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Abstract 

Lord and Wingersky’s (1984) recursive algorithm for creating summed score based 

likelihoods and posteriors has a proven track record in unidimensional item response theory 

(IRT) applications. Extending the recursive algorithm to handle multidimensionality is 

relatively simple, especially with fixed quadrature because the recursions can be defined on a 

grid formed by direct products of quadrature points. However, the increase in computational 

burden remains exponential in the number of dimensions, making the implementation of the 

recursive algorithm cumbersome for truly high dimensional models. In this paper, a 

dimension reduction method that is specific to the Lord-Wingersky recursions is developed. 

This method can take advantage of the restrictions implied by hierarchical item factor models 

(e.g., the bifactor model [Gibbons & Hedeker, 1992], the testlet model [Wainer, Bradlow, & 

Wang, 2007], or the two-tier model [Cai, 2010b], such that a version of the Lord-Wingersky 

recursive algorithm can operate on a dramatically reduced set of quadrature points. For 

instance, in a bifactor model, the dimension of integration is always equal to 2, regardless of 

the number of factors. The new algorithm not only provides an effective mechanism to 

produce summed score to IRT scaled score translation tables properly adjusted for residual 

dependence, but leads to new applications in test scoring, linking, and model fit checking as 

well. Simulated and empirical examples are used to illustrate the new applications. 

Introduction 

The paper by Lord and Wingersky (1984) contains a terse description of a remarkably 

elegant recursive algorithm for computing summed score based likelihoods from the perspective 

of item response theory (IRT). According to Google Scholar, the paper has only been a moderate 

success in terms of citation counts (over 137 times as of this writing). However, the Lord-

Wingersky algorithm motivated a number of important developments in educational and 

psychological measurement. For example, Thissen, Pommerich, Billeaud, and Williams (1995) 

extended the algorithm to test scoring with ordered polytomous IRT models. Thissen and Wainer 

(2001) presented a detailed account of related summed score based methods for test scoring 

using IRT, including methods for mixed-format tests involving a combination of multiple-choice 

and constructed response items. Orlando, Sherbourne, and Thissen (2000) applied the Lord-

Wingersky algorithm to summed score based test linking. Chen and Thissen (1999) derived an 
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item parameter calibration method based on summed scores. Orlando and Thissen (2000) 

proposed a solution to the item fit testing problem with a slight alteration of the original Lord-

Wingersky algorithm. 

Multidimensional IRT has flourished in recent years (e.g., Reckase, 2009). In particular, 

full-information item factor analysis (Bock, Gibbons, & Muraki, 1988) has become one of the 

central methodological pillars in educational and psychological measurement research (see a 

recent review by Wirth & Edwards, 2007). As IRT becomes adopted in new fields such as 

health-related patient reported outcomes measurement (see Reeve et al., 2007), new item 

parameter estimation algorithms (e.g., Cai, 2010a; Edwards, 2010; Schilling & Bock, 2005) and 

flexible software implementations (e.g., Cai, 2012; Cai, Thissen, & du Toit, 2011; Wu & Bentler, 

2011) have emerged. 

One particular kind of confirmatory item factor analysis, full-information item bifactor 

analysis, has caught special attention among psychometric researchers (Gibbons & Hedeker, 

1992). In an item bifactor model, all items load on a general dimension, and an item is permitted 

to load on at most one specific dimension. The specific dimensions are in essence group factors 

that account for residual dependence above and beyond the general dimension. The factor pattern 

in a bifactor analysis is an example of the hierarchical factor solution (Holzinger & Swineford, 

1937; Schmid & Leiman, 1957). 

The popularity of the item bifactor model has been, in no small part, due to Gibbons and 

Hedeker’s (1992) discovery of a dimension reduction method. With dimension reduction, 

maximum marginal likelihood estimation of item bifactor models requires at most 2-dimensional 

numerical quadrature, irrespective of the number of factors in the model. Thus, truly high-

dimensional confirmatory factor models may be fitted to item response data with reasonable 

numerical accuracy, computational stability, and most importantly, within a reasonable amount 

of time. Gibbons and Hedeker’s (1992) dimension reduction method did much to free item factor 

analysis from the “curse” of dimensionality. 

The computational efficiency of the hierarchical item factor formulation prompted a flurry 

of recent activities in the technical literature (e.g., Gibbons et al., 2007; Jeon, Rijmen, & Rabe-

Hesketh, 2013; Rijmen, Vansteelandt, & De Boeck, 2008; Rijmen, 2009), where new 

computational methods and extensions of the basic bifactor model are presented (see, e.g., Cai, 

2010b; Cai, Yang, & Hansen, 2011). Within educational measurement, the closely related testlet 

response theory model (Wainer, Bradlow, & Wang, 2007) also garnered much attention. The 

testlet response theory model is a second-order item factor analysis model, but it is typically 
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shown as a constrained version of item bifactor model (Glas, Wainer, & Bradlow, 2000; Li, Bolt, 

& Fu, 2006; Rijmen, 2010; Yung, McLeod, & Thissen, 1999). 

Renewed interest in the hierarchical item factor model brings new methodological 

questions. As Reise (2012) noted, the bifactor model is appealing because it offers a convenient 

mechanism to accommodate nuisance multidimensionality without sacrificing the interpretability 

of the general dimension, which ultimately represents the target latent construct being measured, 

in contrast to other multidimensional IRT models (e.g. with multiple correlated latent variables). 

The existence of unequivocal general dimension(s) and the continued prevalence of summed 

scoring of assessment instruments imply that there is much theoretical and applied interest in 

being able to characterize the relation between observed summed scores and the general 

dimension(s), which calls for an extension of the classical Lord-Wingersky algorithm to the case 

of hierarchical item factor analysis models. 

Even as one may extend the Lord-Wingersky algorithm to standard multidimensional IRT 

models using direct product quadrature rules, the computational complexity increases 

exponentially as more factors are added into the model. Therefore a different strategy is required 

– a strategy that efficiently utilizes the restrictions implied by the hierarchical item factor 

analysis model to achieve dimension reduction analytically. The combination of Lord-Wingersky 

recursions with analytical dimension reduction results in what amounts to version 2.0 of the 

Lord-Wingersky algorithm. Its details will be the one of the foci of this paper. 

With the availability of such an algorithm, a number of technical issues can be resolved. 

First, when multidimensional bifactor or testlet structures demonstrate superior fit to calibration 

data than the single-factor model, one can now construct summed score to IRT scaled score 

translation tables properly adjusted for residual dependence. Second, in terms of test linking, one 

can also achieve more than an extension of Orlando et al.’s (2000) summed-score based method 

for linking distinct groups. Thissen, Varni, Stucky, Liu, Irwin, and DeWalt’s (2011) calibrated 

projection method utilized two correlated general dimensions in a two-tier item factor model 

(Cai, 2010b) to produce the summed score to scaled score conversion table so that two closely 

related (yet not identical) instruments can be linked together with the method of projection. 

Third, the score combination methods for mixed format tests described by Rosa, Swygert, 

Nelson, and Thissen (2001) can be obtained as a by-product of the Lord-Wingersky 2.0 

algorithm, with no specialized computation required. Last but not the least, summed score 

computations can be useful for model fit checking. For instance, Orlando and Thissen’s (2000) 

highly successful summed score based item fit statistic (S-X
2
) can be extended to test item fit for 

bifactor models. The model-implied and observed summed score probabilities can also form 
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diagnostic indices to check the ubiquitous latent variable normality assumption. The remainder 

of this paper will discuss each of the above applications in turn. 

The Original Lord-Wingersky Algorithm 

Summed Score Likelihoods 

Let there be a total of        ordinal items. Let         be the ith item’s traceline for 

category               The summed scores range from 0 to   ∑        
   . From the 

perspective of IRT, the likelihood for the response pattern            can be expressed as 

 
       ∏        

 

   

  
(1)  

due to the assumption of independence of item responses conditional on the latent trait  . Define 

‖ ‖  ∑   
 
    as a notational shorthand for the summed score associated with response pattern 

 . The likelihood for summed score         is defined as 

 
       ∑       

  ‖ ‖

 ∑ ∏        

 

     ‖ ‖

  
(2)  

where the summation in Equation (2) is over all such response patterns that lead to a summed 

score equal to  . Given a population (prior) distribution     , the unnormalized posterior for 

summed score s is 

                    (3)  

and the (marginal) probability for summed score s is 

      ∫              
(4)  

which implies that the normalized posterior of summed score s is 

 
       

          

    
  

(5)  

Therefore, the posterior mean is 

 
       

 

    
∫               

(6)  

and the posterior variance is 

 
                       

 

    
∫                        

(7)  
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The posterior mean and the square root of the posterior variance may be taken as the point 

estimate and the standard error of measurement for  . The marginal probability, posterior mean, 

and posterior variance for the summed scores are key estimands that the IRT model can generate 

as long as the categories are ordered to allow for an approximate monotonic relationship between 

summed scores and scaled scores. 

Dichotomous Item Responses 

It is more convenient to introduce the Lord-Wingersky algorithm for dichotomously scored 

items. The extension to polytomous data is straightforward (as shown in this paper’s Polytomous 

Item Responses section). For now, all   ’s are taken to be identically equal to 2. In this case, the 

maximum summed score   is equal to the number of items  . The definition in Equation (2) 

requires evaluating all    response pattern likelihoods, which becomes computationally 

intractable when   is large. On the other hand, Lord and Wingersky’s (1984) algorithm builds the 

summed score likelihoods recursively, one item at a time. Let         denote the likelihood for 

summed score  , after item   has been added into the computation. 

The algorithm starts by initializing the summed score likelihoods from item 1. As such, 

there are two possibilities                 and                 at the end of Step 1. Next, 

the second item is added. Note that at the end of the second step there will be three summed 

scores. The likelihood for summed score 0 is                       . The likelihood for 

summed score 1 is a combination of two distinct possibilities:                        

              . The likelihood for summed score 2 is                       . Then, in 

Step 3, item 3 is added. The likelihood for summed score 0 is                         The 

likelihood for summed score 1 is:                                      . The likelihood 

for summed score 2 is:                                      . Finally, the likelihood for 

summed score 3 is                       . More generally, after initialization at item 1, in 

Step i of the recursive algorithm, item         is added into the existing summed score 

likelihoods according to the following rules: 

                           

                                           , for            

and                             

(8)  

The recursion is repeated until all I items have been added. At the end of the recursions, each 

accumulated         will be equal to the summed score likelihood        defined earlier in 

Equation (2). As one can see, the recursive algorithm does not require explicitly enumerating all 

   response pattern likelihoods. 
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In practice, because the integrals in Equations (4), (6), and (7) cannot be solved 

analytically, it is necessary to evaluate the summed score likelihoods over a set of quadrature 

points so that numerical summaries of the posterior can be computed. For instance, the marginal 

probability can be approximated to arbitrary precision using a Q-point rule: 

 
     ∫             ∑  ( |  )     

 

   

  
(9)  

where    is a quadrature node and       is the corresponding quadrature weight. Gauss-

Hermite quadrature is used extensively in the literature because the prior distribution of   is 

typically assumed to be Gaussian. However, for simplicity, rectangular quadrature may be used, 

where       is a set of normalized ordinates of the prior density, i.e.,  (  )        

∑      
 
   , and the quadrature nodes are chosen to represent a sufficiently fine grid over an 

interval that captures most of the probability mass of the posterior (e.g., from -4 to +4), for a 

standard Gaussian prior. 

An Illustrative Example 

It is instructive to consider a simple test with 3 dichotomous items. The item tracelines are 

characterized by the 2-parameter logistic model: 

         
 

                 
  

(10)  

for the correct/endorsement response (   ), where    and    are the item intercept and slope 

parameters. The incorrect/non-endorsement response (   ) has a traceline that is equal to 

                     The intercept parameters for the 3 items are -1.0, -0.2, and 0.6, 

respectively. The slope parameters are 1.2, 1.0, and 0.8, respectively. 
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Table 1 

Ordinates of item response functions and quadrature weights evaluated at 5 

rectangular quadrature points for the 3 hypothetical items in the example 

  -2.00 -1.00 0.00 1.00 2.00 

        .032 .100 .269 .550 .802 

        .010 .232 .450 .690 .858 

        .269 .450 .646 .802 .900 

        .968 .900 .731 .450 .198 

        .900 .769 .550 .310 .142 

        .731 .550 .354 .198 .100 

     .054 .244 .403 .244 .054 

 

Table 1 shows the values of the tracelines evaluated at 5 equally-spaced quadrature points 

at   levels -2, -1, 0, 1, and 2, as well as the corresponding quadrature weights at each point. The 

quadrature weights are normalized ordinates of a standard Gaussian prior density for  . Based on 

the item tracelines and weights in Table 1, one can apply the Lord-Wingersky algorithm to 

recursively accumulate the 4 summed score likelihoods (0, 1, 2, 3) for the 3 dichotomously 

scored items. Table 2 shows the recursive computations in some detail. As one can see, after the 

initializations in Step 1, the recursive algorithm follows Equation (8) until all items have been 

added. The set of 4 summed score likelihoods at the end of Step 3 are represented numerically at 

the specified quadrature points. Of course, in practice, many more quadrature points are used for 

better precision. Table 2 serves as an illustration similar to Thissen and Wainer’s (2001) Table 

3.8 (p. 124). 
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Table 2 

Accumulating the summed score likelihoods at 5 rectangular quadrature points for the 3 hypothetical items with 

Lord-Wingersky algorithm 

Summed score 

likelihoods   -2 -1 0 1 2 

Step 1: Initialize summed score likelihoods by adding Item 1 

                 .968 .900 .731 .450 .198 

                 .032 .100 .269 .550 .802 

Step 2: Add Item 2 to existing summed score likelihoods 

                        .871 .692 .402 .140 .028 

                                       .126 .285 .477 .481 .284 

                        .003 .023 .121 .379 .688 

Step 3: Add Item 3 to existing summed score likelihoods 

                               .637 .380 .142 .028 .002 

                                              .326 .468 .429 .207 .053 

                                              .036 .141 .351 .461 .324 

                               .001 .010 .078 .304 .620 

 

With the quadrature weights in Table 1 and the summed score likelihoods in Table 2, one 

may directly compute the unnormalized summed score posteriors according to Equation (3) by 

multiplying the summed score likelihood        with the prior weight      at each of the 

chosen quadrature points. Table 3 shows the posterior computations in detail. The unnormalized 

summed score posteriors are found by multiplying (point-by-point) the values of the summed 

score likelihoods (the second panel) with the corresponding quadrature weights (the first panel). 

Summing over the quadrature representation of the unnormalized summed score posterior, as per 

Equation (9), the marginal probabilities of the summed scores are shown in Table 3 under the 

column heading     . These are the IRT model-implied probabilities for each of the summed 

scores. The posterior means        and posterior variances        are also presented in Table 3, 

essentially in the form of a summed score to IRT scaled score translation table. For instance, a 

summed score of 0 can be translated to an IRT scaled score of -.85 with standard error equal to 

the square root of .67. The probabilities can be used to construct percentile tables. Tables such as 

this facilitate the adoption of IRT scoring in practical situations. 
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Table 3 

Characterizing the summed score likelihoods and posteriors using the representation at 5 rectangular quadrature 

points for the 3 hypothetical items 

Quadrature    Posterior summaries 

Weights at -2 -1 0 1 2  
   

      .054 .244 .403 .244 .054     

Summed score           

Likelihoods        at -2 -1 0 1 2     

        .637 .380 .142 .028 .002     

        .326 .468 .429 .207 .053     

        .036 .141 .351 .461 .324     

        .001 .010 .078 .304 .620     

Unnormalized summed           

Score posteriors        at -2 -1 0 1 2                     

                   .035 .093 .057 .007 .000  .19 -.81    .59 

                   .018 .114 .173 .051 .003  .36 -.26 .62 

                   .002 .034 .141 .113 .018  .31 .36 .61 

                   .000 .003 .031 .074 .034  .14 .98 .53 

 

Marginal Reliability of Scaled Scores 

With the summed score to scaled score conversion table, a kind of marginal reliability 

coefficient can be computed for the scaled scores. Let  ̅    denote the average error variance 

associated with  . It may be obtained from the conversion table as a weighted sum 

 
 ̅    ∑      

 

   

      
(11)  

The marginal reliability of the scaled score conversions is defined as 

 
 ̅    

 ̅   

     
  

(12)  

where       is the total (prior) variance of  . From the results in Table 3, the average error 

variance is equal to 0.64. Since the latent trait   has an assumed standard normal prior 
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distribution, the total variance is 1.0. The marginal reliability of the scaled scores based on the 

summed scores is therefore equal to 0.36. 

Polytomous Item Responses 

Recall that         is the ith item’s traceline for category             , and the 

number of categories      ) may be different across items. Define    ∑        
    as a 

notational shorthand for the maximum summed score after item i has been included. Clearly the 

maximum summed score is     . 

The first step of the algorithm still involves the initialization of the    summed score 

likelihoods at the category tracelines of item 1 so that                 for           In 

Step        , the category tracelines of item i are added into the      available summed score 

likelihoods from the previous step, similar to the dichotomous case, but more complex book-

keeping is required since the number of combinations leading up to the same summed score 

increases as the number of categories increases. For item i with    categories, and summed score 

          the summed score likelihood can be written as 

 
        ∑ ∑                  

  

   

    

    

          
(13)  

where          is an indicator function that takes on a value of 1 if and only if   is equal to 

    , and 0 otherwise. The summation in Equation (13) is over the existing summed score 

likelihoods and    categories of item i, while preserving the restriction that the combination must 

lead to a summed score equal to    Equation (13) reduces to the recursions in Equation (8) when 

all items are dichotomous. After all   items have been added,         will become the desired 

summed score likelihood        for summed score        . 

Lord-Wingersky Algorithm Version 2.0 

A General Hierarchical Item Factor Model 

Cai’s (2010b) two-tier model represents a general hierarchical model that includes the 

standard (correlated-traits) multidimensional IRT model, item bifactor model, and testlet 

response theory models as special cases. In this model, two kinds of latent variables are 

considered, primary and specific. This creates a partitioning of   into two mutually exclusive 

parts:        , where   is an M-dimensional vector of (potentially correlated) primary latent 

dimensions and   is an N-dimensional vector of (mutually orthogonal) specific latent dimensions 

that are orthogonal to the primary dimensions. In the two-tier model, an item is allowed to load 

on all M primary dimensions in any identified manner and at most 1 specific dimension. Using a 
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path diagram, Figure 1 shows a hypothetical two-tier model with 20 items (the rectangles) that 

load on M = 2 primary dimensions that are correlated, as well as N = 4 specific dimensions. 

Obviously, a two-tier model with only 1 primary dimension becomes a bifactor or a testlet 

model. 

 

Figure 1. Path diagram of a two-tier model with 2 correlated primary dimensions and 4 specific dimensions. 

Without loss of generality, let         be the ith item’s traceline (or perhaps more properly 

referred to as trace-surface for multidimensional  ) for category k. In principle, the Lord-

Wingersky algorithm can be defined on a set of quadrature points that are formed by direct-

products of unidimensional quadrature points. This leads to an exponentially increasing amount 

of computation in the number of latent dimensions. Fortunately, the two-tier formulation leads to 

a computational short cut that circumvents the integration problem. This is the main result of the 

paper. 

General Approach 

In the two-tier model, the item trace-surface         can be redefined as   
         

  
         , for item i that loads on specific dimension n. The last equality comes from the fact 

that an item is permitted to load on at most one specific dimension, say,    in a two-tier model. If 

an item does not load on any specific dimension, it may be conveniently grouped with the first 

item cluster for the purposes of summed score computations and no generality is lost. Let there 

be    items that load on specific dimension   . As such, these    items form a testlet or item 

cluster that may be residually dependent after accounting for  . For a two-tier model, the 

likelihood for response pattern   can be expressed as 

𝜁  𝜁  

𝜂  

𝜁  𝜁4 

𝜂  
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                ∏∏  

    
       

  

   

 

   

  
(14)  

where   
  is the response to item i in item cluster n. Let        be the density function of the nth 

specific dimension. Integrating out the dependence on  , the likelihood of   based on pattern   

can be written as 

 
       ∫ ∫[∏∏  

    
       

  

   

 

   

]                     

 ∏∫∏  
    

       

  

   

         

 

   

  

(15)  

where the second line in Equation (15) have utilized the two-tier model assumption of the 

independence of the specific dimensions, thereby transforming the original N-fold multiple 

integral on the first line into a product of N one-fold integrals. This is the same derivation as the 

dimension reduction procedure in maximum marginal likelihood item parameter estimation for 

two-tier or bifactor/testlet models (see, e.g., Cai, 2010b). Let 

 
         ∫∏  

    
       

  

   

          
(16)  

denote the likelihood of   based on the subset of responses       
       

   in the nth item 

cluster such that                . The likelihood of   for summed score s can be written 

as 

 
       ∑       

  ‖ ‖

 ∑ ∏        

 

     ‖ ‖

  
(17)  

which is entirely analogous to Equation (2). Integrating over  , the marginal probability is 

                   (cf. Equation 4), where      is the density of the primary dimensions, 

and the summed score posterior is                    (cf. Equation 5). 

The dominating insight from Equation (17) is that conditional on the general dimension(s), 

the testlets or item clusters become the fungible units of model building and computation, just as 

items are the fungible units in the standard Lord-Wingersky recursions. All that is required is an 

extra stage of recursions. In the first stage, for the nth item cluster, likelihoods for the within-

cluster summed scores are accumulated over the latent variable space spanned by (     . This is 

standard Lord-Wingersky algorithm as applied to the items in cluster n on a set of direct product 
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quadrature points spanning the space of         For each within-cluster summed score 

likelihood, the dependence on the specific dimension    is subsequently integrated out, leaving 

the within-cluster summed score likelihoods as functions of the general dimension(s)   alone. In 

the second stage, the N clusters are treated as N multiple-category items, and the within-cluster 

summed score likelihoods from the first stage are treated as if they are category tracelines 

defined on  . Standard Lord-Wingerksy algorithm for polytomous IRT is applied to accumulate 

the final summed score likelihoods. 

Details of the Lord-Wingersky 2.0 Algorithm 

To avoid notational clutter, it would be convenient to introduce the new Lord-Wingersky 

algorithm for hierarchical item factor models using one of the simplest two-tier models, namely, 

the logistic item bifactor model for dichotomous responses. In this case,   
          reduces 

further to   
         , and   represents the single general dimension. The IRT model for the 

correct/endorsement response can be written as 

   
         

          
 

        (     
     

   ) 
  

(18)  

Note that there are two slope parameters per item in the bifactor model (cf. Equation 10). The 

slope for the general dimension is   
  and the slope for the nth specific dimension is   

 . The item 

intercept continues to be denoted as   . 

With no loss of generality, consider the nth item cluster. The first stage of Lord-Wingersky 

algorithm 2.0 starts with the initialization of the within-cluster summed score likelihood: 

  
            

          and   
            

         . Then, each of the remaining items 

within the cluster is added to the likelihoods according to the following set of recursions 

for        (cf. Equation 8): 

   
              

           
           

  
              

           
              

             
         , for 

          

and   
              

             
           

(19)  

At the end of the recursions the within-cluster summed score likelihoods will have been 

accumulated as    
                     for         , where    ∑       

  
    is the 

maximum within-cluster summed score for item cluster n. Integrating out the dependence on   , 

the summed score likelihood as a function of   can be approximated with quadrature as 
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        ∫                     ∑   ( |    )      

 

   

  
(20)  

where    is a set of Q rectangular quadrature points with weights   (  )         

∑       
 
   . At the end of the first stage, each of the N item clusters is characterized by a set of 

summed score likelihoods in terms of  . 

In the second stage,         is treated as though it is a category traceline of a polytomous 

item (with      categories), and the Lord-Wingersky algorithm for polytomous item responses 

introduced in the Polytomous Item Responses section is directly applied. As before, let    

∑   
 
    be the maximum summed score after item cluster n has been included in the recursions. 

To initialize, set the step 1 summed score likelihood to the summed score likelihoods from the 

first cluster, i.e.,                 for           In step        , the summed score 

likelihoods from cluster   are added into the      available summed score likelihoods from the 

previous step: 

 
        ∑ ∑                  

  

   

    

    

          

(21)  

where          is still an indicator function that takes on a value of 1 if and only if   is equal 

to     , and 0 otherwise. Entirely analogous to Equation (13), the summation in Equation (21) 

is over the existing summed score likelihoods for scores             and the      summed 

scores from item cluster n, while preserving the restriction that the combination must lead to a 

summed score of    

At the conclusion of step  , the likelihoods         are equal to the desired summed score 

likelihoods        for each s. Recall that      is the density of the primary dimension. Posterior 

summaries for summed score   can be readily computed using quadrature from        

                 where the marginal probability                    can be approximated 

with Q-point rectangular quadrature as      ∑  ( |  )
 
        , with weights given by 

 (  )        ∑      
 
   . Posterior mean and variance can be obtained with similar 

quadrature computations. 

If there are more than one primary dimensions in the model or if any of the items are 

polytomous, the core structure of the algorithm remains the same. One would only have to 

replace the first-stage recursions in Equation (19) by computations similar to those defined in the 

Polytomous Item Responses section, and use direct product quadrature rules for integrals over the 

vector-valued  . 
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An Illustrative Example 

Consider 6 hypothetical dichotomous items arranged in 3 doublets. There are 4 latent 

variables in this model, one primary dimension   on which all items load and 3 specific 

dimensions         . Table 4 shows the item parameters for these items, as well as the bifactor 

structure wherein items 1-2, 3-4, and 5-6 form into three doublets with nonzero loadings on the 

specific dimensions. The prior distributions of the latent variables are taken to be standard 

normal. Table 5 shows the ordinates of the item response functions as well as quadrature weights 

for the specific dimensions over a     grid defined by the direct product of equally spaced 

quadrature points at -2, -1, 0, 1, and 2. Due to space constraints, only values at a selected subset 

of the grid points are shown in Table 5. The weights for specific dimensions are normalized 

ordinates of standard normal densities as functions of        and   , and repeated over the 

quadrature points for  .       ,         and        are the same in this example because the 

prior distributions of          are all standard normal (but they need not always be standardized, 

see e.g., Cai et al., 2011). 

Table 4 

Item parameters for the 6 dichotomous items with hypothetical 

bifactor structure 

Item               

1 1.2 1.0   -1.0 

2 1.2 1.0   -.6 

3 1.0  .8  -.2 

4 1.0  .8  .2 

5 .8   1.2 .6 

6 .8   1.2 1.0 
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Table 5 

Ordinates of item response functions and quadrature weights evaluated over the     direct product rectangular 

quadrature points for the 6 hypothetical items with bifactor structure 

Function Quadrature weights 

  -2 -2 -2 ··· 0 ··· 2 2 2 

   -2 -1 0 ··· 0 ··· 0 1 2 

   -2 -1 0 ··· 0 ··· 0 1 2 

   -2 -1 0 ··· 0 ··· 0 1 2 

        .054 .244 .403 ··· .403 ··· .403 .244 .054 

        .054 .244 .403 ··· .403 ··· .403 .244 .054 

        .054 .244 .403 ··· .403 ··· .403 .244 .054 

Item 1:   
           .004 .012 .032 ··· .269 ··· .802 .917 .968 

Item 2:   
           .007 .018 .047 ··· .354 ··· .858 .943 .978 

Item 3:   
           .022 .047 .100 ··· .450 ··· .858 .931 .968 

Item 4:   
           .032 .069 .142 ··· .550 ··· .900 .953 .978 

Item 5:   
           .032 .100 .269 ··· .646 ··· .900 .968 .990 

Item 6:   
           .047 .142 .354 ··· .731 ··· .931 .978 .993 

Item 1:   
           .996 .988 .968 ··· .731 ··· .198 .083 .032 

Item 2:   
           .993 .982 .953 ··· .646 ··· .142 .057 .022 

Item 3:   
           .978 .953 .900 ··· .550 ··· .142 .069 .032 

Item 4:   
           .968 .931 .858 ··· .450 ··· .100 .047 .022 

Item 5:   
           .968 .900 .731 ··· .354 ··· .100 .032 .010 

Item 6:   
           .953 .858 .646 ··· .269 ··· .069 .022 .007 

 

Table 6 illustrates the first stage of the new recursive algorithm. In this case, summed score 

likelihoods are accumulated for each of the 3 item clusters. Within each item cluster, there are 

only two dichotomously scored items, so the summed scores range from 0 to 2. The summed 

score likelihoods are represented over separate grids formed by the direct product of the 

quadrature points for the primary dimension   crossed with   ,   , and   , respectively. In Table 

7, the specific dimensions are integrated out for each item cluster. This leaves the summed score 

likelihoods as functions of the primary dimension   alone. 
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Table 6 

Accumulating summed score likelihoods within each item cluster 

Item cluster Likelihoods 

 Initialize Cluster 1’s summed score likelihoods by adding Item 1 

  Quadrature grid for        

Within-cluster   -2 -2 -2 ··· 0 ··· 2 2 2 

Score likelihood    -2 -1 0 ··· 0 ··· 0 1 2 

  
             

          .996 .988 0.968 ··· .731 ··· .198 .083 .032 

  
             

          .004 .012 0.032 ··· .269 ··· .802 .917 .968 

 Add Item 2 to Cluster 1’s summed score likelihoods 

  
             

           
          .989 .970 .922 ··· .472 ··· .028 .005 .001 

  
           

  
           

         
   

           
          .011 .030 .077 ··· .433 ··· .284 .131 .053 

  
             

           
          .000 .000 .002 ··· .095 ··· .688 .864 .947 

 Initialize Cluster 2’s summed score likelihoods by adding Item 3 

  Quadrature grid for        

Within-cluster   -2 -2 -2 ··· 0 ··· 2 2 2 

Score likelihood    -2 -1 0 ··· 0 ··· 0 1 2 

  
             

          .978 .953 .90 ··· .550 ··· .142 .069 .032 

  
             

          .022 .047 .10 ··· .450 ··· .858 .931 .968 

 Add Item 4 to Cluster 2’s summed score likelihoods 

  
             

           
          .947 .887 .773 ··· .248 ··· .014 .003 .001 

  
           

  
           

         
   

           
          .053 .110 .213 ··· .505 ··· .213 .110 .053 

  
             

           
          .001 .003 .014 ··· .248 ··· .773 .887 .947 

 Initialize Cluster 3’s summed score likelihoods by adding Item 5 

  Quadrature grid for        

Within-cluster   -2 -2 -2 ··· 0 ··· 2 2 2 

Score likelihood    -2 -1 0 ··· 0 ··· 0 1 2 

  
             

          .968 .900 .731 ··· .354 ··· .100 .032 .010 

  
             

          .032 .100 .269 ··· .646 ··· .900 .968 .990 
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Item cluster Likelihoods 

 Add Item 6 to cluster 3’s summed score likelihoods 

  
             

           
          .922 .773 .472 ··· .095 ··· .007 .001 .000 

  
           

  
           

         
   

           
          .077 .213 .433 ··· .433 ··· .155 .053 .017 

  
             

           
          .002 .014 .195 ··· .472 ··· .838 .947 .983 

 

Table 7 

Integrating the specific dimensions out of the summed score likelihoods 

Dimensions Likelihoods 

Multiply Cluster 1’s Summed Score Likelihoods by        

 Quadrature Grid for        

  -2 -2 -2 ··· 0 ··· 2 2 2 

   -2 -1 0 ··· 0 ··· 0 1 2 

                   
                .054 .237 .371 ··· .190 ··· .011 .001 .000 

                   
                .001 .007 .031 ··· .174 ··· .114 .032 .003 

                   
                .000 .000 .001 ··· .038 ··· .277 .211 .052 

Summing over   , Leaving Cluster 1’s Summed Score Likelihoods as Functions of   Only 

   

 -2  -1  0  1  2 

        ∑                   
  .891  .728  .469  .212  .062 

        ∑                   
  .103  .235  .382  .411  .288 

        ∑                   
  .006  .037  .148  .377  .649 

Multiply Cluster 2’s Summed Score Likelihoods by        

 Quadrature Grid for        

  -2 -2 -2 ··· 0 ··· 2 2 2 

   -2 -1 0 ··· 0 ··· 0 1 2 

                   
                .052 .217 .311 ··· .100 ··· .006 .001 .000 

                   
                .003 .027 .086 ··· .203 ··· .086 .027 .003 

                   
                .000 .001 .006 ··· .100 ··· .311 .217 .052 
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Dimensions Likelihoods 

Summing over   , Leaving Cluster 2’s Summed Score Likelihoods as Functions of   Only 

   

 -2  -1  0  1  2 

        ∑                   
  .742  .519  .277  .106  .028 

        ∑                   
  .230  .375  .446  .375  .230 

        ∑                   
  .028  .106  .277  .519  .742 

Multiply Cluster 3’s Summed Score Likelihoods by        

 Quadrature Grid for        

  -2 -2 -2 ··· 0 ··· 2 2 2 

   -2 -1 0 ··· 0 ··· 0 1 2 

                   
                .050 .189 .190 ··· .038 ··· .003 .000 .000 

                   
                .004 .052 .174 ··· .174 ··· .062 .013 .001 

                   
                .000 .003 .038 ··· .190 ··· .337 .231 .054 

Summing over   , Leaving Cluster 1’s Summed Score Likelihoods as Functions of   Only 

   

 -2  -1  0  1  2 

        ∑                   
  .469  .302  .166  .077  .029 

        ∑                   
  .364  .396  .364  .285  .192 

        ∑                   
  .166  .302  .469  .638  .779 

 

Finally, the accumulated summed score likelihoods in each item cluster are used in the 

second stage of the recursive algorithm, as shown in Table 8. The within-cluster summed scores 

are treated as though they are item scores for 3 polytomous items. At the end of the recursions 

the final summed score likelihoods for the primary dimension   are assembled and multiplied by 

the weights from the prior distribution of  , yielding posterior probabilities, expectations, and 

variances, as shown in Table 9. The entries under the heading Posterior Summaries form a 

summed score to IRT scaled score translation table (along with standard errors) for the primary 

dimension in an item bifactor model. 
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Table 8 

Forming summed score likelihoods for the primary dimension 

Summed score likelihoods   -2 -1 0 1 2 

Step 1: Initialize summed score likelihoods by adding Item Cluster 1 

                 .891 .728 .469 .212 .062 

                 .103 .235 .382 .411 .288 

                 .006 .037 .148 .377 .649 

Step 2: Add Item Cluster 2 to existing summed score likelihoods 

                        .661 .378 .130 .022 .002 

                                       .281 .395 .315 .123 .022 

                                       
                 .053 .184 .342 .304 .131 

                                       .004 .039 .172 .355 .363 

                        .000 .004 .041 .196 .482 

Step 3: Add Item Cluster 3 to existing summed score likelihoods 

                        .310 .114 .022 .002 .000 

                                       .373 .269 .100 .016 .001 

                                       
                 .237 .326 .233 .073 .010 

                                       
                 .068 .204 .301 .192 .053 

                                       
                 .010 .072 .230 .310 .186 

                                       .001 .013 .096 .282 .375 

                        .000 .001 .019 .125 .375 
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Table 9 

Characterizing the summed score likelihoods and posteriors for the primary dimension 

Item cluster Likelihoods Posterior summaries 

Quadrature          

Weights at  -2 -1 0 1 2    

      .054 .244 .403 .244 .054    

Summed score          

Likelihoods        at -2 -1 0 1 2    

        .310 .114 .022 .002 .000    

        .373 .269 .100 .016 .001    

        .237 .326 .233 .073 .010    

        .068 .204 .301 .192 .053    

        .010 .072 .230 .310 .186    

        .001 .013 .096 .282 .375    

        .000 .001 .019 .125 .375    

Unnormalized summed        Posterior summaries 

Score posteriors        at -2 -1 0 1 2                    

                   .017 .028 .009 .000 .000 .05 -1.14 .49 

                   .020 .066 .040 .004 .000 .13 -.79 .54 

                   .013 .080 .094 .018 .001 .20 -.42 .56 

                   .004 .050 .121 .047 .003 .22 -.02 .55 

                   .001 .018 .093 .076 .010 .20 .39 .54 

                   .000 .003 .039 .069 .020 .13 .81 .52 

                   .000 .000 .008 .030 .020 .06 1.21 .46 

 

Some Additional Comparisons 

Without the updated Lord-Wingersky algorithm, it may be tempting in practice to calibrate 

a test using a hierarchical item factor model (e.g., testlet model) to “handle” residual dependence, 

retain the general dimension slopes, and create a summed score to scaled score conversion table 

with the original unidimensional Lord-Wingersky algorithm. While this approach has a certain 

intuitive appeal, and the computation is simpler than the updated Lord-Wingersky algorithm, it is 

nevertheless going to lead to incorrect results. Failing to take into account the influence of 
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residual dependence (as indicated by the presence of specific dimensions) in IRT scoring can still 

lead to an overstatement of the degree of reliability of the instrument. Recent work by Ip (2010a, 

2010b), and Stucky, Thissen, and Edelen (2013) also highlight the effects residual dependence 

has on scaled scores and standard errors. 

Table 10 

Summed score to scaled score conversions based 

on primary dimension slopes only 

Summed 

scores 

Posterior summaries 

                   

    0.05 -1.29 0.40 

    0.13 -0.90 0.46 

    0.20 -0.47 0.46 

    0.22 -0.03 0.44 

    0.20 0.42 0.44 

    0.14 0.89 0.43 

    0.06 1.33 0.37 

 

Notably, the marginal reliability coefficient can become substantially overestimated. In the 

case of the illustrative example presented in the An Illustrative Example section,       is equal 

to 1 because the prior      is standard normal. Applying Equation (12) to results in Table 9, the 

marginal reliability of the scaled scores for the primary dimension   is equal to 0.47. On the 

other hand, if only the general dimension slopes in Table 4 are retained and standard Lord-

Wingersky algorithm is applied to obtain a one-dimensional summed score conversion table (as 

shown in Table 10), the marginal reliability of the scaled scores for summed scores becomes 

0.56, an almost 20% upward bias relative to the reliability estimate from the more appropriate 

scoring method. 

Furthermore, the estimates of scaled scores are also impacted. A comparison between 

Tables 9 and 10 shows that the posterior means become more extreme in general when the 

specific dimension slopes are ignored and the unidimensional scoring algorithm used. This is 

natural since the item intercepts and slopes are unstandardized parameters. When the (typically 

positive) specific dimension slopes are ignored and the intercepts remain untouched, the implied 

standardized threshold parameters becomes more extreme, leading to posteriors that are 

positioned more toward the extreme ends of the latent trait scale. 
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Additional Applications 

Besides summed score based IRT scoring tables, the updated Lord-Wingersky algorithm 

can be applied creatively to solve a test linking problem (see Thissen et al., 2011), to create score 

combination tables for mixed format tests, and to construct model fit test statistics. Discussed in 

this section are only selections of the new possibilities opened up by the updated algorithm. 

Calibrated Projection Linking 

Thissen et al. (2011) described a novel test linking method called calibrated projection that 

fuses simultaneous calibration with projection linking. The main advantage of calibrated 

projection is its ability to link two closely related (though not conceptually identical) scales in a 

single step that is entirely based on multidimensional IRT calibration. Thissen et al. (2011) 

illustrated the application of calibrated projection in health outcomes research, wherein a legacy 

instrument (PedsQL™ Asthma Symtoms Module) was projection linked onto the scale of the 

new Pediatric Asthma Impact Scale (PAIS). PAIS was built with IRT methods, whereas 

PedsQL™ was built with classical test theory methods, thus requiring the use of summed 

scoring. Producing a scoring cross-walk would enable the clinicians and researchers who already 

use PedQL™ to report scaled scores comparable to PAIS. 

As illustrated by Thissen et al.’s (2011) Tables 2 and 3, both instruments use 5-point 

ordered response scales suitable for the graded response model and each may be considered 

approximately unidimensional. PedsQL™ Asthma Symptoms Module contains 11 items and 

PAIS has 17. A multitude of additional differences between the two instruments implies that the 

more stringent requirements of concurrent calibration (e.g., equal construct) are probably not 

satisfied. Hence the weaker prediction/projection methods must be employed. 

At the core of calibrated projection linking is a multidimensional IRT model that has at 

least 2 correlated primary dimensions (   and   ), each measured by the respective instrument 

(PAIS and PedsQL™) with an independent cluster factor pattern. The correlation between    and 

   is estimated simultaneously with the item parameters. The multidimensional IRT model then 

produces scores (projected through the correlation) on the scale of one instrument (PAIS in this 

case) using only the responses to items from the other instrument (PedsQL™ Asthma Symptoms 

Module). This model, when depicted in a graph, resembles the bottom half of the path diagram 

shown in Figure 2. 
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Figure 2. Path diagram of a two-tier model for calibrated projection linking. The two primary dimensions are 

correlated at .96 and there are 6 item doublets. 

However, when the two instruments were considered together, strong local dependence 

emerged among 6 pairs of items. As it turns out, these 6 pairs of items have stem wording that 

are virtually identical. For example, item 13 of PAIS reads “I had asthma attacks,” and item 3 of 

PedsQL™ Asthma Symptoms Module reads “I have asthma attacks.” The 6 items in fact 

represent some of the best symptoms that are indicative of asthma’s impact. Consequently, 

Thissen et al. (2011) suggested including 6 orthogonal latent variables to account for the effects 

of local dependence. This model is depicted in Figure 2. It is formally a two-tier model with 

    primary dimensions and     specific dimensions. The two primary dimensions are 

assumed to be bivariate normal, standardized in each dimension, with an unknown correlation 

coefficient. Thissen et al. (2011) obtained a linking sample and estimated the correlation 

coefficient          as well as the item parameters for both instruments. 
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Table 11 

Item parameters for the 11 PedsQL™ items as input into the Lord-Wingersky 2.0 algorithm 

 Slopes  Intercepts 

Item                 4  5  6 1 2 3 4 

1 0 2.31 0 0 0 0 0 0 0.77 -0.56 -3.19 -5.50 

2 0 3.90 0 2.37 0 0 0 0 1.50 -1.05 -5.83 -8.24 

3 0 4.09 3.85 0 0 0 0 0 -2.04 -4.89 -9.10 -12.15 

4 0 1.70 0 0 0 0 0 0 -0.48 -1.20 -2.84 -3.68 

5 0 2.25 0 0 0 0 0 0 2.05 0.69 -2.14 -3.82 

6 0 2.63 0 0 0 0 0 2.52 4.44 2.17 -1.70 -4.08 

7 0 3.42 0 0 2.04 0 0 0 1.79 -0.65 -4.59 -7.02 

8 0 1.07 0 0 0 0 0 0 1.64 0.55 -1.29 -2.29 

9 0 3.11 0 0 0 0 1.66 0 -0.17 -1.88 -4.11 -5.82 

10 0 3.36 0 0 0 4.06 0 0 -1.91 -4.02 -7.34 -9.21 

11 0 2.19 0 0 0 0 0 0 0.14 -1.18 -3.44 -5.02 

 

Retaining the item parameters for PedsQL™ reported in Thissen et al. (2011), it is 

straightforward to apply the updated Lord-Wingersky algorithm. Table 11 shows the item 

parameters for the 11 PedsQL™ items. The slopes on the first general dimension   , 

representing PAIS, are all equal to zero here, indicating the absence of items that cross-load on 

both dimensions. The PAIS item slopes do not enter into the projection linking computations 

because only items from PedsQL™ are considered (along with the 0.96 prior correlation). The 

non-zero slopes for the 6 specific dimensions (   to  6) are what remain of the item doublet 

slopes after removing their counterparts among the PAIS items. 
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Figure 3. Bivariate contour plots showing 3 selected summed score posteriors for PedsQL™ Asthma Symptoms 
Module as well as the projected posteriors on the PAIS scale. 

For each summed score ሺݏ ൌ 0,… ,44ሻ on PedsQL™, the recursive algorithm produces a 

bivariate posterior for ߟଵ and ߟଶ. Figure 3 shows the bivariate normal approximations to 3 

selected posteriors, for summed scores 0, 20, and 44, overlaid on the gray contours representing 

the bivariate normal prior with an estimated correlation of 0.96. The x-axis of Figure 3 represents 

the PedsQL™ latent variable ሺߟଶሻ, whereas the y-axis represents PAIS ሺߟଵሻ, consistent with the 

notation in Figure 2. The marginal posteriors are also plotted, indicating that entire summed 

score posteriors are projected through the bivariate relation between ߟଵ and ߟଶ. The marginal 
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posteriors on the y-axis are of key interest. Their relative sizes indicate the model-implied 

summed score proportions. Their means and variances become scores and error variances on the 

scale of PAIS for each PedsQL™ summed score, corrected for local dependence. 

Score Combination 

Modern educational assessments are often made up of items of varying types. For instance, 

a test may consist of traditional multiple-choice (MC) items that are dichotomously scored, for 

which the classical 3-parameter IRT model may be useful, as well as items that require judge-

rated constructed responses (CR) or performance tasks that are subsequently analyzed using the 

graded response model (Samejima, 1969) or the generalized partial credit model (Muraki, 1992). 

When the MC items and the CR items measure the same latent construct and the test is 

approximately unidimensional, reporting a single combined score is a sensible approach. Rosa et 

al. (2001) proposed a score combination method that is based on the pattern of summed scores 

from the MC and CR sections. This is a convenient and practical approximation to the optimal 

(but more involved) scoring with the full response pattern. 

Specifically, let the summed score likelihoods for the MC section be         , and 

         , where     is the maximum summed score for the MC section. Similarly, let 

                   denote the summed score likelihoods for the CR section. Rosa et al. 

(2001) states that following summed score pattern posterior provides a basis for combining MC 

section score    with CR section score   : 

 
           

                      

                         
  

(22)  

To compute the posterior, Rosa et al. (2001) noted that one would have to apply the standard 

Lord-Wingersky algorithm to the two sections separately and then explicitly use Equation (22) to 

construct a two-way look-up table for each of the summed score patterns. 

If one regards the MC section as a testlet, and the CR section as another one, one may 

choose to rewrite Equation (22) as: 

 
           

                                      

                                             
  

(23)  

Note that the key condition for            in Equation (22) to be the same as Equation (23) is: 

                       and                       . In other word, the two are the same 

when items in both MC and CR sections do not depend on the specific dimensions    and   ; or, 

alternatively, when the item slopes on    and    are all equal to zero. The equivalence suggests 

that one does not need a specialized algorithm for implementing Rosa et al.’s (2001) scoring 
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combination method. One would simply have to set up a special bifactor model wherein all 

specific dimension slopes are constrained to zero and apply Version 2.0 of the Lord-Wingersky 

algorithm (outlined in this paper’s Lord-Wingersky Algorithm Version 2.0 section) to this 

bifactor model. Although the specific dimension slopes may be zero, the presence of the testlet 

structure enables the first stage of the updated Lord-Wingersky algorithm to accumulate the 

within-section summed score likelihoods separately. Instead of collapsing the section-specific 

summed scores as per Equation (21), the pattern of summed scores is used to compute a posterior 

for the primary dimension directly. 

Table 12 

Item parameters for the 20 Wisconsin 3rd grade reading items as input into the Lord-

Wingersky 2.0 algorithm 

 Multiple-choice items (3PL Model) 

 Slopes    

Item         Intercept Guessing  

1 1.02 0 0 0.72 0.20  

2 2.16 0 0 2.99 0.31  

3 2.29 0 0 2.72 0.22  

4 1.47 0 0 1.37 0.23  

5 2.29 0 0 0.92 0.23  

6 3.61 0 0 1.83 0.19  

7 2.05 0 0 1.12 0.23  

8 2.60 0 0 3.36 0.28  

9 1.47 0 0 1.36 0.20  

10 2.76 0 0 1.68 0.18  

11 1.88 0 0 1.84 0.22  

12 2.27 0 0 0.84 0.28  

13 1.46 0 0 1.11 0.20  

14 3.9 0 0 1.81 0.25  

15 1.56 0 0 0.14 0.26  

16 1.62 0 0 2.02 0.21  
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 Rated constructed response items (Graded Model) 

 Slopes  Intercepts 

Item         1 2 3 

1 0.87 0 0 4.29 2.48 -1.01 

2 0.93 0 0 4.15 1.33 -1.06 

3 1.31 0 0 4.47 2.31 0.69 

4 0.73 0 0 4.05 1.27 -1.63 

 

Table 13 

Summed score combination table computed by the updated recursive algorithm for the Wisconsin reading items 

Summed 

score for 

MC 

items 

Summed rated score for CR items 

0 1 2 3 4 5 6 7 8 9 10 11 12 

0 -3.28 -3.05 -2.84 -2.66 -2.50 -2.35 -2.22 -2.11 -2.01 -1.92 -1.85 -1.79 -1.73 

1 -3.23 -2.98 -2.77 -2.58 -2.42 -2.27 -2.13 -2.01 -1.91 -1.82 -1.75 -1.68 -1.62 

2 -3.17 -2.91 -2.69 -2.50 -2.32 -2.17 -2.03 -1.91 -1.80 -1.71 -1.63 -1.57 -1.51 

3 -3.10 -2.83 -2.59 -2.39 -2.22 -2.06 -1.92 -1.79 -1.68 -1.59 -1.51 -1.45 -1.38 

4 -3.01 -2.72 -2.48 -2.27 -2.09 -1.93 -1.79 -1.66 -1.56 -1.46 -1.38 -1.32 -1.25 

5 -2.90 -2.59 -2.34 -2.12 -1.94 -1.78 -1.64 -1.52 -1.42 -1.33 -1.25 -1.18 -1.12 

6 -2.75 -2.43 -2.16 -1.95 -1.77 -1.62 -1.49 -1.37 -1.27 -1.19 -1.11 -1.05 -0.99 

7 -2.55 -2.21 -1.95 -1.75 -1.59 -1.45 -1.33 -1.22 -1.13 -1.05 -0.98 -0.91 -0.86 

8 -2.29 -1.95 -1.71 -1.53 -1.39 -1.27 -1.16 -1.07 -0.98 -0.90 -0.83 -0.77 -0.72 

9 -1.94 -1.64 -1.44 -1.30 -1.18 -1.08 -0.99 -0.91 -0.83 -0.76 -0.69 -0.63 -0.57 

10 -1.54 -1.32 -1.18 -1.07 -0.98 -0.90 -0.82 -0.75 -0.67 -0.60 -0.53 -0.47 -0.41 

11 -1.15 -1.02 -0.93 -0.85 -0.78 -0.72 -0.65 -0.58 -0.51 -0.44 -0.37 -0.30 -0.23 

12 -0.83 -0.76 -0.70 -0.65 -0.59 -0.53 -0.47 -0.40 -0.33 -0.25 -0.18 -0.09 -0.01 

13 -0.57 -0.53 -0.49 -0.44 -0.39 -0.34 -0.28 -0.21 -0.13 -0.05 0.05 0.16 0.27 

14 -0.33 -0.30 -0.27 -0.23 -0.18 -0.13 -0.07 0.01 0.10 0.20 0.33 0.47 0.63 

15 -0.10 -0.08 -0.04 0.00 0.05 0.11 0.18 0.27 0.38 0.51 0.67 0.87 1.11 

16 0.15 0.18 0.21 0.26 0.32 0.39 0.48 0.59 0.72 0.89 1.11 1.37 1.70 

 

As a concrete example, consider the Wisconsin 3rd grade reading assessment items 

discussed in Rosa et al. (2001). There are altogether 20 items, 16 in the MC section (scored 0-1) 
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and 4 in the CR section (each has 4 score points). Using the item parameters reported by Thissen 

and Wainer (2001), one may set up a bifactor model with two empty specific dimensions (as 

shown in Table 12). Application of the updated Lord-Wingersky algorithm to the model in Table 

12 leads to a two-way table (Table 13) that (almost) reproduces Table 7.2 (p. 259) in Rosa et al. 

(2001) with any difference attributable to limited number of significant digits in the reported 

item parameters and numerical quadrature error. 

While the foregoing may be deemed a convenient trick for tests that are unidimensional, it 

does offer a degree of generality that Rosa et al.’s (2001) original method did not possess. That 

is, when the MC or CR sections demonstrate departures from unidimensionality (e.g., when there 

is testing mode effect for the CR items, and the specific slopes may not be exactly zero), the new 

algorithm will properly adjust the combined scaled score for residual dependence, requiring no 

new specialized implementation. 

Model Fit Evaluation 

As soon as summed score probabilities can be evaluated for unidimensional IRT models, 

researchers have explored their use in model fit diagnosis. Orlando and Thissen’s (2000) 

summed score likelihood based item fit statistic is one prominent example. Consider item 

        with    categories. Recall that the maximum summed score is still   ∑        
     

One may compute the “rest score” likelihoods, i.e., the summed score likelihoods based on all 

items except  . Let          ,              ), denote the rest score likelihoods for item  . 

For this item, the posterior probability for category   in rest score group   is 

        ∫                        
(24)  

The posterior probability for rest score group   is 

         ∫                 
(25)  

Therefore the model-implied probability of endorsing category   if the rest score is   can be 

computed as                      . The observed probability of endorsing category   if the 

rest score is   can be found by tabulating the calibration data. Let it be denoted as       . 

Orlando and Thissen (2000) noted that a Pearson-type statistic may be constructed as follows: 

 
    

              ∑        ∑
(             )

 

      (        )

    

   

        

   

  

(26)  

where         is the observed counterpart to        . They presented simulation evidence that the 

large sample distribution of     
  (at least in the dichotomous case) can be well approximated 
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by a central chi-square distribution with             degrees-of-freedom, where    is the 

number of freely estimated item parameters for item  . 

With the updated Lord-Wingersky algorithm, it is straightforward to generalize      to 

hierarchical item factor models. Some additional book-keeping is necessary, however, to fully 

utilize dimension reduction. Consider item   in cluster/testlet  . Let           denote the 

summed score likelihoods in terms of the primary dimensions  , accumulated over all item 

clusters other than cluster  .           is straightforward to compute by ignoring cluster   after 

stage 1 of the recursions is completed. Recall that    is the maximum within cluster score for 

cluster  .           is defined for           . Within cluster  , the summed score 

likelihoods without item   is denoted     
           . Note that the dependence on specific 

dimension is not yet integrated out of the likelihood, and     
            is defined for   

            . 

The posterior probability for category   in rest score group   is 

 
       ∫ ∑           

    

    

∫ ∑     
            

         

    

     

                               

(27)  

where           is an indicator function that is equal to 1 if and only if        , and 0 

otherwise. The inner summation is needed because it combines likelihoods from cluster   while 

enforcing the constraint that the rest score must be  , before the dependence on specific 

dimension   is integrated out. By analogy, the posterior probability for the rest score group   is 

 
        ∫ ∑           

    

    

∫ ∑     
            

         

    

                          

(28)  

Once the posterior probabilities are computed, they can be inserted into Equation (26) to evaluate 

a chi-square test statistic for item  . Li and Rupp (2011) examined a version of this index by 

simulation but did not discuss the recursive algorithm that is needed to compute      for 

hierarchical item factor models in full generality. 

Finally, the model implied summed score probabilities themselves, when compared against 

the observed probabilities, may be useful for diagnosing the ubiquitous latent variable normality 

assumption for the primary dimension in a testlet or bifactor model. While the idea itself is not 

new (see Ferrando & Lorenzo-seva, 2001; Hambleton & Traub, 1973; Lord, 1953; Ross, 1966; 

Sinharay, Johnson, & Stern, 2006), its use in hierarchical item factor models does require the 

new Lord-Wingersky algorithm (Li & Cai, 2012). 
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Discussion 

Hierarchical item factor models can relax some of the restrictive assumptions of 

unidimensional IRT models and they have been suggested as useful tools for educational and 

psychological measurement research and practice (Reise, 2012) in that they may better reflect the 

structure of measurement instruments. Their mathematical complexity, however, makes their 

routine use unrealistic. Importantly, scoring tests with bifactor/testlet/two-tier models can be 

computational involving and specialized software programs are required. Utilizing dimension 

reduction, an updated Lord-Wingerksy algorithm is proposed in this paper. This algorithm is 

computationally efficient even under a large number of latent factors. 

With the updated Lord-Wingersky algorithm, one may adopt a hierarchical item factor 

model in the test calibration stage and produce summed score conversions that are as convenient 

to use in practical settings as the original Lord-Wingersky method. The conversion tables are 

properly adjusted for the effects of residual dependence. To the end-user, the conversion tables 

eliminated the scoring complexities associated with the adoption of a multidimensional 

measurement model. Once the table is assembled, no specialized software is necessary for the 

end-user to reap the benefits of hierarchical multidimensional IRT modeling, thereby eliminating 

one of the key barriers to more wide-spread applications of hierarchical item factor models. In 

addition, the new algorithm serves as the basis of new test linking methods (calibrated 

projection), encompass traditional score combination approaches, and lead to new model fit 

diagnostic statistics. 
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