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Abstract
This paper investigates how the precision and stability of a teacher’s

value-added estimate relates to the characteristics of the teacher’s students.

Using a large administrative data set and a variety of teacher value-added es-

timators, it finds that the stability over time of teacher value-added estimates

can depend on the previous achievement level of a teacher’s students. The

differences are large in magnitude and statistically significant. The year-

to-year stability level of teacher value-added estimates are typically 25% to

more than 50% larger for teachers serving intially higher performing stu-

dents compared to teachers with initially lower performing students. In ad-

dition, some differences are detected even when the number of student ob-

servations is artificially set to the same level and the data are pooled across

two years to compute teacher value-added. Finally, the paper offers a policy

simulation which demonstrates that teachers who face students with certain

characteristics may be differentially likely to be the recipient of sanctions in

a high stakes policy based on value-added estimates and more likely to see

their estimates vary from year-to-year due to low stability.
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1 Introduction

Teacher value-added estimates are increasingly being used in high stakes deci-

sions. Many districts are implementing merit pay programs or moving toward

making tenure decisions based at least partly on these measures. It is important to

understand the chances that a teacher will be misclassified in a way that may lead

to undeserved sanctions.

Misclassification rates depend on the precision of teacher effect estimates,

which is related to a number of factors. The first is the number of students a

teachers is paired with in the data. Teachers that can be matched with more stu-

dent observations will tend to have more precise teacher effect estimates.

Another factor that can affect the precision of a teacher effect estimate is the

error variance associated with students in the teacher’s classroom. If the error vari-

ance is large, perhaps because the model poorly explains the variation in achieve-

ment or because the achievement measures themselves poorly estimate the true

ability level of a student, then the precision of a teacher effect estimate will be

low.

A question that seems to have lacked much attention is whether the precision

varies by the characteristics of the students a teacher faces. Tracking of students

into classrooms and sorting of students across schools means that different teach-

ers may face classrooms that are quite different from one another. If it is found

that teachers serving certain groups of students have less reliable estimates of

value-added than other teachers serving other students, then all else the same,
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the probability that a teacher is rated above or below a certain threshold will be

larger for teachers serving these groups. High stakes policies that reward or pe-

nalize teachers above or below a certain threshold will then, again all else the

same, impose sanctions or rewards on teachers serving these groups with a higher

likelihood.

There are some reasons for suspecting that the characteristics of students in a

classroom relates to the precision of teacher effect estimate. First, there could be a

relationship between the characteristics of a classroom and the number of students

linked to a teacher. This could be true because of a relationship between class size

and student characteristics, because of poor data management for schools serving

certain groups, or because of low experience levels for teachers serving certain

groups, which limit the number of years that can be used to estimate the teacher’s

value-added.

Also, heteroskedastic student level error can imply that teachers paired with

those students with large error variances may have less reliable teacher effect es-

timates. There is strong theoretical reason for supposing that the student level

error is heteroskedastic. Item response theory suggests that because test items are

typically targeted towards students in the center of the achievement distribution,

achievement tends to be measured less precisely for students in the tails. The het-

eroskedasticity is also quite substantial, and suggests that teachers paired with par-

ticularly high achieving or low achieving students may have less reliable teacher

effect estimates. In addition to heteroskedasticity caused by poor measurement,

it is also conceivable that the error variance for true achievement is different for
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different students.

In the remainder of the paper, we test for heteroskedasticity in the student level

error term. In addition, year-to-year stability coefficients, which are very similar

to year-to-year correlations, using a variety of commonly used value added esti-

mators are computed for teachers serving different groups of students. Year to

year stability coefficients for teachers with students in the bottom quartile, top

quartile, and middle two quartiles in classroom level prior achievement are com-

pared to one another.

A test of the homoskedasticity assumption easily rejects. Also, large and sta-

tistically significant differences in the stability coefficients among sub groups of

teachers are detected, and the differences persist even after the number of student

observations for all teachers is artificially created to be the same and when two

years of data are used to compute value added. In many cases, the year-to-year

stability coefficients are 25 to more than 50% larger in size for teachers serving

initially higher achieving students compared to teachers serving lesser achieving

and disadvantaged students.

This finding has several implications. For practitioners implementing high

stakes accountability policies, teachers serving certain groups of students may be

unfairly targeted for positive or negative sanctions simply because of the com-

position of their classroom and the variability this creates for their estimates. In

this paper, we produce simulation evidence that bears this out. In addition, the

heteroskedasticity makes it important for researchers and practitioners to make

standard errors heteroskedasticity robust. Also, heteroskedasticity is a potential
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source of bias for those using empirical Bayes value-added estimates, which as-

sume homoskedasticity.

2 Previous Literature

A few studies have examined the stability and precision of teacher effect esti-

mates. Aaronson et al. (2007) examined the stability of teacher effect estimates

using three years of data from the Chicago public school system. They find that

there is considerable inter-year movement of teachers into different quintiles of the

estimated teacher quality distribution, suggesting that teacher effect estimates are

somewhat unstable over time. They also find that teachers associated with smaller

number of student observations are more likely to be found in the extremes of the

estimated teacher quality distribution.

Koedel and Betts (2007) perform a similar analysis as Aaronson et al. (2007)

using two years of data from the San Diego public school system and also find

that there is considerable movement of teachers across quintiles.

McCaffrey et al. (2009) found year-to-year correlations in teacher value added

to be .2 to .5 for elementary school teachers and .3 to .7 for middle school teachers

using data from 5 county level school districts from the state of Florida from the

years 2000-2005. They find that averaging teacher effect estimates over multiple

years of data improves the year-to-year stability of the value-added measures.

This paper adds to the previous literature by specifically looking at whether the

stability of teacher effect estimates is related to the characteristics of the students
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assigned to the teacher.

3 Data

The data come from an administrative data set in large and diverse anonymous

state. It consists of 2,985,208 student year observations from years 2001-2007

and grades 4-6. Student-teacher links are available for value-added estimation.

Also, basic student information, such as demographic, socio-economic, and spe-

cial education status, are available. Teacher information on experience is also

available. The data include vertically scaled achievement scores in reading and

math on a state criterion referenced test. The analysis will focus on value-added

for mathematics teachers.

We imposed some restrictions on the data in order to accurately identify the

parameters of interest. Students who cannot be linked with a teacher are dropped,

as are students linked to more than one teacher in a school year in the same sub-

ject. Students in schools with fewer than 20 students are dropped, and students

in classrooms with fewer than 12 students are dropped. Districts with fewer than

1000 students are dropped to avoid the inclusion of charter schools in the analy-

sis, which may employ a set of teachers who are somewhat different from those

typically found in public schools. Characteristics of the final data set are reported

in Table 11.

The analysis presented later is done separately for 4th grade and 6th grade.

1These restrictions eliminated about 31.2% of observations in 4th grade and 19% in 6th grade
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This is done because the degree of tracking may be different in 6th grade from 4th

grade, which may cause differences in the year-to-year stability of value-added

estimates.

4 Model

The model of student achievement will be based on the education production func-

tion2, which is laid out in , Todd and Wolpin (2003), Harris et al. (2011), and

Guarino et al. (2012), among other places. Student achievement is a function of

past achievement, current student and class inputs, along with a teacher effect.

Aigt = τt + λ1Aig−1t + λ2A
alt
ig−1t +Xigtγ1

+X̄igtγ2 + Tigtβ + vigt (1)

with

vigt = ci + εigt + eigt − λ1eig−1t − λ2e
alt
ig−1t

where Aigt is student i’s test score in grade g and year t. τt is a year specific

intercept. Aaltig−1t is the test score in the alternate subject, which in the analysis

presented below is the reading score. Xigt is a vector of student level covari-

2The model shown includes a lagged score of the alternate subject, which isn’t necessary under
the assumptions typically made in deriving the regression model based on the education production
function. However, including this variable is common in practice, so we chose to include it as well.
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Table 1: Summary statistics
4th Grade

Variable Mean Std. Dev. Min. Max.
Math Scale Score 1543.377 240.699 581 2330
Reading Scale Score 1591.033 291.045 295 2638
Math Standardized Scale Score 0.103 0.947 -3.957 3.409
Reading Standardized Scale Score 0.105 0.928 -4.578 3.753
Black 0.208 0.406 0 1
Hispanic 0.224 0.417 0 1
Free and Reduced Price Lunch 0.486 0.5 0 1
Limited English Proficiency 0.173 0.378 0 1
Avg. Lag Math Score 1413.075 142.139 686.75 2066.737
Prop. FRL 0.496 0.28 0 1
Prop. LEP 0.17 0.213 0 1
Prop. Hispanic 0.218 0.245 0 1
Prop. Black 0.216 0.248 0 1
Students/Teacher 49.008 38.534 12 412
Teacher Years of Experience 8.902 8.887 0 47
# of Teachers 14,820
# of Schools 1,768

N 726,299

6th Grade
Variable Mean Std. Dev. Min. Max.

Math Scale Score 1701.841 232.71 569 2492
Reading Scale Score 1704.809 294.454 539 2758
Math Standardized Scale Score 0.092 0.913 -4.163 3.354
Reading Standardized Scale Score 0.071 0.928 -4.049 3.526
Black 0.224 0.417 0 1
Hispanic 0.223 0.416 0 1
Free and Reduced Price Lunch 0.476 0.499 0 1
Limited English Proficiency 0.174 0.379 0 1
Avg. Lag Math Score 1647.707 131.958 866 2097
Prop. FRL 0.496 0.259 0 1
Prop. LEP 0.172 0.205 0 1
Prop. Hispanic 0.214 0.234 0 1
Prop. Black 0.24 0.245 0 1
Students/Teacher 145.378 165.685 12 1036
Teacher Years of Experience 9.571 9.362 0 40
# of Teachers 5,323
# of Schools 796

N 773,849
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ates including free and reduced price lunch and limited English proficiency status,

gender, and race. X̄igt consists of class level covariates, including lagged achieve-

ment scores, class size, and demographic composition. Tigt is a vector of teacher

indicators. The teacher effects are represented in the β vector. ci represents a stu-

dent fixed effect. εigt represents an idiosyncratic error term affecting achievement.

eigt is measurement error in the test scores with ealtigt representing the measurement

error in the alternate subject score.

4.1 Estimation Methods

Teacher effects were estimated using two commonly used value-added estima-

tors.3

The first is a dynamic OLS estimator (DOLS)4, which includes teacher indi-

cators in an OLS regression based on equation (1). The estimator is refered to as

dynamic because prior year achievement is controled for on the right hand side.

The coefficients on the teacher indicator variables are interpreted as the teacher

effects. We run our models using one year of data and again using two years of

data. Because the effects of class average covariates are not properly identified in

a teacher fixed effects regression with only one year of data, these variables are

dropped from the DOLS regressions5. Additionally, when one year of data is used

3We have studied two more estimators based on a gain score equation. One estimator based
on teacher fixed effects, and another based on empirical Bayes. The patterns for these two other
estimators are similar to those reported for DOLS and EB Lag.

4This estimator was found to be the most robust of all the estimators evaluated in Guarino et
al. (2012)

5We have tried a two step method that can identify the effect of class average covariates in a
teacher fixed effects regression as a sensitivity check, and the results are similar. First, using the
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to estimate value-added, the year specific intercepts are dropped.

The second is an empirical Bayes estimator (EB Lag) which treats teacher ef-

fects as random. The estimator follows closely the approach laid out in Kane and

Staiger (2008). The parameters of the control variables are estimated in a first

stage using OLS, then unshrunken teacher effect estimates are formed by averag-

ing the residuals from the first stage among the students within a teacher’s class.

The shrinkage term is the ratio of the variance of persistent teacher effects to the

sum of the variances of persistent teacher effects, idiosyncratic classroom shocks,

and average of the individual student shocks6. Teacher effects are interpreted as

the shrunken averaged residuals for each teacher.

5 Heteroskedastic Error

There is good reason to suspect that the error in the student achievement model is

heteroskedastic. We will present some basic theory suggesting that measurement

error in test scores is heteroskedastic. Also, we will offer some possible reasons

pooled data with multiple years, equation (1) is estimated using OLS with teacher fixed effects
included. Then, a residual is formed.

wigt = Aigt − τ̂t − λ̂1Aig−1t − λ̂2Aalt
ig−1t −Xigtγ̂1 − X̄igtγ̂2 − f̂(experigt)

= Tigtβ + v̂igt

which is then used in a second stage regression to form teacher effects using a sample based on
1 year of data.

6It is common to treat the variance of the individual student shocks as uniform across the
population of students. In an effort to evaluate commonly used estimators, we also computed the
shrinkage term by using the same variance term for the student level shocks for all teachers. Under
heteroskedasticity, this shrinkage term would not be the shrinkage term used by the BLUP.
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why the error variance of actual achievement may be heteroskedastic.

5.1 Heteroskedastic Measurement Error

Item response theory is typically the foundation for estimating student achieve-

ment. A state achievement test is typically composed of 40-50 multiple choice

questions, or items. Each student can either answer a question correctly or incor-

rectly, and the probability of answering any individual question is assumed to be a

function of the item characteristics and the achievement level of the student. The

typical model of a correct response to an item assumes (See Reckase (2009) for

more details):

Prob(uij = 1|ai, bi, ci, θj) = ci + (1− ci)G(ai(θj − bi)

where uij represents an incorrect or correct response to item i by student j.

ai is a discrimination parameter, bi is a difficulty parameter, and ci is a guessing

parameter for item i. θj is the achievement level of student j. Often, a logit

functional form is assumed for G(·), although the probit functional form is also

used. In the case of the logit form we have:

Prob(uij = 1|ai, bi, ci, θj) = ci + (1− ci)
e(ai(θj−bi))

1 + e(ai(θj−bi))

Parameters can then be estimated using maximum likelihood or alternatively

using a Bayesian estimation approach. To illustrate why heteroskedasticity ex-

12



ists, we will focus on maximum likelihood estimation. Lord (1980), under the

assumption that the answer to each test item by each respondent is independent

conditional on θ, showed that the maximum likelihood estimate of θ has a variance

of:

σ2(θ̂|θ) =

( ∑n
i=1(ciai)

2 e(ai(θj−bi))

(1+e(ai(θj−bi)))2

)−1

where n is the number of items. As can be seen, the variance would be minimized

with respect to θ if θj − bi = 0 for all items, and as θj − bi approaches ±∞ , the

variance grows large.

Since test items are often targeted toward students near the proficient level,

in the sense that θj − bi is near 0 for these students, students in the lower and

upper tail often have noisy estimates of their ability. The intuition is that the test

is aimed at distinguishing between students near the proficiency cutoff, and so the

test offers little information for students near the top or bottom of the distribution.

Plots of the estimated standard deviation of the measurement error (SEM) on

the student’s test score level are shown below in Figure 1. The SEMs are on the

vertical axis and the student’s test score are on the horizontal axis for grades 3

through 6 for mathematics. The plots are from the 2006 State X Technical Report

on Test Characteristics. The measurement error variance is a function of the test

score level. Students in the extreme ranges of the test score distribution have a

measurement error variance that is substantially larger than in the center.

Also, it may be the case that some groups of students may be less likely to

answer all questions on the exam. As described in State X technical reports, test
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Figure 1: Standard Error of Measure Plots for Mathematics Grades 3- 6
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scores are computed for all students who answer at least 6 questions in each of 2

sessions. Students who answer only a fraction of the total number of questions on

the exam will tend to have less precisely estimated test scores.

A prediction of the theory presented above is that the error variance will be

related to all variables that predict current achievement. This is because the vari-

ance of the measurement error is directly related to the current achievement of

the student, so all variables that influence the current achievement level of the

student should also be related to the measurement error variance. In the test of

heteroskedasticity that follow, this is the pattern that emerges.

5.2 Other Possible Causes of Heteroskedastic Student Level

Error

In addition to heteroskedasticity generated from measurement, it is possible that

other sources of heteroskedasticity exist. Little literature exists on this topic, but

there are many potential causes, and we can only speculate on what they may be.

Some groups of students, such as those with low prior year achievement, may have

more variation in unobserved factors such as motivation, classroom disruptions,

neighborhood effects, family effects, or learning disabilities. In addition, students

who perform pooly on tests may tend to leave many questions blank or guess at

answers, and thus their scores from test to test may be more variable.

In the following sections, we test for heteroskedasticity empirically, and look

for possible differences in the error variance among groups. This serves to demon-
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strate that the theoretical worries are justified and can motivate some predictions

about how the precision of teacher effect estimates may depend on certain char-

acteristics of the their students.

6 Testing for Heteroskedasticity

Under homoskedasticity:

E(v2
ig|Zig) = σ2

v

where Zig are the covariates in the regression model. We implemented a sim-

ple test of the homoskedasticity assumption examining whether squared residuals

are related to student characteristics.

The first test simply grouped students into three groups: those with prior year

test scores in the bottom 25%, the middle 50%, and the top 25%. We then calcu-

lated the average squared residuals for each group of students. We used the resid-

uals from the DOLS regressions, which made use of teacher indicators. Results

are included in Table 2. One thing to note is that the average squared residuals

for the group of students in the bottom 25% in terms of prior year achievement

are much larger than those for the group of students in the top 25%. The average

squared residuals are around 45% larger for the bottom 25% compared with the

top 25% for 4th grade and more than twice as large for 6th grade, even though

under homoskedasticity, we would expect them to be similar. This is suggestive

that more unexplained variation exists for the group of students in the bottom 25%
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of the prior year achievement score.

Table 2: Average Squared Residuals for DOLS based on Subgroups of Prior Year
Class Average Achievement

Grade Overall Bottom 25% Middle 50% Top 25%

4th Grade 18644.722 28091.514 13665.164 19352.092
N 709302 174780 356821 177701

6th Grade 16395.069 29825.119 11574.907 12670.438
N 723292 179894 357843 185555

Next we regressed the squared residuals on the covariates as well as on their

squares and cubes. Results for grades 4 and 6 are reported in Table 3. We found

that several of the variables including the lagged test scores, as well as the indica-

tors for the student being African-American, free and reduced priced lunch, and

limited English proficiency status were statistically significant predictors at the

10% level.

Since the precision and stability of a teacher’s value-added measure depends in

part on how much unexplained variation there is in the student’s test scores, as will

be explained below, this suggests that teachers paired with large numbers of dis-

advantaged or low achieving students may have less precise teacher value-added

estimates. In the following sections, we will present evidence of this. Specifi-

cally, we will show that teachers of these types of students tend to have less stable

teacher effect estimates over time.
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Table 3: Tests for Heteroskedasticity

Grade 4 Grade 6
VARIABLES DOLS Squared Residuals DOLS Squared Residuals

Math Lag Score -91.60*** -176.5***
(5.357) (15.28)

Math Lag Score Squared 0.00705* 0.00709
(0.00396) (0.00939)

Math Lag Score Cubed 1.05e-05*** 1.57e-05***
(9.45e-07) (1.90e-06)

Reading Lag Score -45.76*** -55.68***
(2.772) (5.663)

Reading Lag Score Squared 0.0161*** 0.0173***
(0.00195) (0.00341)

Reading Lag Score Cubed 0.79e-07 -8.73e-07
(4.43e-07) (6.65e-07)

Black 293.8* 473.6**
(177.3) (205.2)

Hispanic -265.9* -272.0*
(154.7) (159.8)

FRL 540.6*** 1,104***
(114.9) (120.3)

LEP 1,249*** 711.8***
(190.7) (183.3)

Female -1,436*** -2,609***
(97.34) (114.0)

Class Size -54.90 41.06**
(35.78) (19.59)

Class Size Squared 1.124 -0.720***
(0.724) (0.266)

Class Size Cubed -0.00426 0.00300***
(0.00307) (0.000923)

Teacher Experience 63.93 -210.4*
(86.67) (107.4)

Teacher Experience Squared -0.758 23.46
(15.24) (18.33)

Teacher Experience Cubed -0.228 -1.205
(.975) (1.168)

Constant 134,184*** 262,361***
(2,472) (8,485)

Observations 709,302 723,292
R2 0.050 0.079
Joint Test 886.6 862.4
p-value 0 0

Standard errors clustered at school level in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Joint Test refers to F test statistic that all coefficients equal to 0
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In addition to the regressions presented in table 3, we performed the traditional

Breusch-Pagan test, using fitted values, for heteroskedasticity separately for grade

4 and 6 and using the DOLS estimators. The test easily rejects the null hypothesis

that the error is homoskedastic, with p-values for all grades and estimators less

than .0001.

7 Evidence of Differences in Classroom Composi-

tions

For there to be differences in the stability or the precision of teacher effect es-

timates due to student level heteroskedastic error, it is necessary for variation in

classroom compositions to exist. For particular districts or states with little varia-

tion in classroom composition, it is unlikely that there will be large differences in

the stability and precision of estimates due to heteroskedasticity. Also, there are

some variables, such as gender, in which there may be a relationship with the error

variance, but don’t impact the precision and stability of teacher effect estimates,

since there is little variation across classrooms with respect to the variables.

To show that there is variation in classroom composition with respect to cer-

tain variables across the state, we included a set of summary statistics in the mid-

dle panels of table 1 on classroom characteristics, which show that classrooms

vary in their characteristics along a number of dimensions. The average past year

math score of students in a class ranges from a score of 686.75 to 2066.737 for

grade 4 and 866 to 2097 for grade 6. The interval between classrooms 2 stan-
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dard deviations above the mean and 2 standard deviations below the mean is

[1128.797,1697.353] for grade 4 and [1383.791,1911.623] for grade 6. Addi-

tionally, the proportion free and reduced priced lunch, limited English proficiency

status, Hispanic, and African-American variables all range from 0 to 1.

8 Effects of Heteroskedastic Student Level Error on

Precision of Teacher Value-Added Estimates

8.1 Simple Model of Heteroskedasticity

This model is designed to show, in the simplest case, how heteroskedasticity in

the student level error can produce heteroskedasticity in teacher effect estimates.

In the model there are two types of students and two teachers that students can be

assigned to. The student types differ in the size of the student’s error variance.

The achievement equation model is:

Ai = T0iβ0 + T1iβ1 + εi

where Ai is the achievement level of student i, T0 and T1 are teacher assign-

ment indicator variables for the two teachers, teacher 0 and teacher 1, β0 and β1

are teacher effects for teacher 0 and teacher 1, and εi is an error term assumed to

be independent of teacher assignment.

Let the variable Si indicate which of the two student types the student belongs
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to and v0 < v1.

V ar(εi) = v0 if Si = 0

V ar(εi) = v1 if Si = 1

v0 < v1

In this simple case, an OLS estimate of the teacher effect for teacher k pro-

duces:

β̂k − βk =

( ∑N
i=1 T

2
ki

)−1( ∑N
i=1 Tkiεi

)
=

∑N
i=1 Tkiεi
Nk

= ε̄k

where ε̄k is the average error for the students that teacher k receives and Nk is

the number of student observations for teacher k.

Let’s suppose that each teacher has some students from S=0 and some from

S=1. And also that teacher 0 tends to get more students from group 0, and teacher

1 tends to get more students from group 1.

We can use the Central Limit Theorem for inference. According to Greene

(2008) (pg 1051, Lindeberg-Feller Central Limit Theorem with Unequal Vari-

ances) a central limit theorem result is possible as long as the random variables
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are independent with finite means and finite positive variances. Also, the average

variance, 1
Nk

(
∑Nk

i=1 σ
2
εik

), where Nk is the number of students for teacher k, must

not be dominated by any single term in the sum and this average variance must

converge to a finite constant, σ̄2
εk

as the number of students per teacher goes to

infinity.

σ̄2
εk

= lim
Nk→∞

1

Nk

(

Nk∑
i=1

σ2
εik

)

Assume that all of those conditions hold. In that case,

√
Nk(β̂k − βk)

d→ Normal(0, σ̄2
εk

)

and

Avar(β̂k) ≈
σ̄2
εk

Nk

In this simple example the average variance, σ̄2
εk

, for teacher 1 will tend to

be larger than teacher 0, since they have more students from S=1. Therefore the

asymptotic variance of the teacher effect estimate for teacher 1 will tend to be

larger.

8.2 Including other Covariates in Achievement Model

Adding in covariates along with the teacher indicator variables complicates the

result. In this case the achievement model is:
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Ai = T0iβ0 + T1iβ1 +Xiγ + εi

where Xi is a vector of covariates.

A well known result (see Wooldridge (2010)), is that the OLS estimate of the

teacher fixed effect for teacher k is:

β̂k − βk = Āk − X̄kγ̂FE − βk

= ε̄k − X̄k(γ̂FE − γ)

where Āk and X̄k are the class averages of achievement and the covariates,

and γ̂FE is the fixed effects estimator of γ. It’s straight forward to show that

Avar(β̂k) ≈
σ̄2
εk

Nk

+ X̄kAvar(γ̂FE)X̄ ′k

σ̄2
εk

Nk
will tend to be larger for teacher 1 than teacher 0. However, because of the

additional terms in the Avar(β̂k), it is not theoretically clear which teacher will

have the less precise teacher effect estimate when the relationships between the

covariates and the student types are unknown. Ultimately, whether teacher effect

estimates are less precise for some teachers is an empirical question. The impor-

tant point is that it is possible for some teachers to have less precise estimates due

to student characteristics, so it is worthwhile to check whether that is the case.
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9 Inter-year Stability of Teacher Effect Estimates

by Class Characteristics

Imprecision of teacher effect estimates has some important implications, espe-

cially for policies that use teacher value-added estimates to make inferences about

teacher quality.

The precision of a teacher effect estimate will affect how well that estimate

can predict the true teacher effect. If the estimated teacher effect is quite noisy,

then the estimate will tend to poorly predict the true teacher effect. This section

explains how examining the year to year stability of value-added estimates can

reveal important information about the measures for those intending to use them

for high stakes policies. The year to year stability is calculated by regressing the

value-added measure in year t on a value-added measure in a previous year. We

calculate seperate stability coefficients for teachers with classrooms in the bot-

tom 25%, middle 50%, and top 25% in terms of their students incoming average

achievement. Those wishing to skip the technical details may move on to the next

section.

Following McCaffrey et al. (2009), we can model a teacher effect estimate for

teacher j in year t as:

β̂jt = βj + θjt + vjt

where β̂jt is the teacher effect estimate, βj is the persistent component of the
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teacher effect, θjt is a transitory teacher effect that may have to do with a special

relationship a teacher has with a class or some temporary change in a teacher’s

ability to teach, and vjt is an error term due to sampling variation. The variance of

vjt will be related to the number of student observations used to estimate a teacher

effect and the error variance associated with the students in the particular teacher’s

class.

An important coefficient for predicting the persistent component of the teacher

effect using an estimated teacher effect, which is essentially what a policy to deny

tenure to teachers based on value added scores would be doing, is the stability

coefficient, as termed by McCaffrey et al. (2009). The stability coefficient for

teacher j is:

Sj =
σ2
β

σ2
β + σ2

θjt
+ σ2

vjt

Note that the stability depends on the variance of the error term vjt.

Assuming that the expectation of βj conditional on β̂jt is linear7 and that βj ,

θjt, and vjt are uncorrelated 8, then:

7If the conditional expectation function isn’t linear, then the algebra shown works for the linear
projection, which is the minimum mean squared error predictor among linear functions of the
estimated teacher effect

8This essentially implies that the teacher effect estimates are unbiased. There is some empirical
support for this assumption at least for the DOLS and EB Lag estimators. Kane and Staiger
(2008), Kane et al. (2013), and Chetty et al. (2011) both find that similar value-added estimators
are relatively unbiased. If the estimates are biased, then we are effectively evaluating the stability
of reduced form coefficients and not the causal effects of teachers on achievement. The estimators
evaluated are commonly used in practice and conceivably will be used as the basis for high stakes
policies, so it still may be of interest to know how they vary from year-to-year.
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E(βj|β̂jt) = α +
Cov(β̂jt, βj)

V ar(β̂jt)
β̂jt = α +

σ2
β

σ2
β + σ2

θjt
+ σ2

vjt

β̂jt = α + Sjβ̂jt

and then also assuming that θjt and vjt are mean zero, we get:

E(βj|β̂jt) = (1− Sj)µβj + Sjβ̂jt

where µβj is the mean of βj . So the weight that β̂jt receives in predicting

βj is related to the stability coefficient. If the stability coefficient is small, then

the estimated teacher effect receives little weight in the conditional expectation

function and is of little use in predicting βj .

The stability coefficient can be estimated by an OLS regression of current

year teacher value-added estimates on past year estimates of teacher value-added

and a constant. This does impose the additional assumption that the variances of

θjt and vjt are constant over time and that the transitory teacher effect and error

terms are uncorrelated over time. In that case the OLS estimates are estimating

the population parameter:

Cov(β̂jt−1, β̂jt)

V ar(β̂jt−1)
=

σ2
βj

σ2
βj

+ σ2
θjt−1

+ σ2
vjt−1

= Sj

Since the variance of the teacher effect estimates tends to be constant over

time, the regression coefficient is nearly identical to the inter-year correlation co-

efficient.
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The stability coefficient will be estimated for different subgroups of teachers

based on the characteristics of the students a teacher receives. Specifically, the

stability will be computed for teachers that received classes in the bottom 25%,

middle 50% and top 25% of classroom average prior test score in both years t

and t − 1. If the variance of vjt differs across subgroups of teachers, then the

stability and the degree to which the estimate predicts the true teacher effect will

also differ.

Another ratio may be of interest. Following McCaffrey et al. (2009) once

again, the reliability of a teacher effect estimate, denoted as Rjt, is:

Rjt =
σ2
β + σ2

θjt

σ2
β + σ2

θjt
+ σ2

vjt

It may be of interest to know how much a teacher affected student learning in

a given year. This may be the case in a merit pay system, for instance. In this

case, we would be interested in the expected value of βj + θjt conditional on the

estimated teacher effect in year t. Using similar assumptions as before:

E(βj + θjt|β̂jt) = (1−Rjt)µβ +Rjtβ̂jt

Under an additional assumption that variance of βj and θjt do not vary across

subgroups, then the stability of teacher value added estimates will be proportional

to the reliability. This is simply because:

Rjt =
σ2
β + σ2

θjt

σ2
β

Sj
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9.1 Brief Overview of the Analysis

Given that there may be differences in the degree of tracking or sorting in elemen-

tary and middle schools, the analysis is done separately by grade. Additionally,

since it may be that teachers of certain types of classrooms are less experienced,

and this may affect the year-to-year stability of the teacher’s value-added estimate,

the teacher’s level of experience is controlled for in the regressions by creating

seperate dummy variable for each possible year of experience and including each

of those variables in the regressions.

The estimates for the different subgroups were computed by an OLS regres-

sion of the current year value-added estimate on the lagged teacher value-added

estimate interacted with a subgroup indicator variable, a subgroup specific in-

tercept, and an indicator for the teacher’s level of experience. The regression

equation is:

β̂jt =
3∑
g=1

αg1{subgroupjt = g}+
3∑
g=1

γgβ̂jt−11{subgroupjt = g}

+
M∑
τ=1

ζτ1{experjt = τ}+ φjt

where β̂jt is teacher j’s value added estimate in year t, subgroupjt is a variable

indicating the teacher’s subgroup, and experjt is the teacher’s experience level.

The γg parameters are the parameters of interest in the analysis. One way to think

about them is as a group specific autoregressive coefficient for a teacher’s value-
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added score, and they are quite similar to group specific year-to-year correlations

in value-added.

The advantage of the regression based approach over calculating year-to-year

correlations is that it is much easier to calculate test statistics using conventional

regression software. In the following sections, we will test whether the year-to-

year stability of teacher value-added estimates for different subgroups are statisti-

cally different from one another.

The analysis is also repeated for each grade with the number of student obser-

vations artificially set to be equal. Since the precision of estimates for a teacher

depends on both the number of student observations and the degree of variation

in the student level error, it is of interest to identify the separate effects of these

two sources of variability in teacher effect estimates. In order to make the number

of student observations equal for all teachers, first all teachers with less than 12

student observations were dropped. Then for those teachers with more than 12

student observations, students are randomly dropped from the classroom until the

the number of student observations is 12 for all teachers 9. To give an example,

suppose a teacher has 20 students in a class, then 8 of the students are randomly

dropped, so that the teacher’s value-added estimate is based on the scores of only

12 students.

First, results will be reported in which all teacher effects are estimated using

only one year of data. Then, the analysis will be reported using two years of

9We have also done the analysis where the number of observations is set to 15 and 20, and the
general patterns reported are the same.
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data for each teacher. When two years of data are used to compute value-added

the groupings into bottom 25%, middle 50%, and top 25% are based on the two

year average of prior year test score within the teacher’s classrooms. This then

averages over the same sample of students used to compute the two year value-

added measures.

In the case of the estimates based on two years of data, the teacher effect

estimate for year t will be estimated using years t and t − 1. The stabilities are

computed by regressing the value-added estimate for year t on year t− 2. This is

done so that the years in which teacher effects are estimated do not overlap, which

will avoid sampling variation or class level shocks affecting both estimates.

10 Results on the Stability of Teacher Effect Esti-

mates by Subgroup

The inter-year stabilities for subgroups of teachers based on the average past year

score of the students in the class are reported below10. We perform separate tests

for whether the estimates for the middle 50% and top 25% statistically differ from

the bottom 25%. Also, a joint test that the estimates for the middle 50% and top

25% are both statistically different from the bottom 25% is reported.

Although there is variation in what is statistically significant across grades

10We have also examined whether the inter-year stability differs when classrooms are grouped
according to proportion free-and-reduced price lunch, proportion Hispanic, and proportion
African-American. We found that teachers in classrooms with high proportions of minority and
low-income students also have lower inter-year stabilities. Results are available upon request.
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and estimators, a few patterns do emerge. The stability ratio tends to be highest

for teachers facing classrooms in the middle 50% and top 25% in average lagged

score compared to teachers in the bottom 25%. The stability ratio is typically 25

to over 50% larger for teachers with classrooms in the middle 50 and top 25%.

This pattern is true even after the number of student observations is fixed at 12

and in some cases when 2 years of data are used to compute value-added.

10.1 DOLS Stabilities

Tables 4 shows the results for the DOLS estimator. Results for 4th grade and 6th

grade are shown separately. The left panels show the DOLS teacher value-added

estimates when the data is based on only one year of data. The right panel are

based on estimates with two years of data. Within each panel, results labeled

“Unrestricted Obs” are based on teacher value-added estimates that use all the

available student observations in a year. Results labeled “12 Student Obs” are

based on only 12 randomly chosen student observations in each year. For the two

year results, the results reported under the “12 Student Obs” column are based on

12*2=24 student observations. Standard errors are clustered at the school level

11. A “+” symbol indicates that the middle 50% (or top 25% as the case may be)

coefficient is statistically different from the bottom 25% at the 5% level.

11We have also tried clustering at the teacher level, but the school level standard errors were
more conservative, so we chose to report those.
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Table 4: Estimates of Year to Year Stability for DOLS by Subgroups of Class
Achievement

DOLS 4th grade

1 Year of Data 2 Years of Data
Unrestricted Obs 12 Student Obs Unrestricted Obs 12 Student Obs

Bottom 25% 0.359*** 0.308*** 0.551*** 0.465***
(0.0277) (0.0266) (0.0437) (0.0449)

Middle 50% 0.483***+ 0.392***+ 0.646*** 0.578***+
(0.0181) (0.0180) (0.0325) (0.0315)

Top 25% 0.555***+ 0.471***+ 0.730***+ 0.660***+
(0.0255) (0.0246) (0.0495) (0.0485)

Observations 8,124 7,650 2,735 2,527
R2 0.227 0.165 0.357 0.298
Joint Test 14.70 10.14 3.677 4.436
p-value 4.81e-07 4.27e-05 0.0257 0.0121

DOLS 6th grade

1 Year of Data 2 Years of Data
Unrestricted Obs 12 Student Obs Unrestricted Obs 12 Student Obs

Bottom 25% 0.534*** 0.356*** 0.812*** 0.574***
(0.0452) (0.0476) (0.0588) (0.0756)

Middle 50% 0.619*** 0.401*** 0.717*** 0.560***
(0.0209) (0.0247) (0.0447) (0.0485)

Top 25% 0.665***+ 0.479***+ 0.711*** 0.575***
(0.0263) (0.0310) (0.0403) (0.0508)

Observations 4,290 3,772 1,506 1,359
R2 0.481 0.288 0.642 0.445
Joint Test 3.684 3.233 1.193 0.0274
p-value 0.0256 0.0401 0.304 0.973
All regressions include lagged math and ELA test scores, indicators for Black, Hispanic, free and reduced
price lunch, limited english proficiency, female, and year dummies. Standard errors clustered at school level
in parentheses

*** p<0.01, ** p<0.05, * p<0.1
+ Indicates value statistically different from Bottom 25% at 5% level

Joint Test: F-test statistic that Middle 50 % and Top 25 % coefficients different from Bottom 25%
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10.1.1 4th Grade Results

In 4th grade, the stability for teachers with classes in the bottom 25% of prior year

achievement is .359, and the stabilities for the middle 50% and top 25% are .483

and .555 respectively when the number of student observations is unrestricted.

The coefficients for the middle 50% and top 25% statistically differ from the coef-

ficient for the bottom 25% at the 5% level. The patterns are quite similar once the

number of student observations is fixed at 12, although predictably the estimates

are somewhat smaller, since in the unrestricted case each teacher’s value-added

estimate is based on at least 12 observations. The stability for the bottom 25% is

.308 while the stabilities for middle and top are .392 and .471 respectively and are

statistically different from the bottom. Additionally, in both the unrestricted and

restricted to 12 observations cases, the joint test that both the middle 50% and top

25% coefficients differ from the bottom rejects comfortably at the 5% level.

For the cases in which two years of data are used, the stability is calculated

using four years of data. The teacher effect estimate in year t, which uses data

from year t and t− 1, is regressed on the teacher effect estimate from year t− 2,

which uses years t−2 and t−3. For a teacher to be included in one of the quartile

groupings, the teacher had to have a two-year average prior year achievement

score in that quartile range for years t and t − 2. This dramatically reduced the

sample of teachers available to compare.

When two years of data are used to estimate teacher value-added in 4th grade

the stability for teachers with classes in the bottom 25% increase to .551 and to

.646 and .730 for the middle and top, respectively, in the unrestricted observations

33



case. The difference between the coefficients for the top and bottom is statistically

significant at the 5% level. The point estimate for the middle 50% is larger than

the bottom 25%, but the difference between the two is not statistically significant

at the 5% level. The joint test that top or the middle coefficient differs from the

bottom is significant at the 5% level. When the number of student observations

per year is fixed at 12, the point estimates in the case of the middle and top are

larger than the bottom, and both are statistically different from the bottom. The

joint test that either the middle or top is different from the bottom also rejects.

10.1.2 6th Grade Results

The results for 6th grade are broadly similar to 4th grade using one year of data.

With one year of data and unrestricted observations the stabilities tend to be higher

than in 4th grade. This is likely due to 6th grade teachers having more student

observations per year. In this case, the stabilities are .534, .619, and .665 for the

bottom, middle, and top respectively. The tests for whether the top stabilities are

different from the bottom rejects, while the test for the middle 50% does not. The

joint test also rejects. When 12 student observations are used, the stabilities are

.356, .401, and .479, respectively, for the bottom, middle, and top. Once again the

test that the top and bottom differ and the joint test rejects, while the test that the

middle differs from the bottom does not.

In the case of two years of data, none of the estimates statistically differ from

one another in either the case of unrestricted observations or the case restricted to

12 student observations.
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10.2 EB Lag Stabilities

The results for the empirical Bayes estimates can be found in Table 5 and are

quite similar to those for the DOLS estimates. One difference between the em-

pirical Bayes and DOLS specifications is that the regressions corresponding to

the empirical Bayes estimates include classroom aggregates of the individual co-

variates, since this is often one of the justifications for using this approach over

DOLS12.

In the case of one year of data and 4th grade, the stability estimates are .361,

.483, and .551 for the bottom 25%, middle 50%, and top 25%, respectively, in the

unrestricted observations case. In the case where the number of student observa-

tions is set to 12, the stability estimates are .309, .391, and .461 respectively. In

both cases, the middle 50% and top 25% estimates are statistically significantly

different from the bottom 25%. The estimates are very similar to the DOLS case.

In the two year case in 4th grade, the pattern is again fairly similar to the

DOLS results. When the number of observations is unrestricted, only the top and

bottom 25% stabilities are statistically from one another. The p-value of the joint

test is .0511, however. When the number of observations is restricted to 12, the

estimates are .476, .584, and .657, respectively. The difference between the top

25% and bottom 25% coefficients is statistically at the 5% level. The joint test

rejects at the 5% level as well.

In 6th grade with one year of data, the only statistically significant difference

12We have also included class aggregates in the DOLS regressions, and the results do not change
much. Estimates of the class level aggregates were identified for DOLS using the two step ap-
proach described previously.
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Table 5: Estimates of Year to Year Stability for EB Lag by Subgroups of Class
Achievement

EB Lag 4th grade

1 Year of Data 2 Years of Data
Unrestricted Obs 12 Student Obs Unrestricted Obs 12 Student Obs

Bottom 25% 0.361*** 0.309*** 0.571*** 0.476***
(0.0278) (0.0269) (0.0445) (0.0459)

Middle 50% 0.483***+ 0.391***+ 0.659*** 0.584***
(0.0183) (0.0180) (0.0341) (0.0318)

Top 25% 0.551***+ 0.461***+ 0.733***+ 0.657***+
(0.0254) (0.0246) (0.0497) (0.0491)

Observations 8,124 7,650 2,735 2,527
R2 0.220 0.157 0.352 0.291
Joint Test 13.80 8.813 2.985 3.697
p-value 1.16e-06 0.000158 0.0511 0.0252

EB Lag 6th grade

1 Year of Data 2 Years of Data
Unrestricted Obs 12 Student Obs Unrestricted Obs 12 Student Obs

Bottom 25% 0.548*** 0.354*** 0.814*** 0.583***
(0.0433) (0.0482) (0.0497) (0.0702)

Middle 50% 0.614*** 0.385*** 0.717*** 0.551***
(0.0199) (0.0247) (0.0432) (0.0481)

Top 25% 0.650***+ 0.457*** 0.714*** 0.561***
(0.0267) (0.0318) (0.0405) (0.0529)

Observations 4,290 3,772 1,506 1,359
R2 0.437 0.224 0.610 0.387
Joint Test 2.492 2.402 1.558 0.0715
p-value 0.0835 0.0913 0.212 0.931
All regressions include lagged math and ELA test scores, indicators for Black, Hispanic, free and reduced
price lunch, limited english proficiency, female, class averages of all preceding varianbles, class size, a
quadratic function of experience, and year dummies. Standard errors clustered at school level in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
+ Indicates value statistically different from Bottom 25% at 5% level

Joint Test: F-test statistic that Middle 50 % and Top 25 % coefficients different from Bottom 25%
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at the 5% level is between the top 25% and bottom 25% in the unrestricted case,

with point estimates of .650 for the top and .548 for the bottom. In the case of 2

years of data, no statistically significant differences are detected.

11 Sensitivity Checks

We performed a number of sensitivity checks. All of them support the conclusion

that differences exist in the inter-year stabilities across sub-groups.

We performed the analysis using English language arts scores and found sim-

ilar patterns as mathematics. The teachers assigned to students in the bottom 25%

tended to have less stable value-added scores from year to year. One thing inter-

esting to note is that English language arts value-added scores tended to be less

stable from year-to-year overall compared to mathematics. This finding is consis-

tent with the findings reported in the MET project reports.

Since it conceivable that teachers of students with low average prior achieve-

ment scores are inexperienced and inexperienced teachers also have lower inter-

year stabilities, the analysis was repeated dropping all teachers with less than 5

years of experience. However, the teacher’s experience was controlled for in the

regression of the teacher’s current value-added score on their prior value-added

score specifically to account for this issue, and the patterns described above were

very similar to those seen in this sensitivity check as expected.

As an additional sensitivity check, we repeated the analysis with school dum-

mies. We were still able to detect statistically significant differences in inter-year
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stabilities across sub-groups.

We tried estimating the empirical Bayes estimates using an alternate estima-

tor. In the alternate estimator, we estimated the model parameters using a mixed

effects estimator that treated the teacher effects as random. These results were

very similar to the empirical Bayes approach outlined above that was based on the

approach taken in Kane and Staiger (2008).

Also, we used twice lagged reading and math scores as instruments for the

once lagged reading and math scores to help account for measurement error in

these variables as another sensitivity check. Again, statistically significant differ-

ences were found in the stabilities across sub-groups.

Finally, we performed the analysis separately for the six largest school districts

in the state. The general patterns held. In a majority of the cases, the stability

coefficient was estimated to be the smallest in the case of the bottom 25%. In

no case was the stability coefficient of the middle 50% or top 25% statistically

significantly smaller than the bottom 25%. In some districts, the teachers with

classrooms in the middle 50% had the largest year-to-year stability, while in others

the top 25% had the largest year-to-year stability. In one case the year to year

stability of the bottom 25% was the largest, but it wasn’t statistically significantly

so. The estimates were quite noisy when the sample was separated in this way, so

it is not clear whether this reflected real differences across districts or not. It seems

possible that in different context the group of teachers that has the largest year-

to-year stability could differ. However, our main takeaway is that some groups of

teachers have less stable value added estimates from year-to-year.
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Tables for all of these sensitivity checks are available upon request.

12 High Stakes Policy Simulation

There is an increasing push to use value-added estimates for high stakes decisions

such as tenure or merit pay bonuses. Since the precision and stability of a teacher’s

value-added estimate is related to the makeup of the teacher’s class, it may be

the case that the teachers serving certain groups of students may be more likely

receive a sanction or bonus.

In order to examine this, we produced a simulation in which high stakes deci-

sions are made based upon value-added scores, and teachers differ in the stability

of their value-added estimates. We base the stability level of the measure of value-

added on the results we found in the previous sections. Each teacher is ranked and

flagged if they are in the bottom or top 10% according to their teacher value-added

score. We then calculate the proportion of teachers associated with each stability

level that are labeled as either in the bottom or top 10%.

The simulation consists of 300 teachers and 3 stability levels. 100 teachers are

assigned to each stability level. The true teacher effects are normally distributed

and have a mean of 0 and a variance of 1. The “estimated” teacher effects have

estimation error added that is normally distributed with mean 0, and the variance

depends on the stability level of the teacher.

Two sets of stability levels were chosen. The first corresponds to the DOLS

estimates in 4th grade with 12 student observations and one year of data, with
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stabilities of .308, .392, and .471. The second corresponds to the DOLS estimates

in 4th grade with 12 student observations and 2 years of data, with stability levels

of .465, .578, and .660.

We calculate the average proportion of teachers associated with each stability

level over the 5000 reps. Results are included in Table 6. The results from the

simulation using the DOLS estimates in 4th grade with 12 student observations

and one year of data can be found in the upper panel. For teachers associated with

the stability of .308, which was the stability associated with teachers of classrooms

in the bottom 25% in the analysis above, the proportion found in the bottom or top

10% was .249. When the stability level was .392 the proportion dropped to .195,

and when the stability went to .471, the proportion fell to .156. This last drop was

nearly a 10 percentage point change from the lowest stability. The results using

two years of data show a similar pattern and can be found in the bottom panel.

Teachers associated with the lowest stability have a proportion of .243. Teachers

associated with stabilities of .578 and .660, which were associated with students

in the middle 50% and top 25%, respectively, were found in the bottom or top

10% of the estimated teacher quality distribution at a proportion of .193 and .164

respectively. This represents an almost 8 percentage point drop for the latter.

The simulation results indicate that the differences in stability levels found in

this analysis can have a large impact on the likelihood that a teacher finds his or

herself in the top or bottom of the estimated teacher quality distribution.
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Table 6: High Stakes Policy Simulation

Simulation 1: DOLS Stability, 4th Grade, 12 Student Obs, 1 year of Data

Stability Error Variance of
VAM Estimate

Proportion Found in Bottom or Top 10%

.308 2.247 .249

.392 1.551 .195

.471 1.123 .156

Simulation 2: DOLS Stability, 4th Grade, 12 Student Obs, 2 years of Data

Stability Error Variance of
VAM Estimate

Proportion Found in Bottom or Top 10%

.465 1.151 .243

.578 .730 .193

.660 .515 .164

Simulations results are based on 5000 Monte Carlo repetitions. There are 100 teachers per type. True teacher
effects are distributed Normal(0,1). Error in the value-added measures is normally distributed with mean 0
and a variance listed in the “Error Variance of VAM Estimate” column.
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13 Conclusion

This paper provides evidence that the variability and stability of teacher effect

estimates depends on the characteristics of a teacher’s class. Policies to deny

tenure to teachers and policies designed to reward teacher performance in a given

year, which are based on teacher value-added estimates, may differentially impact

teachers with certain types of students.

The relationship between the stability of estimates and the classroom charac-

teristics of students extends beyond the number of student observations. There is a

strong theoretical reason for suspecting that a student’s error term is heteroskedas-

tic and statistical tests bear this out. As a consequence of this and student tracking

and sorting into schools, teachers will serve different groups of students and have

differences in the precision of their teacher effect estimates as a result. The dif-

ferences in the stability ratios are large in magnitude and statistically significant

even after fixing the number of student observations to a constant.

Also, some evidence is presented that the relationships remain even as more

observations are added. When two years of data are used, there still exist statisti-

cally significant and large differences for different subgroups of teachers.

The heteroskedasticity is likely due in part to heteroskedastic measurement

error variance. Assuming the item response model is correct, heteroskedastic

measurement error is a direct result of the maximum likelihood estimation pro-

cedure which produces estimates of the achievement level of each student. The

patterns that teachers of students with lagged achievement scores in the middle of
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the achievement distribution tend to have the highest inter-year stabilities is con-

sistent with heteroskedasticity caused by the measurement error, although teach-

ers with students in the top 25% also tend to have more stable estimates. One

reason the top and bottom may be different is that there may be greater potential

for guessing or item non-response for students at the bottom of the distribution. It

may be possible to reduce the heteroskedasticity by improving measurement. Fu-

ture work will hopefully explore how much of the heteroskedasticity is attributable

to measurement.

Heteroskedastic student level error also has other implications for researchers

and policymakers. Empirical Bayes estimators are commonly computed assuming

homoskedastic student level error. This assumption does not seem to be true, and

since there are large differences in stability ratios that appear to be driven by het-

eroskedasticity, the violation of this assumption may impact the teacher rankings

that are created using the empirical Bayes estimators. Allowing heteroskedasticity

in the student level error should be done if possible.

Additionally, it is quite common for standard errors and the corresponding

confidence intervals to be based on a homoskedasticity assumptions13. It is im-

portant that the confidence intervals accurately reflect imprecision caused by all

sources of variability, not just the number of student observations, so standard

errors should at least be made heteroskedasticity robust. This is particularly im-

portant since the teacher value-added estimates are being made publicly available

13Ballou et al. (2004) assume homoskedasticity in computing standard errors, as does the value-
added estimator employed by the NYC school district
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in some school districts.

It is important to understand the limitations of any measure of performance.

The analysis presented here does suggest that for all subgroups value-added mea-

sures do have positive inter-year stabilities, so information can be gathered for all

subgroups of teachers. However, teachers of certain groups of students will tend

to have less precise and less stable teacher value-added estimates. As a result of

this, it is the opinion of the authors that care should be used in evaluating teachers

using value-added estimators and value-added estimates should not be used as the

sole basis of any high stakes policy involving teachers.
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