memory activation for the purpose of
prediction, i.e., instead of P (m) to use P (m+f(t)), where t
is the time (in seconds) from the last attempt and f is a time
effect function. As m denotes memory activation, the value
f(t) corresponds to temporal increase in memory activation
due to (short) time from previous exposure of an item.

It is natural to use as a time effect function some simple
analytic function, but analysis of our data suggests that this
approach does not work well. Figure 1 shows calibration
analysis for two time effect functions: f(t) = w

t
(used in

previous work [8]) and f(t) = 1.6−0.1 log(t) (the functional
form is based on [9] and fitted to data). We see that neither
of these functions leads to well calibrated predictions. Since
we were not able to find a simple time effect function that
would provide a good fit, we represent the function f(t) as

a staircase function with fixed bounds ~b and values ~v which
we learn from the data:

f(t) =

{
vi if bi ≤ t < bi+1

0 otherwise

3. EXPERIMENTS
We report experiments with the PFAE model with time ef-
fect function. For evaluation we used data from an online
system for practicing geography [8] (slepemapy.cz). Data
were filtered to include only students with at least 20 an-
swers, items (places) with at least 40 answers, and we con-
sider only sequences where a student answered at least 3
questions about an item. For experiments we divided the
data into 10 sets, each containing 52,190 sequences of an-
swers.
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Figure 2: Time effect function – average from 10
independent data sets, error bars show standard de-
viations of parameter estimates.

3.1 Model Parameters
As the fixed bounds used in the staircase representation of
time effect function we have chosen the following values: 0,
60, 90, 150, 300, 600, 1800, 10800, 86400, 259200, 2592000.
These values were chosen to be easily interpretable (e.g., 30
minutes, 1 day) and at the same time to have reasonably
even distribution of data into individual bins.

The model has the following parameters which we need to
estimate from the data: update constants γ, δ and the vec-
tor ~v representing the time effect function. To estimate these
parameters we use a gradient descent. To evaluate stability
of parameter estimates we computed the parameter values
for the 10 independent data sets. The results show that
the obtained parameters are very stable: γ = 2.290± 0.042,
δ = −0.917 ± 0.018; values ~v for the representation of time
effect function are depicted in Figure 2.

Since our data set is large and parameter estimates are sta-
ble, we can afford to do more detailed analysis. Figure 3
shows fitted time effect functions and γ, δ values when the
parameters are fitted using only part of the data. Figure 3 A
shows that there is quite large difference between parameter
values for cases with high and low prior knowledge. This
suggests possible improvement to the PFAE model – not
just by including more parameters, but also by changing its
functional form. However, prior knowledge is not the only
factor that plays role. Figure 3 B shows fitted parameters for
several types of places. In all of these cases the prior knowl-
edge is low, yet there are still large differences between fitted
parameters values. These parameters may contain useful in-
formation about students’ learning in particular parts of the
domain, e.g., data in Figure 3 B illustrate that it is easier
to learn states of Germany than provinces of China.

In the case of countries we have enough data to perform pa-
rameter fitting for individual places. In this case we fix the
time effect function (as learned on the whole data set and re-
ported in Figure 2) and we learn only the γ, δ parameters on
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Figure 3: Time effect function and γ, δ parameters
fitted to filtered data: A) by estimated prior knowl-
edge, B) by the type of a place.

data for a single place. We use only places for which we have
at least 1300 students answering at least 3 questions. The
fitted parameter γ is has an interpretable meaning“how easy
it is to remember a country”. Examples of countries with
high γ (>3.3): Western Sahara, Southern Sudan, Vietnam,
Egypt, Somalia; countries with low γ (< 1.7): Bulgaria, Ro-
mania, Serbia, Moldova. Note that the reported results are
clearly dependent on the origin of students using the system
– in our case mostly Czech students.

3.2 Accuracy of Predictions
Table 1 show comparison of several model variants with re-
spect to three common performance metrics [14]: root mean
square error (RMSE), log-likelihood (LL), and area under
the ROC curve (AUC). The results show averages from 10
runs on different training/testing sets. The results are con-
sistent over the three metrics and show that the PFAE mod-
els brings quite large improvement over the PFA model. Dif-
ferences between variants of the PFAE model due to the used
time effect function are statistically significant, but other-
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Table 1: Comparison of models with respect to three
performance metrics.

model time effect RMSE LL AUC

PFA – 0.3593 -106517 0.719
PFA 80/t 0.353 -103441 0.7195
PFAE 80/t 0.3377 -94454 0.757
PFAE 1.6 − 0.1 log(t) 0.3367 -93987 0.7591
PFAE staircase 0.3363 -93642 0.7614

wise rather small. Individual predictions are actually highly
correlated (correlation coefficient around 0.97).

4. DISCUSSION
We have evaluated several variants of a model of memory
activation in the context of adaptive practice of facts. We
proposed a model which incorporates the effect of time from
previous answer by a general staircase function, which is
learned from data (as opposed to assuming a specific sym-
bolic form of the function). The model is better calibrated
than other studied models and provides slightly better pre-
dictions. More importantly, the model is simple, parameters
are easy to learn from data and robust. The learned func-
tion also provides interesting insight into students memory
in the particular application – there is fast decrease in mem-
ory activation within the first 10 minutes, then the effect is
nearly steady for 1 day, after that the activation decreases
again.

By performing fine-grained analysis of the data, it is pos-
sible to use the model parameters to determine items that
are easy or difficult to remember. Such results may be use-
ful for improvement of educational systems, e.g., by offer-
ing mnemonics for difficult to remember facts, or by chang-
ing the adaptive selection of questions to prefer easy to re-
member facts at the beginning of a session. Specifically,
results reported in Figure 3 suggest that different adaptive
behaviour may be useful for learning African countries and
provinces of China.

A possible limitation of this study is that the used data do
not come from a properly designed and controlled experi-
ment, but from an adaptive system which uses a student
model to choose questions [8]. This may potentially cause a
bias in the performed analysis. Although it seems unlikely
that the reported results would be significantly influenced
by this data source, feedback loops between student models
and data collection deserve attention [6].

Another simplification of the current work is that we do not
consider the feedback provided by the used system when a
student answers incorrectly. This feedback clearly has im-
pact on memory activation of the selected wrong answer.
This raises a more general question: What is more impor-
tant for the practical development of adaptive educational
systems – proper treatment of principal issues (e.g., spacing
effect) or incorporation of practical features into the model
(e.g., effect of wrong answers)?
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ABSTRACT 
The present study investigates web-based learning activities of 
undergraduate students who generate explanations about a key 
concept taught in a large-scale classroom. The present study used 
an online system with Pedagogical Conversational Agent (PCA), 
asked to explain about the key concept from different points and 
provided suggestions and requests about how to make 
explanations, and gave social facilitation prompts such as 
providing examples by other members in the classroom. A total of 
314 learner's text based explanation activities were collected from 
three different classrooms and were analyzed using the social 
network analysis methods. The main results from the lexical 
analysis show that those using the PCAs with social feedback 
worked harder to use more various types of explanations than 
those without such feedback. Future directions on how to design 
online tutoring systems are discussed. 

Keywords 

Online tutoring; Explanation activities; Social Facilitation; 
Lexical Network Analysis. 

1. INTRODUCTION 
Studies on designing intelligent tutoring systems, such as 
Pedagogical Conversational Agents (PCAs), which autonomously 
engage in learning activities, have suggested its effective use for 
learning, much like a human tutor [12, 9, 1]. Still, few studies 
empirically investigate the use of such technology for large 
numbers of students in a class and investigate the learner's 
cognitive processes. The present study investigated the unique 
designs of the user interface for learners that use an online 
tutoring system guided by a PCA in three different types of 
classes. The study especially focused on the use of PCAs in a 
concept-explanation activity task, where the PCA asked several 
questions for explanation and provided feedback such as social 
information about other members who were engaging in the task. 
We focused on how such feedback can increase the learner’s 
explanation behaviors during such activities. 

1.1 Facilitating explanation activities using 
PCAs 
Studies on collaborative problem solving in the field of cognitive 
science reveal how concepts are understood or learned [3, 5]. 
Studies have shown that asking reflective questions for 
clarification to conversational partners is an effective interactional 
strategy to gain a deeper understanding of a problem or a concept 
[15, 16]. It has also been demonstrated that the use of strategic 
utterances, such as asking for explanation or providing 

suggestions, can stimulate reflective thinking and meta-cognition 
involved in understanding a concept. Based on these theories, 
there have been many attempts in the learning sciences to use 
such methods in classrooms [17, 13]. However, in an actual 
pedagogical situation, as in a large classroom, it is often difficult 
for one teacher to monitor learners and supervise their 
explanations. Recent studies [2, 11] have shown that the use of 
conversational agents that act as educational companions or tutors 
can facilitate learning process. Study [10] have shown that using 
PCAs that provide suggestions about how to make effective 
explanations can facilitate better motivation and improve task 
performance. Moreover, in a series of studies by the author, it is 
shown that the use of PCAs  can provide affective feedback and 
facilitate better outcomes [7, 8, 6]. More specifically, the results 
show that PCAs with positive emotion motivates the learners to 
work harder compared to those without any emotional expressions. 
In this report, the author further investigated the effects of using 
such PCAs in an online explanation task. The study focused on a 
classroom of more than one hundred students who were using an 
online explanation task, where individuals made explanations to 
the PCA on a one-on-one basis, as an after school work activity. 
In such  activity, the PCA will play the role of questioner and ask 
the student to explain about the key concept. The learners were 
students enrolled in a psychology class where their task was to 
make explanations about a key concept taught in their class, as an 
after class exercise.  

1.2 Using social facilitating effects 
One of the important factors that strongly influence human 
behavior in groups is the effect of the social influence produced 
by other members. Studies in social psychology have suggested 
that work efficiency is improved when someone is watching a 
person, i.e., the presence of an audience facilitates the 
performance of a task. The impact that an audience has on a task-
performing participant is called the "audience effect." Another 
relevant concept on task efficiency is called "social facilitation 
theory" [19]. The theory claims that people tend to do better on a 
task when they are doing it in the presence of other people in a 
social situation; it implies that personal factors can make people 
more aware of social evaluation.  

Coming back to the present study, even though the students made 
explanations about a concept to the PCA in a one-on-one situation, 
it was extremely important that they were aware that they were 
working in a social situation. Studies in media-psychology have 
provided much evidence that people lack social awareness in 
computer-mediated communication, compared to face-to-face 
communication [4]. Thus, it is effective to give information about 
the awareness of other learners online and create social 
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facilitations to make the learners become more active. One of the 
strong points of using online learning environments is that they 
are able to collect a huge amount of data from learners. A large 
database of dialogues of explanation texts may be reused for 
prompting hints or giving examples to learners who make 
explanations. It is also effective to provide information about the 
members who are working on the explanation task in real time or 
non-real time. If such kinds of feedback are used in online 
tutoring systems, it may facilitate learners’ social awareness, and  
motivate their explanation activities.  

Given all this, the present study investigated the effects of PCAs, 
which provide information about “other members”, along with 
suggestions and comments about their explanations. The goal of 
the study is to investigate the how the quality of the learners 
explanations may change due to the facilitations from a PCA 
which encourages them to actively explain about key terms that 
were taught in class. The present study will use social network 
analysis method to capture the dynamics of diverse explanations 
during the online task. Unlike standard text analysis methods 
calculating the frequency of single important key terms that 
appear in the text, this method enables to detect different key 
terms that appear simultaneously in one explanation made by the 
learner. If the learner meets the expectations from the PCA, where 
it asks the learner to explain the key from various perspectives, 
different types of key terms should be used during their activity.  

2. Method 
The study was conducted in three large classes, each consisting of 
more than hundred students. We constructed an online web 
system that let learners make text-based explanations about key 
concepts taught in a psychology class. Students in an 
undergraduate psychology class used the system, and participated 
as part of their homework. A total of 30 different key terms (e.g., 
Gestalt, long-term memory, cognitive dissonance) were selected 
from the class and randomly assigned to each of the learners 
based on their IDs. On using the system, they were guided by a 
PCA that (1) instructed them on what to explain, (2) provided 
meta-cognitive suggestions, and (3) gave examples about how 
other members in the classroom made explanations.  

 

2.1 Tutoring system for the experiment 
A web-based tutoring system was developed only for the 
experiment using a web server, a database, and rule-based scripts. 
It was managed as a member-only system, and learners were 
required to login to the system for use. As mentioned in the 
previous section, each student was assigned to work on one 
randomly selected key term. As they logged into the system, a 
PCA appeared on the screen and stated the selected key concept, 
and gave him/her questions about how to explain it. The task was 
comprised by 17 trials with two major steps in each trial as 
follows: (a) text-input and, (b) feedback from the PCA.  

On the first (Trial 1) and the final trials (Trial 17) the PCA asked 
the learner to input freely regarding whatever they knew about the 
key concept. These are taken as pre- and post- tests were they can 
freely input the messages as a free recall test. Through the 2nd 
and 16th trials, the learners were given specific questions about 
what to explain about the keyword. For example, the PCA may 
ask a series of question such as “How can it be used”, “What is it 
similar to”, or “In what period of time you use it” etc. These trials 
are considered as the explanation/training phase. The PCA also 

encourages the learner to think on their own way and input 
individual unique explanations.  

On each trial, they were asked to do the following: (1) input 
explanations and click on the next button, (2) read the provided 
meta-suggestions from the PCA to make effective explanations, 
and depending on the experimental condition (explained in the 
next section), it provided information about other members who 
also responded for the given key concept.  

To facilitate the social presence of the other members and make 
learners to think in their own way, the study uses two types of 
prompts. First, the utterances of other learners who had already 
inputted into the system were used. These messages were 
presented along with the initials of the person who answered the 
explanation. This enabled them to be aware how many in the class 
were working on the same key term. The utterances of other 
group members were only shown after the learner inputted his/her 
answers, and so the leaner couldn't simply copy and paste other's 
explanations during their trial.  

2.2 Experiment design and learners 
The experiment was conducted in three classes where each class 
was assigned to an experimental condition. In one class (the 
baseline condition), all learners were assigned to use PCAs 
without any social awareness functions or examples of other 
learners. The PCA only provided back-channel feedback and gave 
meta-suggestions about how to make explanations more 
effectively (e.g., Try to think from various viewpoints). These 
suggestions were compiled from a previous study [7]. In another 
class (the example condition), the learners were assigned to use 
the PCAs with additional functions, which provided examples of 
answers inputted by other members. The third class (the 
example+ condition) was assigned to those in the example 
condition with PCAs with additional functions. In other words, 
they were presented with examples with explanations of others, 
plus information about the number of members who were 
assigned to work on that key concept. There were 105 Japanese 
undergraduates (55 males, 50 females, mean age = 18.26 years) in 
the baseline condition. In the example condition, there were 105 
Japanese undergraduates (55 males, 50 females, mean age = 18.46 
years). Finally, in the example+ condition, there were 104 
undergraduates (52 males, 52 females, mean age = 18.35 years). 

3. RESULTS 
3.1 Lexical Network Analysis  
The text analysis was comprised by several steps such as (1) 
morphologically analyzing the text data, (2) developing a 
dictionary database using a thesaurus, and (3) conducting lexical 
network analysis to understand the usage of variety of different 
words during their final explanation. Recently, such social 
network analysis method is adopted to investigate the usage of 
important words in collaborative learning [8, 16].  

3.1.1 Preprocessing 
The recorded texts were broken down into morphemes with the 
Japanese morphological analysis tool MeCab (Java Sen port: 
http://mecab.sourceforge.net (accessed April 2015)). The 
objective of the first stage of the analysis was to extract the most 
frequent morphemes, such as the nouns and verbs through all 
learners textual inputs. 105,488 morphemes were collected and 
the most 28 frequent words were chosen as important words for 
explanations. Those were labeled based on the thesaurus 
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dictionary database such as: 'presence', 'causal', 'relations', 
'actions', 'thought', 'matters', 'case', 'conclude', 'understand', 
'analogy', 'predict', 'logic', 'reason', 'hypothesis', 'convergence', 
'explanation', 'intention', 'theory', 'relative', 'knowledge', 'explicate', 
'transform', 'opposition', 'compliment', 'compare', 'inevitability', 
'method', and 'reason' [14].  

Additionally, based on the semantic hierarchical structure of the 
thesaurus, new keywords were added to the dictionary database 
that were related to the 28 keywords. This was done to capture all 
the semantically related words to these keywords. As a result, 
2,722 new words that have relative meanings to the keywords 
were registered into the semantic dictionary database. 

3.1.2 Network Analysis  
Using the semantic dictionary database as training data set, the 
learners textual inputs were further analyzed. For each trial input, 
the number of appearing semantic keywords in the dictionary 
were counted. The data of these semantic key words were then 
analyzed by adopting the social network analysis method. This 
method was used to analyze the co-occurrence between keywords, 
i.e. capturing the diversity of the types of words that were used 
during one explanation. The network was developed based on a 
bipartite graph of keywords x explanations(trials). Since the PCA 
provided various questions and enforced them to explain uniquely 
along with their social feedbacks during their explanation 
activities(trial 2 to 16), their achievements should be reflected to 
their explanation activities. Learners should use more different 
types of key terms in the example+ condition since they are 
facilitated more strongly to take different perspectives by 
mentioning about other group members presence. Each node in a 
network was represented as  the semantic category of the keyword 
that was frequently used during their explanation. The threshold 
of a node(semantic keyword) determining as frequently used or 
not was defined based on the comparison by the average of other 
nodes. The threshold of a node n was determined as follows:  
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On investigating the differences between conditions and over time, 
the number of links connecting each nodes were calculated. The 
following equation represents the amount of density where n 
stands for the number of nodes and l stands for the number of 
links:  
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Table 1 shows the quantitative results of the lexical network 
analysis. The results suggest that at the pre-test (1st trial), learners 
had only few connections between nodes, thus indicating that the 
variations of words were few in terms of semantic categories. On 
the post-test (17th trial), the connections of nodes increased due to 
conditions. This shows that  learners used more variety of words 
during explanations in the post-test(17th trial) example+ 
condition(0.27) than example(0.24) and baseline(0.15) conditions. 
The results gives us a clear vision of the dynamics of explanations 
they gave to the agent differ due to the conditions using more 
social awareness designs. 

Table 1. The score of density of each conditions performed by 
the lexical network analysis. 

Conditions Pre (1st trial) Post (17th trial)

baseline  0.07 0.15 

example 0.06 0.24 

example+ 0.06 0.27 

The analysis above shows that learners were using more different 
key terms at the same time in each trial. However it lacks in 
evidence rather if they tried to use different key terms in their post 
test compared from those in the pre-test. They might have simply 
used the same words they inputted from their first trial. It is it is 
important in this learning context that to know if they changed 
their phrases or tried to use more sophisticated words from the 
initial state of the explanation activity. Therefore, additional 
analysis was conducted to investigating the network similarity 
between the pre(1st) and post(17th) trial. The following 
correlation index was adopted on calculating the similarity 
between the two networks.  
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a and b stands for the number of nodes in the bipartite graph each 
pre- and post-test respectively. Figure 1 indicates the results of c 
for each condition. 
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Figure 1. Results of similarity between the pre(1st) and 
post(17th) trial in each condition  

The results indicate that learners in the baseline condition used 
more similar words from the pre-test on their final post-test 
explanations(0.69). On the other hand, learners in the example+ 
and example condition shows that they were using more different 
key terms compared to those from those in the 1st trial(0.43, 0.39 
respectively).  

The analysis from the series of analysis indicates that learners 
with social facilitation (1) used more different key terms 
simultaneously in their final explanation activities, and (2) those 
were different from those in the initial explanation activities. This 
analysis captures a new view from the study of [8] where it did 
not investigate the changes of the network over time.  
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4. DISCUSSION AND CONCLUSION 

The present study investigated the use of PCAs in an online 
explanation activity where students were required to make 
explanations about a key concept. The focus here was to 
investigate the effects of social facilitations over time, using a 
large scale database collected during the online explanation task. 
These social facilitations were provided through a PCA during the 
learner's explanation activities and they were to enhance the co-
presence of other classmates and motivate their activities by 
encouraging them. In the experiment, students enrolled in three 
psychology classes used an online explanation system and made 
explanations to the PCA. They also received comments on how to 
make effective explanations along with social feedbacks of other 
classmates. The results of the text analysis show that learners tend 
to input more important messages simultaneously in the final trial 
compared to the first trial when they received feedback about 
other group members (example and example+ condition). This 
indicates that this type of social feedback can motivate learners to 
work harder and facilitate effective explanation over time. An 
interesting point is that even though all the students were told that 
their answers would not be graded, they still tried harder when 
they were shown some of the other members’ activities. This 
shows that the effects of the "audience" and "social facilitation" 
are quite strong in such situations. The results can be interpreted 
that the situation given to the learner are useful to make the 
learners aware that their messages could be seen by other in-
group members and thus this might have made them work harder 
in their activities. Another interpretation is that showing others’ 
comments might have allowed learners to avoid negative feelings 
and thoughts, such as he/she might have inputted something very 
out of line. As explained earlier in this paper, novice learners have 
difficulty making explanations to others [5]. Thus, it may be 
assumed that learners in the baseline condition experienced 
negative feelings, worrying that they were making mistakes about 
the text. On the other hand, the use of the examples and the social 
contexts in the example and example+ conditions may have eased 
such negative feelings, and thus, increased self-confidence 
compared to the baseline condition. This study provided 
implications about how to design effective online tutoring 
systems, incorporating PCAs with information about other 
working members, thus providing social facilitation. 
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ABSTRACT
Wether teaching in a classroom or a Massive Online Open
Course it is crucial to present the material in a way that
benefits the audience as a whole. We identify two important
tasks to solve towards this objective; (1.) group students so
that they can maximally benefit from peer interaction and
(2.) find an optimal schedule of the educational material
for each group. Thus, in this paper we solve the problem of
team formation and content scheduling for education. Given
a time frame d, a set of students S with their required need
to learn different activities T and given k as the number of
desired groups, we study the problem of finding k group of
students. The goal is to teach students within time frame d
such that their potential for learning is maximized and find
the best schedule for each group. We show this problem to
be NP-hard and develop a polynomial algorithm for it. We
show our algorithm to be effective both on synthetic as well
as a real data set. For our experiments we use real data
on students’ grades in a Computer Science department. As
part of our contribution we release a semi-synthetic dataset
that mimics the properties of the real data.

Keywords
Team Formation; Clustering; Partitioning; Teams; MOOC

1. INTRODUCTION
Many work has been dedicated on how to improve students’
learning outcome. We recognize two substantial conclusions;
first, the use of personalized education. By shaping the con-
tent and delivery of the lessons to the individual ability and
need of each student we can enhance their performance([6,
11, 12]. Second, grouping students; working in teams with
their peers helps students to access the material from a dif-
ferent viewpoint as well [7, 4, 13, 1]. In this paper we study
the problem of creating personalized educational material
for teams of students by taking a computational perspec-
tive. To the best of our knowledge we are the first to for-
mally define and study the two problems of team formation

and personalized scheduling for teams in the context of ed-
ucation. We present a formal definition for these problems,
study their computational complexity and design algorithms
for solving them. In addition, we also apply our algorithms
to a real dataset obtained from real students. We make
our semi-synthetic dataset BUCSSynth, generated to faith-
fully mimic the real student data available on our website.

Related Work: Besides the work on improving students
learning outcome, related problems have also been studied in
computer science. Topics of interest are team formation [2,
3, 9, 10] and scheduling theory, see [5] for an overview.

2. PRELIMINARIES
We model a student’s learning process by a sequence of top-
ics that she learns about. In this sequence topics may ap-
pear multiple times, and repetitions of a topic may count
with different weights towards the overall benefit of the stu-
dent. Let S = {s1, s2, . . . , sn} be a set of students and
T = {t1, t2, . . . , tm} be a set of topics. We assign topics
to d timeslots,a schedule A is a collision free assignment of
topics to the timeslots. A can be thought of as an ordered
list of (possible multiple occurrences) of the topics. For a
topic t ∈ T the tuple 〈t, i〉 denotes the ith occurrence of t
in a schedule. The notation A[r] = 〈t, i〉 refers to the tuple
〈t, i〉 that is assigned to timeslot r in A.

For student s ∈ S and topic t ∈ T the requirement req(s, t)
is an integer depicting the number of times s needs to learn
about t to master its content. We assume that for the first
req(s, t) repetitions of t there is some benefit to s from every
repetition of t, but for any further repetition there is no
additional benefit to s. We call b(s, 〈t, i〉) (Equation (1))
the benefit of s from hearing about t for the ith time.

b(s, 〈t, i〉) =

{
1

req(s.t)
if i ≤ req(s, t)

0 otherwise
(1)

Note that for ease of exposition, we assume that all repeti-
tions of t before req(s, t) carry equal benefit to s. However,
the definition and all of our later algorithms could easily be
extended to use some other function b′(s, 〈t, i〉).

Given the benefits b(s, 〈t, i〉) there is a natural extension
to define the benefit B(s,A) that s gains from schedule A.
This benefit is simply a summation over all timeslots in A,

B(s,A) =

d∑
r=1

b(s,A[r]) (2)
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3. THE GROUP SCHEDULE PROBLEM
Given a group of students P ⊆ S our first task is to find
an optimal schedule for P . That is, find a schedule to max-
imize the group benefit B(P,A) that group P has from A
(Equation (3)).

B(P,A) =
∑
s∈P

d∑
r=1

b(s,A[r]) (3)

We call this the group schedule problem (problem 1).

Problem 1 (group schedule ). Let P ⊆ S be a group
of students and T be a set of topics. For every s ∈ S and
t ∈ T let req(s, t) be the requirement of s on t given for every
student-topic pair. Find a schedule AP , such that B(P,AP )
is maximized for a deadline d.

The Schedule algorithm. We first give a simple poly-
nomial time algorithm, Schedule(P, d) (Algorithm 1), to
solve problem 1. Schedule is a greedy algorithm that as-
signs to every timeslot an instance of the topic with the
largest marginal benefit. We say that the marginal benefit,
m(P, 〈t, i〉), from the ith repetition of t (thus 〈t, i〉) to P is
the increase in the group benefit if 〈t, i〉 is added to A. The
marginal benefit can be computed as the sum of benefits
over all students in P as given in Equation (4).

m(P, 〈t, i〉) =
∑
s∈P

b(s, 〈t, i〉) (4)

The Schedule algorithm is an iterative algorithm with d iter-
ations that in every iteration appends a topic to the schedule
AP . We maintain an array B in which values are marginal
benefit of topics t, and an array R that contains a counter
for every topic in AP . In every iteration Schedule selects
the topic ut with the largest marginal benefit from B and
adds it to AP (Lines 5 and 6) . Then it updates marginal
benefit of ut, B[ut] (Lines 7- 8). It is easy to see that Algo-
rithm 1 yields an optimal schedule for a group P and runs
in O(d(|P |+ log|T|)).

Algorithm 1 Schedule algorithm for computing an opti-
mal schedule AP for a group P .

Input: requirements req(s, t) for every s ∈ P and every
topic t ∈ T, deadline d.
Output: schedule AP .

1: AP ← [ ]
2: B ← [m(P, 〈t, 1〉)] for t ∈ T
3: R← [0] for all t ∈ T
4: while |AP | < d do
5: Find topic ut with maximum marginal benefit in B
6: AP ← 〈ut, R[ut]〉
7: R[ut] + +
8: Update B[ut] to m(P, 〈t, R[ut]〉)
9: end while

4. THE COHORT SELECTION PROBLEM
The next natural question is, that given a certain teaching
capacity K (i.e., there are K teachers or K classrooms avail-
able), how to divide students into K groups so that each stu-
dent benefits the most possible from this arrangement. At a

high level we solve an instance of a partition problem; find a
K-part partition P = P1 ∪∗ P2 ∪∗ . . .∪∗ PK of students into
groups, so that the sum of the group benefits over all groups
is maximized. This is the Cohort Selection Problem .

Problem 2 (Cohort Selection ). Let S be a set of
students and T be a set of topics. For every s ∈ S and t ∈ T
let req(s, t) be the requirement of s on t that is given. Find
a partition P of students into K groups, such that

B(P, d) =
∑
P∈P

B(P,AP ) (5)

is maximized, where AP = Schedule(P, d) for every group.

The Cohort Selection (Problem 2) is NP-hard as the
Catalog Segmentation problem [8] can be reduced to it.

4.1 Partition algorithms.
In this section we introduce CohPart (Algorithm 3) as our
solution to the Cohort Selection problem. The input
to Algorithm 3 are the requirements req(s, t), number of
groups K and length of the schedule d. The output is a
partition P = {P1,P2, . . . ,PK} of the students and corre-
sponding schedules {A1,A2, . . .AK} for each group.

CohPart first assigns every student to one of the groups in P
at random (Line 3) and an initial optimal schedule for every
group is computed (Line 5). Then in every iteration of the
algorithm first every student is assigned to the group with
the highest benefit schedule for the student (Line 9) and
then the group schedules are recomputed (Line 12). The
runtime of each iteration is O(k|S||T|). In our experiments
we observed that our algorithm converges really fast, less
than a few tens of iterations.

Algorithm 2 Benefit algorithm to compute the benefit
for student s from schedule A

Input: requirements req(s, t) for a student s ∈ P and
every topic t ∈ T and a single schedule A
Output: Benefit(s,A) Benefit of s from schedule A.

1: Benefit(s,A) = 0
2: for all topics t ∈ T do

3: Benefit(s,A) = Benefit(s,A) + min(req(s,t),A[t])
A[t]

4: end for

5. EXPERIMENTS
The goal of these experiments is to gain an understanding
of how our clustering algorithm works in terms of perfor-
mance (objective function) and runtime. Furthermore, we
want to understand how the deadline parameter impacts
our algorithm. We used a real world dataset, semi synthetic
and synthetic datasets. The semi synthetic dataset and the
source code to generate it are available in our website. 1 We
first explain different datasets and then show how well our
algorithm is doing on each dataset.

5.1 Algorithms
We compare CohPart to two baseline algorithms.

1http://cs-people.bu.edu/bahargam/edm/
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Algorithm 3 CohPart for computing the partition P based
on the benefit of students from schedules.

Input: requirement req(s, t) for every s ∈ S and t ∈ T,
number of timeslots d, number of groups K.
Output: partition P.

1: A = {A1,A2, . . . ,AK}
2: P = {P1, P2, . . . , PK}
3: i ∈R [1, 2, . . . ,K], Pi ← s for every s ∈ S
4: for i = 1, . . . ,K do
5: Ai = Schedule(Pi, d)
6: end for
7: while convergence is achieved do
8: for all students s ∈ S do
9: Pi ← s, i = argmaxj=1,...,k Benefit(s,Aj)

10: end for
11: for i = 1, . . . ,K do
12: Ai = Schedule(Pi, d)
13: end for
14: end while

RandPart: Partition S at random.

K_means: We represent each student s by the |T |-dimensional
vector

(
req(s, t1), req(s, t2), . . . , req(s, t|T |)

)
containing its

requirements for each topic. We assign students to groups
based on the K_means clustering performed on the space of
the requirement vectors using Eucledian distance.

CohPart_S: We also investigate a speedup version of Coh-

Part. We pick a subset of n′ << n students S′ ⊂ S at ran-
dom. We compute the optimal group schedulesA′1,A′2, . . .A′K
for S′ using CohPart and then assign each student s ∈ S to
the group that maximizes Benefit(s,A′i).

5.2 Datasets
BUCS data. This dataset consists of grades of real stu-
dents who majored in CS at Boston University. The data
consists of 398 students and 41 courses. Here the courses
correspond to topics and letter grades were converted to
the requirement of students. That is, grades A – F were
converted to req(s, t) such that A = 5 and F = 50. We
assumed the number of requirement to master a course for
the smartest student is 5 (base parameter). As the abil-
ity drops, number of requirement goes up (step parameter).
To compute missing requiements, i.e., fill values for missing
(student, course) pairs, we used Graded Response Model
(GRM). First, using GRM we obtain the ability and diffi-
culty parameters for all students and all courses. Then for
each pair of (student, course) in which student s did not
take course c, we used the ability of s and difficulty of c to
predict the grade of course c for that student.

BUCSSynth data. In order to see how well our algo-
rithm scales to larger datasets, we generated a synthetic
data, based on the obtained parameters from GRM. We call
this dataset BUCSSynth. From BUCS dataset, we observed
that the ability of students follows a normal distribution
with µ = 1.13 and σ = 1.41. Applying GRM to BUCS, we
obtained difficulty parameters for 41 courses. In order to
obtain difficulties for 100 courses, we used the following:
1. Choose one of the 41 courses at random.
2. Use density estimation, smoothing and then get the

CDF of the difficulties.
3. Randomly sample from the CDF to get the difficulties

for a new course.
Using these parameters, we generated grades for 2000 stu-
dents and 100 courses and we transformed grades to number
of requirements similar to what we did for BUCS dataset.

Synthetic data. In ground truth dataset we had gener-
ated 10 groups of students, each group containing 40 stu-
dents. For each group we selected 5 courses and assigned
requirement randomly to those 5 courses such that the sum
of requirement will be equal to the deadline. Then for the
remaining 35 courses, we filled number of requirements with
random numbers taken from a normal distribution with µ =
deadline

5
and σ = 3. We refer to this dataset as GroundTruth.

We have also generated the requirements for 400 students
and 40 courses using Pareto (α = 2), Normal (µ = 30 and
σ = 5) and Uniform (in the range of [5,100]) distributions.
We refer to this datastes as pareto, normal and uniform.

5.3 Results
All algorithms are implemented in Python 2.7 and all the ex-
periments are run single threaded on a Macbook Air (OS-X
10.9.4, 4GB RAM). We compare our algorithm with Rand-

Partand the K_meansalgorithm, the built in k-means func-
tion in Scipy library. Each experiment was repeated 5 times
and the average results are reported in this section. For
sample size in CohPart_S algorithm, we set parameter c (ex-
plained earlier) to 4 in all experiments.

5.3.1 Results on Real World Datasets
BUCS. The result on the BUSC data is depicted in Fig-
ure 1e where each point shows the benefit of all students
when partitioning them into K groups. As we see the Rand-

Part has the lowest benefit and our algorithm has the best
benefit. As the number of clusters increases (having hence
fewer students in each cluster), the benefit also increases,
means the schedule for those students is more personalized
and closer to their individual schedule. In Figure 1f we show
that the greater the deadline is, the closer K_means gets to
our algorithm. But in real life, we do not have enough time
to repeat (or teach) all of the courses (for e.g. for prepa-
ration before SAT exam). Figure 1f illustrates the case
when deadline is equal to the average sum of need vectors
for different students.

BUCSBase. We tried different values for base and step
parameters (explained earlier) and the result is depicted in
Figure 1g when the base and step are equal to 1. The
larger is the value of base and step parameter, the better
our algorithm performs.

BUCSSynth dataset. We ran our algorithms on on BUC-
SSynth dataset to see how well our algorithm scales for large
number of students. The result is depicted in Figure 1h.

5.3.2 Results on Synthetic Datasets
The result on synthetic data is illustrated in Figure 1a. As
we see CohPart and CohPart_S both are performing well. For
all of the courses the mean requirement is close to 10 with
standard deviation 3. We expect that students in the same
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(a) Ground Truth (b) Random (c) pareto (d) normal

(e) BUCS (f) BUCSdeadline (g) BUCSBase (h) BUCSSynth

Figure 1: Total benefit achieved by different algorithms as a function of the number of groups of students.

group (when generating the data) should be placed in the
same cluster after running our algorithm and the schedule
should include the selected courses in each group. Students
have different requirement values for the selected courses in
each group, but the sum of these selected courses is equal to
the deadline and our algorithm realized this structure and
only considered these selected courses to obtain the schedule.
But K_means lacked this ability to find the hidden structure.
The next studied datasets were uniform, pareto and nor-

mal datasets and the results are depicted in Figure 1b, 1c
and 1d respectively. For these datasets also our algorithm
outperformed K_means and RandPart .

6. CONCLUSION
In this paper, we highlighted the importance of team for-
mation and scheduling educational materials for students.
We suggested a novel clustering algorithm to form different
teams and teach the team members based on their abilities.
The results we obtained shows that our proposed solution is
effective and suggest that we have to consider personalized
teaching for students and form more efficient teams.
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ABSTRACT 
MOOCs pedagogical strategies assume that students construct 
their own knowledge and collaborate with their mates. Large-
scale learners’ interaction figures hinder both proper interpretation 
of learners’ needs and prompt remediation actions. To this we 
describe a preliminary study of a two-step collaboration analysis, 
which consists of inferring domain-independent indicators on 
students’ relationships obtained from social network analysis and 
using an influence diagram to warn teachers on students’ 
problematic circumstances to facilitate prompt remediation 
actions.  

Keywords 

Collaboration analytics, SNA, influence diagram, collaborative 
learning 

1. INTRODUCTION 
Massive open online courses (MOOCs) are stood out as a new 
pedagogical methodology since they aimed at large-scale 
participation and open access via the web [1]. In this situation the 
teacher loses control over the learning process and students should 
construct their own learning. The students can use the MOOC’s 
communication means to collaborate with their learning mates [2]. 
In this respect, although the students are to be provided with the 
tools and services to collaborate, this thus not suffice and frequent 
and regular analyses of the team process are needed to know 
whether the collaboration takes place [3]. Moreover, the special 
large-scale nature of MOOCs hampers teachers when coming to 
analyze students’ communication acts, which drive the 
collaboration process. 

Some researchers have proposed a well-known analysis method, 
social network analysis (SNA) to minimize the problems 
commented above [4, 2]. However, in this collaborative learning 
context some variables, such as emotion and empathy, are out of 
control [3]. Under these circumstances, analyzing the 
collaboration process requires to deal with uncertainty [5], which 
can be tackle with Influence diagrams (ID) [6].  

In our research we propose an approach to automatically warn (or 
recommend [7] teachers on students’ problematic collaboration 
circumstances so that they can readily provide corrective actions 
when required. Thus, the objectives of the application are: 1) to 
analyze the collaboration with a transferable analysis method that 
provides domain-independent collaborative indicators; 2) to 
minimize the human intervention. 

The rest of the paper is organized as follows. First we describe in 
Section 2 related research, to both SNA in MOOCs and ID in the 

educational context. In Section 3 we frame the research and 
educational context in which this work is being applied and an in-
depth description of the proposed methodology. We then 
comment on our preliminary study in Section 4 and finally briefly 
provide the main conclusions and further planned research in 
Section 5. 

2. Related research 
MOOCs offer more leeway to students and thereof features new 
challenges [8]. In this more crowded and less constrained learning 
environment it is advisable to use any available technology to 
analyze the learning process involved. Here technologies such as 
SNA are starting to be applied with relative success [2]. 

SNA has been used to identify students who are actively 
participating in course discussions and thus are potentially at a 
risk of dropping out [2]. [4] examined and detected, using SNA, 
communities of users within a large course so that they can be 
provided with a personalized and social-oriented recommender 
system. [9] presented an example of a Social Learning Analytics 
Tool to visualize real-time discussion activities in a MOOC 
environment.  

SNA has been widely applied to study the social aspect of 
students learning [10]. This way [11] analyzed networks in order 
to identify the people from whom an individual learns. Here [12] 
proposed a methodology to analyze students’ interactions in a 
collaborative learning environment, which consists of using SNA 
to get meaningful statistical indicators, such as the student 
reputation. [13] emphasized the use of SNA techniques to 
discover relevant structures in social networks so that the 
instructors were able to better assess participation. 

As the aforementioned approaches we aimed at improving 
collaborative settings though SNA outcomes in terms of a 
technology that has proved its usefulness in tackling problems 
under uncertainty. Moreover, the educational context has been a 
traditional suitable field where Bayesian networks (BN) have been 
applied to deal with the inherent uncertainty involved [14]. [15] 
proposed a course diagram method, based on an ID framework, 
which can be used by an instructor to design a course structure. 
The diagram organizes the instructional material and the tests.  

3. Towards collaboration analytics in 
MOOCs 
In our education context we proposed to combine two different 
technologies to analyze the collaboration. Firstly, the SNA obtains 
indicators from students’ interactions, which reflects how students 
connect with their mates. Secondly, an influence diagram 
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structures students’ indicators as a network, which supports a 
decision on students’ problematic circumstances once an expert, 
who can be the tutor, tunes the probabilities of the network. The 
software used for SNA was Gephi1 and for ID was OpenMarkov2. 

3.1 Social network analysis 
To date the most common communication service in MOOCs is 
forums. SNA has been applied to forums in order to infer the 
social relationships among users [16]. Here SNA metrics support 
the inference of social relationship indicators.  

Figure 1 shows the SNA diagram resulting from the data of the 
on-line course that we have used in the preliminary study. 

 
Figure 1. SNA in the preliminary study. 

In Figure 1 nodes are students who participated in an online 
course (see Preliminary study section and communications among 
students were analyzed through SNA. Within this figure the 
metric Degree of the nodes is represented as follows: red and big 
node means high degree, and yellow and small node means low 
degree. The color and size of the ties mean the weight of the 
relationship (i.e., number of messages from origin node to destiny 
node). 

We propose the following centrality metrics of the nodes as 
indicators of the collaboration process: 

• Degree is the number of ties of one node. 

• In-degree is the number of ties whose destiny is the 
node. This indicator is a measure of the node popularity. 

• Out-degree is the number of ties whose origin is the 
node. This indicator is a measure of the node sociability. 

• Closeness centrality is the degree to which an 
individual is near all other individual in the network. 
This reflects the ability to access to information by the 
network members. 

• Betweenness centrality a measure that quantifies the 
frequency or number of times that a node acting as a 
bridge along the shortest path between two other nodes. 

• Eigenvector centrality is the measure of the 
importance of a node in the network. Intuitively, the 
nodes that have a high value of this measure of 
centrality are connected to many nodes, which are 

                                                                    
1 http://gephi.github.io 
2 http://www.openmarkov.org 

connected also in this sense; therefore, are good 
candidates to disseminate information. 

We use these indictors, because they are well-known in the state-
of-the-art research focused on analyzing the position of the 
students in the network using SNA [16]. These indicators 
constitute a standard way to measuring network and node features 
and they can be used in several different context.  

3.2 Influence diagrams 
IDs provide us with a framework for representing and solving 
decision problems under uncertainty. As our objective is to 
maintain a domain independent and general approach of inference 
IDs include features that are advisable in learning environment as 
MOOCs, where the collaborative learning is encouraged. The 
collaboration settings constitute a framework where not all 
variable are known in advance. In addition, a MOOC is an 
educational environment where teachers cannot afford the 
continuous tracking and analysis phases of learners’ interactions, 
which in this case are massive. An ID could help teachers to 
identify and carried out correction decisions adapted to each 
student. 

We propose an ID where the indicators obtained from the SNA, 
the centrality metrics commented above, are structured. The 
network layout of the proposed ID is showed in Figure 2. 

In Figure 2 the yellow and round nodes are the variables in the 
problem. Assessment is the root and hidden variable, which is 
unknown in future test. The node “Assessment” represents the 
teacher’s assessment of students’ collaboration. The ID needs a 
training dataset with known values of the node “Assessment” to 
tune the networks probabilities. The other yellow and round nodes 
are the SNA indicators. The squared node “D” represents the 
decision, in this case, yes or not. The decision “yes” means a 
detection of problematic circumstances and the ID supports 
teacher with a suggestion so that the teacher makes a corrective 
actions. The node “U” maximizes the decision utility. Notice that 
the values of the nodes have to be discretized. In order to do the 
discretization we divided interval values into three groups with 
equal width. We propose three values: high, medium and low, 
because these values are easy to understand. 

 
Figure 2. Network of the influence diagram 

4. Preliminary study 
In the preliminary study we have used data from an on-line course 
to fine-tune the ID’s network. The experience was done with 
students of the subject "Complexity and Computability" in the 
forth course of the degree of Computer Systems Engineering at 
UNED (Spanish National University for Distance Education). In 
this subject we have mimicked the characteristics of MOOCs, 
with particular emphasis on the participation on the forum. For 
that reason we have undertaken a continuous assessment process 
on the Learning Management System (LMS) forum’s interactions 
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in order to detect the student level of participation and the 
recording of a special type of video podcast [17]. 

We have tested our approach in an online course, which let us 
make a preliminary proof of concept on the main issues involved, 
namely tracking and assessing students (16 students). This curse 
has been designed following the large-scale MOOC’s course 
settings, meaning that it consists of the same video lectures, 
individual tasks and a communication services that will be 
ultimately provided [17]. 

 
Figure 3: An example of node “Degree” probabilities. 

In the fine-tuning process experts can insert knowledge into the 
ID’s network, that is, in the automatic inferring process. Firstly 
the students should be assessed according to their interactions. It 
is fairly common that experts decide which students’ features, that 
their interactions have revealed, are the most relevant to be 
assessed. This knowledge is showed when the assessments are 
compared with the analysis of students´ interactions, which is 
independent of expert’s assessments. We made the SNA of the 
students´ interactions and independently an expert assessed the 
students.  

 
Figure 4: A general perspective of the ID’s network results. 

Once the students were assessed and we obtained the SNA 
centrality attributes of each student, we then discretized the data. 
Then, we were able to measure the probabilities for each case. An 
example is show in Figure 3. According to the Figure 2, the node 
“Degree” has three fathers, the nodes “In-Degree”, “Out-Degree” 
and “Assessment”. For each possibility of “Degree” value (low, 
medium or high) we measured the probability according to the 
values of the father nodes. Figure 3 shows some cases. For 
instance, when the father node have “low” value, the node 
“Degree” have “low” value. Because node “Degree” has three 
father nodes, there are 27 possible cases (the Cartesian product of 
three variables with three possible values). We made the fine-

tuning process with 16 students, thus, we did not have enough 
data to fine-tune the network completely. We could solve this lack 
with data from the next experience. 

After the probabilities were established for each possible case of 
each node, the ID was able to infer a decision and the decision 
utility for each case. Figure 4 shows the general perspective ID’s 
results. It can be seen that the ID advises to recommend only in 
around one third of cases (In node “D”, “yes” is 0.3143 and “no” 
0.6857).  

We can observe what happens when the ID advises to 
recommend, i.e., identifies a possible collaboration problematic 
circumstance. Figure 5 shows the case when the ID advises to 
recommend. When the ID advises to recommend, the student has 
low value in the nodes “Degree” and “In-Degree”. This informs 
us that when a recommendation is advisable, the student is not 
active and her/his classmates ignore her/him. Thus, the ID has 
identified a problematic collaboration scene, which can be 
happened over the course. With this information the teacher could 
make a corrective activity to improve the collaboration process. 

 
Figure 5. Example: ID advises to recommend. 

In addition to the previous analysis, it is possible to calculate the 
optimal policy of the ID (see Figure 6). Thus, the optimal policy 
informs about the decision (yes or not) for each combination of 
nodes values.  

 
Figure 6. Optimal policy: all possible decisions of ID. 

Figure 6 shows an example of the decisions, yes or not, according 
to the values (high, middle or low) of the centrality attributes 
obtained from the SNA. In the preliminary study we had 16 
assessed students. The possible cases that the ID can consider 
mathematically are the Cartesian product of network nodes and 
the student indicators (a total of 729 cases). Thus, not all the 
possible cases of the nodes values combination have to be 
considered by the ID. However, the results (see Figure 6) show 
that the ID is capable to support with different decisions according 
to the students SNA centrality attributes values. However, more 
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interaction data are needed to continue with the ID tuning process. 
When tuning process is finished, a new student’s attributes values 
from the SNA feed the ID that, in turn, can offer accordingly a 
new decision (i.e., “yes”, suggestion of a corrective action due the 
possible student’s problematic circumstance in the collaboration). 

The approach labels students with “yes” (the student needs a 
recommendation) or “not” (the student does not) and this way 
guides teachers to identify the student’s collaboration problem. 
Based on this the teacher can create the appropriate 
recommendation to the student. 

5. Conclusions and future work 
To facilitate collaborative learning management within MOOCs 
in this paper we propose a domain independent and transferable 
approach, which is based on two different technologies: 1) 
Inferring domain-independent indicators on students’ 
relationships obtained from social network analysis (SNA) in their 
interactions; 2) From these indicators an ID is used to warn 
teachers on students’ problematic circumstances so they can 
provide them with prompt remediation actions. Here teachers 
cannot afford the continuous tracking and analysis phases of 
learners’ interactions, which in this case are massive. 

The preliminary results described in this paper confirm that the 
approach can identify problematic collaboration scenes, although 
it should be further investigated. Thus, data from more students 
will be considered, which will be used to tune the ID’s network 
probabilities. Thanks to the approach, the tuning process can be 
made while the students are participating in the MOOC. 
Moreover, the final suggestion that is offered to the teacher can 
also be improved. The suggestion should be easily understandable 
by any non-expert user so that the analysis process involved won’t 
prevent them from its usage. 

The research described in this paper will be further applied within 
the MAMIPEC project, which aimed to infer and provide 
affective personalized support to learners in educational contexts 
[18]. 
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ABSTRACT 

We present results from a pilot study to investigate the evidence 

for convergence and synchrony in cognitive and noncognitive 

behavior of dyads engaged in a collaborative activity. Our 

approach utilizes multimodal data including video and participant 

action log files retrieved from the collaborative activity, an online 

educational simulation on science topics. The log files captured 

cognitive behavior including frequency and content of chat 

messages between dyads, as well system help requests. The video 

data recorded participant nonverbal behavior that was processed 

on a frame-by-frame basis using automated facial expression 

classifiers and coded by trained human raters on high-level 

noncognitive behaviors including: affect display gestures, 

engagement, anxiety and curiosity. The data were analyzed at 

individual and dyad levels and results using hierarchical 

clustering analysis demonstrate evidence of cognitive and 

noncognitive behavioral convergence among dyads. 

Keywords 

Collaborative Assessment, Human-Computer Interaction, 

Multimodal Data, Noncognitive states, Cluster Analysis 

1. INTRODUCTION 
Behavioral convergence refers to the unintentional imitation 

process of gestures, facial expressions, behaviors, moods,  

postures, or verbal patterns of coparticipants on a range of 

different time-scales [4, 12]. In literature it has been referred to by 

a variety of terms e.g., behavioral matching, mimicry, 

interpersonal coordination, entrainment, interactional synchrony 

and the Chameleon effect [4, 12, 17, 19]. While previous studies 

have explored its impact on interpersonal skills, coordinated 

activity, negotiations, and how individuals influence the behaviors 

of others [2, 4, 21], little research has focused on finding evidence 

for behavioral convergence in collaborative activity [24].  

Collaboration is a complex activity that constitutes an interplay 

between cognitive processes such as knowledge acquisition, 

content understanding,  action planning, and execution [7, 8, 10, 

18, 26] and noncognitive processes such as social regulation, 

adaptability, engagement and social affect, such as boredom, 

confusion, and frustration [1, 3, 6]. Collaborative activity may 

take place in face-to-face interactions or through the medium of 

online distance learning technologies and collaboration platforms 

[20]. In either context collaboration is more effective when 

participants are engaged in the task and exhibit behaviors that 

facilitate interaction [25].  

Our hypothesis is that behavioral convergence occurs during 

collaborative activity and it manifests in both cognitive and 

noncognitive processes. Based on this premise, we expect that 

people will tend to synchronize their behaviors (consciously or 

nonconsciously) while they are engaged in a collaborative 

activity. To test our hypothesis, a pilot study was conducted 

involving 12 unique dyads collaborating in an online game-like 

science assessment: ETS’ online collaborative research 

environment ─the Tetralogue [15, 27]. Multimodal data including 

video and activity log files of each participating dyad were 

captured. The log files contain cognitive behavior including 

frequency and content of chat messages between dyads, as well as 

system help request (i.e., the participant requests to view 

educational videos on the subject matter to better answer 

assessment questions). The video data, on the other hand, 

recorded participant nonverbal behavior which was analyzed on a 

frame-by-frame basis using automated facial expression classifiers 

and annotated by trained human raters on high-level noncognitive 

behaviors including: affect display gestures, engagement, anxiety, 

and curiosity. Along with recent studies [17, 20, 24], in this paper 

we describe one of the first attempts to capture and analyze 

multimodal data in the context of studying behavioral 

convergence in collaborative activities. 

2. Methodology 

2.1 Collaborative Activity Platform 
As mentioned earlier, our study used an online collaboration 

assessment platform: ETS’ online collaborative research 

environment –the Tetralogue. This platform includes a set of 

multiple-choice items on general science topics, a simulation 

based assessment, a personality test, and a set of background 

questionnaires. The simulation task is on geology topics. The 

simulation-based task was developed as a task for individual test 

takers who will interact with two avatars and as a collaborative 

task that requires the collaboration among two human participants 

and two avatars in order to solve geology problems.  

The participants, who may be in different locations, interact 

through an online chat box and system help requests (selecting to 
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view educational videos on the subject matter). The main avatar, 

Dr. Garcia, introduces information on volcanoes, facilitates the 

simulation, and requires the participants to answer a set of 

individual and group questions and tasks. A second avatar, Art, 

takes the role of another student, in order to contrast his 

information with that produced by the dyad.  

The system logs activity data of the participants in structured 

XML files, which capture participant actions including: 

identification of the user who performed each action, the number 

of chat messages, the content of those chat messages, the number 

of times the participants request additional information on subject 

matter from the system, the answer selected for each individual 

and group question, and the time at which each action occurred. 

While the dyads interacted with the task, we captured the video of 

each individual participant. The video data were used for both 

annotating noncognitive behavior of the participants and 

automated facial expression analysis (see section 2.3 for further 

details). It should be noted that the only form of direct 

communication between the dyads was through the Tetralogue 

text-based chat interface and the dyads were not able to see or 

hear each other. Figure 1 illustrates the collaborative activity and 

data capture while participants interact in the system.  

 

 
Figure 1. Multimodal data capture including video and action 

log files while participants engage in collaborative activity on 

the Tetralogue platform. 

 

2.2 Study Participants and Data Collection 
Twenty-four subjects participated in this study and were paired in 

dyads using random selection. Information about the study was 

provided to each participant individually and consent forms were 

obtained from them.  

The length of the experiment sessions varied from 15 minutes to 

48 minutes, with an average length of 25 minutes. Although there 

were time variations among sessions, all dyads reviewed the same 

material and completed the same tasks in Tetralogue. This 

resulted in approximately 600 minutes of video data and 

associated participant action log file data. The data stored in the 

log files were parsed using the ‘XML’ package [13]. The features 

extracted from the log files were: number of chat messages sent to 

the partner and number system helps (viewing educational videos 

on the subject matter) requested at each stage of the simulation, 

answer to each individual question, and answer to each group 

question.  

Our focus on “number of messages” and “number of help 

requests” was driven by former research in the field that associates 

both features with the performance in learning-oriented tasks, 

cognitive states, and collaborative interactions [6, 17]. However, 

more features associated with cognitive activity can be mined 

from the log files, such as the time length between actions or the 

content of the chat messages and will be addressed in future 

studies.  

 

2.3 Video Data Processing and Coding  
Facial expression analysis of the video data was performed using 

the FACET SDK, a commercial version of the Computer 

Expression Recognition Toolbox [14]. This tool recognizes fine-

grained facial features, or facial action units (AUs), described in 

the Facial Action Coding System [9]. FACET detects human faces 

in a video frame, locates and tracks facial features, and uses 

support vector machine based classifiers to output frame-by-frame 

detection probabilities of a set of facial expressions: anger, joy, 

contempt and surprise.  

In addition, seven trained coders reviewed and coded the videos 

using the Anvil software [11]. The video data of each participant 

were assigned to two raters for annotation; however, in three cases 

there were three raters coding the same video file, and in two 

cases only a single rater was available for annotation. The raters 

followed the same coding scheme during the annotation process, 

which included the next categories: having their hand on their 

face, expressing engagement, anxiety, or curiosity. As an outcome 

of the annotation process, the Anvil software produced XML files 

that were parsed using the ‘XML’ package [13] in R [22].  

Engagement, anxiety, and curiosity were included in the 

annotation scheme because of the incidence and relevance of 

these three noncognitive states in simulation games and online 

learning systems [1, 5]. The coding also included “hand touching 

face”, an affect display gesture that has been linked to affective 

and cognitive states such as boredom, engagement, and thinking 

[16]. 

3. Results 

3.1 Behavioral Convergence within Dyads 
In order to study evidence of behavioral convergence, features 

from log files and video data of each of the 24 study participants 

were represented as a multidimensional behavioral feature vector 

composed of both the cognitive behaviors: number_of_messages, 

number_of_help_requests and the noncognitive behaviors (i.e. 

fraction of the time each participant exhibited the behavior): 

engagment, hand_on_face, anxiety, curiosity, anger, joy, 

contempt and surprise. 

An agglomerative hierarchical cluster analysis using an average 

linkage function was performed on an Euclidean distance matrix 

(i.e., a similarity matrix) computed from the multidimensional 

behavioral feature data of the study participants. Our hypothesis is 

that behavioral convergence will manifest in the cognitive and 

noncognitive features such that members of the same dyad will 

tend to group together from the beginning of the clustering 

process (i.e., they will be closer to each other in the feature space 

than to others).  

Figure 2 depicts the dendrogram plot produced from the cluster 

analysis. In the plot, members of the same dyad are depicted by 

consecutive numbers and identical color; for instance, the first 
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dyad includes coparticipants d1.1 and d1.2 colored in red, the 

second dyad consists of coparticipants d2.1 and d2.2 colored in 

blue, and so on. The plot shows that participants in 7 of the 12 

dyads grouped together in the clustering process (i.e. they were 

closest to each other in the multidimensional feature space), 

indicating a high degree of behavioral convergence. Still, some 

participants (e.g., d10.1 and d4.2) showed a distinctive pattern of 

values in the variables used to calculate the distances, which 

prevented them to be grouped with their respective peers.  

In addition, we analyzed the similarity matrix of behavioral 

feature distances for participants within and outside dyads. 

Behavioral convergence would imply that for dyad members the 

average distances in feature space is smaller in a statistically 

significant manner than those of non-dyad members. To study the 

relative impact of cognitive and noncognitive features we 

computed two additional similarity matrices: one using 

exclusively the cognitive features from log files (number of chats 

messages and number of system help requests) and the other using 

exclusively noncognitive features produced from the video data 

(the four facial expression detectors, and the four features from 

the coding scheme). All features were normalized to present 

equivalent scaled values between zero and one. 

 
Figure 2. Agglomerative Cluster Dendrogram. 

Table 1 shows the mean and standard deviations of feature 

similarity distances of participants when compared with their dyad 

partners and others. The results consistently show smaller average 

distances for the dyads (i.e., members within dyads displayed 

behavior that was more similar to each other than others), 

supporting the convergence premise. Additional analysis to test 

the significance of these differences using the Student’s t-test 

demonstrated that using both cognitive and noncognitive features 

the average distances are statistically significant (t-value = 2.33, 

df = 11.7, p-value < 0.02). 

A final analysis was computed on the correlation of the total 

group scores in the task with the distances of participants with 

their respective dyad partners and with other users except for their 

teammate. The group score showed a mild correlation with the 

distance between dyad members of -0.19 (s.e.r = 0.21). Note that 

the negative correlation is a consequence of using similarity 

distances (smaller distance values indicate more convergence) and 

the group score values (higher values indicate a better 

performance on the task). Nevertheless, as will be underscored in 

Section 4, the small sample size in the study produced large 

standard errors for this correlation estimate and do not imply 

statistically significant patterns. 

 

Table 1. Average and standard deviation of behavioral feature 

distances within and outside dyads 

Features 
 

Mean S.D. 

Cognitive and Dyad 0.57 0.22 

noncognitive Others 0.73 0.24 

Cognitive only Dyad 0.36 0.21 

 
Others 0.57 0.20 

Noncognitive  Dyad 0.41 0.17 

only Others 0.41 0.22 

 

4. Discussion and Conclusions 
Seminal work from Roschelle [23] in his seminal work made the 

argument that the crux of learning by collaboration is convergence 

and showed empirical evidence of the convergence occurring at 

the linguistic level. Our study provides further empirical evidence 

of behavioral convergence gleaned from multimodal data. As 

pointed out in [8], cognitive and noncognitive processes occur 

simultaneously throughout the collaborative task, and both 

dimensions cannot be separated in practice. The results from 

cluster analysis in our experimental study support this idea and 

the pattern of agglomeration of the participants could be 

interpreted as evidence of convergence of cognitive and 

noncognitive states when people interact in a collaborative task. 

As reported in table 1, the degree of behavioral similarity within 

dyads tended to be significantly higher than the similarity between 

non-dyad members, which is good evidence for behavioral 

convergence in collaborative interactions [4, 12]. In addition, we 

observed a mild correlation (of approximately 0.2) between the 

measure of convergence (i.e., the level of similarity between 

dyads) and the dyad task scores. This might be interpreted as a 

scaffolding effect that convergence during interaction can have in 

group performance outcomes. Similar results were reported in 

[24], underscoring that specific types of convergence have a 

positive effect in learning and collaboration.  

Further research using these data will address topics such as the 

synchrony of behavior and noncognitive states between members 

within dyads, machine learning and classification analyses to 

detect and predict specific cognitive and noncognitive states from 

facial action units, and more detailed analysis on the impact of 

cognitive and noncognitive states on the individual-level and 

group-level assessment outcomes.  

There are certain limitations of this study that should be pointed 

out. First, the current sample size is small ─24 participants─ 

despite the rich amount of information gathered from each 

participant. Second, the current collaboration platform neither 

allows participants to view each other nor uses face-to-face audio-

visual interfaces to communicate. This limits how participants are 

able to mirror each other’s behavior and may also explain why we 

observed weaker convergence in noncognitive features. Third, the 
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study has utilized a very limited set of behaviors both cognitive 

and noncognitive. We aim to extend our behavior feature set and 

sources of data (e.g., audio data) in future studies as well as utilize 

the content of participant chat messages to glean features like 

shared vocabulary, turn-taking etc.  
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ABSTRACT 

A commonly known and widely studied problem of massive open 

online courses (MOOCs) is the high drop-out rate of students. In 

this paper we propose and analyze the composition of small 

learning groups as a solution to this problem. In an experiment, 

we composed such small learning groups in a MOOC context 

using two methods: Random grouping and grouping by an 

algorithm that considers selected student criteria. Further, a 

flipped classroom course was conducted on-campus with a local 

student group using the MOOC. We compared all three 

approaches to a control condition using two measures: Drop-out 

rate and learning performance. The empirical results give an 

indication, yet no hard evidence, that small groups might reduce 

student drop-out rates. * 

Keywords 

MOOC; Group Composition; Learning Analytics; Drop-out Rate. 

1. INTRODUCTION 
MOOC providers, such as Coursera, EdX and iversity, reach 

course enrolments of up to tens of thousands of students using 

scalable techniques like lecture videos and quizzes [7]. This 

massive scale reduces the opportunities for interaction with course 

instructors. Completion rate, a commonly used (yet debatable) 

measure of student success, is reported to be less than 13 percent 

in most MOOCs [3], which has recently attracted extensive 

studies in order to discover reasons behind this problem [5; 8; 11]. 

Social connections and collaboration between MOOC students 

also fall far below expectations. Only 5-10 percent actively 

participate in course forums [9]. At this point, group formation 

might help by leading to the creation of informal social ties [4] as 

well as improving social skills [10]. 

The composition of small learning groups has already been tested 

in online learning contexts and local meeting scenarios (i.e. face-

to-face groups). In general, self-selected, random and algorithm-

based group composition are commonly applied. Algorithm 

composed groups typically bring together students with either 

heterogeneous or homogeneous criteria (e.g. based on learning 

style, personality and demographic information) using 

technologies such as GT [1] or Swarm Intelligence [2]. Unlike the 

case with randomly composed or self-selected groups, students’ 

information must be preliminarily collected and then provided to 

the composition algorithm. 

In order to investigate the impact of small learning groups on 

drop-out rate and learning performance, we conducted a grouping 

                                                                 

* Zhilin Zheng and Tim Vogelsang contributed equally to this 

work. 

experiment on the iversity.org platform. Specifically, we tested 

three grouping approaches, all in the same MOOC: 1) automated 

group composition using an adapted k-means clustering 

algorithm, accounting for both homogeneous and heterogeneous 

student criteria; 2) random group composition; and 3) an on-

campus flipped classroom approach. This paper describes the 

results in the three conditions concerning drop-out rates, learning 

performance and student engagement. The employed algorithm is 

easy to implement and has low computational costs. In the 

experiment, we made use of only free and minimal intervention 

(email) and collaboration methods (email, VoIP, social media). 

Hence the organizational burden for developers, instructors and 

students was reduced to a minimum. The experiment is thus 

scalable and reproducible within many learning environments.  

2. METHODOLOGY 

2.1 Research Objectives 
Empirically, we investigated the following three research 

questions: 

1) Student engagement: Will MOOC students assigned to online 

groups (without further moderation) be engaged in online 

collaboration? 

2) Drop-out rate: Will random or algorithmic grouping of MOOC 

students decrease the drop-out rate? 

3) Learning performance: Can random or algorithmic grouping 

lead to higher learning performance, as measured in quizzes and 

homework scores?  

2.2 Experiment Procedure 
For conducting the experiment, we chose the second iteration of 

the course “The Fascination of Crystals and Symmetry”, which 

was offered on the iversity.org platform. This is an introductory 

course to crystallography held by Dr. Frank Hoffmann (University 

of Hamburg). Since the course offered open discussion questions, 

it seemed well suited to engage students in group interaction. It 

had 3,209 enrollments in total, out of which 771 (i.e. 24.03%) 

were actively engaged throughout the course.  

After the start of the course, 80 percent of the participants 

received a grouping survey via email asking for information about 

gender, timezone, language, personality, learning goals (general 

or in-depth) and their preferred collaboration method (local, 

email, Facebook, Google+ or Skype). The remaining 20 percent of 

the course received a motivational survey instead and served as a 

control condition. One week after the course start, students who 

provided sufficient answers to the grouping survey were assigned 

to groups of size 10 by our algorithm and received a second email 

a few days later. Those who did not respond but had a Facebook 

account were still randomly assigned to groups. The second email 

presented the other group members with their personal 
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descriptions as given in the survey. Further, the email contained a 

link to the first open discussion question of the course material 

and a link to their group (if applicable). Students from the control 

conditions, without or with insufficient grouping survey 

responses, were not assigned to groups. In addition, the course 

was held by Dr. Hoffmann as a flipped classroom at the 

University of Hamburg with approximately 65 students who 

watched the online lectures at home and met in-class for 

discussion. Out of these 65 students, 7 used their university 

account to sign-in to iversity and were anonymously included into 

our dataset. The other 58 students were not explicitly included. 

They either used private email addresses or did not sign up to the 

online course. This (relatively complex, but ecologically valid) 

assignment procedure of students to seven different conditions is 

summarized in Figure 1 and Table 1. 

Table 1. Student conditions 

Condition 
Collaborati

on Method 
Description 

“Algorithm composed 

groups” (AlgoCG)  

According 

to  

preference  

Grouping survey, 

responded sufficiently 

grouped by algorithm 

“Randomly composed 

groups” (RandCG) 
Facebook  

Grouping survey,  

not responded, 

Facebook user,  

grouped randomly  

“Flipped classroom 

group” (FlippCG) 

Local at 

University 

of Hamburg 

Attended flipped 

classroom with the 

instructor  

“No grouping - no 

answer”  

(NoG-NA) 

none 

Grouping survey, 

not responded,  

not grouped 

“No grouping - 

insufficient answer” 

(NoG-IA) 

none 

Grouping survey, 

responded 

insufficiently, 

not grouped 

“No grouping - control 

group - responsive” 

(NoG-CG-R) 

none 

Motivational survey, 

responded,  

not grouped 

“No grouping - control 

group - nonresponsive” 

(NoG-CG-NR) 

none 

Motivational survey, 

not responded, 

not grouped 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a last grouping related intervention, we sent a post grouping 

survey by the end of the course. This survey was only sent to the 

80 percent who had also received the initial grouping survey and 

contained questions about satisfaction with and intensity of the 

group work. 

3. GROUPING ALGORITHM 
In order to create algorithm composed groups (AlgoCG), we used 

the collected responses from the grouping survey. We first 

segmented the respondents into five classes according to their 

collaboration preferences, namely local, email, Facebook, 

Google+ or Skype. For each class, we extracted each participant’s 

gender, time zone, personality type, learning goal and language 

for the actual grouping. The task of the algorithm was to compose 

learning groups consisting of 10 students. Local groups were 

meant to only contain students from the same cities in order to 

actually meet up, resulting in very few and small groups 

qualifying for this option. The main algorithmic challenge was to 

take into account both heterogeneities (namely gender, personality 

type and learning goal) and homogeneities (i.e. time zone and 

language). Concretely, we wanted groups to have e.g. mixed 

gender, but similar time zone. To solve this optimization problem, 

we used a k-means clustering algorithm for fixed group sizes, 

based on [6].  The pseudocode of this algorithm is described in 

Figure 2 and our implementation in Python is publicly available1. 

In its original form, the algorithm calculates a homogeneity score 

for a single grouping criterion, like in usual applications of k-

means clustering. For our experiment, we modified this algorithm 

to support multiple criteria and homogeneity as well as 

heterogeneity at the same time. As a modification, we calculated 

the group score as the difference between a homogeneity score 

(on time zone, language and learning goal) and a heterogeneity 

score (on gender and personality), both of which are actually 

measured by the Euclidean distance between peers.  

 

 

4. EXPERIMENT RESULTS 
As a result of our grouping efforts, we composed 22 learning 

groups in total (4 local meeting groups, 5 Skype groups, 6 

Facebook groups, 2 Google+ groups and 5 email groups). The 

                                                                 

1 https://bitbucket.org/zhilinzheng7/kmeansgrouping 

----------------------------------------------------------------- 

Step1: randomly assign students to groups; 

Step2: for every group: 

                  for every student in the current group: 

                        calculate the possible group scores              

                         for the student in all the other groups; 

                         if the student has a higher group score           

                         in one of the other groups: 

                              find the student in the other group with  

                              the lowest group score; 

                              swap the two students; 

Step3: while we are significantly improving the average   

           group score, go back to step 2 

--------------------------------------------------------------------- 

 Figure 2: K-means Clustering for fixed group sizes [6]. 

Image courtesy: Dirk Uys. 

 

. 

 

 

Figure 1. Student conditions with participation 

numbers. 

 

. 
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(304) 
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following sub-sections present three aspects of the experiment 

results: student engagement, drop-out rate and learning 

performance. 

4.1 Student Engagement 
Roughly half of the students enrolled in the course were part of 

our experiment (1,730 out of 3,209). The other half of the students 

enrolled after the official start of the course (and, hence, after the 

start of our experiment), which is a usual pattern for a MOOC.  

Overall, the course participants were quite inactive in general, as 

measured in terms of forum participation. Only 33 students 

participated in the forum by posting questions, answers or 

comments. The conducted post grouping survey had nine 

responses from participants that joined a group. Those 

respondents spent three hours on average (median one hour) on 

the group interactions. Further, the Facebook and Google+ groups 

that were created by us showed some initial greeting messages or 

comments but no deep, course-related interaction. Hence, our 

composition did not engage students in collaboration via the 

social media groups created for that purpose. For other online 

grouping participants (i.e. email and Skype) who did not answer 

to our post grouping survey, we cannot make the same conclusion 

owing to a lack of data. 

However, students at least saw small descriptions of their peers in 

our welcome message and were partly able to see them on social 

media. Whether this fact, in addition to potentially unobserved 

interactions (e.g. via email), might have had an impact on the 

drop-out rate and learning performance, as well as how this relates 

to survey responsiveness, is analyzed in the following two 

subsections.  

4.2 Drop-out Rate and Survey Responsiveness 
We here define a ‘drop-out’ as any student who did not submit 

any quiz or assessment, and thereby did not qualify for any course 

score, after the group assignment.  

Figure 3 shows the drop-out rate for all conditions. 

Unsurprisingly, all seven of the tracked flipped-classroom 

students stayed in the course (drop-out rate 0%). In order to test 

the statistical significance of found differences in the drop-out 

rates, pairwise z-tests on the different conditions using a two-

sided p-value were performed. For our conclusions about 

significance, we thus applied a Bonferroni correction to the 

significance level. The p-values in Section 4.2 are given in their 

non-Bonferroni-corrected form. 

First of all, survey responsiveness plays a major role in the 

analysis. Among the participants of the treatment group that were 

not grouped, those who gave insufficient survey responses seem 

to be less likely to drop out than those who did not respond at all, 

yet this difference is not statistically significant (NoG-IA: 

71.05%, NoG-NA: 82.31%, p=0.07). Further, in the control group 

without grouping, those who interacted with the motivational 

survey had a considerably lower drop-out rate than those who did 

not (NoG-CG-R: 62.75%, NoG-CG-NR: 82.57%, p=0.001). We 

can conclude that non-responsive students (with regard to a 

survey) are more likely to drop out than responsive students.  

Hence, when analyzing the interplay between grouping condition 

and drop-out rate, we need to control for survey responsiveness. 

Since the randomly composed students did not respond to the 

grouping survey, we need to compare them to the students in the 

control group who did not respond to the motivational survey 

(RandCG: 77.78%, NoG-CG-NR: 82.57%, p=0.26). And since 

students from the algorithm composed groups responded to our 

grouping survey, they need to be compared with the fraction of 

the control group responding to the motivational survey (AlgoCG: 

59.24%, NoG-CG-R: 62.75%, p=0.65). With this control for 

survey responsiveness, we thus find no statistically significant 

effects.  

 

 

4.3 Learning Performance 
In order to analyze the experiment’s impact on student’s learning 

performance, we looked at students’ scores on quizzes and 

homework. Figure 4 visualizes average as well as minimum and 

maximum scores within the various experiment conditions. The 

flipped classroom condition outperformed all other conditions in 

terms of median score (FlippCG: 32, others: below 20). However, 

we do not find evidence for a positive impact of any condition on 

learning performance as measured by score. A one-way ANOVA 

implied no statistically significant difference between the 

conditions (F(6,518)=1.284, p=0.265).  

 

 

 

 

5. DISCUSSION AND FUTURE WORK 
In this paper, we presented a scalable and reproducible method to 

create small groups in online learning environments. We used 

minimal intervention methods and freely available collaboration 

tools as well as an adapted k-means clustering algorithm. Within 

the study, a flipped classroom approach outperformed all 

composed groups having no drop-out and above average learning 

scores. This is only partially surprising, as the flipped classroom 

students were in a formal education setting and most of the others 

were not. Further, survey responsiveness was found to be 

predictive of the drop-out rate. Comparing student conditions 

according to this insight, we found indications that composing 
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Figure 4. Boxplot showing student’s scores from quizzes 

and homework. 
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Figure 3: Bar-plot showing student’s drop-out rates. 
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small learning groups in MOOCs (at least the way we did it) 

might not directly increase learning performance online, but could 

possibly decrease drop-out rates. However, these findings are 

limited by lack of statistical significance, self-selection biases and 

little observed interaction in the groups. These limitations need to 

be addressed within replications and extensions of this 

experiment. 

Statistical significance: The scope of our experiment was a single 

but massive open online course with quite a high number of 

participants (1,730), which is far beyond the possibilities of a 

traditional classroom experiment. However, we faced low 

response rates and had to assign online students to rather 

complicated conditions, varying in size between 38 and 1,029 

students (cf. Figure 1). The flipped classroom condition only had 

7 students. Together, these impediments had a negative impact on 

the statistical power. For replication, even bigger courses should 

be chosen.  

Self-selection: While only those who completed our grouping 

survey were assigned to the AlgoCG condition, we chose to 

compose RandCG from students who did not respond to this 

survey (for the sake of having enough groups in the AlgoCG 

condition). This self-selection problem was addressed analytically 

by also splitting our control group into responders and non-

responders to our motivational survey. However, those 

interventions are not exactly equal: The email containing the 

motivational survey expresses the wish of the instructor and 

platform to get to know the students in order to adjust courses 

accordingly. The email containing the grouping survey, on the 

other hand, addresses the student’s potential wish to collaborate in 

a group.  

Group interaction: Finally, only very low actual collaboration 

could be observed in the Facebook and Google+ groups. How can 

small learning groups have an effect if nothing is going on in the 

groups? Some students claimed in the post grouping survey to 

have collaborated and it might be the case that the Facebook and 

Google+ groups were avoided (as an iversity team member was 

part of the group) and other, private, channels were preferred for 

collaboration.  

In order to overcome the limitations within future student 

grouping experiments, we deduced new research hypotheses from 

our results.  

Hypothesis 1: Using learning environments that are specifically 

designed for group work (including reminders, definition of 

learning goals, assignment of individual group roles or scheduled 

group meetings) will increase collaboration within small learning 

groups. 

Hypothesis 2: Dynamic group (re-)composition using genetic or 

particle swarm algorithms will increase collaboration within the 

small learning groups, by solving the problem of drop-out in 

learning groups. 

Hypothesis 3: Establishing small and regularly interacting sub-

communities within a large online course may reduce students’ 

drop-out rate. Just being aware of one another, even if not 

working together, is crucial.  
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ABSTRACT
Cognitive Tutor Algebra I (CTAI), published by Carnegie
Learning, Inc., is an Algebra I curriculum, including both
textbook components and an automated, computer appli-
cation that is designed to deliver individualized instruction
to students. A recent randomized controlled effectiveness
trial, found that CTAI increased students’ test scores by
about 0.2 standard deviations. However, the study raised a
number of questions, in the form of evidence for treatment-
effect-heterogeneity. The experiment generated student log-
data from the computer application. This study attempts to
use that data to shed light on CTAI’s causal mechanisms,
via principal stratification. Principal strata are categories
of both treatment and control students according their po-
tential CTAI usage; they allow researchers to estimate dif-
ferences in treatment effect between usage subgroups. Im-
portantly, randomization satisfies the principal stratifica-
tion identification assumptions. We present the results of
our first analyses here, following prior observational results.
We find that students who encounter more than the median
number of sections experience higher effects than their peers
who encounter fewer, and students who need more assistance
experience lower effects than their peers who require less.

Keywords
Causal Mechanisms, Principal Stratification, Intelligent Tu-
tors, Bayesian Hierarchical Models

1. INTRODUCTION
The Cognitive Tutor Algebra I (CTAI) is a technology-based
educational intervention that hopes to improve algebra I in-
struction by individualizing instruction to students needs,
providing instant performance feedback, and implementing
cognitive theories in mathematics education. [6]

Recently, a randomized controlled effectiveness trial, esti-
mated the effect of a school’s adoption of CTAI, under au-
thentic conditions, on its students scores on an algebra pro-

ficiency exam. The results were reported in [4]. The study
found that CTAI significantly increased test scores for 9th
grade students in the second year of implementation, but
was unable to detect effects in the experiment’s first year,
or in the 8th-grade group. These results raise a further
question: by what mechanism, and for which students, does
CTAI increase achievement? What usage patterns lead to
higher effects? Can usage patterns explain the observed
treatment effect heterogeneity?

The effectiveness trial produced extensive student usage data,
as the computer program logged students’ activity. In this
paper, we begin use this data—in particular, usage data
from the 2nd-year high school sample that apparently expe-
rienced a substantial CTAI effect—to explore the relation-
ship between student usage and causal effects.

In doing so, we are guided by a previous study, [7] which
(in one model specification) regressed post-test scores on
CTAI usage variables, alongside student covariates and pre-
test scores. That paper was aimed at post-test prediction,
not causal inference, but it is of use in generating causal
hypotheses: are there different effects for students who use
CTAI for different amounts of time? Or for students who
require more assistance from the program? Or for stu-
dents who encounter more sections? This paper is a prelimi-
nary inquiry into these questions—more an exposition of the
types of results that are possible than a full analysis—future
work will delve more deeply into the data.

The data from the CTAI effectiveness study is invaluable for
testing these hypotheses: due to its randomization design,
we can draw causal conclusions without heroic assumptions.
To do so, we will make use of the statistical framework of
principal stratification, which we will describe in the follow-
ing section. The next section will describe our models in
detail, and results and conclusions will follow.

2. PRINCIPAL STRATIFICATION
Following [8], we conceptualize causal inference in terms of
counterfactuals: comparing what students would have expe-
rienced with CTAI with what they would have experienced
in its absence. In particular, if Y is the outcome of interest,
in our case, post-test scores, we may define two “potential
outcomes” for each subject: Yi(0) is what a subject i would
score on the post-test if i’s school were assigned to the con-
trol condition, and Yi(1) is what I would score if her school
were assigned to treatment.
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Principal stratification (PS) [2] is an approach to modeling
a categorical or discrete post-treatment variable M within
the potential outcomes framework. When treatment assign-
ment Z is binary, each subject i has two potential values of
M : Mi(0)—the value of M that would be observed under
the control condition—and Mi(1), what would be observed
under the treatment condition. These define subgroups—
principal strata—within which causal effects may be defined.
In particular, a principal causal effect is

Y (1)− Y (0)|M(1) = m,M(0) = m′ (1)

that is, the effect of Z on Y among those subjects with
particular potential outcomes for M of m and m′.

In this study, following [3], we use principal stratification
to examine some hypothesized causal mechanisms of CTAI.
For instance, consider the usage variable totalT ime: the to-
tal amount of time students spend working CTAI problems.
Since totalT ime is continuous, we begin by dichotomizing it;
for the sake of simplicity, let µ = median(totalT ime) and
M = 1[totalT ime>µ]. We can define four principal strata.
The first is comprised of those students who, if assigned
to CTAI, would use it for more time than µ—M(1) = 1—
but if assigned to the control condition would use it less,
M(0) = 0. Next, consider the group M(1) = 0; M(0) =
1, those students who use CTAI for less time because of
their treatment assignments. The remaining two groups are
M(1) = 0; M(0) = 0 and M(1) = 1; M(0) = 1, those
students who would use CTAI less for less, or more, time
than m regardless of treatment assignment. By examining
differences between the average treatment effects in the four
groups, we can learn how CTAI’s impact varies for different
usage patterns.

Randomization allows us to estimate principal effects as the
average treatment minus control difference in gain scores
within each estimated stratum. That is, randomization of
treatment assignment leads to identification of principal ef-
fects: the effect of Z within principal strata. On the other
hand, the difference in treatment effects between principal
strata does not necessarily estimate a causal quantity. Ran-
domization does not identify students’ counterfactual gain
scores had they been in alternative principal strata. That
being said, differences in treatment effects across strata can
suggest causal mechanisms.

Fortunately, the CTAI study’s design substantially simplifies
the PS analysis, by eliminating two of the principal strata.
Students in the control group had (for the most part) no ac-
cess to the CTAI program. Therefore, we can safely assume
that for all students, M(0) = 0. This leaves two principal
strata, M(0) = 0; M(1) = 0, and M(0) = 0; M(1) = 1
—that is, the students who, if assigned to treatment, would
use CTAI for more time than m and those who would not.
Only one of the potential values of M is directly observed;
in particular, M(1) is unknown for subjects in the control
group. Stated differently, the values M(1) are missing for
students in the control group, but they may be imputed be-
cause the “missingness mechanism,” treatment assignment,
is random, or ignorable. Therefore, randomization of treat-
ment assignment allows us to identify members of each prin-
cipal stratum, and effects of treatment within those strata.

3. MODELING STRATA AND OUTCOMES
In this preliminary study, we considered three of the usage
variables previously modeled as predictors in [7]: totalT ime,
the total amount of time students spent working CTAI prob-
lems, numSec, the number of sections each student encoun-
tered, and assistance, the average sum of hints and errors
per problem for each student. We ran a separate PS model
for each usage variable, but all three PS models had the
same form. Each PS model itself was a combination of two
multilevel models. The first, fit only within the treatment
group, modeled the usage variable M as a function of co-
variates Xt. This model was used to estimate the usage
that control students would have experienced had they been
assigned to treatment. The second model used the results
of the first model, and a somewhat larger set of covariates
Xy, to estimate the effect of random assignment to CTAI in
each of the principal strata.

3.1 Usage Model
Modeling each usage variable was a four-step process: first,
we calculated the variable’s values from the available data;
next, we transformed those values so that their observed
distributions would be closer to a normal distribution; next,
we modeled the transformed variables as a linear function
of covariates Xt, and finally, we dichotomized the model’s
output, to define and estimate principal strata.

As students used CTAI, the program recorded timestamps
at the beginning and end of each problem. The difference
between these two is the amount of time the student spent
on each problem, recorded in milliseconds. The sum of was
the variable totalT ime. The distribution of totalT ime was
heavily skewed rightward, so we transformed it to ease the
modeling process. The transformation that resulted in a dis-
tribution whose histogram appeared approximately normal
was a box-cox transformation with a parameter of 0.3 [1].

Next, we modeled the transformed totalT ime as a func-
tion of a set of covariates Xt containing dummy variables
for the state in which the school was located, the student’s
grade, race, sex, special education status, free or reduced-
price lunch status and pretest scores, along with missingness
indicators. Formally, the model was

totalT imeijk = α+XT
tiβ + εijk + ηjk + νk (2)

where α and β are, respectively, an intercept and a vec-
tor of coefficients estimated from the data, εijk ∼ N(0, σst)
is a student-level random error, ηjk ∼ N(0, σtt) is a ran-
dom effect for teacher, and ν ∼ N(0, σut) is a random effect
for school. The variance parameters σst, σtt and σut are
estimated from the data. In other words, totalT ime was
modeled as multilevel, with students nested within teach-
ers, nested within schools.

The transformed totalT ime values, or, in the case of the
control sample, their predictions, gave rise to a dichotomous
variable M , which took the value of 1 if totalT ime or its
prediction is greater than its observed median of about 22
hours over the course of the year. The variable M defined
two principal strata: those students with M(1) = 1 and
those with M(1) = 0.

CTAI also automatically collected data on the number of
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hints and errors students request or make. Following [7],
we normalized hints and errors by section. Next, we av-
eraged the normalized values by student, producing aver-
age assistance per problem, or assistance. We transformed
assistance in the same was as totalT ime. Next, we modeled
assistance with equation (2), and dichotomized the results
using their observed median, 0.076, which, due to the prior
normalization, is not a whole number.

The third usage variable we considered here is numSec, the
number of sections students encountered on CTAI. We trans-
formed numSec with a natural logarithm, modeled it with
equation (2), and dichotomized it with its median, 27 sec-
tions.

3.2 Outcome Model
For each dichotomized usage variable M , we fit a multilevel
linear model to estimate principal effects of CTAI treatment
on post-test scores. The post-test from the CTAI effective-
ness study is the Algebra Proficiency Exam. It was analyzed
with item-response-theory, and its reported scores have a
mean of 0 and a standard deviation of 1, so regression coef-
ficients may be interpreted as effect sizes [4]. To account for
pre-test scores, while avoiding measurement-error concerns,
we modeled students’ gain scores, diffijk, the difference be-
tween their post-test and pre-test scores. The student-level
model, then, was

diffijkm =α′ +XT
yiγ + λMijkm + τZkm

+ κZkmMijkm + ε′ijkm + η′jkm

+ ν′km + ζm (3)

Here α′, ε′, η′, and ν′ are, respectively, an intercept, and
random effects for individual, teacher, and school. The apos-
trophes indicate that these are distinct from their analogues
in equation (2). There is an additional random effect ζ for
“match,” accounting for the matched-pair randomization de-
sign. Xt is a vector of covariates equivalent to those in (2),
with the addition of standardized test scores from the prior
two years. The principal effects emerge from the coefficients
τ and κ: τ is the average effect in the M(1) = 0 group,
and τ + κ is the average effect in the M(1) = 1 group. Fi-
nally, λ is the difference in Y (0) between the M(1) = 1 and
M(1) = 0 groups.

Models (2) and (3) were fit simultaneously in JAGS [5], a
Bayesian Gibbs sampler. To facilitate Bayesian model fit-
ting, we provided weakly informative priors on all of the
model parameters.

4. RESULTS
Estimate SE 95% Interval

M(1) = 0 0.12 0.06 (0.01,0.25)∗

M(1) = 1 0.32 0.27 (-0.21,0.85)
Difference 0.20 0.27 (-0.32,0.74)

Table 1: Results for totalT ime. Point estimates for
effect size, standard errors and 95% credible inter-
vals for the average treatment effects in two princi-
pal strata, denoted M(1) = 1 and M(1) = 0, as well
as the difference between the two.

We present results for each of the three usage variables we

considered. For each variable, we present the average treat-
ment effect for subjects in the M(1) = 0 stratum—that is,
students whose usage under the treatment condition was, or
would be, less than the observed median—the effect for stu-
dents in the M(1) = 1 stratum, and the difference between
the two effects. For each effect, we present a point estimate,
equivalent to the mean of the posterior distribution, a stan-
dard error—the standard deviation of the posterior—and
a 95% credible interval, representing the 0.0275 and 0.975
quantiles of the posterior. Effects whose credible interval
does not include 0 are marked with an asterisk.

Like [7], we were unable to establish that students who spend
more time using CTAI gain more from its use. The relevant
results are available in Table 1. We estimated an effect size
of 0.12 in the low-time group M(1) = 0, and 0.32 in the
high-time group M(1) = 1. However, the standard errors
were too large to draw strong conclusions.

Estimate SE 95% Interval
M(1) = 0 -0.02 0.07 (-0.16,0.11)
M(1) = 1 0.30 0.13 (0.13,0.47)∗

Difference 0.32 0.09 (0.14,0.49)∗

Table 2: Results for numSec

On the other hand, as seen in Table 2, students who en-
countered a greater number of sections (or would have, had
they been assigned to treatment) experienced a much larger
effect than those who encountered fewer sections. The effect
size for students who encounter more than the median num-
ber of sections is, with 0.95 probability, between 0.13 and
0.47—a very large effect. This is about 0.32 higher than
for the students who encountered fewer sections, for whom
there was no discernible effect at all.

Estimate SE 95% Interval
M(1) = 0 0.30 0.08 (0.14,0.45)∗

M(1) = 1 0.12 0.09 (-0.07,0.30)
M(1) = 2 -0.08 0.08 (-0.23,0.06)

Difference (0–1) -0.18 0.09 (-0.34,-0.00)∗

Difference (1–2) -0.20 0.09 (-0.36,-0.01)∗

Table 3: Results for assistance

Lastly, we suspected that the relationship between assis-
tance and CTAI effect might not be monotonic. That is,
it might be that the effect of CTAI is low for students who
request many hints and make many errors, but high for those
with a medium amount, or vice versa. For that reason, we
split the variable at the 1/3 and 2/3 quantiles, and esti-
mated three principal effects. Our suspicion proved false,
however, and the result was similar to what was reported
in [7]: higher hints and errors corresponded to lower CTAI
effects. For students who requested few hints and made few
errors, the effect was between 0.14 and 0.45, while 95% inter-
vals for the other two strata included 0. Ninety-five percent
intervals on the difference from one strata two the next were
entirely negative.

5. DISCUSSION
This work was a first look at causal modeling with usage
variables from a randomized experiment of educational soft-
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ware. We showed that without additional identification as-
sumptions, researchers can use log data to form a deeper
understanding of their software’s effect. That being said,
this work is preliminary, both because the statistical models
we used may be improved, and because much more informa-
tion is available in the CTAI log data.

In this paper, we focused on three hypotheses that were sug-
gested in [7]. That paper used a linear regression model, fit
using a convenience sample of CTAI users, to show that cer-
tain usage variables, among which are the total amount of
time students spend solving problems, the number of sec-
tions students encounter, and the assistance the software
provides them, can predict standardized test scores, even
after controlling for a number of baseline covariates. With
some very strong assumptions, one may interpret [7]’s results
as causal: that seeing more sections, for instance, causes stu-
dents to achieve higher test scores.

In our design, by contrast, the estimated treatment effects—
comparisons between treatment and control students—are
inherently causal due to the randomization design. The
principal stratification approach allows us to reliably esti-
mate causal effects within the strata. That said, this ap-
proach largely replicates the results from [7]. Students who
spend more time working on CTAI problems seem to experi-
ence a larger effect, but this conclusion is ultimately unclear:
the credible interval of the difference in effects between stu-
dents who use the program for more time and those who
use it for less contains 0. On the other hand, we found that
students who encounter more sections do indeed experience
larger effects. One reason for this result may be that the
effect a CTAI user feels is particular to the skills the user
practices—students who encounter a wider array of sections
learn more from CTAI, and their performance on a wider ar-
ray of sections of the posttest is improved. At the same time,
students who required more assistance per problem—that is,
asked for more hints and made more errors—experienced a
smaller effect than their peers who required less assistance.
This may be for a number of reasons. For instance, perhaps
students who need more assistance per problem are strug-
gling more, and have a greater need for a teacher’s help.
Alternatively, students who ask for a lot of hints and make
a lot of mistakes may not be trying their hardest on CTAI,
and for that reason may not experience the same rewards
from CTAI. More research and data analysis is necessary to
properly interpret these results.

Along those lines, we plan a number of future analyses.
First, improved models may help us understand the rela-
tionships that this paper explores. For instance, dividing the
usage variables into three or more categories may be more
illuminating than the two categories we explore here. Addi-
tionally, it may be useful to match section- or unit-specific
usage to appropriate items on the posttest.

Further along, we hope to discover and define interesting
multivariate principal strata, perhaps as the result of a clus-
ter analysis of the high-dimensional usage data.

Finally, after cultivating a more complete understanding of
the usage patterns that lead to higher CTAI effects, we
can explore treatment-effect heterogeneity. In particular,

we may be able to answer why in the first year of implemen-
tation CTAI did not seem to boost test scores, but in the
second year it did. Was differential usage to blame?

In the meantime, this paper uses rigorous causal methods
to confirm some previous hypotheses about CTAI’s causal
mechanisms, and points a way forward for future work mod-
eling usage variables in experimental designs.
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ABSTRACT
Studies have found positive correlations between affective states 
(e.g., confusion, boredom) and learning outcomes in educational 
technologies like ASSISTments and Carnegie Learning's 
Cognitive Tutor. The adage that "correlation does not imply 
causation" is especially apt in light of these observations; it seems 
counterintuitive that increasing student boredom or confusion 
(e.g., designing systems that bore or confuse students) will benefit 
learning. One hypothesis to explain positive correlations between 
boredom and learning suggests that carelessness is a 
“confounding” common cause of boredom and another construct 
linked to learning. We consider a Cognitive Tutor Algebra dataset 
in which boredom and confusion are positively correlated with 
learning. Prior causal modeling of this data suggests that various 
behavioral and affective features (e.g., boredom and gaming the 
system) share unmeasured common causes. We provide a 
correlational analysis and causal models of this data that situate 
carelessness among behaviors and affective states to determine 
whether (and how) carelessness plays a confounding role. 

Keywords
causal models, causal discovery, structural equation modeling, 
carelessness, boredom, confusion, affect, gaming the system, off-
task behavior, Cognitive Tutor, intelligent tutoring systems 

1. INTRODUCTION
Recent research in educational data mining has led to the 
development of sensor-free, data-driven approaches to “detect” 
various behavioral and affective features from logs of learner 
interactions with technologies like intelligent tutoring systems 
(ITSs). Since such approaches to detecting phenomena like 
“gaming the system” [3-4], off-task behavior [1], and affective 
states [5] have been validated against field observations of learner 
behavior, a natural next step for researchers has been to use the 
predictions of detectors as inputs to predictive models of 
substantive learning outcomes in what have been called 
“discovery with models” approaches [6].  Such approaches have 
sought to answer questions about whether the tendency of learners 
to game the system or become bored using a system are predictive 

of outcomes like post-tests and standardized test scores (e.g., [11, 
17]). 

Our recent work [13] advocates seeking causal knowledge about 
learner behavior, affect, and learning, even when faced with non-
experimental data, and that graphical causal models and data-
driven search for their structure [22] provide an avenue for causal 
discovery with models. Findings using data from Carnegie 
Learning’s Cognitive Tutor (CT) ITS [19] suggested that most 
affect and behavior variables shared unmeasured common causes.  

The present work integrates detectors of carelessness into this 
work [13]. Carelessness was correlated with a variety of affective 
phenomena in an ITS with features similar to CT (e.g., [21]) and 
has been hypothesized to play a causal role among affective states 
as well (e.g., as a cause of boredom [17] or effect of boredom [8]). 
Other work emphasizes relationships between engagement and 
carelessness [9-10]. Our findings suggest a causal link between 
concentration and carelessness and possible causal links between 
confusion, gaming the system, and carelessness. 

2. PRELIMINARIES
2.1 Motivation & Outline 
Recent studies (e.g., [13, 17]) observe positive correlations 
between learning and the propensity to be in affective states like 
boredom and confusion, but it seems counterintuitive that 
increasing student boredom or confusion is likely to benefit 
learning (i.e., that these correlations are because of causal links). 
Several hypotheses have been proffered to explain such positive 
correlations. One hypothesis, for the ASSISTments system [14], is 
that learners become bored when they make careless mistakes and 
are required to work through step-by-step breakdowns of math 
problems [17]; learners with greater knowledge are more likely to 
be careless and bored, but since they are capable learners they will 
have better learning outcomes, providing a possible explanation 
for a positive correlation between boredom and learning.  

Further, causal models of affect, behavior and learning in CT 
Algebra finds that boredom and gaming the system behavior are 
negatively correlated and suggest that they share an unmeasured 
(or latent) common cause (i.e., a “confounding” variable) [13]. 
Boredom’s negative correlation with gaming the system, and 
gaming behavior’s negative correlation with learning helped to 
explain the overall positive correlation of boredom and learning in 
that study. This same study also found a positive correlation 
between confusion and learning, and causal models suggested that 
confusion and gaming may be confounded. The hypothesis of [17] 
about carelessness may be appropriate for CT; incorrect responses 
despite knowledge will lead students to be presented more 
practice on skills they already know because CT will decrease its 
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estimate of skill mastery based on incorrect responses, and this 
could lead to boredom. 

Recent work has focused on modeling carelessness [20] in 
systems like ITSs by using context-sensitive models to predict 
whether particular incorrect responses are likely examples of 
“slips” in which students answer incorrectly despite knowing a 
skill [2], and have explored correlations between carelessness and 
affective states (e.g., [21]).  
We now introduce CT Algebra and detector models. We then 
review graphical causal models and data-driven structure search 
before explaining prior work and presenting novel causal models 
that incorporate carelessness. We conclude with discussion. 

2.2 Cognitive Tutor (CT) Algebra 
Carnegie Learning’s CT is an ITS for mathematics used by 
hundreds of thousands of learners every year across the United 
States and internationally. CT breaks down mathematics subject 
areas like algebra into fine-grained skills or knowledge 
components (KCs), the mastery of which is used to determine 
learner progress through a series of topical sections that comprise 
broader units. Each section is comprised of multi-step problems 
that allow for the assessment of student progress toward mastery 
of fine-grained KCs. 

CT assesses KC mastery using a probabilistic framework called 
Bayesian Knowledge Tracing (BKT) [12]. BKT assesses learner 
progress to mastery by assuming that a learner is either in the 
“unknown” state for a KC or the “known” state for a KC (i.e., KC 
mastery) and uses observations of practice opportunities for each 
KC to predict the state of a learner is at any given time. To make 
this prediction, BKT provides for four parameters for each KC: 
(1) the probability of prior knowledge or mastery of the KC, (2) 
the probability of a transition from the unknown to the known 
state at a given KC practice opportunity, (3) the probability that a 
learner guesses (i.e., is in the unknown state but answers 
correctly), and (4) the probability that the learner “slips” (i.e., has 
mastered a KC but provides an incorrect response).  

2.3 Affect, Behavior,  & Carelessness 
Educational data mining researchers seek to avoid obtrusive, 
costly, and non-scalable sensor-based methods for measuring 
learner (dis-) engagement and affect with systems like ITSs by 
developing data-driven predictive models, frequently referred to 
as “detectors” that rely only on features that can be “distilled” 
from fine-grained log data. Detector models use machine learning 
methods applied to distilled features to make predictions about 
whether particular learner interactions with a system are likely to 
be instances of particular types of behavior. Detector models are 
validated against field observations in real classrooms. For 
correlational and causal modeling, we quantify levels of behavior 
per student by calculating the proportions of problem-solving 
steps deemed to be likely the result of behaviors like gaming the 
system or off-task behavior, which we now briefly explicate. 

Gaming the system [3-4] refers to behavior in which learners 
attempt to make progress through content without genuinely 
learning or mastering appropriate skills (e.g., by incorrectly 
providing numbers within problem statements). A robust finding 
of previous efforts is that there is evidence that gaming the system 
is a cause of decreased learning [13]. Off-task behavior refers to 
learner disengagement from the learning environment and 
learning [1]. Recent efforts did not find evidence for a causal link 
between off-task behavior and learning.  

Evidence also suggests that affective states play an important role 
in learning (e.g., [18]). Detector models similar to those for 
gaming the system and off-task behavior have been developed for 
affective states like boredom, confusion, and engaged 
concentration [5]. Modeling efforts for a CT Algebra dataset 
provided a somewhat complicated causal picture; while boredom 
and confusion may be negatively correlated with another factor 
that causes decreased learning, gaming the system, (hence 
positively correlated with learning), there are likely unmeasured 
common causes of these states and gaming the system.  

Learner carelessness has been discussed as problematic in 
classrooms since at least the 1950s [21]. Other work identifies 
carelessness as a problem even among high-performing students 
[9-10]. Recent work on data-driven detector models [20] seeks to 
operationalize carelessness by focusing on the notion of 
“slipping,” when learners answer incorrectly despite knowing a 
skill. In standard BKT, the parameter for slipping remains 
constant per KC over time; contextual models of guessing and 
slipping predict whether particular correct and incorrect responses 
are likely the result of learners guessing or slipping based on 
aspects of their performance [2]. The contextual slip model that 
predicts whether particular incorrect responses are instances of 
slipping is built in the same manner as other detector models. 
Operationalized as contextual slipping, carelessness can be 
quantified on a per learner basis by calculating the mean 
probability with which contextual slip models predict that 
incorrect actions are examples of slipping [21]. 

2.4 Graphical Causal Models & Model Search 
We adopt directed acyclic graphs (DAGs) to represent causal 
relationships among variables we seek to model. We consider the 
context of linear relations among variables and multi-variate 
Gaussian joint probability distributions, where DAGs imply 
conditional independence constraints on observed joint 
distributions and covariance matrices. The set of DAGs consistent 
with a set of independence constraints, assuming that there are no 
unmeasured common causes of measured variables, comprise an 
equivalence class of graphs, represented by a graphical object 
called a pattern.  Patterns and other equivalence classes of graphs 
can be inferred from data by asymptotically reliable algorithms 
developed (e.g., the TETRAD1 project) over the past 20+ years. 

We deploy the constraint-based PC algorithm to learn a pattern 
from data, making the strong assumption of no unmeasured 
common causes of measured variables [22]. From a pattern, we 
can choose a DAG member of the equivalence class to specify a 
linear structural equation model (SEM). Allowing for unmeasured 
common causes, we consider an equivalence class of graphs, 
represented by Partial Ancestral Graphs (PAGs), learned using the 
FCI algorithm [22]. FCI is similar to PC, but PAGs have a richer 
set of edges between two variables X and Y in a PAG [13, 22]: 

• X o—o Y: (1) X is an ancestor (i.e., cause) of Y;
(2) Y is a cause of X; (3) X and Y share a latent
common cause; (4) either (1) & (3) or (2) & (3).

• X oà Y: Either X is a cause of Y; X and Y share a
latent common cause; or both.

• X ↔ Y: X and Y share a latent common cause in
every member of the equivalence class
represented by this PAG.

1 freely-available at http://www.phil.cmu.edu/projects/tetrad/ 
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• X à Y: X is an ancestor/cause of Y in every
member of the equivalence class represented by
this PAG.

3. DATA + PRIOR WORK
Our data are logs for a sample of 102 adult, higher education 
learners using CT Algebra. We consider log data over roughly 
337,000 learner actions in a module of five units concerning linear 
equations and inequalities, relatively late in the course. We also 
have a pre-test score (Module Pre-Test) and a Final Exam score 
for the entire algebra course, which is our learning outcome. 

Assuming no unmeasured common causes of variables, causal 
models of this data [13] illuminated one possible explanation for 
the positive correlations between both Boredom and Confusion 
and Final Exam: both may cause decreased Gaming the System 
behavior, behavior which is found to cause decreased learning.  
While Confusion may cause decreased Gaming the System (e.g., 
Confusion being an affective state in which learners are unlikely 
to be able to “game”), there are reasons to suspect that this 
correlation and others arise due to confounding common causes. 

Relaxing the assumption of no unmeasured common causes and 
allowing affect and behavior to co-occur, the FCI algorithm found 
a robust causal link between gaming and learning; all other links 
in the PAG causal model from prior work are at least possibly 
confounded. This fact and several common cause hypotheses in 
the literature explaining positive links between Confusion and 
Boredom and learning lead us to consider Carelessness. 

4. MODELING CARELESSNESS

4.1 Correlational Analysis 
Carelessness is positively correlated with both Module Pre-Test (r 
= 0.36, p < .001) and Final Exam (r = 0.56, p < .001), consistent 
with results that careless behavior is common even among high-
performing math learners [9-10]. Correlations of Carelessness to 
other affective and behavioral variables are presented in Table 1. 
These results are largely consistent with those in previous work 
analyzing the relationship between Carelessness and affect [21].  

Table 1. Pairwise correlations of Carelessness and other 
variables representing “detected” behavior and affective 

states (*p < .05; ***p < .001) 

Variable / Construct Pearson Correlation 

Boredom 0.13 

Confusion 0.48*** 

Engaged Concentration 0.75*** 

Gaming the System -0.74*** 

Off-Task Behavior -0.25* 

4.2 Causal Models 
Rather than attempt to specify and test “by hand” a multitude of 
alternative models that posit different causal roles for 
Carelessness, we adopt a search strategy. Assuming that affective 
states (including Carelessness) causally precede behavioral 
variables, the PC algorithm learns the DAG causal structure of the 
estimated linear SEM of Figure 1.  This model fits the data (χ2(19) 
= 23; p = .22) [7] and is similar to that the model found in 
previous work under the same assumptions [13]. We focus on 
three elements of it. 

First, Engaged Concentration is inferred to be a cause of 
Carelessness, consistent with the high correlation in the 
Scatterplot Study [21], and hypotheses due to Clements [10] about 
the relationship between engagement (i.e., Engaged 
Concentration) and Carelessness. San Pedro, et al. note the 
positive link between confidence and Carelessness found by 
Clements and posit that an engaged learner of only average 
knowledge might become overly confident in their ability and 
careless [16, 21]. This explanation suggests an intermediary along 
this causal pathway, a topic for future research. 

Second, Carelessness is inferred to be a common cause of 
Confusion and Gaming the System, with increased Carelessness 
leading to increased Confusion and less Gaming the System. 
Carelessness as a common cause of these two variables is 
consistent with models in [13] in which an edge Confusion oà 
Gaming the System indicated the possible presence of an 
unmeasured (i.e, confounding) common cause. The strong 
positive relationship between Engaged Concentration and the 
inferred cause of Confusion, Carelessness, provides a plausible 
explanation for the positive correlation of Confusion and learning, 
but this model does not suggest we pursue interventions that 
increase learner Confusion, though recent literature suggests that, 
in some contexts, Confusion may be beneficial for learning (e.g., 
[15]). 

With respect to the other effect of Carelessness in Figure 1, 
Gaming the System, it is possible that there is a negative causal 
connection, as presumably gaming behavior is the result of at least 
a certain amount of non-careless affect and corresponding 
behavior, as learners must provide roughly appropriate responses 
to math problems if they are to, in fact, “game the system.” 
However, it is also plausible that Carelessness and Gaming the 
System share a confounding common cause. 

Relaxing the assumption of no unmeasured common causes and 
assuming only that Module Pre-Test precedes all affective and 
behavioral variables, all of which precede Final Exam, FCI learns 
the PAG causal model in Figure 2, with +/- signs to remind the 
reader of parameter estimates in Figure 1. Contrary to the model 
of Figure 1, either Confusion is a cause of Carelessness, or they 
share an unmeasured common cause. The direction of the link 
between Confusion and Carelessness is sensitive to the “ordering” 
of affective and behavioral variables. However, under nearly all 
combinations of behavioral and affective variable orderings and 
groupings, Engaged Concentration is a cause of Carelessness, 
consistent with past hypotheses [9-10] and correlational analyses 
[21]. While we infer that Carelessness and Gaming the System 
share an unmeasured common cause, relationships between 
variables like Carelessness and Gaming the System may be 
confounded, not only by other unmeasured phenomena, but by the 
underlying phenomenon itself since we provide only noisy 
measures using detector models.  

5. DISCUSSION
We provide evidence for the hypothesis that concentration leads 
to (i.e., causes) careless mistakes, and this causal inference is 
robust under a variety of assumptions. Contrary to some 
hypotheses [8, 17], we do not find evidence for a causal link 
between Carelessness and Boredom in CT Algebra. However, that 
hypothesis of [17] was made with respect to the ASSISTments 
system. Future research should take on the problem of learning 
causal models from available observational data from systems like 
CT and ASSISTments to determine under what circumstances 
causal inferences of the sort we consider here generalize across 
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sub-populations using the same instructional system as well as 
different systems within the same (or different) domain.  

Figure 1. Estimated SEM incorporating Carelessness 

Figure 2. PAG causal model incorporating Carelessness 
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ABSTRACT 
Detecting students at risk of failing is particularly useful and 
desirable when it is done in a timely manner and accompanied 
with practical information that can help with remediation. In this 
paper we investigate ways to detect students at risk of failing early 
in the semester for timely intervention. The context of our study is 
a first year computer programming course. We explore whether 
the use of several student data sources can improve the process: 
submission steps and outcomes in an automatic marking system 
that provides instant feedback, student activity in the discussion 
forum Piazza and assessment marks during the semester. We built 
a decision tree classifier that is able to predict whether students 
will pass or fail their final exam with an accuracy of 87% mid 
semester. The obtained rules are useful and actionable for teachers 
and students, and can be used to drive remediation.  

Keywords 

Student performance prediction; classification of failing and 
passing students; automatic grading system; discussion board; 
assessment and feedback. 

1. INTRODUCTION 
Computer programming is an essential skill for software engineers 
and computer scientists, and also an increasingly required skill for 
graduates of many other disciplines, such as science, medicine, 
economics and business. Key factors in how well a person will 
learn programming include regular practice, as well as quick and 
efficient correction of mistakes and misconceptions. This means 
that students must be provided with tools that allow them not only 
to practice their programming skills but also to receive timely and 
useful feedback, which can be challenging, especially for large 
introductory computer programming courses. Lack of regular 
practice and sufficient feedback, often leads to students becoming 
uninterested or disheartened, and giving up learning to program. 

Innovative technology-enhanced teaching and learning tools can 
help to solve this problem. In our introductory programming 
courses, we use a combination of an automatic marking and 
instant feedback system (PASTA) and a sophisticated discussion 
board (Piazza). These tools not only provide a semi-independent 
platform for students to build and test their knowledge, but also 
the opportunity for useful data collection and analysis, that can be 
used to improve teaching and learning.  

In this paper we describe how data collected from these two 
sources, together with data from assessment marks, can be used to 
identify students who are at risk of failing and need more careful 

guidance, early enough so that remediation is possible. To 
illustrate this we use data from a large first year programming 
course. Specifically, the goal of this study is three-fold: 

(i) to investigate whether students at risk of failing can be 
identified early enough in the semester for timely intervention, 
using machine learning prediction methods and information from 
three different sources: automatic marking system (PASTA), 
discussion board (Piazza) and assessment marks; 

(ii) to investigate whether the information from the automatic 
marking system and discussion board helps improve the predictive 
accuracy, in comparison to just using the assessment marks; 

(iii) to investigate how useful and actionable the produced 
rules are for remediation. 

2. DATA SOURCES 
An important characteristic of our study is that it triangulates data 
from three different sources that contain information not only 
about student performance, but also about student activities. Each 
source offers useful perspectives on student learning: progression 
in code writing and diagnostic (PASTA), interaction and 
engagement (Piazza), student performance (assessment marks).  

PASTA is an automatic marking and feedback system developed 
in our school. It allows students to submit their solution for an 
assessment task online, checks this solution against public and 
hidden tests set by the teacher and provides immediate feedback 
to the student about which public tests were passed and failed. 
Students can then correct their mistakes and resubmit until all 
these public tests are passed. Feedback about the hidden tests is 
released when marking is completed, along with manual feedback.  

The use of PASTA has resulted in better student engagement and 
improved learning, because of the instant feedback and multiple 
submissions. The PASTA data contains, for each task and student, 
all sequences of assessment submissions, the tests that were 
passed and failed (and why), the time stamps and mark obtained. 

Piazza (www.piazza.com) is a mix of discussion board and wiki, 
allowing students and teachers to post notes, ask and answer 
questions individually or collaboratively. It was developed with 
the aim to connect students and promote classroom engagement. 
The Piazza data contains, for each student, the number of 
questions asked, answered and viewed, and the time and content 
of the posts.  

The third data source includes all assessment marks during the 
semester and the final exam mark and is described in Sec.4. 

3. PREVIOUS WORK 
Previous work on predicting failure rate of students has been 
performed, normally by predicting exam grade just before the 
exam. Kotsiantis et al. [1] predicted final exam performance based 
on assignment marks throughout the semester in a distance 
education environment. This prediction was performed only at the 
end of the semester, and the attributes used would not allow for a 
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mid-semester prediction. They achieved an accuracy of 79% in 
predicting the final exam grade using an ensemble classifier. 

Romero et al. [2] predicted final student marks based on Moodle 
usage data - the number of: quizzes passed and failed, 
assignments done, messages sent and read on the discussion 
board, and also the time spent on the assignments, quizzes and 
discussion board. They measured the geometric mean of the 
accuracies per class, which is an appropriate measure for 
imbalanced datasets as theirs, and achieved 67% with decisions 
trees. More recently, in [3] the same group investigated predicting 
the student grade (pass or fail) based on the student participation 
in a discussion forum, achieving accuracy of 75% using data 
collected in the middle of the semester and 90% using data 
collected at the end of the semester 

Similar to student failure rates, student dropout rates have been 
studied, using a variety of assessment and non-assessment 
attributes. Agnihotri and Ott [4] predicted the likelihood of 
students dropping out of university after their first semester based 
on data provided such as admission information, placement tests 
and financial information. They were able to predict the retention 
of students with recall of 73% and precision 54%. Lykourentzou 
et al. [5] predicted dropout rate of students in an e-learning course 
environment, using the learning management system’s extensive 
logs. They use machine learning techniques to achieve a 75-85% 
accuracy in the early sections of the course, and 97-100% 
accuracy in the final sections.  

In this paper we extend previous work on predicting the students 
at risk of failing by using data from an automatic marking system 
and an advanced discussion board, in addition to assessment 
marks, from a computer programming course. We show how to 
define useful attributes from each data source, investigate if the 
student traces on the automatic marking system and discussion 
board help to improve predictive accuracy, and analyse how 
useful the prediction rules are for driving remediation.  

4. CONTEXT OF THE STUDY 
The study was conducted in the context of a large first year 
computer programming course with 223 students.  

4.1 Assessment components 
The six assessment components are summarised in Table 1. 

Table 1. Assessment components 

Homeworks 10 Weekly Marks, Piazza 
Task 1 2 Week 4 Marks, PASTA, Piazza 
Task 2 6 Week 6 Marks, PASTA, Piazza 
Practical test 16 Week 7 Marks, Piazza 
Assignment 16 Week 12 Marks, PASTA, Piazza 
Exam 50 Exam period Marks, Piazza 

 
The weekly homeworks were due before the computer lab and 
included multiple choice questions mainly requiring reading and 
understanding code. Their goal was to prepare students for the lab. 
The two tasks and assignment were programming assessments, 
with increasing level of difficulty, submitted via PASTA. Students 
were provided with skeleton code and required to complete the 
missing parts. The practical test involved writing code to solve 
five tasks with increasing difficulty levels in front of the 
computer. The exam, conducted at the end of the semester, was 
paper-based and required mainly writing code for solving 
problems. All assessment components were individual except for 
the assignment, where students had the choice of working 

individually or in pairs; 57% of students worked individually and 
43% worked in pairs.  

4.2 Predicted Variable 
We predict the exam grade based on the marks of the other 
assessment components during the semester and the student 
activities on PASTA and Piazza. The two grades are defined as F 
(exam mark below 50, N=76), notF (exam mark of 50 and above, 
N=147). We chose the exam grade as a performance index 
because the exam: (i) is the major and most comprehensive 
assessment component, (ii) is conducted under strict conditions 
which minimises cheating, (iii) is independent of the other 
assessment components. The exam mark is highly correlated with 
the final mark (r=0.937). 

4.3 Attributes 
Table 2 summarises the student attributes that we defined to 
characterise student performance and activity. 

Table 2. Attributes extracted from the three data sources 

I. Assessment marks
homework_mark, task1_mark, task2_mark, prac_quiz_mark, 
assignment _mark (numeric) - mark (%) awarded for each 
assessment component 
w7_homework_mark (numeric) – same as homework_mark, but 
only counting homeworks submitted before the end of week 7 
II. PASTA activity – submission history 
Starting and finishing times for assessments 
task_start, task_finish, assignment_start, assignment_finish 
(numeric) – the average number of days before the due date that 
a student will start or finish the tasks or assignment 
early_task, early_assignment (nominal, yes/no) - yes if the 
student starts the tasks faster than the average user; no otherwise 
Multiple assignment submissions – improvement and 
consistency 
marks_per_attempt_tasks, marks_per_attempt_assignments 
(numeric) – the average number of marks per PASTA 
submission of a task or assignment (including non-compiling 
submissions) 
assignment_first_mark (numeric) - mark awarded for the 
student's first submission for the assignment 
assignment_improvement (numeric) – the slope of the trendline 
of the student's assignment marks over each compiling 
submission; a larger number indicates rapid improvement 
assignment_only_improvement (nominal, yes/no) - yes if the 
student's marks for compiling assignment submissions never 
decrease; no otherwise 
assignment_consistency (nominal, multiple values) - goodness of 
fit (R2) over each of the student's compiling submissions for the 
assignment, [-1, 1]; close to 1/-1 - linear increase/decrease in 
marks over submissions, close to 0 - random distribution of 
marks. Discretised as: single for single compiling submission, 
none for no assignment submission; small/medium/high/very_ 
high otherwise. 
Pair work
pair_assignment (nominal, yes/no) - yes if the student worked in 
a pair for the assignment; no otherwise 
Assignment submission statistics 
single_submission (nominal, yes/no/none) - yes for one 
compiling assign. submission, no for more than one, none for no 
submission 
assignment_total_submissions - total number of assignment 
submissions 
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assignment_compiling_submissions - number of compiling 
assignment submissions 
III. Piazza activity – views, questions and answers 

piazza_views, piazza_questions, piazza_answers (numeric) - 
number of posts viewed, questions asked or answered by the 
student on Piazza 
piazza_activity (numeric) calculated as:  
(piazza_views + 10*(piazza_ questions + piazza_answers) + 
5*(piazza_posts - piazza_answers)) / total_posts,  
where piazza_posts is the total number of contributions made by 
the student (asking or answering a question, or posting a 
comment), and total_posts is the total number of question 
threads on Piazza 
piazza_active_viewer, piazza_active_questioner, 
piazza_active_answerer (nominal, yes/no) - yes if the student has 
an average or higher number of posts viewed, questions asked or 
questions answered; no otherwise 
w7_piazza_views, w7_piazza_questions, w7_piazza_answers, 
w7_piazza_activity (numeric) and w7_piazza_active_viewer, 
w7_piazza_active_questioner, w7_piazza_active_answerer 
(nominal, yes/no) - same as the respective attributes without 
prefix w7, but only counting Piazza’s posts up until the end of 
week 7 

 

5. CAN WE PREDICT FAILING AND 
PASSING STUDENTS MID-SEMESTER? 
We investigate whether we can predict accurately the students 
who will fail and pass the exam, based on the information 
available at two time points during the semester (and before the 
exam): in the middle of the semester (end of week 7) and at the 
end of the semester, just before the final exam (end of week 15). 
By the end of week 7, the students would have completed half of 
the homeworks, the two tasks and the practical test. 

We built a Decision Tree (DT) classifier. One example in the data 
corresponds to one student and is described with the extracted 
attributes. An advantage of DTs is that the set of if-then rules they 
generate provides an explanation about the prediction which can 
be easily understood by teachers and students and directly applied. 

Selecting appropriate attributes is very important for successful 
classification. Starting with the full set of attributes from Table 2, 
we used several methods for attribute subset selection [6] (manual 
and automatic such as correlation-based and wrapper, and 
combinations of them), before applying the DT algorithm. 
Although DTs have an inbuilt mechanism for attribute selection 
(only a subset of the attributes appear in the tree), their 
performance benefits from prior attribute subset selection. We 
report the best results. In all experiments, we used 10-fold 
stratified cross validation as an evaluation procedure.  

Table 3 shows the accuracy results using data from all three 
sources and Figure 1 shows the generated DTs. The numbers in 
the brackets next to a leaf node in the trees give information about 
the coverage and correctness of the rule, e.g. (51/3) means that the 
rule covered 51 examples from the data, 3 of them we classified 
incorrectly and the remaining 48 were classified correctly. 

Our results show that it is possible to predict the failing and 
passing students mid semester equally well as at the end of the 
semester – the two trees achieved the same accuracy, 87%. This 
accuracy is high enough to be useful in practical applications.  

An examination of the confusion matrix shows that for the mid-
semester tree the misclassifications are due to more failing 
students being classified as non-failing than the opposite. For the 
end of semester tree, there is no dominant misclassification type. 

Table 3. Accuracy and number of rules using all three sources 

 Marks + PASTA + Piazza 
Mid sem. (week 7) 87.00 ( 8 rules) 
End sem. (week 15) 87.00 (9 rules) 

 
Figure 1 shows the two trees. Although equally accurate, the two 
DTs are different: they have different rules, using common and 
different attributes from the three sources. Both use 
prac_quiz_mark from assessment marks and early_task from 
PASTA but the other attributes are different, as shown below.  

 
Mid semester (week 7) 
prac_quiz_mark <= 81.875 
|   prac_quiz_mark <= 54.375: F (51/3) 
|   prac_quiz_mark > 54.375 
|   |   w7_piazza_active_viewer = no 
|   |   |   w7_homework_mark <= 70 
|   |   |   |   early_task = no 
|   |   |   |   |   task2_mark <= 70: notF (3) 
|   |   |   |   |   task2_mark > 70: F (4/1) 
|   |   |   |   early_task = yes: notF (2) 
|   |   |   w7_homework_mark > 70: F (13/1) 
|   |   w7_piazza_active_viewer = yes 
|   |   |   task_finish <= 0: F (4) 
|   |   |   task_finish > 0: notF (32/6) 
prac_quiz_mark > 81.875: notF (114/3) 

End of semester (week 15) 
prac_quiz_mark <= 81.875 
|   assignment_total_submissions <= 15 
|   |   prac_quiz_mark <= 45: F (32) 
|   |   prac_quiz_mark > 45 
|   |   |   early_assignment = no 
|   |   |   |   piazza_active_questioner = no 
|   |   |   |   |   early_task = no: F (28/7) 
|   |   |   |   |   early_task = yes: notF (3) 
|   |   |   |   piazza_active_questioner = yes 
|   |   |   |   |   assignment_finish <= 0: F (14/4) 
|   |   |   |   |   assignment_finish > 0: notF (9/1) 
|   |   |   early_assignment = yes: F (8/1) 
|   assignment_total_submissions > 15 
|   |   prac_quiz_mark <= 50.9375: F (2) 
|   |   prac_quiz_mark > 50.9375: notF (13.0) 
prac_quiz_mark > 81.875: notF (114.0/3.0) 

Figure 1. DTs produced using all three data sources 

The most important attribute in both cases is prac_quiz_mark, 
which is selected as a root of both trees and classifies correctly a 
large number of examples (e.g. If prac_quiz_mark > 81.875, then 
notF (114/3) in both DTs). This is expected as the practical quiz 
tests both theoretical and practical skills, and, similarly to the final 
exam, is conducted in a supervised environment, within time 
limits (in this case directly at the computer). 

We highlight some interesting rules using attributes from PASTA 
and Piazza. From the mid-semester tree, the following rule shows 
the importance of following the discussions on Piazza, in addition 
to having relatively good marks on the practical quiz and 
homeworks: 
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If prac_quiz_mark  (54.375, 81.875] &  
w7_piazza_ active_viewer = no &  
w7_homework_mark > 70  

then  F (13/1) 

The following rule, also from the mid-semester tree, shows the 
importance of viewing the posts on Piazza, and also finishing the 
tasks earlier than on the due day, in addition to having a relatively 
good mark on the practical quiz: 

If  prac_quiz_mark  (54.375, 81.875] & 
 w7_piazza_active_viewer = yes &  
 task_finish > 0 

then  notF (32/6) 

From the end-of-semester tree, the following rule shows the 
importance of submitting the assignment and tasks early and 
asking questions on Piazza: 

If  prac_quiz_mark  (45, 81.875] &  
assignment_ total_submissions <= 15 &  
early_assignment = no &  
piazza_active_questioner = no & early_task = no 

then F (28/7) 
 

The rules in the two DTs generally make sense. The counter-
intuitive ones (e.g. the two rules in the mid-semester tree that 
include task2_mark as their last condition and predicting F if 
task2_mark is greater than 70 and vice-versa) cover a very small 
number of instances (5/223 in this case) and represent 
coincidences in data rather than patterns. 

Finally, both the mid-semester and end-of-semester trees are small 
(8 and 9 rules respectively), therefore easy to use by teachers. 

In summary, the produced rules are compact, useful and 
actionable. They show the importance of the practical quiz, good 
practice such as starting and finishing assessments early and 
regularly reading the posts on the discussion board. 

6. IS THE INFORMATION FROM PASTA 
AND PIAZZA USEFUL FOR PREDICTION? 
We investigate if the information from the automatic marking 
system PASTA and the discussion board Piazza helps to improve 
the predictive accuracy, in comparison to just using the 
assessment marks. Table 4 shows the results when using marks 
only, and marks and PASTA only. The results using all three 
sources - marks, PASTA and Piazza - are given in Table 3.  

Table 4. Accuracy and number of rules using assessment 
marks alone, and assessment marks and PASTA  

 Marks Marks + PASTA 
Mid sem. (week 7) 84.30 (8 rules) 84.70 (13 rules) 
End sem. (week 15) 82.96 (9 rules) 83.41 (14 rules) 

 
We can see that using the assessment marks only provides a very 
good accuracy of 83-84%. The addition of information from the 
automatic grading system PASTA improves the accuracy by about 
1%. Adding the information from the discussion board Piazza 
(Table 3) further improves the accuracy by about 3%, raising it to 
87%. Hence, using information from PASTA and Piazza improves 
the predictive accuracy, in comparison to just using the 
assessment marks. However, this improvement is small in this 
case as the marks alone already provide high accuracy and there is 
a ceiling effect.  

7. CONCLUSIONS  
In this paper we investigate whether students at risk of failing can 
be identified early enough in the semester for timely intervention, 
using machine learning prediction methods and information from 
three different sources: automatic marking system, discussion 
board and assessment marks. We define useful attributes from 
each data source, to characterise student performance and activity. 
Using these attributes, we built a decision tree that achieved 87% 
accuracy in predicting whether students will pass or fail their final 
exam, from information available in the middle of the semester.  

The produced rules are useful and actionable, and indicate the 
importance of starting and finishing assessments early and reading 
the posts on the discussion board, in addition to performing well 
on key assessment components. We show that using information 
from the automatic marking system and discussion board 
improves accuracy, compared to only using the assessment marks.  

Our results can be used to detect students at risk of failing early in 
the semester and provide them with simple preventive feedback 
about remedial actions. Having an early flagging of students at 
risk also allows teachers of large classes to approach these 
students and provide more personalised remedial actions. At the 
beginning of the semester all students can also be made aware of 
the characteristics of the failing and passing students, to 
encourage better learning, good practice and improved student 
engagement. 

An important aspect of our work is that we exploited different 
data sources capturing various facets of student activity during the 
course. This allowed the DT results to provide some concrete 
suggestions of remedial actions. The methodology we have 
followed can be applied to other contexts combining similar types 
of data sources. We are currently applying it to another very large 
course. 
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ABSTRACT
This paper presents a method of using a classification pro-
cedure for retrieval of the most appropriate tutors in on-
line educational environments. The main goal is assisting
learners to find the most suitable colleagues that can pro-
vide them help. The retrieval is based on a user model
built from experiences of previous generations of students.
Performed activities represent the raw input data(i.e., the
experiences), that one obtained from on-line educational en-
vironment. The goal of the developed system is to provide
a list of colleagues that are willing and able to provide help.
The student that is looking for a tutor will be aware of his
weakness, his place among his colleagues and get some in-
tuition regarding needed future activities that may improve
effectively his knowledge level. The data processing for the
retrieval mechanism is based on a classical classification en-
gine that is custom designed for fulfilling the presented goal.

Keywords
Decision Tree, Classification Induction, Recommender Sys-
tem, e-Learning

1. INTRODUCTION
This paper addresses the problem of improving the knowl-
edge level of a student that uses an online educational en-
vironment by using algorithms for indexing and retrieval
mechanism. The proposed approach contains two main mod-
ules: the server side module where the indexing model is
created and the client side where visualization and retrieval
of a set of learners(i.e. prospective tutors) takes place. This
set of colleagues represent the most appropriate options ac-
cording to several predefined criteria specified by retrieval
mechanism.

The first prerequisite for building a reliable recommender
system is gathering high quality data in order to properly
train the classifier, as main data processing unit within in-
dexing mechanism. The activity related assets (e.g., database,

log files, etc.) of the e-Learning environment are queried in
order to obtain the training dataset. The assets must pro-
vide enough information such that all needed features that
define students are computed and stored into the training
dataset.

Once the input data for analysis is available the aim is to
design a machine learning based recommender system that
trains a classifier which acts as a core processing unit for
the indexing mechanism. The next steps are choosing: the
appropriate algorithm type (e.g., supervised, unsupervised,
rule based, etc.), the algorithm itself, the features (e.g.,
name, meaning, type, values, etc.) and the overall setup
necessary for obtaining a solution. In our case, we use super-
vised learning algorithms (e.g., classifier) and more exactly,
decision trees [6]. The algorithm is used to classify new
items, which in our educational context are represented by
learners. The research issue of this paper regards designing
and implementing a tutor recommender system. Address-
ing of this issue is accomplished by two means: properly
designing a custom data analysis pipeline and building a
tool that retrieves tutors in the practical context of Tesys
[2] e-Learning platform.

For prototyping a general purpose classifier is used, i.e. a
decision tree that is implemented in Weka [5] and this im-
plementation is used for experiments. The key issues that
are addressed regard properly setting up the general purpose
classifier in a context of a practical problem in e-Learning
application domain. Main ingredients for concept proof de-
scription and tool prototyping are presented in this paper
along with detailed description of choices and their expected,
observed and validated impact.

Once the recommender system is built, it can be used to
obtain tutors for current or new learners by providing input
only their computed values for the chosen features. On the
client side, the learner is able to log in the application and
access the tutor search utility application. The student first
sees his class label in the existing model (i.e., his actual class)
and then his target class which gathers the best suited tutors
for him.

2. RELATED WORKS
The paper folds at boundaries between domains of machine
learning and information retrieval as part of EDM and rec-
ommender systems. Educational Data Mining is an emerg-
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ing discipline, concerned with developing methods for im-
proving the relationship and interaction level between learn-
ers and professors. Since 2005 when the workshop referred to
as ’Educational Data Mining’ AAAI’05-EDM took place in
Pittsburg, USA [4], followed by several related work-shops
and the establishment of an annual international conference
first held in 2008 in Montreal [1] many work has been done
in this area [12] [11] .

Building recommender systems for e-Learning gathered many
research efforts due to large number of practical usages within
this application domain. Since e-Learning is a highly in-
teraction domain, it is very appropriate for using Intelli-
gent Data Analysis techniques for building various types of
recommender systems. E-Learning personalization [8] rep-
resents one of the most common and general issues in e-
Learning. Within this area of research issues like adapting
the presentation and navigation [3], smart recommender
in e-Learning [14] and various other commercial systems
[9] proposes different input data, user modelling strategies
or prediction techniques for reaching various business goals.
Among the most used data analysis techniques there are
content-based or item-based filtering, collaborative filter-
ing, rule-based filtering, etc [10]. The general machine
learning strategy of learning and predicting, information re-
trieval strategy of indexing and retrieval become in recom-
mender systems for e-learning modelling and recommenda-
tion. Modelling regards thus users, content(i.e. questions,
chapters, etc) and recommendation implies the existence of
a implicit or explicit query. Once all these ingredients are
put together in a consistent data analysis pipeline the output
takes the form of a single recommended set [13].

Regarding involved technologies this paper uses Weka (Waika-
to Environment for Knowledge Analysis) as a popular suite
of machine learning, data mining and information retrieval
algorithms written in Java. The implemented algorithms are
very flexible and can be used into the analyzing process of
different kinds of data(from different domains). From Weka
we have used J48 which is the implementation of the C4.5
[7] algorithm in Weka, a data analysis algorithm which gen-
erates a decision tree in order to classify data.

3. FRAMEWORK FOR INTELLIGENT TU-
TOR RETRIEVAL

The recommender module has the task of matching the
query of a learner for a tutor against the existing data model.
From software perspective the recommender module is a
client for model builder module. Its main task is to pro-
duce results in such a way they may be intuitively displayed
by the thin client application used by learner in his attempt
to find a suitable tutor. Therefore the learner will see a tree-
like structure due to native shape of the decision trees with
actual class of the learner marked in red and with target
classes marked in shades of green. In fact the green classes
represent set of learners that are suitable for being tutors
for learner that is querying the system.

In Fig.1 presents how the tutor recommender mechanism
is designed as a data workflow. From interaction point of
view students have to query the system that is integrated
within Tesys-Web and after performing necessary operations
on the server side they obtain the decision tree filled with

Figure 1: Activity use case diagram

prospective tutors. On the server side we have the business
logic of the recommender system. Here the training dataset
is built, thereafter the data model and the output as an xml
file that can be displayed on the client side.

3.1 Description of Tasks within Recommender
System

The main tasks performed within the recommender system
regard preliminary offline data model building, setup of the
recommender system, indexing currently existing learners
into already created model and computing and extracting
relevant tutors by applying the already setup recommenda-
tion strategy.

3.1.1 Learners Modelling Phase
We apply machine learning (i.e., decision trees) techniques
to build learners profiles by using already existing implicit
performed activities from usage sessions of learners that used
the system in previous years. This data represents the train-
ing data and the output is represented by a set of classes (i.e.
leaves in the decision tree) such that each class corresponds
to a learners profile. Once sessions and corresponding ac-
tivity data are delimited in such a way that all features de-
scribing a learner are processed, we can use the decision tree
builder to obtain the baseline data model. Once the data
model is created the currently existing learners within the e-
Learning platform are placed in their corresponding leaves.
At this moment currently existing learners are indexed in
the decision tree data structure and are ready to be queried.

3.1.2 Tutors Recommendation Phase
The query of a learner for a tutor is regarded as a parametri-
zed implicit query. The parameters aim tuning the retrieval
mechanism such that optimal solutions are returned from
solution space. The solution space is regarded as a set of
classes(i.e., leaves) each class containing a set of prospective
tutors. The set of classes need to fulfill one basic require-
ment, which is to be labeled with a ”better” class label that
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the one in which the querying learner resides. A total or-
der set of classes is ergonomically computed with the first
item containing learners ”close” to the querying learner and
the last item containing learners ”further” to the querying
learner. In this context parameter tuning will manage to de-
cide a certain number of prospective tutors that are picked
up from one of the target classes. Intuitively, choosing tu-
tors from a class that is ”closer” to the querying learners’
class will return tutors with a profile that is better but sim-
ilar. On the other hand, choosing tutors from a class that
is ”further” to the querying class will return tutors with the
best profiles among all colleagues.

3.2 Description of the Data Analysis Process
The main concept considered in the model is the ”Learner”,
which is also a ”Tutor”. Once the data model is built from
the training data the current set of learners L={L1,L2,L3...Ln}
is distributed in corresponding classes according with the
key feature values fi,k. For current prototype implementa-
tion the features are not weighted since the decision tree
itself provides a ranking in feature selection.

All classes of learners are considered as resources for which
an ”affinity” function needs to be defined in order to retrieve
the most suitable tutors. Defining the affinity function needs
to take into consideration several criteria such a better over-
all knowledge weight, specific values in communication re-
lated features(i.e., messaging activity, forum activity, etc)
and demographic features. Due to its specific topology of
the decision tree also ranks the leaves in classes. A normal
distribution function is defined such that the lowest ranked
class is assigned 0 knowledge weight and highest ranked class
is assigned a value of 1 knowledge weight. All in between
classes get a knowledge weight ranking between 0 an 1.

Thus the data analysis task is to identify the actual class
of the learner who is querying for a tutor and to provide
most suitable options from the subsequent classes in ob-
tained ranking of the current learners. With this approach
the tutor retrieval becomes a matter of properly specifying
querying parameters. The proposed mechanism offers the
possibility of obtaining any of the feasible solutions, some-
where between the very next learner which resides in the
class with the next knowledge weight value up to the top
class learners in ranking. From this perspective several pa-
rameters are defined. One manages the proximity of the
class from which tutors are retrieved.

4. EXPERIMENTAL RESULTS
The main input of the server application is the activity
repository. This raw data taken from the database is con-
verted to an .arff file, which is used to train the classifier.

In Fig. 2 are presents the meaning of the attributes from
the .arff file and Fig.3 presents the obtained decision tree
based on the training dataset. Several functionalities were
developed in order to be able to load and parse the decision
trees. One of them is successor computation. Because of our
dataset structure, the decision tree contains ordered leaves.
This functionality is successfully used for fulfilling specific
user constraints. For example, if the student does not want

Figure 2: Features

Figure 3: Tree example

to have a step by step progress, he will be able to use this
feature to retrieve tutors which are i steps ahead of him.

Here is the pseudocode for the method used to locate the
classified student’s actual and target class. This recursive
method takes two parameters: a node element containing
information from the xml and a boolean variable, stating
whether the parent has been marked or not. A node is
marked when the student meets the requirement stated in-
side the node (for example if the ”messageLenght”is ”LONG”).

function studentSearch(Node parent, boolean isMarked)

{

SET nodeList to the list of child nodes of "parent"

FOR each node in nodeList

IF is element node THEN

SET atr to the value of the attribute "attribute"

IF atr is null THEN

IF isMarked THEN

add new atrribute to the node

END IF

IF "decision" attribute is "high" THEN

SET target to the current node

END IF

ELSE

SET expresie to ""

SET belongs to false

CASE atr IS

"avgMark":

generate the expression to be evaluated

SET belongs to the result of the evaluation

"nrHours":

generate the expression to be evaluated
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SET belongs to the result of the evaluation

................................................

END CASE

IF belongs AND isMarked THEN

add new atrribute to the node

CALL studentSearch WITH current node, true

ELSE

CALL studentSearch WITH current node, false

END IS

END IF

ELSE

REMOVE node FROM nodeList

END IF

END FOR

}

The thin client automatically computes the class of the stu-
dent who is searching for a tutor. These values are used to
determine the actual class of the student. The actual class
of the student is marked with red and the target class is
marked with green.

In Fig. 4, the inspection of the green node reveals to the
student a list on colleagues that may help him as tutors. The
student has a messaging system to his disposal for contacting
his recommended tutors in an attempt to find answers from
the right persons.

Figure 4: Prototype of the tutor retrieval system

Let us consider student S1, which has already used the e-
learning platform and there is enough data logged about
him, including the following values for the attributes: nrHours
= 30, avgMark = 6.80, messagingActivity = No, noOfTests
= 2, avgMessageLength = SHORT. After running the tool,
he finds out that his actual leaf/class is the second one when
parsing the tree from left to right, so he has to put some ef-
fort to catch up with his colleagues. Assuming he wants to
spend the necessary time to gradually learn from his col-
leagues, the system can recommend him tutors belonging
to the third leaf of the tree (1st level successors). He will
therefore receive the contact details of the students from
that leaf. After managing to improve his performances and
become himself part of that leaf, he will be able to continue
to the next step. If he however wants to try to learn from
the best directly, the system will be able to provide him with

the contacts of the best tutors available (belonging to the
green leaf in Fig. 4).

5. CONCLUSIONS
The paper presents a custom approach for providing assis-
tance to learners in on-line educational environments. The
assistance regards the option of finding colleagues that may
offer guidance in respect to activities that need to be per-
formed for improving the student’s knowledge level.

Each student will benefit by using this tool from the per-
spective of improving their knowledge. It will be easier for
students to communicate with someone their own age, ask
questions about the things they don’t understand, and get
more clarification and feedback.
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ABSTRACT 
This paper describes preliminary results from a study in which we 
apply machine learning (ML) algorithms to the data from the 
introductory physics MOOC 8.MReV to discover which of the 
instructional resources are most beneficial for students.  First, we 
mine the logs to build a dataset representing, for each question, 
the resources seen prior to each answer to this question; Second, 
we apply Support Vector Machines (SVMs) to these datasets to 
identify questions on which the resources were particularly 
helpful. Then, we use logistic regression to identify these 
resources and quantify their assistance value, defined as the 
increase in the odds of answering this question correctly after 
seeing the resource. The assistance value can be used to 
recommend resources to students that will help them learn more 
quickly.  In addition, knowing the assistance value of the 
resources can guide efforts to improve these resources. 
Furthermore the order of presentation of the various topics can be 
optimized by first presenting those whose resources help on later 
topics. Thus, the contribution of this work is in two directions. 
The first is Personalized and Adaptive Learning, and the second is 
Pedagogical Design.  
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1. INTRODUCTION
A central question in online courses, as in education in general, is 
how to design measurably more effective pedagogy. Since online 
courses, and specifically MOOCs, offer “full course” 
environments and produce log files that can be analyzed by 
computational tools, it is only natural that such tools would be 
used to optimize online pedagogy. While most pedagogic design 
in online education is based on ‘best practices’ and subjective 
opinions, e.g. [4], we concur with Koedinger et al. [3] that 
optimizing the design of instructional resources is an area in 
which ML and educational data mining (EDM) techniques can 
add a lot of value.  

We propose a machine-learning, data-driven method that yields 
various kinds of analytics that can be used by course designers to 
improve their courses. Specifically, our work concentrates on 
computing the assistance value of instructional resources. Seaton 
et. al. [6] showed that the resources used for homework and exam 
problems differed dramatically, but did not evaluate the 
effectiveness of the selected resources. Our method aims at 
discovering exactly this – the contribution of particular 
instructional resources (e.g., page 121 in the e-text) for solving 
specific questions. From this, various other measures can be 
derived, such as which resources are generally useful, which 
questions do not have good supporting resources, etc.  

Our longer term vision is that this can be used to augment 
educational resources with meta-data describing their contribution 
to various tasks, in line with Mccala’s ‘Ecological Approach’ [5]. 
This approach suggests using ML and EDM to automatically infer 
the educational value of on-line resources in order to combine 
them to achieve educational goals. Inspired by this, Champaign 
and Cohen [1] presented an algorithm for sequencing educational 
resources based on their educational value for a specific 
knowledge unit. Our work suggests means for computing these 
values, which their algorithm takes as an input. 

In the context of personalization, a lot of work has been done in 
predicting performance and sequencing questions, for example the 
interesting algorithm of Segal et al. [7]. Our preliminary results 
show that considering the particular educational resources that 
students used can also improve the prediction of their 
performance. This is especially relevant in MOOCs, since the 
students are free to choose their path through the course, and can 
attempt a question without going over the pedagogical resources 
that are important for solving it.  
Our approach is based on a two-step method for computing the 
assistance value of instructional resources. The first step aims at 
identifying questions that have strong connection to the course 
resources. The strength of the connection between a question and 
its resources is operationalized as the difference between the 
accuracy of a prediction model that considers resources seen prior 
to attempting the question and previous performance, and the 
accuracy of a model that considers only previous performance. On 
such questions we conduct a second step, aiming at identifying 
which are the contributing resources and quantifying their value. 
The results have two immediate payoffs. One is optimizing the 
course design. The other is content recommendation.  

The rest of this paper is organized as follows. Section 2 describes 
our method in detail. Section 3 presents preliminary results 
obtained from running the method on the Introductory Physics 
MOOC 8.MRev. Section 4 discusses limitations, and Section 5 
presents directions for future work.  

2. OUR APPROACH
This section is organized as follows. First, we define the notion of 
assistance value and what we consider as resources. Second, we 
give a high-level description of the process for calculating the 
assistance values. Third, we describe in more details the steps – 
knowledge representation, data mining, and the ML algorithms.  

2.1 Resources and Assistance values 
The assistance value Rq is a measure of how much a particular 
pedagogical resource R (say, a video explaining gravity) 
contributes to solving question q. It is defined as the increase in 
the odds that a student seeing R will solve q correctly. 

The resources considered in this study are either html pages 
containing textual explanations, instructional videos, or questions.  
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2.2 High-Level Description  
The process for discovering the assistance values consists of the 
following steps: 

I. Prepare a list of the pedagogical resources from the 
course structure files.   

II. Mine the raw data (students’ logs) to create a dataset
representing the resources that the students interacted
with before attempting the questions.

III. Identify questions in which the resources have a
significant contribution to students’ success. To achieve
this, we compare, for each question, the predictive
power of a SVM model that considers the resources
seen before attempting this question to a baseline SVM
model that considers only the aggregated performance
on questions attempted before this question.

IV. For each question identified in step III, discover which
resources have the highest assistance value. To achieve
this, we use a logistic regression with the resources as
independent variables and success/failure as the
dependent variable. Then, the exponents of the
coefficients are interpreted as the assistance value of
each resource.

2.3 Data Mining and Knowledge 
Representation   
As first step, we build, per question, a dataset representing the 
resources that the student interacted with before each attempt to 
each question. More specifically, we use a binary feature space, 
with each feature representing whether a resource was seen or not. 
Each attempt makes an example, with ‘1’s for the resources seen 
before answering, and success/failure as the binary tag of this 
example. Since some of the questions allow multiple attempts, a 
student might contribute more than one answer to a question.  
We note that we chose to start with the simplest representation, 
and operationalized ‘interacting with a resource’ as a two-state 
condition – seen or not. We deliberately decided to use a 
representation that does not preserve information such as the order 
in which the resources were seen, the amount of time spent on 
each resource, and other relevant aspects of the interaction 
between a student and a resource, as encoding them has an 
exponential effect on the size of the feature space.  

Performance as an additional feature. Student’s ability is an 
important factor when it comes to predicting performance. Thus, 
we add it as a feature to the model. Student’s ability was 
operationalized as percentage of success on previous attempts.  

Preparing the Data. The data mining algorithm, implemented in 
Python, works as follows: For each time-sorted student log file, 
the algorithm scans the log while maintaining, per student, a list 
of the resources seen so far and an ability parameter. Each time a 
resource is accessed, it is added to the list (unless it is already 
there). Each time a question is attempted, the algorithm adds to 
the dataset of this question a new vector with the resources seen, 
the ability parameter, and a tag indicating whether this attempt 
was successful or not. Then the algorithm updates the ability 
parameter.   

Exploring Various Models. To achieve the best results, we 
consider various models, which differ on the ‘length of their 
memory’, namely, how many resources they keep in the list. For 
example, a model with memory_length=5 considers only the last 5 
resources seen before each attempt. Thus, for each question we 
actually build several datasets, one per memory_length value. The 

values that are considered are 1/2/3/5/10/1000. A dataset with 
memory_length=0 is also prepared, for benchmarking (see next 
section). This dataset does not ‘remember’ resources, only 
student’s aggregated performance (student’s ability) before 
attempting the question. We denote the dataset of length j for 
question q with Dqj (and omit q when referring to this dataset for 
all the questions).   

The rationale underlying testing various options is mainly that we 
assume that some questions might require many resources, while 
for others, a ‘long memory’ might include a lot of irrelevant data. 

2.4 Using SVM as a Filtering Scheme  
To find questions for which the instructional resources used are 
significant, we train and test (using a standard 10-fold cross-
validation) for each question q a SVM model on each of the 
datasets Dqj, for j = 0/1/2/3/5/10/1000 (we denote the SVM model 
trained on dataset j of question q with Mqj, and omit q in case we 
refer to this model in general). The baseline described in the 
previous subsection is Mq0. Model accuracy is measured as the 
average accuracy of the 10-fold cross-validation and denoted 
accuracy(M). We then compute the relative improvement that 
each of the models Mqj, j = 1/2/3/5/10/1000, give over Mq0, and 
pick the model that gives the highest relative improvement, 
defined as !""#$!"% !" !!""#$!"%(!!)

!!!""#$!"%(!!)
. We consider questions on 

which the best model gives more than 10% relative improvement 
as questions with strong connection to the course resources.  

2.5 Using Logistic Regression to Compute 
Assistance Values  
As described above, the role of the Logistic Regression is to 
identify the resources with highest assistance value for each 
question. This step is conducted as follows. For each problem 
found by the SVM to have a strong connection with the resources, 
we train a logistic regression on the dataset that produces the best 
SVM model. For example, if for a specific question q the most 
accurate model was Mqj, we train a logistic regression on Dqj (in 
case several SVM models give the same performance, we follow 
Ockham's Razor rule and take the lowest j).     

The result is that per question q, we have a logistic model that 
predicts the probability of answering q correctly as a function of 
the resources seen and the ability. As described above, the 
coefficient attached to each feature quantifies the contribution of 
this feature to the final outcome, with the p value representing the 
level of confidence.   

The coefficient attached to each feature is interpreted as the 
assistance value of the resource that this feature represents, and 
we consider only those with high confidence (defined as p value < 
0.05). 
We note that an alternative approach was to use one method both 
for the prediction and for quantifying the value of the resources. 
This approach was tried with logistic regression and with 
Decision Trees, which are easily interpretable machine-learning 
methods. However, the prediction accuracy gained by these 
methods was relatively low, comparing to the accuracy achieved 
by SVM, which on the other hand, is a much less interpretable 
model. Thus, we separate the process into two phases, one aims at 
prediction and built on SVM, and one aims at quantifying the 
assistance values and built on logistic regression.  

In Section 5 we discuss various ways in which the prediction 
models and the assistance values can be used for pedagogic design 
and recommendation. 
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3. CASE STUDY – INTRODUCTORY
PHYSICS MOOC 8.MReV

Context.  We applied the above method on the data obtained from 
the 2014 instance of the introductory physics MOOC 8.MReV 
given by the third author and his team through the edX platform. 
The course attracted about 13500 students. Gender distribution 
was 83% males, 17% females. Education distribution was 37.7% 
secondary or less, 34.5% College Degree, and 24.9% Advanced 
Degree. Geographic distribution includes the US (27% of 
participants), India (18%), UK (3.6%), Brazil (2.8%), and others 
(total of 152 countries). (All numbers are based on self-reports.) 
The course lasted for 14 weeks, with content divided between 12 
mandatory units and two optional ones. From the course structure 
file we extracted 1362 pedagogic resources (1020 problems, 273 
pages, 69 videos).  

Data Mining. We considered 1308 questions for which there were 
more than 100 student attempts. (For problems that contain 
several graded sections, we consider each of them as a question. 
Thus this number is bigger than that in the previous paragraph.) 
We used the logs of all the students who attempted these 
questions rather than restricting to those students who exceeded a 
particular benchmark of participation. As described in Subsection 
2.3, for each question we created 7 datasets, each representing a 
different ‘memory length’.  

SVMs and choosing the questions. On the next step, we trained a 
SVM model on each of the datasets, i = 0/1/2/3/5/10/1000 as 
described in Subsection 2.4, using R’s libsvm [2]. This yields 
seven SVM models for each question, each tagged with its 
accuracy level. The results show that in overall, models M1...10 
performed better than M0, which was always at least good as 
majority-class prediction. This was evaluated using a paired one-
side t-test that tested the hypothesis that the accuracy of Mi over 
all questions is higher than the accuracy of M0 on all the 
questions, for i=1,2,3,5,10. For M1000, the null hypothesis was 
not rejected, so we cannot say that in general this model behaved 
better than performance-based prediction. We believe that the 
main explanation for this is that considering resources used long 
before the question at hand was even opened introduces a lot of 
noise into the data, reducing the weight of the proximate 
resources. This is exemplified in Figure 1, which shows, for 5 
typical questions, the relative improvement that models 
‘remembering’ i=1,2,3,5,10,1000 previous resources give relative 
to remembering only aggregated performance of each student.   

Next step was to choose, per question, the best model. Figure 2 
shows, per question, the relative improvement of the best model 
compared with the accuracy of M0 on this question. We took 
relative improvement > 10% as the cut-off for defining questions 
with strong relation to the pedagogic resources (the line is marked 
in the figure). In total, of 337 questions were above this threshold. 
Logistic Regression. For each of the questions identified by the 
previous step, we trained a logistic regression on the data that 
produce the best SVM model, using standard packages in R. For 
example, if for question q the best SVM was Mi, we trained a 
logistic regression for q on Dqi. For each question, we sorted the 
coefficients with p value <0.05 in decreasing order. This yields 
the assistance values. Table 1 shows an example of the two most 
significant resources found for a question from homework 12, 
which deals with gravity and orbits. According to the model, the 
two most significant factors that correlate with answering this 
question correctly are seeing the html page 
Angular_Momentum_of_Orbits, which explains content related to 
this question, and student’s performance on previous questions. 

Figure 1. Relative improvement vs different memory length. 

Figure 2. Relative improvement. 

Table 1. Example of two most significant predictors 

Validation. In order to evaluate the meaningfulness of the results, 
we executed an expert validation protocol aimed at measuring the 
precision of the algorithm. In our case, precision is defined as the 
fraction of retrieved resources that are relevant. We gave to one of 
the course designers a list of 10 questions, each with 3-5 resources 
found to have assistance value. The course designer was asked to 
mark whether each resource is irrelevant/slightly-relevant/highly-
relevant to the question.  Weights were 0/0.5/1, respectively. In 
total, the precision on this sample, according to the expert, was 
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42.5%. We did not measure recall, which is the fraction of 
relevant resources that are retrieved, and is typically used in 
conjunction with precision, since the number of relevant resources 
for a specific question is unknown, and some of them can be 
interchangeable. Due to lack of space, we omit a detailed analysis 
that was done with the expert on the results given for a specific 
question.  

4. LIMITATIONS OF THE MODEL
Our model has limitations in several areas. Due to lack of space 
we present them very briefly. 

Cognitive. Currently the model makes simplistic assumptions on 
the nature of knowledge acquisition and retention. For example, it 
does not give any weight to the time spent on the resource, the 
time since seeing the resource (knowledge can be forgotten), order 
of resources is not considered, and it is assumed that the relation 
between the resources is additive (we used SVM with a linear 
kernel).  
Model. Another limitation is that some of the independent 
variables in our model are collinear (i.e., A is a resource of B; A 
and B are resources of C). One effect on Logistic Regression is 
that the ability to infer the value of specific coefficients is 
reduced. A possible remedy is discussed in Subsection 5.2. 

Data. As typically happens in real world examples, our data is 
skewed. For example, many of the participants already know the 
material (i.e., Physics teachers taking the course for professional 
development), so the resources they see have low effect on their 
ability. This adds a lot of noise to the data. Also, the ratio of 
examples-to-features is about 1:1, far from optimal.  

5. FUTURE WORK
In this paper we described a method for computing the assistance 
value of pedagogic resources, presented preliminary results, and 
discussed limitations. Below we present directions for future 
work, which include further evaluation of the use of the various 
applications of this method, and removing limitations.  

5.1 Using the Assistance Values 
Finding the assistance value of resources will be useful for 
Pedagogical Design and for constructing Recommender engines.  

5.1.1 Pedagogical Design Optimization  
The assistance value can be used to address several interesting 
issues: 

What types of resources are most effective: resources that have 
significant assistance value for a number of questions tell us what 
learning to emphasize.  We can also determine the characteristics 
of resources that are most helpful  - e.g. types (videos vs. e-text) 
or topics (momentum vs. energy). 

Questions that lack good resources: If questions lack resources 
that help students to solve them this might indicate that the 
designer should add or improve (or possibly move closer to that 
question) the resources that ought to help.  
Identifying redundant/bad instructional resources: If a particular 
resource is of little assistance for all questions, it is probably a 
distraction from good instruction (or covers a topic not assessed 
by any question).  
Location of resources: Good resources that are located far from 
the question that they support may help students learn 
foundational skills. 

5.1.2 Recommender Systems 
In the future assistance values can be used for constructing an 
online resource-recommendation engine. Before a student 
attempts a question, the engine could use the logistic model to 
predict the probability that a student will get it correctly. In case 
this is low, a list of resources can be provided, recommended 
based on their assistance value, with simple metadata about each 
(e.g. whether e-text, a worked example, a video… as well as the 
median time students spent on it).  This would allow the student to 
select the type of resource they prefer.  Furthermore it would 
enable us to obtain much more data on the effective resources so 
we could determine which were best for students with different 
overall abilities and even possibly with different learning 
preferences. 

5.2 Removing Limitations  
Logistic regression is used both for its interpretability – to get the 
assistance values, and for its probabilistic classification – to 
predict the probability that a student will answer a question 
correctly. If this probability is low, we can recommend the 
resource with the highest assistance value that was not seen yet. 
One direction that we investigate is to separate this between two 
models – one for interpretability and another for probabilistic 
classification. This will allow considering other models, such as 
probabilistic SVMs. We note that for recommendation only, a 
strong probabilistic classifier is enough, and knowing the 
assistance values explicitly is not necessary. The process for 
finding the best recommendation is simple. For each unseen 
resource r, the engine will run the classifier on a vector consisting 
of the resources seen so far + r, and will recommend the resource 
that leads to the highest probability. 
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ABSTRACT
As online courses such as MOOCs become increasingly pop-
ular, there has been a dramatic increase for the demand
for methods to facilitate this type of organisation. While
resources for new courses are often freely available, they
are generally not suitably organised into easily manageable
units. In this paper, we investigate how state-of-the-art
topic segmentation models can be utilised to automatically
transform unstructured text into coherent sections, which
are suitable for MOOCs content browsing. The suitability
of this method with regards to course organisation is con-
firmed through experiments with a lecture corpus, config-
ured explicitly according to MOOCs settings. Experimen-
tal results demonstrate the reliability and scalability of this
approach over various academic disciplines. The findings
also show that the topic segmentation model which used
discourse cues displayed the best results overall.

1. INTRODUCTION
In recent years, Massive Open Online Courses (MOOCs)
have been in the spotlight of the media, education profes-
sionals, entrepreneurs and technologically aware members of
society. As a result, leading universities have been convinced
to run their courses online, by establishing open learning
platforms, as seen with MIT Open Course Ware (OCW)1

and Open Yale Courses (OYC)2.

The majority of these learning platforms organise their re-
sources in line with a pedagogical model, which will allow
easy online browsing and accessing [23]. On the other hand,
organising these resources takes a great amount of time and
is platform dependent, and a large percentage of these plat-
forms have varying formats and structures of the pedagog-
ical model they are based on [23]. In order to decrease the
above efforts, unstructured text can be automatically split
into coherent sections, which are thus more suitable for on-

1http://ocw.mit.edu/index.htm
2http://oyc.yale.edu

line browsing. As these sections include the content of the
learning units, an automatic pedagogical annotation model
can be employed to organise these units into introductions,
descriptions, explanations, examples and other pedagogi-
cally significant notions, as examined by [14]. Even though
the use of automatic pedagogical annotation models appears
suitable, a number of MOOCs sources are structured in line
with both the pedagogical and topical approaches. An ex-
ample of this would be Figure 1(a), the physics lecture from
OYC, which displays both ways of structuring. The first and
fifth sections depict the pedagogical elements, while the re-
mainder includes the topic segments. This can also be seen
in the economics lecture in Figure 1(b).

This paper will examine the use of state-of-the-art topic seg-
mentation models to structure lecture resources into cohe-
sive segments, making them suitable for MOOCs content
browsing. To evaluate the segmenting applications in the
proposed scenario, a test corpus was established using two
different disciplines, which were physics and economics, de-
rived from the OYC platform [25, 21]. The topic segmen-
tation models employed in this research include similarity-
based models, as seen in [3, 16, 11], language model-based,
such as [7, 28] and topic model-based, as seen with [6, 22].
The key strengths of this methodology are its discipline and
platform neutrality, which are highlighted in the results of
this study. Furthermore, the impact of lexical and discourse
cues were examined as features of the segmentation model.

It can be seen from the outcomes that the topic segmentation
model which used discourse cues, together with lexical fea-
tures, showed superior results for the two disciplines. This
is due to the fact that discourse cues are often employed
to signal the lecturer’s aim of the discourse, which means
that their learning units are represented more effectively [9].
Despite this, further analysis is required, since the current
topic segmentation models hypothesise that discourse cues
occur only at the start of an utterance, as seen in [18, 11,
7]. However, other studies have noted that discourse cues
can occur at any point in an utterance, and they are a small
part of a larger linguistic expression of a writer or speaker
[27, 5].

2. BACKGROUND
A number of studies have shown how an automatic peda-
gogical annotation can be applied to organise lectures re-
sources [14, 24]. However, instead of introducing new as-
pects such as pedagogical concepts, this paper examined the
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(a) (b)

Figure 1: Examples of the Interface used for browsing (a) physics and (b) economics lectures in OYC [21, 25].

wider applicability of topic segmentation models for struc-
turing MOOCs content into cohesive units suitable for brows-
ing. In turn, this section concentrates on the work of topic
segmentation models, and specifically unsupervised topic
segmentation, for either written or spoken language. There
has been extensive research on unsupervised segmentation
of text, based on lexical cohesion, but certain studies tried
to involve other elements, such as discourse or visual cues
[7, 8]. This paper will focus mostly on how lexical cohesion
is modeled either as similarity-based, language model-based
or topic model-based.

TextTiling [12] is considered the first similarity-based model
to calculate the cosine similarity between two adjacent blocks
of words based purely on word frequency. C99 [3] is based
on divisive clustering with a matrix-ranking scheme, while
LCSEG modeled lexical chain repetitions of a given lex-
ical term, throughout a fixed-length window of sentences
and then chose segmentation points at the local maxima of
the cohesion function [11]. MCS [16] optimised normalised
minimum-cut criteria, centred on a variation of the cosine
similarity between sentences.

An early language model-based algorithm, UI, has been pro-
posed by [28], who tried to find segmentations with com-
pact language models. Furthermore, [7] employs a gener-
ative Bayesian model BSEG for topic segmentation. The
algorithm computes the maximum likelihood estimates by
looking at the entire sequence of sentences, at specific topic
boundaries. Also, the model utilises the initial of the po-
tential boundary utterances as discourse cues for the unsu-
pervised model, which is an extension of the work by [11],
who automatically identified discourse cues using true la-
beled boundaries in a supervised fashion.

Latent Dirichlet Allocation (LDA) is a generative model
which uses latent structures to model the underlying sim-
ilarities among observations and it is widely adopted in text
analysis to model the shared topics among documents [2].
Topic model-based segmentation was initially interpreted by
[26] and built upon by [17]. The most recent LDA based
segmenter is TopicTiling [22], which undertakes linear topic
segmentation with a pre-trained LDA topic model and es-
timates the similarity between segments to evaluate text
coherence, based on a topic vector representation with co-

sine similarity. Only the most common topic ID is given
to every word in a sentence through Gibbs sampling, in or-
der to maintain efficiency. [6] have shown a hierarchical
Bayesian model, which makes use of both Bayesian segmen-
tation and structured topic modelling STM. Superior perfor-
mance over various models, in both written and spoken texts
[6], has been seen with this model. Likewise, the segmenta-
tion method of PLDA [20] samples segment boundaries, but
also jointly samples a topic model.

The applications of topic segmentation models range from
information retrieval to topic tracking [13], summarisation
[14] and segmentation of multi-party conversations [11, 20].

3. METHODS
3.1 Data Preparation
Under the Creative-Common license, freely accessible lec-
tures on the OYC website are used as data sources. Expert
speakers conducted the lectures, and appear as high qual-
ity video and audio data, transcripts, subtitles and lecture
segmentation on the course website, as part of MOOCs’s ini-
tiative. Examples of this segmentation in physics and eco-
nomics lectures are illustrated in Figure 1. High-level struc-
ture distinguishes the lecture as shown in the segmentation.
These labelled segments boundaries used as the reference
dataset to evaluate the models performance. From these
data sources, the two distinct disciplines of physics and eco-
nomics were selected to establish a new dataset. During the
preparation of this study, the total sum of lectures was 47,
made up of 24 physics lectures and 23 economics lectures.
The average number of annotated segments for the physics
lectures was 6, whereas it was 7.1 for the economics lectures.
Table 1 shows the new dataset’s relevant statistics.

3.2 Segmentation Models
The performance of six competitive models from the litera-
ture was compared, with regards to organising MOOCs text
content: C99 [4]; UI [28]; LCSEG [11]; MCS [16]; BSEG [7];
STM [6]. All models are explained in Section 2. The pub-
licly available executable given by the authors was employed
in all cases, except for LCSEG3.

3This software needs a copyright license from http://www.
cs.columbia.edu/nlp/tools.cgi#LCseg
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#Lect #Segments Per Lect #Total Segments #Total Words #Sentences
Physics 24 6 144 260k 18k

Economics 23 7.1 172 212k 15k

Overall 47 6.5 316 472k 33k

Table 1: Lecture Corpus Statistics.

Physics Economics
Text Segmenter Pk WD Pk WD

C99 0.429 0.433 0.419 0.426
UI 0.426 0.442 0.425 0.435
LCSEG 0.387 0.394 0.356 0.388
MCS 0.439 0.446 0.378 0.383
BSEG 0.364 0.385 0.313 0.334
BSEG+DC 0.359 0.379 0.309 0.328
STM 0.372 0.396 0.311 0.330

Table 2: Results of the comparison between segmentation
models: WD denotes WindowDiff. Both metrics are penal-
ties, so lower scores indicate better performance.

The paper’s specified parameter values [11] were used in the
case of LCSEG. MCS needs parameter settings to be tuned
on a development set. The corpus of this study does not
incorporate development sets, and as a result the tuning
was undertaken with the configuration given by the author
on the lecture transcript corpus [16]. On the other hand,
C99 and UI do not need parameter tuning and can be used
without any modification [4, 28]. BSEG also do not need
any parameter tuning, but priors are re-estimated, as noted
in the paper [7]. The STM model 10 randomly initialised
Gibbs chains were used, where every chain ran for 30, 000
iterations, with 25, 000 for burn-in. Following this, 200 sam-
ples used the discount parameter a = 0.2, and λ0 = λ1 = 0.1
and the Dirichlet prior is α = 0.2 and γ = 0.01. In all ex-
periments, the number of segments is assumed to have been
given beforehand.

3.3 Evaluation Metrics
All experiments are evaluated with regards to the widely
utilised Pk [1] and WindowDiff (WD) [19] metrics. Both
metrics run a window throughout a document, and evaluate
if the sentences on the edges of the window were suitably
segmented with regards to one another. WD is stricter be-
cause it needs the number of intervening segments between
the two sentences to be exactly the same in both the hypoth-
esised and reference segmentations, whereas Pk only checks
if the two sentences are in the same segment. Pk and WD
are penalties, so lower values show superior performance.
[10] has provided the evaluation source code that was being
used.

4. RESULTS AND DISCUSSION
The different performances of the six segmenters using Pk

and WD values are shown in table 2. Overall, superior re-
sults across the two disciplines were seen in the BSEG model,
especially with discourse cues, and the gain and fails of each
model across the two disciplines were described. It should
be highlighted that these models show better performance
using Pk and produce less improvement on the WD metric.
This is explained in Section 3.

Notably, the output of the MCS model, which produces
segmentation as a graph cut problem, for the physics lec-
tures yields 0.439 Pk, which is worse off compared to more

straightforward similarity-based models, such as the C99
and LCSEG. Other models, such as UI, which do not specifi-
cally depend on pairwise similarity analysis, have better per-
formance (Pk = 0.426) in physics lectures, when compared
to MCS. UI calculates a better segmentation performance
by estimating alterations to the language model predictions
through various partitions, as described in Section 2. On
the other hand, economics lectures differed, as MCS had su-
perior performance (Pk = 0.378) compared to both C99 and
UI, which yielded Pk = 0.419 and Pk = 0.425 respectively.
This is due to the difference in distributional properties of
the physics lectures, which were not coherent in their the-
matic shifts and thus caused a level of distributional differ-
ences.

A further note from Table 2 with regards to the LCSEG
model was that it had superior performance on Pk metric
for both disciplines (Pk = 0.387 in physics and Pk = 0.356
in economics), compared to all other models used with the
exception of BSEG and STM. STM achieved favourable per-
formance, especially in economics lectures, and attained re-
sults close to the BSEG model in physics lectures. This can
be attributed once again to the lack of coherence in physics
lectures, which results in smooth distributional variations. A
substantial and consistent increase is seen through the use
of BSEG+DC for all lecture subjects. This can be justified
from the existence of discourse cues, as depicted in the re-
sults of Pk = 0.359 in physics and Pk = 0.309 in economics.
As spoken language is more impulsive and not as planned
as written language, the speaker must inform the listener of
any alterations to topic content, through the introduction
of subtle cues, and references to prior topics during topical
transitions [9].

A further analysis study of discourse cues was undertaken,
using the labelled topic boundaries. For every word in the
lecture corpus, the number of its occurrences near any topic
boundary (with a window size of 5 seconds on either side of
the target boundary, inclusive) are counted, and set against
those further away. The findings were utilised in the un-
dertaking of the χ2 significance test. The chi-square test
allows the calculation of the significance of the near-against
distinct-statistics by comparing with the overall statistics,
where the null hypothesis is assumed. The word with an χ2

value in opposition to the hypothesis under 0.01-level con-
fidence (the rejection criterion is χ2 ≥ 6.635) were chosen.
Table 4 shows discourse cues sorted by chi-squared value,
where bold denotes the common cues of both disciplines.
The corpus was manually examined to find these automati-
cally selected discourse cues, and it was discovered that these
cues establish linguistic expressions, as in the study by [27]
on summarisation task. An example of this is the cue“topic”,
which is part of one expression, such as “The topic of this
lecture is” or a very different expression, like “Let’s move
to another topic”. These expressions can obviously show the
function and the purpose of the discourse, and thus show the
pedagogical element of this segment. However, current topic
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Near Distant Near Distant

today 14 53 29 92
Other 15254 244776 17838 193820

Table 3: χ2 = 24.73 in Physics and 35.82 in Economics.

Physics Economics

DC χ2 DC χ2

topic 110.25 talk 140.07
last 105.78 about 126.15
okay 51.89 wanted 97.61
now 37.88 lecture 67.97
next 32.05 let 66.97
today 24.73 we 65.46
alright 22.52 move 59.17
lecure 18.84 today 35.83
we 11.40 conclude 29.07
talk 8.68 start 21.58

Table 4: Automatically selected discourse cues (DC), sorted
by chi-squared χ2 value at the level of p < 0.01. Boldface
indicates that these cues are common across disciplines.

segmentation models do not account for these expressions,
possibly because of the fact that these models lack conversa-
tional analysis. Additional research is required to examine
this aspect, including the induction of these expressions in
the segmentation model and the possibility of using an au-
tomatic method to identify and extract these expressions,
such as in the study by [15] on the extraction of expressions
from student essays.

5. CONCLUSION AND FUTURE WORKS
The application of topic segmentation models for the auto-
matic organisation of MOOCs resources has been presented
above. The manual analysis of these resources shows that
their structure is centred on both pedagogical and topical
aspects, and so a new corpus has been established based on
this scenario, through two different domains. The study em-
ploys the different features of the topic segmentation models
in order to compare the results. The outcomes show that
the topic segmentation model which utilised linguistic cues
(e.g. today, okay) had the highest results. An important
element for future research is the automatic detection and
extraction of linguistic expressions, which are used to show
various purposes and functions in discourse, in order to be
able to involve them in the topic segmentation model. It can
be hypothesised that this type of model would have superior
performance in the representation of MOOCs learning units.
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ABSTRACT
Digital textbooks have been growing popular as a lower-cost and
more interactive alternative to paper books. Despite the recent rise
in adoption, little is known about how people use these resources.
Prior studies have investigated student perceptions of digital text-
books in the classroom via interviews and surveys but have not
quantified actual usage patterns. We present, to our knowledge,
the first large-scale quantitative study of digital textbook usage.
We mined 6.8 million log events from over 43,000 people interact-
ing with How To Think Like a Computer Scientist, one of the most
widely-used Web-based textbooks for learning computer program-
ming. We compared engagement patterns among three populations:
high school students, college students, and online website view-
ers. We discovered that people made extensive use of interactive
components such as executing code and answering multiple-choice
questions, engaged for longer when taking high school or college
courses, and frequently viewed textbook sections out of order.

Keywords
Digital textbooks; student engagement; server log data mining

Categories and Subject Descriptors
H.5.1. [Information Interfaces and Presentation (e.g. HCI)]:
Multimedia Information Systems

1. INTRODUCTION
Digital textbooks have grown popular in the past decade as more
students gain access to laptop computers, tablet devices, and broad-
band Internet. Some of their claimed benefits over paper textbooks
include lower cost, lighter physical weight, full-text search, elec-
tronic note-taking, and better accessibility for sight-impaired stu-
dents via text-to-speech [4]. As the costs of paper textbooks con-
tinue to rise, university professors are adopting digital alternatives
to save money for their students [13]. Governments are pushing for
widespread adoption of digital textbooks at the K-12 level as well.
For instance, in his 2011 State of the Union address, U.S. President
Barack Obama challenged all K-12 schools to adopt digital text-
books by 2016, and the FCC Chairman and Secretary of Education

Figure 1: How To Think Like a Computer Scientist [8] is a Web-
based interactive digital textbook for learning computer pro-
gramming. A user can: a.) read text, b.) edit and run Python
code to see outputs, and c.) answer multiple-choice questions.

followed up with a plan to implement this vision [12]. The pub-
lishing industry has responded to recent events by converting many
of their paper textbooks into digital formats. By some estimates,
digital textbook sales will be a $1.5 billion business and account
for over 25% of all new textbook sales by 2016 [11]. In parallel,
universities [1], non-profits, and independent volunteers [8] are de-
veloping freely-available digital textbooks.

Aside from classroom use, online digital textbooks are a form of ed-
ucational technology similar to MOOCs. Anyone with a computer
and Internet connection can learn topics ranging from computer
programming [8, 10] to math using digital textbooks. In recent
years, many researchers have studied how students use MOOCs [3,
6], but to our knowledge, there has never been an analogous large-
scale study of digital textbook usage. Given the growing promi-
nence of digital textbooks, it is important to understand how stu-
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dents use them in a variety of educational settings, and how that
could inform the design of the next generation of digital textbooks.

This paper contributes, to our knowledge, the first large-scale study
of how students use an interactive digital textbook. We studied
How To Think Like a Computer Scientist [8], a Web-based digital
textbook for learning computer programming (Figure 1). We ana-
lyzed two years of server logs containing 6.8 million events from
43,416 students. This data is far larger, more diverse, more precise,
and finer-grained than prior digital textbook studies that relied on
questionnaires sent on university campuses [2, 9, 13].

Specifically, we quantified how students navigated through the text-
book and engaged with interactive components such as live code
and multiple-choice questions. We segmented students into three
populations: those taking a high school course, a college course,
and those visiting the public textbook website. These comprise the
three main populations of textbook readers. We investigated three
sets of research questions: 1.) How much does each population
engage with interactive components of the textbook? 2.) When do
people in each population access the textbook, and for how long
do they persist before quitting? 3.) How do readers navigate non-
linearly and skip around when accessing textbook contents?

The first generation of digital textbooks were simply paper books
converted into electronic formats such as PDF. The current gener-
ation features interactive topic-specific widgets (Figure 1) but does
not take advantage of the scale afforded by tens of thousands of on-
line readers. This study is one step toward providing data to inform
the design of the next generation of digital textbooks, which can
leverage such data to assist students, instructors, and book authors.

2. RELATED WORK
Researchers have studied student attitudes toward digital textbooks
in the classroom, with mixed findings. Questionnaire studies of 446
students in the University of Cape Town in South Africa [13] and
of 5,000 business school students across 127 U.K. universities [9]
found high self-reported enthusiasm for adopting digital textbooks.
In contrast, a survey of 662 students across five California State
University campuses found that only 1/3 were satisfied with digital
textbooks and only 1/2 felt they were easy to use [2]. Prior studies
were all done on non-interactive digital textbooks, comparing them
to nearly-identical paper counterparts. And they all relied on ques-
tionnaires and exam results but did not analyze log data on actual
textbook usage. To our knowledge, we are the first to study an in-
teractive digital textbook in-the-wild in a large-scale online setting.
Our sample contains 43,416 students from around the world, which
is one to two orders of magnitude more students than prior studies.

3. METHODOLOGY
We studied usage patterns of How To Think Like a Computer Sci-
entist [8], a widely-used Web-based digital textbook for learning
introductory computer programming. This textbook is viewable
online for free at http://interactivepython.org/. Figure 1
shows how it intersperses textual content, snippets of editable and
runnable Python code, and multiple-choice questions. This digital
textbook shares similarities with computer programming MOOCs.
Both feature multiple-choice questions and runnable Python code
as interactive components. However, unlike a MOOC, the main
pedagogical modality here is text rather than video. Also, regis-
tration is not mandatory. Readers can register with a free account
to save their code and track personal analytics, but this is an open
resource that anyone can access on the Web. Finally, there is no

notion of a fixed course schedule with, say, weekly releases of new
materials like there is in some MOOCs. All textbook materials are
always present, which supports self-paced learning.

We mined the server logs from June 2012 to 2014, fetching 6,834,244
events from 43,416 students. Each event has the following fields:

• Timestamp – server time in the U.S. Central Time Zone
• Student type – High School, College, Open (public website)
• Student ID – either a registered username or an IP address
• Event type – Page load, Run code, Code error, Viz interac-

tion (Python code visualization), or Multiple-choice attempt
• Textbook location – the chapter and sub-chapter to which

this event belongs (e.g., chapter 5, sub-chapter 3).

Event types: The Event type field has one of the following values:

• Page load – Load a webpage, which displays the content for
a specific sub-chapter of the textbook

• Run code – Press the “Run" button to run a piece of Python
code, and the code executes successfully (Figure 1b)

• Code error – Press the “Run" button to run a piece of Python
code, but the code has a syntax or runtime error

• Viz interaction – Interact with a Python code visualization
widget by taking one step forward or backward in the em-
bedded visual single-step debugger tool [5]

• Multiple-choice attempt – Attempt to answer a multiple-
choice question within a webpage (Figure 1c)

Non-Linear Navigation: We define a backjump as any consecu-
tive pair of events for one student where the first occurred in chapter
n and the second in chapter m, where n > m. A sub-backjump is
either a regular backjump, or a pair of events in the same chapter
that went from sub-chapter n to sub-chapter m, where n > m. We
define skip and sub-skip similarly. A skip is any consecutive pair of
events where a student jumped from chapter n to chapter m, where
m > n+1. Note that we use n+1 because simply going to the next
chapter is ordinary sequential navigation, not a skip. A sub-skip is
either a regular skip, or a pair of events in the same chapter that
went from sub-chapter n to sub-chapter m, where m > n+1. The
intuition behind these metrics is that if a student navigated through
the textbook in a perfectly sequential fashion, starting with chapter
1, sub-chapter 1, and ending with the final sub-chapter of chapter
15, then they would have zero backjumps or skips. Thus, back-
jumps and skips indicate non-linear navigation.

4. FINDINGS
4.1 Engagement with Interactive Components
Most students actively engaged with the interactive components
rather than just passively reading. Figure 2 shows that page loads
accounted for only around 10% of total events. If students had sim-
ply been using this textbook as a static reference, then all events
would have been page loads. By far the most common event type
was attempting to run Python code. Run code and Code error
events comprise around three quarters of total events. Recall that
pieces of Python code are embedded throughout the textbook (Fig-
ure 1b.). Some are complete working examples that can be run ver-
batim without triggering errors, while others are incomplete snip-
pets that students must complete as an exercise. For all three pop-
ulations, attempting multiple-choice problems and interacting with
code visualizations were about as common as page loads, which
again indicates that students did not just passively read the book.
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(a) High School (b) College (c) Open

Figure 3: Distributions of events throughout the day, recorded as server time in the U.S. Central Time Zone.

Figure 2: Percentages of total events by type.

4.2 Writing, Running, and Debugging Code
Figure 2 shows that high school students ran the most code, with
∼10% more Run code events and twice as many Code error events
than college and open. Also, for high school students, 22% of total
code run attempts resulted in an error, versus only 15% for college
and open. High school students made, on average, 112 errors per
student, versus 35 errors per student for college and 12 for open.

One interpretation is that high school students made more errors be-
cause they were less experienced at coding, but we do not have the
data to support this claim. Since this is an introductory textbook,
presumably the college and open students also did not have much
prior coding experience. A more likely interpretation is that the
high school students used this textbook in a more structured and
instructor-guided manner than college and open. We have anec-
dotal evidence from high school teachers who sent emails to the
textbook creators requesting technical support that many intended
to use this strictly within their classrooms. A typical use case is a
teacher directing students to spend the class period reading through
a sub-chapter and attempting to do all of the code-related exercises.
The teacher would then walk around the classroom and help stu-
dents debug their faulty code. Thus, high school students ran more
code and persisted in debugging, fixing their errors, and re-running
possibly because an instructor was present in the classroom.

In contrast, college and open students are usually less supervised.
College instructors typically assign readings from a textbook but do
not monitor students as closely as high school teachers do. Since

running code and attempting multiple-choice problems are ungraded
formative exercises, students can work on them at their leisure.
Open students might be self-directed learners with little to no su-
pervision. Thus, they make fewer code errors (12 per student) not
necessarily because they are better at coding, but simply because
they might give up after seeing an error and not persist in fixing it.

4.3 Activity Levels by Time of Day
Visualizing activity levels by time of day confirms that high school
students mostly use this textbook in class during school hours, while
college and open students use it throughout the day. Figure 3 shows
the distribution of event times. The majority of high school activ-
ity occurs between school hours of 9am to 4pm, with a sharp dip
at noontime for lunch. This pattern indicates in-class usage, su-
pervised by a teacher. In contrast, college activity occurs evenly
throughout most waking hours from 8am to midnight.

Note that the event timestamp is the server’s time (U.S. Central
Time Zone), so it does not take the student’s local time zone into
account. However, by geolocating IP addresses of high school and
college students, we found that the majority with a geolocatable IP
were from the U.S. and Canada (89% of high school and 94% of
college students), so the true time for those students lies within a
few hours of the U.S. Central Time Zone.

Whereas high school and college students came mostly from the
U.S. and Canada, the open student population was much more in-
ternational. Only 57% of open students were from the U.S. or
Canada, and many came from countries such as Australia, New
Zealand, the U.K., and India. Unsurprisingly, those are all English-
speaking countries, since this textbook is in English. The presence
of many international students explains the relatively even levels of
activity throughout the day and night in Figure 3c, although there
is still a spike during mid-day in the U.S. and Canada.

4.4 Engagement Duration
For how long does each student engage with the textbook before
quitting? We quantified engagement duration by calculating the
difference between the first and last event times for each student.
Figure 4 plots the distributions for all three student types. High
school and college students engaged for up to a semester (∼ 105
days) because they used the textbook as part of a course. The high
school spike at around 105 days is much more pronounced than the
college one, which could be a result of greater teacher supervision.

In contrast, the open population engagement drops off sharply in
a long-tail-like distribution, which mirrors the high initial dropout
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(a) High School (mean=62, median=62) (b) College (mean=48, median=39) (c) Open (mean=28, median=13)

Figure 4: Distributions of how many days each student was actively engaging with the textbook, split by student type.

Student Type Backjumps Sub-Backjumps
mean median mean median

High School 41.0 2 58.4 11
College 13.2 2 21.8 4
Open 3.8 0 6.1 1

Skips Sub-Skips
mean median mean median

High School 38.5 4 67.3 13
College 13.1 1 27.4 7
Open 4.3 1 9.2 3

Table 1: Non-linear navigation statistics for all student types.

rates in MOOCs [3, 7]. Half of the open students used the textbook
for less than two weeks. However, unlike many MOOCs, which
incrementally release new course materials on a weekly basis, all of
the material in this textbook is always available. Thus, it is possible
for self-directed learners in the open population to engage for a
week or two, learn what they want, and then leave. Thus, semester-
long engagement is simply an artifact of formal course schedules.

4.5 Non-Linear Navigation
How frequently did students jump backward to earlier textbook lo-
cations or skip forward to latter ones out of sequence? Table 1
summarizes the levels of backjump and skip activity by student
type. For all four measures we defined (backjump, sub-backjump,
skip, sub-skip), high school students exhibited the most non-linear
navigation, followed by college, then open. Even controlling for
differing levels of activity per student, high school students per-
form twice the number of backjumps and skips as college and open
students. For instance, 6.2% of all high school events involved
backjumps, versus only 3.4% of college and 2.7% of open events.

Non-linear navigation indicates engagement, since it takes more ac-
tive effort to jump around rather than following the default sequen-
tial ordering of the textbook by simply clicking the “Next page"
link at the bottom of each page. One explanation for the high num-
bers of backjumps and skips for high school students is that they
are using the textbook in the classroom, so their teacher can proac-
tively direct them to other parts of the textbook as they are trying
to solve coding problems. Without other people present in-person
to guide or direct one’s learning, it is easier to default back to the
more passive style of reading through the textbook in a linear way.

Another interpretation is that high school and college students nav-

igate non-linearly to review materials when studying for exams. A
related study of non-linear navigation in MOOCs showed that stu-
dents often backjumped from exam pages back to earlier lecture
pages [6]. In contrast, open students might be self-studying with-
out taking a graded course, so they do not need to review as much.
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ABSTRACT
In an e-learning system, relationships between a large amount
of exercises are complex and multi-dimensional; measur-
ing the relationships and arranging curriculums accordingly
used to be time consuming and costly tasks which require
either enormous log collection or large-scale human annota-
tions. Moreover, accurately quantifying the relationships is
difficult because there are too many factors which affect our
measurement based on the data, such as the ability of exer-
cise takers and the subject bias of annotators. To overcome
these challenges, we propose a unified model that extracts
information from both human annotations and usage log
using regression analysis. The proposed model is applied
to quantify the similarity, difficulty, and prerequisite rela-
tionships between every two exercises in a curriculum. As
a case study, we collaborate with Junyi Academy, a popu-
lar e-learning platform similar to Khan Academy, and infer
the pairwise relationships of 370 exercises in its mathemat-
ics curriculum. We show that the model can predict exercise
relationships as well as an expert does with human annota-
tions of a few sample exercise pairs (2% in our experiments).
We expect the introduction of the proposed unified model
can improve the relationships among exercises and learning
pathways of students in other e-learning platforms.

Keywords
Exercise relationships, Prerequisite, Curriculum, Human an-
notations, Regression Analysis, Khan Academy

1. INTRODUCTION
Estimating relationships between items has a wide range of
applications in educational data mining (EDM). For exam-
ple, curriculum arrangement [2, 5] and adaptive testing [6, 9]
are often based on the estimations of difficulty and prerequi-
site relationships between courses, knowledge components,
or exercises. Furthermore, estimating the similarity and
prerequisite relationships between exercises can improve the
quality of knowledge components [12, 13] and student mod-
eling [3, 1, 4]. In this paper, we focus on studying the rela-
tionships of exercises (i.e., complete question units), which
can facilitate personalized education in the future.

Meanwhile, in large and dynamic e-learning websites, man-
ually organizing the growing number of exercises becomes
more and more difficult. For instance, Junyi Academy1, an
e-learning platform in Taiwan similar to Khan Academy2.
Junyi Academy provides over 300 interactive exercises for its
mathematics curriculum, which is visualized by the knowl-
edge tree as shown in Figure 1. We can see that there have

1Junyi Academy (http://www.junyiacademy.org/) is established
in 2012 on the basis of the open-source code released by Khan
Academy.
2
https://www.khanacademy.org/
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Figure 1: Part of the knowledge map on Junyi
Academy. To visualize the prerequisite structure,
the knowledge tree is laid out in a 2D plane called
knowledge map.

been many complex prerequisite links in the knowledge tree,
so it is very time consuming to manually validate how ap-
propriate the prerequisite links are and whether there are
better ways to arrange the links of the exercises. Moreover,
the instructors need to consider hundreds of exercise candi-
dates when determining the prerequisites for a new exercise.

Based on exercise taking log, researchers discover the re-
lationships through item response theory (IRT) [10], infer-
ring Bayesian model of students [3, 12, 1, 4], factor anal-
ysis [8], association rule learning [5], assuming a known Q-
matrix [13], or assuming students would perform better after
they have taken prerequisite or similar exercises [12, 11, 15],
etc. Most of the aforementioned data-driven methods de-
velop a specific learning algorithm for estimating a specific
relationship between exercises. The learning algorithms usu-
ally require a large amount of log data so as to simulta-
neously infer all latent factors affecting our observation in
data, such as relationships of exercises and capability of ev-
ery student over time. However, data in some e-learning
platforms might not be sufficient to accurately profile vari-
ous behaviors of every student. As a result, the estimation
of relationships between exercises might be misleading in a
new system with only a small amount of usage log [16, 10].

On the other hand, the collected data are often noisy [1]
and have different statistical characteristics in different sys-
tems, which might violate the assumptions made by a data-
driven model. For example, many e-learning websites, such
as Khan Academy and Junyi Academy, allow learners to
browse any exercise without actually answering them. In
fact, around 70% of the first answers are correct for the first
problem of each mathematical exercise on Junyi Academy,
which shows that learners tend to skip exercises they can-
not answer. The freedom of selecting exercises would de-
grade the performances of purely data-driven approaches on
more difficult exercises with less responses [16], and also
cause challenges to identify the difficulty and prerequisite
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matrices predicted by a regression model, and (f) the color code of (d) and (e).

relationships between exercises (See details in Sec. 2.3).

To solve the challenges, we advocate a hybrid method which
integrates the power of crowdsourcing and machine learning
as [14] did for finding prerequisite relationships among docu-
ments. As illustrated in Figure 2, we first quantify the simi-
larity, difficulty, and prerequisite relationships of mathemat-
ical exercise pairs using crowd wisdom. Then, we character-
ize each exercise pair by various types of features extracted
from the user practice log and website contents. Given labels
and features, a regression model can be trained to predict
relationships of every exercise pair. Finally, collected la-
bels can be used to quantitatively evaluate both the predic-
tion of machines and humans. Our experiments show that
predictions generated by the proposed models are closer to
the crowd consensus (i.e., average opinions of workers) than
most of individuals’ ratings.

2. RELATIONSHIP DISCOVERY
2.1 Label Collection
As previously discussed, the exercise relationships are hard
to define objectively from usage log. Recently, Wauters et
al. [16] pointed out that as more annotators judge difficulty
of each exercise, their average score converges to a more
steady value, which is highly correlated with the difficulty
inferred by IRT model. Therefore, if we collect more sub-
jective labels with high quality, their average responses are
more representative (i.e., more likely to be agreed by most
learners and instructors) and less sensitive to subject bias.

To collect high-quality labels from wide range of people, we
divide the task of comparing exercise relationships into sev-
eral questionnaires and apply several quality control meth-
ods. The method includes mathematical ability qualifica-
tion, malicious workers detection by checking the elapsed
time and the variances of their responses in each question-
naire, and outlier filtering using crowd consensus as [7] did.

At each section of questionnaires, we consecutively compare
an exercise A with 1–7 other exercises which might be re-
lated to A. Note that potentially related exercises are paired
according to student modeling and knowledge tree in Fig-
ure 1, and the order of comparisons is randomly determined.
An example of comparison could be seen in Figure 2(c).

Any target relationship of exercise pairs could be quantified
by a specific question. In this work, we ask the workers to
choose the 1–9 score for the following questions, which query
about similarity, difficulty, and prerequisite relationships of

each exercise pair (A and B), respectively.
• How similar is the knowledge required for answering these

two exercises?
• How much more difficult is exercise B compared to exercise

A, where a higher score means B is more difficult than A
and a score of 5 indicates that they have the same difficulty?

• After students learned to correctly answer exercise B, how
appropriate is utilizing exercise A to deepen the students’
knowledge on the topic step by step?

2.2 Feature Extraction
To automatically predict the relationships, we extract the
usage log from Oct. 2012 to July 2014 on Junyi Academy,
which contains over 10 million answering records from over
100 thousand users. When describing relationships between
exercise A and exercise B, we extract the potentially helpful
features from usage log and cluster them into 6 categories:
(i) Student Modeling (4 features) is extracted based on the
practice history of each student. To be more specific, the stu-
dent is modeled by applying random forest regressor to predict
his/her accuracy on every exercise which has not been done by
the student. Then, we compute original and normalized feature
importance of log data in B for predicting students’ accuracy in
answering A, and the corresponding importance of A for the pre-
diction of B.
(ii) Answering Time Duration (6 features) includes the differ-
ence between the average answering time duration of A and that
of B (i.e., (time for A)−(time for B) ), the logarithm difference
of their average answering time duration (i.e., log (time for A)−
log (time for B) ), the difference and the logarithm difference of
their answering time duration on the average of users’ correct an-
swers, and on the average of users’ first correct answers of the
exercises.
(iii) #Problems Taken in Exercises (4 features) (# means
the number of ) includes the difference and the logarithm differ-
ence between #total problems taken in A and B, the difference
and the logarithm difference of #problems which are answered
correctly in A and B.
(iv) Answering Accuracy (6 features) includes the difference
and the logarithm difference between accuracy of A and that of B
on the average of users’ first, last, and all answers in the exercises,

where the accuracy is defined by #correct answers
#total answers

. Note that we

only count the first answer of each learner in the same problem.
(v) #User Taking Exercises (3 features) includes the differ-
ence and the logarithm difference between #users taking A and
that of B, and the Euclidean distance between #users vectors
of A and that of B. The ith element in the #users vector of A
records the #users who have done exercise i correctly before A.
(vi) User Answering Orders (6 features) include #users who
practice A before B (denoted as #U [A −→ B]), #users who do B

before A (#U [B −→ A]),
#U [A−→B]

#U [A−→B]+#U [B−→A]
, #correct answers

for A before answering B (#C[A −→ B]), the corresponding #an-

swers for B before A (#C[B −→ A]), and
#C[A−→B]

#C[A−→B]+#C[B−→A]
.
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Figure 3: The feature importance for predicting relationships on Junyi Academy. The red bar of each category
means the summation of all the feature importance in the category, and symbol # represents the number of.

As pointed out in [6, 5, 10, 8, 13], different types of tags
on exercises or courses labeled by experts are useful infor-
mation for determining their relationships. Therefore, we
additionally extract exercise-related information from web-
site contents on Junyi Academy, which can be grouped into
following 3 categories:
(i) Prerequisite Knowledge Tree (5 features) includes whether
B is a parent of A in the knowledge tree (i.e., the directed acyclic
graph), whether B is a sibling of A, distance between A and B in
the directed acyclic graph, and the corresponding distances after
reversing and removing the direction of every edge in the graph.
(ii) Locations on the Knowledge Map (3 features) include
Euclidean distance between A and B on the knowledge map, and
coordinate difference between A and B on x-axis and y-axis in
the knowledge map (e.g., the length and the coordinate vector of
the yellow arrow in Figure 2(a)).
(iii) Exercise Titles (3 features) include edit distances of Chi-
nese and English titles between A and B, and summation of the
minimal edit distances among English words in their titles.

2.3 Relationship Prediction
Given the features and relationship labels, we formulate
the relationship prediction task as a regression analysis. In
Sec. 3, we use the collected labels to experiment on the ef-
fects of using different regression algorithms. To know the
effectiveness of our 40 dimension features, we show the im-
portance of feature categories which are determined by ran-
dom forest regressor in Figure 3.

Compared with Answering Accuracy, #User Taking Exer-
cises is a much better type of features for predicting the dif-
ficulty difference of exercises, because learners tend to skip
exercises they cannot answer as we mentioned in Sec. 1. For
the similarity and prerequisite relationships, the Locations
on the Knowledge Map are the strongest type of features for
the tasks, while the Prerequisite Knowledge Tree surpris-
ingly has relatively low feature importance. An explanation
for the observation is that instructors usually maintain sim-
ilar exercises in close distance on the knowledge map, which
are often good prerequisite candidates for each other. How-
ever, when they manually assign the prerequisite links in the
knowledge tree, the graph needs to be kept sparse to ensure
the clarity and simplicity of its layout.

Figure 3 also illustrates that the information contained in
the Exercise Titles is much more correlated with the prereq-
uisite relationships on Junyi Academy than features based
on Student Modeling and Answering Accuracy, of which the
analysis is extensively studied by many previous works such
as [3, 12, 1]. Therefore, it would be interesting to investi-
gate whether the observation is still valid in other platforms
which probably have different rules of naming titles or of
recommending exercises to learners.

3. EXPERIMENTS
Our proposed method is evaluated in the exercise system of
Junyi Academy. To prevent scarce usage log skewing the sta-

tistical distribution of our features, we exclude the exercises
which are answered by less than 100 users. The remaining
370 exercises of interest are randomly divided into two sets:
the training set containing 240 exercises, and the testing set
with 130 exercises. On average, each exercise of interest in
training set is paired with 4.7 other exercises where around
10% of exercises are randomly selected, and each one in test-
ing set is paired with 6.3 other exercises where the percent-
age of randomly selected exercises reaches around 30% to
verify our generalization capability.

To evaluate how good humans and machines perform, one
of metrics we adopt is relative squared error (RSE), which

is defined as
∑

i (ŷi−yi)
2∑

i (ȳ−yi)
2 , where ŷi and yi are our prediction

and the ground truth for a relationship of exercise pair i,
respectively, and ȳ is the mean of yi over all i. In addition,
we transform every score of exercise relationships into its
rank, and compare the similarity between the ranks from
the predicted scores and the ranks from the ground truth
scores. Then, we evaluate the predicted rank by Spearman’s
ρ and Kendall τ rank correlation coefficients.

3.1 Performance of Workers
After excluding malicious and unqualified workers, we hire
3 teachers, 8 online workers, and 43 people to work in the
lab. All workers in the lab are at least graduated from senior
high school, and most of them have a college degree. Each
exercise pair in the training set are labeled 6.6 times on
average by total 51 normal workers, and teachers are asked
to score all the exercise pairs in the testing set. For the
interest of the consistency between judgements from crowd
consensus (i.e., the average scores from all workers) and that
from experts, we also ask 2 among 3 teachers to label every
pair in the training set. The total costs of collecting above
labels are around 1,000 USD.

Manually quantifying the relationships between mathemat-
ical exercises is a demanding cognitive task, which requires
a certain level of skills in abstract reasoning. Using the av-
erage of ratings from all workers (including teachers) as our
ground truth, we first evaluate the performances of recruited
workers and whether teachers (i.e., experts) perform better
in the tasks. The results in the training set are presented in
Table 1. Note that smaller RSE and larger rank coefficients
indicate better performances. From Table 1, it is clear that
the performance of workers (including experts) measured by
RSE is significantly lower than the ones measured by rank
coefficients compared with the performances of machines.
The results illustrate that workers’ annotations often con-
tain systematic subject bias (i.e., workers tend to rate every
query higher or lower than most of other people), so aver-
aging scores rated by multiple workers is an effective way to
improve the labeling quality for the task.
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Table 1: Performance comparisons of different methods in the training set of Junyi Academy using cross
validation, and best performances among regressors are highlighted in bold font.

Similarity Difficulty Prerequisite
Methods RSE Spearman’s ρ Kendall’s τ RSE Spearman’s ρ Kendall’s τ RSE Spearman’s ρ Kendall’s τ

Humans

An Normal Worker
Range

0.193– 0.188– 0.208– 0.492– 0.063– 0.050– 0.316– 0.000– -0.007–
1.124 0.854 0.750 3.235 0.820 0.747 2.381 0.813 0.725

Mean 0.574 0.598 0.524 1.096 0.516 0.439 0.986 0.458 0.387

A Teacher
Range

0.493– 0.648– 0.560– 0.619– 0.625– 0.539– 0.858– 0.571– 0.504–
0.543 0.718 0.625 0.741 0.634 0.540 1.054 0.684 0.594

Mean 0.518 0.683 0.593 0.680 0.630 0.539 0.956 0.638 0.549

Regressors

Linear Regression 0.370 0.658 0.567 0.470 0.593 0.504 0.424 0.624 0.541
nu-SVR 0.349 0.683 0.594 0.483 0.611 0.526 0.402 0.611 0.520

Random Forest Regression 0.320 0.662 0.575 0.493 0.576 0.493 0.376 0.608 0.516
GBR 0.288 0.680 0.590 0.453 0.610 0.521 0.346 0.600 0.514

Features
(GBR)

w/o KT and KM 0.311 0.681 0.589 0.474 0.626 0.532 0.378 0.607 0.515
w/o KT, KM, and ET 0.433 0.607 0.521 0.472 0.642 0.546 0.472 0.567 0.478

w/ SM, AA, UN, and PT 0.548 0.516 0.438 0.502 0.610 0.516 0.595 0.463 0.377
w/ SM and AA 0.598 0.524 0.446 0.632 0.486 0.400 0.666 0.417 0.346

w/ KT 0.674 0.463 0.418 0.869 0.448 0.382 0.717 0.360 0.318

Table 2: Performance comparisons of different methods in the testing set of Junyi Academy. Note that the
meaning of all abbreviations is the same as Table 1.

Similarity Difficulty Prerequisite
Methods RSE Spearman’s ρ Kendall’s τ RSE Spearman’s ρ Kendall’s τ RSE Spearman’s ρ Kendall’s τ

Humans A Teacher
Range

0.200– 0.764– 0.656– 0.398– 0.732– 0.629– 0.322– 0.696– 0.583–
0.300 0.848 0.757 0.474 0.791 0.696 0.467 0.764 0.665

Mean 0.235 0.814 0.719 0.427 0.762 0.661 0.406 0.721 0.617
Regressors GBR 0.269 0.786 0.678 0.553 0.580 0.476 0.311 0.771 0.660

3.2 Prediction Accuracy
For the training set, we evaluate our prediction by 5-fold
cross validation, and Table 1 compares the resulting out-
puts generated by different regression models and differ-
ent subsets of features. The table summarizes the results
of five regression algorithms including linear regression, nu
support vector regression (nu-SVR), random forest regres-
sion, and gradient boosting regression (GBR). Compared
with teachers’ ratings in the training set, our approach can
generate competitive performances measured by rank coeffi-
cients while having lower RSE, especially for more complex
regressors such as the random forest or gradient boosting al-
gorithms. This means that after being trained by collected
labels, machines could predict exercise relationships closer
to crowd consensus than most of the individuals. Note that
to make the comparison fair, we round all of the scores pre-
dicted by machines into integers between 1–9.

In Table 1, we also provide control experiments on different
types of features using gradient boosting regression. There
might not be the knowledge tree (KT) and the knowledge
map (KM) in other interactive learning environments, so
we first present the performance without related categories
of features. The results show that removing KT and KM
can still produces competitive performances, but the per-
formance would decrease by a margin if we further remove
more features such as Exercise Titles (ET), User Answer-
ing Orders, Answering Time Duration, User Numbers (UN),
and #Problems Taken in Exercises (PT), Student Modeling
(SM), and Answering Accuracy (AA).

In order to verify our generalization ability across different
types of annotators, we train the regression models on the
training set (mostly labeled by normal workers) and evaluate
their performance on testing set (labeled by teachers). As
shown in Table 2, the performances of regression models
are still very promising. Note that the exercise pairs in the
testing set are only rated by 3 teachers whose labels have
larger impact on ground truth, so the real performances of
experts might be worse than this estimation.

4. CONCLUSIONS
The relationships of exercises are important for curriculum
arrangement of e-learning platforms. In this work, we demon-
strate that the relationships can be quantified by subjective
labeling and predicted by regression models. The experi-
ments on Junyi Academy show that the quality of predicted
relationships are competitive against teachers’ labels.
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ABSTRACT
In adaptive tutoring systems, accurately assessing the abil-
ity of a student is central to prescribing the tasks that best
facilitate learning. For the 2010 KDD Cup challenge a data
set of logs from the Cognitive Tutor system was made avail-
able, and contestants were asked to predict the correctness
of a student’s attempt to answer questions. A successful ap-
proach included a collaborative filtering system which pre-
dicted student performance on the basis of the performance
of similar students. In this paper, we present an extension of
this approach. Rather than finding similar students on the
basis of their performance on specific questions, we based
our similarity measure on the performance on questions that
require the same “knowledge components” (or skills). This
approach increases the amount of users with whom it is pos-
sible to compare performance, which in turn increases the
likelihood of finding similar students. The experiments using
our question type-based distance measure yield promising
results.

Keywords
Adaptive tutoring systems, collaborative filtering, distance
measure

1. INTRODUCTION
Education is getting more expensive, a reason for this is
that the spread of technology-based improvements in pro-
ductivity have been very limited compared to other indus-
tries. If technological advances allow the same amount of
labor to be more productive, that production will become
less expensive. Education is a sector where the amount of
output (i.e., students taught) per hour of teacher labor has
been relatively constant. This means that relative to sec-
tors with more technology-based productivity gains–most
sectors–education becomes more expensive. In economics
this is referred to as Baumol’s cost disease [3].

Assessment is an element of teaching that is amongst the

most labor intensive and thus calls most for technological
advancement. In order to give appropriate feedback, it is
necessary for a teacher to have an accurate, and up to date
picture of the ability of the students. Assessing students re-
quires attention, which naturally limits the number of stu-
dents that can be effectively supervised. If assessments could
be made more efficient, more of the teacher’s time could be
spent giving appropriate feedback. An educational technol-
ogy that is based on this idea is the adaptive tutoring sys-
tem (ATS). An ATS is a platform that delivers educational
materials (e.g. lectures, problems etc.) while assessing the
student and—as the student uses the system—adapting the
material to best suit each student. One instance of an adap-
tive tutoring system is Carnegie Learning’s Cognitive Tutor.
This system is based on the ACT-R model of cognition [1,
2]. Logs of interactions with this system for Algebra courses
were made available in the 2010 KDD Cup [7], where the
task was to predict student performance based on logs of
previous interactions. If we use performance as a proxy for
ability, a more accurate performance prediction corresponds
to a better ability assessment.

In this paper, we propose to extend the work of Töscher &
Jahrer [9] (referred to as TJ). Part of their solution was a
k-nearest neighbor system that predicted scores based on a
weighted average of the 41 most similar students. Here, we
propose using a different distance measure, by looking at
the students with highly correlated performance scores on
similar problems, rather than on identical problems.

2. ADAPTIVE TUTORING SYSTEMS
The Cognitive Tutor is an adaptive tutoring system that
provides practice for different subjects. The system assigns
specific problems for the user to rehearse on. The student’s
performance on these problems then allows the system to
suggest the appropriate level of additional problems. Fig-
ure 1 shows an example screenshot from the system.

The Cognitive Tutor has been developed on the basis of the
ACT-R model of cognition [1, 2]. There are two elements of
ACT-R that are particularly relevant to learning. The first
element is the idea that all complex knowledge is the com-
bination of smaller, discrete, pieces of knowledge, so-called
knowledge components (KCs). The second element is that
a student improves a KC by rehearsing it often and in dif-
ferent contexts. When using the Cognitive Tutor, a student
will acquire some complex knowledge by incrementally re-
hearsing each of the required KCs. Any subject for which
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Figure 1: Screen shot from Cognitive Tutor. Each
field is one step, while each column consists of three
steps that share one knowledge component.

a Cognitive Tutor is implemented, must first be subject to
a decomposition analysis, where subject experts identify all
of the required KCs, and arrange them in a hierarchy based
on the order in which they must be learned. The idea is
that, once the subject has been mapped, the student will
then be assigned problems that rehearse KCs appropriate
to the current level of the student. To assess the student’s
level, the system keeps track of whether or not the student
is able to consistently and correctly, solve problems asso-
ciated with each KC, in different contexts. For example,
being consistently able to solve 4 + 3 is not the same thing
as being consistently able to solve single digit addition. In
the course of a session, the system will thus assign several
different problems, that require the same KCs.

3. COLLABORATIVE FILTERING FOR ATS
Next, we outline the collaborative filtering approach that
was part of [9] (ranking 3rd in the competition) and our
proposed extension.

3.1 Töscher and Jahrer
Töscher and Jahrer [9] adopted a collaborative filtering solu-
tion, used in the field of recommender systems (e.g., Netflix
challenge), and adapted it to the KDD cup challenge. Con-
ceptually the challenges have similarities. The task in the
Netflix Prize competition was to recommend movies based
on ratings that different users would give different movies,
based on the other movies they had rated. The KDD Cup
task also required assigning values to different items (steps)
for different users based on their previous data. Given these
similarities, they proposed a user-based collaborative filter-
ing approach based on the k-nearest neighbor algorithm with
correlation shrinkage, described next.

The k-nearest neighbor algorithm found the 41 most similar
students for each student, based on how correlated their re-
sults were on the basis of the steps they had in common. The
prediction is then made on the basis of this group of simi-
lar students by using a weighted average (see details below).
The stronger a neighbor correlated with the student, the
more weight was given to their contribution to the predic-
tion. If the correlation with the whole group was not very
strong, the prediction would be corrected toward the stu-
dent’s own mean score. Despite creating the groups based
only on correlations in the correct first attempt rate for the
different steps, this classifier reached good performance.

The distance measure TJ used was Pearson correlation. Be-
cause there was a lot of variation in how many steps each pair
of students had in common, the correlation value was trans-
formed to reflect the support for each correlation, giving
higher value to correlations based on more common steps.
For the sake of consistency, we will use the same terminology
as TJ in the algorithm description. They use the terms stu-
dents and items to describe the main elements of the model.
The items here are the step names. The students s are in
the set S, while the steps i are in the set I. The variable to
be predicted is whether a student s answered correctly on
the first attempt at a step i, is called cis, while the predicted
value for this is ĉis.

To find the most similar students, the Pearson correlations
are calculated between all pairs of students for the steps that
both students s1 and s2 have answered. The set of steps
for s1 is Is1, so the set of common steps is Is1s2 = Is1 ∩ Is2.
Then, the Pearson correlation ρ between s1 and s2 is given
by:

ρs1s2
=

1
|Is1s2

|
∑

i∈Is1s2
(cs1i−µs1

)(cs2i−µs2
)√

1
|Is1s2 |

∑
i∈Is1s2

(cs1i−µs1 )2
√

1
|Is1s2 |

∑
i∈Is1s2

(cs2i−µs2 )2

where
µs1 = 1

|Is1s2
|
∑
i∈Is1s2

cs1i and µs2 = 1
|Is1s2

|
∑
i∈Is1s2

cs2i .

To account for the large variability in the number of common
steps, they perform a shrinkage transformation that adjusts
the correlation by scaling it to the number of common steps
| Is1s2 |, this transformation of the correlations is calculated
as:

ρ̄ =
| Is1s2 | ·ρs1s2
| Is1s2 | +α

They set the meta parameter α to a value of 12.9. In the
KDD Cup paper [9] they do not describe how they obtain
α, but in the Netflix Prize competition paper [8]–where they
use an identical shrinkage transformation–they explain that
they used a random search method in which they iterate
through parameter values selected from a normal distribu-
tion, until they find the value that minimizes error. This
method is also used to find the other meta-parameters K
(set to 41), β (set to 1.5), δ (set to 6.2) and γ (set to -1.9).
We here use the same parameters throughout the paper, and
leave parameter optimization for future work.
Finally, another transformation is performed on the corre-
lations, in order to minimize the error. The transformation
uses the sigmoid function1: σ(x) = 1

1+e(−x) The sigmoid

function is then applied to the correlations according to:

ρ̃s1s2 = σ(δ · ρ̄s1s2 + γ)

To calculate a predicted score, the scores of the 41 most
similar students (k=41) are averaged for the relevant step.
Each student’s average for the step is then weighted by how
strong the correlation is.

c̃is =

∑
s̃∈Si(s;K)ρ̃ss̃cis̃∑

s̃ ∈ Si(s;K) | ρ̃ss̃ |

where Si(s;K) is the set of nearest neighbor.
The last element of the algorithm is a final correction of the

1Note that the original paper [9] contains a typo, describing
the sigmoid function as σ(x) = 1

1−e(−x)
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prediction towards the mean score µs of student s. This is
also necessary in case there is not enough support among the
neighbors to make a prediction. The β term ensures that the
summed correlation to the neighbors is strong enough that
the prediction can be based on it, if the correlation is 0, the
prediction will simply be the average score for the student.

3.2 Extension of the approach
The system described in the following is a replication and
extension of the k-nearest neighbor model described above.
In contrast to the TJ model, we here propose to find similar-
ities based on knowledge components rather than just steps.
This idea can be seen as abstracting from concrete question
instances to basic concepts of knowledge.
The distance measure used was the correlation between stu-
dents on correct answer rates for steps sharing the same
knowledge component, rather than the same step name. The
fact that KCs each represent several step names, means that
on average, each pair of students will have more steps on
which to be compared. Referring to Figure 1, this would
correspond to comparing performance on steps in the same
column, rather than on identical steps. In the internal train-
ing set the average number of common steps between any
pair of students is 40.66, while the average number of com-
mon KCs is 52.20. Using this distance measure can be ad-
vantageous both by expanding the number of other students
with which it is possible to test correlation, and by providing
a broader base of problems from which to predict a score.
The procedure for finding the neighbors is the same as above,
only with the compared items being different. They are now
KC names rather than step names. So the knowledge com-
ponents KC are in the set KC. The predicted value for the
to be predicted CFA (cf. section 4.1) then becomes: ĉKCs.
The Pearson correlations are again calculated between all
pairs of students, this time for the steps that have KCs that
both students s1 and s2 encounter. The set of KCs for s1 is
KCs1, so the set of common steps is KCs1s2 = KCs1 ∩KCs2
The Pearson correlation ρ between s1 and s2 is given by:

ρs1s2
=

1
|KCs1s2 |

∑
i∈KCs1s2

(cs1KC
−µs1 )(cs2KC

−µs2 )√
1

|KCs1s2
|
∑

KC∈KCs1s2
(cs1KC

−µs1
)2

√
1

|KCs1s2
|
∑

i∈KCs1s2
(cs2KC

−µs2
)2

where
µs1 = 1

|KCs1s2
|
∑
KC∈KCs1s2

cs1KC and

µs2 = 1
|KCs1s2 |

∑
KC∈KCs1s2

cs2KC . The shrinkage transfor-

mation is also changed to reflect the number of steps with
common KCs:

ρ̄ =
| KCs1s2 | ·ρs1s2
| KCs1s2 | +α

The correlations again undergo the same sigmoid transfor-
mation as in the case of the stepwise algorithm:

ρ̃s1s2 = σ(δ · ρ̄s1s2 + γ)

The calculation of the predicted score is altered to use the
all of the steps of the most similar students that share a
KC with the to be predicted score, again weighted by each
neighbor s̃’s correlation to s:

c̃KCs =

∑
s̃∈SKC(s;K)ρ̃ss̃cKCs̃∑
s̃ ∈ SKC(s;K) | ρ̃ss̃ |

where SKC(s;K) is the set of nearest neighbors.

4. EXPERIMENTS
4.1 KDD Cup 2010
In 2010 a large amount of log files from the Cognitive Tu-
tor system for algebra was made available for the KDD Cup
competition held in conjunction with a data mining confer-
ence. These logs contained data on interactions for more
than 3,000 students over the course of a school year. Every
entry was an interaction of a student with the system. For
each student there was an an average of 2700 interactions.

Figure 2: Structure of data, from [5].

The information provided in the data set (see excerpt in
Figure 2) included unique identifiers for the student and the
interaction, identifiers for the task, information on the suc-
cess of the student on this interaction, as well as time-stamp
information. Every interaction was also marked with an in-
dicator for whether the user solved the step correctly at the
first attempt (CFA). The task of the competition was then
to predict the “correct first attempt” value of each student
for each step, on the basis of the data describing the previous
interactions with the system. The step on which the CFA
was to be predicted was always drawn from an interaction
occurring later than the interactions in the data set.
Since the official test set is not available, we follow standard
data splitting practices [10, 4]. In the same way that the or-
ganizers had created their test set by taking the last instance
of each problem, we created an internal test set by separat-
ing out the last two instances of each step within the training
set to create an internal test set roughly one tenth the size of
the training set. As a result of this split, any step name that
occurred fewer than three times was discarded. Ultimately,
that left an internal data-set of 6,596,059 training instances,
with 662,074 instances in the test set. This internal set then
contains 13,128 distinct steps. This also meant that some
students with very few lines were discarded, which left 3,079
students.
Due to time constraints it was only possible to test the pre-
dictions on a sample of 50 students. Results for the base-
line systems are reported on these same 50 students, which
means that they are tested on 11,888 rows in the test set
(note, results are similar to the entire data set, cf. Sec-
tion 4.3). The k-nearest neighbor systems still find the 41
most similar students among all 3,079, just like the average
based baselines are still calculated from all 3,079 students.

4.2 Evaluation Method
We here use the same evaluation measure as in the KDD

cup, i.e., root mean squared error: RMSE =

√∑
(c̃−c)2

n

where c̃ is the predicted score, c is the actual score, and n
is the number of predictions.
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Figure 3: RMSE scores on the 50 student sample
from the internal test set.

4.3 Results
Global average baseline. The first, and most basic base-
line simply predicts the same score for every problem, 0.8494.
The prediction is the average rate of correct first attempts,

from the whole training set: c̃ =
∑
ctrain
n

For first 50 students in the test set (11,888 predictions) this
gave a score of: RMSE = 0.2415. For comparison, if we
consider the entire test sets (662,074 rows), this system gave
a score of RMSE = 0.2394.

Stepwise average baseline. The second baseline was al-
ready a clear improvement. This system distinguishes be-
tween stepnames, and uses the average score for the step in

the training set to predict: c̃i =
∑
ctraini
ni

For first 50 students in the test set this gave a score of:
RMSE = 0.2244 (RMSE = 0.2255 on the full set).

k-nearest neighbor (stepwise) baseline. The third base-
line system is the replication of TJ’s nearest neighbor sys-
tem, which makes predictions by taking a weighted average
of the scores on the predicted steps for the 41 students with
the most similar results in the training set (cf. Section 3.1)
This baseline gave further improvement on the second base-
line. For the first fifty students in the development set this
gave a score of: RMSE = 0.2141.

Knowledge component-based k-nearest neighbor sys-
tem. Our expanded version of the k-nearest neighbor sys-
tem also predicts on the basis of a weighted average of the
scores for the 41 most similar students, but measures prox-
imity on common steps with the same KCs rather than on
common steps with the same names. For the first fifty stu-
dents in the development set this gave a score of: RMSE =
0.2021. The results are visualized in Figure 3.

5. RELATED WORK
The 2010 KDD cup received submissions based on a large
variety of approaches, many of the highest scoring system
being ensemble methods such as [10] (ranking first). An-
other approach which also accounts for differences between
students and problems combines HMMs with bagged deci-
sion trees, ranking fourth [6].

6. CONCLUSIONS
We propose to use the performance on similar steps instead
of performance on identical steps as a novel distance mea-
sure in a collaborative filtering approach to ATS. So far, we
only evaluated it on a reduced but reasonably large sample
(11,888), but we hypothesize that the prediction error would
remain low on the full set, particularly with optimization of
hyper-parameters. One potential argument against using
KCs is that an expert is needed to decompose the subject
material and annotate the KCs. In order to provide learning
material, it is necessary have a overview of what the mate-
rial consists of and the order in which the different elements
should be prescribed to best facilitate learning. It would be
interesting to automatically learn such a structure, as in fact
exploiting latent content is important for improved predic-
tion [4]. However, the aim of this paper is to gauge whether
exploiting KC information is sensible, and our preliminary
results show that KCs are a potentially valuable source of
information. They provide an opportunity to leverage the
higher-level structure of the material to gain information
about the learning process.
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ABSTRACT 
The aim of the present work is to evaluate differences according 
to age in digital competence, usages, and attitude towards ICT in 
a sample of 1231 online students of a distance university. To 
fulfill this goal, hypothesis testing, correlation analysis, and data 
mining techniques were performed on the basis of a 72-item 
survey. Results showed no strong differences between extreme 
groups of age. Besides,  some interesting correlations between 
variables and additional information through association rules 
were found. This study led to better knowledge of online students 
in order to improve teaching and learning processes. 

Keywords 

Association rules, ICT attitude, ICT usages, distance education, 
online education, correlation, Mann-Whitney test, digital 
competence. 

1. INTRODUCTION 
During the last decades the proportion of higher education 
students taking at least one online course has outstandingly 
increased [1]. A research line developed in the field of e-learning 
in higher education focuses on the students' access, competences, 
actions and attitudes towards digital tools and devices and on how 
those variables are related to learning and well-being. As it is 
known, distance education, fostered by ICT, increases the variety 
of learners attending higher studies, creating new challenges for 
educators and institutions [2]. Specifically there are recent studies 
on whether the students' age is an important variable. In contrast 
to the concept of “digital natives” [10] , several studies find no 
evidences for strong discontinuity of young people on the use and 
attitudes about digital technology [6] [8]. Nevertheless  
differences related to age have been found, such us a deeper 
approach to studying of older students and less time spent using 
ICT (although this last difference is more noticeable at  face-to-
face universities than at the distance ones) [5,6]. 

In this paper we try to address this problem by developing the 
following objectives: (1) Compare digital competence, uses, and 
attitude towards ICT between young and students over 50; (2) 
Analyze relationships between variables in young and  students 
over 50; (3) Obtain additional information about relationships 
between variables and group of ages by using data mining tools.  

This paper is organized as follows. The next section presents a 
brief selection of related works. The method is described in 
section three. In section four the results are exhibited. Finally, the 
section five concludes the paper with discussion and plans for 
future work.  

2. RELATED WORKS 
Recently, some research studies were proposed to address the 
usage of data mining techniques in education especially in 
association rule mining. 

Fattah et al. presented an association rule discovery model to 
investigate and analyze a university admission system database 
[3]. The model discovered the relation between students’ data and 
their application status in the university system. The information 
discovered was very important to the admissions office in the 
analyzed university because it showed how to filter the applicants 
with respect to their record in high school. 

García et al. described a data mining tool that uses association 
rule mining and collaborative filtering in order to make 
recommendations to instructors about how to improve e-learning 
courses [4]. This tool enables the sharing and scoring of rules 
discovered by other teachers in similar courses. The work showed 
and explained some examples of rules discovered in an adaptive 
web-based course. 

Romero et al. explored the extraction of rare association rules 
when gathering student usage data from a Moodle system [11]. 
They showed how some specific algorithms, such as Apriori-
Inverse and Apriori-Rare, are better at discovering rare-
association rules than other non-specific algorithms, such as 
Apriori-Frequent and Apriori-Infrequent. Finally, they showed 
how the rules discovered by rare association rule mining 
algorithms can help the instructor to detect infrequent student 
behavior/activities in an e-learning environment such as Moodle. 

Merceron and Yacef gave an interpretation of two measures of 
interest  through association rules: cosine and added value [9]. In 
addition, they presented a case study that depicts a standard 
situation: a LMS that provides additional resources for students  
as a complement to the face-to-face teaching context. An 
important conclusion of this work is that common LMS are far 
from being data mining friendly. Thus, LMS should be enhanced 
with a special module with good facilities for exploring data. 

Kumar and Chadha [7] used association rules mining in 
discovering the factors that affect assessment in Haryana 
University (India). They analyzed data for some courses taught in 
order to measure the students’ performance based on factors such 
as instructor behavior, curriculum design, time schedule and 
students’ interests. 

3. METHOD 
3.1  Participants, variables and 
instruments 
A total of 1231 students participated voluntarily (with informed 
consent) in this study, 600 females and 631 males. They were all 
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students recruited from Madrid Open University in Spain. 63.44% 
of the sample  were studying a Bachelor's degree and 36.56% 
were Master's students . 40.76% of the students worked in ICT 
related areas and 57.66% had completed undergraduate studies 
previously.  All the participants were between 18 and 69 years old 
(mean= 36.01, SD=9.59) and 110 are older than 50  (age 50+ 
group). 

A survey of 72 items was designed to test students' self-reported 
ICT abilities, uses and attitudes. This survey is divided into four 
parts: demographical data and academic performance, actions 
with digital devices (computers, Smartphones, and other digital 
devices), frequencies of use of ICT tools (digital devices, 
communications, Moodle, file managing, and other tools) and 
attitude towards ICT in the process of learning. 

(1) Demographical data and academic performance. Students 
were asked about: age (integer), gender (1=female, 2=male),  
grade (from 0 to 10), study area (58 values), first enrollment in 
UDIMA (from 2009-10 to 2014-15), previous degrees, if they 
work in fields related to ICT and average grade on academic 
record (retrieved using student identity). 

(2) Actions with digital devices. It is composed  of 20 items 
distributed on three scales: Actions with Other Digital Devices 
(AODD-4 items), Actions with Computers (AC-8 items) and 
Actions with Smartphones and Tablets (AST-8 items). The format 
used is 4-point Likert type, from 1 (I cannot do it) to 4 (I can do it 
and explain it to others). Descriptive results on this block of the 
instrument are: AODD (min=4; max=16; mean=15.02; SD=1.75); 
AC (min=10; max=32; mean=28.65; SD=3.96); AST (min=11; 
max=32; mean=29.04; SD=3.76). 

(3) Frequencies of use of ICT tools. It is composed of 25 items 
distributed on five parts: a)  Other Digital  Devices (FODD-5 
items), b) Communications (FC-5 items), c) Moodle (FM-7 items) 
d) File Management (FFM-3 items), and e) Other Tools (FOT-4 
items). The format used is 4-point Likert type, measuring 
frequency of use, from 1 (I do not use/do not know) to 4 (Very 
often). Descriptive results on this block of the instrument are: 
FDD (min=5; max=20; mean=14.97; SD=3.01); FC (min=7; 
max=24; mean=17; SD=3.69); FM (min=7; max=28; 
mean=19.48; SD=4.23), FFM (min=3; max=12; mean=6.32; 
SD=2.33); FOT (min=4; max=16; mean=6.69; SD=2.46). 

(4) Attitude towards ICT in the learning process. It is composed  
of 24 items distributed on three scales:  affective, cognitive and 
behavioral.  The format used is 5-point Likert type from 1 (totally 
disagree) to 5 (totally agree). Two items on each dimension are 
inversely rated. The higher test score indicates greater  favorable 
attitude towards the incorporation of ICT in the learning process.  
Descriptive results shows:  min=29; max=120; mean=97.79; 
SD=13.49. Cronbach Alpha (considering all 24 items of attitude) 
was 0.89 indicating the high reliability of the test. 

3.2 Data analysis 
Data analysis included hypothesis testing, correlation and data 
mining analysis. These are detailed below. 

3.2.1 Hypothesis testing and correlation 
a) Hypothesis testing. Wilcoxon and Mann-Whitney tests were 
made to test the hypothesis about differences between extreme 
ages (24- and 50+).  

b) Correlation. Pearson correlation matrix between continuous 
variables was made in order to evaluate possible associations.  

3.2.2 Data Mining Techniques 
To complement and provide additional information we used four 
data mining techniques: OneR, Decision trees (J48),  Naïve Bayes 
and association rules. In this stage it is important to perform the 
preprocessing phase [12]. 

a) Preprocessing phase. It is important to note that in this analysis 
we utilized the whole data. In addition, the items of "Frequencies 
of use ICT tools" were grouped in four nominal variables: FODD 
(it contains the sum of five items of "Other Digital Devices"), FC 
(sum of five items of "Communications"), FM (sum of seven 
items of "Moodle"), FFM (sum of three items of "File 
Management"), FOT (sum of 4 items of Other tools). In the same 
way, the items of "Attitude towards ICT in the learning process" 
were grouped in the ictAttitude variable. Classification techniques 
works better with nominal variables. Therefore, age and 
ictAttitude were discretized to ictAttitude3groups and age4groups 
respectively. The ictAttitude variable is a continuous variable 
ranged from 29 to 120. We discretized this variable in three 
nominal values according to its 33 percentile, 66 percentile, and 
99 percentile. Regarding to age variable, it ranged from 18 to 69. 
This variable was discretized in four values according to its four 
quartiles. This new variable is called ictAttitude3groups. 

b) Selection of variables. In this phase we only use 14 variables: 
codDegree, gender, firstEnrollment, gradeRound, AODD, AC, 
AST, FODD, FC, FM, FFM, FOT, age4groups, and  
ictAttitude3groups. In addition, we utilized the WraperSubsetEval 
method provided by Weka [13]. This metaselection method 
selects the most appropriate variables for a data mining technique. 
This method receives two variables: the selection method and the 
search method. Since OneR, J48, and Naïve Bayes are 
classification techniques we indicated to this method to use J48 
for selection method (selection mode: 10-fold cross-validation). 
Also, BestFirst forward method  was used for searching method. 
As a result 8 variables were selected: gender, AODD, AC, FM, 
FFM, FOT, age4groups, and ictAttitude3groups. 

c) Application of techniques. In this phase we utilized three 
classification techniques and association rules. The classification 
techniques utilized were: OneR, J48, and Naïve Bayes. We utilized 
for these techniques the 8 variables listed above (class variable: 
ictAttitude3groups). In order to select the most appropriate 
technique we calculated the accuracy (number of correctly classify 
instances) of each technique. As the size of data was enough to 
apply the split method, which divides the sample in two parts: 
training and testing data, we utilized it instead of the cross-
validation method. Moreover, we utilized 80% of data for training 
and 20% for testing. It is well known that  if the data size is large 
enough both methods of dividing the data should give similar 
accuracies. Concerning association rules we utilized the Apriori 
algorithm with confidence=0.9 and minimum support=0.1.  

4. RESULTS 
4.1  Hypothesis testing and correlations 
a) Hypothesis testing.  First, assumption evaluation was made in 
order to decide statistical techniques to compare students of 
extreme ages: above 50 years (50+), and below 24 years (24-). 
Levene’s test shows a lack of homoscedasticity between groups in 
the variables related with actions: L=20.068, (1, 125), p<.001 for 
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AODD; L=19.177, (1, 125), p<.001 for AC and L=58.028, (1, 
125), p<.001for FDD.  The Shapiro-Wilk test shows a lack of 
normality in all the variables except FC. Due to failure to meet 
the assumptions we decided to use nonparametric statistic (Mann-
Whitney test) to compare both groups. As it can be seen in Table 1, 
significant differences between both groups (50+ and 24-) were 
found on actions with other digital devices, actions with Smartphones 
and tablets, and frequency of use of communication tools. The sum 
of ranks (see Table 1) indicated high scores on AODD, AST and FC 
in the group of age 24-. 

b) Correlation. The Pearson correlation matrix between 
continuous variables was calculated for both groups. In the group 
of age 50+ all the action variables correlated significantly and 
positively with frequency variables and attitude towards ICT: the 
lowest positive and significantly correlation was r=.111(AC-FC) 
and the highest r=.724 (AC-AODD), this result was expected 
because the more digital competence self-perceived, the more 
frequent use of ICT tools and the more positive attitude towards 
ICT use in the learning process. On the other hand, AODD, AST 
and FC correlated negatively with age (r=-.148, p<.01; r=-.208, 
p<.01 and r=-.069, p<.05 respectively) indicating as the age 
increased, the self-perceived competence in actions with digital 
devices and Smartphones decreased and the use of 
communication tools was less frequent. The average grade 
correlated positively with self-perceived competence in actions 
with computers (r=.136, p<.01). And finally, the number of years 
studying  through distance learning correlated with AC (r=.087, 
p<.01), FDD (r=.068, p<.05), FM (r=.083, p<.01), attitude 
(r=.128, p<.01) and age (r=.278, p<.01) indicating that the more 
years of experience studying online, the higher self-perceived 
competence of actions with computers and higher frequency of 
use of digital devices, Moodle, and better attitude toward ICT. 

In the group of young students we found less significant 
correlations, as the number of years studying online did not 
correlate with any variable, the average grade only correlate 
positively  with AC (r=.197, p<.01), the age correlated inversely 
with AST (r=-.226, p<.05) and FDD (r=-.307, p<.01). The 
attitude toward ICT correlated positively with all the actions 
(r=.205, p<.01 for AODD; r=.221, p<.05 for AC and r=.305, 
p<.01 for AST) and also with FM (r=.300, p<.01). Finally, the 
scales of frequencies correlated positively with each other but not 
with the actions scales. 

Table 1. Mann-Whitney U, Wilcoxon W, Z and significance 

 ADD AST FC 

U 5098.500 3429.500 5528.500 

W 10454.500 8785.500 10781.500 

Z -4.082 -6.895 -2.438 

Sig.  .000 .000 .015 

Age Rank sum  Rank sum Rank sum  

24- 18225.5 17170.5 19894.5 

50+ 10454.5 11509.5 8785.5 

4.2 Data mining techniques 
4.2.1 Classification techniques 
The accuracies of applying the OneR, J48 and Naïve Bayes 
technique are as follows: 41.9%, 43.8%, and 42.9%, respectively. 

For example, J48 classifies correctly in 43.8% of the instances. It 
is clear that neither of the three techniques  has an accuracy 
greater than 44%. As none of these techniques obtained reliable 
results, we applied the association rules technique. 

4.2.2 Association rules  
This trial consisted of using 14 variables with the Apriori 
algorithm. It is important to highlight that the Apriori algorithm 
only works with nominal variables. Therefore, the grade variable 
was removed from the data. The parameters for this algorithm 
were: minimum support=0.1; confidence=0.9; number of 
rules=20; instances=1231; attributes=(codDegree, gender, 
firstEnrollment, AODD, AC, AST, FODD, FC, FM, FFM, FOT, 
age4groups, ictAttitude3groups). 

The result of applying this algorithm is presented in Table 2. It is 
shown that the Apriori algorithm selected 16 rules. Thus, it is 
shown that AR6 indicates that students with the best score in 
actions with computers and best ICT attitude will have the best 
score in actions with other digital devices. The AR7 and AR14 
rules indicate that both genders will have the best score in 
"actions with other digital devices" if they have the best score in 
"actions with computers". Both association rules are redundant, 
since this fact is indicated in AR11. The AR9 contains the 
variable age. It indicates that the students between second and 
third quartile of age with the best score in "actions with 
computers" are experts managing other digital devices. 

Regarding the other association rules interesting relations between 
several variables were found. The first rule relates actions with 
computers, actions with Smartphones, and actions with other 
digital devices. Thus, it means that students with the best ICT 
attitude who demonstrate a high level of actions with computers 
and Smartphones,  will have a high level of actions with other 
digital devices. The AR2 rule shows a similar relation, but only 
for male students. The AR3 is informed about a general relation 
between actions with computers, actions with Smartphones, and 
actions with other digital devices. A value of 32 indicates a high 
level of actions with computers and Smartphones, and a value of 
16 is also a high level of actions with other digital devices. Thus, 
a student with a high level of actions with computers and 
Smartphones, he/she will have a high level of actions with other 
digital devices. Interesting information is revealed in the AR4 
rule, since it relates the first enrollment, action with computers, 
Smartphones, and with other digital devices. Thus, the students of 
the 2014-15 year show a high level of action with computers and 
Smartphones, and also with other digital devices. This association 
rule is similar to the AR10 and AR15, but with less information. 
The rules AR5 and AR6 show that students with a high ICT 
attitude, and a high value in actions with computers or 
Smartphones, will have a high level in actions with other digital 
devices. Finally, the AR8 and AR16 rules relate the gender, action 
with computers and with other digital devices. Consequently, 
female and male students report the same abilities in actions with 
Smartphones and other digital devices. 

5. CONCLUSIONS 
The present study gathered a large sample composed of 1231 
online students in a distance university with a range of age from 
18 to 69 years. Our results agree to a great extent with other 
related studies [5][6]. In fact, we did not find enough evidence of 
strong differences among extreme groups of age, although results 
showed slight differences in variables related with the frequency 
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of use and perceived competence with Smartphones and 
communication tools.  

Another interesting conclusion is that attitude towards ICT did not 
correlate inversely with age, on the contrary, students aged 50+ 
exhibited positive attitudes towards the implementation of ICT for 
the learning process. These conclusions lead to better knowledge 
about students attending online higher education. Therefore, these 
results should provide improvements in the methodology of the e-
Learning courses and foster the utilization of communication tools 
(less utilized  by 50+ students).  

This work also showed that data mining techniques can provide 
complementary information to traditional analysis methods. 
Although classification techniques did not provide reliable results, 
since its accuracy was less than 44%, the association rules 
technique provided deeper information. In fact, the Apriori 
algorithm obtained 16 association rules. These association rules 
showed relationships between the following variables: actions 
with computers, Smartphones and other digital devices, gender, 
ITC attitude, and first enrollment in UDIMA. This information 
was not provided by the hypothesis testing, therefore, we have 
demonstrated that association rules are appropriate to analyze 
these data.  

For future work it will be appropriate to analyze other parameters 
of the Apriori algorithm that could provide rules with more 
information. For instance, to test and evaluate other selection 
methods based on Lift or Leverage is an interesting future line of 
research [9].    

Table 2. Best rules of the Apriori algorithm 

Rule  Cov. Conf. 

AR1 AC=32 AST=32 
ictAttitude3groups=3 ==> 
AODD=16 

137 1 

AR2 gender=2 AC=32 AST=32 ==> 
AODD=16 

221 0.99 

AR3 AC=32 AST=32 ==> AODD=16 307 0.99 

AR4 firstEnrollment=2014-15 AC=32 
AST=32 ==> AODD=16 

134 0.99 

AR5 AST=32 ictAttitude3groups=3 ==> 
AODD=16   

167 0.98 

AR6 AC=32 ictAttitude3groups=3 ==> 
AODD=16 

187 0.97 

AR7 gender=1 AC=32 ==> AODD=16 143 0.97 

AR8 gender=2 AST=32 ==> AODD=16  264 0.97 

AR9 AC=32 age4groups=3 ==> 
AODD=16 

123 0.96 

AR10 firstEnrollment=2014-15 AC=32 
==> AODD=16 

191 0.96 

AR11 AC=32 ==> AODD=16 426 0.96 

AR12 AST=32 ==> AODD=16 390 0.95 

AR13 gender=2 firstEnrollment=2014-15 
AC=32 ==> AODD=16 

126 0.95 

AR14 gender=2 AC=32 ==> AODD=16 283 0.95 

AR15 firstEnrollment=2014-15 AST=32 
==> AODD=16 

182 0.93 

AR16 gender=1 AST=32 ==> AODD=16 126 0.91 
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ABSTRACT
Revision is a core writing skill that presents challenges to
both novice and expert writers. Within the context of peer
review, peer feedback has the potential to provide rich guid-
ance for revision, especially when making content-level changes.
However, authors must review and evaluate each piece of
feedback for meaningful critiques that can be applied to fur-
ther drafts. In this work, we analyzed several factors that
influenced students’ decisions to fix or ignore comments they
received. We found that feedback on content dimensions, as
well as critical remarks by both the reviewers, and by the au-
thors regarding papers they reviewed, were correlated with
the amount of revisions made between drafts.

Keywords
peer review, revision, writing instruction

1. INTRODUCTION
Revision has long been seen as one of the cornerstones of
effective writing [6]. Practicing revision has been shown to
not only improve the produced writing, but also help on
first drafts of future writings [9]. One of the discriminators
between expert and novice writers is how they approach re-
vision. While both groups often make many surface-level
edits, such as spelling, grammar, and stylistic revisions [4,
14, 17, 2], expert writers often make a higher proportion of
content-level edits than do novices [3].

By using a peer-review approach, students were able to em-
ploy more strategic revision strategies given peer feedback
[10], make fewer surface-level changes [15], and add more de-
tails in their writing [12], especially when peers provide jus-
tification for their feedback [7]. Once feedback is received,
it is not always implemented in future drafts [5, 2]. Some-
times students indicate an intention to implement meaning-
ful changes but do not follow through with the intent [4].
Checklists [16] and revision memos [1] have been used to fo-
cus students’ revisions on important aspects of their writing.

Within peer-review, it has not been clear how often students
forget about the feedback received during revision, rather
than make a choice to disregard the feedback. An accurate
model of revision behavior could allow a teacher or intelli-
gent system to intervene for students who require additional
support. Diagnostic information could also be presented to
the teacher as to what kinds of comments are being made,
how they are being received, and what sorts of revisions to
expect in future drafts. An effective model could also be
used to provide hints to students, about how their feedback
may be received as reviewers and which comments provide
meaningful feedback for revision as an author.

In this work, we investigated this decision within a web-
based peer-review application. We present a revision plan-
ning application designed to scaffold the process of evaluat-
ing feedback received in the peer-review process. We ana-
lyzed their responses within the system in order to better
understand why some comments may be addressed while
others are ignored. Critical comments about the content of
the paper, rather than the surface aspects, were more likely
to be included in their revision plan, and were more highly
correlated with changes in the second draft.

2. REVISION PLANNING CORPUS
Web-based, computer-supported peer review has been shown
to be an effective tool for improving students’ writing skills.
Students still need support, however, in organizing the re-
views they receive and planning how to revise their own
papers. This paper describes a revision environment that
helps students to cluster and prioritize reviewers’ sugges-
tions, develop a plan for revision their papers, and make
note of lessons learned about writing for future use. We re-
port here about students’ experiences in using the tool in an
undergraduate Cognitive Psychology course.

2.1 SWoRD Peer Review
Scaffolded Writing and Rewriting in the Disciplines (SWoRD)
is a web-based reciprocal peer review system. Over the past
12 years, it has been used by over thirty-five thousand stu-
dents across grade levels and across a variety of academic
disciplines. The peer review process within SWoRD takes
place in three phases: An Authoring phase, a Review phase,
and a Revision phase. In the first phase, students submit
a response to an instructor-provided writing prompt. Stu-
dents may either enter text into the web interface, or upload
a pre-existing document in order to submit their assign-
ments. During the Review phase, students are presented
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with the grading rubric and comment prompts the instruc-
tor has provided along with the submitted document. The
student reads the document and provides written feedback
for each evaluative dimension, as well as numerical scores on
a seven-point rating scale. In the final phase, students re-
ceive the feedback and scores generated by their peers. The
process is then repeated for the second draft.

2.2 Revision Planning
During the course of peer review, students have the oppor-
tunity to learn from both giving and receiving feedback.
During the review process, students are asked to critically
evaluate a peer’s submission on the same rubric with which
their own writing will be judged. While reviewing, students
may notice aspects of their peers’ submissions that they can
incorporate into their own work. Many revisions occurred
when the student both recognized it in a peer’s work, as well
as received feedback on the same topic from their peers [13].

To support this process, the Revision Planning system has
two components. The Lessons Learned page, shown in Fig-
ure 1, is available to the student during the reviewing pro-
cess. It encourages them to make observations on the papers
they are reading, and how that may be applied to their own
document. They are able to identify the observation as a
good idea that they’d like to consider for their revisions, or
a problem that they would like to avoid.

The Revision Planner, shown in Figure 2, allows students to
consider how they would address each comment they receive
from their peers. For each comment, they can elect to ignore
it or fix it. If they choose to fix it, they can then assign a
priority and make notes on what the revision will be. If
they choose to ignore it, they can select a reason from a
drop-down menu, or add text to explain why it is being
ignored. Both the Revision Planner and the Lessons Learned
are visible during revision. The system can also generate
checklist that the students can use during their revisions.

2.3 Data Collection
The data were collected from 75 college students in an in-
troductory Cognitive Psychology course, all of whom had
completed a required writing seminar prior to enrollment.
The students were asked to write a 1,000 word article im-
itating a newspaper style that connects topics discussed in
class with their everyday lives. The rubric included several
dimensions regarding the communicativeness of the article,
such as its interestingness, word choice, and quality of writ-
ing, and several about the course content, such as the rele-
vance and accuracy of the concepts introduced in the course.
Of the 75 students, 60 completed the Revision Plan, and 44
completed the Lessons Learned. A second draft was submit-
ted, and subjected to the same peer review process, without
additional revision planning support.

Each student was asked to review four peer submissions dur-
ing the revision phase. In addition, students were allowed
to perform bonus reviewing for extra credit. For each re-
view (n=297), we collected 10 numerical scores, which were
separated among the five evaluation dimensions. Students
were required to write at least one textual comment for each
dimension, though they could provide up to five different
textual comments for a single dimension. For each textual

comment the student received (n=1822), we recorded the
decision to “Fix” or “Ignore” the comment, a discretized rea-
son for marking the comment as “Ignore” when provided, as
well as the text of the intended revision and priority.

3. REVISION PLANNING BEHAVIOR
Using the data described above, we investigated four main
research questions: (1) what factors influenced the students’
decision to fix or ignore a comment that they received, (2)
what were the reasons that students gave for ignoring a com-
ment, (3) how is the process of revision planning within
Anonymous related to the amount of revisions between the
first and second drafts, and (4) how are the observations
made on the Lessons Learned page related to the amount of
revisions between the first and second drafts.

3.1 Fix and Ignore Decisions
For each comment, we calculated a score given by the re-
viewer by averaging all scores for the comment’s dimension.
If there were multiple comments within the same dimen-
sion, they received the same score. The score serves as a
proxy for how critical a comment is. A dimension type (con-
tent or communication) was derived by grouping the three
communication-related dimensions together, and grouping
the other two dimensions as content. Prior work [17] has
indicated that content feedback is more likely to result in
content revisions. The length of the comment was computed
in number of characters, following the intuition that longer
comments are more likely to contain useful feedback.

On average, students elected to mark only 44% of their com-
ments as“Fix”(sd=0.21). We performed a logistic regression
analysis, shown in Table 1, to determine which factors in-
fluenced the decision to fix or ignore a comment. All three
factors were shown to have a significant main effect, and
there was a marginally significant interaction between the
score and the dimension type.

Table 1: Logistic Regression for Fix Decisions
Variable Coefficient z-Value p-Value
Score 0.74 -5.61 < 0.001
Content Dimension 3.71 238 0.018
Comment Length 1.00 9.73 < 0.001
Score x Dimension 0.85 -1.74 0.082

On average, students elected to fix approximately 40% of
their comments in the Communication dimensions, com-
pared to 48% of their comments in the Content dimen-
sions. Comments marked as “Fix” were on average longer
(mean=283) than those marked as “Ignore” (mean = 188).
Figure 3 shows the proportion of comments fixed by score
and the type of dimension.

3.2 Ignore Reasons
There were seven categories of reasons students could se-
lect when they ignored a comment: no critique was given,
the student disagreed with the comment, the comment was
already mentioned elsewhere, the comment is only praise,
the comment is only a summary, the comment was confus-
ing, and other. Figure 4 shows the distribution of categories
that were provided if any was given. Since the “Summary”,
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Figure 1: Lessons Learned Page

Figure 2: Revision Planning interface

Figure 3: Percent of Comments marked as Fix by
Score and Dimension Type

“Confusing”, and “Other” categories occurred relatively in-
frequently, we omitted them from further analyses.

Figure 4: Distribution of Ignore Reasons

Table 2 shows the results of a multinomial logistic regres-
sion analysis, relative to the “Praise” category, to determine
which factors influenced the category. There was a signifi-
cant effect of the score for distinguishing all categories. In
addition, there was a significant effect of dimension type for
the “Mentioned Elsewhere” category, and a significant effect
for the comment length on both the“Disagree”category, and
the “Mentioned Elsewhere” category.

Table 2: Logistic Regression for Ignore Reasons
Reason Content Score Comment Length
No Critique 0.62 0.66 ** 0.99
Disagree 1.38 0.35 *** 1.01 ***
Elsewhere 0.46 * 0.32 *** 1.01 ***

3.3 Revision Planning and Revision
In order to measure changes in the drafts, all submissions
were first converted to a plain text format. Both drafts
were then segmented using the Stanford Parser [11] and com-
pared using CompareSuite, a software package for analyzing
text documents. Edits were compared at the sentence level
by calculating how many sentences were added, deleted, or
modified [8]. These numbers were then compared against
the number of sentences in the first draft to calculate the
amount of change between drafts. There was a weak cor-
relation (r=0.20) between the proportion of comments la-
beled as “Fix”, and the amount changed. However, there
was a moderate relationship with the proportion of Content
comments labeled as “Fix” (r=0.37), while there was no re-
lationship (r=0.10) with the proportion of Communication
comments labeled as “Fix”.

3.4 Lessons Learned and Revision
For students who completed the lessons learned (n=44),
we also investigated how the different types of observations
effected the revisions. Students made an average of 2.8
(sd=1.96) observations (See Figure 5). Pearson correlations
showed that neither the number of good observations (r=-
0.14) nor the total number of observations (r=-0.039) was
correlated with the amount of revisions. However, the num-
ber of critical observations was moderately correlated with
the amount of revision (r=0.31).

4. CONCLUSIONS AND FUTURE WORK
In this work, we analyzed several factors that influenced
students’ decisions to fix or ignore a comment they received.
The content dimensions offered the most insight into the
revision behavior of the students. Content comments were
more likely to be marked as a comment to fix, and when they
were fixed were more highly correlated with the amount of
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Figure 5: Distribution of Lessons Learned

revision done between drafts. While we did not analyze the
comments made by the students, the students were specifi-
cally instructed to give feedback on the breadth and accu-
racy of the domain content in the content dimensions. In
addition, lower scoring comments were more likely to be
marked as fix or marked as “Mentioned Elsewhere”, espe-
cially in the content dimensions. This latter selection in-
dicates that the students intended to fix these issues, but
had recognized them either through their own experience or
through other comments, and were therefore more willing
to ignore the specific feedback in those comments. Com-
ments that were highly scored were more likely to be praise
or otherwise lack critique. Relatively few comments were
ignored because the students disagreed with the feedback
received, and those tended to be at the extremes of the
scores. The fact that few comments were ignored due to
a disagreement with the critique, and the fact that critical
observations made from other peers’ submissions were more
highly correlated with the amount of revision between drafts
suggests that students benefit more from critical analysis of
the papers they have both read and written.

One of the discriminating features between novice and ex-
pert writers is how they approach revision, particularly in
terms of how often they revise for deeper meaning. While
our results show correlations to the amount of revision done,
further analysis will need to be done regarding the quality of
the revisions. While comment length was surprisingly infor-
mative, it is an extremely shallow measure of the comment
text. There are also many other factors that could inform
the students’ decisions on how to approach the comments
they get, such as the helpfulness rating, and the relative
strength of the writing skills between the author and re-
viewer. In terms of student revision process, a more fine-
grained analysis of whether students fixed the comments
they said they would, could be instrumental in supporting
the effectiveness of the scaffolding mechanisms. It was also
somewhat surprising that critical observations of peers’ pa-
pers in the Lessons Learned were also correlated with more
revision. One question raised by this observation is whether
students learn more from giving critical feedback of peers’
work than they do from giving positive feedback.

5. ACKNOWLEDGMENTS
This work is funded by the Institute of Education Sciences,
under grant R305A120370.

6. REFERENCES
[1] Bardine, B. A., and Fulton, A. Analyzing the

Benefits of Revision Memos during the Writing and
Revision Process. The Clearing House, 81 (4).
149–154.

[2] Calvo, R. A., Aditomo, A., Southavilay, V., and
Yacef, K. The use of text and process mining
techniques to study the impact of feedback on
students’ writing processes. International Conference
of the Learning Sciences, 1 (2012), 416–423.

[3] Fitzgerald, J. Research on Revision in Writing.
Review of Educational Research, 57 (4). 481–506.

[4] Fitzgerald, J., and Markham, L. R. Teaching
children about revision in writing. Cognition Instruct,
4 (1). 3–24.

[5] Fitzgerald, J., and Stamm, C. Effects of Group
Conferences on First Graders’ Revision in Writing.
Writ Commun, 7 (1). 96–135.

[6] Flower, L., and Hayes, J. A cognitive process
theory of writing. Coll Compos Commun, 32 (4).
365–387.

[7] Gielen, S., Peeters, E., Dochy, F., Onghena, P.,
and Struyven, K. Improving the effectiveness of
peer feedback for learning. Lear Instr, 20 (4). 304–315.

[8] Hashemi, H. B., and Schunn, C. D. A Tool for
Summarizing Students’ Changes across Drafts. In
Intelligent Tutoring Systems (Honolulu, HI, 2014),
Springer International Publishing, pp. 678–682.

[9] Hillocks, G. J. The Interaction of Instruction,
Teacher Comment, and Revision in Teaching the
Composing Process. Res Teach Engl, 16 (3). 261–278.

[10] Keen, J. Strategic revisions in the writing of Year 7
students in the UK. The Curriculum Journal, 21 (3).
255–280.

[11] Manning, C. D., Surdeanu, M., Bauer, J.,
Finkel, J., Bethard, S. J., and McClosky, D.
The Stanford CoreNLP Natural Language Processing
Toolkit. In Proceedings of the Association for
Computational Linguistics: Systems Demonstrations
(2014), pp. 55–60.

[12] Morris Kindzierski, C. M. ”I Like It the Way It
Is!”: Peer-Revision Writing Strategies for Students
With Emotional and Behavioral Disorders. Preventing
School Failure: Alternative Education for Children and
Youth, 54 (1). 51–59.

[13] Patchen, M. Peer Review of Writing: Learning From
Revision Using Peer Feedback and Reviewing Peers’
Text. Doctoral dissertation, University of Pittsburgh,
2011.

[14] Patthey-chavez, G. G., Matsumura, L. C., and
Valdés, R. Investigating the process approach middle
to writing instruction in urban schools. Journal of
Adolescent & Adult Literacy, 47 (6). 462–476.

[15] Peterson, S. Peer Response and Students’ Revisions
of their Narrative Writing. Educational Studies in
language and Literature, 3 . 239–272.

[16] Smede, S. D. Interior Design: Revision as Focus. Engl
J, 90 (1). 117–121.

[17] Yagelski, R. P. The role of classroom context in the
revision strategies of student writers. Res Teach of
Engl, 29, (2). 216–238.

Proceedings of the 8th International Conference on Educational Data Mining 547



Convergent Validity of a Student Model:
Recent-Performance Factors Analysis

Ilya Goldin
Center for Digital Data, Analytics,

and Adaptive Learning
Pearson

ilya.goldin@pearson.com

April Galyardt
University of Georgia

110 Carlton St.
Athens, GA

galyardt@uga.edu

ABSTRACT
Models of student performance can incorporate a skill de-
composition that lists the skills that each activity requires.
A good model must be sensitive to improvements in skill de-
composition. We validate the Recent-Performance Factors
Analysis model of student performance by checking its sen-
sitivity to the skill decomposition. We use a dataset from
a tutoring system where the skill model has been improved
by the Learning Factors Analysis algorithm for skill model
refinement and by expert validation. We find that R-PFA re-
flects improvements in the skill model, providing evidence of
convergent validity of R-PFA. We argue that R-PFA may be
sensible as a predictive model in Learning Factors Analysis
because of its convergent validity and because the R predic-
tor of R-PFA represents mastery-aligned learning curves.

1. INTRODUCTION
Predictive models of student performance often incorporate
a skill model. For example, the Additive Factors Model
[3] embeds a Q-matrix [11, 1] to relate prior practice on
a skill to subsequent practice on the same skill. Bayesian
Knowledge Tracing [4] similarly uses a skill model in that
all BKT parameters are specific to a skill.

A skill model annotates instructional activities in terms of
the skills that the activities require. This tagging can be
wrong, or at least suboptimal, degrading instruction in sev-
eral ways. For instance, if the tagging fails to distinguish
two skills, it will treat all assessments of the two separate
skills as assessments of one combined skill. In fact, because
a student may have differential mastery of the two skills, the
combined assessment may cause a tutoring system to call for
extraneous practice for one skill, and insufficient practice for
another. It follows that the refinement of a skill tagging of
activities can advance instruction and assessment.

When a predictive model of student performance incorpo-
rates a skill model, we can validate the performance model
by seeing if it is sensitive to changes in the skill model. A

learning curve represents the “power relationship between
the error rate of performance and the amount of practice”
[3], plotting average error across students at every practice
opportunity. If the curve treats a whole curriculum as one
skill, its slope will be flat, because there will be both drops
and spikes in the error rates as students learn one part of
the curriculum after another. If we plot separate curves for
distinct skills, their slopes will not be flat, corresponding
to error rates dropping as students learn. This is the intu-
ition for the Learning Factors Analysis algorithm [3], which
searches the space of possible refinements to a skill model.

Prior study of representations of recent student performance,
including box and exponential kernels with a range of band-
widths, produced the Recent-Performance Factors Analysis
(R-PFA) model [6, 5]. In the recency representations with
the highest predictive accuracy, the weight given to the each
observation decreased with the age of the observation, plac-
ing ∼ 50% of weight on the last 2 attempts, and ∼ 80% on
the last 5. This optimal weighting was consistent across real
data and a variety of simulated student behaviors.

The current work validates R-PFA by checking whether its
fit to data is improved by sensible changes to the skill tagging
in a dataset. The following section describes a dataset and
its multiple skill models, and presents R-PFA and several
comparison models. The subsequent section reports that
R-PFA and the other models are all sensitive to improved
skill tagging, but R-PFA has the highest predictive accuracy
among the models. Finally, we discuss how R-PFA may be
interpreted as representing mastery-aligned learning curves
[8], and R-PFA may fit within the Learning Factors Analysis
algorithm for skill model refinement.

2. METHODS
We evaluate R-PFA on a dataset in which the skill tagging
has been well-studied and revised [7], originating from Cog-
nitive Tutor Geometry by Carnegie Learning [10, 2]. This
tests R-PFA in two ways; first, how will R-PFA perform in
terms of predictive accuracy? Second, does R-PFA agree
with prior refinement of the skill model in this dataset [7]?

This Geometry dataset has three skill models that vary in
how they treat “forward” and “backward” computations of
area of geometric figures [7]. The original tagging (called
Merged) separates area computation by geometric shape
(square, circle, etc.), but merges together forward and back-
ward computation. The Circle-Square tagging has separate
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skills for the forward and backward computations for circles
and squares. The Distinct tagging has separate forward and
backward skills for each of many shapes. The geometry data
set contains 38,426 unique actions by 82 students. The to-
tal number of skills in each tagging is 56 in Merged, 58 in
Circle-Square, and 66 in Distinct.

We compare R-PFA to baseline models Item Response The-
ory 1PL, Additive Factors Model [3] and Performance Fac-
tors Analysis [9] (Eqs. 1-4). All student and skill intercepts
and slopes are “random”, that is, drawn from a common
distribution. Treating skill parameters as random “borrows
strength” for their estimation by proposing that infrequently
practiced skills ought to have similar parameters as skills for
which more data are available. Notation: j indexes skills, i
indexes students, t indexes practice opportunities. Tijt is the
count of prior practice, Sijt is the count of prior successes,
and Fijt is the count of prior failures.

IRT 1PL θi + βj (1)

AFM θi + βj + γjTijt (2)

PFA θi + βj + αjSijt + ρjFijt (3)

R-PFA θi + βj + δjRijt + ρjFijt (4)

Rijt is the proportion of recent successes in R-PFA (Eq. 5):

exponential kernel Rijt =

∑t−1
p=−2 d

(t−p)Xijp∑t−1
p=−2 d

(t−p)
(5)

3. RESULTS AND DISCUSSION
3.1 Predictive Accuracy
We compare predictive model accuracy in terms of AIC, a
metric that rewards models for predictive accuracy and pe-
nalizes them for using excessive parameters. AIC is compa-
rable to cross-validation with a prediction error loss function,
but is more appropriate for sparse datasets, such as when
only a handful of students may practice a skill [6].

Table 1: Predictive accuracy (lower AIC is better).

Skill tagging

Model Merged Cir-Sq Distinct

IRT 1PL 21652 21538 21523
AFM 21373 21252 21272
PFA 21326 21197 21211
exp R-PFA r(0.7), f(0.1) 21142 20969 21003

exp R-PFA “best” from search 21134 20949 20977
“best” decay rates: R, F 0.7, 0.3 0.5, 0.3 0.4, 0.3

For all 3 skill taggings, R-PFA has higher predictive accu-
racy than the other models, with PFA, AFM, and Item Re-
sponse Theory 1PL following in that order (Table 1). IRT
1PL has the lowest predictive accuracy, likely because it does
not reflect learning over time. At the best-performing R and
F decay weights from prior work (0.7 and 0.1, respectively),
the number of parameters in PFA and R-PFA is exactly the
same, and R-PFA’s advantage in AIC over PFA is due to
increased predictive accuracy.
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Figure 1: AIC for all 63 models on Circle-Square
tagging. * denotes the best overall model.

Searching over decay rates shows that R-PFA is robust to
a range of rates (Fig. 1). Even though the strictly lowest
AIC uses decay rates that differ from prior work, this effect
is smaller (26 points on Distinct, Table 1) than the effect of
using R-PFA over other models or of improving the skill tag-
ging, and R-PFA’s performance degrades gracefully. Tuning
decay rates separately for skill models has only a marginal
benefit, and may confound skill model comparison.

We compare the learning curves of the 4 performance models
(Fig. 2 and 3), omitting practice opportunities with fewer
than 5 students. The red curves show the empirical percent
correct at each opportunity, with a binomial 95% Bayesian
credible interval that uses a Jeffreys prior. For example,
at the 1st opportunity for circle-area backward, the mean
is 45% correct, with CI (21%, 41%). The intervals make
no adjustment for multiple comparisons (at each practice
opportunity), so they are overly narrow, but remain useful
for comparing model predictions to student performance.

The model fit curves (black) show the 2.5th and 97.5th quan-
tiles of the model predictions. A model should predict that
some students have a lower probability of a correct answer
than the population percent correct, and other students, re-
spectively, have a higher probability. If a model fits the
data well, the black model curves should be centered over
the empirical red curves, but should have wider bars on early
attempts where there are many students in the sample.

R-PFA consistently tracks the empirical learning curve more
closely than the alternative models for all 6 skills, but most
clearly in circle-area backward and square-area backward
(Fig. 2). Consider AFM and R-PFA predictions on circle-
area backward opportunity 1: AFM predicts that 60% of
students will respond correctly, when only 45% do; in fact
95% of model predictions for AFM are above the empirical
percent correct. AFM produces many false positives on this
early opportunity. For R-PFA, the model predictions are
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Figure 2: Empirical learning curves (red) and model fits (black) for newly split skills tagged in Cir-Sq.

centered over the empirical percent correct, and producing
fewer false positives. On opportunity 4, AFM predictions
are too low. AFM underestimates the amount of learning
that has occurred, while R-PFA predictions track the em-
pirical percent correct. Moreover, the R-PFA predictions
range from below 0.5 to above 0.9, indicating that R-PFA is
able to distinguish students who have learned the skill from
those who need more practice.

3.2 Sensitivity to Skill Tagging
All models except IRT 1PL (which has the worst AIC) repli-
cate the ranking of the three skill taggings [7]. The Cir-Sq
tagging provides the best balance of predictive accuracy and
data fit, compared to the Distinct tagging (which may be
more granular than necessary to describe this dataset), and
the Merged tagging (not sufficiently granular). While both
the tagging and R-PFA are merely imperfect models, the
replication provides convergent evidence for the validity of
both. Skill model refinement need not improve predictive
accuracy, but if it does and if the refinement makes sense in
terms of instruction and cognition, that provides some evi-
dence that the change represents an aspect of learning that
is reflected in student performance.

R-PFA with the Merged tagging has a lower AIC score than
any other model with the Cir-Sq tagging. Even though the
Cir-Sq split is sensible and R-PFA benefits from it, R-PFA
is more robust to the absence of such a split than other
models. This shows in R-PFA’s fit to the learning curve
of circle-area (Fig. 3). AFM’s predictions do not reflect
the performance drop on opportunities 11 and later, but R-
PFA does. This decrease motivated splitting circle-area into
forward and backward skills, as in Cir-Sq [7], but R-PFA
hews to the curve even without the split.

3.3 R-PFA Disaggregates Learning Curves
R-PFA effectively disaggregates the learning curves of indi-
vidual students. Traditional learning curves are aligned at
the first practice opportunity. Mastery-aligned curves [8] are
aligned in terms of the opportunity at which students first
achieve mastery. Traditional curves may conceal learning,
such as if students differ in their relevant skill knowledge
before their first observed practice opportunity, or if a skill
model conflates two distinct skills [8]. The proportion of re-
cent successes R by itself is a decay-weighted moving average
that represents (in a non-parametric, non-model based way)
the probability of mastery. R reflects the mastery-aligned
curve in a predictive model, analogous to how total practice
T represents the traditional learning curve in AFM.

The slope of R in R-PFA requires a different interpretation
than the slope of T . A history of practice where recent suc-
cess is positively associated with subsequent success (and re-
cent failure is positively associated with subsequent failure)
will have a positive slope, i.e., a positive effect on predicting
the outcome. Practice relatively far in the past, whether
successful or not, will have comparatively little effect on the
prediction. (With the decay rate d = 0.7, practice older than
about 5 opportunities has little effect on the prediction [6].)

One case in which the direction of the slopes of R and T
may differ is in the case of a “blip” [4], i.e., when two skills
follow each other in one curve, and the success rate drops in
the middle of the curve, corresponding to the beginning of
practice on a second skill (circle-area in Fig. 3). The slope
of T ought to be flat in such a circumstance, which has
been taken to mean that the skill may require a split. The
slope of R will be positive, representing the fact that there is
learning along the first disaggregated curve, and then along
the second disaggregated curve. In fact, slopes of circle-area
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Figure 3: Learning curves (red) and model fits (black) for skills tagged in Merged, but later split in Cir-Sq.

are positive according to both AFM and R-PFA, and slopes
of square-area are flat according to both AFM and R-PFA,
suggesting that the slope of T is not an ideal heuristic for
choosing a skill for a split.

An alternative heuristic is that when the slope of R is neg-
ative or flat, that implies that even disaggregated, mastery-
aligned learning curves are a poor representation of the skill
at hand. This suggests issues with the tagging of problems
for this skill. This is a reasonable opportunity to invite ex-
perts to investigate “difficulty factors” for this skill, and to
use LFA to apply these factors.

4. CONCLUSIONS
This investigation validates the R-PFA model of student per-
formance in predictive accuracy on a real-world dataset. It
provides convergent validity evidence for R-PFA by show-
ing that it is sensitive to changes in a well-documented skill
tagging, and yet robust to noise in a skill model. Given that
no skill model is perfect, a predictive model that is accurate
even in the face of such noise could be an asset to adaptive
learning technologies.

The skill tagging refinement algorithm LFA [3], which in-
corporates AFM, may benefit by switching to R-PFA. LFA
uses AFM in two ways: as a component in A* search, and
as an interpretable learning curve slope. R-PFA may be a
better component in A* search, because it is a more accu-
rate model that is still sensitive to skill model changes, and
because it reflects a mastery-aligned curve rather than an
aggregate curve. The interpretation of the slope parameter
is different, but sensible.
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ABSTRACT
Developing an effective and impartial grading system for
short answers is a challenging problem in educational mea-
surement and assessment, due to the diversity of answers
and the subjectivity of graders. In this paper, we design an
automatic grading approach for short answers, based on the
non-negative semi-supervised document clustering method.
After assigning several answer keys, our approach is able
to group the large amount of short answers into multiple
sets, and output the score for each answer automatically. In
this manner, the effort of teachers can be greatly reduced.
Moreover, our approach allows the interaction with teachers,
and therefore the system performance could be further en-
hanced. Experimental results on two datasets demonstrate
the effectiveness of our approach.

Keywords
Clustering, semi-supervised learning, short-answer grading

1. INTRODUCTION
Grading short answers is a challenging problem in the con-
ventional educational measurement and assessment [6, 4],
due to the diversity of answers and the subjectivity of graders.
Especially, in the era of the massive open online course
(MOOC), this problem becomes critical. MOOC provides
plenty of courses, and has attracted over 10 million users
during the past few years. However, traditional assessments
are not suitable for MOOC. For example, in most MOOC
platforms, short answers appear frequently in various quizzes
and exams. Obviously, hiring lots of graders is not a feasi-
ble solution. Thus, it is very necessary to develop an au-
tomatic grading system for short answers. The automatic
grading system for short-answers has been widely studied
during the past decade [2]. Most recently, a system named
“Powergrading”was presented by Microsoft Research, which
achieved quite impressive performance [1].

We would argue that clustering is a straightforward solution

to automatic grading. For short answer grading, the moti-
vation of using clustering is that, the similar short answers
should have high similarity values, while the dissimilar ones
should have low similarity values. Therefore, those similar
short answers could be assigned into the same group. We
can then infer the final scores of those answers according
which groups they belong to.

In this paper, we aim to design an automatic grading ap-
proach for short answers. Our approach is expected to solve
the assessment challenge in MOOC. Moreover, it can also
be applied to traditional educational assessment scenario, to
reduce the efforts of teachers. We will present the methodol-
ogy of our approach, discuss its influence in online education,
and report the quantitative results and analysis.

2. METHODOLOGY
2.1 Feature Representation
In our problem, each short answer can be treated as a short
document. Let W = {f1, f2, · · · , fm} denote a complete
vocabulary set of the short answers after the stopwords re-
moval and words stemming operations. We can get the term-
frequency vector Xi of short answer di as follows

Xi = [x1i, x2i, · · · , xmi]
� (1)

xji = tji × log(
n

idfi
) (2)

where tji, idfi, n denote the term frequency of word fj in
short answer di , the number of short answers containing
word fj , and the total number of documents in the corpus,
respectively.

By using Xi as a column, we can construct the term-short-
answer matrix X.

2.2 Semi-Supervised Clustering for Short-answer
Grading

We observe that, the label information of short answers is
neglected in the basic document clustering approach. How-
ever, by leveraging the expertise of teachers, we can usually
get some useful information. For example, teachers will tell
us which two answers are essentially similar to each other,
although they look quite different on the first sight.

To make use of such useful information, we propose a semi-
supervised document clustering approach. The basic idea
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is to add some constraints, including positive ones and neg-
ative ones. The former one shows us which short answers
are similar, and we can always put them into the same clus-
ter. On the other hand, the latter one tells us which short
answers cannot be grouped together.

Inspired by the semi-supervised clustering algorithm [3, 5],
we present the non-negative semi-supervised document clus-
tering (SSDC) algorithm for short-answer grading as follows.

Let A = X�X denote the document (e.g., short-answer)
similarity matrix. In our approach, we first employ the sym-
metric non-negative tri-factorization as follows

A = QSQ� (3)

where Q is the cluster indicator matrix. Each element in
Q represents the degree of association of the short-answer
di with cluster j. The cluster membership information is
determined by seeking an optimization matrix S.

In the semi-supervised setting, we are given two sets of pair-
wise constraints on the short-answers, including the must-
link constraints CML and cannot-link constraints CCL. Ev-
ery pair in CML means this pair of short-answers should
belong to the same cluster; every pair in CCL means this
pair of short-answers should belong to different clusters.

Then, the objective function of SSDC algorithm is

J = argmin ‖Ā−QSQ�‖2
s.t., S ≥ 0, Q ≥ 0,

(4)

where Ā = A − R+ + R−. R+ and R− are two penalty
matrices, considering the two constraint sets CCL and CML.

The problem (4) can be solved efficiently using the standard
gradient descent algorithm. The update rules of S and Q
are given below

Sij = Sij
(Q�ĀQ)ij

(Q�QSQ�Q)ij
(5)

Qij = Qij
(ĀQS)ij

(QSQ�QS)ij
. (6)

After obtaining the optimized S and Q, we can use them to
infer the cluster labels for each short answer.

Finally, we can assign the score for each short-answer. For
example, we know that the score of one template answer
is 8.0. If another short-answer and this template answer
belong to the same cluster, then the score of this short-
answer should be close to 8.0. We also design a weighting
strategy to adjust this score, based on the distance to the
template answer.

3. EXPERIMENTS
We utilize the data set provided by Microsoft Research,
which is also analyzed in the paper (Basu, Jacobs & Vander-
wende, 2013). It contains the responses from 100 and 698
crowdsourced workers to each of 20 short-answer questions.
These questions are taken from the 100 questions published
by the United States Citizenship and Immigration Services
as preparation for the citizenship test. It also contains la-
bels of response correctness (grades) from three judges for a

Table 1: The Results on MSR Dataset and MOOC
Dataset.

Method MSR Dataset MOOC Dataset
DC 85.2% 74.1%
Semi-supervised DC 87.5% 78.9%

subset of 10 questions for the set of 698 responses (3 x 6980
labels).

Besides, we also collect some short answers from MOOC
websites. We will evaluate the performance of our approach
on both datasets.

We evaluate the performance of our approach on the MSR
dataset and MOOC dataset. As we have the ground truth
information, we can report the accuracy of clustering algo-
rithms. Table 1 shows the accuracies of our approach and
the baseline method DC under different settings. It shows
that our semi-supervised document clustering method al-
ways achieves better performance than DC on two datasets.

4. CONCLUSIONS AND FUTURE WORK
We studied the educational assessment problem in MOOC.
In this paper, we proposed an automatic grading approach
for short answers. By leveraging the benefits of document
clustering, our approach was able to assign a large amount
of short answers into different groups, and infer their scores
accordingly. Moreover, we designed a semi-supervised ap-
proach, which is able to incorporate the expertise of teach-
ers. The proposed approach fits the requirements of MOOC.
Results on two datasets showed the effectiveness of our ap-
proach. Our paper provides an effective solution to the ed-
ucational assessment problem. In the future, we will design
more computer-aided systems to address the educational as-
sessment problem.
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ABSTRACT
In this paper, we apply clustering and process mining techniques 
to discover students’ navigation paths or trails in Moodle. We use 
data from 84 undergraduate Psychology students who followed an 
online course. Firstly, we group students using on Moodle’s usage 
data and the students’ final grades obtained in the course. Then, 
we apply process mining with each cluster/group of students 
separately in order to obtain more specific and accurate trails than 
using all logs together.
Keywords
Clustering, process mining, navigation paths, trails in education. 

1. INTRODUCTION 
One of the current promising techniques in EDM (Educational 
Data Mining) is Educational Process Mining (EPM). The main 
goal of EPM is to extract knowledge from event logs recorded by 
an educational system [4]. It have been observed that students 
show difficulties when learn in hypermedia and Computer Based 
Learning Environments (CBLEs) due to these environments 
seems to be highly cognitive and metacognitive demanding [1]. In 
this sense, the models discovered by EPM could be used: to get a 
better understanding of the underlying educational processes, to
early detect learning difficulties and generate recommendations to 
students, to help students with specific learning disabilities, to 
provide feedback to either students, teachers or researchers, to 
improve management of learning objects, etc. In a previous work 
[2], we found two problems when using EPM: 1) the model 
obtained could not fit well to the general students’ behaviour and 
2) the model obtained could be too large and complex to be useful 
for a student or teacher. In order to solve these problems, we 
proposed to use clustering to improve both the fitness and 
comprehensibility of the obtained models by EPM. However, in 
this paper we propose to use a Hypertext Probabilistic Grammar 
(HPG) algorithm instead of Heuristics Net [2] because it provides 
more informative graphs. 

2. METHODOLOGY 
A traditional approach would use all event log data to reveal a 
process model of student’s behaviour . Nevertheless, in this paper, 
we propose an approach that uses clustering for improving EPM 
(see Figure 1). The proposed approach firstly applies clustering in 
order to group students with similar features. And then, it applies 
process mining for discovering more accurate models of students’
navigation paths or trails. In fact, we propose to use two different 
grouping methods: 

1) Clustering students directly by using the students’ 
grades obtained in the final exam of the course. 

2) Clustering students by using a clustering algorithm over 
the student’s interaction with the Moodle’s course.

Figure 1: Proposed approach for discovering students’
navigation paths. 

3. DESCRIPTION OF THE DATA AND
EXPERIMENTS 
In this work we have used real data collected from 84
undergraduate Psychology students who followed a Moodle 
course. Firstly, we have divided the student’s log provided by 
Moodle in two different ways. In a first way, we divided directly 
the original log file into two datasets: one that contains the 68 
students who passed the course and other with the 16 students 
who failed. In the second way, we have used the Expectation-
Maximization (EM) clustering algorithm provided by Weka [6] in 
order to group together students of similar behaviour when using
Moodle. In this case we have obtained three clusters/datasets with 
the following distribution: 

Cluster 0: 23 students (22 pass and 1 fail). 

Cluster 1: 41 students (39 pass and 2 fail). 

Cluster 2: 20 students (13 fail and 7 pass). 

After clustering, we applied EPM through HPG over the previous 
datasets. We have used the HPG model in order to efficiently 
mine trails or navigation paths [3]. HPG uses a one-to-one 
mapping between the sets of non-terminal and terminal symbols. 
Each non-terminal symbol corresponds to a link between Web 
pages. Moreover, there are two additional artificial states, called S
and F, which represent the start and finish states of the navigation 
sessions respectively. The probability of a grammar string is given 
by the product of the probability of the productions used in its 
derivation. The number of times a page was requested, and the 
number of times it was the first and the last page (state) in a 
session, can easily be obtained from the collection of student 
navigation sessions. The number of times a sequence of two pages 
appears in the sessions gives the number of times the 
corresponding link was traversed. The aim is to identify the subset 
of these trails that correspond to the rules that best characterize 
the student’s behavior when visiting the Moodle course. A trail is 
included only if its derivation probability is above a cut-point.
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The cut-point is composed of two distinct thresholds (support and 
confidentiality). The support (Sup) value is for pruning out the 
strings whose first derivation step has low probability, 
corresponding to a subset of the hypertext system rarely visited. 
The confidence (Con) value is used to prune out strings whose 
derivation contains transitive productions with small probabilities.  
Support and confidence thresholds give the user control over the 
quantity and quality of the obtained trails, while Alp modifies
the weight of the first node in a student navigation session: when 

is near 0, only those routes that start in a node which started a 
session are generated; when is near 1, all weights are 
completely independent of the order within the session.

4. RESULTS 
We have carried out several experiments with the HPG algorithm 
to test several configurations of number of Nodes, Links, Routes, 
and average route length (Avg). Results obtained when using 
different datasets and parameters are displayed in Table 1.

Table 1. Results with different datasets and configurations.  

Dataset Alp Sup Con Nodes Links Routes Avg

Fail 0,2 0,05 0,5 8 7 12 3,85

Pass 0,2 0,05 0,5 12 11 20 3,81

Cluster0 0,2 0,05 0,5 8 6 12 4,16

Cluster1 0,2 0,05 0,5 9 7 14 4,14

Cluster2 0,2 0,05 0,5 5 4 6 2,75

Fail 0,4 0,06 0,3 15 15 27 3,8

Pass 0,4 0,06 0,3 25 27 47 3,96

Cluster0 0,4 0,06 0,3 13 12 21 3,66

Cluster1 0,4 0,06 0,3 15 17 29 4,11

Cluster2 0,4 0,06 0,3 12 9 18 3,66

Fail 0,5 0,06 0,3 20 19 36 4

Pass 0,5 0,06 0,3 37 41 72 4,07

Cluster0 0,5 0,06 0,3 19 17 31 3,7

Cluster1 0,5 0,06 0,3 20 21 38 4,19

Cluster2 0,5 0,06 0,3 12 9 18 3,66

Table 1 show that the smaller and more comprehensible models 
were obtained using logs from students who failed (Fail dataset) 
and students of Cluster 2. On the other hand, the models obtained 
with the other datasets were much bigger and complex. We think 
that this may be due to:

Both dataset Fail and Cluster 2 contain mainly information 
about bad students who failed the course. This type of 
students has a low interaction with Moodle and so, they 
show only some frequent navigation paths. 

Datasets Pass, Cluster0 and Cluster1 contain mainly 
information about good students who pass the course.  This 
type of students has a high interaction with Moodle and so,
they show more frequent navigation paths. 

Finally, we show an example of obtained model when using the 
Cluster2 dataset. In Figure 2, each node represents a Moodle’s 

Web page, and the directed edges (arrows) indicate how the 
students have moved between them. These paths can be 
stochastically modeled as Markov chains [5] on the graph, where 
the probability of moving from one node to another is determined 
by which Web page the student is currently visiting. Edge 
thickness varies according to edge weight; this allows the learning 
designer to quickly focus on the most important edges, ignoring 
those that have very low weights. In addition, line widths and 
numerical weights are also available.

Figure 2: Navigation paths of Cluster 2 students. 
Starting from Figure 2 we can see and detect what are the most 
frequent actions (view forum X, view questionnaire Y, view quiz 
Z, etc.) and in which order (navigation paths or trails) were 
done/followed by Cluster 2 students (normally fail students). 
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ABSTRACT
Teacher-student interactions are key to most school-taught 
lessons. We present a new approach to studying these 
interactions; this approach is based on a fine-grained data 
collection, using quantitative field observations (QFOs), which 
relies on a well-established theoretical framework. The data 
collected can be analyzed in various methods to address different 
types of research questions; we give some examples to 
demonstrate this potential. 

Keywords
Teacher-student interactions, quantitative field observations,
different analysis approaches. 

1. INTRODUCTION 
Since the early days of Plato, over 2,300 years ago, dialogues 
were at the heart of the teaching practice. For as long as classroom 
teaching exists, teacher-student interactions have been the key to 
most school-taught lessons, hence studying these interactions is 
decades-old. Many studies in this field that have used classroom 
observations, often manually documented each occurrence of a 
teacher-student interaction, usually by observing a small cohort of 
students at a time or by observing individual students based on an 
interval-based protocol (e.g., Good & Brophy, 1970; Cameron, 
Cook & Tankersley, 2012; Luckner & Pianta, 2011). We use a 
digital data collection tool—a tablet app developed specifically 
for this purpose—in order to conduct quantitative field 
observations (QFOs). Although documenting each occurrence of a 
teacher-student interaction, data is not collected at the student-
level (i.e., students are not labeled, only interactions), which 
makes it feasible to have a single person observing a whole class 
and still document every interaction during it. Once the class is 
over, the data is ready to be analyzed. More than that, this fine-
grained data is time-stamped, which allows for advanced, 
including temporal, analyses.

2. THEORETICAL FRAMEWORK 
Good and Brophy's (1970) method, developed in the context of 
mathematics education, was probably the first to refer to a single 
student—as opposed to the whole class—while recording public 
classroom interactions, hence focusing on dyadic teacher-student 
interactions. This protocol was later modified by Reyes and 
Fennema (1981), who considered non-public teacher-student 
interactions too. 

These validated protocols have been in use to study various 
variables at different grade levels and in many learning settings. 
Due to their validity, fine granularity and popularity, we find these 
protocols very suitable for our research. Adapting and extending  

the original protocols to better fit to our research setting—mainly 
to the whole class being observed at all times—we categorize 
each teacher-student interaction to one of the categories described 
in the next sub-sections. 

2.1 Response Opportunity 
A response opportunity is a public attempt by an individual 
student or a group of students to deal with a question posed by the 
teacher. Interactions that fall under this category take one of four 
possible values: Direct – the teacher asks a direct question of an 
individual student; Volunteer – the teacher asks a question, waits 
for the students to raise their hands, then calls on one of the 
children who has his hand up; Call Out Single – the teacher asks 
a question and a student calls out an answer without waiting for 
permission to respond; Call Out 2+ – the teacher asks a question 
and more than one student call out an answer without waiting for 
permission to respond. 

2.2 Immediate Contact 
An immediate interaction is a public, content-related interaction 
initiated by the teacher, a student or a group of students that is not 
preceded by a teacher's question. This category again has four 
values based on the interaction initiator and the number of 
students involved in it: Teacher to Single, Teacher to 2+, Single 
to Teacher, 2+ to Teacher. 

2.3 Behavioral Contact 
These are public, behavior-related comments of the teacher. Here 
too, four values are defined, based on the type of behavior 
commented and on the targeted audience: Discipline to Single,
Discipline to 2+, Appraisal to Single, Appraisal to 2+. 

2.4 Procedural Contacts 
These interactions are public, non-content related; they are related 
to students' management or to the class management, e.g., 
permission, supplies, or equipment. Like Immediate, we 
distinguish the interaction initiator and the number of students 
involved, hence its four values are: Teacher to Single, Teacher 
to 2+, Single to Teacher, 2+ to Teacher. 

2.5 Non-Public Interactions 
Non-public interactions are held privately between the teacher and 
one or more students. As such, we assume not being able to 
categorize them, therefore we only code whether they were 
Teacher-Afforded or Student-Initiated. 

3. DATA COLLECTION APP 
As mentioned above, a dedicated data collection app was 
developed for the purpose of this study. The app, Q-TSI 
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(Quantifying Teacher-Student Interactions), is available for free 
via Google Play Store1. Besides coding the interaction categories, 
the app allows documenting the following contextual variables: 

Learning Configuration (whole class discussion, group 
work, pair work, individual work);

Technologies in Use by the Teacher (blackboard, 
projector, smart board, book – any combination of these are 
allowed);

Technologies in Use by the Students (book, computer, 
book and computer);

Teacher Location –on a 4x4 division of the classroom.

Furthermore, the app allows the user to enter any (time-stamped) 
comment s/he finds useful. These comments might be useful to 
interpret the results of analyses. The data is stored locally on the 
observer device as a CSV file. 

4. ANALYSES APPROACHES 
The collected data can be analyzed in various ways in order to 
address a wide range of research questions. We now describe a 
few potential research directions we are currently considering 
(some will be demonstrated in the poster). 

4.1 Visualization 
Visualization can be a powerful tool to have an overall 
understanding of the classroom dynamics. Teachers can gain 
awareness and reflect upon their interactions with their students 
during the class. A typical visualization may include a time-
ordered representation of the interactions, differentiated by type 
(e.g., by color, marker), along with values of the contextual 
variables. Such visualizations may assist in initially having an 
overview of the kinds of interactions that happen, exploring 
differences within classes, based on, e.g., learning configuration 
or technologies in use, or between classes, based on, e.g., teacher,
school, grade-level, subject matter, time of day, etc. 

4.2 Statistics 
Basic statistics may shed light on the overall distribution of the 
different types of interactions in a lesson, as well as on differences 
within and between classes (based on variables as such as were 
mentioned in 4.1 Visualization).

4.3 Time-based Patterns 
Association rules, time series, statistical discourse analysis and 
epistemic network analysis may assist in understanding whether 
there are specific interactions that often occur jointly or in 
connection, possibly, in some specific order or in a specific 
context, and how occurrences of interactions evolve over time. 
Time in our context has at least two levels of granularity: the 
lesson granularity (i.e., what happens during one lesson) and the 
school year granularity (i.e., what happens in lessons over the 
weeks). 

                                                                
1 https://play.google.com/store/apps/details?id=com.gil.q_tsi

4.4 Cluster Analysis 
Clustering techniques can be used to explore whether classes can 
be classified according to typical patterns of interactions. Several 
ways of describing a lesson and, consequently, of comparing 
lessons, can be investigated. For instance, a mere quantitative 
analysis can be used to characterize a lesson, that is, counting 
interactions and using the Euclidean distance (or alike) for 
clustering. A lesson can also be described as a sequence of 
different interactions over time, then using the Levenshtein 
distance (or alike) for clustering. It might be necessary to define 
several abstraction levels for the interactions.

4.5 Prediction 
It might be possible to predict different types of interactions based 
on historical data, or based on contextual variables. A possible 
prediction might look like: "three <Response opportunity: Call 
out 2+> interactions and two <Procedural: Teacher to single> 
interactions are followed by a <Discipline: Single> interaction in 
85% of the instances." Several techniques will be considered to 
investigate this kind of patterns, in particular, classification 
techniques enriched with time series and statistical discourse 
analysis.  

4.6 Collecting More Data 
In the future, additional data will be collected, such as students' 
log files, performance, meta-cognitive and affective measures, in 
order to enrich the data with more layers. These layers will allow, 
in turn, to ask even more questions about the data and to better 
investigate the role of teacher-student interactions in the 
learning/teaching process. 
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ABSTRACT
Student learning is usually modeled by one of two main ap-
proaches: using binary skill, with Bayesian Knowledge Trac-
ing being the standard model, or using continuous skill, with
models based on logistic function (e.g., Performance Factor
Analysis). We use simulated data to analyze relations be-
tween these two approaches in the basic setting of student
learning of a single skill. The analysis shows that although
different models often provide very similar predictions, they
differ in the impact on student practice and in the meaning-
fulness of parameter values.

Keywords
student modeling; learning; Bayesian Knowledge Tracing;
simulated data

1. INTRODUCTION
In this work we focus on modeling of student learning in the
basic setting: we assume that for each student we have a
sequence of answers related to a single skill and we consider
only correctness of these answers, i.e., we do not take into
account additional information like response times or par-
tial correctness due to the use of hints. We work only with
basic models and focus on experiments with simulated data.
This setting is of course a coarse simplification, since in a
real application we typically have some additional informa-
tion on student answers, questions are related to multiple
skills, and model extensions are used. But in order to suc-
cessfully use complex models, it is necessary to have deep
understanding of the base case and this understanding is still
lacking. There are many feasible modeling approaches, but
they are usually proposed and studied independently and
their relations, similarities, and differences have not been
well studied. The use of simulated data allows us to ana-
lyze behaviour of models in detail thanks to the knowledge
of “ground truth” values; moreover, we can manipulate in
controlled way generation of data and thus easily evaluate
behaviour of models under different assumptions.

2. MODELING STUDENT LEARNING
Most approaches to modeling of student learning can be
viewed as hidden Markov models (also called latent process
models, state-space models). We assume a hidden (latent)
state variable (called “skill”) and two types of equations.
Observation equation describes the dependence of observed
variables (correctness of answers) on the hidden variable
(skill). State equation describes the change of the hidden
variable (i.e., learning). There are two main types of models
depending on whether the latent skill is binary or continu-
ous. It is in principle possible to consider discrete skill with
more than two states, but such models are not commonly
used. The standard form of a binary skill model is Bayesian
Knowledge Tracing (BKT) [1]. Models based on continu-
ous latent skill typically use logistic function for observation
equation, they differ in their approach to skill estimation.

Bayesian Knowledge Tracing assumes a sudden change in
knowledge. It is a hidden Markov model where skill is a
binary latent variable (either learned or unlearned). Fig-
ure 1 illustrates the model; the illustration is done in a non-
standard way to stress the relation of the model to the model
with continuous skill. The estimated skill is updated using a
Bayes rule based on the observed answers; the prediction of
student response is then done based on the estimated skill.
Note that although the model is based on the assumption of
binary skill, the skill estimate is actually continuous number
(in the [0, 1] interval).

Models which utilize the assumption of continuous latent
skill consider skill in the (−∞,∞) interval and for the rela-
tion between the skill and the probability of correct answer
use the logistic function σ(x) = 1

1+e−x . Although it would
be possible to consider also other functions, the logistic func-
tion is currently the standard choice. As a simple model of
learning we consider a simple linear growth of the skill (Fig-
ure 1). More specifically, for the initial skill θ0 we assume
normally distributed skill θ0 ∼ N(μ, σ2) and for the change
in learning we consider linear learning θk = θ0+k ·Δ, where
Δ is either a global parameter or individualized learning pa-
rameter (in that case we assume a normal distribution of its
values). This model is a simplified version of the Additive
Factors Model [3]; the original additive factor model uses
multiple skills. A principled way of estimating continuous
skills is the Bayesian approach, which computes not just a
point estimate of skill, but a distribution over skill capturing
also the uncertainty of the estimate. This approach be im-
plemented for example using particle filter, i.e., discretized
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Figure 1: Binary and continuous skill models of stu-
dent learning – high level overview.

representation of posterior distribution. A more pragmatic
approach to skill estimation is Performance Factor Analy-
sis [5], which computes the skill estimate as a linear com-
bination of the number successes and failures of a student.
This approach can be extended to take into account ordering
of attempts and time intervals between them [2, 4].

Which type of model is better depends on the learning sit-
uation. Binary skill models assume a sudden switch from
unlearned to learned state. Such assumption is appropriate
mainly for fine-grained skills which require understanding
or insight (such as “addition of simple fractions”). Models
with continuous skill assume gradual increase of skill. This
is appropriate either for modeling coarse-grained skills (e.g.,
“fractions” as a single skill) or for situations where gradual
strengthening happens (e.g., memorizing facts).

3. EXPERIMENTS
To analyze the described models and relations between them
we performed experiments with simulated data. We gener-
ated simulated data by one of the models and then analyzed
the generated data using both models with binary and con-
tinuous skills. For generating data we used 10 scenarios with
different parameter settings.

With respect to accuracy of predictions the results show
that both types of models bring consistent improvement over
baselines like moving average and time decay models [6].
The basic comparison of binary and continuous skill models
is also not surprising: each approach dominates in scenar-
ios which correspond to its assumptions. Nevertheless, in
many cases the differences are small and the predictions are
actually highly correlated.

Models are not used only for predictions, but they may be
useful in themselves for system developers and researchers.
Plausible and explainable model parameters may be used to
get insight into behaviour of tutoring systems and also for
“discovery with models” (higher level modeling). Results of
our analysis show that in the case when there is a mismatch
between source of the data and a model, interpretation of
parameters may be misleading. As a specific example con-
sider simulated students behaving according to the contin-
uous model with θ0 ∼ N(−1, 1),Δ = 0.2. Here the fitted
BKT guess and slip parameters are 0.24 and 0.16. Intuitive
interpretation of BKT parameters would thus suggest high
chance of guessing an answer. In the ground truth model,
however, chance of guessing converges to zero for unskilled
students.

One of the main applications of student models is to guide
the behaviour of adaptive educational systems. A typical ex-
ample is the use of student models for mastery learning – stu-
dents have to practice certain skill until they reach mastery,
the attainment of mastery is decided by a student model.
Mastery is declared when a skill estimate is higher than
a given threshold. How does the choice of student model
and a threshold impact student practice? Our results show
that the BKT model is relatively insensitive to the choice
of the threshold and that the model provides weak decisions
for scenarios with continuous learning, specifically when the
learning rate is low. Continuous skill models can provide
good decision for all scenarios if used with a good threshold.
However, optimal thresholds differ significantly for scenarios
with binary skill and continuous skill.

To summarize, our study with simulated data suggests that
the choice between models with binary and continuous skill
does not seem a key concern as long as we are interested
only in predictions of students’ answers, but it can have
significant impact on parameter interpretation and mastery
learning.
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ABSTRACT
Online educational systems can easily measure both answers
and response times. Student modeling, however, typically
focuses only on correctness of answers. In this work we ana-
lyze response times from a widely used system for adaptive
practice of geography facts. Our results show that response
times have simple relationship with the probability of an-
swering correctly the next question about the same item.
We also analyze the overall speed of students and its re-
lation to several aspects of students’ behaviour within the
system.

1. INTRODUCTION
When students use computerized educational systems, we
can easily store and analyze not just their answers and their
correctness, but also the associated response times. Re-
sponse times carry potentially useful information about both
cognitive and affective states of students.

Response times have been studied thoroughly in item re-
sponse theory in the context of computerized adaptive test-
ing, for an overview of used models see [5]. But testing and
learning settings differ in many aspects, including response
times – for example we would expect students to think for
longer time in the case of high stake testing than in practice
session (there are differences even between high-stakes and
low-stakes testing [2]).

Response times have been used previously in the context of
student modeling for intelligent tutoring systems, e.g., for
modeling student knowledge in the extension of Bayesian
Knowledge Tracing [6] or for modeling student disengage-
ment [1]. But overall the use of response times has been
so far rather marginal. In this work we analyze response
times from an adaptive system for practice of facts, which
is a specific application domain where response times have
not been analyzed before.

2. THE USED SYSTEM AND DATA
For the analysis we use data from an online adaptive system
slepemapy.cz for practice of geography facts (e.g., names
and location of countries, cities, mountains). The system
uses student modeling techniques to estimate student knowl-
edge and adaptively selects questions of suitable difficulty [4].
The system uses open questions (“Where is Rwanda?”) and
multiple-choice questions (“What is the name of the high-
lighted country?”) with 2 to 6 options.

The system uses a target success rate (e.g., 75 %) and adap-
tively selects questions in such a way that the students’
achieved performance is close to this target [3]. The system
also collects users’ feedback on question difficulty – after 30,
70, 120, and 200 answers the system shows the dialog“What
is the difficulty of asked questions?”, students choose one of
the following options: “Too Easy”, “Appropriate”, “Too Dif-
ficult”.

For the reported experiments we used the following dataset:
54 thousand students, 1458 geography facts, over 8 million
answers and nearly 40 thousand feedback answers.

3. RESULTS
We provide basic analysis of response times, and their rela-
tion to student knowledge and to students’ behaviour within
the adaptive practice system.

3.1 Basic Characterization of Response Times
Distribution of response times is skewed, in previous work it
was usually modeled by a log-normal distribution [5]. Our
data are also approximately log-normal, therefor as a mea-
sure of central tendency we use median or mean of log times.

Response times clearly depend on the type of question and
on specific item. Our results for example show, that response
times are higher for cities and rivers than for countries and
regions (states are larger than cities on the used interactive
map and therefore it is easier to click on them). Response
times are also on average higher for countries in Asia than
in South America (there is larger number of countries on the
map of Asia).

For the below presented analysis we use percentiles of re-
sponse times over individual items – these are not influenced
by skew and provide normalization across different items.
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Figure 1: Response times and probability that the (next) answer is correct.

3.2 Response Times and Students Knowledge
Figure 1 shows the relationship between response times and
correctness of answers. The relationship between response
time and correctness of the current answer is non-monotonic
– very fast responses combine “solid knowledge” and “pure
guessing”, long responses mostly indicate “weak knowledge”.
The highest change of correct answers is for response times
between 10th and 20th percentile, i.e., answers that are fast,
but not extremely fast.

We get a more straightforward relationship when we analyze
correctness of the next answer (about the same item) based
on both the correctness and response time for the current
answer. If the current answer is correct then the probability
of correct next answer is linearly dependent on the response
time – it goes from 95% for very fast answers to nearly 80%
for slow answers. If the current answer is incorrect then
the dependence on response time is weaker, but there is
still (approximately linear) trend, but in this case in the
other direction. When the current answer is incorrect, longer
response time actually means higher chance that the next
answer will be correct!

A limitation of the current analysis is that we do not take
into account types of questions (the number of available
choices and the related guess factor) or the adaptive be-
haviour of the system (the system asks easier questions when
knowledge is estimated to be low). However, we do not ex-
pect these factor to significantly influence the reported re-
sults, which quite clearly show that response times are useful
for modeling knowledge and that it is important to analyze
response times separately for correct and incorrect answers.

3.3 Speed of Students
As a next step we analyze not just response times for sin-
gle answers, but over longer interaction with the system.
Statistics of response times may indicate affective states or
characterize a type of student. For this preliminary anal-
ysis we have classified students as fast/slow depending on
their median response time and we analyzed correlations
with other aspects of their behaviour (in similar way and

with analogical results we have also analyzed variance of re-
sponse time). The reported results do not necessary imply
direct relationship as they may be mediated by other factors
(like difficulty of presented items).

Slower students answer smaller number of questions in the
system. In fact the overall time in the system is nearly the
same for students with different speeds, i.e., slower students
just solve smaller number of questions during this time.
Faster students have higher prior skill and are more likely to
return to the system to do more practice. In the feedback
on question difficulty slower students report more difficult
impression. Possible application of these results is incor-
poration of students’ speed into the algorithm for adaptive
selection of questions (e.g., by selecting easier questions for
slower students).
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ABSTRACT 
This study investigates how we can effectively predict what type 
of game a user will choose within the game-based environment 
iSTART-2. Seventy-seven college students interacted freely with 
the system for approximately 2 hours. Two models (a baseline and 
a full model) are compared that include as features the type of 
games played, previous game achievements (i.e., trophies won, 
points earned), and actions (i.e., iBucks/points spent, time spent 
on games, total games played). Using decision tree analyses, the 
resulting best-performing model indicates that students’ choices 
within game-based environments are not solely driven by their 
recent achievement. Instead a more holistic view is needed to 
predict students’ choices in complex systems. 
 

Keywords 
Game-based environments, Modeling, Decision tree analysis 

1. INTRODUCTION 
Game-based environments often afford fine-grained examinations 
of patterns in students’ behaviors during gameplay and how they 
are related to cognitive skills and learning outcomes [1,2]. 
However, such previous work has not examined the driving force 
behind why a student chooses a specific activity or interaction 
within a game environment. In the current work, we compare two 
models. The first model is a parsimonious “1-back” model that 
assumes that students’ choices are directly related to (and 
predicted by) their most recent game choice within the system and 
their achievements (in terms of the type of trophy won). Thus, if a 
student is performing well in one activity, they will continue to 
play that activity (or one similar to it) – achievement behavior [3]. 
The second, full model assumes that students’ choices (of game 
type in this case) are related more comprehensively to a holistic 
combination of their previous experiences within the environment, 
including the types of games played, game achievements, and 
actions. This model follows the assumption that students’ choices 
are influenced by a range of factors that is broader than their most 
recent choice and achievements. This paper is an exploratory 
study that attempts to answer: what impacts students’ choices 
within game-based environments?  

1.1 iSTART-2 
Our analysis is conducted within the context of the Interactive 
Strategy Training for Active Reading and Thinking-2 (iSTART-2) 
system, designed to provide students with self-explanation 
strategy instruction to improve reading comprehension [1, 4]. 
After viewing five instructional videos, each covering a reading 
strategy, students are transitioned to a practice interface in which 

they can engage with a suite of educational games. Games involve 
either generative or identification practice. Generative practice 
games require students to type their own self-explanations while 
reading a text. Identification mini-games require students to read 
self-explanations that are ostensibly written by other students, and 
select which of the five strategies was used to generate each self-
explanation. Students receive feedback about whether their choice 
was correct or incorrect. 

iSTART-2 offers an ideal environment to explore questions about 
choice within open learning environments because students are 
free to choose which practice games to play. During each of the 
practice games, students earn points for writing high quality self-
explanations or selecting the correct strategies. Based on students’ 
score at the end of each game, theycan earn trophies (gold, silver, 
bronze), iSTART Points, and iBucks. iSTART Points determine 
students’ current level within the system. iBucks are the system 
currency and can be spent to customize players’ avatars, change 
background colors, or buy access to the identification games. In 
the current study, they were provided with an abundance of 
iBucks to allow them to freely interact with all features.  

2. METHODS 
2.1 Participants and Procedure 
The study included 77 students (18-24 years) from a large 
University in the Southwest US. We conducted a 3-hour session 
consisting of a pretest, strategy training (via iSTART-2), extended 
game-based practice within iSTART-2, and a posttest. For our 
analyses here, we solely examined data from the time students 
spent in the game-based practice menu of iSTART. Each student 
spent approximately 2 hours interacting freely within the game-
based interface, with his or her actions logged into the iSTART-2 
database.  

2.2 Development of Machine-Learned Models 
of Game Choice 
To develop models that predict next game choice from previous 
achievement in an iSTART-2 game, we distilled features from the 
interaction logs of the 77 students who interacted with iSTART-2. 
A total of 1,562 action records were created for these 77 students, 
where each action record had 13 distilled features. Each record 
was labeled with the current game choice (at time n; 1 = 
identification game, 0 = generative game), having features 
corresponding to information about previous gameplay actions (at 
time n-1) in either an identification game or a generative game. In 
developing the two models to predict students’ game choice, we 
employed student-level cross-validation for a decision tree 
classifier that uses the J48 implementation [5] that builds a 
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decision tree from a set of labeled training data. The baseline 1-
back model included 2 features: previous type of game played, 
and type of trophy earned on the previous game. The full model 
included 11 additional features. The features that involved prior 
gameplay achievements and actions included: the number of 
iBucks won/spent, the number of iBuck bonus points won/spent, 
and the number of iSTART points won/spent the previous time 
the student played that game type. The remaining five features 
were aggregates of a student’s achievements and actions so far: 
number of trophies achieved, number of generative games played, 
number of identification games played, average time played in a 
generative game, and average time played in an identification 
game. 

3. RESULTS 
For the 1-back model that predicts game choice based solely on 
previous game choice and achievement, students in our data set 
played a total of 1,562 games in iSTART – 1,144 instances of an 
identification game played and 418 instances of a generative 
game. The baseline model performed poorly under student-level 
cross-validation (see Table 1). This results in an imbalance, with 
precision of 38.46% and recall of 4.78%. The cross-validated A' is 
0.603 (correctly predicted a game choice to be an identification 
game 60.3% of the time) and cross-validated Cohen’s Kappa is 
0.208 (model’s accuracy was only 2.8% better than chance). This 
baseline model mainly predicts that students who have just played 
an identification game will select another identification game, 
regardless of their trophy achievement. It also predicts that many 
students who have just played a generative game, but did not 
receive any trophy, will select an identification game next.  
 
Table 1. Cross-validated confusion matrix of baseline model  

 Identification Game (True) Generative Game (True)
Identification Game 

(Predicted) 1112 398 

Generative Game 
(Predicted) 32 20 

 
The second model resulted in the best-performing J48 tree with 
six features: (1) type of trophy from previous game played, (2) 
number of identification games played so far, (3) number of 
generative games played so far, (4) iSTART bonus iBucks spent 
in previous interaction, (5) iSTART points won in previous game, 
and (6) iSTART iBucks spent in previous interaction.  
 
Table 2. Cross-validated confusion matrix of comprehensive model 

 Identification Game (True) Generative Game (True)
Identification Game 

(Predicted) 1069 125 

Generative Game 
(Predicted) 75 293 

 
This second model performed significantly better under cross-
validation, classifying 1194 game choices as identification games, 
and 368 game choices as generative games (see Table 2), with a 
precision of 80.45% and recall of 70.10%. Our cross-validated A' 
and Cohen’s Kappa also increased considerably, to A' = 0.907 and 
Cohen’s Kappa = 0.660. Our second model yields a decision tree 
size of 61, with 34 decision rules (paths from root to leaf). Some 
examples of rules within this model include: 
1) IF a student has at least played one generative game so far, AND 

spent more than 50 iSTART iBucks, THEN the next game the 
student will play is an IDENTIFICATION GAME (Confidence: 
99.5%). 

2) IF in a previous game the student won more than 610 iSTART points 
in a previous game, but spent 861 or fewer iSTART iBucks in a 
previous game, THEN the next game the student will play is an 
IDENTIFICATION GAME (Confidence: 97.0%). 

3) IF a student has not played any generative game so far, AND spent 
no iSTART iBucks in a previous game, AND has received a 
BRONZE trophy in the previous game played, THEN the next game 
the student will play is an GENERATIVE GAME (Confidence: 
83.33%). 

4) IF a student has not played any generative game so far, AND spent 
no iSTART iBucks in a previous game, AND has received a 
SILVER trophy in the previous game played, THEN the next game 
the student will play is an GENERATIVE GAME (Confidence: 
100%). 

4. DISCUSSION 
Results from this exploratory analysis suggest that students’ 
choices in activities do not rely solely on previous game trophy 
achievement or previous game choice (first baseline model), but 
instead students’ choices seem to be guided by their overall 
experience and interactions within the system (second 
comprehensive model). While this finding is not entirely 
surprising, it does help researchers shed light upon which features 
in a game-based environment are impacting students’ choices. 
Indeed, there are many factors that impact students’ choices 
within game-based environments. Thus, within environments 
where students are afforded a high amount of agency, user models 
will benefit by incorporating a more complete set of interaction 
features as a means to represent students’ game experience more 
completely. In the future, we will employ Markov analyses in 
combination with decision tree analysis in an effort to gain a 
deeper understanding of what drives students’ choices within a 
game-based environment. Although interactions within agency-
driven environments are highly complex, this project 
demonstrates that they are predictable using machine learning 
algorithms. 
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ABSTRACT
Currently, a lot of research in the field of intelligent tutor-
ing systems is concerned with recognising student’s emo-
tions and affects. The recognition is done by extracting
features from information sources like speech, typing and
mouse clicking behaviour or physiological sensors. Multi-
modal affect recognition approaches use several information
sources. Those approaches usually focus on the recognition
of emotions or affects but not on how to aggregate the mul-
timodal features in the best way to reach the best recog-
nition performance. In this work we propose an approach
which combines methods from feature selection and ensem-
ble learning for improving the performance of perceived task
difficulty recognition.

1. INTRODUCTION
Some research has been done in the area of intelligent tutor-
ing systems to identify useful information sources and ap-
propriate features able to describe student’s emotions and
affects. However, work on multimodal affect recognition in
this area focuses more on engineering appropriate features
for affect recognition than on the problem of aggregating the
features from the different information sources in an good
way. The usual approach is to use one classification model
fed with one input vector containing the concatenated fea-
tures (maybe reduced by feature selection) like in [3] or using
standard ensemble methods on the features of the sources
separately like in [4]. In this paper instead we propose to
mixing up the different feature types and combining meth-
ods from feature selection and ensemble approaches to reach
a classification performance improvement compared to using
only either methods from feature selection or ensemble ap-
proaches. Feature selection methods can be used to reduce
the number of features and find good combinations of fea-
tures. They take advantage of statistical information like
correlations. Ensemble methods like stacking use multiple
learning models to obtain a better prediction performance.

Figure 1: Multimodal feature aggregation approach.

Stacking learns to combine the classification decisions of sev-
eral single classifiers by a further classifier which gets as in-
put the outputs of the other classifiers.

2. MULTIMODAL FEATURE
AGGREGATION

We propose to profit from the advantages of both feature
selection methods and ensemble methods. Hence, we com-
bine both (see fig. 1): In a first step the feature vectors
of all l feature types are concatenated to reach one input
feature vector (f0, . . . , fn). However, there could be depen-
dencies between the different features. Hence, we create
the correlation matrix reporting about the correlations be-
tween each pair of features. By means of this matrix we
extract for each single feature fy a set uncorry contain-
ing all other features fx not correlated to fy. Not corre-

lated means in this case that the correlation value vx,y of
the pair (fx, fy) in the correlation matrix is near to 0.0, or
more explicitly, |vx,y | is smaller than some positive thresh-
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Table 1: Classification errors and F-measures.
(1) SVM applied to amplitude features

31.25% (0.75, 0.59)
SVM applied to articulation features

22.92% (0.81, 0.72)
(2) SVM applied to all concatenated features

27.08% (0.77, 0.67)
(3) SVM applied to most uncorrelated features

20.83% (0.81, 0.77)
(4) Stacking applied to uncorry sets

20.83% (0.83, 0,74)
(5) Stacking applied to uncorr2y sets

16.67% (0.86, 0.80)
(6) Stacking applied to uncorr2y sets with best AIC

8.33% (0.92, 0.91)

old t, i.e. uncorry := {fy} ∪ {fx | t > |vx,y|}. The set
uncorry contains all features uncorrelated to fy but be-
tween the features within this set there could still be cor-
relations. Consequently, we compute for each feature fy
a set uncorr2y := {fy , fa, . . . , fk} where fy , fa, . . . , fk all
are uncorrelated. These sets uncorr2y are gained for each
feature fy by sequentially intersecting uncorry with the sets
belonging to the features within uncorry , or the intersection
respectively. Different to feature selection, our goal is not to
create one feature vector with reduced dimensionality but
we aim at creating one feature vector per feature which will
be fed into an own classifier, to consider each feature and to
deliver as many input as needed for the ensemble method.
Nevertheless, we remove some of the uncorr2y sets. The rea-
son is that there is still some statistical information which
we did not yet use: the quality of the models using these
sets as input. Hence, for each set uncorr2y we compute the
Akaike information criterion (AIC) – indicating the quality
of a model. Subsequently, we remove the worse quarter of
the sets. The remaining sets are fed into an support vector
machine (SVM) each. In the next step we apply a stacking
ensemble approach by feeding the outputs, i.e. the classi-
fication decisions, of the SVMs into a further SVM, which
learns how to generate one common classification decision.

3. EXPERIMENTS
We prove our proposed multimodal feature aggregation ap-
proach by experiments with a real data set and multimodal
low-level speech features. The data were gained by con-
ducting a study in which the speech of ten 10 to 12 years
old German students was recorded and their perceived task-
difficulties were labelled by experts. During the study a
paper sheet with fraction tasks was shown to the students
and they were asked to explain their observations and an-
swers. The acoustic speech recordings were used to gain two
kinds of low-level speech features: amplitude and articula-

tion features. The amplitude features ([1]) are taken from
the raw speech data, or information about speech pauses
respectively: ratio between (a) speech and pauses, (b) num-
ber of pause/speech segments and number of all segments,
(c) avg. length of pause/speech segments and max. length
of pause/speech segments, (d) number of all segments and
number of seconds, and percentage of pauses of input speech
data. The idea behind this kind of features is that depending
on how challenged the student feels, the student makes more
or less and shorter or longer speech pauses. The articula-

tion features ([2]) are gained from an intermediate step of
speech recognition which delivers information about vow-

els and consonants: ratio between (a) number of silence
tags and number of all tags, (b) avg./min. length of vow-
els/obstruents/fricatives/silence tags and max./avg. length
of vowels/obstruents/fricatives/silence tags. The idea be-
hind this kind of features is that depending on how chal-
lenged the student is, the student shortens or lengthens vow-
els and consonants. The data collection resulted in 36 ex-
amples labelled with over-challenged or appropriately chal-

lenged, respectively 48 examples after applying oversampling
to the smaller set of examples of class over-challenged to
eliminate unbalance within the data. We conducted a 3-fold
cross validation and we applied SVMs with an RBF-kernel
and for each SVM used we conducted a grid search on each
fold to estimate the optimal values for the hyper param-
eters. As baseline experiments we applied an SVM sepa-
rately to both feature types. The classification test errors
and F-measures (harmonic mean of recall and precision) for
both classes (over-challenged, appropriately challenged) are
reported in tab. 1, (1). An aggregation of both feature
types only makes sense, if we can improve this results. A
straight forward way to combine different feature types is to
concatenate the features of all types and putting them into
one feature vector which serves as input for one classification
model. However, this approach does not deliver good results
(see tab. 1, (2)) in cases where some features may be corre-
lated and may disturb each other. Hence, one should restrict
the input vector by considering the correlations. The results
of using only features uncorrelated with most of the other
features are shown in tab. 1, (3). As one can see considering
correlations helps to improve the classification performance.
But still there is space for improvement. Hence, in the fol-
lowing we combine ensemble methods with feature selection
which takes into account correlations. In a first step we ap-
plied stacking ensemble to the outputs of SVMs applied to
the uncorry sets (see tab. 1, (4)). However, there could still
be correlations within the uncorry sets. Hence, as next step
we computed for each feature the uncorr2y set and applied
again stacking ensemble, resulting in a classification test er-
ror of 16.67 % (tab. 1, (5)). This result is already very good
but there is one more statistical information to use: the
AIC. We computed for each uncorr2y set the AIC, threw
out the worst quarter of these sets and applied stacking to
the remaining sets resulting in a very good classification test
error of 8.33 % and F-measures 0.92, 0.91 (tab. 1, (6)). In
summary, the experiments have shown that our multimodal
feature aggregation approach is able to improve the classifi-
cation performance significantly.
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ABSTRACT 
In this paper, we present selected findings from our usage analysis 
of an online English Language Teaching (ELT) workbook. 
We focus on how teachers assign activities and how learners 
complete them. 

Keywords 
ELT, network analysis, time on task 

1. BACKGROUND 
MyEnglishLab for Speakout Pre-intermediate is an ELT 
workbook that accompanies a paper textbook. The aim of the 
product is for the teacher to assign auto-graded homework. 
On average, about 10 practice activities are assigned by the 
teachers within a week, with a 30% chance of assigning more than 
the average. Speakout consists of twelve units that cover 90-120 
hours of teaching. Each unit contains about thirty assignable 
activities centred around grammar, vocabulary, listening, reading 
and writing. This paper is an exploratory study about how 
teachers assign such activities and how learners complete them. 

2. TEACHER PROGRESSION 
2.1 Method 
To analyse how teachers progress through units within Speakout, 
we wanted to show which pairs of units were assigned together. 
By assigning a unit we mean assigning at least one activity from 
that unit. In Figure 1 (created using Gephi [1]), a node represents 
teachers who assigned at least one activity in a given unit. 
The edges represent those teachers that, having assigned some 
activities in one unit, moved to another unit. A thicker edge means 
two units were assigned together more frequently (by more 
teachers). For example, 185 teachers assigned both Unit 1 and 
Unit 2. The thickness and length of each edge refers to normalised 
co-appearance (geometric mean) calculated after Newman [2] as: 

n(ui,uj )

n(ui ) ⋅n(uj )  
 

 

where n (…) is the number of teachers that assigned activities in 
all listed units, and ui is the i-th unit. Different unit types were 
highlighted for better readability, namely the regular Units 1-6 
(U1-U6) and Units 7-12 (U7-U12) are shown separately from 
Review and Check 1-4 (R&CH1-R&CH4). The role of the former 
units is to enable regular day-to-day homework practice, while the 
role of the latter is to allow the learner to review a larger portion 
of the material from the three previous units before a test. 

2.2 Results 
Figure 1 shows that there is no prominent community structure. 
Teachers tend to focus on smaller chunks of material, especially 
Units 1-3 and Units 7-9. Figure 2 shows that teachers assign either 
the regular Units or just the Review and Check units, rarely both. 
There are more connections between the Review and Check units 
themselves than between the regular Units. For example, more 
teachers assign Review & Check 3 together with Review & Check 4 
than they assign Units 10-12 together with Review & Check 4.  

 
Figure 1. Network graph of relations between units in 

Speakout Pre-intermediate with edge as a normalised value 
(geometric mean) 
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Figure 2. Network graph of relations between units in 

Speakout Pre-intermediate with edge as a normalised value 
(geometric mean); only the 24 strongest edges shown 

3. QUESTION TYPE AND TIME SPENT 
When it comes to learners, we wanted to analyse the time needed 
for completing a language-learning activity. Speakout contains 
15 main question types. Figure 3 (created using RStudio [3]) 
shows that for most of them the average time spent on the first 
submission of an activity is of the order of 3 minutes. Learners 
spend the least time on multiple choice activities (about 1.5 
minutes), and most time on jumble words activities (over 4 
minutes). We stress that these times do not necessarily correspond 
to the optimal duration it takes a learner to complete all the 
questions within such an activity, which needs future exploration. 

 
Figure 3. Geometric average of time spent on completing 
an activity of a given type, with 95% confidence intervals. 

Due to space constraints, we present only one figure that presents 
a question type in more detail, namely fill-in (gap completion). 

 
Figure 4. Correlation between the time in which a learner 

submits a fill-in activity and the score received for that 
activity; cutoff at 60 minutes 

Figure 4 shows that, except for the solid lines at activity score 0% 
and 100%, most of the observations are placed in the top left part 
of the plot. The smoothed line shows a peak in activity score at 
1.5 minutes spent on a fill-in activity, after which the score visibly 
decreases. This means many learners need 1.5 minutes to submit 
a simple fill-in activity (for example, without a text or audio) 
and receive a relatively high score. An analysis of the top four 
question types that account for about 76% of Speakout activities 
(fill-in, drag-and-drop, dropdown and single choice – the last 
three are not shown here) shows that there is a negative 
correlation between the time spent on activities and the scores 
received for those activities. On average, the score decreases by 
about 8% for each 10 minutes spent on the activities with these 
question types. 

4. FUTURE WORK 
Regarding teacher usage, our next step is to segment teachers 
according to course types and institutions. Regarding learner 
usage, we will investigate if activities consisting of many 
questions that are completed within a very short time need to be 
further analysed to identify whether their format encourages 
guessing or copying. 
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ABSTRACT
Highly interactive game-like virtual environment has gained 
increasing spotlight in academic and educational researches. 
Besides being an efficient and engaging educational tool, virtual 
environment also collects a lot of behavior data which can be used 
with Educational Data Mining (EDM) techniques to assess 
students' learning competencies. In this paper, we propose an 
assessment system that seamlessly integrates EDM techniques 
with functionality and affordance of a virtual environment to 
assess students’ learning competency through analyzing their 
behavioral data and patterns. The virtual environment can record 
not only students’ learning outcome, but also their detailed 
learning process information, which has the potential to depict the 
full set of students’ learning activity. We also propose a set of 
metrics which can be used for judging students’ Self-Directed 
Learning skills and how these metrics can be evaluated 
computationally by capturing students’ behavioral data in a virtual 
environment. The field study, which is conducted in Xinmin 
Secondary School in Singapore, preliminarily illustrates the 
effectiveness of our approach.

Keywords
Educational Data Mining; Virtual Environment; Competency 
Assessment; Self-Directed Learning 

1. INTRODUCTION 
In the fast changing and increasingly globalized society, students 
nowadays need to become more conscious, controlled, 
independent and active in their learning. The new requirements of 
education urge the creation of new assessment approaches.
Besides being an efficient and engaging educational tool, virtual 
environment also collects a lot of behavior data which can be used 
with Educational Data Mining (EDM) techniques to assess 
students' learning competencies. Many researchers have worked in 
this area [1-3]. The system that we proposed is based on a full-
scale 3D virtual environment to assess students’ learning 
competencies. Among all kinds of learning competencies, we
focus on Self-Directed Learning (SDL) competency in our 
research study because it is among the most important learning 
competencies students need to excel in the knowledge society of 
the 21st century [4]. SDL skills are important indicators of 
students’ learning competencies as they are the fundamental 
philosophy behind life-long learning. The proposed system uses 
Evidence Centered Design (ECD) approach to assess students’ 
SDL competency through analyzing their behavioral data in 
virtual learning environment. With the Competency Model, 
Evidence Model, and corresponding Task Model, the system can 
provide opportunities for students to elicit behavioral indicators of 
certain SDL skills. These behavioral indicators can be used for 
assessing the skill levels which cannot be discerned from 

traditional academic assessment. Moreover, we conducted a pilot 
study in Xinmin Secondary School Singapore to demonstrate how 
to evaluate the SDL metrics. The study illustrates the preliminary 
effectiveness of our approach. 

2. MODELING SDL SKILLS  
The overall system architecture consists of two main modules: the 
Virtual Singapura II (VS-II) System and Assessment Automation 
module. VS-II System is a full-scale 3D virtual world to promote 
intelligent agent mediated learning. As an open environment, VS-
II allows students to explore and learn in a self-directed manner. 
By recording student’s behaviors in the virtual environment, the 
system provides a convenient and effective setting to elicit 
students’ behavior evidence of their learning skills through the 
whole learning process.  

Figure 1. System Architecture for Assessing Students’ 
Learning Competency. 

The Assessment Automation module has three sub-modules as 
shown in Figure 1. The first module – Data Recording 
meticulously records a wide range of student learning behavior 
data. There are totally 78 types of events being tracked in the 
system, and the data collected in the virtual environment consists 
of three categories: 1) Student learning behavior data, such as 
locations, timestamps, mouse clicks, etc. 2) Student learning 
achievement data, such as collected items, fulfilled missions, etc.  
3) Student knowledge data, such as correctness of responses, hints 
required, etc. The second module – User Competency analyzes 
students’ behavioral data through Evidence Centered Design 
(ECD) approach. Evidence Centered Design (ECD) is the 
framework for assessment that makes explicit the interrelations 
among substantive arguments, assessment designs, and 
operational processes [5]. Similar to the approach Shute has 
adopted in her study [6], we utilize ECD methodology in our 
system design to track and interpret students’ behavioral data to 
assess students’ SDL competency. The system is designed in a 

Data Recording
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three-layered model. The three layers are: 1) Competency Model
identifies what should be assessed in terms of skills. The 
competence of Self-Directed Learning (SDL) is denoted as ,
where  consists of three aspects of skills , and 

, where  denotes Ownership of Learning,  denotes 
Management and Monitoring of Own Learning, and  denotes 
Extension of Learning. 2) Evidence Model identifies behaviors 
that demonstrate the skills defined in 1). The essential student 
behavioral indicators for SDL are defined as 

, where . 3) Task 
Model identifies the tasks that would draw out behaviors defined 
in 2). Let T = {tasks completed by students in the learning 
environment}, and .  Each task  is an n-tuple, 
which consists of an ordered list of learning activities. Let 

, and  denotes a learning activity.  is 
the set of learning activities and each  is atomic and cannot be 
further decomposed into other learning activities.

In our implementation, we focus on the assessment of SDL skills 
in one of its three aspects, “Management and Monitoring of Own 
Learning”. We illustrated the assessment process by emphasizing 
one of the skills of SDL competency, , i.e. Management and 
monitoring of own learning skills. This skill is defined with three 
behavioral indicators. For each behavioral indicator, we designed 
several evidence variables to capture a student’s performance (as 
Figure 2). The Last module Statistics and Visualization module 
visualizes all the results and findings through our user interface.

Figure 2. List of Behavioral Indicators and Evidence Variables on 
Management and Monitoring of Learning. 

3. PILOT STUDY AND FINDINGS 
The assessment prototype has been deployed in Xinmin secondary 
school in Singapore. The field study on one side aims to examine 
whether the whole system is technically workable (data 
transmission, real time data recording, network setting, client 
response, etc.), on the other side aims to examine whether the 
SDL skills can be identified among students with students’ real 
behavioral data. 26 students from Secondary 2 (age 12-13) have 
participated in our study. In order to get the benchmark, we 
collected students’ SDL skills markings from three of their 
teachers, and calculated the average scores on each perspective. 
We also let students fill in a SDL self-report questionnaire. 

Significant results have been found. For time management,
students who used the virtual map to plan their learning path 
completed a significantly higher number of learning tasks during 
the same sessions as compared to those who did not. About 50% 
of the students in the group with the virtual map completed 4 
learning tasks, while for the other group, most students (close to 
60% of them) only managed to complete 2 or 3. The average 
number of learning tasks completed by the group with the map is 
3.83, while that of the other group is 2.5. Also, students who more 
tended to rely on the mobility tools provided in the game (i.e. the 
teleporting gates, the virtual passport, etc.) tended to limit 
themselves in terms of self-exploring wide range of possibilities. 
In contrast, students who were more selective of the tools tend to 
explore more widely and make better decisions. The correlation 
coefficient between mobility tool usage and the form teacher’s 
assessment of individual students’ exploration skills is -0.5404, 
indicating a strong negative relationship. These findings support 
that our system is promising in identifying useful learning 
behavior metrics, and also has the capability to identify different 
SDL skills from different behavior patterns.   

4. CONCLUSIONS  
This paper proposed a virtual environment enabled assessment 
system for assessing student’s SDL skills through personal 
learning behavior informatics. We provided a set of tools from 
theoretical models to system implementations to analyze student’s 
behavior data and managed to evaluate the connections between 
behavioral indicators and student’s SDL skills.  The proposed 
three-layered model bridges the gap between definitions of SDL 
skills and how they can be quantified and evaluated 
computationally. The seamless integration with VS-II system 
enables the collection of students’ behavioral data in the virtual 
environment. With the application of educational data mining, the 
Assessment Automation module analyzes collected behavioral 
data, consolidates and presents the findings graphically. In the 
future work, with more and more student data collected, we will 
gradually refine the benchmarks of student skills and improve the 
whole assessment process. 
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ABSTRACT 
Despite the original tenets about openness and participatory 
characteristics of MOOCs [1], the majority of MOOCs are 
delivered in a semi-structured asynchronous way bridging the 
strong structure of traditional courses -signposted by lectures, 
tutorials/seminars and activities/assignment deadlines- and open 
courseware in which student are able to select their own learning 
paths and goals. Looking at the activity of students in three 
different MOOCs delivered on the Coursera platform, we 
considered the effects of different course design to observe 
variations in the way students pace through the courses. The 
analysis (in progress) suggests that the course design and the 
mode of teaching strongly influence the way in which students 
progress and complete the courses. However, more research needs 
to be done on the individual variations and on the supporting 
mechanisms which could be put in place to scaffold students’ 
development of their own learning paths and matching their 
intended goals.    

Keywords 

MOOCs, learning design, behavioural analysis, learning 

1. INTRODUCTION 
Following Gartner’s hype cycle [2], MOOCs are currently in the 
‘sliding into the trough’ phase, quickly moving into a 
consolidation stage, which should lead to the establishment of best 
practices. This is evident also in the research domain, in which 
MOOCs have taken centre stage in the recent LAK and 
Learning@scale conferences. Despite the hype of big data in 
education and the potential associated with the ability to collect 
and analyse large amount of information about students’ learning 
behaviours, one of the biggest limitation in the field are the lack 
of systematicity in the creation of MOOCs –perhaps with the 
exemption of the limitations of the various platforms- and the lack 
of strong collaborations leading to sharing data across the sector. 
As mentioned in [3], at most, researcher might have access to a 
few MOOCs to analyse; this is echoed in the recent call for a 
special issue of the JLA (Siemens) to open up and describe large 
datasets in order to enable research. Yet, the biggest limitation in 
many published works is a full description of the context, i.e. the 
course design and philosophy behind it -which is the first stage of 
any data mining process in the industry-standard CRISM-DM 
model [4]. 

Even though the philosophies behind the MOOCs movement 
range from the instructivist (xMOOC, [5]) to the social-
constructivist (cMOOC, [6, 7]), a key assumption is that most 
MOOCs are built as a ‘course’: normally there is an 
instructor/facilitator, a set of resources, activities, support and 
other participants; content can be curated by instructors or shared 
among participants. As Cormier [8] put it, a MOOC is ‘an event’ 

which provides an opportunity for participants ‘to connect and 
collaborate’ and to ‘engage with the learning process in a 
structured way’. But, if it is an event and it is structured, then the 
way in which it is designed is fundamental and the design is what 
trumps the teacher role and/or presence. From an academic 
development’s perspective, not only the way in which elements 
and components are selected and structured makes a difference, 
but also the philosophy of teaching behind how the course should 
be delivered drive the learners’ experiences.  

2. DIFFERENT COURSE DESIGN 
At our university, a large, public, research-intensive university in 
Australia, one of the key reasons to enter the MOOC space was to 
be able to experiment with pedagogical innovation, learn from it 
and bring it back to mainstream (i.e. what we do on campus). The 
selection of courses to be delivered is driven by the awareness of a 
different target audience, disciplines and the ways in which 
academics imagined the best ways of teaching a course at scale. 
Here we only refer to the first 3 courses completed: INTSE 
(Introduction to System Engineering), LTTO (Learning to Teach 
Online) and P2P (From Particles to Planets -physics) which are 
broadly characterised in the table below.  

Table 1. Overview of courses  

 INTSE LTTO P2P 

Target group Engineers Teachers at 
all levels 

High school 
and teachers 

Course length 9 weeks 8 weeks 8 weeks 
Total videos 110 224 98 
Total quizzes 10 22 42 
Assignments 7 3 2 

Forums 54 
(14 top level) 

105 
(17 top-level) 

63 
(15 top-level) 

 

Design mode All-at-once All-at-once Sequential 

Delivery mode All-at-once Staggered Staggered 

Use of forums Tangential Core 
activity Support 

N in forum 422 1685 293 

Tot posts 1361 6361 1399 

Tot comments 285 2728 901 
 

Registrants 32705 28558 22466 

Active students1 60% 63% 47% 

Completing2 4.2% 
(0.3% D) 

4.4% 
(2.4 D) 

0.7% 
(0.2%) 

1. Active students are those appearing in the log; 2. Completing 
are those who achieve the pass grade or earn Distinction (D) 
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At the surface all three course lean toward an instructivist 
approach in which the content is essential. However, the 
educational developers supporting the design ensured that each 
course was characterised by a mix of content, activities, support 
tools and evaluation. There are some key differences by design: 
the way in which content is released; the way in which the course 
is taught; the function of activities and forums. In INTSE and 
LTTO all content is released at the start all together, however in 
LTTO the teaching occurred in a staggered way with regular 
announcements and feedback videos in response to the top voted 
comments in each week. P2P used a sequential release of content 
every week with a staggered delivery and interaction. The 
activities focus on self-test in INTSE and P2P, while in LTTO 
these had a teaching function structuring personal development 
and reflection in the forums. Finally forums were not the focus of 
the course in INTSE, but had an important role in LTTO and as 
support in P2P. 

3. RESULTS 
3.1 Patterns of activity 
As it can be seen from the charts some patterns are quite evident. 
For the P2P course (figure 1), which was designed and delivered 
on a week-on-week basis, the darker diagonal shows that students 
are following the course in a linear fashion. LTTO (figure 2) 
shows a tendency to follow activity along the diagonal. However, 
this pattern is reduced by individuals who jump between 
sections/components in the same week (earlier in the course rather 
than later). In the INTSE (figure 3), patterns are a lot more 
diluted: in the use of content (videos) the stronger patters occur in 
the first week, last week and in part across the diagonal. The 
forums don’t seem to have a time-based dependency and the 
quizzes follow the diagonal and are more frequent in the last week 
of the course, it is evident that the majority of students tend to 
follow a fairly linear pattern. Further analysis will be required to 
test the significance of these patterns, but this early visualization 
clearly suggest that there is an interaction between the design and 
delivery of the course and that despite the freedom of determining 
their learning paths, students like the pacing provided by 
instructors. 

3.2  ‘Ontrackness’ and dedication 
In their analysis [3] ‘on-trackness’ is defined as ‘the degree to 
which students cohere with the recommended syllabus’. Similar 
metrics have been used in learning analytics as signals for 
possible support/interventions in order to reduce dropout (i.e. 
attendance, timely submission etc.). In sequential courses this is 
simple to identify, however when all the material is available at 
once, this could be less meaningful. Figure 4 shows the patterns in 
the three courses by mapping the weeks in which a resource is 
expected to be used (i.e. design) and when it was actually used.  
Once again the linear pattern around the diagonal for P2P clearly 
show how participants follow the course week-on-week; in 
INTSE and LTTO the videos use are more scattered with quite a 
few participants looking ahead in the course, but this is not 
reflected in the quizzes/acitivities and the forums As well as the 
overview of ontrackness, we have started to consider other 
metrics, which will require further modelling and analysis. 
Dedication is defined as the regularity of engagement. Given a 
time period T and the distribution of activity during T, dedication 
d is the ratio of activity and course length. Assiduity is a measure 
of the patterns of activity over time and it is characterised by the 
skewness and kurtosis of the distribution of activity. Looking into 

individual distributions of activity and the relations with other 
measures will provide a better insight on the individual 
preferences and how these are related to the teaching and course 
design. 

4. CONCLUSION & DIRECTIONS 
Bearing in mind the differences in the cohorts of students taking 
the courses taken into consideration, which leads to a limited 
ability to draw conclusions, the striking similarities between the 
patterns of engagement in the different MOOCs suggests that the 
method of teaching/delivery is a key element in the way students 
take a MOOC. The structure of the MOOC ‘event’ has got a 
strong impact in the way students engage, but more analysis is 
necessary to determine the level of flexibility afforded. 

At the group level it is apparent that student follow the pace of the 
course as set by the instructors, however many questions remain 
open about the effectiveness when it comes to achievement levels. 
In particular, the goals/intents of students might not be to 
complete the course and therefore the skipping behaviours could 
be aligned with what they want to achieve and hard to relate to the 
measure of success of a MOOC. In fact [9] argue that we need to 
review and reconceptualise what we mean with student success in 
this space. More analysis, especially at the individual student level 
will be necessary to extract meaningful insights. 
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ABSTRACT
We present an improved version of our web-based intelligent 
tutoring system integrated with data mining tools. The purpose of 
the integration is twofold; a) to power the systems adaptivity 
based on SPM, and b) to enable teachers (non-experts in data 
mining) to use data mining techniques on a daily basis and get 
useful visualizations that provide insights into the learning 
process/progress of their students.

Keywords
Web based intelligent tutoring system, data visualizations, visual 
analytics. 

1. INTRODUCTION 
Our proposed solution to objectives put forth in [5] is the 
integration of our web-based ITS with standalone data mining 
tools Weka[3] and SPMF[2]. We developed an integration 
module that enables continuous communication with the DM 
tools without implementing any specific algorithm into our 
application or changing the original DM code. The architecture of 
the integrated system is displayed in Figure 1. Functionalities that 
rely on data mining results for students and teachers are marked 
with asterisks. We will elaborate on these in the next sections. Our 
web-based intelligent tutoring system (ITS) provides a platform 
for learning on ill-defined domains [4] i.e. domains that consist of 
a number of knowledge units (KUs) that do not have a set order in 
which they have to be learned, but instead the system relies on a 
domain expert to define the structure of the domain. The learning 
process is started by selecting a KU to which the system responds 
by displaying the various types of learning materials created by 
the teacher. Afterwards, the student proceeds to the assessment 
module. The system will first ask the student a question about the 
KU that was learned, followed by an initial question for every KU 
that is below the current KU in the domain structure created by 
the teacher. In this way the system checks whether the student 
understands all the underlying concepts. This list of KUs is 
currently the same for all students. We aim to make this part 
dynamic (see Section 3) in order to make the system more 

adaptive and increase the efficiency of the whole system. If the 
student offers an incorrect answer to any of the initial questions, 
he/she is transferred to learning that KU and the whole process is 
repeated. 

Figure 1. Overall system architecture 
No matter how many levels down the hierarchy the student is 
taken by answering initial questions incorrectly, the system will 
always return to the starting KU and finish when all the initial 
questions have been answered. Once the student reaches the KU 
threshold, the system will stop displaying that KU later in the 
learning process in order to avoid tediousness and repetition. 

2. VISUAL ANALYTICS FOR TEACHERS 
At the time of writing the visual analytics section for teachers had 
a number of visualizations and a clustering section that provide 
useful insights into the activity of the students and the learning 
process as a whole. When they start the analytics module, teachers 
are presented with a compact report containing columns on the 
number of learning and repetition activities the student performed, 
number of correct, incorrect and unanswered questions, and the 
total time spent learning. Each of the columns can be expanded 
into a sortable, searchable, heat mapped table to get a detailed 
view about the student’s activity. Figure 2 represents the 
expanded report on the number of learning sessions and 
repetitions for all the KUs in the domain. Another part of the 
visual analytics module is the chart section. There are a number of 

Proceedings of the 8th International Conference on Educational Data Mining 574



activity charts that can reveal the activity levels of the whole 
group or individual students (Figure 3).

Figure 2. Detailed report on learning (all KUs,all students) 

Figure 3. Cumulative group activity by days 
 The clustering analysis is currently based on a fixed number of 
features (the ones mentioned in the compact report), but in the 
next development iteration it will be completely interactive so that 
the teacher will be able to select features as well as the number of 
clusters before starting the analysis. When the teacher starts the 
clustering, the system invokes the communication manager which 
converts the data to the appropriate file format for either Weka or 
SMPF, writes the file to the file system and then performs the 
appropriate API call in the shell command line. 

Figure 4. Visualization of student learning paths 
The DM tool runs the required algorithm on the data using the 
sent parameters, and produces the output file. The file is then 
read, formatted and then returned to the teacher interface where 
they are displayed as a table with five columns containing cluster 
names, clusters centroids and students belonging to each cluster. 
The teachers using the system had no problem identifying inactive 

students, best students, the average students (largest cluster) and 
students that were “gaming” the system - students with low 
number of questions answered and very small amount of time 
spent learning – they started using the system at the last minute 
and probably obtained the answers to some questions. This can be 
confirmed by analyzing the heat maps and activity charts of those 
students.  

3. DM-POWERED PATH OPTIMISATION 
The next goal of our research is to create a more adaptive tutoring 
system in order to: a) increase the quality of learning, b) reduce 
time needed to acquire the domain knowledge. The set hypothesis 
is that each student creates a unique path through the structure of 
KUs. By scheduling a daily analysis of all these paths using SPM 
algorithms, we can find frequent learning paths. Next, we need to 
evaluate these paths in order to differentiate between paths that 
are frequent because a number of students are struggling with a 
difficult KU without making much progress through the domain 
from paths that show efficient behaviors that result in significant 
progress. We are currently developing an algorithm that will 
perform these evaluations by taking into account a number of 
learning performance indicators in order to produce a path score. 
When we get a list of evaluated frequent sequences and students 
clustered by their activity and effectiveness levels, we can alter the
list and order of KUs to be learned in order to help the student 
follow an optimized path through the knowledge domain. 
Clustering of students gives us a finer level of granularity so we 
can offer different modifications to different groups of students. 
At this moment we run the SPM algorithms to get the frequent 
patterns and visualize them (Figure 4) using D3JS [1]. 

4. CONCLUSION
The main advantage of the system is that we can use any of the 
many SPM and clustering algorithms provided by integrated DM 
tools. In the future we will complete the SPM based adaptive path 
optimization component and perform experiments to verify its 
efficiency.  
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ABSTRACT 
This work tends to broaden the knowledge about the learning 
process in LMSs from an EDM approach. We examine students’ 
interactions with Moodle and their relationship with achievement. 
We analyzed the log data gathered from a Moodle 2.0 course 
corresponding to the different interaction patterns of 140 
undergraduate students with the LMS in an authentic learning 
context. We found out 4 different patterns of learning related to 
different academic achievement. 
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1. INTRODUCTION 
In traditional learning settings, instructors can easily get an insight 
into the way that the students work and learn. However, in LMSs, 
it is more difficult for teachers to see how the students behave and 
learn in the system [2]. Since learner activities are crucial for 
effective online teaching-learning process, it is necessary to 
search for empirical methods to better observe patterns in the 
online environment. In recent years, researchers have investigated 
various data mining methods to help instructors to improve e-
learning process and systems [1]. As shown in the review of 
Romero and Ventura [3], a good number of quality works have 
been conducted with techniques similar to the ones used at this 
work. Most of them were carried out in laboratory settings with 
concrete tasks, but just a few in real settings or during an extended 
period of time [2]. These work aims to go beyond laboratory 
contexts and researcher-controlled settings. Therefore we set two 
research questions: 1. Are there sense different patterns of 
students’ interaction when they learn in an LMS in a real context? 
2. Are those patterns related to students’ final marks? 

 

2. METHODOLOGY 
2.1 Participants and procedure 
The datasets used in this work have been gathered from a Moodle 
2.0 course that enrolled 140 undergraduate university students in a 
psychology degree program at a state university in Northern 

Spain. The experience was an assignment in the curriculum of a 
third year mandatory subject. Students were asked to participate in 
an eTraining program about self-regulated learning related to the 
subject’s topic. The program was composed of 11 different units 
that were delivered to the students on a weekly basis. Students get 
an extra point in their final subject grade if they complete the 
assignments. We have used 12 actions that make the most sense to 
represent the students’ performance in the particular Moodle 
course described (See Table 1). The variables selected can be 
grouped into two different groups: Variables related to effort and 
time spent working (Time task, Time Span, Relevant Actions, and 
Word Forums) and Variables related to procrastination (Day’s 
task and Day’s Hand-in). Final marks were extracted from the 
performance in the subject that is the grade of the e-Training 
program and the sum of the grade in an objective final exam of 
the subject. 

2.2 Data Analysis 
First, as an exploratory approach to the optimal number of 
behavioral patterns or clusters in the LMS, the expectation-
maximization (EM) algorithm was used. Second, we sought a 
similar solution to the one provided by EM for the cluster 
classification but through the k-means algorithm. The objective of 
these two first steps is to obtain a clustering solution based on 
coherence among EM and k-means. Through the clustering, we 
aim to get high similarity intra-cluster and maximize the 
differences between them. Finally, ANOVA analyses were run to 
observe if there were differences between the inter-clusters, and 
the predictive validity of those clusters to predict final marks. 

3. RESULTS 
After analyzing the data with the EM algorithm, with k-means and 
with the elbow method, k = 4 was found to be the optimal number 
of clusters for this sample. Fig. 1 graphically represents the 
characteristics of the four groups. The second question was to 
bring up the chances of those patterns being related to students’ 
final marks. For this purpose, an ANOVA analysis was carried 
out. The results obtained with final marks as the dependent 
variable and the different clusters the independent ones where F 
(3,136) = 13.31; p < .00; η2

p .227, indicates that there are 
statistically significant differences between the four student 
groups in final marks. The post hoc comparisons showed the 
following statistically significant differences: cluster 1 vs cluster 2 
(d = 0.82, large effect), cluster 2 vs cluster 4 (d = 1.43, very large 
effect), and cluster 3 vs cluster 4 (d = 1.01, large effect).
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Table 1. Name of variables considered in the study with their description and extraction method 

 
Regarding the comparisons between cluster 1 vs cluster 4 and 
cluster 2 vs cluster 3, the inter-cluster differences’ effect size was 
medium. 

4. DISCUSSION 
Four different patterns of learning with different final marks were 
found in this course; it is interesting how students with very 
different patterns in the LMS end with a very similar 
achievement. Cluster 1 is characterized by a small amount of time 
allocated to work in general but particularly in the practical task. 
The variables regarding procrastination and the participation in 
the forums are low, nevertheless, the overall number of significant 
actions in the LMS is high. Considering that their achievement is 
medium-low these results may indicate that students in this cluster 
work quickly but not efficiently. The students in the Cluster 2 
could be described as strategic due to the small amount of time 
and low number of actions in the LMS that led them to very good 
results. The pattern for working variables is very suitable, too, 
with a high quantity of time invested in the tasks and they do not 
procrastinate. Cluster 3 is similar to the previous one in terms of 
achievement but not in the remaining variables. This group’s 
achievement is a bit lower than Cluster 2’s, it could be labeled as 
medium-high. There is nothing remarkable about procrastination 
variables, in contrast, the participation in the forums is really low. 
The number of relevant actions is also the lowest for this cluster; 
however, the time that they spent in the LMS was the highest. 
These results may indicate that they are not strategically efficient 
and do not make the most of the time spent, but they are still 
ultimately profitable in terms of achievement. Finally, Cluster 4 is 
characterized by the lowest marks. The most defining 
characteristic is that they are extreme procrastinators with really 
low levels in the variables related to the time spent working. 
Moreover, they make a significant number of relevant actions but 
do not benefit from them at all, which denotes a maladaptive 
approach to learning. 
On one hand, these results may help an instructor better 
understand students’ learning process, identify at-risk students 
(e.g., Cluster 1 and 4) and intervene. On the other hand, the 
information provided by Clusters 2 and 3 could guide the future 

development of recommendation systems; having a similar 

performance in terms of achievement the underlying interaction 
with the LMS denote different patterns that could be modeled by a 
recommendation systems in very different terms. 
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Name Description Extraction Method under Moodle 
nomenclature Additional information 

Variables related to effort and time spent working 

Time 
Tasks Total time spent 

Sum of the periods between quiz view/quiz 
attempt/quiz continue attempt/quiz close attempt 

and the next different action 

Students have a period of 15 days to 
complete the tasks. 

Time Span Total time spent working in every 
unit 

Sum of the variables related to the time spent in 
the three different type of contents: Time tasks, 

Time Theory and Time Forum 

Students have a period of 15 days to work in 
a declarative knowledge level (Theoretical 

contents), procedural knowledge level 
(Practical tasks), and conditional knowledge 

level (Discussion forums). 
Words 
Forums Number of words in forum posts Extracting the number of forum add discussion 

OR forum add reply words 
Students do not have a minimum/maximum 

number of words. 

Relevant 
Actions 

Number of relevant actions in the 
LE Total of relevant actions considered 

Actions such as log in, log out, profile 
updating, check calendar, refresh content, 

etc. are dismissed. 

Variables related to procrastination 

Day’s 
Tasks 

How long students wait to check 
the task since it was made 

available in the LE (in days) 

Date of task view since the task was made 
available 

Students have a period of 15 days to 
complete the tasks. 

Day’s 
“hand-in” 

The time taken to hand in the task 
since the task was made available 

at in LE (in days) 

Date of quiz close attempt since the task was 
made available 

Students have a period of 15 days to hand in 
the tasks. 

Figure 1. Graphic representation of clustering 
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ABSTRACT
WebLab-Deusto is a learning environment used at the University 
of Deusto as the landing platform to several remote laboratories 
currently used in high school and university level courses. One of 
these remote labs is VISIR, a remote electricity kit that can be 
used in teaching DC and AC circuits. As happens in any open-
ended educational environment, it is difficult to assess the 
learning effects of this tool. Fortunately the communication 
between the users and the VISIR remote lab in the Weblab-
Deusto leaves behind a set of log information that can be 
analyzed. This contribution presents our current work-in-progress 
in analyzing these logs for better understanding the learning 
processes that take place when using this remote lab. 

Keywords
Remote lab, logging, learning, physics, electric circuit 

1. INTRODUCTION 
WebLab-Deusto [1] is an open-source management system for 
remote laboratories in development at DeustoTech, Universidad 
de Deusto since 2001. Its features web and mobile access to 
several remote laboratories in different topics, e.g. programming 
or physics. 

One of the remote labs that is used through this platform is VISIR 
[2], a remote laboratory which supports experimentation with 
electric circuits (see Figure 1). 

As is common in using open-ended educational environments, it 
is difficult for students, teachers and researchers alike to 
understand and to assess how to use them to improve learning. 

Fortunately, the use of VISIR through the WebLab allows 
collected each of the circuits made by the students and sent to the 
remote lab for its construction. 

Figure 1. Web interface to VISIR in WebLab-Deusto 

This work describes the data collected in WebLab-Deusto for the 
VISIR remote lab and it presents our efforts to provide (a) a tool 
for teachers to check students’ work, and (b) a toolbox for a quick 
understanding of the students’ activity when the lab is used in 
medium-to-large class settings. 

2. WEBLAB-DEUSTO VISIR DATA 
COLLECTION 
As indicated above, any call to the VISIR remote lab in the 
WebLab-Deusto system is collected to a database. 

Each register in the collected data includes the following fields: 

studentId, a key corresponding to each student, 
sessionId, a WebLab-Deusto session key, 
requestTime, a date/time indicating when the request was 
made, 
responseTime, a date/time indicating when the response was 
sent back to the web client, 
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queryXML, the information sent from the client to the 
remote lab and, 
answerXML, the digitized information of the measures 
collected in the remote lab and sent back to the client. 

In this data, the electric circuit made by the user is encoded in 
character string in the queryXML field. For example, the text 
“W_X DMM_VHI A11 W_X DMM_VLO A7 R_X A7 A11 10k” 
indicates that a 10 kΩ resistance is connected to the voltage plugs 
of the digital multimeter. 

3. ASSESSMENT TOOL FOR TEACHERS 
The assessment tool for teachers allows selecting a specific call to 
the remote lab and retrieving in friendly interface the most 
significant information about the circuit that was constructed and, 
if it’s the case, measured. 

This tool, detailed in an earlier publication [3], allows to compare 
a specific circuit built by a student with a teacher’s proposed 
solution. It automatically evaluates the main characteristics of 
both circuits and tries to estimate whether both circuits are 
equivalent. 

4. DATA MINING FOR ACTIVITY 
EVALUATION 
The data mining part of the effort implies querying the database 
for all the actions done by a group of students in solving a 
predesigned educational hands-on activity. 

The results shown here correspond to an educational activity 
carried in the second semester of the 2013-14 academic year in an 
introductory physics course in a first-year undergraduate program. 
It belongs to the teaching of DC circuits, i.e. to the measure of 
voltage and current in simple DC circuits and Ohm’s law. The 
activity included two 1.5-hour sessions of using the VISIR remote 
lab. 

Figure 2. Time spent per student 

Figure 3. Unique circuits per student 

From the pooled data (53 students, 18064 registers, 12114 
circuits), a data-based evaluation of the activity has been carried 
on. For example, the teacher can know the distribution of time-on-
task per user (Figure 2), the number of different circuits built per 
user (Figure 3) or, if required, identify the students who did not 
take enough profit from the lab session. 

Other information that we are currently able to analyze include 
which circuits are more often built, what measure is attempted in 
each of them and the correctness of this measure. 

5. CONCLUSIONS AND FURTHER WORK 
Current logged data in remote laboratories delivers enough 
information to provide better feedback to students and teachers to 
support learning in these open environments. 

Work is in progress to offer the users of these resources, analytic 
tools that allow for detecting learning difficulties and affordances 
for educational improvement. 
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ABSTRACT
Process mining is an emerging technique that can discover
the real sequence of various activities from an event log, com-
pare different processes and ultimately find the bottleneck of
an existing process and hence improve it. Curriculum data
is the history of the courses effectively taken by students.
It is essentially process-centric. Applying process mining
on curriculum data provides a means to compare cohorts
of students, successful and less successful, and presents an
opportunity to adjust the requirements for the curriculum
by applying enhancement of process mining. This can lead
to building recommenders for courses to students based on
expected outcome. In this paper we first discover a process
model of students taking courses, then, compare the paths
that successful and less successful students tend to take and
highlight discrepancies between them. The conclusion we
reached is that process mining indeed has a great potential
to assist teachers and administrators to understand students
behavior, to recommend the correct path to students, and
at last to enhance the design of a curriculum.

1. INTRODUCTION
The term curriculum often refers to a predefined recom-
mended or mandatory sequence of actions including courses
or resources for students. It is designed by a school or a
university in order to achieve some educational goals. To
maximize this goal, some constraints are frequently imposed,
e.g., students must take some specified courses before tak-
ing others. Given the liberal approach for selecting courses
and taking into account these prerequisites for the courses
and the requirements for the programs, students can follow
different paths from start to finish. Discovering and under-
standing the process students follow, or some cohort, such as
the most successful learners, can be very indicative to cur-
riculum administrators and can also be the basis for a recom-
mender system to recommend appropriate paths to students
in terms of courses to take and in terms of prioritizing the se-
quence of courses. The common way to analyze educational
data is using simple statistics and traditional data mining.

However statistics and conventional data mining techniques
do not focus on the process as a whole, and do not aim at
discovering, analyzing, nor providing a visual representation
of the complete educational process [3]. Process mining con-
sists of extracting knowledge from event logs recorded by an
information system and is inherent in discovering business
process from these event logs, comparing and conforming
processes, and providing mechanisms for improvements in
these processes[4]. Process mining techniques are often used
in the absence of formal description of the process and can
provide a visualization with a flowchart as a sequence of
activities with interleaving decision points or a sequence of
activities with relevance rules based on data in the process.

Some attempts have already been made to exploit the power
of process mining in curriculum data, historical data en-
compassing the sequence of courses taken by students. For
instance, the authors of one chapter in [2] give a broad in-
troduction of process mining and indicate that it can be
used in educational data. The first paper that proposes to
utilize process mining on curriculum data is [3]. The main
idea is to model a curriculum as a Colored Petri net us-
ing some standard patterns. [1] directly targets curriculum
data and brings up a notion called curriculum mining. Sim-
ilar to the three components of process mining, it clearly
defines three main tasks of curriculum mining, which are
curriculum model discovery, curriculum model conformance
checking and curriculum model extensions.

The application of process mining on curriculum data offers
a wide range of possibilities. First it can help the educators
understand and make better decisions with regard to the
offered curriculum. For example, what is the real academic
curriculum? Are there paths seldom used and others more
popular? Do current prerequisites make sense? Are the par-
ticular curriculum constraints obeyed? How likely is it that
a student will finish the studies successfully or will drop out?
It can also assist students to choose among different options
and even make recommendations to students. For instance,
How can I finish my study as soon as possible? Is it more ad-
vantageous to take course A before B or B before A? Should
I take courses A and B or courses B and D this semester in
order to maximize my GPA? Answering such questions to
both educators and students can greatly enhance the edu-
cational experience and improve the education process. We
show in this paper how some of these questions can be an-
swered using the history of courses taken.
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2. CURRICULUM DATA
Although the data about courses have already been collected
by the Computing Science department of the University of
Alberta, we cannot publish any result related to such data
due to lack of ethical approval. However, we wrote a curricu-
lum simulator to mimic the behaviors of different kinds of
students from the department and be as close as possible to
the real data. First, we predefined a set of rules or require-
ments similar to those in the offered programs in the depart-
ment. For example, prerequisites, i.e. some specified courses
must be taken before the student takes another one. Other
requirements include the first and the last course a student
must take, mandatory courses, and non-coexisting courses,
i.e. if the student takes one course in the group then they
cannot take any other course belonging to the same group.
Then, we generated students in three categories: the respon-
sible students who always satisfy the course constraints; the
typical students who seldom violate course constraint rules;
and the careless students who often do not follow the set
rules. Moreover, we differentiated the students based on the
range of marks they are assigned in courses they take cre-
ating clusters of successful and less successful students. We
generated the historic courses data for each student adding
some probability that a student withdraws from a course
giving the course load and previous withdrawing behavior.

3. DATA ANALYSIS
The final goal is to examine what kind of paths successful
students tend to take and what is the discrepancy between
successful students and less successful students so that we
can make recommendations to steer the students to the suc-
cessful paths. Since we have predefined rules for different
types of students in our simulations, the goal is to verify
whether we can discern these rules purely from the model
we discover by process mining. If we can find the rules from
the model, then we are safe to say it is possible to distinguish
the ”correct path” that can yield the best result by means of
process mining, thus a recommendation, that closes the gap
among students, can be achieved.

The several process models that were discovered from the
curriculum log are close portrayal of real curriculum mod-
els in our computing science department. Each model cov-
ers the most frequent activity paths, given some thresholds.
This is because the model map would be too dense and clut-
tered to recognize patterns if we present all of them. We
added an additional activity at the end of each case to indi-
cate the type of the student. In practice, this type can be any
cohort of students such as based on the GPA ranges, based
on graduation distinction, withdrawal, or other criteria. To
inspect students’ behavior patterns in more detail, we fur-
ther filtered the model with their last activity, i.e., parti-
tioning students based on their type so that we can compare
them. The rules we imposed while generating the curricu-
lum data can indeed be easily verified. For the students who
seldom violate course constraint rules, the frequent paths
appear very similar to those of the first group. However,
contrasting the complete graphs of these groups reveals pe-
culiar paths specific to one or the other group. The contrast
is even more pronounced when comparing the responsible
students and the careless students, as defined in the data.
This grouping can be a placement test in some other cases.
The categorization can also be done at the end of the paths

based on the outcome at the end of the program or the end
result for a given course. This allows contrasting the paths
taken by successful students with other paths at the end of
a program, or comparing the initial paths of students who
dropped out of a course to paths leading to the same course
taken by those who finish that course. The result of contrast-
ing paths of different cohorts of students stresses out desired
and undesired paths specific to some groups, the analysis of
which can highlight recommendations for new prerequisites
to align new students from a potentially undesired path to
the desired one. In the case of drop-outs from courses, this
analysis provides insights on the potentially faulty sequence
of courses or lack of certain courses in the sequence that
lead to higher risk of dropping out. In addition to providing
better understanding of the curriculum data and a way to
discern between behaviors of different cohorts of students,
contrasting between process models from different groups of
students presents an opportunity for a course recommender
system. By contrasting between the processes followed by
students grouped based on their course outcome or based
on final GPA, we can find and visualize the sequences of
courses that lead to the highest probability of success for
a given course. Based on the courses already taken by a
student, the system can indicate the options to take that
have the highest chance to improve the GPA. Similarly, the
system can recommend to take a course before another to
maximize outcome. The same data can also be used by ad-
ministrators to define new prerequisites for courses and thus
improve the chance for the adoption of better paths. We are
currently building such a recommender system for students.
The system would use evidence from historical data to pro-
vide comparison of average ranges of prospective marks if a
student follows one path or the other when selecting courses.

4. CONCLUSION
Process mining, to discover sequences of courses taken by
students, is indeed a powerful tool to analyze curriculum
data. By this means, we can visualize and formalize the real
paths students actually take, and reveal the underlying pat-
terns such as prerequisites and other constraints. Moreover,
conformance in process mining can reveal paths that are
unexpectedly not followed by students. Furthermore, con-
trasting processes from different cohorts of students discloses
hidden specificity that we can act upon. Most importantly,
contrasting processes provides means to recommend more
appropriate sequences of courses to students personalized to
their own cases and exposes new insights to administrators.
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ABSTRACT
Understanding player behavior in complex problem solving
tasks is important for both assessing learning and for the
design of content. Previous research has modeled student-
tutor interactions as a complex network; researchers were
able to use these networks to provide visualizations and au-
tomatically generated feedback. We collected data from 195
high school students playing an optics puzzle game, Quan-
tum Spectre, and modeled their game play as an interaction
network. We found that the networks were useful for vi-
sualization of student behavior, identifying areas of student
misconceptions, and locating regions of the network where
students become stuck.

1. INTRODUCTION
This work presents preliminary results from our attempts to
derive insight into the complex behaviors of students solving
optics puzzles in an educational games using a complex net-
work representation of student-game interactions. An Inter-
action Network is a complex network representation of all
observed student-tutor interactions for a given problem in
a game or tutoring system [3]. Professors using InVis were
successful in performing a series of data searching tasks; they
were also able to create hypotheses and test them by explor-
ing the data [5]. InVis was also used to explore the behavior
of students in a educational game for Cartesian coordinates.
Exploration of the interaction networks revealed off task be-
havior, as well as a series of common student mistakes. The
developers used the information gained from the interaction
networks to change some of the user interface to reduce these
undesirable behaviors [4]. Regions of the network can be
discovered by applying network clustering methods, such as
those used by Eagle et al. for deriving maps high-level stu-
dent approaches to problems [2]. This paper reports game-
play data from 195 students in 15 classes collected as part
of a national Quantum Spectre implementation study in the
2013-14 academic year.

The Education Gaming Environments (EdGE @ TERC) re-

search group studies how games can be used to improve
learning of fundamental high-school science concepts. EdGE
games use popular game mechanics embedded in accurate
scientific simulation so that through engaging gameplay, play-
ers are interacting with digitized versions of the laws of na-
ture and the principles of science. We hypothesize that as
players dwell in scientific phenomena, repeatedly grappling
with increasingly complex instantiation of the physical laws,
they build and solidify their implicit knowledge over time.
Previous work for a game Impulse used an automated detec-
tor of strategies in the game [1]. In this study, we examine
how interaction networks can be used to visually measure
the implicit science learning of students playing Quantum
Spectre, a puzzle-style game that simulates an optics bench
students might encounter in a high school physics classroom.

2. QUANTUM SPECTRE
Quantum Spectre is a puzzle-style designed for play in browsers
and on tablets. Each level requires the player to direct one or
more laser beams to targets while (potentially) avoiding ob-
stacles. For each level, an inventory provides the player with
access to resources, such as flat and curved (concave, con-
vex, and double-sided) mirrors, (concave and convex) lenses,
beam-splitters, and more, that can be placed and oriented
within the puzzle and that interact with and direct the laser
beams in a scientifically accurate manner. When the ap-
propriate color laser beam(s) have reached all the targets, a
level is complete. The player earns three “stars” if the puz-
zle has been solved in the fewest possible moves, two “stars”
for a low number of extra moves, and one “star” for any
solution. Each placement or rotation of an object on the
game board counts as one move. A player can go onto to
the next level as soon as a puzzle is complete, regardless of
the number of moves used, but the stars system provides an
incentive for level replay and an understanding of the puz-
zle’s solution. The game includes a range of scientifically
accurate optical instruments and related science concepts,
but for the research, three key scientific concepts were iden-
tified: The Law of Reflection; Focal Point and Focal Length
of Concave Mirrors; and Slope.

3. RESULTS AND DISCUSSION
To construct an Interaction Network for a problem, we col-
lect the set of all solution attempts for that problem. Each
solution attempt is defined by a unique user identifier, as
well as an ordered sequence of interactions, where an inter-
action is defined as {initial state, action, resulting state},
from the start of the problem until the user solves the prob-
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Figure 1: The approach map for problem number 18. This is a high-level view at student approaches to this
puzzle. The vertices represent sub-regions of the overall interaction network. Vertices are colored according
to their game “star” score, with green being the optimal score, blue the less optimal, and orange for very
suboptimal states. The approach map is capturing students with poor approaches to the problem, these
regions are indicated by the dotted line.

lem or exits the system. The information contained in a
state is sufficient to precisely recreate the tutor’s interface
at each step. Similarly, an action is any user interaction
which changes the state, and is defined as {action name,
pre-conditions, result}. We chose to use only objects the
player can interact with. We ignore the distinction between
objects of the same type, so the order of placement does not
matter. An example state could be {Flat Mirror(4,1,90),
Flat Mirror(5,5,180)}: which would be a state describing
two mirror objects with the first two numbers representing
the X and Y coordinates and the last representing the mir-
rors angle.

The full graph of every state space and every action taken
was large, complex, and difficult to interpret in terms of
player understanding. In order to provide a high-level view
that game designers and instructors could use to gauge play-
ers’ mastery of game concepts, we clustered states using the
Approach Map method from Eagle et al. [2]. The interac-
tion network for problem 18, which had over 1000 unique
states, is concisely represented as 17 region-level nodes as
seen in figure 1.

This image is a simplified representation of the game board,
with a mirror drawn in every location where a mirror was
placed by an edge entering the cluster. “Active” pieces (the
piece that was moved or rotated to enter the cluster was
considered active for that move) were shown in blue, and
inactive pieces (any pieces that remained unmoved on the
board during that action) were in black. The intention was
to show a milestone for each cluster: by looking at how
each student who entered a cluster got into that cluster, the
reader could trace a given path from cluster to cluster and
get an idea of how the students on that path had progressed
through the puzzle.

Using the approach map we are able to derive an overview
of the student behaviors. Several of the derived regions rep-

resent poor approaches to solving the problem, this mirrors
the results from Eagle et al. [2]. The region vertices are
particularly useful for discovering the locations where stu-
dents transfer into the confusion regions, as these highlight
the places where student approaches contain misunderstand-
ings. These results support the use of approach maps and
interaction networks for use in this game environment. In fu-
ture work we will look for differences in student performance
on pre and posttest measures to see if there are differences
in overall approach that are predicted by pretest score or
can predict posttest score.
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ABSTRACT
Online learning platforms such as Moodle and MOOC (Coursera, 
edX, etc) have become popular in higher education. These 
platforms provide information that are potentially useful in
developing new student learning models. One source of
information provided by these platforms is in the form of student 
interaction with one another, instructors, and the platform itself. 
These interactions contain various activities such as: participation 
in forum discussion, how frequently a student is logged into their 
account, and frequency of reading posted activities, etc. Using 
Data Mining techniques, namely clustering algorithms to find 
students with similar behavior patterns, our goal is to develop a 
student model that can be conducted by learning these interaction 
patterns. In doing so, we aim to develop a method by which to
provide students with different guidelines and instructions that 
will help to improve their performance. This research is in
progress and our data include Moodle online courses in computer 
science in different semesters. 

Keywords
Online Learning, Student Behaviors, Student Outcomes, Moodle,
Data Mining, Clustering, Educational Data Mining

1. INTRODUCTION 
Detecting students’ performance is one of the most crucial tasks in
online learning and educational data mining (EDM), a task which
falls under the scope of classification/clustering or other
algorithms. Various learning methods have been applied to detect
course results and academic performance with each learning
algorithm performing differently with different datasets [4]. The
No Free Lunch Theorem states that it is difficult to choose a
specific model or classification algorithm for this difficult task
[2]. Therefore, discovering and applying appropriate methods for
a specific dataset should yield a significant improvement in the
effectiveness of a given learning algorithm. Our approach will
apply learning algorithms based on metadata, as they have proven
to be sufficient to address this problem [2]. These meta-learning
algorithms have been studied by exploring metadata to adopt
suitable algorithm based on data mining and machine learning
techniques [5]. In this research, we propose to apply various
classifications/clustering models, evaluation measurements, and
statistical analysis test to predict the performance of students’
learning outcomes based on new dataset. This paper focuses on a
portion of our statistical analysis, namely the examination of
student response times to professor activity.

2. DATASET 
Our dataset contains student and professor metadata from eleven
courses over two semesters at Southeast Missouri State
University. The metadata is in the form of log data from the
online learning platform that the school uses, Moodle. In order to
determine which of the features the metadata provides, we have
performed rudimentary statistical analysis using SPSS. A basic
overview of our dataset is provided in Table 1.

Table 1. Course Overview
Course Number of

Students
Number of
interactions

Average
Interactions

CS1 12 4281 356.75

CS2 53 14006 264.26

CS3 23 3891 169.17

IS1 33 26682 808.55

IS2 31 20049 646.74

IS3 10 7906 790.60

IS4 13 13311 1023.92

IS5 19 10986 578.21

IS6 30 31433 1047.77

IS7 7 13150 1878.57

UI1 27 7127 263.96

2.1 Data Processing 
For this portion of analysis, we analyze CS2 (bold in Table 1.) for
students interaction response times; this was due to the large
sample size it provided with respect to the other courses in our
dataset. There were five students that failed to complete this
course, so they were dropped from the dataset for this particular
portion of analysis to prevent data skewing in the later weeks of
the class.
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3. METHODOLOGY 
We propose that applying data mining techniques and statistical
analysis of metadata from an online learning platform will allow
us to derive insights into student interaction patterns. Using these
insights, we theorize that a student learning model can be
developed by learning these interaction patterns. In doing so, we
aim to develop a method by which to provide students with
different guidelines and instructions that will help to improve their
performance.

3.1 Feature Selection 
Our dataset explicitly provides the following features: the course
in which an activity occurred, the time of occurrence, the IP
address from which an activity originated, the user which
performed the action, the action occured (course, user,
assignment, and grade view), and information about the action
completed.

There are also metadata that are not explicitly provided in the
dataset but can be extracted. For example, our dataset does
provide with specifics of the activity that the student is performing
(e.g. posting to a forum, content of their posts, etc.) . However, we
aware that a student is automatically logged out from their
Moodle account if they have not performed an activity within 15
minutes. Using this knowledge, we can then determine when a
student is logged out, approximately number of times they login,
and the time interval between logins. We are aware that that there
may be more metadata hidden within our dataset that maybe
found upon closer examination that we plan to consider for future
research.
  
Finally, we consider statistical features that have been extracted.
For this portion of the analysis we considered how quickly the
students responded to activities made by the professor; these
activities include: updates to materials, posting of assignments,
and updating student grades. We have computed the average
student response time per activity, a sample standard deviation for
the response time per activity, the total average response time and
a sample standard deviation for the course during the first two
weeks and the entirety of the course. We have also computed the
top ten activities that resulted in the quickest average response
times and the top ten activities that resulted in the slowest average
response times.

4. RESULTS AND DISCUSSION 
One of our goals was to explore trends in how students interact
with their course over the duration of a semester and, more
specifically, how quickly they react to activities performed by
their professor. We noticed that when a professor interacts with
Moodle, they typically perform a lot more than one action. For
our statistics, we counted the time it took for each student in the
course to respond to the last update to the course page that a
professor made in a continuous block of interactions. For each of
these interactions, we then calculated the average response time
per student and the overall average response time for that
particular activity. The average response times per activity are
shown in Figure 1. We can see that student activity has fluctuates
throughout the semester, but further analysis is needed to
determine possible causes for these fluctuations. The only readily
explainable peak is activity thirty, which occurred during a five
day break.

5. RELATED WORKS 
Wang [6] has indicated a need for the examination of log analysis
within online learning platforms, namely the examination of

indicators of participation such as use of discussion forums, quiz
completion rate, and video usage. The research of Yudelson et al
[7]. indicates that finding and analyzing certain sub-populations
within a student body can produce a better predictive model than
that of examining the entire population; importantly, these sub-
populations tend produce a more substantial data footprint [7].
The research of Coffrin et al. indicates that student interactivity
and success during the first two weeks of a course strongly related
to their outcomes at the end of the course. They also suggested
that identifying students based on their patterns of engagement
presents the opportunity of tailored feedback to these sub-
populations [1].
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Figure 1. Average response times per activity.
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ABSTRACT
Laboratory studies suggest that long term retention of Math-
ematics learning is enhanced by spaced, as opposed to massed,
practice. However, little evidence has been evinced to demon-
strate that such spaced learning has a positive impact in
real world learning environments, at least partly because of
entrenched pedagogy and practice, whereby students are en-
couraged to engage with Mathematics in a very sequential
manner - thus leading to massed learning episodes. Indeed,
much educational practice and the structure of Mathemat-
ics textbooks lend themselves to massed rather than spaced
learning. However, in online learning such spaced practice is
possible and more practically achieved. Predicting learner
outcomes from data in a popular online Mathematics learn-
ing site shows that in this data set spacing seems to have a
negative effect on retention at a later time.

Keywords
Mathematics, spaced learning, learning science, online learn-
ing

1. INTRODUCTION
Learning efficiently is one of the main drivers of personalized
instruction. By ensuring that students engage with material
only for as long as they need to in order to master it, in-
telligent instruction can push students further in less time,
allowing outcomes to be improved more rapidly, and also to
reduce the risk of boredom and loss of motivation. In ad-
dition, retention over longer time scales is important to the
goals of Education as a whole. While the old adage “Educa-
tion is what is left once what is learned has been forgotten”
is oft quoted, in many Educational contexts, and in particu-
lar Mathematics, the necessity of prerequisite knowledge for
learning higher order material means that such forgetting is
far less desirable.

Until relatively recently in pedagogical practice (as shown

by the design of Mathematics textbooks), it was thought
that the most efficient way for a student to learn Mathemat-
ics in a way that facilitated later retrieval was overlearning
- the continued practice of a procedure after mastery has
been achieved. This massed (as opposed to spaced) prac-
tice model explains the design of Mathematics textbooks,
where, by chapter, exercises are massed by a small num-
ber of procedures that need to be applied. By contrast, a
spaced learning methodology would require intermingled ex-
ercises requiring application of different kinds of procedure,
but with procedures recurring multiple times over several
study sessions.

Spacing has been a core component of recent advances in
our understanding of the Science of Learning. Rohrer and
Pashler[7], drawing on work by Rohrer and Taylor[8], iden-
tify the empirical support for using such spaced learning
episodes in the learning of Mathematics. Rickard et al.[6]
examined the role of spacing in promoting retrieval over cal-
culation in mathematics, and spacing of learning has been
assessed in the college Mathematics classroom by Butler and
colleagues[1]. Both found spacing to have positive effects
on Mathematics learning. However, most recent work has
focused more on the effect of spacing on declarative fact
learning, with much of the successful practical application
focused on foreign language vocabulary learning[4][5][9]. If
these techniques can be extended to Mathematics learning,
then considerable learning gains could be achieved.

Such hypotheses are best tested through a more controlled
manipulation of the spacing regime - in the online learning
context, using an A/B test common in most website im-
plementations. Exposing some subset of users to a spaced
learning regime, while recommending massed learning to the
remainder. However, it is also possible to examine the im-
pact of spaced learning in a somewhat more confounded way
by looking at spaced learning that has occurred naturally
during the course of student engagement.

2. DATA
The data being analysed are logs from Khan Academy’s in-
teractive Mathematics exercise platform. Students answer
exercises, and are given instant feedback. The data recorded
for each attempt includes the exercise type, the instance of
the exercise, the answers given by the student, the time the
student spent on the page while answering, the time it was
attempted, and whether the student used a hint or not.
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2.1 Spaced Learning
Khan Academy has attempted to implement spaced learn-
ing within its site design mostly derived from the spaced
repetition algorithm popularized by Leitner[3]. In the Leit-
ner System cards that have been correctly memorized are
pushed back into a later set, whereas incorrectly answered
cards are placed into the first set. The first set is reviewed
on every cycle, with each set beyond being reviewed one less
time per cycle (for N boxes, a cycle will consist of N review
sessions).

The variable implementation of this spacing design over time
in the Khan Academy site (including the use of A/B testing
for various implementations of this spaced repetition algo-
rithm), in addition to the voluntary engagement with the
software by student users has served to create a data set
with a large variety of spacing schemes (although somewhat
confounded by other variables). Using this data, we are con-
ducting a post hoc analysis of spaced versus massed practice.
This will help to shed light on the impact of spaced repeti-
tion on learning of particular Mathematics skills.

3. ANALYSIS
Recent experimental studies on spaced learning have gener-
ally been constructed around one or more temporally sep-
arated (by periods of more than a day) study sessions, fol-
lowed by a further temporally separated recall session, where
retention of what has been learned is measured[2]. In order
to emulate this design for each student, data, subdivided by
exercise, were separated into study sessions (any gaps of a
day or more were assumed to constitute a separate study
session). In order to have an outcome measure by which to
measure student learning, the final session was taken to be
the retention session.

3.1 Data Selection
In order to ensure more meaningful comparisons, all stu-
dent/exercise pairings with only one session associated with
them (and therefore no differentiable outcome measure) were
discarded, as were students who had made less than ten at-
tempts across all sessions on that particular exercise. A
random subsample was chosen for analysis, with data from
13528 students, and a total of 155602 student/exercise pairs.
All data were normalized before fitting in order to render
model coefficients more meaningful.

4. RESULTS
In order to assess the potential contribution of the effect of
spacing, a logistic regression model using L2 regularization
(strength parameter set by 10-fold cross validation) was fit-
ted to predict student performance during the retention ses-
sion. The independent variables included in the model were:
mean accuracy across all study sessions, mean accuracy in
the most recent study session, total time spent on exercises
during study sessions, total number of study sessions, and
total number of attempts during study sessions. While the
model performed relatively poorly, (achieving approximately
58% accuracy on the test data) similar performance was seen
predicting from most subsets of the independent variables.
Only total time spent failed to lend any power to the model.

Table 1: Coefficients for Normalized Variables
Mean Study Accuracy 38.25
Recent Accuracy -15.61
Total Study Time 0.74
Number of Study Sessions -13.36
Study Attempts 8.59

5. CONCLUSIONS
The results seem to indicate that, at least in the case of
the Khan Academy data, that spaced learning does not help
with later retention. However, as much of the engagement
takes place over relatively short time scales (with the me-
dian interval between study and retention being ten days).
Further analysis will look at the impact of spaced learning
not only on later retention of that skill, but also on learning
skills for which the learned skill is a prerequisite. This will
allow the impact of spaced learning to be assessed absent the
compressed nature of engagement with individual exercises.
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ABSTRACT
We present data-driven log file analyses of an electronic text
book for history, called the mBook, to support teachers in
preparing lessons for their students. We represent user ses-
sions as contextualised Markov processes of user sessions and
propose a probabilistic clustering using expectation maximi-
sation to detect groups of similar (i) sessions and (ii) users.

1. INTRODUCTION
Electronic text books may offer a multitude of benefits to
both teachers and students. By representing learning con-
tent in various ways and enabling alternative trajectories of
accessing learning objects, electronic text books offer great
potentials for individualised teaching and learning. Although
technological progress passed by schools for a long time, in-
expensive electronic devices and handhelds have found their
way into schools and are now deployed to complement tra-
ditional (paper-based) learning materials.

Particularly text books may benefit from cheap electronic
devices. Electronic versions of text books may revolutionise
rigour presentations of learning content by linking maps,
animations, movies, and other multimedia content. How-
ever, these new degrees of freedom in presenting and com-
bining learning materials may bring about new challenges
for teachers and learners. For instance, learners need to reg-
ulate and direct their learning process to a greater extent if
there are many more options they can choose from. Thus,
the ultimate goal is not only an enriched and more flexible
presentation of the content but to effectively support teach-
ers in preparing lessons and children in learning. To this
end, not only the linkage encourages users to quickly jump
through different chapters but intelligent components such
as recommender systems [4] may highlight alternative pages
of interest to the user. Unfortunately, little is known on the
impact of these methods on learning as such and even lit-
tle is known on how such electronic text books are used by
students.

In this article, we present insights on the usage of an elec-
tronic text book for history called the mBook [5]. Among
others, the book has been successfully deployed in the Ger-
man-speaking Community of Belgium. We show how data-
driven analyses may support history teachers in preparing
their lessons and showcase possibilities for recommending
resources to children. Our approach is twofold: Firstly, we
analyse user sessions to find common behavioural patterns
across children and their sessions. Secondly, we aggregate
sessions belonging to the same user to identify similar types
of users. This step could help to detect deviating learners
requiring additional attention and instructional support.

2. THE MBOOK
The mBook is guided by a constructivist and instructional-
driven design. Predominantly, the procedural model of his-
torical thinking is implemented by a structural competence
model that consists of four competence areas that are de-
duced from processes of historical thinking: (i) the com-
petency of posing and answering historical questions, (ii)
the competency of working with historical methodologies,
and (iii) the competency of capturing history’s potential for
human orientation and identity The fourth competency in-
cludes to acquire and apply historical terminologies, cate-
gories, and scripts and is best summarised as (iv) declara-
tive, conceptual and procedural knowledge.

Imparting knowledge in this understanding is therefore not
about swotting historic facts but aims at fostering a reflected
and (self-)reflexive way of dealing with our past. The under-
lying concept of the multimedia history schoolbook imple-
ments well-known postulations about self-directed learning
process in practice. The use of the mBook allows an open-
minded approach to history and fosters contextualised and
detached views of our past (cf. [3]). To this end, it is crucial
that a purely text-based narration is augmented with mul-
timedia elements such as historic maps, pictures, audio and
video tracks, etc. Additionally, the elements of the main
narration are transparent to the learners. Learners quickly
realise that the narration of the author of the mBook is also
constructed, as the author reveals his or her construction
principle.

3. METHODOLOGY
For lack of space, we only sketch the technical contribution.
We devise a parameterised mixture model with K compo-
nents to compute the probability of a user session. The
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browsing process through chapters is modelled by a first-
order Markov chain so that pages are addressed only by
their chapter. The category model depends on the chapters
as we aim to observe correlations between different types
of pages. This may show for example whether galleries of
some of the chapters are more often visited (and thus more
attractive) than others and thus generate feedback for the
teachers (e.g., to draw students attention to some neglected
resources) and developers (e.g., to re-think the accessibility
or even usefulness of resources). The model for the connec-
tion times is inspired by the approach described in [2] to
capture repetitive behaviour across weeks. The final model
is optimised by an EM-like algorithm.

4. EMPIRICAL RESULTS
In our empirical analysis, we focus on about 330.000 sessions
collected in Belgium between March and November 2014
containing approximately 5 million events.

Session-based View: Figure 1 (top) shows the results of a
session-based clustering. User sessions are distributed across
the clustering according to the expressed behaviour. Clus-
ters can therefore be interpreted as similar user behaviours
at similar times. The visualisation shows that all categories
are clearly visible for all clusters, indicating a frequent usage
of all possible types of resources by the users. Cluster C6
possesses half of the mass on the weekend of category text.
This indicates more experienced users who like to form their
opinion themselves instead of going to summary pages. The
same holds for cluster C8 that possesses in addition only a
vanishing proportion of the home category. Small probabil-
ities of category home as well as large quantities of category
text indicate that users continuously read pages and do not
rely on the top-level menu for navigation.

User-based View: Our approach can also be used to group
similar users. To this end, we change the expectation step
of the algorithm so that sessions by the same user are pro-
cessed together. That is, there is only a single expectation
for the sessions being in one of the clusters. Clusters there-
fore encode similar users rather than similar behaviour as in
the previous section.

Figure 1 shows the results. Apparently, the main difference
of the clusters is the intensity of usage during working days
and weekends. Cluster C2 for instance clearly focuses on
working day users who hardly work on weekends compared
to Cluster C1 whose users place a high emphasise on Satur-
days and Sundays. Cluster C3 contains low frequency users
who rarely use the mBook and exhibit the smallest amount
of sessions and page views per session. Cluster C8 contains
heavy (at night) users with high proportions of category text.
In general, we note that transition matrices are consistent
between chapters in contrast to the session-based clustering,
that is, test takers interact with most of the chapters.

5. DISCUSSION
Our results illustrate potential benefits from clustering learn-
ers for instructional purposes. In the first place, the proba-
bilistic clustering approach shows a way how to condense a
huge amount of logfile information to meaningful patterns of
learner interaction. Classifying a student into one of several
clusters reveals whether, when, and how the learner used

Figure 1: Resulting clusters for the session- (top)
and user-based (bottom) clustering.

the materials offered by the electronic text book. Thus, the
teacher can get information about the learners’ navigation
speed, whether part of the content was used in self-directed
learning processes as expected, whether learners came up
with alternative learning trajectories, and so on and so forth.
This information can be used by the teacher in a formative
way (cf. the concept of formative assessment, e.g., [1]), that
is, it is directly used to further shape the learning process
of students. For instance, in a follow-up lesson the teacher
could simply draw the students attention to some parts of
the book that have not or only rarely been visited. More-
over, history and learning about history could be reflected in
a group discussion of learners who used the mBook resources
of a particular chapter in different ways.
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ABSTRACT
Intelligent tutoring systems (ITSs) have been successful at 
improving students' performance across a variety of domains. To 
help achieve this widespread success, researchers have identified 
important behavioral and performance measures that can be used 
to guide instruction and feedback. Most systems, however, do not 
present these measures to the teachers who employ the systems in 
classrooms. The current paper discusses visualizations that will be 
displayed to teachers using the writing strategy tutor, Writing Pal. 
We present visualizations for both classroom and student level 
data and offer descriptions of each. 

Keywords
Visualizations, intelligent tutoring systems, writing instruction. 

1. INTRODUCTION 
Over the past several decades, intelligent tutoring systems (ITSs) 
have been successfully developed for and implemented across a 
variety of domains [1]. These computer-based systems are often 
designed to record every interaction, behavior, and performance 
marker a student achieves while using the system. Research in 
educational data mining has used these system logs to identify 
what data are most predictive of overall performance and learning 
[2], while research in the learning sciences has used system logs 
to tailor instruction to individual students [3]. The synthesis of 
this work yields more adaptive, effective systems. 

The analysis of log data has helped develop complex 
computational algorithms that improve adaptability within ITSs 
by modeling the learner [4]. Learner models can be difficult to 
understand without experience in modeling and educational 
research, and as a result, researchers have developed visualization 
tools to render components of these models more accessible [5]. 
Such tools are important because of the potential disadvantages 
that may emerge when the teachers who use ITSs have little 
understanding of their underpinnings. For instance, teachers may 
be less likely to use a system if they do not understand a system's 
feedback or what drives the feedback [6]. Moreover, if a system 
does not convey appropriate and timely information about 
students, the instructor may be unable to intervene [7].

Visualizations provide one means of aiding teachers in 
deciphering the complexity of ITSs and making data-driven 
classroom decisions [e.g., 8]. Our team is working toward 
providing visualizations of student progress within the Writing 

Pal (W-Pal), a writing strategy ITS designed for high school 
students. Writing Pal provides strategy instruction via lesson 
videos, game-based strategy practice, and essay practice with 
automated, formative feedback [9]. In this paper, we describe 
visualizations we have developed and implemented as well as 
those we are currently prototyping.  

2. VISUALIZING DATA 
Our initial goal is to provide the most relevant and understandable 
data to teachers through intuitive visualizations. The following 
sections describe visualizations that we are developing for W-
Pal’s teacher interface, where teachers view students’ progress. 

2.1 Classroom Level Visualizations 
In a recent classroom implementation of W-Pal, five ninth grade 
classes with the same teacher used the system for approximately 
four months. We analyzed data from 90 consenting students. For 
the study, W-Pal’s teacher interface included a spreadsheet in 
which teachers could track students’ progress through the system 
activities (see Figure 1). However, during the study, this page did 
not provide a visual summary of the progress across students. 
Broadcasting the average number of activities attempted in a 
classroom of students who have generally stalled in their 
progression might prompt teachers to request that students not 
linger on particular topics or switch their focus. Future iterations 
of W-Pal will provide easily discernible bars that indicate the 
overall progress of classes. In Figure 1, the darker blue bars in the 
first four columns represent the percentage of activities attempted 
for those modules (a black rectangle highlights this feature).  

Figure 1. Visualization of a classroom’s progress in W-Pal’s 
teacher interface; dark blue bars represent progress. 

An important strength of W-Pal is the automated feedback it 
provides on students’ essays. The teacher interface allows teachers 
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to view each student’s submitted essays along with the feedback 
and score received. Currently, however, teachers do not have 
access to a summary of all students’ performance. For example, if 
the majority of students are struggling to properly structure their 
writing in W-Pal, teachers would remain unaware until they 
carefully perused students’ feedback messages. To provide 
teachers with a quickly consumable summary of the feedback that 
students are receiving, we are developing a visualization that 
displays the percentage of feedback triggered across all essays in a 
W-Pal class (see Figure 2). Using this information, teachers might 
adjust their own classroom instruction or assign students to 
interact with appropriate W-Pal lessons. 

Figure 2. Visualization of the type of essay feedback students 
in a classroom have received. 

2.2 Student Level Visualizations 
Our recent classroom study also revealed that the percentage of 
time that students selected different activities related to their 
persistence in the system. For example, there was a positive 
correlation between the percentage of game activities that students 
selected and the number of days they used the system [r(90) = .49, 
p < .001]. Thus, the percentage of activities attempted (i.e., 
videos, games, and essay practice) could be indicative of how 
likely students are to persist in the system. Teachers will be 
presented with this information via pie charts, which are useful for 
visualizing proportions of a whole [10] (see Figure 3).  

Figure 3. Visualization of the activity breakdown for an 
individual student. 

Similar to the activity breakdown available for each student, 
teachers will be able click students' names in the essay window to 
see breakdowns of essay feedback (see Figure 2 for a similar 
example). If a student is struggling with writing assignments in 
class, this visualization will give teachers a quick view of how W-
Pal has assessed areas of weakness.

3. CONCLUSION 
In this paper, we argue for the importance of using visualizations 
to communicate data from ITSs to the teachers. Specifically, we 
describe classroom and student level visualizations that we are 
developing for the writing strategy tutor, W-Pal. When equipped 

with these visualizations, teachers may be more likely to use a
system appropriately and to intervene when a student is not 
performing optimally. Future empirical work must test these 
visualizations, through techniques ranging from surveys to eye 
tracking [8], to determine their effectiveness in conveying 
information to teachers. As the understanding of how teachers use 
such visualizations grows, systems can provide teachers with 
intelligent tutors that better support classroom instruction. 
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ABSTRACT 
The authors of this paper have defined a continuous evaluation 
methodology for Final Year Projects, in which six different 
evaluable items are involved. However, establishing the weights 
of each assessment element in the evaluation of Final Year 
Projects is a complex process, especially when several teachers 
are involved [3] like in this case. In this paper, the experiment 
carried out in order to establish the weight each assessment 
element should have in the final mark of a Final Year Project is 
described.  

Keywords 

Final Year Projects, weight adjustment, experts’ validation 

1. INTRODUCTION 
Finishing a Final Year Project (FYP) is a challenging task for all 
the involved actors, either students or lecturers. In a previous 
work, the authors conducted a study and concluded that the main 
problems during projects’ development are related to the 
evaluation process [7]. 

In many universities, the evaluation of the FYPs has been mainly 
based on a final dissertation of the work and a public oral defense 
in front of an examination board. This approach presents several 
drawbacks [6]. In order to overcome them, a set of 8 experts 
(teachers from the University of the Basque Country, with more 
than 10 years supervising FYPs) defined six elements to be taken 
into account and the responsible for their evaluation. 

The supervisor of the project evaluates: an initial report including 
the project planning and requirements (Init_Report), the result of 
the design phase of the project (Design) and the students’ attitude 
during the process (Attitude). 

The evaluation board evaluates: the final report of the project 
(End_Report), the oral defense (Defense) and the complexity of 
the project (Complexity). 

To avoid the subjectivity, an evaluation rubric was created for 
each of the evaluable elements [4]. 

2. ADJUSTING THE WEIGHTS OF THE 
EVALUABLES 
According to the proposed FYP grading proposal [7], the final 
grade is computed as the weighted mean of the scores achieved in 
the assessable elements. Next, the experiment carried out to adjust 
those weights is described.  

2.1 Data Set & Techniques 
In order to develop a model to accurately predict the mark of a 
FYP, a set of graded FYPs, including the final grade provided by 
the evaluation board using the traditional grading way and the 
grades for each of the items for those projects, are required.  

In this experiment, 32 FYPs were evaluated. The collected data 
was randomly split into two data sets, training set, which 
contained 2/3 of the collected data, and the validation set, 
entailing the remaining data. 

Adjusting the weight to compute the grade as accurate as possible 
in relation to the grades given by the evaluation board is a 
regression problem. Therefore, the first technique tested was the 
linear regression. In this experiment the target variable is the final 
mark and the features are the 6 items that according to experts 
should influence the final mark. The objective is to determine to 
which extent affects each element the final mark.  

During this experiment, negative coefficients were inferred (see 
Table 1, LRModel). In the case of FYP, a negative value is not 
applicable as the assessable elements refer to aspects the FYP 
must satisfy, whilst a negative weight would mean that an 
undesirable or wrong feature is being evaluated. To overcome this 
problem, non-negativity constraints in the model should be 
enforced. Therefore, the Lawson-Hanson Non-negative least-
squares technique [2] was used in the second phase of the 
experiment.  

Table 1. Weights of each item in the final mark 

 Weights Analysis results 

 Init_Report Design Attitude End_Report Defense Complexity Correlations RMSE 

LRModel 0.24 0.18 -0.08 0.37 0.11 0.15 0.95 0.49 

NNLSModel1 0.1 0.26 0 0.31 0.19 0.14 0.97 0.31 

NNLSModel2 0.25 0.08 0.08 0.46 0.13 0 0.85 0.55 

NNLSModel3 0 0 0 0.52 0.32 0.16 0.96 0.35 
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2.2 Validation Procedure 
The validation process consisted in analyzing the extent to 
which the obtained model fits the data. With this objective, 
evaluation boards’ judgments and the marks obtained using the 
weights of the different models were compared computing two 
different metrics: Pearson correlation coefficients [5] and Root-
Mean-Squared Error (RMSE) [1].  

The admissible error for the model has to be defined taking into 
account the peculiarities of the process. In this case, according to 
the experts, it is a common practice to round the grades to 0.5 
points intervals, being very unusual to find grades not matching 
this criterion. For example, grades such as 7 or 7.5 were 
observed in the training set, whereas intermediate grades similar 
to 7.2 were not found. Taking this into account, for this 
experiment 0.5 has been asset as the maximum admissible error.  

2.3 Exploratory Analysis and Working 
Hypothesis 
The identified 6 features are considered independent factors for 
the final score, as they are evaluated in different stages of the 
FYP process. To determine the new models to compute the final 
grades of the FYPs, the authors stated the following hypotheses: 

• H1: The factors identified by the expert board are 
appropriate predictors for the final grade of the FYPs. 

• H2: the complexity of the FYPs is implicitly 
considered in the other evaluable elements. 

• H3: The evaluation board can infer all the information 
needed from the End_report and the Defense. 

Considering these starting hypotheses, the following models 
were defined for this experiment: 

• LRModel: Model derived using linear regression and 
considering all the features. (Hypothesis H1) 

• NNLSModel1: Model derived using the Lawson-
Hanson Non-negative least-squares technique and 
considering all the features. (Hypothesis H1) 

• NNLSModel2: Model derived using the Lawson-
Hanson Non-negative least-squares technique and 
considering all the features except Complexity. 
(Hypotheses H1 and H2) 

• NNLSModel3: a model derived using the Lawson-
Hanson Non-negative least-squares technique only 
considering the End-report, the Defense and the 
Complexity. (Hypothesis H3) 

3. RESULTS  
In this experiment, the models described above were derived 
using the training set and tested on the validation set.  

As it can be observed in Table 1, the linear regression technique, 
used for LRModel, led to a model with negative coefficients for 
some features (Attitude). Although the performance was 
remarkably good, this is not an admissible model to grade FYPs 
because it would mean that negative aspects of the project are 
being measured. 

NNLSModel2 had an RMSE of 0.55 points, which did not fit in 
the defined admissible error range. NNLSModel1 computed 

grades with 0.97 correlation with the evaluation boards’ and 
0.31 RMSE, whereas NNLSModel3 achieved 0.35 RMSE.  

Taking into account the calculated RMSE, the best model is 
NNLSModel1 where all the features identified by the expert 
board are used (including Complexity). However, in this model 
Attitude has a weight of 0, i.e., it is not a statistically significant 
predictor for the final mark. Moreover, as shown in Table 1, 
with NNLSModel1 an error of 0.31 in a 10-point scale has been 
achieved. As previously mentioned, this is an admissible error 
for the evaluation of FYPs because it is inferior to 0.5. 

4. CONCLUSIONS AND FUTURE WORK 
This paper has presented the experiment carried out in order to 
adjust the weights of assessment elements for the evaluation of 
FYPs. Several models have been evaluated, achieving a model 
with an error of 0.31 in a 10-point scale. One of the main results 
of the experiment is that the student’s attitude (Attitude) is not 
statistically significant to predict the final mark.  

The best performing model considers elements that must be 
evaluated by the supervisor of the FYP in addition to the 
elements assessed by the evaluation board. This suggests that, 
even if the evaluation board can give a grade, for a detailed 
evaluation, the opinion of the person who better knows the 
project is required. 

The main future work is related to the adjustment of weights for 
each dimension of the rubrics. Additionally, the authors will 
continue validating the obtained model with new evaluations.  
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ABSTRACT 
In this paper we propose to predict the students’ outcome by 
analyzing the interactions that happen in class during the course. 
PresenceClick lets teachers and students register their interactions 
during learning sessions in an agile way to give feedback in return 
about the students’ learning progress by means of visualizations. 
Some of the registered interactions are the students who are 
attending class and a subset of the students’ emotions felt during 
learning sessions. We have found correlations among attendance, 
emotions and performance in the final exam. This paper presents 
the study carried out to build a prediction model for the students’ 
mark in the final exam based on these interactions. The purpose is 
to advice teachers about students in risk to fail. 

Keywords 

F2F interactions, mark prediction, linear regression, decision tree 

1. INTRODUCTION 
Drop out or failure is a common issue related to university 
students. Many studies have been carried out to detect students’ 
problems, or even to predict the students’ outcome, by applying 
data mining techniques to their interactions with intelligent 
tutoring systems [1] or course management systems [2] [3]. Other 
works include a wide range of potential predictors –i.e. 
personality factors, intelligence and aptitude tests, academic 
achievement, previous college achievements, or demographic 
data− to predict drop out and students’ performance in high school 
[4] [5]. However, these works leave aside all the information that 
can be collected from the interactions that happen in face-to-face 
learning, the most extended way of education. 

During traditional learning courses there is no way to detect 
problems or to know the performance of students in the final 
exam, except applying the teacher’s intuition on the in-class 
students’ interactions. This is even more difficult as the number of 
students in class grows, which is a current common issue at 
university worldwide. In this line, this papers aims to answer the 
next research questions: Is it possible to predict the students’ 
outcome by analyzing the interactions that happen in class? And, 
can we detect any interaction that especially influences the mark? 

2. PRESENCECLICK 
PresenceClick is a distributed and modular environment that 
captures the interactions in learning sessions in an agile way. On 
the one hand, the AttendanceModule automatically captures the 
list of attendees to class. On the other hand, the EmotionsModule 
lets teachers capture the emotional state of the classroom related 
to whatever specific activity of the course. Students quantifies 
their emotions (six positive –enjoyment, hope, pride, excitement, 
confidence and interest– and six negative –anxiety, anger, shame, 
hopelessness, boredom and frustration–) in a 6-likert scale 
questionnaire based on the models described in [6] and [7]. The 
analyzed data belong to two subjects of Computer 
Science:Modular and Object Oriented Programming, (MOOP) 
and Basic Programming (BP). In MOOP 97 students were 
enrolled whereas 81 students participated in BP. The data were 
collected asking students to fill different event questionnaires. The 
MOOP students were asked three times to fill events where 41, 20 
and 41 students responded respectively. The BP students were 
asked six times and 56, 36, 57, 48, 29 and 13 students participated 
(last event participation was low due to a server problem).  

3. PREDICTING OUTCOME 
Building a predicting model for students’ outcome in the final 
exam was aimed to let teachers foresee those students that could 
be in risk to fail in the subject or even drop out.  

In MOOP 44 students out of 97 enrolled attended the exam and 50 
responded at least one emotion event, while 59 students attended 
the exam from 81 students enrolled in BP and 68 responded at 
least one emotion event. As the students dropping out the subject 
precisely are an important sample set to study, and as a 
considerable number of students did not attend the exam in both 
subjects, three different cases were studied: (Case1 - NA=F) 
Students non attending the exam were not considered; (Case2 - 
NA=T; mean=F): Students non attending the exam were assigned 
0 as mark; (Case3 - NA=T; mean=T): Students non attending the 
exam were assigned the mean of the fails as mark, where fails are 
all the students with mark<5. 

The three phase experiment that follows was carried out. 

3.1 Phase 1: Correlation analysis 
Pearson-correlation analysis was conducted between mark-
attendance and mark-emotions. All the positive/negative emotions 
were gathered together, and the mean from all the events where 
each student participated was calculated in order to normalize the 
data.  Table 1 shows the correlations for the three cases between 
mark-attendance, mark-positive emotions and mark-negative 
emotions. In both subjects attendance and students’ negative 
emotions influence the mark in the final exam (except when non 
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attendees to exam were not considered in BP) according to 
literature (p>|0.3|) [8]. Student’s positive emotions influence the 
mark only in MOOP. This could be due to the fact that being 
aware of the negative emotions is usually easier than being aware 
of the positive ones. In addition, we could also suppose that 
students expressing negative emotions in questionnaires are not 
lying, whereas students could increase the value of their positive 
emotions in order to be closer to the group feelings. 
Table 1. Correlations with the mark in MOOP 

 Case Attendance Pos emo Neg emo 

MOOP 

NA=F 0.45 
(p=0.0048) 

0.45 
(p=0.0056) 

-0.46 
(p=0.0034) 

NA=T, 
mean=F 

0.6 
(p=4.02e-06) 

0.46 
(p=0.0008) 

-0.65 
(p=3.78e-07) 

NA=T, 
mean=T 

0.54 
(p=4.7e-05) 

0.46 
(p=0.0008) 

-0.59  
(p=5.45e-06) 

BP 

NA=F 0.25 
(p= 0.071) 

0.13 
(p= 0.35) 

-0.29  
(p=0.034) 

NA=T, 
mean=F 

0.48 
(p=0.0004) 

0.28 
(p=0.019) 

-0.34 
(p=0.0042) 

NA=T, 
mean=T 

0.39 
(p=0.0009) 

0.23   
(p=0.054) 

-0.33  
(p=0.006) 

3.2 Phase 2: Multiple linear regression 
In this stage of the experiment we looked for a model with a 
multiple linear regression analysis to predict the numeric mark of 
the student. For both subjects, 2/3 of the population was taken for 
training while the remaining was taken for validation. The three 
variables together were tested as dependent in order to predict the 
mark (w+ x* + y* + z* ). 
However, for all cases the standard deviation of the model 
prediction error rounded two points, which implies a margin too 
big (in a scale grade from 0 to 10, where fails are above 5). All the 
emotions were also studied individually to check if any of them 
could explain the mark, but the error rounded the two points. 

3.3 Phase 3: Classification tree 
Finally, we ran a decision tree to predict whether a student drops 
out, fails or passes the exam. Data from both subjects were 
normalized and gathered in a unique dataset, and different models 
were tested taking into account different variables in order to find 
the one that better predicted the students’ performance. Figure 1 
presents the decision tree for the training set that best predicted 
the students’ performance taking into account the attendance and 
the students’ negative emotions. 

 
Figure 1. Training set’s classification tree  

As we can see in table 2 failed students are not well predicted 
with a 30% precision and 50% recall (F1=37,5%), but dropping 
out students (F1=86,36%) and passing students are quite well 
predicted (F1=81,63%). The low correction of the fails could be 
due to the fact that few students are in this category and more data 
is required to refine the model. However, we consider that the 
most important measure is the recall for drop out and fail, in order 
to discover the students in risk and make the teacher aware. 
Taking into account that only 16% of failed students and 8,4% of 

drop out students have been predicted with PASS, we can 
conclude that the model is quite good, although a major sample is 
needed in order to adjust it for a better prediction. 
Table 2. Predictions table 

  Real   
  FAIL NA PASS Precis. Recall 

C
la

ss
 FAIL 3 3 4 30% 50% 

NA 2 19 2 82,61% 90,48% 
PASS 1 2 20 86,96% 76,92% 

4. CONCLUSIONS 
This paper has presented the preliminary study developed to 
propose a predicting model for the students’ outcome in the final 
exam based on the interactions captured by the PresenceClick 
system. Those interactions data give teachers and students the 
possibility to avoid failure and drop out. So far, we have tested the 
attendance to class and the students’ emotions as model 
predictors. The study was divided in three phases: correlation 
analysis, multiple linear regression and decision trees. We 
founded that attendance as well as student’s emotions influence 
the mark. In particular, the negative emotions together with the 
attendance seem to be the interactions with bigger influence on 
the mark, although the multiple linear regression did not provide 
an accurate model. However, the decision tree brought us the 
possibility to foresee the students’ performance in the final exam 
according to these factors, although a major sample is needed in 
order to refine the model. 
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ABSTRACT
As the corpora of online tutoring sessions grow by orders of 
magnitude, dialogue act classification can be used to capture 
increasingly fine-grained details about events during tutoring.  In 
this paper, we apply machine learning to build models that can 
classify 133 (126 defined acts plus 7 to represent unknown and 
undefined acts) possible dialogue acts in tutorial dialog from 
online tutoring services. We use a data set of approximately 
95000 annotated utterances to train and test our models. Each 
model was trained to predict top level Dialogue Acts using several 
learning algorithms. The best learning algorithm from top level 
Dialogue Acts was then applied to learn subcategories which was 
then applied in multi-level classification. 

Keywords
Dialogue Act, Tutoring dialog, Machine Learning, Classification  

1. INTRODUCTION 
A speech or dialogue act is a construct in linguistics and the 
philosophy of language that refers to the way natural language 
performs actions in human-to-human language interactions, such 
as dialogues. [1] [6] In order to represent the Dialogue Act of an 
utterance, a set of Dialogue Act categories is defined. The set of 
categories is also known as the Dialogue Act taxonomy.  

In this paper we examine different models on a relatively large 
data set which is extracted from one-on-one online tutoring 
sessions. The taxonomy used in our work is based on a 
hierarchical structure, i.e., each Dialogue Act has a set of sub-
categories (subacts). The size of our training data is larger than the 
data presented in most of the previous work on Dialogue Act 
classification, which helps support this more fine-grained 
structure. We used WEKA toolkit [2] and the CRF++ package to 
train and test the models and Mallet [3] java library was used to 
train and test Logistic Regression models. Since our data is within 
the domain of human one-on-one tutoring sessions, this work 
enables further analysis of models to investigate the impact of 
dialog moves on learning. The feature sets used to train these 
models include the leading tokens of an utterance in addition to 
contextual information (i.e., features of previous utterances). 

2. METHOD 
The taxonomy used in this work was developed with the 
assistance of 20 subject matter experts (SMEs), all experienced 
tutors and tutor mentors. The resulting hierarchical taxonomy 
includes 15 main categories where each main dialog act category 
consists of different sub-categories which resulted in 133 distinct 
dialog acts out of which 7 categories were defined to represent 
unknown and undefined cases.  
Once the taxonomy was available, a set of 1,438 sessions were 
manually tagged. The human tagging process included 4 major 

phases: development of taxonomy, 1st round tagging, reliability 
check, 2nd round tagging, reliability check, and final tagging 
phase.   
The experts were divided into two groups: Taggers and Verifiers. 
In the first 2 tagging phases, each tagger was given a session 
transcript and asked to annotate the utterances. The resulting 
tagged session was then assigned to a verifier who went through 
the annotations, reviewed the tags and made necessary changes. In 
the reliability check steps, experts tagged each transcript 
independently.
Since the Verifiers were modifying tags already established by the 
Taggers in the 1st and 2nd round cases, the agreement was 
expected to be high. The agreement of Taggers and Verifiers was 
approximately 90%, with a slightly higher agreement on the 
second round. This shows to what extent the verifiers made 
changes to the initial annotations (about 10% of tags changed). 
The reliability checks involved completely independent tagging, 
in which human experts yielded an agreement of approximately 
80% on top level and 60% on subact level. The final annotations 
were used as training data for our machine learning models. In 
order to build the Dialogue Act classifier, we applied the 
following 3 kinds of feature sets. 
- Simple features:  Based on previous research, 3 leading tokens 
of an utterance were shown to be good predictors for Dialogue 
Act [4]. Thus, we extracted the following features of each 
utterance: 1st token, 2nd token, 3rd token, last token, and length 
of utterance (i.e., number of tokens).
- Extended features: Using the Correlation Feature Selection 
(CFS) measure, we found that 1st and last token are the most 
predictive features and in order to add contextual information 
(features of prior utterances) we extended the simple features by 
adding the 1st and last token of three previous utterances to our 
feature set. 
The above feature sets were used to create different models with 
multiple learning algorithms. Four learning algorithms were used 
and evaluated: Naïve Bayes, Bayesian Networks, Logistic 
Regression, and Conditional Random Fields (CRF).  Each of the 
algorithms has certain properties that take into account different 
characteristics of data. 

3. RESULTS & DISCUSSION 
Based on the division of taxonomy in top-level and subcategories, 
we first trained and tested the models to predict the top-level 
Dialogue Act. Table 1 shows the results of 10-fold cross 
validation on the top-level classification models. 
Table 1. 10-fold Cross Validation of Algorithms with Different 
Features for Top-level Dialogue Act Classification. 

Algorithm FeatureSet Accuracy% Kappa
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Naïve Bayes Simple 72.5 0.65

Naïve Bayes Extended 72.3 0.64

Bayes Net Simple 72.6 0.65

Bayes Net Extended 72.5 0.65

Logistic 
Regression Simple 76.6 0.70

Logistic 
Regression Extended 77.4 0.71

CRF Simple 72.7 0.45

CRF Extended 71.9 0.44

As seen in table 1, the best performance on top-level classification 
is achieved by the Logistic Regression algorithm; however, all the 
algorithms yield and accuracy of more than 70%. It is interesting 
to note that the extended feature set does not improve the 
algorithms significantly which implies that adding the contextual 
information, i.e., prior utterances, is either not useful or not 
sufficiently representing the context. The diminished role of 
contextual features is not surprising. It has been previously 
indicated that they do not play a significant role in Dialogue Act 
classification models on a multi-party chat based tutoring system 
[5]. 
We further trained and tested models to classify utterances in the 
second level of Dialogue Act categories. For each Dialogue Act a
classifier was trained to predict its corresponding subcategories.  
Table 2 shows the performance of these classifiers which were 
trained on 70% and tested on 30% of the dataset. A 10-fold cross-
validation was not possible in this case due to too few instances 
for some subcategories. 
Table 2. Performance of Subact Classifiers within each
Dialogue Act Category using Logistic Regression algorithm.

Model N Accuracy% Kappa

Answer 1130 52.8 0.43

Assertion 29890 57.6 0.42

Clarification 609 40.4 0.17

Confirmation 6620 92.6 0.77

Correction 2065 62.3 0.43

Directive 2006 61.7 0.52

Explanation 1941 54.4 0.25

Expressive 22198 76.8 0.74

Hint 341 67.6 0.34

Promise 303 95.6 0.00

Prompt 6186 64.2 0.30

Question 2553 60.7 0.49

Reminder 337 47.7 0.25

Request 14243 56.2 0.49

Suggestion 2028 70.2 0.43

As shown in Table 2, the subact classifiers yield an average 
accuracy of approximately 65% and kappa of 0.4. Next we created 
a single model to classify Dialogue Act and Subact. By combining 

the top-level dialogue acts with their subacts, this produced a flat 
taxonomy with 133 categories. Table 3 shows the performance of 
our models with flat taxonomy using 10-fold cross validation. 
Table 3. Performance of models with flat taxonomy. 

Algorithm FeatureSet Accuracy Kappa

Naïve Bayes Simple 51% 0.49

Naïve Bayes Extended 48% 0.45

Bayes Net Simple 53% 0.50

Bayes Net Extended 51% 0.48

Logistic 
Regression Extended 44% 0.42

Logistic 
Regression Simple 43% 0.41

Table 3 shows that the flat taxonomy classification improved the 
accuracy of our model significantly when compared to the the 
multi-level classification. It is worth noting that these results 
approach the agreement of human experts when they annotated 
independently, which was 66%. 

4. CONCLUSION
The results of the different models and algorithms showed that the 
top-level Dialogue Acts can be predicted with a reasonable 
accuracy. However to be able to tag utterances with both top-level 
and subcategories a combined classification needed to be applied,
rather than a hierarchical approach. Multiple classification 
algorithm were effective, such as Naïve Bayes, Bayesian 
Networks, Logistic Regression, and Conditional Random Fields 
(CRF). 
The ultimate goal of this work is to build a model to be applied to 
a set of not-seen and untagged data and use the Dialogue Acts as 
means of modeling the discourse. The proposed models in this 
paper can be used as initial models for a semi-supervised classifier 
which will ultimately identify Dialogue Acts in real time. 
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ABSTRACT
In this paper, we deal with freshmen performance prediction. We 
analyze data from courses offered to students at Faculty of 
Informatics, Masaryk University. We supposed that the success 
rate of our predictions increases when we omit freshmen from our 
experiments as we have no study-related data about them.
However, we disproved this hypothesis because there was
generally no significant difference in prediction of freshmen and 
non-freshmen students. We also presented the attributes that were 
important for freshmen performance prediction. 

Keywords
Student Performance, Prediction, Freshmen, Social Network 
Analysis, Educational Data Mining. 

1. INTRODUCTION 
Universities are faced with the problem of a high number of 
students’ drop outs. Thus, researches explore what influences 
students’ performance, and identify weak students in order to help 
them to improve their achievements. It is important to predict 
student failure as soon as possible. The task is difficult because 
the less data about students we have the less accurate the 
prediction we obtain is. 

Data mining techniques represent a typical way for discovering 
regularity in data [3]. It allows us to build predictive models by 
defining valid and exact corresponding rules. Authors in [2] 
explored the drop-out prediction after the first year at Electrical 
Engineering department. Their data contained the study results of 
students enrolled in selected courses or the average grades gained 
in different groups of courses. Their results showed that decision 
trees belong to the most suitable algorithms. They also 
demonstrated that the cost-sensitive learning methods helped to 
bias classification errors towards preferring false positives to false 
negatives. Authors in [4] also investigated the prediction after the 
first year. They used questionnaires to get more detailed 
information about student habits. 

We are interested in a similar problem but our task involves the 
prediction of student success in a course not in the whole study. 
Our aim is to identify the combinations of students and courses 
that could be predicted with a high accuracy. Due to the lack of 
data, we supposed that omitting freshmen (students in the first 
semester in their first study at the faculty) from the investigation 
should significantly increase the prediction accuracy. We also 
investigated how accurately we are able to predict the success or 
failure of freshmen. 

2. DATA 
The data used in our experiment originated from the Information 
System of Masaryk University. Our aim was to reveal useful 
attributes characterizing students in order to predict student 

performance in every particular course. Our data comprised of 
study-related and social behavior data about students. We 
explored the freshmen performance prediction and the 
observations were verified on 62 courses offered to students of the 
Faculty of Informatics of Masaryk University. The data sets 
comprised of students enrolled in courses in the years 2010-2012
and their grades. We constructed three data sets: (1) All students –
3,862 students with 42,677 grades, (2) Without freshmen – 2,927 
students with 32,945 grades, (3) Only freshmen – 935 students 
with 9,732 grades.

2.1 Study-related data 
This kind of data contained personal attributes (e.g. gender, year 
of birth, year of admission at the university) and data about study 
achievements (e.g. the number of credits to gain for enrolled, but 
not yet completed courses, the number of credits gained from 
completed courses, the number of failed courses). This data 
contained 42 different attributes in total. 

2.2 Social Behavior Data 
This kind of data described students’ behavior and co-operation 
with other students. In order to get additional social attributes, we 
created sociograms. The nodes denoted users and the edges 
represented ties among them. The ties were calculated from the 
communication statistics, students’ publication co-authoring, and 
comments among students. Particularly, we applied social 
network analysis methods on the sociograms to compute the 
values of attributes that represent the importance of each user in 
the network, e.g. centrality, degree, closeness, and betweenness. 
We also calculated the average grades of students and their 
friends. Finally, the social behavior data contained 131 attributes 
in total. We already proved that this type of data increases the 
accuracy of student performance prediction [1]. 

3. EXPERIMENT 
Hypothesis. The accuracy of the student success prediction will 
significantly increase when we omit freshmen.

Evaluation. We utilized nine different classification algorithms 
implemented in Weka. We built a classifier for each investigated 
course because courses differ in their specialization, difficulty, 
and student occupancy rate. In the first place, we had to select 
suitable methods and compare the results of data sets with and 
without freshmen. We used the accuracy and coverage for 
comparing the results. Generally, the accuracy represents the 
percentage of correctly classified students. The coverage 
represents the amount of students for whom we can predict the 
success or failure. 

Observations. In all cases, SMO reached the highest accuracy 
(with and without freshmen). We computed also baseline (the 
prediction into the majority class) in order to compute the 
percentage of successful grades. In all cases, we used 10-fold 
cross-validation for evaluation the results. The results comparison 
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can be seen in Table 1. Surprisingly, the results indicate that there 
is no significant improvement when we omit the freshmen. We 
improved the results only by 1% but for almost 10,000 grades we 
did not give any prediction. 

Table 1. Comparison of results with and without freshmen 

ALL COURSES Accuracy Coverage

SMO Baseline

All students 80.04% 73.45% 100%

Without freshmen 81.26% 75.79% 77.2%

Naturally, the increase can be distorted by the large amount of 
non-freshmen students. No freshman has enrolled in 8 courses. 
Less than 10 freshmen were enrolled in 22 courses. Moreover, 
freshmen did not constitute 10% of all students in the next 18 
courses. For the next investigation we selected only 14 courses 
where the number of freshmen is not negligible.

The results of selected 14 courses can be seen in Table 2. As can 
be seen, the improvement was 3.3%. However, there was a 
significant difference in baseline – about 7%. SMO was the most 
suitable method again but the results were difficult to interpret. 
For this reason, we also presented the accuracy using J48 for the 
purpose of comparison the success rate of the both approaches. 
We considered the J48 model to be similar enough for indication 
the attributes that influenced the results. 

Table 2. Comparison of results for 14 courses 

14 COURSES
Accuracy

Coverage
SMO J48 Baseline

Without 
freshmen

82.07% 80.24% 77.82% 59.27%

All students 78.77% 77.48% 70.66% 100%

Only freshmen 76.56% 75.10% 67.11% 40.73%

When comparing the results presented in Table 1 and Table 2,
freshmen decreased the overall accuracy in all cases. However, the 
difference was insignificant. The model based on J48 algorithm 
was explored for each course. We also investigated trees built 
only for the freshmen. The classifiers classified the data based on 
using the following attributes: 

Known study-related attributes: field of study, programme of the 
study, if the student passed the entrance test or the student was 
accepted without taking any entrance test, score of the entrance 
test, if the course is mandatory, elective, or voluntary for the 
student.
Social behavior attributes: degree, centrality, betweenness,
number of friends / average of grades of friends that already 
passed investigated course, number of friends / average of grades 
of friends that are enrolled in the course with the investigated 
student. 
It was very interesting that the freshmen can be characterized by 
social attributes. They got the access to the system in June during 
the enrollment to their studies. During the enrollment of courses 

in September when we investigated their probability to pass the 
courses, we already had some data about their activity in the 
system. In order to measure the influence of the social behavior 
data on the freshmen performance prediction, we removed 
different types of data from the data set. The comparison can be 
seen in Table 3. SMO reached all presented results. The accuracy 
obtained by mining social behavior attributes was surprisingly 
slightly better than by mining only known study-related attributes. 
The best result was obtained when we used the both data types 
together. 

Table 3. Freshmen performance prediction using different 
types of data 

Data set Accuracy
All attributes 76.56%

Only known study-related attributes 73.95%.

Only social behavior attributes 74.72%

Decision. The results indicated that the accuracy of the prediction 
was almost the same for all students regardless the status of 
freshmen. The freshmen passed through the similar classification 
paths as the non-freshmen. When we consider only the courses 
with a high proportion of the freshmen, the difference is higher 
but not significant. As a result, the hypothesis was not confirmed. 

4. CONCLUSION 
In this paper, we were dealing with the freshmen performance 
prediction. The hypothesis was that the success rate of the 
predictions will increase when we omit the freshmen. We 
disproved this hypothesis because the results sustained almost the 
same. The freshmen passed through the similar classification path 
as the non-freshmen. When we inspected the possibility of 
estimation only the freshmen grades, surprisingly, mining the 
social behavior data collected from students in the information 
system only in two months reached better results than mining data 
about results in the entrance test, course category, and the basis of 
the study specialization. 
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ABSTRACT
We present a generalisation of the IRT framework that al-
lows to discriminate between examinees. Our model there-
fore introduces examinee parameters that can be optimised
with Expectation Maximisation-like algorithms. We provide
empirical results on PISA data showing that our approach
leads to a more appropriate grouping of PISA countries than
by test scores and socio-economic indicators.

1. INTRODUCTION
Developments in Psychometrics have led to a multitude of
logistic models, ranging from simple classical test theory
to sophisticated multidimensional generalizations (e.g., [2]).
Usually, these generalizations focus on items and the suc-
cess of solving an item depends on a particular set of skills.
On the contrary, examinees are only represented by their
ability although, according to the original theoretical IRT
problem, items and examinees are supposed to be treated
symmetrically.

In this paper, we propose to balance this asymmetry by
including a discrimination parameter for examinees. We
present a homographic parametrization that preserves sym-
metry and allows to derive characteristics of examinees. We
report on empirical results on PISA 2012 data showing that
the use of examinee discrimination parameters reveals in-
sights that cannot be identified with traditional approaches.

2. A SYMMETRIC AND LOGISTIC MODEL
The traditional 1PL model [5] is given by

IRF1PL(i, j) =
1

1 + eθi+βj)
, (1)

where the real numbers θ and β represent the examinee’s
ability and the item difficulty, respectively. These param-
eters can be related to the score xi and the rate of suc-
cess of the question aj by using the transformations βj =

log
(

1−aj

aj

)
and θi = log

(
1−xi
xi

)
. Note that xi and aj are

real numbers bounded by 0 and 1. After substitution, the
model can be expressed as

IRF1PL(i, j) =
ajxi

ajxi + (1− aj)(1− xi)
. (2)

A similar transformation can be applied to the 2PL [1],
where αj = bj are non negative real numbers called item
discrimination,

IRF2PL(i, j) =
1

1 + eαj(θi+βj)

=
(ajxi)

bj

(ajxi)bj + ((1− aj)(1− xi))bj
. (3)

The multidimensional two-parameter logistic model (M2PL)
[2] splits the items in k different skills. The examinee has
an ability parameter for each skill that is affected by a skill
discrimination parameter. The ability is now a vector of
real numbers θi = (θi,1, ..., θi,k) and the item discrimination
a vector of non-negative real numbers αj = (αj,1, ..., αj,k),

IRFM2PL(i, j) =
1

1 + eαjθi + βj

=
ajx

bj
i

ajx
bj
i + (1− aj)(1− xi)bj

. (4)

The appealing use of item discrimination parameters can
be translated to examinees, for instance to distinguish be-
tween a regular scholarly student and a talented, yet slacking
one. Let us introduce an examinee discrimination parame-
ter denoted by the non-negative real number yi that acts
as the analogue of its peer bj . The discrimination parame-
ters will also be decoupled from the other item or examinee
parameter. This assures the identifiability of the model.
The resulting model is called the Symmetric Logistic Model
(SyLM) and given by

IRFSyLM (i, j) =
1

1 + ebjθi+yiβj

=
ayi
j x

bj
i

ayi
j x

bj
i + (1− aj)yi(1− xi)bj

. (5)

At first sight, the logistic parametrization of the SyLM ap-
pears as a special case of the M2PL by setting βj = 0 and
renaming the parameters, however, the homographic param-
eterization renders them intrinsically different. Actually,
SyLM is closer to the 2PL as it does not subdivide items
into skills although a multidimensional extension could be
easily derived. For lack of space, we will thus only compare
SyLM to the 1PL and 2PL.
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Table 1: Synthetic results
Model Param. log.Lik AIC BIC
1PL Log. -3847.1 8504.3 10100.1
1PL Hom. -3836.6 8483.2 10079.0

2PL Log. -3809.2 8478.5 10172.8
2PL Hom. -3724.3 8308.7 10002.9

SyLM Log. -3809.2 9238.5 12430.1
SyLM Hom. -3455.5 8531.1 11722.6

3. EMPIRICAL EVALUATION
3.1 Synthetic Comparison
For each approach, logistic and homographic parameteriza-
tions are tested. Parameters are inferred by a Maximum
Likelihood [4] algorithm supported by a Newton-Raphson
optimization. The dataset consists of the results to the first
Mathematic booklet of PISA 2012 study in France (380 ex-
aminees, 25 items). For items having two degrees of success,
both cases are considered as a success. Similarly, answers
entered as “not reached” or “NA” are considered as failures.

Although the results shown in Table 1 should be indepen-
dent of the paramtetrization, estimations using homographic
parametrizations produce better results throughout all set-
tings. As expected, the additional parameters brought into
the optimization by SyLM are crucial for the information
criteria. However, comparing SyLM with the 1PL shows
SyLM as the winner in two out of three cases. The decrease
of the log-likelihood exceeds the increase of the AIC due to
the significantly higher number of parameters.1 The differ-
ence is even stronger for BIC and increases with the number
of samples, hence naturally penalizing SyLM.

3.2 PISA Analysis
We now analyse the PISA 2012 ranking [3] and its associ-
ated country clustering with SyLM. The original grouping is
based on the scores in the different tests and on social and
economical variables of the countries. We focus on four pairs
of countries/economies and shown in Table 2. Although
Shanghai and Singapore are not reported similar, we study
them together as they are the top ranked and the only ones
without a similar peer. Our analysis is again performed on
the Mathematics test. For each country, booklets are ana-
lyzed separately before the results are merged.

For the the twelve countries listed in Table 2, Figure 1 fo-
cuses on the distribution of examinee’s discrimination given
the examinee’s ability. The coloring indicates the ratio of
pupils having a high or a low normalized2 discrimination
given the fact that they have a low or a high normalized
ability. We consider values below .25 as a low normalized
characteristic and above .75 as a high one.

Although Switzerland and Japan are in the same PISA group,
their figures are very different. The Japanese distribution is
closer to the other Asiatic countries while the Swiss is simi-
lar to the German one. The geographic argument holds for
Brazil and Argentina but not for USA and Russia, which
are geographically and culturally very different. Again the

1The 2PL counts N +2M parameters, SyLM has 2N +2M .
2Data is normalized by yi → yi

1+yi
and θi → 1

1+eθi
= xi.

Table 2: PISA country grouping

QCN Shanghai CHE Switzerland GER Germany
SGP Singapore JPN Japan CAN Canada

FRA France USA USA BRA Brazil
GBR Great Britain RUS Russia ARG Argentina

Figure 1: SyLM results for PISA

two neighbors Canada and USA produce very different re-
sults. While the distribution for USA is closer to the British
one, the Canadian one shows very different. Based on our
results, an improved clustering can be proposed. Shanghai,
Singapore and Japan constitute the first group; Switzerland,
Germany the second. Great Britain, the USA and Russia
form the third group while Brazil and Argentina make a
group of their own. Canada and France remain outsiders.

4. CONCLUSION
We proposed the Symmetric Logistic Model as a general-
ization of the Rasch model. Our approach can be inter-
preted as a symmetric 2PL at the cost of additional param-
eters. Empirically, our Symmetric Logistic Model showed
that the PISA grouping of countries based on score and
socio-economic backgrounds is suboptimal. More appropri-
ate groups could be formed by taking examinee discrimina-
tion parameters into account.
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ABSTRACT
Motivation is essential to learning and performance in e-
learning environments. Designing strategies to intervene in
the learning process as soon as possible with the aim of keep-
ing the learner engagement high is thus remarkably impor-
tant. This paper proposes a method which allows instructors
to discover learners with a performance inconsistent with the
activity carried out, enabling teachers to send personalised
messages to these students.

1. INTRODUCTION
Motivation is essential to carry out any kind of task success-
fully but, this is even more necessary for activities which re-
quire a great cognitive and time effort such as the acquisition
and understanding of new knowledge to be applied suitably
and rightly to problem solving. This is the case of learning
processes supported by e-learning platforms where learners
must adopt an active role and guide their self-learning.

To offer support and individualised help to learners, teach-
ers need tools that help them to detect students who re-
quire advice. We, in this work, present a method which
aims at detecting learners whose effort performed in the e-
platform is comparable or higher than that one done by their
peers but, unlike them, they do not pass the assessable as-
signments. These learners require a feedback different from
those who are not interested in the course, thus being at risk
of dropout. These feedback messages should be automati-
cally generated by the e-learning system in order to provide
students with personalized guidance, tailored to their inho-
mogeneous needs and requirements [1].

To our knowledge, the relationship between effort and per-
formance has never been studied. The closest topic re-
searched is the detection of undesirable student behaviours
[3, 2] whose goal is to discover those students who have
some type of problem or unusual behavior such as dropping

out or academic failure. For instance, Ueno [4] proposed
an animated agent which provided adaptive messages to the
learners with an irregular learning process and Vellido et al.
[5], characterised atypical student behaviors through robust
generative relevance analysis.

Next, we describe our method and discuss the results achieved.

2. METHOD AND RESULTS
Our approach aims at detecting students who have carried
out a great effort but, however, they have failed. These are
thus a subset of the students that a performance classifier
would classify wrongly since their activity is very similar
to that performed by students who passed. Therefore our
method works in two phases: first, a classifier is built in
order to detect misclassified instances and next, a clustering
technique is applied on the misclassified instances set of ”fail”
class with the aim of detecting these learners. The instances
from the cluster whose weighted Euclidean distance to ”fail”
class prototype is the largest are our target students.

We apply our method on students’ activity data from two e-
learning courses hosted in Moodle with 43 and 119 learners
respectively. In both, the students must carry out four as-
signments to pass the course. We generated two data sets,
one for each course, with the activity data corresponding
to the period of the first assignment(named ”d1” and ”d2”).
The attributes used were: N# of actions performed by the
student (”act”), N# of visits to the content-files (”v-re”),
the SCORM resources (”v-sc”), the statistics page (”v-da”),
the feedback messages provided by the instructor (”v-fe”)
and the html pages (”v-co”); N# of messages read (”v-fo”),
posted (”a-di”) and answered (”p-fo”) by the student in the
forum and the sum of the attributes ”a-di” and ”p-fo” (”pa-
fo”). As class attribute, we used the mark achieved by the
learner in the first assignment, pass or fail.

We configured our method for using J48 as classifier and
k-means as clustering technique. The accuracy of the classi-
fiers, evaluated with 10-CV, were 69.77% and 85.17%, with
7 and 13 instances misclassified respectively, that means,
there were 7 and 13 learners who could have carried out
an activity (effort) similar to those who passed the first as-
signment, but however they failed. To determine if these
misclassified students had really a similar activity to those
who passed, we performed a clustering process with these
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Table 1: Clustering process on ”d1”
attr. relevance C1 C2 Avg.

act 9 0.1835 0.4639 0.1245

v-re 4 0.093 0.438 0.1270

v-co 1 0.1017 0.3785 0.1239

v-fe 1 0 0.1667 0.0385

v-da 6 0.0435 0.3732 0.0920

a-di 2 1 0.1667 0.0769

p-fo 4 0 0.2 0.0308

pa-fo 1 0.1667 0.1944 0.0385

v-fo 2 0.3061 0.3299 0.0597

v-sc 3 0.075 0.3417 0.0952

N# ins. - 1 6 -

dist. to avg. - 2.0183 3.8936 -

Table 2: Clustering process on ”d2”
attr. relevance C1 C2 C3 C4 Avg.

act 10 0.679 0.049 0.163 0.137 0.07

N# ins. - 2 5 2 4 -

dist. to avg. - 0.609 0.021 0,093 0,067 -

instances. Two and four clusters were created for dividing
up these students. The number of clusters was manually se-
lected by comparing the different clusters built with k ranges
from 2 to 5. Next, we calculated the weighted Euclidean dis-
tance from each centroid to the mean of the well-classified
instances of class ”fail”, being the contribution of each at-
tribute weighted according to its relevance. Those instances
which belonged to the cluster with a larger distance to the
average were marked as outliers. The prototype of each clus-
ter is shown in Tables 1 and 2. These tables also gather the
relevance of each attribute (”relevance”) calculated with the
ClassifierSubSetEval method provided by Weka and the av-
erage value (”Avg.”) of each attribute corresponding to the
well-classified instances of the fail class.

As can be observed, in ”d1”, the cluster C1 only contains one
instance which represents the activity of one of the students
with the lowest activity in all course and similar to that per-
formed by the students who failed and were well-classified.
The centroid of cluster C2 is further from the average of the
well-classified instances of the fail class and these, thus, are
marked as outliers. In ”d2”, the only relevant attribute is
the N# of total actions, and the instances of the cluster C1
therefore were marked as outliers.

Table 3 collects the most relevant activity performed by the
six and the two students misclassified in each course respec-
tively. In ”d1”, the value of most attributes is larger than
the average of their class, being this difference remarkable
for the attribute ”act”. On the one hand, the students la-
belled as d1s3, d1s4, d1s5 and d1s6 performed a significant
activity, but failed the first assignment (q1) with a low qual-
ification, from 0 to 4 out of 10. However, they passed the
second assignment (q2) with a good mark, 9 out of 10. That
means that the feedback given to them by the instructor was
useful and effective, being clearly reflected the importance of
giving a good feedback to the students. On the other hand,
student named d1s2, even having an appreciable activity,
failed the first assignment and dropped out before sending
the second task. In this case, the instructor’s advice was
not successful. If the teacher had known the activity per-
formed at the same time that he assessed the assignment,
the message could have been written in a more motivating
tone, expressly mentioning the activity already undertaken.
Finally, d1s1 was detected by the method but the learner

Table 3: Students’ activity
student act v-re v-da p-fo v-sc q1 q2

d1s1 0.23 0.30 0.24 0.00 0.19 0 0(dropout)

d1s2 0.20 0.16 0.15 0.00 0.34 3 0(dropout)

d1s3 0.91 1.00 0.72 0.60 0.63 4 9

d1s4 0.50 0.44 0.20 0.20 0.23 0 9

d1s5 0.58 0.42 0.43 0.40 0.31 3 9

d1s6 0.37 0.30 0.50 0.00 0.36 0 9

d2s1 0.84 3 8

d2s1 0.51 4.5 8.5

did not receive feedback because he did not deliver the as-
signment. In this case, the teacher missed the opportunity
to rescue him. Regarding d2, the N# of actions performed
by both students is very high in comparison with the aver-
age of the students who failed. Indeed, one of these students
had a mark of 4.5 out of 10, being very close to pass. In this
scenario, the feedback provided by the instructor was suc-
cessful since this learner passed the second assignment with
a qualification of 8.5 out of 10.

The experimentation carried out shows that our method
helps to discover students whose performance do not match
with the effort performed. Being able to automatically de-
tect them would allow teachers to act quickly, sending them
personalised messages oriented to keep their engagement
high and avoid the dropout.

As future work, our aim is to apply this method to other
virtual courses and support the teacher during the learning
process in order to validate the goodness of our proposal in
real online contexts. Another issue which will be addressed
shortly is to evaluate the effect of using different classifiers
and clustering algorithms in our proposal.
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ABSTRACT
Recent years have seen significant advances in automatic
identification of the Q-matrix necessary for cognitive di-
agnostic assessment. As data-driven approaches are intro-
duced to identify latent knowledge components (KC) based
on observed student performance, it becomes crucial to de-
scribe and interpret these latent KCs. We address the prob-
lem of naming knowledge components using keyword auto-
matically extracted from item text. Our approach identifies
the most discriminative keywords based on a simple proba-
bilistic model. We show this is effective on a dataset from
the PSLC datashop, outperforming baselines and retrieving
unknown skill labels in nearly 50% of cases.

1. OVERVIEW
The Q-matrix, introduced by Tatsuoka [9], associates test
items with attributes of students that the test intends to as-
sess. A number of data-driven approaches were introduced
to automatically identify the Q-matrix by mapping items to
latent knowledge components (KCs), based on observed stu-
dent performance [1, 6], using, e.g. matrix factorization [2,
8], clustering [5] or sparse factor analysis [4]. A crucial issue
with automatic methods is that latent skills may be hard to
describe and interpret. Manually-designed Q-matrices may
also be insufficiently described. A data-generated descrip-
tion is useful in both cases.

We propose to extract keywords relevant to each KC from
the textual content corresponding to each item. We build a
simple probabilistic model, with which we score keywords.
This proves surprisingly effective on a small dataset obtained
from the PSLC datashop.

2. MODEL
We focus on extracting keywords from the textual content
of each item (question, hints, feedback, Fig. 1). We denote
by di the textual content (e.g. body text) of item i, and as-
sume a Q-matrix mapping items to K skills ck, k = 1 . . .K.

Figure 1: Example item body, feedback and hints.

These may be latent skills obtained automatically or from
a manually designed Q-matrix. For eack KC we build a un-
igram language model estimating the relative frequency of
words in each KC [7]:

P (w|ck) ∝
∑

i,di∈ck
nwi, ∀k ∈ {1 . . .K} (1)

with nwi the number of occurrences of word w in document
di. P (w|c) is the profile of c. Important words are those that
are high in c’s profile and low in other profiles. The sym-
metrized Kullback-Leibler divergence between P (w|c) and
the profile of all other classes, P (w|¬c), decomposes over

words: KL(c,¬c) = ∑
w (P (w|c)− P (w|¬c)) log P (w|c)

P (w|¬c) . We

use the contribution of each word to the KL divergence as
score indicative of keywords. In order to focus on words
significantly more frequent in c, we use the signed score:

KL score: sc(w) = |P (w|c)− P (w|¬c)| log P (w|c)
P (w|¬c) . (2)

Figure 2 illustrates this graphically. Words frequent in c but
not outside (green, right) receive high positive scores. Words
rare in c but frequent outside (red, left) receive negative
scores. Words equally frequent in c and outside (blue) get
scores close to zero: they are not specific enough.

3. EXPERIMENTAL RESULTS
We used the 100 student random sample of the ”Comput-
ing@Carnegie Mellon”dataset, OLI C@CM v2.5 - Fall 2013,
Mini 1. This OLI dataset is well suited for our study be-
cause the full text of the items is available in HTML format
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Figure 2: From KC profile, other KCs, to KL scores.

KC label #it Top 10 keywords (body text only)
identify-sr 52 phishing email scam social learned

indicate legitimate engineering anti-
phishing indicators

print

quota

12 quota printing andrew print semester
consumed printouts longer unused cost

penalties

bandwidth

1 maximum limitations exceed times
bandwidth suspended network access

Table 1: Top 10 keywords for 3 KC of various sizes.

and can be extracted. Other datasets only include screen-
shots. There are 912 unique steps, 31k body tokens, 11.5k
hints tokens, and 41k feedback tokens, close to 84k tokens
total. We pick a model in PSLC that has 108 distinct KCs
with partially descriptive labels. That model assigns 1 to
52 items to each KC, for 823 items with at least 1 KC as-
signed. All text is tokenized, stopwords are removed, as well
as tokens not containing one alphabetical character.

We estimate three different models, using Eq. (1), depend-
ing on the data considered: body text only (”body”), body
and hints (”b+h”), all text (”all”). For each model, we ex-
tract up to 10 words with highest KL score (2) for each KC.
Table 1 shows that even for knowledge components with very
few items, the extracted keywords are clearly related to the
topic suggested by the label. Although the label itself is not
available when estimating the model, words from the label
often appear in the keywords: this happens in 44 KCs out of
108 (41%), suggesting that the retrieved keywords are rele-
vant. Note that some labels are vague (e.g. identify-sr) but
the keywords provide a clear description (phishing scams).

We now focus on two desirable qualities for good keywords:
diversity (keywords should differ accross KCs) and specificity
(keywords should describe few KCs). Table 2 compares KL
scores with the common strategy of picking the most fre-
quent words (MP), using various metrics. Good descriptions
should have a high number of different keywords, many of
which describing a unique KC, and few KCs per keyword.
The total number of keyword is fairly stable as we extract
up to 10 keywords for 108 KCs. It is clear that KL extracts
many more different keywords (up to 727) than MP (352 to
534). KL yields on average 1.4 (median 1) KC per keyword,
whereas MP keywords describe on average 3.1 KC. There are
also many more KL-generated keywords describing a unique

total different unique max
KL-body 995 727 577 9
KL-b+h 1005 722 558 10
KL-all 1080 639 480 19
MP-body 995 534 365 42
MP-b+h 1005 521 340 34
MP-all 1080 352 221 87

Table 2: Keyword extraction for KL vs. max. prob-
ability (MP) using text from body, b+h and all
fields; total keywords, # different keywords, # with
unique KC, and maximum KC per keyword.

KC. These results support the conclusion that our KL-based
method provides better diversity and specificity.

Note that using more textual content (adding hints and feed-
back) hurts performance accross the board. We see why from
the list of words describing most KCs from two methods:
KL-body: use (9) following (8) access, andrew, account (7)
MP-all: incorrect(87) correct(67) review(49) information(30)

”correct” and ”incorrect” are extracted for 67 and 87 KCs,
respectively, because they appear frequently in the feedback
text. The KL-based approach discards them because they
are equally frequent everywhere.
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ABSTRACT
Data-driven systems such as the Hint Factory have been suc-
cessful at providing student guidance by extracting procedural
hints from prior user data. However, when only small amounts
of data are available, it may be unable to do so. We present a
novel hint-selection algorithm for coherent derivational domains,
such as probability, which addresses this problem by searching a
frontier of viable, partially matching student states. We tested
this algorithm on a dataset collected from two probability tutors
and performed a cold start comparison with direct state match-
ing. We found that our algorithm provided higher value hints
to students in unknown states 55.0% of the time. For some
problems, it also provided higher value hints in known states.

1. INTRODUCTION
Adaptive feedback is one of the hallmarks of an Intelligent Tutor-
ing System. This feedback often takes the form of hints, pointing
a student to the next step in solving a problem. While hints can
be authored by experts, more recent data-driven approaches,
such as the Hint Factory [1] have shown that this feedback can be
automatically generated from prior student data. The Hint Fac-
tory operates on a representation of a problem-specific dataset
called an interaction network [3], where each vertex represents
the state of a student’s solution at some point during the problem
solving process, and each edge represents a student’s action. A
complete solution is represented as a path from the initial state to
a goal state. A new student requesting a hint is matched to a pre-
viously observed state and directed along a path to the goal state.

If too few students have been recorded, the Hint Factory is
unable to match new students to existing states in the network.

This is known as the cold start problem, a fundamental challenge
in many domains. For example, when Hint Factory’s original
state matching algorithm was applied to BOTS, an educational
programming game, a dataset of nearly 100 students provided
only 40% hint coverage [4].

This paper focuses on two probability tutors in which many
actions have no ordering constrains. This can produce an ex-
ponentially large state space, making the cold start problem
even harder to overcome. We present a novel state matching
mechanism that helps address this problem in coherent deriva-
tional domains. These are problem-solving domains, such as
probability, physics, and logic, where: a) a solution S is con-
structed by repeated applications of domain rules to derive a
goal value; b) taking any valid action cannot prevent the student
from taking another valid action; and c) if S is a complete
solution to the problem, then any superset of S is also a com-
plete solution. Note that this does not prevent rule applications
within a solution from having ordering constraints.

2. SELECTION ALGORITHMS
For our purposes, we assume a hint selection algorithm takes the
following inputs: a) an interaction network, N=(V,E) of previ-
ously observed states and actions; b) a value or ordering function
f : V →R, which assigns “desirability” to each of the states in
V ; and c) the current state sc of a student who is requesting a
hint. In coherent derivational domains, each state s∈V can be
defined by the set of derived facts. Each edge e∈E is annotated
with an action ae, the derivation or deletion of a fact.

Given this information, a selection algorithm attempts to find
the optimal action a, such that a is a valid action in state sc,
and the value of the resulting state f(sa) is maximized. Here
we derive f from the Hint Factory’s value iteration procedure
[1], but other functions could be used instead.

The selection algorithm employed by the Hint Factory requires
that sc∈V , meaning the student is in a known, or previously ob-
served state. The algorithm then selects the successor of sc with
the highest value and returns the action which leads to this state.
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In the case that sc is unknown, meaning sc �∈V , Barnes and
Stamper [1] suggest using a student’s previous state to generate
a hint. This approach can be generalized to walking back to the
last recognized state in the student’s path, and using that to gen-
erate a hint. We refer to this as the“Backup Selection”algorithm.

In our selection algorithm, we first mark all v∈V such that v⊆s.
Beginning with the start state s0, we traverse the graph in a
depth-first fashion, following an edge e only if ae is a deletion or
derives a fact which is present in sc. Let us call the set of states
traversed in the manner T . Note that we do not generate states
here, but explore only the previously observed states in N. We
know that for any t∈T , t⊆sc and t is reachable by a known path
from the start state. We define the Frontier F as the set of all
states which can be reached by a single action from a state in T .
A student in sc can reach any state in the Frontier – or some su-
perset of the Frontier state – in a single action. We then find the

edge
−→
tu which maximizes f(u) and return its annotated action.

3. EVALUATION
Our evaluation was based on the cold start experiment originally
used to evaluate the Hint Factory [1], which was designed to
measure how much data was required to provide hints to new
students. Because we can always provide some hint by applying
the Backup algorithm, we are instead interested in measuring
the quality of the hints being given. Since we cannot directly
measure hint quality, we will use the value function, f , described
in Section 2, as an approximation of the quality. Here we use the
value iteration method employed by the Hint Factory [1]. We do
not make the claim this is an ideal metric, and this experiment
can be easily adapted to work with any value function.

We evaluated our algorithm using combined log data from the
Andes and Pyrenees probability tutors [2]. The Andes data was
drawn from a prior experiment [2] and included 394 problem
attempts by 66 students over 11 problems. The Pyrenees data
included 999 problem attempts by 137 students on the same prob-
lem set. The tutors contain the same knowledge base, problems
and solutions, allowing their data to be merged. This allowed us
access to a wider variety of data than a single tutor would afford.

3.1 Procedure
For each problem, a student was selected at random and re-
moved from the population to represent a previously unobserved
student. We will call this student’s path P . The remaining
students who successfully solved the problem were added, one
at a time and in a random order, to the network, N. Let n be
the number of students added this way. After each addition,
for each non-solution state in P , we calculated hints with the
Backup selection algorithm and with our algorithm. We gave
each of these hints a value, equal to f(s), where s is the resulting
state of applying the hint. In the case that this state was not
in N, we used the value of the Fringe state selected by the
algorithm (a superset of the resulting state). If our algorithm
showed an improvement, we also recorded whether or not the
state requesting a hint was known, meaning it was in N. This
process was repeated 500 times to account for ordering effects.

3.2 Results
For each problem, we averaged the the percentage of unknown
states with improved hints over all values of n. This average
ranges from 33.5% to 69.8%, with an average of 55.0%. This indi-

Figure 1: One cold start curve, showing the percent
of hints which are improved by our algorithm (y-axis),
given the number of students in N (x-axis).

cates that our algorithm accomplishes its intended purpose of im-
proving hint selection when insufficient data makes it difficult to
find matching states in the network. However, while we were able
to improve hints for a large percentage of these unknown states,
the number of unknown states dropped off rapidly as n increased.

For 7 of the 11 problems, our algorithm also produced improved
hints for known states. Notably, the percentage of improved
hints increases as more students are added to N, meaning
additional data strengthens our algorithm’s advantage. After all
of the students were added to N, this number ranged from 3.6%
to 49.7%, with an average of 17.8%. The improvement for known
states seems to depend largely on the graph structure, and occurs
infrequently in smaller graphs. Figure 1 depicts one cold start
graph demonstrating the trends for known and unknown states.

4. CONCLUSIONS
We have presented a novel algorithm for selecting among pos-
sible data-driven hints. We have demonstrated that on average
our algorithm gives a higher value hint 55.0% of the time when
a student is in an unknown state, and 17.8% of the time for
known states in a subset of problems.
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1. INTRODUCTION
The current generation of Massive Open Online Courses (MOOCs)
are designed to leverage student knowledge to augment instructor
guidance. Activity in these courses is typically centered on a
threaded forum that, while curated by the instructors, is largely
student driven. When planning MOOCs, it is commonly hoped
that open forums will allow students to interact freely and that
better students will help the poorer performers. It has not yet
been shown, however, that this occurs in practice.

In our ongoing work, we are investigating the structure of student
communities and social interactions within online and blended
courses [1]. Our focus in this poster is on the structure of
student communities in a MOOC and the connection between
those communities and students’ performance in the course. Our
goal was to determine whether students in the course form
strong sub-communities and whether a student’s community
membership is correlated with their performance. If students
do form strong communities and community membership is
a predictor of performance, then it would suggest either that
students are forming strong relationships that help to improve their
performance or that they are clustering by performance. If they do
not, then it suggests that they may be able to connect freely in the
forums at the expense of persistent and beneficial relationships.

2. BACKGROUND
Course-level relationships have been shown to influence students’
performance and the overall success of a course. Fire et al.
examined the impact of immediate peers in a traditional class and
found that students’ performance was significantly correlated with
that of their closest peer [4]. Eckles and Stradley analyzed dropout
rates and found that students with strong relationships with
students who dropped out were more likely to do so themselves [3].

Rosé et al. [7] examined students’ evolving social interactions
in MOOCs using a Mixed-Membership Stochastic Block model
which seeks to detect partially overlapping communities. They
found that dropout likelihood was strongly correlated with com-
munity membership. Students who actively participated in forums
early in the course were less likely to drop out later. Dawson [2]
studied blended courses and found that students in the higher
grade percentiles tended to have larger social networks within the
course and were more likely to be connected to the instructor.

3. METHODS
Big Data in Education is a MOOC offered by Dr. Ryan Baker
through the Teacher’s College at Columbia University [8]. This is
a 3-month long course composed of lecture videos, forum interac-
tions, and 8 weekly assignments. All of the assignments were struc-
tured as numeric or multiple-choice exams and were graded auto-
matically. Students were required to complete assignments within
two weeks of their release and were given three attempts to do so,
with the best score being used. 48,000 students enrolled in the
course with 13,314 watching at least one video, 1,380 completing at
least one assignment and 778 posting in the forums. Of that 778,
426 completed at least one assignment. 638 students completed
the course, some managed to do so without posting in the forums.

We extracted a social network from the forums, each student,
instructor, and TA was represented by a node. Each student node
was annotated with their final grade. Forum users could: start
new threads, add to existing threads, or add comments below
existing posts. We added directed edges from the author of each
item to the author of the parent post, if any, and to the authors
of the items that preceded it in the current thread. We then elimi-
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nated all self-loops and collapsed all parallel edges to form a simple
weighted graph for analysis. We extracted two different classes
of graphs. The ALL graphs include everyone who participated in
the forums while the Student graphs omit the instructor and TAs.
We produced two versions of each graph: one containing all par-
ticipants and one that excluded students with a course grade of 0.

We identified communities using the Girvan-Newman Edge Be-
tweenness Algorithm [5]. This algorithm takes as input an undi-
rected graph and a desired number of communities. It operates
by identifying the edge with the highest edge-betweenness score:
the edge that sits on the shortest path between the most nodes. It
then removes that edge and repeats until the desired number of dis-
joint graphs have been made. We applied exploratory modularity
analysis to identify the natural number of communities [1].

Having generated the graphs and determined the natural cluster
numbers, we clustered the students into communities. We treated
the cluster assignment as a categorical variable and tested its
correlation with final course grades. An examination of the grade
distributions showed that they were non-normal, so we applied
the Kruskal-Wallis (KW) test to evaluate the relationship [6].
The KW test is a non-parametric analogue of the ANOVA test.

4. RESULTS AND DISCUSSION
The raw graph contained 754 nodes and 49,896 edges. After
collapsing the parallel arcs and removing self-loops we retained
a total of 17,004 edges. Of the 754 nodes, 751 were students. Of
those, 304 obtained a grade of 0 in the course leaving 447 nonzero
students. The natural cluster number for each of the graphs is
shown in Table 1 along with the result of the KW tests. As Table
1 illustrates, cluster assignment was significantly correlated with
the students’ grade performance for all of the graphs. A sample
visualization of the student graph is shown in Figure 1.

The students formed detectable communities, and community
membership was significantly correlated with performance. While
the structure of the communities changed when non-students and
zero-students were removed, the significance relationships held.
Thus while the specific community structure is not stable under
deformations, students are still most connected to others who
perform at a similar level. This is consistent with prior work on
traditional classrooms and issues such as dropout. It runs counter
to the näıve assumption that good students will help to improve
the others. While it may be the case that the better performing
communities contain poorer-performing students who increased
their grades through interaction with better students, the presence
of so many low-grade clusters suggests that students do fragment
into semi-isolated communities that do not perform very well.

More research is required to determine why these communities
form, whether it is due to motivational factors or similar incoming
characteristics. We present some work along these lines in [1]. We
will also examine the stability of the communities over time to
determine whether they can be changed or if they are a natural
outgrowth of the forums and must be accepted as is.

Table 1: Community cluster numbers and Kruskal-
Wallis test of student grade by community.

Users Zeros Clusters K df p-value

All Yes 212 349.03 211 < 0.005
All No 173 216.15 172 < 0.02
Students Yes 184 202.08 78 < 0.005
Students No 169 80.93 51 < 0.005

Figure 1: Student communities with edges of weight 1
removed. Nodes represent communities. Size indicates
number of students. Color indicates mean grade.
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ABSTRACT
This paper presents a predictive student action model, which
uses student logs generated by a 3D virtual environment for
procedural training to elaborate summarized information.
This model can predict the most common behaviors by con-
sidering the sequences of more frequent actions, which is
useful to anticipate common student’ errors. These logs are
clustered based on the number of errors made by each stu-
dent and the total time that each student spent to complete
the entire practice. Next, for each cluster an extended au-
tomata is created, which allows us to generate predictions
more reliable to each student type. In turn, the action pre-
diction based on this model helps an intelligent tutoring sys-
tem to generate students’ feedback proactively.

Keywords
Intelligent Tutoring Systems, Educational Data Mining, e-
learning, procedural training, virtual environments

1. INTRODUCTION
Interactive simulations or virtual environments (VEs) have
been used as tools to improve the learning by facilitating the
“learning by doing” approach. Some of them show informa-
tion to students through pictures, videos, interactive objects
or help teachers make virtual lectures. However, there are
some educative environments that can also supervise the ex-
ecution of students’ tasks by employing Intelligent Tutoring
Systems (ITS), which provide tutoring feedback to students.

As a preamble to this work, a 3D biotechnology virtual lab
was developed by our research group [4]. After evaluating
this virtual lab, we saw opportunity to include the power
of data mining to improve its automatic tutor by taking
advantage of student logs.

Despite the work that has already been done about ITS
in Educational Data Mining (EDM), the community misses
more generic results [5]. Furthermore, it is also remarkable

the lack of ITSs that take advantage of models developed by
EDM [1].

The work presented in this paper represents a step forward
towards the development of an ITS that leverages a predic-
tive model computed by means of EDM to offer a better
tutoring feedback. Moreover, this ITS is intended for proce-
dural training in VEs and is domain independent.

Section 2 describes the proposed architecture for the ITS,
which leverages the predictive student model (section 3).
Finally, in section 4 we show the conclusions of this work.

2. ITS ARCHITECTURE PROPOSAL
The ITS architecture proposal is inspired on MAEVIF ar-
chitecture [3], which is an extension of the ITS classical ar-
chitecture for VEs.

Our main contribution resides in the Tutoring Module, which
has a Tutoring Coordinator that validates the students’ ac-
tions and shows error messages or hints. This module also
comprises the Student Behavior Predictor (SBP) and within
it lies the Predictive Student Model, which is used to find
out the next most probable action from the last action made
by the student. This information is used to anticipate prob-
able students’ errors, which provides a mechanism to avoid
them as long as it is pedagogically appropriate.

3. PREDICTIVE STUDENT MODEL
Predictive student model uses historical data from past stu-
dents and is continually refined (as Romero and Ventura
recommend [5]) with actions that students under supervi-
sion are doing. In the context of the KDD Process and its
adaptation into EDM formulated by Romero and Ventura
[5], this model is created in Models/Patterns phase.

The model contains summarized data from historical reg-
istries of actions made by past students, and it is used to
obtain the next most probable student’s action. It consists
of several clusters of students where each of them contains
an extended automata, detailed in section 3.1. These clus-
ters help to provide automatic tutoring adapted to each type
of student. For example, if the student is committing few er-
rors, it is more probable that his/her next action will not be
an error. However,it will happen the opposite to a student
who has failed more times.

The process of creation of this model is similar to the one
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proposed by Bogaŕın et. al. [2], and it is executed at the tu-
tor start-up. Basically, this process consists in taking events
from student logs and from them data clusters of students
are created based on the number of errors and the time they
spent to complete the entire training process. Then, an au-
tomata for each cluster is built from the logs of the students
using an incremental method. Later, at training time the
SBP component updates the model with each new student’s
action attempt.

3.1 Extended Automata Definition
This automata consists of states (represented by circles) and
transitions (represented as arrows) as shown in figure 1. Fur-
thermore, states are grouped into three zones: Correct Flow,
Irrelevant Errors and Relevant Errors Zone.

Figure 1: Example of an extended automata

Transitions denote events across an exercise such as actions
or action attempts that past students have performed so
far and new students may repeat in the future. An event
may be a valid action of an exercise or an error detected
by the tutor at the time of validating an action attempt.
Accordingly, states represent the different situations derived
from the events provoked by students.

Each state, and each transition, contains the number of stu-
dents whose logged sequences of events have passed through,
which becomes into event probabilities between states. In
the case of states with loops, event frequencies to next state
are reflected in a vector. In this way, the probability that a
student leaves the loop on each iteration can be represented.

3.1.1 Correct Flow Zone
In this area, events represent the valid sequence of actions
for an exercise, which ends up with a final satisfactory state.
These states are represented by white circles.

3.1.2 Irrelevant Errors Zone
This zone groups states derived from error events that do
not influence in the final result. These error events are asso-
ciated with action attempts blocked by the automatic tutor
(blocking errors [4]). These are graphically represented by
a yellow circle.

3.1.3 Relevant Errors Zone
This area encompasses states derived from error events that
actually influence in the final result, i.e. if an event of this
type occurs the final result will be wrong unless a repair-
ing action is done (non-blocking errors [4]). In this case

there will be an error propagation to the subsequent states,
because it does not matter what the student does later (ex-
cept for some repairing action), the subsequent states will
be considered also erroneous. The states derived directly
from these errors are graphically represented by red circles
and the subsequent correct states by orange circles.

In addition, repairing actions can be found in this area.
These actions fix errors occurred earlier and redirect to one
state in the correct flow.

4. CONCLUSIONS
Our proposal achieves an automatic tutoring in procedural
training more adapted to each type of student by apply-
ing methods of extraction and analysis of data, which can
anticipate possible errors depending on its configuration.

The principal application of the presented predictive model
is to help students with preventing messages. For this, we
have designed an ITS, presented above, which leverages the
predictive model to provide that kind of tutoring.

We consider that the advice of an expert educator or teacher
of the subject is essential at design time, despite this ITS
may become very independent once its tutoring strategy is
configured. This is because the resulting predictive model
need to be analyzed for refining the tutoring strategy. In or-
der to facilitate this task, it will be necessary to develop an
application that displays the model to the expert or profes-
sor. In this way, he/she could visualize where students make
more mistakes or where the practice is easier for them, and
with this information he/she could decide where and what
tutoring feedback is needed. Additionally, this could also
help teacher to improve his/her own teaching.
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ABSTRACT
Within intelligent tutoring systems, instructional events are
often embedded in the problem-solving process. As students
encounter unfamiliar problems there are several actions they
may take to solve it: they may explore the space by trying
different actions in order to ‘discover’ the correct path or
they can request a hint to get ‘direct instruction’ about how
to proceed. In this paper we analyze experimental data from
a tutoring system that provides two different kinds of hints:
(1) interface specific hints that guide students attention to
relevant portions of a worked example, supporting student
discovery of next steps, and (2) procedural hints that di-
rectly tell students how to proceed. We adapted a method
of sequence clustering to identify distinct hinting strategies
across the two conditions. Using this method, we discovered
three help-seeking strategies that change due to experimen-
tal condition and practice. We find that differences in strat-
egy use between conditions are greatest for students that
struggle to achieve mastery.

1. INTRODUCTION
As an instructional practice, tutoring supports students as
they learn by doing. The tutor passively observes while
the student is successful, but intervenes when the student
struggles. In this paper, we explore data from two intel-
ligent tutoring system (ITS) experimental conditions that
take different approaches to assisting students. The condi-
tions utilized adaptations of two common instructional per-
spectives, direct instruction and independent student discov-
ery. These methods are often discussed in contrast to one
another. Direct Instruction (DI) involves explicitly identi-
fying and teaching the key principles, skills, and procedures
for performing a specific task. The Discovery Method (DM),
on the other hand, fosters a student’s discovery of these prin-
ciples, skills, and procedures by referring to content in the
learning environment and providing indirect feedback and
guidance.

To explore how DI and DM impact student learning we an-
alyzed data from two algebra equation solving tutors [1]. In
both tutors students were provided with a worked exam-
ple. However, in the DI condition, students were provided
with explicit procedural hints whereas in the DM condition,
hints provided general information about the interface. In
their initial analysis, Lee et al. looked at average actions per
problems across several units and found that on some early
units students in the DM tutor showed a higher proportion

of mastered skills than students in the DI tutor. This effect
did not persist in later units of the tutor. They concluded
that, in the early units, students in the DM condition were
able to learn faster with the non-verbal worked examples
scaffolding than with the informative hints of the DI condi-
tion. In the current paper we aim to take a more nuanced
look at how the two experimental conditions impacted help-
seeking strategies and how these strategies change over the
course of problem solving.

2. METHODS
The experiment was conducted within the Carnegie Learn-
ing Algebra tutor. Twenty-two high school classes were
randomly assigned to the DI condition and sixteen classes
were randomly assigned to the DM condition. We restricted
this sample to students who had completed all experimen-
tal problems in the ‘Two-step linear equation solving’ unit
(DI=136, DM=138). Tutors in both conditions featured a
worked example that faded as students achieved mastery.
In the DI condition students were provided with hints that
instructed them on what procedure to do and why to do it
(e.g. “To eliminate -1, add 1 to both sides of the equation
because -1 +1=0”). In the DM condition students were pro-
vided with hints about how to use the interface (e.g. “Select
an item from the transform menu and enter a number”).
Unlike the traditional Cognitive Tutor, the initial hint was
a bottom out hint. Finally, in both tutors students could
make two types of mistakes, which received different feed-
back. If they selected off-task actions (e.g. choosing to mul-
tiply when they should have divided), they received a ‘bug’
telling them to undo their action and ask for a hint. If they
selected an on-task action, but incorrectly applied it (e.g.
dividing by an incorrect amount), they would receive ‘error’
feedback that their action was incorrect.

To identify distinct strategic behaviors within these tutors
we first generated a matrix of all problem-solving sequences
for each participant. We had a total of 5541 sequences for
the DI condition and 5430 sequences for the DM condition.
Correct actions were coded as ‘Success’, off-path actions as
‘Bug’, on-path actions as ‘Error’, and hints as ‘Hint’. Next,
we used a clustering method previously used to detect strat-
egy use within an ITS [2]. This method consists of fitting a
Markov Chain (MC) to each sequence, evaluating the fit of
each sequence’s MC to every other sequence’s MC to derive
a dissimilarity matrix, and using k-mediods to cluster the
sequences. We found that fitting 3 clusters produced the
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Figure 1: The student behavior for each cluster. Arrow gradients denote transition probability. Green nodes represent
success, red error, orange bugs, and yellow hints.

highest average silhouette coefficient. Then, for each cluster
we re-fit a single MC using all sequences assigned to that
cluster to generate transition probabilities between states
used to make Figure 1. After clustering the sequences we
fit a binomial mixed-effects model to each cluster to bet-
ter understand how students moved through the strategic
clusters. Our models included fixed effects for experimen-
tal condition, the number of problems students solved (we
refer to this as Practice Opportunity), and an interaction
between experimental condition and practice opportunity.
The models also included a random intercept for student to
account for individual differences, and a random intercept
for each specific problem to account for differences between
the specific problems.

3. RESULTS
Figure 1 illustrates the occupancy and transitions between
the different actions of the three clusters. A Chi-Squared
test found that the cluster assignment of sequences from the
two conditions are significantly different (χ2(2) = 131.7, p <
.001). More sequences in the DM condition were observed
in Strategy 1 (DI=2886, DI=2922) and Strategy 3 (DI=765,
DM=1103) than students in the DI condition, whereas the

Figure 2: The average usage of strategies across practice
opportunity for the two conditions. The solid vertical and
dashed lines indicate the average point of mastery for DM
(M=39,SD=11.5) and DI (M=41, SD 14).

reverse was true for Strategy 2 (DI=1890, DM=1405). Mod-
eling Strategy 1 use, we found that the level of variability
between conditions was not sufficient to include a random
effect of problem. We found a marginally significant effect of
intercept (z = 1.94, p = 0.053) along with a marginally sig-
nificant interaction between the DM condition and practice
opportunity (z = 1.89, p = 0.059). In modeling the use of
Strategy 2, we found that there was a significant fixed effect
of intercept (z = −7.8, p < .001) and of practice opportunity
(z = 3.4, p < .001). Finally, in modeling the use of Strategy
3, we found that the random effect of practice opportunity
was invariant across the different problems and model fit was
improved by removing it. After removal, we found a signifi-
cant fixed effect of intercept (z = −11.2, p < .001) as well as
a significant effect of the DM condition (z = 3.0, p < .005).
Figure 2, while not capturing the full nuanced relationship
between the different factors and strategy assignments, of-
fers some reference for understanding the model results.

In conclusion, our approach enabled us to build a picture of
the strategies students use and how they change over time.
Our results suggest that strategy use in the DM and DI
conditions is similar, with differences appearing after higher
performing students begin to reach mastery. This suggests
that students who do not need help and are not exposed
to the experimental manipulations have similar strategies
across the two conditions. In contrast, students who achieve
mastery more slowly ask for more hints, receive the ma-
nipulation, and consequently vary in their use of strategy.
Future work might benefit from focusing on students that
take longer to reach mastery and from coding problem type.
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ABSTRACT
Computerized adaptive testing (CAT) is a mode of testing
which has gained increasing popularity over the past years.
It selects the next question to ask to the examinee in order
to evaluate her level efficiently, by using her answers to the
previous questions. Traditionally, CAT systems have been
relying on item response theory (IRT) in order to provide
an effective measure of latent abilities in possibly large-scale
assessments. More recently, from the perspective of provid-
ing useful feedback to examinees, other models have been
studied for cognitive diagnosis. One of them is the q-matrix
model, which draws a link between questions and examinee
knowledge components. In this paper, we define a proto-
col based on performance prediction to evaluate adaptive
testing algorithms. We use it to evaluate q-matrices in the
context of assessments and compare their behavior to item
response theory. Results computed on three real datasets
of growing size and of various nature suggest that tests of
different type need different models.

Keywords
Adaptive assessment, computerized adaptive testing, cogni-
tive diagnosis, item response theory, q-matrices

1. INTRODUCTION
Automated assessment of student answers has lately gained
popularity in the context of online initiatives such as massive
online open courses (MOOCs). Such systems must be able
to rank thousands of students for evaluation or recruiting
purposes and to provide personal feedback automatically for
formative purposes.

For computerized adaptive tests (CAT), item response the-
ory (IRT) provides the most common models [3]. IRT pro-
vides a framework to evaluate the performance of individual
questions, called items, on assessments [6]. When the in-
tention is more formative, examinees can receive a detailed
feedback, specifying which knowledge components (KCs) are
mastered and which ones are not [1]. Most of these models
rely on a q-matrix specifying for each question the different
KCs required to solve it.

We propose a protocol to evaluate adaptive testing algo-
rithms and use it to compare the performances of the sim-
plest IRT model, the 1-parameter logistic one, commonly
known as Rasch model, with the simplest Q-matrix model.
We expect to answer the following question: given a budget

of questions of a certain dataset asked according to a cer-
tain adaptive selection rule, which model performs the best
at predicting the answers of the examinee over the remaining
questions? We managed to get satisfactory results, enabling
us to state that no model dominates in all cases: according
to the type of test, either the Rasch model or the q-matrix
performs the best.

2. BACKGROUND AND RELATED WORK
2.1 Item Response Theory: Rasch Model
The Rasch model estimates the latent ability of a student by
a unique real number θ modeled by a random variable and
characterizes each question by one real number: its difficulty
d, corresponding to the ability needed to answer the ques-
tion correctly. Knowing those parameters, the probability
of the event “the student of ability θ answers the question
of difficulty d correctly”, denoted by success, is modeled by:

Pr{success|θ} = 1

1 + e−(θ−d)
.

The aim is first to optimize the parameters dj for each ques-
tion j and θi for each student i in order to fit a given train
dataset. Then, throughout the test, a probability distribu-
tion over θi is updated after each question answered, using
the Bayes’ rule.

2.2 Cognitive Diagnosis Model: Q-matrix
We now present a model that tries to be more informative
about the student’s knowledge components. Every student
is modeled by a vector of binary values (a1, . . . , aK), called
knowledge vector, representing her mastery of K distinct
KCs. A q-matrix Q [7] represents the different KCs involved
in answering every question. In the NIDA model considered
here [3], Qij is equal to 1 if the KC j is required to succeed
at question i, 0 otherwise. More precisely, we denote by si
(gi) the slip (guess) parameter of item i. The probability of
a correct response at item i is 1− si if all KCs involved are
mastered, gi if any required KC is not mastered.

The KCs are considered independent, thus the student’s
knowledge vector is implemented as a vector of size K indi-
cating for each KC the probability of the student to master
it. Throughout the test, this vector is updated using Bayes’
rule. From this probability distribution and with the help
of our q-matrix, we can derive the probability for a given
student to answer correctly any question of the test.
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3. ADAPTIVE TESTING FRAMEWORK
Our student data is a dichotomous matrix of size NS ×NQ

where NS and NQ denote respectively the number of stu-
dents and the number of questions, and cij equals 1 if stu-
dent i answered the question j correctly, 0 otherwise.

We detail our random subsampling validation method. Once
the model has been trained, for each student of the test
dataset, a CAT session is simulated. In order to reduce
uncertainty at most, at each step we pick the question that
maximizes the Fisher information and ask it to the student.
The student parameters are updated according to her answer
and a performance indicator at the current step is computed.
To compare it to the ground truth, we choose the negative
log-likelihood [5], that we will denote by “mean error”.

4. EVALUATION
We compared an R implementation of the Rasch model
(IRT) and our implementation of the NIDA q-matrix model
(Q) for different values of the parameter K, the number of
columns of the q-matrix. Our algorithms were tested over
three real datasets:
SAT dataset [4]. Results from 296 students on 40 ques-
tions from the 4 following topics of a SAT test: Mathematics,
Biology, World History and French.
Fraction dataset [2]. Responses of 536 students to 20
questions about fraction subtraction.
Castor dataset. Answers of 6th and 7th graders competing
in a K-12 Computer Science contest which was composed of
17 tasks. It is a 58939× 17 matrix, where the (i, j) entry is
1 if contestant i got full score on task j, 0 otherwise.

Results are presented in Table 1 where the best performances
are shown in bold. As a reference, 1.0 is the error obtained
by the trivial algorithm affecting 1/2 to every probability.
On the Castor dataset, IRT performs better than Q for any
value of K throughout the whole test. On the Fraction
dataset, the handmade q-matrix achieves the highest error.
In the early questions of the test, Q algorithms forK = 8 and
11 perform slightly better than IRT. The Fraction dataset
is a calculus test: it requires tangible, easy-to-define knowl-
edge components. Therefore, after a few carefully chosen
questions Q can estimate reasonably the performance of an
examinee over the remaining ones. On the SAT dataset, IRT
achieves the lowest error among all tested algorithms. We
also observe that the variance increases throughout the test,
probably because the behavior of the algorithm may vary
substantially if the remaining questions are from a different
topic than the beginning of the test.

5. DISCUSSION AND FUTURE WORK
Our comparison of the cognitive diagnosis model with IRT
seems to indicate that q-matrices perform better on a certain
type of tests; in the Fraction test, there are redundancies
from one question to another in order to check that a notion
is known and mastered. Conversely, IRT performs better on
both the SAT test and Castor contest, which is remarkable
given its simplicity. The fact that the SAT test is multidis-
ciplinary explains the difficulty of all considered algorithms
in predicting the answers, and the nature of Castor as a
contest may require a notion of level instead of knowledge
mastery. Therefore, in those cases, we will prefer to use the
Rasch model. In order to confirm this behavior, we plan to
test our implementation on many other datasets.
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Castor After 4 q. After 10 q. After 16 q.
Q K = 2 0.555 ± 0.004 0.456 ± 0.005 0.167 ± 0.012
Q K = 5 0.574 ± 0.004 0.460 ± 0.006 0.206 ± 0.016
Q K = 8 0.520 ± 0.004 0.409 ± 0.006 0.148 ± 0.013
Q K = 11 0.519 ± 0.004 0.462 ± 0.007 0.218 ± 0.014
Q K = 14 0.515 ± 0.003 0.449 ± 0.006 0.169 ± 0.014

IRT 0.484 ± 0.003 0.346 ± 0.005 0.111 ± 0.010

Fraction
Q K = 2 0.464 ± 0.012 0.326 ± 0.013 0.196 ± 0.017
Q K = 5 0.440 ± 0.011 0.289 ± 0.014 0.146 ± 0.013
Q K = 8 0.407 ± 0.011 0.276 ± 0.015 0.159 ± 0.015
Q K = 11 0.395 ± 0.009 0.255 ± 0.013 0.156 ± 0.015
Q K = 14 0.422 ± 0.009 0.274 ± 0.014 0.180 ± 0.018

IRT 0.435 ± 0.012 0.304 ± 0.013 0.142 ± 0.012
Q* K = 8 0.596 ± 0.008 0.346 ± 0.007 0.182 ± 0.007

SAT
Q K = 2 0.522 ± 0.007 0.417 ± 0.010 0.315 ± 0.018
Q K = 5 0.469 ± 0.007 0.365 ± 0.012 0.306 ± 0.019
Q K = 8 0.463 ± 0.007 0.367 ± 0.013 0.242 ± 0.018
Q K = 11 0.456 ± 0.008 0.364 ± 0.013 0.331 ± 0.023
Q K = 14 0.441 ± 0.007 0.350 ± 0.012 0.296 ± 0.021

IRT 0.409 ± 0.008 0.285 ± 0.012 0.248 ± 0.022

Table 1: Mean error of the different algorithms over the re-
maining questions of the Castor and Fraction datasets, after
a certain number of questions have been asked. The dashed
curve denotes the Rasch model (IRT), while the curves of
growing thickness denote q-matrices (Q) of growing num-
ber of columns. The dotted curve in Fraction denotes the
handmade q-matrix (Q*) [2].
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ABSTRACT
We hypothesize that there are two basic ways that a user model 
can perform better than another: 1.) having test data averages that 
match the prediction values (we call this the coherence of the 
model) and 2.) having fewer instances near the mean prediction 
(we call this the differentiation of the model).  There are several 
common metrics used to determine the goodness of user models; 
these metrics conflate coherence and differentiation.  We believe 
that user model analyses will be improved if authors report the 
differentiation, as well as to include an ordering metric (e.g. 
AUC/A’ or R2) and an error measurement (Efron’s R2, RMSE or 
MAE).  Lastly, we share a simplified spreadsheet that enables 
readers to examine these effects on their own datasets and models.

1. INTRODUCTION AND BACKGROUND
One of the goals of many in the online educational community is 
to more accurately predict whether a student will get the next 
question correct.  In order to predict student responses, algorithms 
such as Knowledge Tracing [2], Performance Factors Analysis
[6], and tabling methods [10] etc. have been developed.  (See [3] 
for a thorough review of various user models.)  Looking at only 
papers presented at EDM 2014, we find more than 6 new models 
or modifications proposed in the full papers alone [14].  Common 
metrics used to determine when a model is better than another 
include AUC/A’, RMSE, MAE, and R-squared. There has been 
some work done (e.g. [1, 4]) looking into what metrics to use and 
how to interpret them [5, 11].

One can argue that current models predict the probability that a 
student-problem-instance (hereafter “instance”) will be correct.  
Models such as Knowledge-Tracing (“KT”), Performance Factors 
Analysis (“PFA”), and their derivatives create a theoretically 
continuous range of predictions from 0.00 to 1.00.  Even tabling 
models (eg. [10]) may predict a (near) continuous range of values
through regressions. We argue that there are two properties of a 
model that will make it more accurate: 1.) How well a prediction 
matches the aggregate test-data, and 2.) How well the model can 
make predictions away from the mean.  

1.1 Our Definitions
1.1.1 “Coherence” 
Given a large enough data-set, we argue that an accurate model’s 
predictions should match the test data average for a given group 
of instances.  For example, if a model were to identify a group of 
instances and give that group a predicted value of 0.25, we argue 
that the model is most accurate when exactly one out of every four 
students in that condition gets the correct answer.  If the model 
predicts 0.25, but only one out of every ten gets it right, the 
model’s “scores” by most metrics will be improved, however, it is 
not as accurate as a similar model that groups that same instances 
together, but predicts 0.10.  

1.1.2 “Differentiation”
A naive model of student knowledge might use the average score 
from a training dataset and predict with that probability for all 

instances.  Arguably, more complicated user models seek to find 
reasons not to do this.  The more features that a model can 
incorporate to move predictions away from the mean value, the 
better a model is at not making the mean prediction.  We use the 
term “differentiation” in much the same way as “distribution”, but 
do so to avoid possible confusion with the distribution of the 
training data.

2. METHODS
In order to visualize the impact of differentiation and coherence 
on the various metrics, we generate not synthetic data, but rather 
synthetic model outputs.  To examine the effect of differentiation,
a spreadsheet was created that allows the user to input prediction 
value, test group average, and number of instances within that 
group, for up to eleven groups.  The spreadsheet then calculates 
values for AUC, A’, R2, Efron’s R2, RMSE, and MAE.  A 
publicly shared copy of the spreadsheet can be found at: 
http://tinyurl.com/kznthk7. In addition to using synthetic data, the 
results of three models fitted to real data are explored.

3. RESULTS AND DISCUSSION
Figure 1 is a plot of the six metrics as a differentiation changes 
from an exceptionally steep “V” to flat to increasingly steep “A”.
All “models” have perfect coherence.  E.g., when the model 
predicts 0.20, exactly 2/10 students are correct.  From Figure 1, 
we can see that differentiation plays a role in user model “scores”.

To see if these ideas have merit on real data, we analyze three 
different models fitted to the same (~400K instance) dataset. In 
another paper [16], we have submitted a new user model.  In that 
paper, the new model, called “SuperBins” (SB), is compared to 
Knowledge Tracing and Performance Factors Analysis, and found 
to be “better”, according to RMSE, R2, and AUC.  If we create a 
frequency table of 11 groups, we will certainly lose precision, but 
the analysis is useful.  To do so, we average the prediction values 
(according to their frequency) across eleven equal lengths of 
prediction values of the data set; we do the same for the test data 

Figure 1: Chart of synthetic model outcomes showing the basic 
effect of changing differentiation.

Proceedings of the 8th International Conference on Educational Data Mining 620



averages.  E.g.., the average prediction value from 0 to 0.0909, as 
weighted by the frequency of each prediction was found to be 
0.08 for the SuperBins model.  There were no predictions in that 
range for KT.  There were nine for PFA (eight were right), with 
an average prediction value of 0.01.  

The analysis of coherence shows that, from 0.60 and up, all three 
models are reasonably accurate; i.e., the predictions closely match 
the test data averages.  However, KT has over-predicted in the 
three largest of the 6 groups below 0.60.  PFA appears to be 
reasonably consistent; however, one could argue that PFA 
consistently under-predicts in this range. Others [7] have 
previously reported on KT over-reporting.  With this analysis, we 
can say that PFA has done the worst of the three at moving 
instances away from the mean.  The major reason why SB scores 
so well against the other two could be its ability to bring more 
predictions below 0.50, while maintaining coherence.  

The easiest way to measure the differentiation of the prediction 
values might be to report the standard deviation of prediction 
values.  As a way to compare to the “ideal” (for that dataset), we 
could report either the standard deviation of the test data (0.439), 
or the standard deviation of the training data (0.440).

4. CONCLUSION
There are times when the metrics “scoring” user models disagree; 
in addition, it may be helpful for a deeper comparison.

We conclude that, if we are to accurately compare knowledge 
predicting models to each other, we need to look at new metrics, 
in addition to a mix of old metrics.  We do not believe that we are 
proposing the “ultimate” single metric that will definitively state 
which model is “better”.  We are stating that we believe model 
comparison is improved when it contains (AUC or A’, or R2), and 
(Efron’s R2, RMSE, or MAE) and the standard deviation of the 
predictions.  A more thorough comparison might also include 
coherence-frequency table analysis in an attempt to identify 
regions of habitual over or under prediction.
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Table 1: A coherence-frequency table of results from three knowledge models trained and 
tested on the same real dataset (80/20).  Model results have been averaged across 11 
intervals for demonstration purposes.  The prediction and test values are the weighted 
averages of each model within the ranges on the left.

SB KT PFA
Range pred test n pred test n pred test n
0.0000 - 0.0909 0.08 0.00 5 n/a n/a 0 0.01 0.78 9
0.0910 - 0.1818 0.14 0.13 516 0.16 0.75 4 0.13 0.53 17
0.1819 - 0.2727 0.22 0.23 892 0.24 0.30 64 0.23 0.46 56
0.2728 - 0.3636 0.31 0.32 1829 0.33 0.28 704 0.31 0.49 168
0.3637 - 0.4545 0.41 0.41 3235 0.40 0.36 2565 0.41 0.42 643
0.4546 - 0.5454 0.50 0.51 4878 0.51 0.48 6978 0.50 0.49 3539
0.5455 - 0.6363 0.60 0.60 6355 0.60 0.61 8776 0.61 0.59 7376
0.6364 - 0.7272 0.69 0.69 9772 0.69 0.71 12149 0.70 0.70 25819
0.7273 - 0.8181 0.79 0.79 25296 0.78 0.78 18518 0.77 0.78 25580
0.8182 - 0.9090 0.86 0.87 23347 0.87 0.85 23600 0.87 0.87 13811
0.9091 - 1.0000 0.97 0.97 3074 0.95 0.95 5841 0.97 0.96 2181

Metrics
AUC
0.728

R2

0.145
RMSE
0.406

AUC
0.710

R2

0.115
RMSE
0.413

AUC
0.653

R2

0.058
RMSE
0.426

stdev (pred): 0.166 stdev(pred): 0.147 stdev(pred): 0.107
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ABSTRACT
Many tutoring systems currently in use provide a wealth of
information pertaining to student learning over long periods
of time. Providing meaningful representations of student
performance can indicate levels of knowledge and under-
standing that can alert instructors to potential struggling
students in order to provide aid where it is needed; it is
the goal of many researchers to even provide such indication
preemptively in order to intervene before students become
frustrated when attempting new skills. The goal of this work
is to utilize student performance history to provide a means
of quantizing student aptitude, defined here as the speed at
which a student learns, and then using this measurement
to predict the speed at which each student will learn the
next skill before beginning. Observing a dataset of 21 skills,
we compare two methods of predicting aptitude to major-
ity class predictions at the skill level. Our results illustrate
how our proposed methods exhibit different strengths in pre-
dicting student aptitude when compared to majority class,
and may be used to direct attention to a struggling student
before attempting a new skill.

Keywords
Aptitude, Student Knowledge, Intelligent Tutoring Systems

1. INTRODUCTION
Many instructors rely on intelligent tutoring systems (ITS)
as a means of extending student learning outside the class-
room. Many such systems, such as the ASSISTments sys-
tem used in this work, provide a wealth of student perfor-
mance data that is often underutilized. While many systems
have focused on and have shown success in predicting next
problem correctness, such information is only useful to in-
structors in a short time-span as students are completing

assignments. Furthermore, many of these models rely on
latent variables that leas to problems of identifiability [1]
when attempting to draw conclusions of student knowledge.

The purpose of this work is to observe and predict student
learning rates, referenced throughout this paper as aptitude;
this value is expressed as a metric in terms of completion
speed (cs), or the number of problems a student needs to
complete the assignment (described further in the next sec-
tion). Such a measure of aptitude in prerequisite skills has
shown to be successful in predicting initial knowledge, rep-
resented as correctness, on a subsequent skill [2], illustrating
that the two concepts are related, but from that work, it is
unclear as to whether student aptitude is transitive across
skills. In this work, therefore, we strive to answer the fol-
lowing research questions:
1. Do students exhibit similar degrees of aptitude across
skills?
2. Are changes in student aptitude across skills predictable?
3. Can a student’s aptitude in previous skills be used to con-
struct a reliable prediction of completion speed in a new skill
before it is begun?

2. METHODOLOGY
The dataset1 used in this work is comprised of real-world
data from PLACEments test data reported from the AS-
SISTments tutoring system. Data pertaining to 21 unique
observable skills was extracted. Here, we define a skill as
observable if it contains data from more than 10 unique
students, and no less than half of the students must have
completed the skill. ASSISTments defines skill completion
in terms of 3 consecutive correct answers.

We used a simple binning method implemented in similar
research [2][3] to place students into one of five categories
based on completion speed in order to represent different
levels of aptitude. As aptitude is an independent concept of
domain knowledge, a student’s entire recorded performance
history, regardless of the prerequisite structure, was used
to categorize each student. Observing each student’s per-
formance over several skills, we used a moving average of
student completion rates of each skill ordered from oldest

1The original raw dataset can be found at the following link:
http://bit.ly/1DVbHdB.
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to most recent. Equation 1 displays the formula for this
method. For our implementation, we used a value of 0.3 for
alpha.

At = ((1− α) ∗At−1) + (α ∗ Vt) (1)

Table 1: The ranges of completion speed represented
by each bin with corresponding the quantized apti-
tude value.
Bin Number Completion Speed(cs) Quantized Value

1 3 ≤ cs ≤ 4 1
2 4 < cs < 8 0.75
3 8 ≤ cs 0.5
4 DNF, pcor ≥ .667 0.25
5 DNF, pcor < .667 0

Once an average completion speed, in terms of number of
problems needed to reach three sequential correct responses,
each student is placed in the corresponding bin described in
Table 1. Bins 4 and 5 contain students that did not finish
(DNF) at least one previous skill, and are instead split based
on the average percent correctness (pcor) across all previous
skills. The quantized values are chosen arbitrarily to dis-
cretize the learning rate that is intended to be represented
by each bin.

2.1 Experiments
Our first prediction method, referenced as Same Bin Pre-
diction (SBP) in our results section, simply uses the average
completion speed of each student’s performance history to
determine in which bin to place each student. The method
then simply uses that bin’s quantized value as a prediction
for the new skill. Both the SBP and majority class are
then compared to each student’s actual completion speed,
expressed as a quantized bin value, to determine both error
rates.

Our second experiment attempts to make predictions again
using each student’s performance history, but by also taking
into account changes in aptitude across skills. Our first ex-
periment assumes that most students will exhibit the same
level of aptitude in a new skill as in previous skills. This ex-
periment takes into account the realization that differences
in skill difficulty may cause fluctuations in our aptitude mea-
surements. Our second method, referenced as Transitioning
Bin Prediction (TBP) in our results section, builds off of the
previous SBP prediction by calculating an offset transition
value. For example, if half the students in bin 1 (value =
1) remained in that bin for the new skill, while half transi-
tioned to bin 2 (value = 0.75), an offset value of -0.125 would
be applied to all predictions of bin 1. A negative offset in-
dicates that many students required more opportunities to
complete than normal, while a positive offset indicates the
reverse. The prediction is normalized to a value between 0
and 1 to make full use of our quantized values

3. RESULTS AND CONCLUSIONS
Table 2 contains the RMSE results of each prediction method
divided by each bin of the new skill. The success of the ma-
jority class predictions extends across higher aptitude stu-
dents, while the TBP method provides the most accurate
predictions over students in the lower aptitude bins.

Table 2: Average RMSE of the skill level analysis
divided by bin.

Bin of New Skill Majority Class SBP TBP
1 0.230 0.498 0.358
2 0.120 0.356 0.170
3 0.284 0.362 0.205
4 0.307 0.526 0.251
5 0.571 0.659 0.497

Table 3: Percent correctness at the skill level divided
by bin.

Bin of New Skill Majority Class SBP TBP
1 0.709 0.479 0.500
2 0.280 0.245 0.268
3 0.102 0.251 0.200
4 0 0.029 0.129
5 0 0.041 0.333

Each method described in this work exhibited different strengths,
including the simple majority class predictions. It is often
for the benefit of both teachers and students that a model
represent meaningful information beyond the provision of
predictive accuracy. The SBP method, for example, while
not excelling in any one category, illustrates tendencies of
aptitude mobility. Such methods may act as a means of
better understanding and developing course structure and
skill relationships.

The fact that the proposed prediction methods fail to out-
perform majority class overall suggests that using all per-
formance history is not by itself a strong predictor of future
performance, and is instead dependent to some degree on
skill-based attributes. This work ignores prerequisite skill
hierarchies available in many tutoring systems and MOOCs,
using all previous performance history. Using prerequisite
data may lead to stronger predictions, or at the very least
provide indications of strong and weak skill relationships.
Knowing more information about such skill relationships
could provide better indications of when performance his-
tory is most useful as a predictor.
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ABSTRACT
Concept maps and knowledge maps, often used as learn-
ing materials, enable users to recognize important concepts
and the relationships between them. For example, concept
maps can be used to provide adaptive learning guidance for
learners such as path systems for curriculum sequencing to
improve the effectiveness of learning process. Generation of
concept maps typically involve domain experts, which makes
it costly. In this paper, we propose a framework for discov-
ering concepts and their relationships (such as prerequisites
and relatedness) by analyzing content from textual sources
such as a textbook. We present a prototype implementation
of the framework and show that meaningful relationships
can be uncovered.

1. INTRODUCTION
In any given learning setting, a hierarchy of concepts (set
by experts) is provided and the learner is expected to fol-
low through these concepts in the specified order, e.g., Table
of Contents (ToC), which indicates that concepts appearing
in earlier chapters are (sometimes ’may be’ ) pre-requisites
for the concepts discussed in the later chapters. Similarly,
end-of-the-book index indicates prominent occurrences of
the main concepts (and some relationships between them)
discussed in the book. In both the cases, the relationship
is static, is designed by the experts and is restricted to the
pre-populated list of concepts. As we move towards person-
alized learning, such a knowledge-driven static elicitation
is inadequate. e.g., if the immediate goal of the learner is
to understand concepts in chapter L, s/he may only have
to go through a select ‘n’ sections of some chapters till L.
Consider another example, if a learner has to know which
concepts co-occur or which concepts predominantly occur
before a particular concept C and are relevant to the con-
cept C. This information is not easily available either from
the ToC or from the “end-of-the-book index”.

Concept map is a knowledge visualization tool that repre-
sents concepts and relationships between them as a graph.
Nodes in the graph correspond to concepts and edges depict
the relationship between concepts. In recent years, concept
maps are widely used for facilitating meaningful learning,

capturing and archiving expert knowledge, and organizing
and navigating large volumes of information. In adaptive
learning, concept maps can be used to give learning guidance
by demonstrating how the learning status of a concept can
possibly be influenced by learning status of other concepts
[3]. Construction of concept maps is a complex task and
typically requires manual effort of domain experts, which is
costly and time consuming.

In this paper, we propose a framework for automatic gener-
ation of concept maps from textual sources such as a text-
book and course webpages. We discover concepts by exploit-
ing the structural information such as table of contents and
font information and establish how closely two concepts are
related to each other where the relation is defined on how
strongly one concept is being referred to/discussed in an-
other. The proposed approach is implemented and applied
on several subjects. Our initial results indicate that we are
able to discover meaningful relationships.

The remainder of this paper is organized as follows. Related
work is presented in Section 2. We discuss our approach of
discovering concept maps in Section 3. Section 4 presents
some experimental results. Section 5 concludes with some
directions for future work.

2. RELATED WORK
Concept map mining refers to the automatic or semi-automatic
creation of concept maps from documents [4]. Concept map
mining can be broadly divided into two stages: (i) con-
cept identification and (ii) concept relationships association.
Concept identification is typically done using dictionaries or
statistical means (e.g., frequent words). Relation between
concepts is typically defined over word-cooccurrences. In
our work, we do not use any dictionary of terms. Instead, we
rely on structural information such as bookmarks, table of
contents, and font information manifested in data sources to
discover concepts. Furthemore, when discovering relation-
ships, we not only look at co-occurence of concepts within
a sentence but scope it to larger segments such as a section
and chapter.

3. GENERATION OF CONCEPT MAPS
Concept maps should provide support for modular nature of
the subject matter and the interconnections between knowl-
edge modules (concepts). Formally, a concept map can be
defined as a tuple < C,R,L > where C = {c1, c2, . . . , cn}
is a set of concepts; L = {l1, l2, . . . , lk} is a set of labels.
R = {r1, r2, . . . , rm} ⊆ C × C × L is a set of relationships
among concepts. Each relation rj = (cp, cq, ls) ∈ R, p �=
q, 1 ≤ p, q ≤ n, 1 ≤ j ≤ m, 1 ≤ s ≤ k defines a relation-
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Figure 1: Approach Overview

ship between concept cp and cq which is labeled ls. Option-
ally each relation rj can also be associated with a weight
wj ∈ �+. Figure 1 presents an overview of our approach
and is comprised of five steps:

1. Identify Concepts: We exploit structural and font in-
formation such as bookmarks, table of contents, and index
(glossary) in e-textbooks, and headers and font information
in html pages for this step. Text processing such as tok-
enizing, stemming, and stop word removal are then applied.
Concepts are identified as either individual words or n-words
(n > 1)
2. Estimate Concept Significance: We estimate the
significance of concepts automatically using different crite-
ria: (i) frequency of occurrence (frequent concepts are more
significant than infrequent ones) (ii) importance of a concept
w.r.t the examinations/evaluations and (iii) font related in-
formation (larger font concepts are more significant than
smaller fonts). The three criteria mentioned above can be
grouped together using weights.
3. Identify Concept Relationships: Several types of re-
lationships can be defined among concepts, e.g., superclass-
subclass (one concept is more general than another), pre-
requisite relation (a concept A is said to be a pre-requisite
for concept B), etc. The table of contents in a document
directly gives a (partial) hierarchical structure among con-
cepts. Apart from the hierarchical relationship, concepts
can also be horizontally related e.g., relevant to and men-
tioned by as discussed in [1]. We consider the mentioned by
relation, which is used to express the fact that two concepts
are related of the type A refers-to B, A discusses B, A men-
tions B. Note that mentioned by is an asymmetric and not
necessarily transitive relation.
4. Estimate Relationship Significance: Relationship
significance is estimated using term co-occurrence as a basis.
For each concept, in the pages where it manifests, we also
estimate which other concepts manifest in those pages and
how often do they manifest. The degree of relatedness is ob-
tained by the frequency at which the concept is used, e.g.,
if concept cj manifests fj times when describing concept ci
and if fi is the frequency of occurrence of concept ci, then
the weight of the edge between cj and ci can be defined as
fj/fi. We also consider normalized weights.
5. Visualize and Navigate Map: The concepts and
their relationships can be visualized as a graph G = (V,E)
where V , the set of vertices, correspond to the concepts and
E, the set of edges, correspond to the relationship between
concepts. Nodes and edges can be annotated to provide rich
information and enable the navigation of these maps e.g.,
size of the node can be used to depict the significance of a
concept, color of the node can be used to indicate its im-
portance w.r.t student examinations/evaluation, thickness
of the node can be used to depict the relative knowledge of
the student on the concept. Similarly, edges can be anno-
tated to reveal different kinds of information e.g., thickness
of an edge can be used to signify the relatedness between
two concepts.

4. EXPERIMENTS AND DISCUSSION
We have implemented the proposed framework in Java and
Python and tested it on several examples. Visualization of

concept maps is implemented using d3js. In this section, we
present the results of one such experiment of generating con-
cept maps using the pdf textbook on databases [2]. Figure 2
depicts a subgraph corresponding to the concepts related to
relational algebra. We showed the uncovered concept maps

Figure 2: Concept map pertaining to the core concept rela-
tional algebra

to a few experts in databases and they mostly agree to the
discovered relations. We have applied our approach to sev-
eral subjects (e.g., operating systems, computer networks
etc.) and found that in each of those, we are able to uncover
meaningful and important relations. We realize that there is
a need for an objective evaluation method to automatically
assess the goodness of discovered concept maps, e.g., using
gold standard.

5. CONCLUSIONS
Generation of concept maps is an important means of sup-
porting deep understanding of a subject matter. In this pa-
per, we presented an approach for identifying concepts and
establishing how closely two concepts are related to each
other. We believe that these concept maps enable users to
quickly get knowledge about the centrality or importance
of each concept and its significance in understanding other
concepts. As future work, we would like to further enrich the
discovered concept maps with additional information based
on the user of the application. For example, upon clicking on
a node, teachers/faculty can be provided with information
such as the average/distribution score of students on this
concept in various tests conducted; students can be provided
with links to lecture material, questions/solutions asked in
previous exams, etc.
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ABSTRACT
We explore how data generated by an online formative automated 
writing evaluation tool can help connect student writing product 
and processes, and thereby provide evidence for improvement in 
student writing. Data for 12,337 8th grade students were retrieved 
from the Criterion database and analyzed using statistical methods. 
The data primarily consisted of automated holistic scores on the 
student writing samples, and the number of attempts on a writing 
assignment. The data revealed trends of positive association 
between the number of revisions and the mean writing scores. User 
logs were sparse to support study of additional behaviors related to 
the writing processes of planning and editing, and their relation to 
the writing scores. Implications for enhancing automated scoring 
based feedback with learner analytics based information are 
discussed.

Keywords
Automated scoring, learner analytics, formative writing, automated 
feedback, process and product 

1. INTRODUCTION 
The Criterion® Online Writing Evaluation Service [3], is a web-
based writing tool that allows easy collection of writing samples, 
efficient scoring, and immediate feedback through the e-rater®

automated essay scoring (AES) engine [2].  

Criterion supports essay writing practice with a library of 
more than 400 essay assignments in multiple discourse modes 
(expository and persuasive) for students in elementary, middle, and 
high schools as well as in college. These prompts are used for 
classroom writing assignments and their scoring is supported by 
AES models.  As a formative writing tool, Criterion has several 
features to facilitate writing processes and help learners improve 
their writing. These include planning templates, immediate 
feedback, multiple attempts to revise and edit, and resources such 
as a Writer’s Handbook, a spell checker, a thesaurus and sample 
essays at different score points. The holistic scoring and feedback 
in Criterion is supported by e-rater. The analyses of errors and 
feedback are available for linguistic features of grammar, usage, 
mechanics, style and organization and development. There are 
limited studies on the pedagogical effectiveness of Criterion and 
AES systems in general [1, 5], and examining relation of product 
and process data for assessing writing quality [4]. Our motivation 
for this study was to analyze product data (holistic scores) in 
relation to process data (for revising) to provide evidence for 
effectiveness of the tool and automated feedback and scoring for  

improving writing. We report the observed trends for association 
between the two types of data, the cautions warranted in making 
strong claims based on these data, and the next steps.  

2. METHODS 
Data were extracted for 8th grade students for one school year from 
the Criterion database. The data spanned 295 days, and included 
12,337 students from 183 schools; a total of 95,261 attempts were 
made across 41,473 assignments on 2,447 prompts.  

Mean holistic scores by the assignment and by the 
attempt were examined to relate the revising behavior with 
improvement in writing scores. The results from the assignment 
and the attempt level analyses can easily be preliminary indicators 
of the tool’s usefulness and effectiveness, and enhanced data 
logging capabilities of student actions in the system can provide 
richer information on writing processes.

3. RESULTS 
3.1 Assignment Level 
Of the 12,337 students who submitted assignments in the system, a 
little over 4,000 students submitted only one assignment over the 
full school year. About half of the students (N=6,663) completed a
total of 2 to 6 assignments. A handful of students submitted as many 
as a total of 15 assignments. We identified groups of students who 
completed 2 to 5 unique assignments over the period of the full 
school year (the Ns were small for groups of students completing 6
or more assignments and hence excluded). The assignments in 
Criterion can be scored on a 4-point or a 6-point scale. We analyzed 
the data for responses evaluated on a 6-point scale only, and hence 
after filtering out the responses scored on the 4-point scale, the 
remaining sample size was 5,235 students. It should be noted that 
within each assignment, a user can have multiple attempts.  

Figures 1a and 1b present the trends for the mean writing scores 
across assignments for the different groups based on the first 
attempt and the last attempt on the assignment, respectively. We 
draw quite a few interesting observations from the two graphs. The 
mean writing scores on the last attempt are always higher than the 
mean writing scores on the first attempt across all the assignments. 
Further, the mean writing score on the last attempt of the first 
assignment (first data point in Figure 1b) is almost always higher 
than the mean writing score on the first attempt of the fifth 
assignment (last data point in Figure 1a), suggesting that multiple 
attempts on an assignment is associated with a higher mean writing  
score than the total number of assignments completed by a user in 
the system.  
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Figure 1a. Mean holistic score on the first attempt, per ordered 
assignment conditioned on total number of assignments 

Figure 1b. Mean holistic score on the last attempt, per ordered 
assignment conditioned on total number of assignments 

3.2 Attempt Level 
After filtering for responses evaluated using 6-point scale, a total 
of 34,196 completed attempts were recorded in the system over the 
full school year. 15,841 of these attempts were instances of one 
attempt only per assignment. A few students completed as many as 
10 attempts on an assignment which is the maximum limit by 
default. We identified groups of 2 to 6 attempts per assignment that 
included 16,846 instances (the Ns were small for groups of 7 or 
more attempts and hence excluded). Figure 2 presents the trends of 
mean writing scores across attempts for the different groups. The 
uniform trend of increase in the mean writing scores across the 
attempts for all the groups once again suggests that the revising 
process is associated with gains on the writing scores. 

4. LIMITATIONS 
The data on which trends have been reported were derived from a 
non-experimental setting. Large groups of students completed only 
one assignment or submitted only one attempt. Students who did 
engage in multiple assignments and/or multiple attempts hint at 
self-selection. The data are unbalanced and highly non-normal, and 
hence do not support rigorous statistical analyses but rather only 
lend themselves to exploration for trends.  

Server log files were sparse for digital traces of student 
actions to support nuanced analyses of the corresponding writing 
processes. Information on students such as background variables is 

Figure 2. Mean holistic score, per ordered attempt by total 
number of attempts  

not available in the system. We analyzed data for only one grade 
level, but it would be of interest to examine if and how the trends 
based on product data as well as students’ usage of the system vary 
across the different grade levels. Similar analyses of linguistic 
feature values or error analyses on the product can provide further 
insight into the process of improvement in student writing. 

5. CONCLUSION 
Data currently available from Criterion are primarily on the work 
product; limited data are available for writing processes based on 
user actions. The additional data from our ongoing work on 
extension of Criterion to capture extended learner usage data will 
support further analysis of associations between the writing product 
and the processes, and their relation to change in student writing 
ability over time. This work has implications for extending 
application of automated scoring systems in formative contexts 
with the potential to provide richer feedback on product as well as 
processes, and enhancing the validity argument for automated 
scores as supported by response process data. 
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ABSTRACT
We examine the potential value of Internet text to under-
stand education policy related to teacher evaluation. We
discuss the use of sentiment analysis and topic modeling us-
ing articles from the New York Times and Time Magazine,
to explore media portrayal of these policies. Findings indi-
cate that sentiment analysis and topic modeling are promis-
ing methods for analyzing Internet data in ways that can
inform policy decision-making, but there are limitations to
account for when interpreting patterns over time.

Keywords
Teacher evaluation, topic modeling, sentiment analysis

1. MOTIVATION
In the United States and abroad, teacher evaluation systems
are increasingly becoming a common component of school
reform efforts. Because teacher effectiveness is central to
improving student learning, education policy in the U.S. has
targeted teacher evaluation systems, with the rationale that
evaluating teachers will lead to improved effectiveness. The
result is an often contentious debate among researchers, ed-
ucators and policy-makers about the utility of these systems
in improving teacher effectiveness. Issues include which per-
formance measures to use, how to collect and combine the
data, and how it will be used with teachers.

A significant arena for debate about education policy, in-
cluding teacher evaluations, occurs via the Internet. As the
2013 report “Social Media and Public Policy” notes [Leavy,
2013], use of data produced by Internet users may be useful
in understanding policy issues and social problems, and per-
haps ultimately, can provide insight to enable governments
to develop more informed and better policy. The data may
lead to better understanding of policy impact, and could

∗Contact author. antonio.moretti@pearson.com

potentially inform the different organizations that deliver
public services, such as public education systems.

Given the potential value of Internet data to inform policy,
our aim for this study is to conduct a preliminary analysis
of publicly available Internet data from media outlets re-
porting on U.S. education policy, to evaluate what might
be learned from such data that could inform policy-making
regarding teacher evaluation. Therefore, we narrowed the
focus to two popular media sources that cover national as
well as local education policy – the NY Times, and Time
Magazine–to analyze public sentiment and topics of concern
regarding education policy focused on teacher evaluation.
Given the increased emphasis on teacher evaluations over
the past decade, we gathered data from 2004 - 2014. We
used two approaches for analyzing data from the online me-
dia articles: a topic modeling approach [Blei, 2012] and sen-
timent analysis [Liu, 2010, pan, ]. The research questions
we addressed included:

1. What trends, if any, exist in public sentiment regarding
teacher evaluation policy over the past decade?

2. What are the recurring topics most associated with
media portrayal of teacher evaluation policies?

2. DATA COLLECTION AND ANALYSIS
We used the NY Times API and Time Magazine search
query using “teacher evaluation” as the search term. Be-
cause there are no tools for collecting the full NY Times
and Time Magazine articles,we scraped the websites after
retrieving the relevant URLs. We retrieved a total of 348
articles on “teacher evaluation” from the NY Times during
the period 2004 to 2014, and 292 articles from Time Maga-
zine during the same period. We examined the articles for
their relevance and removed those for which the focus was
not primarily on teacher evaluation. The resulting dataset
included 171 NY Times articles from 2009 to 2014, and 45
Time Magazine Articles from 2010 to 2014.

For the current study, we used the “topicmodels” package in
R [Grün and Hornik, 2011]. We compared two variants of
topic modeling: latent dirichlet allocation (LDA) and Corre-
lated Topic Models (CTM). Both approaches are based on
Blei [Blei et al., 2003, Blei and Lafferty, 2007]. To deter-
mine the number of topics to specify, we used the perplex-
ity score.For our analyses, we specified a ten topic model,
i.e. we set k = 10 to interpret results. In addition to the
entropy measure, we used word clouds to display and make
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(a) Topic 1
(b) Topic 2

Figure 1: Word clouds for generated from NY Times articles.

sense of the topics generated from topic models. Figure illus-
trates word clouds for topic 1 and 2 generated from the New
York Times articles. The topics that appeared to dominate
the NY Times reporting included focus on federal require-
ments for teacher evaluation systems (e.g., reliance on stu-
dent test data and relatedly, value-added models, for evalu-
ating teachers); the impact of those requirements on teachers
at both a federal and local (NYC) level, e.g., accountability,
merit pay, lay offs and budgets; and the reaction of teacher
unions to federal and local legislation (e.g., Chicago’s teach-
ers strike). In Times Magazine, where coverage of teacher
evaluation policy was often combined with coverage of other
federal education policies, the focus appeared to be on stu-
dent achievement testing; changing education policies by the
Obama Administration and in Washington DC, led by DC’s
former Chancellor of Education Michelle Rhee; and policy
proposals during the 2012 presidential campaign. Teacher
union reactions to teacher evaluation policy were also of fo-
cus, including the Chicago teachers strike.

We use the Natural Language Toolkit (NLTK) [Bird, 2006],
a leading python platform to harvest textual data. The sen-
timent analysis tool in NLTK uses naive Bayes classifiers
trained on both twitter sentiment as well as movie reviews.
In Figure 2, a time series of the sentiment polarity of both
the New York Times (left) and Times Magazine (right) ar-
ticles is presented for 2009 - 2014. We used a simple moving
average to plot the sentiment over time. In these graphs, we
observe a similar trend in both the NY Times and Times
Magazine articles. In both, we see somewhat similar peaks
and troughs, as well as a similar trend of decreasing positive
sentiment from 2010 to 2014.

3. DISCUSSION & FUTURE WORK
A number of federal and local (to NY) events took place
over that period of time, that could be related to the senti-
ment trends. Nationally, the Obama Administration’s Race
To the Top (RTTT) legislation was initiated in July 2009,
which among other policies, required states to develop and
implement teacher evaluation systems that included student
achievement as a ”significant” component of a teacher’s ef-
fectiveness rating. In 2010, RTTT was rolled out and the
states awarded funding were announced. The state of New
York was awarded 700M dollars in August, 2010. A result of
this legislation was a contentious battle between lawmakers
and the teachers union over the details of the evaluation sys-
tem, among other policies. In September 2012 in Chicago,
teachers took to the streets and went on strike against a
range of education policies, including the teacher evaluation
system that was to be put in place. NYC and the teachers
union settled on an evaluation system in March, 2013.

Apr 02 2009 Jul 02 2010 Jul 05 2011 Sep 12 2012 Oct 26 2013

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

Article Sentiment

Date

P
ol

ar
ity

(a) Topic 1

Jan 2010 Jan 2011 Oct 2011 Jul 2012 Jun 2013 Apr 2014

0.
09

0.
10

0.
11

0.
12

0.
13

Article Sentiment

Date

Po
la

rit
y

(b) Topic 2

Figure 2: Article Sentiment over Time

In the case study for this paper, issues regarding the use of
student test scores for evaluating teachers; the response of
teacher unions to federal and local teacher evaluation system
requirements; and the budgets for implementing these sys-
tems were just some of the more prominent issues reflected
in the results. Our ultimate goal is to advance the under-
standing of the impact of new policies on the well-being
of public schools and teachers. While the methodology is
promising, it needs to be harnessed through a useful visu-
alization interface to facilitate the exploration and analysis
of the topics produced to make it more useful to leverage
in decision making. We acknowledge that there are limi-
tations and potential problems with these approaches. A
known challenge is choosing the granularity level of the top-
ics that is related to the number of topics k provided as a
parameter. A second challenge is in the interpretation and
labeling of the derived topics that require a manual human
intervention. In some cases, what is rated as positive or neg-
ative analytically might not reflect how human raters would
code those words. Moreover, in our example, although sen-
timent appeared to decline in the negative direction, it still
remained on the positive end of the polarity continuum.
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ABSTRACT 
Knowledge tracing (KT) is well known for its ability to predict 
student knowledge. However, some intelligent tutoring systems 
use a threshold of consecutive correct responses (N-CCR) to 
determine student mastery, and therefore individualize the amount 
of practice provided to students. The present work uses a data set 
provided by ASSISTments, an intelligent tutoring system, to 
determine the accuracy of these methods in detecting mastery. 
Study I explores mastery as measured by next problem 
correctness. While KT appears to provide a more stringent 
threshold for detecting mastery, N-CCR is more accurate. An 
incremental efficiency analysis reveals that a threshold of 3 
consecutive correct responses provides adequate practice, 
especially for students who reach the threshold without making an 
error. Study II uses a randomized- controlled trial to explore the 
efficacy of various N-CCR thresholds to detect mastery, as 
defined by performance on a transfer question. Results indicate 
that higher thresholds of N-CCR lead to more accurate predictions 
of performance on a transfer question than lower thresholds of N-
CCR or KT.  

Keywords 

Intelligent Tutoring System, Knowledge Tracing, Mastery 
Learning. 

1. INTRODUCTION 
 
Intelligent tutoring systems are known for their ability to 
personalize the learning experience for students. One way that 
learning is individualized is by providing just the right amount of 
practice to meet the student’s needs. Determining the correct 
amount of practice is critical because over-practice might bore 
students and take an un-necessarily long time, while under-
practice might not provide enough opportunities for a student to 
learn a skill. To determine the correct amount of practice, systems 
must identify the point in time when students have learned the 
skill, otherwise referred to as reaching mastery.  
 
Defining mastery may vary between systems. One measure of 
mastery includes next problem correctness, another is 
performance on a transfer question, and yet another is 
performance on a delayed retention test. Some systems rely on 
knowledge tracing (KT) [1-2], others use a predetermined number 
of consecutive correct responses (N-CCR) [3, 4, 9}.  In each case, 
mastery status is used by the system to determine the end of an 
assignment. 
 
 

2. METHODOLOGY 
This research is comprised of two studies, the first was a data 
analysis of large data sets provided by ASSISTments, and the 
second was a randomized controlled trial. Study I of the present 
study leverages data generated by an intelligent tutoring system to 
explore the ability of N-CCR and KT to detect mastery. Mastery 
will be measured by next problem correctness. Additionally, an 
incremental efficiency analysis will also be presented that sheds 
light on the number of additional questions students must answer 
to reach a given threshold.  

Next problem correctness is arguably a weak measure of mastery 
as slips are possible. A measure of more robust learning is 
performance on a transfer task [10]. Therefore, in Study II, a 
randomized-controlled trial was conducted to compare the 
accuracy of different potential thresholds of number of 
consecutive correct responses. This data was then used to further 
explore KT predictions, compared to N-CCR in an attempt to 
determine which method should be used in intelligent tutoring 
systems who rely on mastery to determine amount of practice.  

3. RESULTS 
3.1 NCCR 
When mastery is defined by next problem correctness, results 
indicate that 3-CCR is an adequate threshold for accurately 
detecting mastery. Table 1 shows that 80% of students who 
answer three questions correctly, go on to answer the fourth and 
fifth correctly as well.  

Table 1: Percentage of students with each response 
combination of the fourth and fifth question following 3-CCR. 

3 Consecutive No Errors Fourth Question 

 
Fifth Question 

 Incorrect Correct 

Incorrect 1.8% (5) 9.8% (24) 

Correct 8.4% (28) 80.0% (228) 

 

When mastery is defined by performance on a transfer question, 
results indicate that 5-CCR (Table 3) more accurately detects 
mastery than 3-CCR (Table 2). Accuracy is defined by the 
percentage of students who met the threshold and were successful 
on the transfer questions combined with the percentage of 
students who failed to meet the threshold and answered the 
transfer questions incorrectly. Identifying students who met the 
threshold yet answered the transfer incorrectly are considered 
false positives and students who answered the transfer question 
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correctly yet failed to meet the threshold are considered false 
negatives.  

Table 2: Student performance on transfer question based on 
3-CCR. 
Percent(Number) 
of students 

Threshold Met Threshold Not Met 

Transfer Correct 46%(17) 0% 

Transfer 
Incorrect 

43%(16) 11%(4) 

 

Table 3: Student performance on transfer question based on 
5-CCR. 
Percent(Number) 
of students 

Threshold Met Threshold Not Met 

Transfer Correct 43%(16) 8%(3) 

Transfer 
Incorrect 

19%(7) 30%(11) 

 

3.2 KT 
When mastery is defined by next problem correctness, results 
indicate that KT is comparable to 3-CCR in accurately detecting 
mastery for students who do not make an error (Table 4).  

Table 4: Accuracy of KT detecting mastery for students who 
answered three consecutive questions correctly without an 
error. (n=287) 
 Threshold Met 

(>95%) 
Threshold Not 
Met (<95%) 

Next Question Correct 80.5% (231) 9.4% (27) 

Next Question Incorrect 8.4% (24) 1.7% (5) 

 
When mastery is defined by performance on a transfer question, 
results indicate that KT is comparable to 3-CCR, but less accurate 
than 5-CCR (Table 5).  

Table 5: . Student performance on the transfer question based 
on KT’s 95% threshold. 

Percent(Number) 
of students* 

Threshold Met Threshold Not Met 

Transfer Correct 42%(31) 7%(5) 

Transfer 
Incorrect 

39%(29) 12%(9) 

3.3 Incremental Efficiency Analysis 
Using the data generated from the students reaching the 5-CCR 
threshold, we determined how many additional questions were 
required to reach each incremental threshold. This provides 
insight into the tradeoff between potential increased mastery 
detection and time consumption, as measured by number of 
questions completed. 3-CCR is a sufficient threshold, as over 90% 

students go on to reach the higher threshold. Of the students who 
reached the final 5-CCR threshold, 90% of them reached it 
without an error. Those who made at least one error, tended to 
reach the threshold with N attempts following the error. This 
suggests that the error was a slip.  
 

4. DISCUSSION 
 
Accurately predicting or detecting mastery status is critical to 
intelligent tutoring systems, because the amount of practice 
provided to students depends on this. An overly cautious 
prediction will lead to unnecessary practice (false negatives), 
while less strict criteria will not provide enough (false positives). 
N-CCR, specifically 3-CCR, is a simple, yet effective way to 
determine mastery within an ITS. This threshold has been found 
to predict next problem correctness with at least 80% accuracy. 
However, when predicting performance on a transfer task, a 
higher threshold (5-CCR) is more effective. Both thresholds of N-
CCR were more accurate than the more complicated method, 
knowledge tracing, when determining mastery.  
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ABSTRACT

We present the TCS Alignment Toolbox, which offers a flexi-
ble framework to calculate and visualize (dis)similarities be-
tween sequences in the context of educational data mining
and intelligent tutoring systems. The toolbox offers a variety
of alignment algorithms, allows for complex input sequences
comprised of multi-dimensional elements, and is adjustable
via rich parameterization options, including mechanisms for
an automatic adaptation based on given data. Our demo
shows an example in which the alignment measure is adapted
to distinguish students’ Java programs w.r.t. different solu-
tion strategies, via a machine learning technique.

1. INTRODUCTION

Systems for computer-aided education and educational data

mining (EDM) often process complex structured informa-
tion, such as learner solutions or student behavior patterns
for a given learning task. In order to abstract from raw
input information, the given data is frequently represented
in form of sequences, such as (multi-dimensional) symbolic
strings, or sequences of numeric vectors. These sequences
may represent single solutions, as in some intelligent tutor-

ing systems (ITSs) [2, 6]; or may encode time-dependent
data, like learner development or activity paths [1, 7].

Once a meaningful sequence representation is established,
there are many possibilities to process sequential data with
existing machine learning or data mining tools. A crucial
component for this purpose is a (dis)similarity measure for
pairs of sequences, which enables operations like finding clos-
est matches in a given data set, clustering all instances, or
visualizing their neighborhood structure [5]. One particu-
larly flexible approach to determine the (dis)similarity of
sequences is sequence alignment [3].

For applications in the context of EDM and ITSs, sequence
alignment offers two key features: On the one hand, the
structural characteristics of sequences are taken into ac-
count, while calculation remains efficient, even with com-
plex parameterization options. On the other hand, align-
ment provides an intuitive matching scheme for a given se-
quence pair, since both sequences are extended, so that sim-
ilar parts are aligned. However, we believe the full potential
of sequence alignment is rarely utilized in EDM or ITSs.

Acknowledgments: Funding by the DFG under grant
numbers HA 2719/6-1 and HA 2719/6-2 and the CITEC
center of excellence is gratefully acknowledged.

2. ALIGNMENT TOOLBOX

We present the TCS Alignment Toolbox1, an open-source,
Matlab-compatible Java library, which provides a flexible
framework for sequence alignments, as follows:

Multi-dimensional input sequences are possible, such that
every element of the sequence can contain multiple values of
different types (namely discrete symbols, vectors or strings).

A variety of alignment variants is implemented, covering
common cases, such as edit distance, dynamic time warping

and affine sequence alignment [3].

The parameterization of the alignment measure is defined
by costs of operations (replacement, insertion, and deletion)
between sequence elements, which can be adjusted by the
user, or left at reasonable defaults. Users can even plug in
custom functions to yield meaningful problem-specific costs.

A visualization feature displays the aligned sequences in a
comprehensive HTML view, as well as the dissimilarity ma-
trix for an entire set of input sequences.

An approximate differential of the alignment functionsw.r.t.
its parameters is provided, which enables users to automat-
ically tune the rich parameter set with gradient-based ma-
chine learning methods, e.g. to facilitate a classification [4].

In this demo, we present an example for a set of real student
solutions for a Java programming task: After programs are
transformed to sequences, the parameters of an alignment
algorithm are automatically adapted to distinguish between
different underlying solution strategies, and the resulting
alignments are visualized. Thus, the adapted measure im-
proves the classification accuracy for the given data.
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ABSTRACT 
Carnegie Learning, developers of the widely deployed Cognitive 
Tutor, has been working on several new adaptive learning 
products. In addition to demoing the Cognitive Tutor, an 
educationally effective intelligent tutoring system for mathematics 
that has been the subject of a great deal of educational and 
educational data mining research, we demo two iPad apps, an 
equation solving app that recognizes hand writing and a game for 
developing math fluency using fraction comparison tasks. A wide 
variety of datasets over the years have been analyzed from the 
Cognitive Tutor, and in recent years several new features have 
been introduced that may be important to researchers. This 
demonstration will introduce those unfamiliar with Cognitive 
Tutor to the system and serve as a refresher for those unaware of 
recent developments. It will also introduce our new iPad apps to 
researchers.   

Keywords 

Cognitive Tutor, intelligent tutoring systems, real-world 
implementation, mathematics education, educational games, iPad, 
mathematics fluency, fractions, decimals, multiple 
representations, equation solving, cognitive modeling 

1. COGNITIVE TUTOR 
Carnegie Learning’s Cognitive Tutor (CT) [7] is one of the most 
widely used intelligent tutoring systems (ITSs) in the world, with 
hundreds of thousands of users in middle schools, high schools, 
and universities throughout the United States and abroad. CT has 
been demonstrated effective in one of the largest randomized 
trials of its kind involving educational software, providing 
substantive and significant improvement in learning gains, 
compared to a control group using traditional textbooks, in the 
second year of implementation for a large cohort of high school 
students from diverse regions of the United States [6].   

A variety of datasets providing information about learner 
interactions with the CT have been made available by Carnegie 

Learning via the Pittsburgh Science of Learning Center 
LearnLab’s DataShop repository [5]; the learning sciences 
community and others have used these and other datasets in a 
correspondingly wide variety of educational and educational data 
mining (EDM) research projects, including many throughout the 
history of the International Conference on EDM.  Some datasets 
used are from relatively older versions of the CT software. Even 
relatively old data can enable discovery and insight into issues 
likes improving cognitive models and improving the predictive 
accuracy of models of student behavior, but as can be expected, 
CT, like any other piece of widely deployed software, evolves 
over time.  Elements of this evolution may impact the types of 
substantive conclusions that can be drawn from CT data or 
contribute to creative new modeling approaches and target 
educational phenomena.  In this demonstration, we will provide 
an overview of the basic interface of the CT and its approach to 
mathematics education as well as highlighting several newer 
features that have been deployed in the last few years.  We will 
also, as appropriate, highlight several nuances and issues that arise 
when CT and Carnegie Learning’s middle school math product 
based on CT, called MATHia, are deployed in real-world 
classrooms. Some of these nuances and issues may have important 
implications for how EDM analyses are conducted using CT data. 

Our demo will provide a general overview with CT and focus on 
the following features of CT and MATHia: lesson content and 
manipulatives, step-by-step examples, review mode, promotion & 
placement changes, interest area & name customization 
(MATHia), and math “Fluency Challenge” Games (MATHia). 

2. AN IPAD RACING GAME TO 
ENHANCE MATH FLUENCY 
Developers at Carnegie Learning are also developing an iPad car 
racing game (Figure 1) to enhance math fluency for tasks like 
comparing fractions. The game integrates with the Hyper-
Personalized Intelligent Tutoring (HPIT) system [4], a distributed 
web service plugin architecture that enables “on-the-fly” 
personalization based on (non-)cognitive factors. Gameplay is 
predicated on learners rotating the iPad to direct a car to the right, 
left, and in between “flags” that display values of fractions (or 
decimals, etc.) based on whether a value displayed on the car is 
greater than or less than values displayed on flags, creating a sort 
of number line on the game’s “road.”  

Time pressure, introduced via a countdown clock, serves 
gameplay and cognitive functions. Time pressure on tasks like 
fraction comparison will encourage learners to develop dynamic 
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strategies to carry out such tasks (e.g., imagining slices of a pie vs. 
finding common denominators). Learners’ successful adoption of 
diverse strategies is a marker of math fluency that will decrease 
working memory load on such tasks. We posit that fluent math 
learners are more likely to succeed in more advanced math. 

Game content and behavior are configurable to allow education 
researchers, without programming, to rapidly prototype and build 
a range of experiments. Researchers can, for example, specify 
number sequences encountered as well as “level” structure that 
groups similar content together. We support in-game feedback 
(e.g., text displayed after questions, pausing after incorrect actions 
for review) via an XML run-time scripting engine. 

 
Figure 1. Sample problem: The player’s value is 1/9, and since 

1/9 < 1/7 the player moves to the left lane before passing the 
flags. 

A conceivable experiment uses multiple graphical representations 
to develop fluency [1]. Curricula can begin with a level containing 
common numerator fractions, then common denominator 
fractions, and then mixed fractions. Scripting provides for 
dynamic annotations of each fraction with pie slice or number line 
images above flags to help players visualize the comparison (e.g., 
loading web images and reacting to each level’s content). Help 
can be offered only when a student is struggling (e.g., making at 
least one error), and HPIT can drive A/B tests, distributing 
content/scripts to control and experimental groups. 

3. AN IPAD APP FOR EQUATION 
SOLVING 
Researchers at Carnegie Learning are also working on an iPad app 
to support math equation solving practice. The app combines 
technology from CT with an interface that recognizes human 
handwriting (Figure 2). Following the lead of CT and building on 
earlier work on handwriting-based tutors [2], the app provides 
context sensitive feedback and hints while also providing the 
capability to “trace” student knowledge using, like CT, the 
Bayesian Knowledge Tracing (BKT) [3]. Integrating the app with 
HPIT provides the ability to adapt to cognitive factors (e.g., BKT) 
and non-cognitive factors (e.g., grit, self-efficacy, etc.).  

The app will advance student learning about equation solving and 
our understanding of that learning in at least two ways. First, 
handwriting recognition will provide for an experience that is 
more akin to a traditional “pencil and paper” approach to equation 
solving practice than the approach provided by CT in which 
actions like “combining like terms” to manipulate sides of an 
equation are chosen from a drop-down menu. Second, logging 
such equation solving will provide rich data to better understand 
the learning of equation solving in this more natural setting. 
Moving away from the menu-based CT approach introduces 
challenges. Handwritten equation solving allows for a variety of 
math errors that simply are not allowed by CT. Further, new 

knowledge components (or skills) must be introduced to the 
cognitive/skill model for this app; skills, for example, related to 
the understanding of equality (e.g., that the equation symbol must 
persist from line to line as the student works toward an equation 
solution) should be tracked.  Such skills are not tracked in CT’s 
menu-based equation solving because the equation symbol 
persists from step-to-step in CT. Comparing skill models and 
learner performance across platforms is a key area for future 
research; translation of skill models across platforms is an 
important issue as technology permeates teaching and instruction. 

 
Figure 2. A user solves the equation 3x+4 = 5, writing the final 

step of the equation as x = 1/3. 
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ABSTRACT
Increasing rates of student drop-outs with increase in pop-
ularity of Massive Open Online Courses (MOOCs) makes
predicting student attrition an important problem to solve.
Recently, we developed an algorithm based on artificial neu-
ral network for predicting student attrition in MOOCs using
student sentiments. In this paper, we present a web-based
tool based on our algorithm which can be used by educa-
tors to predict and reduce attrition during a course and by
researchers to design and train their own system to predict
student attrition.

Keywords
Student Attrition, MOOC, Sentiment Analysis, Neural Net-
work, Educational Data Mining, Student Drop-out

1. OVERVIEW
Growing popularity of MOOCs is attributed to their acces-
sibility, scalability and flexibility. With scalability, MOOCs
also provide huge amounts of data of student activity which
can be used to predict their behavior. We have developed an
algorithm to predict student attrition [4] which uses click-
stream log and forum posts from MOOCs to extract features
such as number of page views, clicks, study sessions, etc. as
suggested by previous studies [1, 3, 5, 6]. A unique feature
used by our algorithm is student sentiments in forum posts,
which is calculated using lexicon-based Sentiment Analysis
with SentiWordNet 3.0 [2] as the knowledge resource. The
values of all these features for current week are passed as
inputs into an artificial neural network, whose output in-
dicates whether student is going to drop out in the follow-
ing week. Using data from Coursera course ’Introduction to
Psychology’, we get 74.4% accuracy with false negative ratio
of 0.136, leading to a Cohen’s Kappa value of 0.435.

2. STUDENT ATTRITION PREDICTOR
We present a web tool having three interfaces for educators
and researchers to predict and study student attrition.

2.1 Sentiment Analysis
Sentiment Analysis of student’s forum posts is the unique
feature which wasn’t used by previous algorithms and im-
proves the Cohen’s Kappa value of our algorithm by about
13%. Effectiveness of using sentiment analysis can be seen
by the changes in results from neural network when student
sentiments are added as input. Our tool also provides option
to get the Sentiment score of any student’s forum post.

2.2 Pre-trained Neural Network
Users have the option to use our pre-trained neural network
to predict student drop-out. This allows our tool to be used
freely by educators to predict student attrition. Since we
predict whether student is going to drop-out in the follow-
ing week and not whether student is going to complete the
course, our algorithm pin-points the exact week when stu-
dent is predicted to drop-out and thus, educators can use our
tool during the course in order to take necessary student-
specific actions to prevent or reduce attrition. Apart from
MOOCs, Student Attrition Predictor can also be used by
traditional classroom setting educators, using digital medi-
ums for study and interaction in schools, which are becoming
increasingly popular in recent years.

2.3 Design new Neural Network
Our tool also provides an interactive graphical interface for
the users to design their own unique neural network. A
screenshot of design interface is shown in Figure 1. It shows
an input panel, training and testing data panels, a neural
network design canvas and a results panel. The process of
using Design interface can be divided into 3 phases:-

• Design: Users can add their own nodes in the ‘Input’
panel and select any number of hidden layer nodes.
The canvas in the middle of Figure 1 shows the struc-
ture of designed neural network.

• Train: Training data can be uploaded in ‘Training
Data’ panel and used to train the designed neural net-
work. Options for selecting number of training iter-
ations, classification boundary and learning heuristic
(like back-propagation, resilient propagation, etc.) for
training Neural Network will also be provided.

• Test: After training, individual input values can be
entered in the input panel or test data can be uploaded
in ‘Test Data’ panel to get results from trained neural
network. ‘Results’ panel shows metrics such as Accu-
racy, False Negative Rate and Cohen’s Kappa value.
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Figure 1: Screenshot of Design Interface of Student Attrition Predictor

This interface is especially useful for researchers who can
decide the input features and structure of their own neural
network, train and test it by uploading their own data and
optimize the parameters and learning heuristic according to
their application. The designed and trained neural network
can be saved and loaded into the tool at any point.

3. CONCLUSION
There has been lot of research in recent years on predicting
student attrition. In contrast to many studies trying to find
reasons behind attrition, we focus on predicting and reduc-
ing attrition. Student Attrition Predictor not only predicts
student drop-out, but also identifies the precise week when
student is likely to drop-out in order to reduce attrition dur-
ing the course. To the best of our knowledge, there is no
direct way for educators to benefit from years of research on
predicting student attrition. This tool acts as a medium for
educators to directly utilize our research in this field. The
tool also provides an easy graphical interface to researchers
for further experiments.
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ABSTRACT 
Intelligent tutoring systems are adaptive learning environments 
designed to support individualized instruction. The adaptation 
embedded within these systems is often guided by user models 
that represent one or more aspects of students’ domain 
knowledge, actions, or performance. The proposed project focuses 
on the development and testing of user models within the 
iSTART-2 intelligent tutoring system, which will be informed by 
dynamic methodologies and data mining techniques. My previous 
work has used post hoc dynamic methodologies to quantify 
optimal and in-optimal learning behaviors within the game-based 
system, iSTART-2. I plan to build upon this work by conducting 
dynamical analyses in real-time to inform the user models 
embedded within iSTART-2. I am seeking advice and feedback 
on the statistical methods and feature selection that should 
included within the new dynamic user model. The implications of 
this approach for both iSTART-2 and the EDM field are 
discussed.  
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1. INTRODUCTION 
Intelligent tutoring systems (ITSs) are adaptive learning 
environments that provide customized instruction based on 
students’ individual needs and abilities [1].  ITSs are typically 
more advanced than traditional computer-assisted training in that 
they adapt to the users’ performance and skill levels [2]. The 
customizable nature of ITSs has resulted in the successful 
integration of these systems into a variety of settings [3-5].  

One hypothesized explanation for the widespread success of these 
systems is that ITSs provide individualized feedback and adjust 
content based on the unique characteristics of each student or 
user. This pedagogical customization allows students to progress 
through learning tasks at a pace that is appropriate to their 
individual learning model [6]. It also ensures that students are not 
only learning at a shallow procedural level, but they are gaining 
deeper knowledge at an appropriate pace. 

One way in which ITSs store and represent information about 
learners is via user models. User models embedded within ITSs 
incorporate detailed representations of learners’ knowledge, 
affect, and cognitive processes [7]. It is important to note that 
these models are often continuously updating throughout the 
students’ interaction within the system. Thus, potentially, every 
student action or decision made within the system contributes to 
more accurate and holistic user models. Although this concept 
seems to be intuitive, researchers often struggle to determine what 

information belongs within the models and how to optimally 
quantify the dynamic nature of that information.  

In prior work, my colleagues and I have proposed that dynamical 
systems theory and associated analysis techniques are useful tools 
for examining behavioral patterns and variations within ITSs 
[8,9]. Indeed, dynamic systems theory affords researchers a 
unique means of quantifying patterns that emerge from students’ 
interactions and learning behaviors within an ITS. This approach 
treats time as a critical variable by focusing on the complex and 
fluid interactions that occur within a given environment rather 
than treating behavior as static (i.e., set or unchanging), as is 
customary in many statistical approaches. In the proposed work, I 
hypothesize that dynamical methodologies have strong potential 
to inform user models by quantifying changes in students’ 
interactions and learning behaviors across time. This 
quantification and modeling of behavior can inform decisions 
about how content and feedback should be presented to each 
student based on their current learning trajectory. The overall goal 
of the proposed work is to test the utility of real-time dynamic 
analyses as a way to inform user models about optimal (and non-
optimal) learning behaviors within a game-based ITS.  

1.1 iSTART-2 
Interactive Strategy Training for Active Reading and Thinking-2 
(iSTART-2) is a game-based ITS designed to improve high school 
students’ reading comprehension via self-explanation strategies 
[10]. In previous studies, iSTART-2, and its predecessors, have 
been shown to be effective at improving students’ self-explanation 
quality and reading comprehension ability [11, 12].   

iSTART-2 consists of two phases: self-explanation training and 
game-based practice. During training, students watch a series of 
videos that introduce them to and provide examples of self-
explanations strategies. After students view these videos, they 
transition to practice (see Figure 1 for a screenshot of the game-
based practice interface). During practice, students are able to 
interact with a suite of mini-games, personalizable features, and 
achievement screens [13]. The game-based practice embedded 
within iSTART-2 is designed to promote the generation and 
identification of self-explanation strategies. Within these practice 
games students are exposed to game mechanics that serve as a 
form of feedback on their understanding of the self-explanation 
strategies (see [11] for more details). 

The interface of iSTART-2 uniquely affords students substantial 
agency and control over their learning path by allowing them to 
choose how they engage with the practice environment [9]. Such 
freedom also affords researchers with the opportunity to explore 
and model how and when students engage with these features and 
activities, and to explore the implications of such choices (i.e., 
how they affect performance and learning). 
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Figure 1. Screen shot of iSTART-2 Selection Menu 

1.2 Current Work 
My doctoral research will use educational data mining methods to 
inform and build dynamic student models within game-based ITSs 
such as iSTART-2 [13]. Specifically, this study will explore how 
dynamic techniques such as Hurst exponents and Entropy analysis 
can be used in real-time to quantify students’ behaviors, 
performance, and cognition while they learn within iSTART-2. 
Analyses of students’ logged choices have been shown to be a 
blueprint regarding successful and unsuccessful behaviors for 
learning [13, 15]. Therefore, the logged information from 
iSTART-2 will be used in conjunction with dynamical analysis 
techniques as a means to quantify various types of in-system 
behaviors and their impact on learning outcomes in real-time. This 
information will then be used to adapt the pedagogical content 
students are exposed to.  

2. Proposed Contributions of Current Work 
The current work has both local and global implications. Locally, 
the development of dynamic user models will improve iSTART-2 
pedagogy. Currently, iSTART-2 has limited user models (only 
guides self-explanation feedback) embedded within the system. 
Thus, the inclusion of a dynamic user model is expected to 
improve system feedback and guide the content presentation 
provided to students. For instance, one research question that 
arises from this work is how to support optimal learning 
trajectories for every student. Dynamic user models have the 
potential to recognize non-optimal learning behaviors and provide 
feedback or navigate students toward more effective learning 
behaviors within the practice environment. Thus, it is 
hypothesized that the implementation of dynamic models will 
improve the design and generalizability of iSTART-2.   

Globally, this project will contribute to the AIED and EDM fields. 
User models are an important and often crucial aspect of ITS 
development. However, very few systems (if any) use dynamic 
data mining techniques to inform their student models. This work 
will be among the first studies to use techniques such as Hurst 
exponent analysis in real-time to inform user models that will 
ultimately be used to adapt the content and feedback presented to 
students. The methods presented here are generalizable and thus 
can be used in a variety of settings beyond iSTART-2. Although 
the goal of the current work is to design user models for the 
iSTART-2 system, this work is driven by the overarching goal of 
gaining a better understanding of students’ learning processes.  

3. Previous Work 
My previous research has revealed that dynamic methodologies 
are useful tools for quantifying students’ behavioral patterns 
within iSTART-2 [8,9,13,14,15]. For instance, Entropy is a 

dynamical methodology used to measure the amount of 
predictability within a system or time series [16]. My colleagues 
and I have employed post hoc Entropy analysis to quantify 
variations in students’ behaviors within iSTART-2 and related 
them to performance differences. Based on students’ choices 
within games, an Entropy score can be calculated that is indicative 
of the degree to which students’ choice patterns are controlled 
versus random. In [13], students’ Entropy scores were included 
within a regression analysis to examine how students’ choices 
within the system influenced their self-explanation performance. 
Students who engaged in more controlled interaction patterns (i.e., 
strategic and planned out) within iSTART-2 also generated higher 
quality self-explanations compared to students who acted in more 
random or impulsive manners. 
While Entropy provides an overall view of students’ choice 
patterns within a system, it does not capture fine-grained 
fluctuations that manifest over time. To address this issue, Hurst 
exponents have been conducted using iSTART-2 log data.  Hurst 
exponents [17] are similar to Entropy analyses in that they 
quantify tendencies or fluctuations present within a time series. 
However, Hurst exponents also act as long-term correlations that 
can characterize the fluctuations that manifest across time. Hurst 
exponents classify these fluctuations as persistent, random, or 
antipersistent [18]. Using this approach, we can identify when 
students choose to perform the same action(s) repetitively [8]. 
This technique affords a fine-grained look at students’ behaviors 
across time. Although Entropy and Hurst exponent analyses have 
shed light upon the effects of students’ interactions within an ITS 
on learning, the analyses thus far have all been conducted post hoc 
(i.e., using data mining techniques). Thus, the current work seeks 
to build upon these dynamical analyses and apply dynamic data 
mining techniques in real-time as a means to inform student 
models within iSTART-2.   

4. Advice Sought  
For this doctoral consortium, advice is sought regarding two core 
concerns. First, what features should be included in dynamic user 
models? Currently, I have solely focused on students’ behaviors 
and in-system performance within the game-based practice 
portion of the system. However, iSTART-2 has powerful logging 
functionality capable of collecting everything from mouse 
movements to keystrokes. Thus, in this setting I would benefit 
from expert opinions or discussions concerning what features 
should (or could) be included within dynamic user models.  

Second, what other dynamic methodologies and tools are 
available and relevant to user modeling? Thus far, I have used 
random walks, Entropy and Hurst analyses. However each of 
these measures have one or more weaknesses. For instance, to 
reliably calculate a Hurst exponent, multiple data points are 
needed (e.g., over 100), therefore calculating Hurst in real-time 
may not be practical in all situations (i. e., a single session study). 
Thus, I would benefit from expert opinion and guidance regarding 
other dynamic measures or methodologies that could be used in 
real-time as a way to inform user models within iSTART-2.  
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ABSTRACT
In this work we introduce the system for adaptive practice
of foundations of mathematics. Adaptivity of the system
is primarily provided by selection of suitable tasks, which
uses information from a domain model and a student model.
The domain model does not use prerequisites but works
with splitting skills to more concrete sub-skills. The student
model builds on variation of Elo rating system which provide
good accuracy and easy application in online system. The
main feature of the student model is use of response times
which can carry useful information about mastery.

1. INTRODUCTION
Our aim is to develop a practice system focused on basic
mathematics which uses concepts of Computerized adaptive
practice [8], i.e. to provide children with tasks that are most
useful to them. We focus especially on detecting mastery
and fluency using both correctness and timing information
about children’s responses.

Mathematics is usually associated with procedural knowl-
edge. However, for achieving mastery of advanced topics it
is necessary to solve some basic mathematical tasks at the
level of fluency and automaticity. Good example of this is
multiplication of small numbers which starts as procedural
knowledge (child knows that 3 · 5 is 5 + 5 + 5 and is able
to complete calculation) but ends as declarative knowledge
(child knows 3 · 5 is 15 without further thoughts) [15]. In
both cases child gives correct response with high probabil-
ity and the system is not able to distinguish between these
scenarios based only on the correctness of the answer. Thus
we want incorporate into our student model the information
about response time, which is necessary to detect mastery,
the state when the child is correct and fast.

Because our goal is to lead a child to automaticity we want
to analyse strengths and weaknesses of the child at the level
of individual items. Thus we need to track child’s skills in
great detail and we treat every item in the system indepen-

dently. Also the fact that various graphical representations
of the same task influence difficulty of the item, highlight
need to track their difficulty individually. To estimate cor-
rectly difficulties of the items requires a lot of expertise, it
is time consuming and is not always reliable. Therefore we
do not want to make any assumptions about difficulties of
the items and we rather use model which can estimate the
difficulty of the solving data from the system. As a con-
sequence we will be able to easily analyse which items are
more difficult and why.

Proposed system is called MatMat and is currently available
online in beta version at matmat.cz for all children (the sys-
tem is so far implemented only in Czech) and it is free to
use. The goal of the system is to provide adaptive practice of
arithmetic operations which guide children from basic work
with numbers (e.g. counting objects) to mastery of basic
mathematical operations.

In contrast with complex intelligent systems for learning
mathematics as Carnegie Learning’s Tutors [14, 9] or AS-
SISTments [4] we focus only on small part of learning math-
ematics and we work only with atomic tasks. Therefore the
system does not work with explanations of curriculum or
hints and focuses on adaptive selection of tasks and appro-
priate feedback. Between related systems belongs Dybuster
Calcularis [6] which works with basic math especially in con-
text of dyscalculia; Math Garden [8] which has similar focus,
works with similar student model and also incorporates time
information; or FASTT Math [3] which also focus on build-
ing computational fluency.

2. MODELS
In this section we describe working draft of the domain
model, which describes how is the content of the system
organized, and the student model, which is built on the do-
main model and provides information about children who
interact with the system. We have several requirements for
the design of our models. We are in the situation when
we use models in online environment and we rely more on
collected data instead of expertise or other outside informa-
tion. Hence we require models which can work on the fly
and can quickly adapt to new data in the system. The goal
of the student model is to provide estimation of child’s abil-
ities which are used for creation of feedback and selection of
suitable tasks to practice.
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2.1 Domain Model
Mathematics is very complex domain full of diverse compo-
nents and relationships. Even in our very simplified case,
when we considered only basics, situation can still be rela-
tively complicated. One way how to build a domain model
for mathematics is based on Knowledge space theory [1].
This approach splits the curriculum to skills a defines re-
lations of prerequisites between them. This oriented graph
can then be treated as dynamic Bayesian network [7].

We used different approach which allows us to capture infor-
mation about very specific abilities, e.g. how good is child in
multiplication of 5 and 7. The relations between such con-
crete skills, are not always prerequisites, e.g. the abilities to
compute 5 · 7 and 5 · 9 are not one prerequisite to another
but they are clearly dependent. We organized the skills into
the tree structure (Figure 1) where every node corresponds
to skill and its successors to more concrete sub-skills. Simi-
larity of skills then can be expressed as level of the nearest
common ancestor. Denote the fact that a skill d is ancestor
of a skill c as d > c.

Figure 1: The tree structure of the skills

The root of the tree is a global skill which represents over-
all knowledge of mathematics. Under that are skills which
correspond to basic units in system (level-2) — numbers,
addition, subtraction, multiplication and division. In level-
3 are sub-skills which represent concepts (inspired by [6])
within parent skill, e.g. under ‘numbers’ skill are ‘numbers
in range from 1 to 9’, ‘numbers in range from 10 to 20’, ‘num-
bers greater then 20’, . . . ; or under ‘addition’ are ‘addition
in range from 1 to 9 (without bridging to 10)’, ‘addition
in range from 10 to 20 with bridging to 10’, . . . And finally
level-4 skills correspond to the tasks for which mastery on
the level of declarative knowledge is expected. Example of
these are skills that correspond to numbers (1, 2, 3, . . . ),
simple addition tasks (1+2, 5+7) or multiplication of num-
bers smaller than 10 (3 · 5, 7 · 8). There are no level-4 skills
for more complicated task (e.g. 11 ·13) for which procedural
knowledge is more involved. The items representing these
tasks belong typically to more general level-3 skills.

In current model every item in the system is mapped to
exactly one skill (typically a leaf skill). So under a skill are
multiple items. In case of the more general level-3 skills it
can be tens or hundreds. In case of the level-4 skills there
are from 2 to 10 items which are various forms of the task
(5 + 7 and 7 + 5) and different graphical representations of
task (numbers, objects, number line . . . ).

2.2 Student Model
Rather then the discrete representation of ability (known
or unknown) we used the continues representation, which is
more suitable for our situation when we need to track abil-
ities also for relatively general skills. The relation between
these abilities and expected probability of correct answer is
defined by a logistic function.

For the skill from s and the child c model estimates the
value vsc which represents difference of ability relative to
parent skill. Overall value of ability is then θsc =

∑
s≤s̄ vs̄c.

This approach allows to capture relations between leaf skills.
Information obtained from observation about one ability can
be naturally propagated to other related abilities. This is
especially important for new children in the system with
small number of responses (relatively to large number of
abilities). The model also estimates the difficulties βi of the
items i, which can be interpreted as a required ability to have
50% chance of solving item correctly. Expected response is
then eci = 1

1+eβi−θsc
.

To estimate abilities and difficulties we used a model based
on Elo rating system [2] and PFA [12] which is inspired by
models which have been successfully used in other projects
[8, 11]. The main idea is to update all related abilities and
item difficulty based on unexpectedness of response after
every answer. To empathize the fact that the correct answer
(even repetitive) does not mean mastery we need to take
into account the response time tci. This can be achieved
by extension of discrete response rci (correct or incorrect)
to continuous one where values between 0 and 1 mean the
correct answer but with longer time than the targeted time
τi. Example of this extension is decay of the response value
exponentially relatively to the ratio of tci and τi (Figure 2).

Figure 2: The response value for the correct answers

After the answer, all abilities θsc belonging to ancestors’
skills s are updated. Updates of abilities are performed se-
quentially from the root of the skill tree. If the answer is the
first answer of the child to the item, the difficulty of item βi
is also updated.

βi = βi +
α

1 + β · ni
· (eci − rci),

θsc = θsc + γs ·Kr · (rci − eci).

The parameters α and β define shape of the decay function
[13] which prevents excessive influence of recent responses.
The decay function takes argument ni – number of previous
updates of that difficulty. ParameterKr corresponds to PFA
updates and depends on correctness of answer. Parameter
γs ∈ [0, 1] tells how much response to the item testifies about
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a skill and consequently, how much information obtained
from response is propagated to sub-skills. Reasonable values
of γs are near 1 for the most concrete skills and near 0 for
the global skill.

2.3 Item Selection
The selection of an appropriate item that suits the ability
of a child is a key feature of the system and has to balance
several aspects. The system should not select the same or
similar item in a short time, it should select diverse items
for better exploration of child’s abilities and, foremost, the
system should select items with appropriate difficulty – not
already mastered (high probability of success) and not too
difficult (small probability of success). Currently used al-
gorithm is very similar to the one described in [11]. Only
difference is in bringing into account also similarity of items
(e.g. 5 + 7 is similar with 7 + 5).

3. FUTURE WORK
Most of adaptive educational systems currently work only
with correctness of responses. Our goal is to find out if
this classical approach can be robustly extended by taking
into account timing information and if this extension can be
useful in building fluency in the basic mathematical tasks.
To target this questions we proposed the system described
in this work. This system is still in testing phase but the
first analysis of 28 thousand collected answers, show that the
ability and difficulty values estimated by the student model
make intuitive sense, the system can adapt quickly and the
item selection algorithm works reasonably. However, there
is a lot of space for improvement.

The domain model can be enriched with prerequisites which
can be useful for both ability estimation and for item selec-
tion. The current choice of the skills used in the domain
model should be reviewed by a domain expert or compared
with automatic methods which use collected data [10]. The
proposed student model is incorporating response time but
current approach is quite simplified and explicitly does not
distinguish between accuracy and speed, which can be mod-
eled separately. Also it is not clear how to set, or rather au-
tomatically estimate, targeted response times τi. Next char-
acteristic of the model is propagation of information about
abilities across all skills, which is useful in first phases but
later can be undesirable. The propagation is closely con-
nected to parameters γs and their influence to the model
behaviour should be investigated.

To evaluate our approach the proposed models will be com-
pared to alternative models (e.g. Bayesian network model
[7] which works with prerequisites) or simpler versions of Elo
model (e.g. model which uses only one global skill and inde-
pendent local skills [11]). The comparison of the models can
be done offline with respect to the quality of predictions or
online by comparison of an improvement rate or behaviour
of children groups using different models and item selection
strategies. These comparisons should bring some light an
whether the proposed methods are useful.
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ABSTRACT 

This paper provides an overview and update on my PhD research 

project which focuses on integrating learning styles into adaptive 

e-learning system. The project, firstly, aims to develop a system to 

classify students’ learning styles through their online learning 

behaviour. This will be followed by a study on the complex 

relationship between learning styles, learning supports and learning 

outcomes. The findings can contribute significantly to the area that 

is still left with several unanswered questions. In addition, based on 

the results, meaningful recommendations and suitable online 

adaptation can also be made to a wide range of stakeholders of the 

education system.  

Keywords 

Learning Styles; E-learning; Adaptive learning system; Data 

mining; Learning analytics. 

1. INTRODUCTION 
Learning styles which are defined as students’ preferred ways to 

learn can play an important role in the development of the e-

learning system. With the knowledge of different styles, the system 

can offer insights and advices to a wide range of stakeholders such 

as students and teachers to effectively organise their learning 

materials and studying activities to optimise the learning paths. For 

example, under Felder-Silverman’s learning styles frameworks [5], 

students may prefer to process information actively or reflectively. 

For “active” students, they perform better through interaction with 

other students compared to the traditional classroom. Thus, it is 

advisable for teachers to provide such group the opportunity to 

interact and discuss the learning topic [5]   A recent report by 

Thalmann [17] surveying e-learning system developers even 

suggested that learning styles were the most useful personalization 

sources among other factors such as background knowledge and 

user history. In addition, there are clear potential benefits for both 

fields of learning styles research and e-learning system 

development. On one hand, the integration can help to improve the 

e-learning experience, providing means to build rules for 

personalising resources. On the other hand, the e-learning system 

which allows data mining and computerized algorithms can offer 

opportunity to observe, analyse and gain further information into 

students’ learning styles throughout the whole learning process 

which could not easily be done in traditional learning styles theories 

research.  

Nevertheless, integrating the traditional theories which have the 

base in psychology, pedagogy and cognitive research into the 

online environment is not a straight forward task. Measurement 

methods provided by traditional theories are mostly based on long 

self-judgment questionnaires [4] and thus, do not provide sufficient 

means fitting to the e-learning system. Furthermore, scholars still 

do not agree on how to optimize the matching process between 

learning styles and learning supports [4, 16] which leaves places 

for further exploration.  

With the motivation to address these research problems of 

integrating learning styles into adaptive e-learning system, this 

paper contains my proposals as well as the current research 

progress. 

2. PROBLEM STATEMENT AND 

PROPOSED CONTRIBUTIONS 

2.1 Research Questions  
In a more comprehensive way, learning styles, according to Keefe 

[11], can be defined as:  “The composite of characteristic cognitive, 

affective, and physiological factors that serve as relatively stable 

indicators of how a learner perceives, interacts with, and responds 

to the learning environment”. On the traditional theories side, 

which is mainly based on psychological, pedagogical and cognitive 

research, the review by Coffield, Moseley, Hall, and Ecclestone, 

[4] has identified over 70 theories and models. While there are no 

theories that outperform others [4], theories that consider the 

flexibility and changes of styles overtime appear to be more popular 

in e-learning application. Notable theories in this group include: 

Felder-Silverman’s learning styles theory [5] which divides 

learners based on their: information input, information process, 

perception, and understanding, Kolb’s Learning styles inventory 

[12] and Honey and Mumford’s Learning styles [10] which both 

divide styles based on their proposed learning cycles. 

The theories undoubtedly provide an essential foundation for 

learning style research. Nevertheless, there are several unsettled 

issues when applying to the online environment. In this proposal, 

with the aim to integrate learning styles into e-learning systems, I 

focus on two main ones: a) learning style classification system in 

e-learning and b) the relationship between learning styles, learning 

support and learning outcomes. 

2.1.1 Learning Styles Classification 
In terms of learning styles measurements, a review by [4] shows 

that almost all of the theories are assessed by questionnaires or 

surveys, requiring learners to evaluate or rank their own styles and 

behaviours. This type of qualitative measurement suffers many 

downsides. Firstly, it relies on students’ self-judgments which can 

be bias. Secondly, although learning styles, according to many 

theories, can change over time, surveys and questionnaires only 

measure styles at one point in time. Several surveys are, in addition, 
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questioned by critics in terms of validity and reliability [4]. It is 

time consuming as there are surveys that can reach over 40 -

question long (e.g. [16, 23]), and as a result, they may not be 

updated easily. Hence, these disadvantages of a long, time 

consuming, and self-judgement-based measurement create several 

difficulties when it comes to the adaptive e-learning system 

development.  

In recent years, the application of machine learning which allows 

computerized algorithms to quickly analyse and mine huge online 

behaviour dataset provides the opportunity to develop new 

measurement methods that overcome the current drawbacks. As a 

result, it has opened a call for integrating learning styles with e-

learning system using machine learning application [1, 14].  

With the area is still at its early stage, there is still only a few proper 

peer-reviewed researches that attempt to tackle this theories 

integration issue [1]. Numerous problems remain unanswered.  

Firstly, several learning styles predictors can be traced in previous 

literature which show a complex relationship between learning 

styles and online behaviour. For example, to measure learning 

styles under Felder-Silverman’s framework, while [6] used 

attributes related to forums, chats, exam revision etc., [20] 

measured using variables related to assessment such as questions 

answering time, performance on the test, questions checking time 

etc. Nevertheless, through my literature review of 51 previous 

papers [18], none of the papers has managed to compare the power 

of different predictors.  The results of such comparisons will very 

interesting and valuable as it can act as guidelines for future 

developers and contribute significantly in improving the 

performance and efficiency of classification models.  

Secondly, in terms of machine learning classification algorithms, 

among 51 papers reviewed [18], the most popular method identified 

is Bayesian networks (and Naïve Bayes – a special case of Bayesian 

network) (e.g.[6, 7],) which has the base in Bayes theorem. This 

type of approach has shown positive results in a number of 

researches so far. Nevertheless, for Bayes theorem to work, it 

requires a number of conditional probabilities and the relation 

network to be identified which are not always straight forward 

tasks. Another popular branch of methods is rules based (e.g. [7, 

20]). This group of methods is interpretable, however, it relies 

heavily on how well the researchers “translate” the theory into the 

online world. For example, Graf et al., [8] based on the description 

of learning styles from Felder and Silverman’s to obtain “rules” e.g.  

If a student used exercise more frequently, he is more likely to 

prefer active learning style. The remaining group of researchers still 

focuses mainly on single supervised methods which left places for 

the application of other advanced machine learning methods such 

as hybrid and ensemble machine learning that combine different 

machine learning algorithms together. Such advanced methods 

have shown significant higher performance than single algorithm 

in other applications such as medical and finance ([3, 19]). 

Finally, current models also lack generalisation ([2, 15]). 

Researches are still employed to only one particular context. Akbult 

and Cardak [1] pointed out that the research population for almost 

all of the researches is still limited to undergraduate students.  Thus, 

it raises the question if such models can be applied to a different 

situation from their own.  

These open gaps for a better classification model found in learning 

styles research field have led to the following research questions: 

• How can we incorporate machine learning and traditional 

learning styles theories? How can we measure learning styles 

through online behaviour? 

• Which predictors are the most meaningful in predicting 

learning styles in online environment? What is the relationship 

between online behaviour and learning styles? 

• What is a more effective way for learning styles classification 

compared to current approaches? 

• Is it possible to generalize the measurement method? 

2.1.2 The relationship between learning styles, 

learning support and learning outcomes. 
The second issue relates to the relationship between learning styles, 

learning supports methods and learning outcomes. On one hand, 

students with different learning styles prefer to study in different 

ways. On the other hand, researchers still do not agree on how to 

optimise this matching process between learning styles and 

learning supports and interventions ([4, 16],). At the same time, the 

relationship between learning styles and learning outcomes is still 

unclear [1].  Pashler, McDaniel, Rohrer and Bjork [13] reported that 

previous researches still show flaws in their methodology, which as 

the result, fail to persuasively show the effect of learning 

instruments on students with different learning styles. There are 

also several contradictory results. For example, Ford and Chen 

(2001 cited in [4]) suggested that matching students learning styles 

with their preferred teaching style is associated with better learning 

results. However, Holodnaya [9] found that it will be beneficial to 

study under a mismatched condition. Consequently, to be able to 

provide reliable feedback to different stakeholders of the education 

system, it is essential to revisit the issue. The following research 

questions have been raised:  

• How can we match learning supports to learning styles to 

improve learning outcomes? 

• Under the same condition, are learning styles making any 

differences to learning outcomes? Are there any styles that are 

more preferable under certain circumstances? 

2.2 Potential contributions 
Overall, the area of integrating learning styles theories into e-

learning systems has gained interest over the past years, yet there 

are still many questions that are underexplored. This research, thus, 

firstly, will address a number of research gaps in the field such as 

the relationship and influence of different online attributes on 

learning styles. Interesting patterns between different styles and 

behaviours can, as the consequence, be identified. Secondly, it aims 

to advance in the methods for learning styles classification which 

will improve the accuracy and efficiency. Lastly, it will reconfirm 

the debate in terms of the relationship between learning styles, 

learning outcomes and learning supports that can contribute 

significantly in helping the students to excel in their study. In 

addition, the findings can also work as guidelines and contribute 

for future e-learning development research. 

3. PROPOSED METHODS AND CURRENT 

PROGRESS 
The research will be carried out in 2 phases that each dedicates to a 

problem mentioned in section 2. At the current stage, I focus on 

phase 1 which is to develop a learning styles classification system. 

Thus, this section will centre mainly on phase 1’s method and 

updates.  
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To develop a classification method, the following process will be 

carried out: it will start off with learning style theories selection, 

then attributes selection and finally, classification methods 

development and evaluation. 

Firstly, while the learning styles classification field is crowed [4], 

through careful review in terms of theories reliability, validity, 

usefulness in recommendation, in this study, I chose to follow 

Felder-Silverman theory which is one of the most popular theories 

implemented in e-learning system [1]. Hence, it will also provide 

the opportunity for performance benchmarking. 

In terms of attributes selection, I have carried out a literature-based 

survey [18] focusing on not only previous personalization system 

development researches, but also papers studying the relationship 

of learning styles and online behaviour. The result is a long list of 

potential attributes (over 80 items) which can be divided into three 

main sources including static data such as user background, ethnics, 

major etc., online behaviour e.g. time spent on certain activities and 

other personalization sources e.g. intelligence, memory capacity.  

The data for different attributes is currently being programed and 

collecting for classification methods development using a learning 

system developed at Corvinno called STUDIO. Felder-Silverman’s 

ILS survey has also been carried out as it is still the base line for 

online modelling evaluation that has been used in almost all of the 

previous papers. Over 250 undergraduate students are being 

observed with the plan of collecting data on the second group of 

students for model generalisation evaluation ability in the next 

school term in September. 

Lastly, the classification methods development is still in the early 

stage. As most of previous researches still use single classification 

methods, I see an opportunity to apply more advanced techniques 

such as ensemble machine learning which combines different 

single algorithms to improve the performance. This branch of 

methods has shown to outperform single methods in other 

applications such as medical and finance. 

4. FUTURE DIRECTION AND ADVICES 

SOUGHT 
The research is still at the early stage and thus, there are a number 

of challenges ahead that I hope the consortium can provide advices 

on or sharing similar experiments and insights related to: 

• Attributes comparison in the case with huge number of 

attributes and algorithms tested.  

• While I will focus on ensemble and hybrid methods, I am also 

interested in if there is any other method, especially in the area 

of sequence mining. 

• Generalisation: Is this necessary/possible to generalise the 

detection models? What are the conditions that we have to test 

for generalisation? Is testing on different populations enough? 
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ABSTRACT
Estimation is useful in situations where an exact answer is
not as important as a quick answer that is good enough. A
web-based adaptive system for practicing estimates is cur-
rently being developed. We propose a simple model for es-
timating student’s latent skill of estimation. This model
combines a continuous measure of correctness and response-
times. The advantage of the model is its simple update
method which makes it directly applicable in the developed
adaptive system.

1. INTRODUCTION
Estimation is a very useful skill to possess. Particularly in
situations where an exact answer is not as important as be-
ing able to quickly come up with an answer that is good
enough (e.g., total amount on a bill in a restaurant, number
of people in a room, total of the coins in a wallet, num-
ber of cans of paint needed for painting a room, converting
between metric and imperial units). It was shown that es-
timation ability correlates with the ability to solve compu-
tational problems [2, 9, 8]. Because estimation is so useful,
we have decided to develop a computerized adaptive system
that will let its users practice estimating by solving various
tasks.

The adaptive system will include exercises for practicing nu-
merical estimation (results of basic arithmetic operations,
converting between imperial and metric units, converting
between temperature units, currencies and exchange rates)
and visual estimation (counting the number of objects in a
scene).

In order to provide adaptive behavior of the system, we need
a way of inferring student’s ability of estimation. In our
setting, the binary-valued correctness-based modeling ap-
proach is not suitable. We do not expect the users to input
exact responses, we expect them to input their best esti-
mates. So our model should work with some measure of the
quality of an answer. Another important point is the speed-

accuracy tradeoff. Figure 1A shows a hypothetical tradeoff
curve for one user with fixed ability. User can answer a task
very quickly but it will probably be a very rough estimate.
Or he/she can decide to spend more time on the task and re-
spond with a more precise answer. Therefore, response-time
should be a vital part of our model.

The system should be able to detect prior skill (i.e., how
good the user was at estimation before he started using the
system) which can be deduced from the first interactions of
the user with the system. The goal of the developed system
is to enable the user to get better at estimating. Therefore,
the proposed model should also take into account user’s im-
provement (or learning) over time. Figure 1B illustrates
answers of several users on one task as red dots. Ideally, the
system will help its users to learn to perform near the green
mark, to be fast and accurate.
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Figure 1: A) hypothetical speed-accuracy tradeoff
curve, B) goal of the system

The value of the system will also be in the data that will be
collected. It can be used to answer some interesting research
questions. Does the speed-accuracy tradeoff curve have the
same shape for converting between EUR and USD as for
estimating the number of displayed objects? How do the
learning curves look? Can estimation tasks in one area be
learned more quickly than in another area? How close to
the perfect mark can users push their performance? What is
the influence of a countdown timer on user’s performance?
What is the appropriate level of challenge that motivates
the users? The last question was addressed in [3], where the
authors were trying to validate the Inverted-U Hypothesis
(i.e., we most enjoy challenges that are neither too easy,
neither too hard) on data collected from online estimation
game called Battleship Numberline. They found out that the
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easier the game was, the longer users played the game.

2. MODELS
In this section, we present a few existing models for combin-
ing correctness and response-times in Item Response The-
ory (IRT) and a model for tracking learning currently used
in our other adaptive practice system. We then propose a
simple model that could be used in the system for practic-
ing estimates. The described models use a logistic function
σ(z) = (1 + e−z)−1. Users of the system (or students) are
indexed by j. The items (or tasks, problems, questions) that
the users solve are indexed by i.

2.1 Models from IRT
A typical example of an approach to the modeling of both
correctness and response-times in Item Response Theory is
from van der Linden [10]. The approach uses two models,
one for correctness (binary) and the other one for response-
times (distributed lognormally). The probability of success
of a student j on item i can expressed by the 3PL model:

pij = ci + (1− ci) · σ(ai(θj − bi))

where parameter θj is the skill of student j and ai, bi, ci are
the discrimination, difficulty and pseudo-guessing parame-
ters for the item i. The logarithm of a response-time tij can
be predicted by:

ˆln tij = βi − τj (1)

where βi represents the amount of labor required to solve
item i and τj the speed of student j. The disadvantage
of this model is that it does not model the speed-accuracy
tradeoff explicitly.

An example of a model that directly combines binary cor-
rectness with response-time is Roskam’s model [7]:

pij = σ(θj + ln tij − bi)

Here, an increase in item difficulty (or decrease in student’s
ability) can be always compensated by spending more time
on a problem. This tradeoff is called an increasing condi-
tional accuracy function.

2.2 Model for factual knowledge
Here, we present a model that is currently used in a popular
adaptive system for practicing geographical facts [4]. This
model consists of two parts, one (Elo) estimates the prior
knowledge of a student and the second one (PFAE) models
student learning. A big advantage of this model is that
it uses fast online methods of parameter estimation which
makes it suitable for use in an interactive adaptive practice
system.

The prior knowledge of a student is modeled by the Rasch
(1PL) model. The probability that a student j answers item
i correctly is modeled by the likelihood pij = σ(θj−bi). The
parameters are estimated using Elo rating system [1]. Elo
was originally developed for rating chess players, but the
process of student answering an item can be interpreted as
a ”match” between the student and the item. After each
”match”, the parameters are updated as follows:

θj := θj + U(nj) · (correct − pij)
bi := bi + U(ni) · (pij − correct)

where U(n) is the uncertainty function U(n) = α
1+βn

and n
is the number of updates of the parameter and α and β are
metaparameters. The variable correct takes value 1 if the
student has answered correctly and value 0 otherwise. This
model is used for predicting– and trained on–first responses.

After the first interaction of a student j with item i has
been observed, we can set student’s skill in that particular
item to θij = θj − bi. An extended version of Performance
Factors Analysis [5] called PFAE is used to model learning
and predicting the following interactions of the student with
the item. Likelihood of a correct answer is pij = σ(θij). The
update to student’s knowledge of item θij after observation
is:

θij :=

{
θij + γ · (1− pij) if the answer was correct

θij + δ · pij if the answer was incorrect

where γ and δ are metaparemeters. The reason for two dif-
ferent metaparameters is that the student learns also during
an incorrect response.

2.3 Proposed model for estimates
Here, we propose a model that can be used in the adap-
tive practice system for estimates. The model combines
Roskam’s model and the update scheme from Elo and PFAE.

A simple extension of the correctness-based modeling to the
setting of practicing estimates is to use a measure of cor-
rectness, or a score – a rational number ranging from 0 to
1. The way of scoring of an answer could be based on the
domain being practiced by the user. For example, for the
scenario where the user is estimating the number of objects
in a scene, the exact answer would get a score of 1, deviating
by one object a score of 0.8, etc.

The model assumes the same parameters and relationship
as Roskam’s model, but instead of expressing a probability
of a correct answer it specifies the expected score:

ŝij = σ(θj + ln tij − bi)

Figure 2 shows how the score changes as a function of time
for different values of user’s skill θj (with fixed bi = 0). It
nicely demonstrates the speed-accuracy tradeoff.
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Figure 2: Score function for different values of skill

After observing score sij that user j obtained for answering
item i and response-time tij , we can update model’s beliefs
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in the parameters:

θj :=

{
θj + γ · (sij − ŝij) if sij ≥ ŝij

θj + δ · (ŝij − sij) if sij < ŝij
bi := bi + U(ni) · (ŝij − sij)

Note, that the model uses a single parameter θj for the stu-
dent. This is different from the approach taken in PFAE,
where the student has a parameter for each item θij . While
that approach is suitable for modeling the knowledge of facts
– where it is reasonable to assume that the knowledge of one
fact is independent of the knowledge of another – it is not
suitable here. Student’s ability to convert 2 miles to kilome-
ters is surely dependent on his ability to convert 3 miles to
kilometers.

We propose using separate model for each concept (e.g., es-
timating the number of objects, conversion lb to kg, conver-
sion EUR to USD). It is true that student’s ability to esti-
mate items corresponding to one concept tells us something
about his ability to estimate the other concepts. However,
if the user does not know the conversion rate from EUR to
USD then being able to estimate well the other concepts will
not help him.

The model can be easily extended by adding a discrimination
parameter a or a guessing parameter c (similarly to the IRT
model): ŝij = c+(1− c) ·σ(a(θj +ln tij − bi)). These added
parameters could be either metaparameters of the model or
parameters of the item i. The guessing parameter may be
useful for the scenario where the user has to select a value
on a numberline.

As we mentioned earlier, this model suffers from the issue
that increasing the time spent on an item increases the ex-
pected score. This may hold true for the instance where the
user knows the underlying concept (e.g., the conversion rate
from EUR to USD) but it does not hold when he does not
know it. But the model uses the logarithm of response-time
and the time a student is willing to spend on an item is
limited. Therefore, the model should have reasonable be-
havior for the time interval of interest, as is demonstrated
in Figure 2 by the curve corresponding to θj = −5.

3. DISCUSSION
The model works with the response-time as a parameter.
Therefore, it cannot be used for predicting response-times
directly. A model similar to (1) can be used for that. Pre-
dicted time and score can be used for item selection (i.e.,
which item to offer the user next). This can be done by
setting a target score and recommending an item with pre-
dicted score close to the target.

Does the model perform better than a simple 1PL model
that does not use response-times at all? Does it make sense
to add more parameters to the model? How does the model
fare against more complicated models? To be able to an-
swer these questions, we need to somehow evaluate the per-
formance of the model. The choice of metric is interesting
because a model can predict both score and response-time.
When considering only the predicted score, a standard met-
ric like RMSE can be used [6]. When we have a measure of

performance, we can explore if the model is well-calibrated
with respect to response-times or if the model works simi-
larly well for all the domains (concepts).

Other question that we could ask is how well does the speed-
accuracy tradeoff curve that the model assumes correspond
to reality.
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ABSTRACT
In this paper, I describe prelimirary work on a new research
project io learning analytics at Anzana Sate University. In
conjunction with an innovative remedial mathematics course

using Khan Acaderuy and student coaches, this study secks to
meaflre the effectiveness of visualieed data in assisting student
coaches as they help remedial mali students achieve success in an
online math class.
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1. INTRODUCTION
With 7?,000 students, Arimna State University has become one

of the largest institution of higher learning in the United States
second only to the University of Phoenix. A c€rtain slice of newly
enrolled students at Arizona State find themselves in a dilemma
they have been admitted to the univsrsity, but they have failed to
meet the minimum math requirement that would allow thsn to
start taking undergraduate classes.

These students are desirable for many reasotts. They can help the
university meet goals for diversity and social justice. Often these
studsnts are fust generation college studeots. However, tfris
populaiion also poses challerges to the university. Being unable
to meet the minimum score oo the mathematics placoment test not
only points to gaps in a student's math backgrouad, it often points
to larger issues of academic rsadincss.

Overcoming the hurdle of meeting the minimrrm math
requireaent has been challenging. Online remedial math classes

using an adaptive leamiug model have historically had a pass rate

of around 5fflo. These pass ratss have remalned sfirbbornly low
despite various efforts to improve them.

2. ANEWAPPROACH
In the summer of 2014, EdPlus (ASU's online education arm)
decided to launch a new version of this remedial math class built
araund Khan Academy and undergraduate peer coaches. One of
the big reasons for making this changc was data Kha& because it
is a non-profit was qpen to sharing the data generated by students
and KA's shategies for student success. Arizona State waoted
their remedial math classes to become their most data driven
offering. Workiag with Khao had o&er advantages as well.
Because KA has over l0 million unique users wery monlh and

over 2 billion problems worked Khar is able to deploy and adapt
its instruptiotr at scale.

3. CIIALLENGES WITH KIIAN
While the sfratsry of building a remedial math class around Khan
Academy had many strengths, there were also significant
challenges. The first challenge was ir tbe form ofa problem thaS

many schools face when working with Khan Academy, While
seekirg to build a comprehensive uoiverse of math inshuction,
KA has explicit pathways to math suc@ss. Khan calls
these pathways "mjssions." Howsver, ASU's erd goal: passing

an exam tlat is meant to reflect the many math concepts that a
student should know before entering college, cut across many
Khan missions. In addition, Khan's powerful analytical tools that
are meant to aid insFuctors ir following a student's progre€s axe

tied to these missions. When ma& skills are being served up to
students a la carte, as they are to accomplish ASU's rsmedial
math progranr, the analytics are unraveled.

,d second major challenge facing the Khan Academy progr€rm was
the same challenge facing the origiaal remedial math program.
Many of these studsnts were failing to pass the mirimurn math
requkement to enter Arizona State University because school in
general has been challenging for them for a very long time.
Putting these students by themselves ir an ooline math course of
any kind could be a recipe for failure. Thoy needed additional
zupport. The kind of personal atlention these studfirts need is very
expensive. ASU decided to control that cost by employing a
system of sndent "coaches." Coming from a variety of majors and
backgrounds, these studsnt coaches were handpicked and given
respoosibility fot 20-25 online students each. Their job was to
monitor, gurde, tutor, and encourags these studeirr to the end
goal of haviag their coachees pass ao exam that wes meant to
reflect their readiness to take college level mafh.

In order to be effectivq &ese coaches needed access to tle data in
Khan Academy about their studetrts' progtes$ but because ASU's
exam at the end of the remedlal math course measrred math skills
that spanaed ssveral Khan math missioas, the state-of-the-art
Khan analytics that are tied to those missions were unavailable ts
the coacfres After a lot of worlg (much of it spearheaded by the
student coaches themselves) a spreadsheet was developed that was
populate.d by weekly downloads of Khan data. It showed which
math skills were practiced and which skills were mastered and
matched these up to a rough metric that told the coaches whether
th€ir studetts were oa track to successfully master alt the math
skills they needd before tley had to takc the exam.

4. RESEACH GOALS
The goal ofmy research is create custom data visualizations that
fit ASU's mission for this remedial math class and tleu ,neasure
the effectiveness ofthese analytics in assisting the student coaches
in their work of creating student suc€ess. These analyics me
specifically aimed at enabling the student coaches to visualize the
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large arnounts of data generated through I(han Acadury. Khan
stores data on each s'tudert's attempt to solve a math problem
related to a particular skill. There is also data on how matry times
a student views a Khan video on a maflt concept or asks for hints
when attempting a math problan. Because we are re-envisioning
the analytics from the ground up, we have an opportunity to cr€ate

anallics that are similar to the ones that Khan has created for its
missions yet improve these analytics for ASU's specific purposes

and create dashboards that visualize the data in other ways that
may be evetr more useful for the sfudent coaches. Because the
coaches only had access to Khan data through a spreadsheet the
first semester the new remedial mattr class was taueltt, there is an
opportunity to compare the success of coachss assisting their
students with the spreadsheet data versus those using the more
sophisticated data visualizations produced Aom the studenl's
aotions within Khan Academy.

In order to achieve &is goal, ASU is teaming up with Blue
Canary, a learniag analytics compaoy headquartered h Chandler,
Arizona Blue Canary and I are working dircctly with Khan
Academy to address data flow issues including creating API's that
will automatically access dara &om Khan databases that will be
feediag the dashboards and graphics created for the studeot
coaches. I am also going to be workitg with Blue Canary to create
dashboards and data visualization tools for the Khan online malh
class in Tableau. These dashboards are directly aimed at assisting
student coaches while they help their math coach6s$ achieve
success.

5. RESEARCH QUESTTONS
Once the dashboards are crated and the student coaches start
using them to assist their math students, we can start to address
this research question: Do data visualization tools enable student
coaches to beft€r assist rernedial math students entering Arizona
State University achieve success?

6. RESEARCH DESIGN
The prelirninary design of this study is to compare data generated

by two cohorts of remedial math students. The first cohort has
been guided by shrdent coaches who have been accessing the
Khan data on through a spreadsheet created to keep track ofskill
practice and mastery- The second cohort will be guided by sfudent
coaches who have access to the data visualization tools and
dashboards crsat€d by myself aud Blue Canary in Tabloau. The
ultimate measurt of coach succsss will be the pass rate of thsir
shrdents at the erd of the course. In addition, there will be many
other metrics to measure, as well, such as studeot engagement and
persisturce.

This research is in the early stages. Mike Sharkey from Blue
Canary aad myself have been meeting with student coaches and
instructional designers of the remedial math program to assess the
nesds of the student coaches and talk about possible data
visualizations that may be helpful. API's are being designed pull
data &om Khan for the aaalytics and dashboard layouls. While we
me working on this, data is being generated by students in Khan
Academy who are working with coaches that are relying on the
spreadsheet to access data atrout tle progress oftheir students in
Khan. I am currently in second year ofa fouryear PhD progranl
so we have some time to make adjustrnents and work out
problems as they arise.
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ABSTRACT 

In this digital era, learning from data gathered from different 

software systems may have a great impact on the quality of the 

interaction experience.  There are two main directions that come 

to enhance this emerging research domain, Intelligent Data 

Analysis (IDA) and Human Computer Interaction (HCI). HCI 

specific research methodologies can be used to present the user 

what IDA brings after learning and analyzing user‘s behavior. 

This research plan aims to investigate how techniques and 

mechanisms available in both research areas can be used in order 

to improve learners’ experiences and overall effectiveness of the 

e-Learning environment. The foreseen contributions relate to 

three levels. First is the design and implementation of new 

algorithms for IDA. The next level is related to design and 

implementation of a generic leaning analytic engine that can 

accommodate educational data in attempt to model data (i.e., 

users, assets, etc.) and provide input for the presentation layer. 

Last and top level is represented by the presentation layer where 

the output of the underlying levels adapts the user interface for 

students and professors.   

Keywords: 

Learning analytics, intelligent data analysis, interaction design, 

user modeling 

1. INTRODUCTION 
Standard books or their digital versions (eBooks) or standard e-

Learning environments are usually just a simple presenting 

method of the learning material. In this digital era our day by day 

devices must became proactive to our needs, i.e. they have to 

know what we need before we even have to ask them. Considering 

the field of e-Learning, in order to find user's needs and to 

improve his learning experience we can log various activity 

related data as a first step in a data driven analytic engine. These 

actions may define learners’ behavior in e-Learning environments 

providing IDA with raw data to be analyzed. Based on this data 

IDA creates a data model which is based on user’s performed 

actions. A sample output of the IDA process may be represented 

by a user model that is aimed to directly influence the user 

interface. 

Learning using on-line educational environments is 

getting more and more popular but the effectiveness of interaction 

between students or students and professors is usually poorer than 

the interaction in physical educational environments. Improving 

the interaction design process in e-Learning platforms may have a 

direct impact on the effectiveness of the learning and be achieved 

by following a data driven approach. The proposed approach is 

related to several prerequisites and the learning resource that 

needs to be well structured and presented. Others are related to the 

interaction between students and the links that can be created 

between them, proper data visualization techniques, interpretation 

of results, adequate data analysis processes with specific goals 

regarding interface adaptation. 

2. RELATED RESEARCH IN I.D.A. 
Learning analytics and Machine Learning[2] is still one of the 

most interesting parts of the IDA research area. One research area 

of this domain is related to the classification procedures. Some of 

them are related to the usage of classification on text[1] and some 

of them are regarding to  usage of classification as an user 

analyzing method[4].  

Analysis of students’ activities in the online educational 

systems with the goal of improving their skills and experience 

through the learning process has been an important area of 

research in educational data mining. Most of the techniques are 

trying to predict student's performances[5,6,7,12] based on their 

actions. 

The work in this domain started in the year of 2005 with a 

workshop referred to as ‘Educational Data Mining’ AAAI’05-

EDM in Pittsburg, USA[8]  which was followed by several related 

workshops and the establishment of an annual international 

conference first held in 2008 in Montreal[9] . Before of EDM, 

user modeling domain was the one that was encapsulating this 

research area. 

Several papers, journals and surveys have been written but 

only two books were published: the first is “Data mining in E-

learning”[10] which has 17 chapters oriented to Web-based 

educational environments and the second is “Handbook of 

Educational Data Mining”[11] which has 36 chapters about 

different types of educational settings. 

In this research proposal the goal is to combine HCI with 

IDA and educational research in order to improve the learners 

experience in digital educational environments. This domain is 

also related to Intelligent Interfaces research area.  

3. RESEARCH AND DEVELOPMENT 

STATUS 
As research status two papers have been written so far.  

I am a co-author of the paper Advanced Messaging System for 

On-Line Educational Environments[3]. This paper presents a 

method of using a classification procedure for retrieving a set of 

recommended messages that might be interesting to students. 
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The second paper is entitled „Building an Advanced 

Dense Classifier”[4], which has already been published at IDAIR 

2014 and won the best paper award. This paper presents a 

classifier that implements several extra functionalities which can 

lead to better results. Its goal is to build a Decision Tree classifier 

that accommodates data (instances). This new data structure 

extends the functionality of a Decision Tree and is called 

DenseJ48. This new classifier implements efficiently several extra 

functionalities besides the core ones that may be used when 

dealing with data. 

 

Based on this paper, as development background a 

Weka package which implements the classifier’s functionalities is 

under development. I am also a contributor 

(http://apps.software.ucv.ro/Tesys/pages/development.php) of 

Tesys[13], an e-Learning platform used in several faculties from 

Craiova, mainly focusing on the eLeTK (e-Learning Enhancer 

Toolkit)[14] module. This is how I found out about Intelligent 

Data Analysis and Information Retrieval, and the benefits these 

research areas can bring to the online educational environments. 

 

As relevant training in September 2013 I applied for 

and obtained a scholarship for attending the 9th European 

Summer School in Information Retrieval, which took place in 

Granada, Spain. Being part of this event helped me improve my 

knowledge in the domain of Information Retrieval – the 

presentations covered most of this research area, from basics to 

evaluation techniques and Natural Language Processing. Later I 

attended Research Methods in Human-Computer Interaction 

between 25th and 31th of July 2014 in Tallinn, 

Estonia.(http://idlab.tlu.ee/rmhci) in order to deepen my 

knowledge of HCI research methodologies. 

 

4. RESEARCH PROBLEMS FROM 

 PHD PROPOSAL 
Problems related to this research can be structured in a three layer 

representation.  There is a certain need for improving the 

interaction between the users (students, professors, etc.) and the 

system that provide them the learning experience. The research 

problems are related to closing the gap between classical and 

digital learning paradigms. 

Development of new tools is fundamentally based on 

functionality provided by a generic learning analytic engine, 

among which there are: generic representation of learning 

analytics data of users, integration of various implementations of 

IDA algorithms, custom integration of interaction design process 

artifacts. All these three layers build up a learning analytics engine 

that is designed to run as a service along e-Learning environments 

in an attempt to improve the quality of the on-line educational 

system. 

4.1 Layers description 

4.1.1 Data Representation Layer 
First layer is related to the representation of the raw data that can 

be gathered from the log files and the database. Our desire is to 

find what data (features, parameters, ranges, etc) is relevant for 

online learning environments. Based on this data we have to 

extract features that can define learning resources or those features 

that enable us to obtain a user representation. 

4.1.2 Learning Analytics Layer 
Based on the data gathered it is possible to employ different IDA 

algorithms in order to obtain custom built data pipelines. 

Experimenting at this level with different algorithms and different 

feature sets can lead to obtaining output information for solving 

different problems. Data aggregation and pipelining are the 

mainly used processes. The purpose of this layer is to offer to the 

next one data in a structured format which can be presented on the 

interface. 

4.1.3 Presentation Layer 
The presentation of the learning material is very important, 

leaving a mark on the mental model created by the learning 

resources.  In this layer the HCI component of this proposal is 

employed. 

Taking into consideration these aspects related to both 

domains we can say that there is a need for new tools that could 

be integrated within the digital learning environments in order to 

provide an improved learning experience that fulfills the user’s 

needs. 

 

4.2 Research questions & Proposed Approach 
The questions that have to be addressed when we talk about 

research in e-Learning environments are related to the main actors 

that are using the on-line educational environments. Therefore, 

learners, teachers and administrators (which can do the data 

analyst job), by the generic meaning, are the ones we focus on 

because they are the main users of these systems. Secretaries of 

the learning environments only concur to configure the e-

Learning environment.  

The presented questions are from the business goal 

perspective. Answering these questions needs a close discussion 

about the presented underlying levels, which are the same 

regardless of the tackled issue, that define data driven process. 

 How IDA can be efficiently and effectively used for an 

on-line educational context? 

 Proper usage and integration of IDA techniques can 

create a framework which data analysts and developers can 

employ for further work. 

 How can e-Learning resources be managed/aggregated 

in an IDA context? 

There are various types of resources that exist in on-line 

educational environments. Depending on how they are managed 

and aggregated, application developers can benefit from them.  

 Which are the common (general purpose) 

functionalities when dealing with educational data 

pipelines? 

Several functionalities exist in dealing with data but not all 

of them are feasible for working with educational data. In this 

particular case we need to find the most effective ones and adapt 

them to this particular case. 

 How can the student know his place among his 

colleagues and be motivated to study harder? 

This question is highly important from the student's 

perspective. Without knowing his place among his colleagues and 
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without having an explicit learning path, the learner will not have 

the indication of his final result and will not have the motivation 

to maximize his potential. In e-Learning environments, students 

do not participate together in courses, like in a regular 

environment, so they are unaware of their colleagues' knowledge 

level. In a traditional classroom, there is always a certain level of 

competitiveness, so each student is constantly motivated to 

improve himself. Therefore, an important goal is to achieve a 

similar scenario in the online educational environments, although 

it is not the only one. Besides being competitive, the students 

must also be engaged in helping others and in turn receive help 

when they are having difficulties understanding something. 

 How can the professors know where exactly do the 

students have problems, so they can adapt the course 

material? 

From the professor's point of view, being aware of his 

students' progress and the difficulties they encounter in 

understanding the material is possibly the most important 

requirement. Although each student is different and has his own 

learning curve, common points can be found and an overall 

perception can be formed. The professor must be able to build a 

mental model regarding the overall performance of his students. 

By doing so, he can modify and perfect in time the content of the 

course. Also, taking into consideration the fact that the difficulty 

level of the final evaluation must be consistent with the students' 

level of understanding of the course, the professor needs to be 

aware of that level so he can make the proper adjustments. 

 Which data should be logged in order to extract 

relevant information about the students? 

 Any e-Learning environment whose goal is to integrate 

an intelligent component should be able to log the necessary data 

and extract the values of the features.  Logging the needed data is 

a prerequisite to the data analysis process. Logging too much can 

create a useless load of the server but logging not enough will 

make impossible the features extraction. 

 Features are very important in IDA because they define 

the entity that will be analyzed. Choosing the right features are 

crucial in different IDA processes. A comprehensive list of 

features (with proper data types, range values and significance) 

should be available for further analysis. 

5. CLOSING REMARKS 
On-line educational environments are here from a long enough 

time. This aspect brings in front of the scientists many 

opportunities for improving the learning process and to lower the 

distance from the classical educational environments to the online 

ones. Many research areas concur to improve the learning process 

but the most relevant are the user centered ones.  

There are 3 different research areas that concur to bring learners 

several improvements. IDA is the first one bringing data mining 

and machine learning algorithms and generate user models, 

followed by HCI, which is used to optimize the interfaces and 

create friendly interaction environments and finally the 

Educational research area is where we put in practice this work. 
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ABSTRACT 

This dissertation research focuses on assessing student behavior, 
academic emotions, and knowledge from a middle school online 
learning environment, and analyzing their potential effects on 

decisions about going to college. Using students’ longitudinal data 
ranging from their middle school, to high school, to postsecondary 
years, I leverage quantitative methodologies to investigate 
antecedents to college-going outcomes that can occur as early as 
middle school. The research first looks at whether assessments of 
learning, emotions and engagement from middle school computer-
based curriculum are predictive at all of college-going outcomes 
years later. I then investigate how these middle school factors can 

be associated with college-going interests formed in high school, 
using the same assessments during middle school, together with 
self-report measures of interests in college when they were in high 
school. My dissertation then culminates in developing an overall 
model that examines how student interests in high school can 
possibly mediate between the educational experiences students 
have during middle school technology-enhanced learning and 
their eventual college-going choices. This gives a richer picture of 

the cognitive and motivational mechanisms that students 
experience throughout varied phases in their years in school.  

Keywords 

College Choices, Academic Emotions, Behavior, Knowledge, 
Social Cognitive Career Theory, Interests 

1. Introduction 
College enrollment and completion are key steps towards career 
success for many learners. However, well before this point, many 
students effectively drop out of the pipeline towards college quite 
early. According to Social Cognitive Career Theory (SCCT) [10], 

academic and career choices are shaped throughout middle school 
and high school by environment supports and barriers, where 
higher levels of interest emerge within contexts in which the 
individual has higher self-efficacy and outcome expectations, and 
these interests lead to the development of intentions or goals for 
further exposure and engagement with the activity [10].  
Traditional studies also show that family background, financial 
resources, and prior family academic achievement have 
significant impacts on where students find themselves after high 

school. All of these factors, however, are fairly strong displays of 
disengagement. By the time these indicators are commonplace, 
students may be in such a precarious situation that many 
interventions may fail. In general, current models about successful 
access to postsecondary education may be insufficient to help 
educators identify which students are on track and which need 
further support [11]. Fine-grained assessments of student 
behaviors and academic emotions (emotions that students 

experience during learning and classroom instruction) have been 
found to influence learning outcomes [12, 13]. Hence, there is an 
argument to be made that engagement and academic emotions in 
middle school play an essential early role in the processes 
described in SCCT. In SCCT, students’ initial vocational interests 
are modified by their self-efficacy, attitudes, and goals towards 
career development (i.e. college enrollment, career interest), 

which are themselves influenced by the student’s learning and 
engagement when encountering the increasingly challenging 
content in middle school [1, 12] – as poor learning reduces self-
efficacy whereas successful learning increases self-efficacy [cf. 
2]. As such, student academic emotions, learning, and engagement 
during middle school may be indicative of their developing 
interests in career domains which may in turn influence their 
choice to attend college [6, 9]. 

For the reasons aforementioned, my research attempts to answer 
Bowers’ [5] call to identify much early, less acute signals of 
disengagement, the sort that occur when students’ engagement is 
still malleable enough for interventions to succeed.  Specifically, I 
investigate antecedents to college attendance that occur during 
middle school, using assessments of engagement and 
disengagement to better understand how these factors interact so 
that I can develop possible paths to re-engagement before students 

develop more serious academic problems. The models I create and 
the analyses I conduct involve the context of an online learning 
environment, and hence, this work provides both a new 
perspective on the efficacy of the system and an opportunity to 
explore how the system and its data can be used to predict long-
term educational outcomes – in the case of my dissertation 
research, intervention and support in keeping students on track 
towards the pathway to college.  

2. Data and Related Methodologies 
My dissertation leverages data acquired from both traditional 
research methods as well as methodologies from machine learning 
and student modeling in assessing the constructs I analyze in my 
data, which I then use in developing the outcome models I 
propose. For middle school measures, I use the ASSISTment 

system (ASSISTments) as my source for middle school 
interaction data, and assessed measures of student knowledge, 
academic emotions, and behavior by using individual models 
developed to infer them. ASSISTments is a free web-based 
tutoring system for middle school mathematics that assesses a 
student’s knowledge while assisting them in learning, providing 
teachers with detailed reports on the skills each student knows 
[14]. Interaction data from the ASSISTment system were obtained 

for a population of middle school students who used the system at 
various school years, from 2004-2005 to 2008-2009. These 
students are drawn from urban and suburban districts who used 
the ASSISTment system systematically during the year. I assessed 
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a range of constructs from interaction data in ASSISTments, 
which include student knowledge estimates, student academic 
emotions (boredom, engaged concentration, confusion), student 
disengaged behaviors (off-task, gaming the system, carelessness), 
and other information of student usage. These form the features in 

our final model of college-going outcomes. Aside from 
educational software data, I also use survey data from the same 
students who used the system in middle school, consisting of 
information about the their attitude about the subject 
(mathematics) and about the system itself. These survey data were 
acquired around the same time they used the software in middle 
school.  

For my high school measures of interest, students who used the 

system during their middle school years and who are now in high 
school, were administered with two surveys: the first is a short 
questionnaire that asked the highest level of math and science 
courses that the student completed in high school and asks the 
student what his/her educational and career plans are upon 
graduation. The second survey is the an CAPA survey, designed 
by Fred Borgen and Nancy Betz [4]. It is an online survey with 
Likert scale inputs from students that gauges their interest and 

confidence on certain domains and skills, and then assesses their 
overall self-efficacy and vocational interests using existing 
instruments.  

A subset of our student sample who were expected to be in 
postsecondary stage of education by the time of data collection 
were identified for their postsecondary education status. For their 
college enrollment information, records were requested from the 
National Student Clearinghouse, with information such as whether 

they were enrolled in a college or not, the name of the university, 
date of enrollment, and college major enlisted if available. We 
supplemented this data with college selectivity classification of 
the said postsecondary institutions, taken from the Barron’s 
College Selectivity Rating which classifies colleges into ten 
categories [7, 16], from most selective or ‘Most Competitive’ to 
‘Special’ which consist of specialty institutions such as schools of 
music, culinary schools, art schools, etc. Another source of data 
includes survey data about post-high school academic and career 

achievements that was administered to this subset of students.  

3. Preliminary Work 
In developing an overall integrated model, I initially tested the 
predictive power of the middle school factors on separate 
postsecondary outcomes. First, I applied fine-grained models of 

student knowledge, student academic emotions (boredom, 
engaged concentration, confusion, frustration) and behavior on 
middle school interaction data to understand how student learning 
and engagement during this phase of learning can predict college 
enrollment. A logistic regression model was developed and can 
distinguish a student who will enroll in college (68.6% of the 
time, an above average performance for models created from 
“discovery with models”). In particular, boredom, confusion, and 

slip/carelessness are significant predictors of college enrollment 
both by themselves and contribute to the overall model of college 
enrollment. The relationships seen between boredom and college 
enrollment, and gaming the system and college enrollment 
indicate that relatively weak indicators of disengagement are 
associated with lower probability of college enrollment. Success 
within middle school mathematics is positively associated with 
college enrollment, a finding that aligns with studies that 

conceptualize high performance as a sign of college readiness [15] 
and models that suggest that developing  aptitude predicts college 
attendance [8].  

Next, I also modeled whether students will attend a selective 
college, combining data from students who used the ASSISTment 
system with data on college enrollment, and ratings from Barron’s 
on college selectivity. These were used to model another logistic 
regression model that could distinguish between a student who 

will attend a selective college and a student who will not attend a 
selective college 76% of the time when applied to data from new 
students. This model indicated that the following factors are 
associated with lower chance of attending a selective college: 
gaming the system, boredom, confusion, frustration, less engaged 
concentration, lower knowledge, and carelessness. 

I finally looked at college major classification based on middle 
school student learning and engagement, specifically whether the 

major belonged to a STEM (Science, Technology, Engineering, 
Mathematics) or Non-STEM category. The logistic regression 
model developed could distinguish between a student who took a 
STEM college major and a student who took an non-STEM 
college major 66% of the time when applied to data from new 
students This model indicated that the following factors are 
associated with lower chance of enrolling in a STEM college 
major: gaming the system, lower knowledge, and carelessness. 

4. Proposed Work 
The initial individual models above support existing theories 
about indicators of successful entry to postsecondary education 
(academic achievement, grades). It sheds light on behavioral 
factors a student may experience in classrooms – which are more 

frequently and in many ways more actionable than the behaviors 
which result in disciplinary referrals – and how they can be 
predictive and be associated with long-term student outcomes.  

With middle school assessments, I investigate at how student 
learning, academic emotions, and behavior as early as middle 
school may contribute as causal factors to a particular 
postsecondary decision (a in Figure 1 below) – an individual 
choice that is composed of answering the following questions: 1) 
Does the student decide to attend college?; 2) Does the student 

attend a selective college?; 3) What type of major does the student 
enroll in? I employ multivariate analysis on this part of my 
research work, for a richer and more realistic view of our 
postsecondary outcome, which is more than just one dependent 
variable of interest. Also this type of analysis allows us for 
causality to be deduced, as well as the inherent or underlying 
structure that can describe the data in a simpler fashion – in terms 
of latent variables. I also investigate interaction of features and 

how it affects our multivariate model via logistic regression, 
factor analysis and other appropriate statistical and machine 
learning algorithms that can be employed in our data to further 
understand the research problem. 

In this phase of my dissertation research, I am starting to test the 
hypothesis of the possible existence of a mediating or indirect 
effect of high school college (and career) interests in predicting 
the multivariate postsecondary outcome based on middle school 

factors. I will establish this by looking at the causal influence of 
middle school factors to high school data (b in Figure 1 below). 
By integrating student data of their previous middle school 
interaction data, interests during their high school years, up to 
their postsecondary information, I will look at the possible 
causality of middle school factors to high school factors, as well 
as causality of high school factors to their postsecondary 
information. Like in previous analysis, I employ appropriate 

statistical and machine learning algorithms in trying to establish 
the indirect effect of high school factors (for our overall mediated 
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model later on). First, I look at how the middle school measures of 
student learning, engagement and academic emotions are 
predictive of the high school questionnaire responses, through 
multinomial logistic or decision tree algorithms. Then, I explore 
the association between the high school questionnaire responses 

with the multivariate postsecondary outcomes using structural 
equation modeling (factor analysis, regression, or path analysis).  

Finally, by integrating emergent relationships and causal effects 
of middle school and high school factors on postsecondary 
outcomes conducted in the previous analyses, I will develop a 
multivariate predictive mediated model (c in Figure 1 below). 
Using student data that have complete information from middle 
school, to high school, to postsecondary years, I conduct causal 

modeling by fitting a mediational pathway model and evaluate 
how each of the variables influence one another over time [3]. In 
particular, using structural equation modeling (SEM), I develop a 
pathway starting from the middle school factors to the 
postsecondary outcomes, with high school factors as intervening 
or mediating factors. With significant zero-order correlations 
between the constructs (middle school factors, high school factors, 
postsecondary outcomes) established from the previous analyses, I 

employ a multiple regression analysis predicting postsecondary 
outcomes from both middle school and high school factors. It is 
expected that any partial effect (indirect effect) of high school 
factors (controlling for middle school factors) to be significant, 
decreasing the direct effect of middle school factors on 
postsecondary outcomes. Other SEM variants, such as factor 
analysis and path analysis are expected to be used as well for this 
analysis phase, to test the mediation model. This causal modeling 

has been used in educational research modeling motivational 
phenomena over time [3]. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Modeling Postsecondary Outcomes from Middle 

School and High School factors: (a) Middle school factors 

predicting postsecondary outcomes; (b) Middle school factors 

predicting high school factors, High school factors predicting 

postsecondary outcomes; (c) Overall mediation model. 

 

5. References 
[1] Baker, R., Walonoski, J., Heffernan, N., Roll, I., Corbett, A., 

and Koedinger, K. 2008. Why students engage in “gaming 
the system” behavior in interactive learning environments. 
Journal of Interactive Learning Research, 19, 2, 185-224. 

[2] Bandura, A. 1997. Self efficacy: The exercise of control. New 
York,. NY: W. H. Freeman & Company. 

[3] Blackwell, L., Trzesniewski, K., and Dweck, C. 2007. 
Implicit Theories of Intelligence Predict Achievement Across 
an Adolescent Transition: A Longitudinal Study and an 
Intervention. Child Development, 78, 1, 246-263. 

[4] Borgen, F. and Betz, N. 2008. Career self-efficacy and 
personality: Linking the Career Confidence Inventory and 
the Healthy Personality Inventory. Journal of Career 
Assessment, 16, 22-43. 

[5] Bowers, A. J. 2010. Grades and graduation: A longitudinal 
risk perspective to identify student dropouts. The Journal of 
Educational Research, 103, 3, 191-207.  

[6] Chen, X. 2009. Students Who Study Science, Technology, 
Engineering, and Mathematics (STEM) in Postsecondary 

Education. Stats in Brief. NCES 2009-161. National Center 
for Education Statistics.  

[7] College Division of Barron's Education Series (Ed.). 2012. 

Barron's profiles of American colleges (30th ed.). 
Hauppauge, NY: Barron's Educational Series, Inc. 

[8] Eccles, J. S., Vida, M. N., and Barber, B. 2004. The relation 
of early adolescents’ college plans and both academic ability 
and task-value beliefs to subsequent college enrollment. 
Journal of Early Adolescence, 24, 63-77. 

[9] Griffith, A. L. 2010. Persistence of women and minorities in 
STEM field majors: Is it the school that matters? Economics 
of Education Review, 29(6), 911-922. 

[10] Lent, R. W., Brown, S. D., and Hackett, G. 1994. Toward a 
unifying social cognitive theory of career and academic 
interest, choice and performance. Journal of Vocational 
Behavior, 45, 1, 79–122. 

[11] Lent, R. W., Lopez Jr, A. M., Lopez, F. G., and Sheu, H. B. 
2008. Social cognitive career theory and the prediction of 
interests and choice goals in the computing disciplines. 
Journal of Vocational Behavior, 73, 1, 52-62. 

[12] Mcquiggan, S. W., Mott, B. W., and Lester, J. C. 2008. 
Modeling self-efficacy in intelligent tutoring systems: An 
inductive approach. User modeling and user-adapted 
interaction, 18, 81-123.  

[13] Pekrun, R., Goetz, T., Daniels, L. M., Stupnisky, R. H., and 
Perry, R. P. 2010. Boredom in achievement settings: 
Exploring control–value antecedents and performance 

outcomes of a neglected emotion. Journal of Educational 
Psychology, 102, 3, 531.  

[14] Razzaq, L., Feng, M., Nuzzo-Jones, G., Heffernan, N. T., 

Koedinger, K. R., Junker, B., and Rasmussen, K. P. 2005. 
The Assistment project: Blending assessment and assisting. 
In Proceedings of the 12th Annual Conference on Artificial 
Intelligence in Education, 555-562.  

[15] Roderick, M., Nagaoka, J., and Coca, V. 2009. College 
readiness for all: The challenge for urban high schools. The 
Future of Children, 19, 1, 185-210. 

[16] Schmidt, W., Burroughs, N., Cogan, L., and Houang, R. 
2011. Are College Rankings an Indicator of Quality 
Education? In Forum on Public Policy Online, 2011, 3. 
Oxford Round Table.  

Proceedings of the 8th International Conference on Educational Data Mining 658



Who Do You Think I Am?  
Modeling Individual Differences for  

More Adaptive and Effective Instruction 
 

Laura K. Allen 
Arizona State University 

Tempe, AZ, 85283 
LauraKAllen@asu.edu 

 

 
 
 

ABSTRACT 
The purpose of intelligent tutoring systems is to provide students 
with personalized instruction and feedback. The focus of these 
systems typically rests in the adaptability of the feedback 
provided to students, which relies on automated assessments of 
performance in the system. A large focus of my previous work has 
been to determine how natural language processing (NLP)_ 
techniques can be used to model individual differences based on 
students’ natural language input. My proposed research will build 
on this work by using NLP techniques to develop stealth 
assessments of students’ individual differences and to provide 
more fine-grained information about the cognitive processes in 
which these students are engaged throughout the learning task. 
Ultimately, my aim will be to combine this linguistic data with 
on-line system data in order to develop more robust student 
models within ITSs for ill-defined domains. 
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1. INTRODUCTION 
The purpose of intelligent tutoring systems (ITSs) is to provide 
students with personalized instruction and feedback based on their 
performance, as well as other relevant individual characteristics 
[1]. The focus of these systems typically rests in the adaptability 
of the feedback provided to student users, which relies on 
automated assessments of students’ performance in the system. 
Despite this adaptive feedback, however, many ITSs lack the 
ability to provide adaptive instruction and higher-level feedback, 
particularly when providing tutoring for ill-defined domains. This 
shortcoming is largely due to the increased difficulties associated 
with accurately and reliably assessing student characteristics and 
performance when the learning tasks are not “clear cut.” In 
mathematics tutors, for instance, it can be relatively 
straightforward to determine when a student is struggling in 

specific areas; thus, these systems can provide adaptive 
instruction and feedback accordingly. For ITSs focused on ill-
defined domains (such as writing and reading), on the other hand, 
this process can be more complicated. In particular, students’ 
open-ended and natural language responses to these systems 
present unique assessment challenges. Rather than identifying a 
set of “correct” answers, the system must identify and analyze 
characteristics related to students’ responses in order to determine 
the quality of their performance as well as the areas in which they 
are struggling.  

Natural language processing (NLP) techniques have been 
proposed as a means to target this assessment problem in adaptive 
systems. In particular, NLP provides detailed information about 
the characteristics of students’ natural language responses within 
these systems [2] and subsequently helps to model students’ 
particular areas of strengths and weaknesses [3]. NLP has begun 
to be incorporated within ITSs more frequently [4-5] because it 
allows systems to automatically evaluate the quality and content 
of students’ responses [6-7]. Additionally, these assessments 
afford systems the opportunity to model students’ learning 
throughout training and subsequently improve models of their 
performance [8]. Previous research suggests that these NLP 
techniques can increase the efficacy of computer-based learning 
systems. In particular, NLP helps to promote greater interactivity 
in the system and, consequently, leads to increased learning gains 
when compared to non-interactive training tasks (e.g., reading 
books, watching videos, listening to lectures [5, 9].  

In my previous research, my colleagues and I have proposed that 
NLP techniques can be used to determine much more than simply 
the quality of a particular response in the system. Specifically, 
NLP can serve as a powerful methodology for modeling 
individual differences among students, as well as for examining 
the specific processes in which these students are engaging [3, 8]. 
In this overview, I suggest that, when combined with on-line 
interaction data, these NLP techniques can provide critical 
information that can be used to enhance the adaptability of ITSs, 
particular those focused on ill-defined domains. Thus, the aim of 
my research is to investigate how the linguistic characteristics of 
students’ language can provide a window into their cognitive and 
affective processes. This information will then be combined with 
system data to promote more personalized learning experiences 
for the student users in these systems.  

1.1 Writing Pal 
The Writing Pal (W-Pal) is a tutoring system that was designed 
for the purpose of increasing students’ writing proficiency through 
explicit strategy instruction, deliberate practice, and automated 
feedback [10]. In the W-Pal system, students are provided explicit 
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strategy instruction and deliberate practice throughout eight 
instructional modules, which contain strategy lesson videos and 
educational mini-games. The instruction in these modules covers 
specific topics in the three main phases of the writing process—
prewriting (Freewriting, Planning), drafting (Introduction 
Building, Body Building, Conclusion Building), and revising 
(Paraphrasing, Cohesion Building, Revising).  

Animated pedagogical agents narrate the W-Pal lesson videos by 
providing explicit descriptions of the strategies and examples of 
how these strategies can be used while writing (see Figure 1 for 
screenshots). The content covered in these videos can be practiced 
in one or more of the mini-games contained within each module. 
The purpose of these mini-games is to offer students the 
opportunity to practice the individual writing strategies without 
having to compose an entire essay. 

 

Figure 1. Screenshots of the W-Pal Lesson Videos 

W-Pal contains an AWE component in addition to the eight 
instructional modules, where students can practice holistic essay 
writing. This component of W-Pal contains a word processor 
where students can compose essays and automatically receive 
summative (i.e., holistic scores) and formative (i.e., actionable, 
strategy-based) feedback on these essays. The summative 
feedback in W-Pal is calculated using the W-Pal assessment 
algorithm. This algorithm employs linguistic indices from 
multiple NLP tools to assign essays a score from 1 to 6 (for more 
information, see 11). The purpose of the formative feedback is to 
teach students about high-quality writing and to provide them 
with actionable strategies for improving their essays. To deliver 
this feedback, W-Pal first identifies weaknesses in students’ 
essays (e.g., essays are too short; essays are unorganized). It then 
provides students with feedback messages that designate specific 
strategies that can help them to work on the problems. Previous 
studies have demonstrated that W-Pal is effective at promoting 
increases in students’ essay scores over the course of multiple 
training sessions [6; 12].  

1.2 Current Work 
The focus of my doctoral research will be on the use of NLP 
techniques to develop stealth assessments of students’ individual 
differences and to provide more fine-grained information about 
the cognitive processes in which these students are engaged 
throughout the learning task. Ultimately, the aim of this research 
will be to combine this linguistic data with on-line system data in 
order to develop more robust student models within ITSs for ill-
defined domains, such as W-Pal.  

The goal of this specific research project will be to use the 
linguistic properties of students’ essays to model individual 
differences related to writing performance (e.g., vocabulary 
knowledge). This data will then be combined with on-line process 
data, such as students’ keystrokes while writing, to provide a more 
complete understanding of their writing processes. Ultimately, 
this project will aim to determine whether there are specific 
writing processes (as identified by the characteristics of the 
essays and students’ on-line processes) that are more or less 
predictive of successful writing and revision. My final goal will 
then be to use this information to provide more adaptable 
instruction and formative feedback to students.  

2. Proposed Contributions of Current Work 
This proposed research project will contribute to both the W-Pal 
system, as well as the EDM community more generally. 
Regarding the W-Pal system, the development of stealth 
assessments and online student models will significantly enhance 
the adaptability and, theoretically, the efficacy of the system. The 
current version of W-Pal does not provide individualized 
instruction to students and only adapts the feedback based on 
single (i.e., isolated) essays that they generate. Thus, the system 
does not consider students’ previous interactions with the system 
when providing feedback, nor the individual characteristics of 
these student users. Therefore, the proposed work will help to 
provide a much more robust student model, which should help W-
Pal provide more personalized instruction and feedback.  

More generally, the results of this project (and future projects) 
will contribute to the EDM community, as well as to research with 
natural language data more broadly. Language is pervasive and, 
here, we propose that it can be used to provide unique information 
about individuals’ behaviors, cognitive processes, and affect. By 
investigating the specific characteristics of students’ natural 
language data, we can glean important insights about their 
learning processes, beyond information that can be extracted from 
system log data. By combining NLP with other forms of data, 
researchers will gain a more complete picture of the students 
using the system, which should ultimately lead to more effective 
instruction.  

3. Previous Work 
A large focus of my previous work has been to determine how 
NLP techniques can be used to model individual differences based 
on students’ natural language input. Importantly, this input has 
ranged from more structured language (such as essays) to 
naturalistic language responses (such as self-explanations). As an 
example, in one study, my colleagues and I investigated whether 
we could leverage NLP tools to develop models of students’ 
comprehension ability based on the linguistic properties of their 
self-explanations [3]. Students (n = 126) interacted with a reading 
comprehension tutor where they self-explained target sentences 
from science texts. Coh-Metrix [13] was then used to calculate the 
linguistic properties of these aggregated self-explanations. The 
results of this study indicated that the linguistic indices were 
predictive of students’ reading comprehension ability, over and 
above the current system algorithms (i.e., the self-explanation 
scores). These results are important, because they suggest that 
NLP techniques can inform stealth assessments and help to 
improve student models within ITSs.  

In further research projects, we have begun to investigate how 
these linguistic characteristics change across time, and how these 
changes relate to individual differences among the students [14]. 

Proceedings of the 8th International Conference on Educational Data Mining 660



In particular, we proposed that the flexibility of students’ writing 
style could provide important information about their writing 
proficiency. In one study, we investigated college students’ (n = 
45) flexibility in their use of cohesion across 16 essays and 
whether this flexibility related to their writing proficiency. The 
results suggested that more proficient writers were, indeed, more 
flexible in their use of cohesion across different writing prompts 
and that this cohesive flexibility was most strongly related to the 
unity, or coherence, of students’ writing. The results of this study 
indicated that students might differentially employ specific 
linguistic devices in different situations in order to achieve 
coherence among their ideas. Overall, the results of these (and 
many other) studies provide preliminary evidence that NLP 
techniques can be used to provide unique information about 
students’ individual differences and learning processes within 
ITSs.   

4. Advice Sought  
I am seeking advice for my proposed research regarding two 
primary questions. First, what analytical methods should be used 
to most effectively model individual differences based on linguistic 
data? In previous research, my colleagues and I have relied 
heavily on stepwise regression and discriminant function analysis 
techniques to model students’ essay scores and individual 
differences. However, this technique can pose particular problems 
and is not always the most effective regarding large-scale data sets 
containing many variables, such as these. Thus, I would largely 
benefit from expert advice regarding the specific modeling 
techniques that can help to improve this research.  

My second question relates to: what on-line process data can be 
most effectively tied with this linguistic data – and how? In 
previous studies, we have heavily relied on the linguistic 
properties of students’ responses alone to model and understand 
the learning process. However, these models could be greatly 
strengthened through the addition of on-line processing data, such 
as keystrokes or eye tracking. We have begun to implement 
keystroke logging into the W-Pal system to begin to investigate 
this question. However, I would greatly benefit from expert 
advice regarding the best methods for combining this data into a 
reliable and accurate student model.   
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1. ABSTRACT 
 

Intelligent tutoring systems have been developed to help students 
learn independently. However, students who are poor self-
regulated learners often struggle to use these systems because they 
lack the skills necessary to learn independently. The field of 
psychology has extensively studied self-regulated learning and 
can provide strategies to improve learning, however few of these 
include the use of technology. The present proposal reviews three 
elements of self-regulated learning (motivational beliefs, help-
seeking behavior, and meta-cognitive self-monitoring) that are 
essential to intelligent tutoring systems. Future research is 
suggested, which address each element in order to develop self-
regulated learning strategies in students while they are engaged in 
learning mathematics within an intelligent tutoring system.  

2. KEYWORDS 
Intelligent tutoring systems, self-regulated learning, meta-
cognition 

3. DEFINING THE PROBLEM 
 
Intelligent tutoring systems (ITS) are designed to provide 
independent learning opportunities for students. Learning occurs 
through hints, tutoring, scaffolding and correctness feedback. A 
great body of research exists surrounding types and timing of 
feedback [6] and tutoring that have been found to improve student 
outcomes. As a classroom teacher I have used several different 
ITS with students to help them learn mathematics. Over the years, 
I have seen many students benefit from these systems. However, I 
have also witnessed students struggling to use the systems and 
who fail to learn, despite all of the assistance provided. 
Addressing this failure serves as the basis of my dissertation. For 
an ITS to achieve maximum results, the students using the system 
must be good self-regulated learners. My proposed research 
attempts to use an ITS to develop self-regulating strategies, while 
students are learning the desired content.  
Zimmerman and Campillo [12], suggest that self-regulated 
learning is a three-phase process. During the Forethought Phase, 
students engage in a task analysis, which includes goal setting and 
strategic planning. Self-motivational beliefs, including self-
efficacy [11, 4] outcome expectations, task value/interest [10], 
and goal orientation also play a significant role in this phase as 
they have been found to positively affect student learning. During 
the Performance Phase, students demonstrate self-control by 
employing various task strategies and help-seeking behaviors. 
Self-observation, which includes meta-cognitive self-monitoring, 

is also crucial. During the final phase, Self-Reflection, students 
engage in self-judgment and self-reaction. 

2. PROPOSED SOLUTION 
To help develop self-regulated learners, these components must 
be explicitly taught. However, some aspects are seemingly more 
relevant than others when interacting with an ITS. Specifically 
motivational beliefs, help-seeking behavior, and meta-cognitive 
self-monitoring can all be addressed within the structures of 
intelligent tutoring systems. The following sections discuss each 
of these components by presenting relevant literature, sharing 
results of my previously published studies, and proposing future 
research components of my dissertation.  
 

2.1 Motivational Beliefs 

One aspect of the first phase of self-regulated learning is 
motivation. Students who are strong self-regulated learners have 
high self-efficacy. Schunk [11] defines self-efficacy as “an 
individual’s judgment of his or her capabilities to perform given 
actions.” A student’s belief that they are capable of learning can 
be influenced by a growth mindset [4]. Some of my earlier 
research, using teacher-created motivational videos, attempted to 
create a growth mindset in students while they were completing 
math homework inside of an intelligent tutoring system [7]. While 
the minimal intervention failed to show changes in student self-
reports of mindset, there was a significant increase in the 
perception of task value and homework completion rates as a 
result of a video inspired by [10]. In addition to improving self-
efficacy, increasing task value/interest is important to developing 
self-regulated learners. The protocol employed in my initial study 
is promising and a more sophisticated intervention will be 
explored to further increase motivation. 
 

2.2 Help Seeking Behaviors 
Intelligent tutoring systems provide many different structures to 
support student learning. One such structure that I have explored 
is correctness-only feedback. I found that this simple support 
provided by an ITS during a homework assignment was found to 
improve student learning significantly compared to traditional 
paper and pencil homework that did not provide immediate 
feedback [8]. Yet research has shown that many students do not 
effectively take advantage of these features. Aleven et al. [1] 
explores ineffective help use in interactive learning environments 
and suggests that there are system-related factors, student-related 
factors and interactions between these factors that impact help-
seeking behaviors. In one of my recent studies, I found that there 
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are students who, despite access to the same instructional 
supports, do not successfully take advantage of them and therefore 
do not learn [9]. This has resulted in a phenomenon called wheel 
spinning [3], where students persist without making progress 
towards learning. I hypothesize that wheel spinning is a result of 
ineffective help-seeking behaviors. Therefore, I propose a study 
that would provide direct interventions to teach students the 
necessary help-seeking behaviors to become self-regulated 
learners.   
 

2.3 Meta-Cognitive Self-Monitoring 
     Elements of meta-cognition, are evident in all three phases of 
self-regulated learning. For example, goal setting is prominent in 
phase one. Other elements, like self-monitoring, are evident in 
multiple phases. Self-monitoring involves students becoming 
aware of their performance and judging their knowledge. This is 
sometimes referred to as metacognitive knowledge monitoring 
[5]. In phase two, while students are participating in a learning 
task, they must monitor what they are learning. Students who are 
strong self-regulated learners will seek feedback to easily monitor 
their progress. I surveyed my students to better understand their 
perception of feedback. High performing students claimed that the 
immediate feedback provided by an ITS caused frustration, but 
was also beneficial to their learning [8]. They were able to 
identify their mistakes and learn from them. To help all students 
recognize the importance of monitoring their learning, I propose a 
study where students are provided feedback along with progress 
monitoring to show the benefits.  
      Self-monitoring continues into the third phase of self-
regulated learning. During this reflection stage, students assess 
their success or failure. Strong self-regulated learners may 
challenge themselves in some way to confirm their success. A 
willingness to seek out challenges ties back into the growth 
mindset that is addressed in phase one. Students who believe that 
intelligence is fixed will often shy away from challenges for fear 
of failure, whereas students with a growth mindset view 
challenges as opportunities to learn more [4]. Therefore, to 
encourage all students to seek out challenges as a method to self-
monitor, I propose a study where growth mindset messages are 
embedded in ITS and opportunities for students to choose 
challenging problems are provided.  

 

3. CONTRIBUTION 
Intelligent tutoring systems rely on independent learning practices 
to effectively teach students. For example, students must use 
available hints and tutoring to navigate new material. However 
not all students successfully learn when using an ITS.  Some early 
research suggests that these students are those who struggle with 
self-regulated learning. The field of psychology has studied self-
regulated learning for more than a decade, resulting in many ideas 
that can improve instruction. Some ITS have incorporated features 
to help students who lack self-regulated learning strategies, like 

automatically detecting when a student is frustrated [2] and 
providing additional assistance when a student is failing. 
However, little research has explored how technology can actually 
promote self-regulated learning. By integrating the capabilities of 
intelligent tutoring systems with the vast knowledge of self-
regulated learning, the proposed research seeks to teach students 
how learn effectively. By addressing specific aspects of self-
regulated learning, ITS can actually teach students how to learn 
while teaching them content.   

This paper is part of my dissertation proposal and is being 
submitted as a doctoral consortium paper to the Artificial 
Intelligence In Education Conference (2015) and the Educational 
Data Mining Conference (2015).  
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ABSTRACT
Data-driven methods have been a successful approach to
generating hints for programming problems. However, the
majority of previous studies are focused on procedural hints
that aim at moving students to the next closest state to the
solution. In this paper, I propose a data-driven method to
generate remedy hints for BOTS, a game that teaches pro-
gramming through a block-moving puzzle. Remedy hints
aim to help students out of dead-end states, which are states
in the problem from where no student has ever derived a so-
lution. To address this, my proposed work includes design-
ing debugging activities and generating remedy hints from
students’ solutions to debugging activities.

1. INTRODUCTION
Programming problems are characterized by huge and ex-
panding solution spaces, which cannot be covered by man-
ually designed hints. Previous studies have shown fruitful
results in applying data-driven approaches to generate hints
for programming problems. Barnes and Stamper [1] de-
signed the Hint Factory, which gives student feedback using
previous students’ data. The Hint Factory uses a data struc-
ture called an interaction network as defined by Eagle et al.
[3], in which nodes represent the program states and edges
represent the transitions between states. Peddycord et al.
[7] applied the Hint Factory in BOTS, a game that teaches
programing through block-moving puzzles. This study intro-
duced worldstates, which represent the output of a program,
and compared them to codestates, snapshots of the source
code. This study found that using interaction networks
of worldstates can generate hints for 80% of programming
states. Rivers and Koedinger [9] applied the Hint Factory in
a solution space where snapshots of students’ code (program
state) are represented as trees, and trees are matched when
the programs they represent are within a threshold of simi-
larity. Piech et al. [8] applied data-driven approach to pro-
grams from a MOOC. This work compared the methods in
Rivers and Koedinger’s[9] and Barnes’s[1] studies, together
with algorithms that predict the desirable moving direction

from a program state and generate hints to push students
toward the desirable direction.

However, previous studies mainly focused on generating pro-
cedural hints that direct students to the next program state.
Data from previous students’ work may be insufficient to
provide a next-step hint from a ”dead-end state”. Second,
even if a next-step hint could be generated, simply telling
students where to move next is not enough. An example of
this situation is shown in Figure 2 - if a student follows a
path that leads to a dead-end state (marked in blue), then
the only hint we are able to offer is to delete all work since
the last branching point. This may be a bad advice; just
because we have not seen a student solve the problem this
way does not mean that the solution is incorrect. Even with
a correct solution down this path, we are unlikely to see it
since most students solved the problem in a more conven-
tional way, either because they have a better understanding
of the problem or because our hints guide them towards
the more conventional solution. Thus, students in dead-end
states, who may actually have a correct solution in mind,
are unable to receive helpful hints.

In this paper, I propose a data-driven method to generate
remedy hints in Bots. Remedy hints are hints that help
students in dead-end states by telling them why their current
state is wrong, and where to move from their current state.
To address the problem of insufficient data, I will collect data
from debugging activities in BOTS, where students work out
solutions from dead-end states and provide explanations. I
hypothesize that this study will not only help students who
are wheel-spinning on dead-end states, but also the students
who are providing debugging solutions.

2. RESEARCH METHODOLOGY
2.1 Designing Debugging Activities
Debugging activities will be designed as bonus challenges
for students who successfully complete a level. The content
of debugging activities will be the dead-end states from the
problem they completed. Given a dead-end state, a student
will first be asked to explain the error in the program, and
why it led to the dead-end state. The student will then be
asked to explain his/her debugging strategy. Lastly, the stu-
dent will apply his/her debugging strategy and fix the pro-
gram from its current state to a goal state. In this process,
both the student-written explanations and the transitions
of program states will be used as hints. A more detailed
explanation of these are explained in the following section.
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Figure 1: Interaction Network in BOTS.Green is the
solution state;orange is an error state (e.g. the robot
runs off the stage);blue are the dead-end states; yel-
low represents the rest states

To encourage students to participate in debugging activities,
I will introduce a voting system. Completing debugging ac-
tivities will earn points or advantages from the game. Cur-
rently, BOTS applies a rewarding system for students who
solve the puzzle with fewer lines of code, as shown in Figure
2. On the left is the optimal number of lines of code needed
to solve the puzzle. On the right is the current player’s
record for the fewest lines of code. Players earn 4 stars for
reaching the optimal solution, 3 stars for being within a cer-
tain threshold value, down to one star for merely completing
the puzzle. Additionally, clicking the optimal solution shows
the name of the first user to reach the optimal solution.

I will design a similar leaderboard to reward students who
used fewer steps when debugging for a dead-end state. En-
couraging students to use fewer steps will reduce the size
of debugging solutions, and the likelihood that a student
will delete previous work and start from scratch. Moreover,
students will receive rewards for writing good quality expla-
nations on states and debugging strategies. The quality will
be measured by a voting mechanism. Students who received
a student-written explanation will be able to vote for the
hint as “helpful.” The more votes an explanation receives,
the more points its author will get. Students with the most
points will have their names appear in a leaderboard.

2.2 Construct Hint from Debugging Work
Completing a debugging problem is defined as successfully
moving from the current state to the final goal state. The
debugging process will be treated as a self-contained problem
with its own local interaction network. When completed,
this local interaction network will be added to the global
interaction network for the problem. With a more complete

Figure 2: BOTS rewarding system

Figure 3: Two generated hints for a simple puzzle.
The blue is the robot. The ’X’ is a goal. Shaded
boxes are boxes placed on goal spot. Not shaded
boxes are not on goal spot.

global interaction network, Hint Factory [1] can be applied
to generate hints for previously dead-end states.

Student-written explanations will be presented together with
hints generated by the Hint Factory. An example hint from
the current BOTS system is shown in Fig 3. Before present-
ing the hints from the Hint Factory, a student in dead-end
state will see a student-written explanation on where and
why their current program is wrong. This will give students
a chance to reflect on their own program. Then, the stu-
dent can request to see a student-written explanation of the
debugging plan for the current state. This will enable the
student to solve the problem on their own following a de-
bugging plan, instead of blindly following procedural hints.

When multiple debugging approaches are available for a
state, I will experiment with selecting the best debugging
solution to generate hints. Ideally, I would select a debug-
ging approach with the shortest solution path. However,
there may be situations where students debugged by start-
ing over from the beginning, which may or may not be the
best solution. One approach is to evaluate the path that
leads toward the current state. Assume there is a failure
state in the student’s solution; the earlier this failure state
occurs in the path, the more likely the solution is wrong
from the start and back-to-start is a good solution.

When multiple student-written explanations are available
for a debugging solution, I will start by randomly choosing
one explanation. As the voting process goes, I will filter out
the explanations with significantly lower ’helpful’ votes.

3. EVALUATION
My evaluation will focus on the below research questions:

- What percentage of students will participate in the debug-
ging activities, and how many write explanations? Why do
students participate or not?
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- What is the relationship between students’ involvement in
debugging and their programming performance? Will stu-
dents who complete problems with shorter solutions be more
involved in debugging?

- Will writing or reading student-written explanations and
debugging strategies help learning?

- In the global interaction network, what percentage of the
dead-end program states receive hints from student debug-
ging solutions?

Previous BOTS participants are students from after-school
programming education activities. In my experiment, I will
randomly recruit the same type of students. These students
will be separated into a control group where students will
use the traditional BOTS system, an experimental group A
where students will be given the option to do debugging chal-
lenges, and an experimental group B where students must
do debugging challenges after completing a level.

To answer the first research question, students from the two
experimental groups will do a post survey on their opin-
ions about debugging activities and hints generated from
student-written explanations. For experimental group A, I
will add survey questions on why students chose to partic-
ipate or not participate in debugging activities. To answer
the second question, students’ interaction and compilation
data while playing BOTS will be recorded. These data will
be used to measure the relationship between involvement in
the debugging activities and programming performance. To
answer the third research question, students from all groups
will do pre and post-tests on basic programming and debug-
ging concepts that are related to BOTS content. Learning
gains will be measured as the difference between pre and
post-test. To answer the fourth question, the program state
space coverage will be compared between the three groups.

4. PROPOSED CONTRIBUTION
My work will generate a new type of hint that may lead to
different pedagogical results than the procedural hint, espe-
cially for students in dead-end states. My work will demon-
strate the feasibility of collecting data from peer students’
debugging processes, and generating helpful hints.

My work will design a feature that supports both program-
ming and debugging activities in an educational game. This
design will have several pedagogical benefits. First, Kin-
nunen and Simon’s[6] research have shown that novice pro-
grammers experienced a range of negative emotions after
errors. Practicing debugging will help novice programmers
proceed after errors, and enjoy programming experiences.
Second, students will make self-explanations on the observed
flaw and debugging strategy, and decades of research such as
Johnson and Mayer’s[5], and Chi et al.[2] have shown that
self-explanation is extremely beneficial to learning. Third,
students in dead-end states will not only receive help, but
also learn what peer students think given the same situation.

5. ADVICE SOUGHT
Johnson and Mayers[5], and Hsu et al. studies[4] have shown
that merely adding self-explanation features did not help
learning, but students’ engagement in self-explaining did.

Therefore, I want to seek advice on the design of debugging
activities that engage students in debugging and writing ex-
planations, and produce quality work. I also want to seek
advice on the evaluation. Given the previous question, how
should I measure the level of engagement in debugging and
self-explaining?

Moreover, introducing debugging challenges as extra activ-
ities will affect other measurements. For example, students
who spend a significant amount of time in debugging may
complete less problems given the time constraint, and ex-
haust earlier. How should I address this problem and mea-
sure students’ performance fairly? Moreover, how to design
pre and post-tests to measure learning gains from debug-
ging process? Lastly, what are the potentials, benefits, and
risks to expand this work into programming problems using
mainstream programming languages?
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ABSTRACT 
My research is rooted in improving K-12 educational practice 
using motivational facets made possible through adaptive tutoring 
systems. In an attempt to isolate best practices within the science 
of learning, I conduct randomized controlled trials within 
ASSISTments, an online adaptive tutoring system that provides 
assistance and assessment to students around the world. My work 
also incorporates big data analytics through the establishment of 
data driven learning models that promote the use of finite 
assessment to optimize student modeling and enhance user 
motivation. This paper highlights a turning point in my research 
as I transition into PhD candidacy. My contributions thus far and 
my research goals are discussed, with consult sought on how to 
best meld the realms of my work moving forward. An iteration of 
this work has also been published as a Doctoral Consortium at 
AIED 2015 [4]. 
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1. RESEARCH FOCUS 
1.1 Adaptive Tutoring: ASSISTments 
The U.S. Department of Education’s National Educational 
Technology Plan supported the idea that technology will play a 
key role in delivering personalized educational interventions [14]. 
Yet there remains a severe lack of research regarding the 
effectiveness of online learning systems for K-12 education [15]. 
Adaptive tutoring systems offer interactive learning environments 
that allow students to excel while providing teachers a unique 
approach to classroom organization and data-driven lesson plans.  
Before the development of these adaptive platforms, research 
within classrooms was costly and generally required a 
longitudinal approach. As such, much of the evidence that 
supports K-12 educational practice is generalized from studies 
conducted by psychologists in laboratory settings with college 
undergraduates.  

My research acts on this deficit, by conducting controlled trials 

using student level randomization within ASSISTments, an online 
adaptive tutoring system, to isolate best practices for learning 
outcomes while enriching the user experience. ASSISTments, 
commonly used for both classwork and homework, presents 
students with immediate feedback and a variety of rich tutorial 
strategies. The platform is also a powerful assessment tool, 
providing teachers with a variety of student and class reports that 
pinpoint where students are struggling and enhance classroom 
techniques using real time data. Further, the platform is unique in 
that it allows educational researchers to design and implement 
content-based experiments without extensive understanding of  
computer programming, serving as a shared collaborative tool for 
the advancement of the science of learning [3].  

1.2 Motivational Trinity 
Essentially, my work seeks to enhance student motivation and 
performance by enriching content through optimized feedback 
delivery, exploring opportunities to make students shareholders in 
the learning process, and attempting to boost motivation and 
proper system usage through improved assessment techniques. 

1.2.1 Feedback Mediums 
Until recently, virtually all feedback within the ASSISTments 
tutoring platform was provided using text, typically with font 
color or typeset signifying important variables. However, adaptive 
tutoring systems offer the opportunity to utilize a variety of 
hypermedia elements, as outlined by Mayer’s multimedia 
principles for the optimal design of e-Learning environments [1].  
These twelve principles, driven by cognitive theory, promote 
active learning while reducing cognitive load and accounting for 
the average user’s working memory [1]. Educational technologies 
that employ video tend to do so in a manner that resembles 
lectures rather than feedback (i.e., Khan Academy). Thus, the 
introduction of matched content video feedback to the 
ASSISTments platform through brief 15-30 second YouTube 
recordings offered a novel approach to investigating hypermedia 
within an adaptive setting. 

1.2.2 Student Choice 
While platforms like ASSISTments offer a variety of features, few 
make students shareholders in the learning process. Despite the 
fact that users can endlessly customize their experiences with 
commercial products, student preference is not a key element in 
the realm of education. Choice is an intrinsically motivating force 
[11] that has the potential to boost subjective control, or a 
student’s perception of their causal influence over their learning 
outcomes [12]. Feelings of control are balanced by appraisals of 
subjective value, or a student’s perceived importance of her 
learning outcome. By providing the student with choices at the 
start of her assignment, it may be possible to enhance 
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expectancies regarding her performance and thereby enhance 
achievement emotions such as motivation [12]. Considering the 
control-value theory within the realm of an adaptive tutoring 
system for mathematics content may help to explain and 
ameliorate female dropout in STEM fields [2]. Feedback medium 
personalization offers one simple method to examine the 
motivational effect of choice within these platforms. 

1.2.3 Improving Assessment 
Adaptive tutoring systems typically function through measures of 
binary correctness on a student’s first attempt or first action within 
a problem. Within such systems, students who take advantage of 
tutoring feedback are unduly penalized. This creates an 
environment in which students are afraid to use the beneficial 
features of these platforms, or instead, overuse feedback if they 
have already lost credit (i.e., skipping to the answer rather than 
reading a series of hints). The establishment of partial credit 
scoring would help to alleviate these issues, serving to motivate 
student performance while simultaneously offering teachers a 
more robust view of student knowledge. Using data mining 
approaches, partial credit can be defined algorithmically [16] for 
the purpose of enhancing student modeling. Real time 
implementation of these data driven models could offer 
substantial benefits for all parties.  

2. PROPOSED CONTRIBUTIONS 
Thus far, my work has lead to eight peer reviewed articles already 
published or in press, as well as a multitude of projects that are in 
progress. Projects that best highlight my goals as I transition to 
my PhD work are described in the following subsections. 

2.1 Published Works 
2.1.1 Video vs. Text Feedback 
The ASSISTments platform was used to conduct a randomized 
controlled trial featuring matched content video and text feedback 
within the realm of middle school mathematics [7]. Results 
suggested significant effects of video feedback, showing enhanced 
learning outcomes on next question performance after receiving 
adaptive video tutoring, as well as increased efficiency. Further, 
through self-report it was observed that students perceived video 
as a positive addition to their assignment. This study was the first 
of its kind to explore the potential for replacing text feedback, 
already shown to be successful within ASSISTments [13], with an 
alternate medium. A scaled-up replication of this study is 
currently underway. This work inspired an influx of video content 
into the ASSISTments platform, providing new opportunities to 
examine the subtleties of video feedback, including a crowd-
sourced approach to feedback creation. 

2.1.2 Dweckian Motivation  
Moving beyond the use of video feedback and into the realm of 
pedagogical agents, my co-authors and I sought to investigate the 
motivational effects of Dweckian inspired mindset training within 
ASSISTments feedback [10].  A six-condition design was used to 
examine how growth mindset messages promoting the 
malleability of intelligence delivered with domain based feedback 
effected motivation and learning outcomes. Conditions differed on 
elements of audiovisual message delivery, ranging from plain text 
to an animated pedagogical agent. Although limited by a small 
sample size and ceiling effects, analyses across five mathematics 
skills revealed that mindset messages altered student performance 
as measured by persistence, learning gain, and self-reported 
enjoyment of the system (trends, p ≈ 0.1).  Trends also pinpointed 

gender differences in response to messages delivered using the 
pedagogical agent.  

2.1.3 Partial Credit Assessment  
By data mining log files from ASSISTments usage spanning the 
2012-2013 school year, this work established a simple student 
modeling technique for the prediction of next problem correctness 
(time t + 1) using algorithmically defined partial credit scores at 
time t [5]. Although traditional modeling approaches and most 
adaptive tutors are driven by binary metrics of student correctness, 
employing partial credit can enhance student motivation and 
promote proper use of system features such as adaptive feedback, 
while allowing teachers a more robust understanding of student 
ability and simultaneously enhancing predictive modeling. 
Predictions gathered using a tabling approach based on maximum 
likelihood probabilities were able to compete with standard 
Knowledge Tracing models in terms of model accuracy, while 
drastically reducing computational costs [5].  

2.2 Works in Press or in Progress 
2.2.1 Student Choice 
This work served as a pilot study on the addition of student choice 
into the ASSISTments platform [8]. This line of research 
examines motivation and learning when students are able to invest 
in the learning process. Students were randomly assigned to either 
Choice or No Choice conditions within a problem set on simple 
fraction multiplication. Those given choice were asked to select 
their feedback medium, while those without choice were 
randomly assigned to receive either text or video feedback. 
Results suggested that even if feedback was not ultimately used, 
students who were prompted to choose their feedback medium 
significantly outperformed those who were not. A second iteration 
of this study is currently underway using a new If-Then 
navigation infrastructure that was built because of the significant 
effects observed in the pilot. If previous results are replicated, 
these findings may be groundbreaking in that the addition of 
relatively inconsequential choices to adaptive tutoring systems 
could enhance student motivation and performance. 

2.2.2 Content Delivery Patterns 
Motivation and learning outcomes can also be improved by 
making content delivery more adaptive. Recent work within 
ASSISTments has revealed the benefit of interleaving (or mixing) 
skill content within homework settings [9]. Serving as a 
conceptual replication of previous work in the field, our goal was 
to isolate the interleaving effect within a brief homework 
assignment, as measured by learning gains on a delayed posttest. 
Using a randomized controlled trial, a practice session was 
presented featuring either interleaved or blocked content spanning 
three math skills. This study was unique in that rather than relying 
on a formal posttest, a second homework assignment was used to 
gauge learning gains through average score, hint usage, and 
attempt count. The use of tutoring feedback during posttest 
provided additional dependent variables for analysis while 
allowing students continued learning opportunities. Observations 
revealed that interleaving can be beneficial in adaptive learning 
environments, and appears especially significant for low 
performing students.  

2.2.3 Assessment Enhancing Motivation 
An extension of the work presented in 2.1.3, this research 
examined partial credit scoring using a grid search of 441 
algorithmically defined models through per hint and per attempt 
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penalizations [6].  Binary scoring, as utilized by most adaptive 
tutoring systems, can serve to demotivate students from engaging 
with tutoring feedback and rich system features that are intended 
to excel beyond traditional classroom practices. For each of the 
441 models examined, tables were established using maximum 
likelihood probabilities to predict binary next problem correctness 
(time t + 1), given the partial credit score on the current question 
(time t). Findings suggest that a data driven approach to defining 
partial credit penalization is possible and that an optimal 
penalization range can be isolated using model accuracy. Further, 
findings suggest that within the optimal range, lower penalizations 
do not differ significantly from higher penalizations, allowing 
leeway for content developers and teachers to enhance student 
motivation through reduced penalization.  

 2.3 Goals & Insight Sought 
As I delve into my dissertation I expect my work to grow and 
meld into a unified construct surrounding the enhancement of 
student motivation and learning within adaptive tutoring systems.  
It is clear that the facets discussed here will link the two 
underlying realms of my research (i.e., randomized controlled 
trials and data mining), but it is not yet clear how. Through 
continued investigation of feedback, student choice, and 
assessment methodologies, I hope to establish a unique line of 
research that remains broad and yet powerful. Advice on how to 
drive a broad topic dissertation is sought. Essentially, I hope to 
gain an external expert’s opinion on how to best merge the facets 
of my research. Advice on future endeavors within individual 
facets would also be appreciated.   
The immediate impact of my research is already evident through 
continued improvements to the ASSISTments platform. The work 
presented here has inspired content expansion as well as 
infrastructure changes to enhance future research design. Within 
the next three years I expect that my research will continue to 
refine ASSISTments while increasing intellectual merit in my 
field. The broader impact of my work will be measured in long-
term achievements that affect systemic change in education and 
promote data driven practices and individualized learning via 
adaptive tutoring platforms.  
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ABSTRACT
Interactive problem solving environments, such as intelligent
tutoring systems and educational video games, produce large
amounts of transactional data which make it a challenge for
both researchers and educators to understand how students
work within the environment. Researchers have modeled
the student-tutor interactions using complex network rep-
resentations to automatically derive next-step hints, derive
high-level approaches, and create visualizations of student
behavior. However, students do not explore the complete
problem space. The nonuniform exploration of the problem
results in smaller networks and less next-step hints. In this
work we explore the possibility of using frequency estimation
to uncover locations in the network with differing amounts
of student-saturation. Identification of these regions can be
used to locate specific problem approaches and strategies
that would be most improved by additional student-data.

Keywords
Interaction Networks, Data-Driven, Problem Solving

1. INTRODUCTION
Data-driven methods to provide automatic hints have the
potential to vastly reduce the cost associated with develop-
ing tutors with personalized feedback. Modeling the student-
tutor interactions as a complex network provides a platform
for researchers to generate hint-templates and automatically
generate next-step hints; the interaction networks also work
as useful visualization of student problem-solving, as well as
a structure from which to mine high level approaches of stu-
dent problem-solving approaches. Data-driven approaches
require an uncertain amount of data collection before they
can produce feedback, and it is not always clear how much is
needed for different environments. Eagle et al. explored the
structure of these student interaction networks and argued
that networks could be interpreted as an empirical sample
of student problem solving [4]. This would mean that stu-
dents who are similar in problem-solving approaches would

also be represented in the same parts of the interaction net-
work. This would suggest that students who are more sim-
ilar would have smaller networks as they explore the same
parts of the problem space. We argue that as the expecta-
tion is for different populations of students to have different
interaction networks and that different domains will require
different amounts of student-data, there need to be good
metrics for describing the quality of the networks.

In this work, we will make use of Good-Turing frequency
estimation on interaction level data to predict the local size
and hint-producing capability of interaction network regions.
Our estimator makes use of Good-Turing frequency estima-
tion [5]. Good-Turing frequency estimation estimates the
probability of encountering an object of a hitherto unseen
type, given the current number and frequency of observed
objects. It was originally developed by Alan Turing and his
assistant I. J. Good for use in cryptography efforts during
World War II. In our context, the object types will refer to
network-states (vertices,) and observations will refer to the
student interactions (edges.)

Creation of adaptive educational programs is expensive, in-
telligent tutors require content experts and pedagogical ex-
perts to work with tutor developers to identify the skills stu-
dents are applying and the associated feedback to deliver [7].
In order to address the difficulty in authoring intelligent tu-
toring content, Barnes and Stamper built an approach called
the Hint Factory to use student data to build a Markov Deci-
sion Process (MDP) of student problem-solving approaches
to serve as a domain model for automatic hint generation
[12]. Other approaches to automated generation of feedback
have attempted to condense similar solutions in order to ad-
dress sparse data sets. One such approach converts solutions
into a canonical form by strictly ordering the dependencies
of statements in a program [9]. Another approach compares
linkage graphs modelling how a program creates and mod-
ifies variables, with nested states created when a loop or
branch appears in the code [6]. In the Andes physics tutor,
students may ask for hints about how to proceed. Similarly
to Hint Factory-based approaches, a solution graph repre-
senting possible correct solutions to the problem was used,
however it was automatically generated rather than being
derived from data, and uses plan recognition to decide which
of the problem derivations the student is working towards
[13].

Interaction networks are scale-free, in that there is a small
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subset of the overall network-states which contain the largest
number of neighboring states [4]. Eagle et al. argued that
this was in part due to the nature of the problem-solving
environment, where by students with similar problem solv-
ing ability and preferences would travel into similar parts
of the network and problem-features would result in some
states being more important to the problem than others [4].
With this interpretation as a basis sub-regions of the net-
work corresponding to high-level approaches to the problem
were shown to capture problem-solving differences between
two experimental groups [3]. A region of the network repre-
senting a minority approach, would result in locations of the
network that would not produce adequate hints for students
taking that approach.

2. INTERACTION NETWORKS
An Interaction Network is a complex network representation
of all observed student and tutor interactions for a given
problem in a game or tutoring system [4]. To construct an
Interaction Network for a problem, we collect the set of all
solution attempts for that problem. Each solution attempt
is defined by a unique user identifier, as well as an ordered
sequence of interactions, where an interaction is defined as
{initial state, action, resulting state}, from the start of the
problem until the user solves the problem or exits the sys-
tem. The information contained in a state is sufficient to
precisely recreate the tutor’s interface at each step. Simi-
larly, an action is any user interaction which changes the
state, and is defined as {action name, pre-conditions, re-
sult}. Regions of the network can be discovered by applying
network clustering methods, such as those used by Eagle
et al. for deriving maps high-level student approaches to
problems [3].

Stamper and Barnes’ Hint Factory approach generates a
next-step Hint Policy by modeling student-tutor interactions
as a Markov Decision Process [12]. This has been adapted
to work with interaction networks by using a value-iteration
algorithm [2] on the states [4]. We define a state, S to be
Hintable if there exists a path on the network to a goal-state
starting from S. We define the Hintable network to be the
induced subset of the interaction network containing only
Hintable states.

The ”cold start problem” is an issue that arises in all data-
driven systems where for early users of the system, predic-
tions made are inaccurate or incomplete [11, 10]. Barnes
and Stamper [1] approached the question of how much data
is needed to get a certain amount of overlap in student so-
lution attempts by incrementally adding student attempts
and measuring the step overlap over a large series of trials.
This was done with the goal of producing automatically gen-
erated hints, and thus solution-attempts that did not reach
the goal were excluded. Peddycord et al. [8] performed a
similar technique to evaluate differences in overlap between
two different interaction network state representations.

2.1 Good-Turing Network Estimation
In this work, we are presenting a new method for estimating
the size of the unobserved portion of a partially constructed
Interaction Network. Our estimator makes use of Good-
Turing frequency estimation [5]. Good-Turing frequency es-
timation estimates the probability of encountering an object

of a hitherto unseen type, given the current number and fre-
quency of observed objects. It was originally developed by
Alan Turing and his assistant I. J. Good for use in cryp-
tography efforts during World War II. Gale and Sampson
revisited and simplified the implementation [5]. In its orig-
inal context, given a sample text from a vocabulary, the
Good-Turing Estimator will predict the probability that a
new word selected from that vocabulary will be one not pre-
viously observed.

The Good-Turing method of estimation uses the frequency
of frequencies for the sample text in order to estimate the
probability that a new word will be of a given frequency.
Based on this distribution, we calculate the probability of
observing a new word in the vocabulary based on the ob-
served probability of observing a word with frequency 1.
Therefore, the expected probability of the next observation
being an unseen word P0 is estimated by:

P0 =
N1

N
(1)

Where N1 is the total number of words occurring with fre-
quency 1, and N is the total number of observations. Since
N1 is the largest and best explored group of words, the so-
far observed value of N1 is a reasonable estimate of P1. To
apply this method to an interaction network, we will esti-
mate the probability of encountering a new state, based on
the previously seen state frequencies. P0 can then be used
to smooth the estimation proportions of the other states.

Our version of P0 is the probability of encountering a new
state (a state that currently has a frequency of zero,) on a
new interaction. We also interpret this as the proportion of
the network missing from the sample. We will refer to an
interaction with a unobserved state as having fallen off of
the interaction network. We will use the complement of P0

as the estimate of network coverage, IC , the probability that
a new interaction will remain on the network: IC = 1− P0.

The state space of the environment is the set of all possi-
ble state configurations. For both the BOTS game and the
Deep Thought tutor the potential state space is infinite. For
example, in the Deep Thought tutor a student can always
use the addition rule to add new propositions to the state.
However, as argued in Eagle et. al. [4], the actions that
reasonable humans perform is only a small subset of the
theoretical state space; the actions can also be different for
different populations of humans. We will refer to this sub-
set as the Reasonable State Space, with unreasonable being
loosely defined as actions that we would not expect a human
to take. An interaction network is an empirical sample of
the problem solving behavior from a particular population,
and is a subset of the state space of all possible reasonable
behaviors. Therefore, our metrics P0 and IC are estimates
of how well the observed interaction network represents the
reasonable state space.

3. DISCUSSION
Figure 1 shows the results of a preliminary analysis on an
interaction network based on student-log data from a tu-
toring environment. For each region we calculated values
of network coverage, IC , and have highlighted regions of
the network which have values below 90% coverage. Good-
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Figure 1: An interaction network with regions of
high coverage highlighted in light blue and regions of
low coverage highlighted in orange. The low cover-
age regions of the network require more data before
coverage could reach a IC level above 90%.

Turing Estimation works well in the contexts of interaction
networks. Our network coverage metric IC allows a quick
and easy to calculate method of comparing different state
representations, as well as quantifying the difference. New
methods for improving automatic hint generation can target
these areas of the network which have the lowest coverage,
such as asking for instructor input on specific regions or by
starting advanced students in these regions in order to ob-
serve their paths out.

We were also able to interpret this metric as measure of the
proportion of the network not yet observed P0. On a high-
level this value alone is a useful metric for the percentage
of times a student-interaction is to a not yet observed state.
The P0 score for the hint-able network is likewise a measure
for the probability that a student will“fall off”of the network
from which we can provide feedback. Therefore, we can use
the P0 metric to predict next-step“fall off”we could estimate
the “risk” of different network regions. If we are reasonably
sure that the majority of successful paths to the goal have
been previously observed then falling off of the network likely
means that the student is unlikely to reach the goal.

Region-level coverage also has implications given our pre-
vious theories on the network being a sample created from
bias (non-random) walks on the problem-space, as the more
homogeneous the bias-walkers are, the faster the network
will represent the population and smaller total states ex-
plored will be. We revisited the results of [3], and have
added more description to the effect of hint; students with
access to hints explored less overall unique states which im-
plies that the students were more similar to each other in
terms of the types of actions and states they visited within
the problem.

Future directions for this research include general improve-
ments to the network clustering algorithms which generate
the regions. Regions which have low coverage might not be
worth separating from their parent region for visualization
or high-level hint generation processes. The local and global
measures of network coverage can help identify problematic

regions in interaction networks which could harm hint pro-
duction; they also provide a metric to evaluate new, “cold
start” problems and make sure that enough data has been
collected in order produce hints to multiple problem solving
approaches. Finally, exploration of coverage between groups
has the potential to uncover differences in problem solving
behavior, and improve automatic hinting and understanding
of student approaches to problems.
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