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Abstract 

The main purposes of this study were to test the effects of teaching at-risk 4th graders to provide 

explanations for their mathematics work and examine whether those effects occur by 

compensating for limitations in cognitive processes. We randomly assigned 212 children to 3 

conditions: a control group and 2 variants of a multi-component fraction intervention. Both 

intervention conditions included 36 sessions, each lasting 35 min. All but 7 min of each session 

were identical. In the 7-min component, students were taught to provide high quality 

explanations when comparing fraction magnitudes or to solve fraction word problems. Children 

were pretested on cognitive variables and pre/posttested on fraction knowledge. On accuracy of 

magnitude comparisons and quality of explanations, children who received the explaining 

intervention outperformed those in the word-problem condition. On word problems, children 

who received the word-problem intervention outperformed those in the explaining condition. 

Moderator analyses indicated that the explaining intervention was more effective for students 

with weaker working memory, while the word-problem intervention was more effective for 

students with stronger reasoning ability.  

Key words: supported self-explaining, fractions, intervention, moderator, working memory, 

reasoning  
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Supported Self-Explaining during Fraction Intervention 

Competence with fractions is important for advanced mathematics learning and success 

in the American workforce (National Mathematics Advisory Panel [NMAP], 2008; Geary Hoard, 

Nugent, & Bailey, 2012; Siegler et al., 2012). Yet understanding about fractions and skill in 

operating with fractions are difficult for many students (National Council of Teachers of 

Mathematics, 2007; NMAP; Ni, 2001). The NMAP therefore assigned high priority to improving 

fraction instruction. The focus of the present study was on the effects of intervention to enhance 

at-risk learners’ performance on fractions at fourth grade. Our main purposes were to isolate the 

effects of intervention focused on teaching children to explain why fractions differ in magnitude 

and to examine whether effects accrue by compensating for limitations in cognitive processes.  

In this introduction, we describe why teaching children to provide high quality 

explanations may enhance understanding of the explained content and provide a rationale for the 

supported self-explaining approach we took. We also discuss how self-explaining without such 

scaffolding can be cognitively demanding and why the approach we took may compensate for 

limitations in the cognitive resources many children with histories of poor mathematics learning 

experience. Finally, we describe the theoretical orientation of the multi-component intervention 

program in which our explaining intervention component was embedded.  

Explaining Why Fractions Differ in Magnitude 

A major purpose of the present study was to isolate the effects of intervention teaching 

children to provide sound explanations regarding a critical indicator of fraction understanding: 

comparing fraction magnitudes. Three types of self-explaining are described in the literature. 

Spontaneous self-explaining occurs when learners generate explanations for the to-be-learned 

material without being prompted to do so. A large literature demonstrates that individuals who 

spontaneously engage in self-explaining experience superior learning (e.g., Chi & Van Lehn, 

1991; Siegler, 2002). However, not all learners spontaneously engage.  
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With elicited self-explaining, learners are prompted to invent explanations. Enhanced 

learning with elicited self-explaining can occur across a range of ages and domains, but results 

are mixed. In the most pertinent experiment, Rittle-Johnson (2006) provided insight for the 

inconsistency in findings. In one instructional session, she focused on whole-number 

mathematical equivalency problems with typically-achieving third through fifth graders. 

Prompting learners to self-explain promoted procedural accuracy more than a no-explanation 

condition. Yet, self-explaining did not produce more sophisticated procedures or understanding, 

perhaps because children’s self-explanations rarely included a conceptual focus (even though 

students had been instructed to explain why solutions work). Instead, they tended to state 

whether an answer was correct or describe procedures to obtain answers. Their self-explanations 

also sometimes led to incorrect procedures. It therefore appears that inventing sound 

explanations is challenging and may depend on cognitive processes associated with strong 

learning, such as reasoning, working memory, and language comprehension. These findings also 

suggest that the key ingredient in self-explaining may be processing and expressing high-quality 

explanations, not inventing explanations. This is in line with Crowley and Siegler (1999) and 

Rittle-Johnson et al. (2015).  

This brings us to the third form of self-explaining: supported self-explaining, in which 

learners operate on high-quality explanations already created for them. Because our target 

population was students with a history of poor mathematics achievement, many of whom 

experience limitations in the cognitive processes associated with mathematics learning and may 

therefore be especially vulnerable to inventing subpar explanations, the focus of the present 

study’s explaining condition was supported explaining rather than invented self-explaining. We 

modeled high-quality explanations and provided children with practice in analyzing and applying 

the explanations, as we encouraged them to elaborate on and discuss important features of the 

explanations. We identified no previous randomized control trial testing the effects of this form 
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of supported explaining among at-risk students, even though explaining is a broadly 

recommended instructional strategy and a strong focus in the mathematics Common Core State 

Standards (CCSS, 2013).  

Based on the generative model of learning (Wittrock, 1990), which posits that learning 

requires actively processing and elaborating on the to-be-learned information while meaningfully 

connecting new information to existing knowledge, we hypothesized more accurate fraction 

magnitude comparisons for the explaining condition, compared to a contrast condition that 

received the same multi-component fraction program without the explaining component. This 

ensured that the contrast condition had high-quality relevant intervention on the same content. To 

control for intervention time, the contrast condition received a previously validated intervention 

component focused on fraction word problems requiring multiplicative reasoning.  

We chose word problems as the focus of the contrast intervention for three reasons. First, 

accuracy in solving word problems strongly predicts employment and wages in adulthood 

(Bynner & Parsons, 1997). Second, multiplicative thinking, a major stumbling block for many 

students, is central to fraction knowledge, as reflected in the fact that finding equivalent fractions 

requires multiplying or dividing the numerator and denominator by the same quantity. Third, 

magnitude comparisons and word problems are both conceptually challenging, and the cognitive 

processes involved in fraction magnitude comparisons appear similar to those that support word 

problems. The word-problem intervention was based on schema theory, in which children are 

taught to conceptualize word problems as problem types (schemas); once they have identified the 

word-problem type, they apply the solution strategy for that problem type. Based on Fuchs et al. 

(in press), who showed positive effects for this word-problem intervention, we expected stronger 

word-problem solutions for the word-problem condition over the explaining condition.  

Does Supported Self-Explaining Compensate for Limitations in Cognitive Processes? 
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Both fraction magnitude comparisons and word problems transparently demand 

reasoning ability. They also tax working memory in that (a) fraction magnitude comparisons 

require children to store and access information across a series of steps, which include finding 

equivalent fractions that need to be compared to benchmark fractions, while (b) word problems 

require children to process text describing a series of quantities, which must be sequentially 

evaluated and iteratively considered to create a coherent problem-solving model. Also, both tasks 

involve language comprehension because teachers use language to convey new ideas/procedures, 

because students use language when self-explaining, and because word problems are presented 

linguistically. In longitudinal studies aimed at predicting children’s development of fraction and 

word-problem knowledge, roles have been demonstrated for reasoning (Fuchs et al., 2013; 

Seethaler et al., 2011), working memory (Fuchs, Schumacher, et al., 2013, 2014; Hansen et al., 

2015; Jordan et al., 2013; Seethaler et al., 2011), and language comprehension (Fuchs et al., 

2013; Jordan et al., 2013).  

The present study extends this descriptive prediction literature by asking whether the 

effects of supported self-explaining occur, at least in part, by compensating for limitations in 

cognitive processes. To address this question, we assessed whether individual differences in 

reasoning, working memory, or language comprehension moderate the effect of the explaining 

versus word-problem condition on fraction magnitude comparisons (when all other variables in 

the model, such as performance on other cognitive processes and pretest performance, are held 

constant). We hypothesized that a compensatory moderator effect occurs in the following way. 

In the word-problem condition, we expected student outcomes to correlate with cognitive 

processing scores, such that students with severe cognitive deficits experience poorer outcomes 

than those with more adequate cognitive processing. On the other hand, we expected the 

supported explaining intervention to compensate for cognitive limitations, such that students 

achieve similarly regardless of where they fall along the cognitive processing distribution. 
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Finding such a compensatory moderator effect would provide further evidence for the role of 

these cognitive processes in self-explaining and would indicate that supported self-explaining 

increases learning by decreasing cognitive load. Also, because moderator analyses can specify 

where along the distribution of cognitive process scores the effect of supported self-explaining 

transitions from significance to nonsignificance, results may help schools identify which learners 

are more and less likely to benefit from the intervention. (We ran a parallel set of moderator 

analyses on the word-problem outcome, a point we return to in the discussion.)  

In the most pertinent previous study, Fuchs et al. (2014) hypothesized a compensatory 

moderator effect for speeded strategic practice on the subtasks involved evaluating fraction 

magnitudes fraction understanding. This hypothesis was based on the assumption that creating 

automaticity on these subtasks would decrease cognitive load. Contrary to expectations, 

however, a disordinal moderator effect was identified: Students with severe working memory 

deficits profited more from practice in consolidating fraction ideas; those with more adequate 

working memory benefited more from the speeded strategic practice. Therefore, instead of a 

compensatory mechanism, results indicated that to benefit from speeded strategic practice, 

adequate working memory capacity is required.  

The present study extends Fuchs et al. in ways that increase the potential meaningfulness 

of compensatory moderator effects. First, the present study’s intervention of major interest, 

supported self-explaining, was specifically designed to compensate for the cognitive resources 

required to engage in and derive benefits from high-quality explanations. Second, to extend 

control beyond Fuchs et al. (2014), the cognitive processes targeted in the present study were 

similarly relevant for both contrasted conditions. Third, self-explaining is broadly recommended 

in current education reform efforts. 

Context for the Two Fraction Intervention Components  
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As mentioned, both intervention components were contextualized in a larger, multi-

component intervention focused mainly on the measurement interpretation of fractions, which 

reflects cardinal size (Hecht et al., 2003) and is often represented with number lines (Siegler, 

Thompson, & Schneider, 2011). Such understanding can be linked to children’s experiences with 

measuring, but depends largely on formal instruction that explicates the conventions of symbolic 

fraction notation (e.g., what the 3 and 4 mean in ¾), the inversion property of fractions (e.g., 

fractions with the same numerator become smaller as denominators increase), and the infinite 

density of fractions on any segment of the number line. Comparing fraction magnitudes is a 

central task within the measurement interpretation and, as such, both intervention conditions 

received a considerable amount of relevant instruction – one condition with the self-explaining 

component and the other condition without the self-explaining component.  

The other form of understanding fractions relevant at fourth grade is the part-whole 

interpretation. This involves understanding a fraction as one or more equal parts of a single 

object (e.g., two of eight equal parts of a cake) or a subset of a group of objects (e.g., two of 

eight cakes). Such understanding is typically represented using an area model, in which a region 

of a shape or a subset of objects is shaded. It is intuitive, based on children’s experiences with 

sharing, and is apparent in young children (Mix, Levine, & Huttenlocher, 1999).  

The NMAP (2008) hypothesized that improvement in the measurement interpretation is 

more critical than the part-whole interpretation to fraction understanding. Fuchs, Schumacher, et 

al. (2013) provided support for this idea when they found that improvement in the measurement 

(not part-whole) interpretation mediates intervention effects on released fraction items from the 

National Assessment of Educational Progress (NAEP). Siegler and Ramani (2009) showed that a 

linear game board maps more effectively than a circular game board to the linear mental 

representation of numerical magnitude. Also, the part-whole interpretation encourages separate 

counting of numerator and denominator segments, increasing children's tendency to 
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conceptualize a fraction as two separate whole numbers. By contrast, the measurement 

interpretation encourages relational thinking about numerators and denominators as determinants 

of a single number.  

Even so, the part-whole interpretation continues to dominate American schooling (e.g., 

Fuchs et al., in press). Therefore, a secondary purpose of the present study was to replicate the 

efficacy of the multi-component fraction intervention, which focuses on the measurement 

interpretation in contrast to fraction instruction that focuses on the part-whole interpretation. This 

also permitted us to assess whether the explaining and word-problem conditions improved 

performance over what might be expected from the schools’ typical fraction program. Therefore, 

we randomly assigned students to three conditions: two variants of intervention (with the 

explaining component vs. the word-problem component) and a control group focused on part-

whole understanding. In line with previous studies and the NMAP, we hypothesized that effects 

would favor the two intervention conditions over the control group.  

Summary of Present Study’s Purpose and Hypotheses 

To review, a major purpose of the present study was to isolate the effects of intervention 

that teaches children to provide sound explanations regarding a critical indicator of fraction 

understanding: comparing fraction magnitudes. To provide a stringent test of the effect of 

supported self-explaining, we contrasted fraction intervention with the self-explaining 

component against the same fraction intervention without the self-explaining component. To 

control for instructional time, the contrast condition included a validated word-problem 

component. At the same time, we examined whether the effects of supported self-explaining 

occur, at least in part, by compensating for limitations in cognitive processes. We hypothesized 

compensatory moderator effect in which student outcomes on fraction magnitude comparisons in 

the word-problem condition (which did not receive self-explaining) correlate with cognitive 
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processing scores, but students in the supported self-explaining condition perform similarly 

regardless of where they fall along the cognitive processing distribution.  

Method 

Participants 

All participants were fourth graders. We defined risk as performance below the 35th 

percentile on a broad-based calculations assessment (Wide Range Achievement Test–4 [WRAT]; 

Wilkinson & Robertson, 2006). To ensure strong representation across the range of scores below 

the 35th percentile, we sampled half the students from below the 15th percentile and half from 

between the 15th and 34th percentiles. Because this study was about risk for mathematics 

difficulty, not intellectual disability, we administered the 2-subtest Wechsler Abbreviated Scales 

of Intelligence (WASI; Wechsler, 1999) to all students who met the risk criterion and excluded 

15 children with T-scores below the 9th percentile on both subtests. This permitted children with 

uneven cognitive profiles (as in learning disabilities) to remain in the study. We sampled 2-8 

students per classroom, stratifying by more versus less severe risk in each classroom.  

After exclusion and random sampling, the sample comprised 236 students from 52 

classrooms in 14 schools. (Teachers in these classrooms were not aware of the study’s 

hypotheses.) We randomly assigned these 236 students at the individual level, stratifying by 

classroom and risk severity, to the three conditions: intervention with the explanation component 

(EXP; n = 79), intervention with the word-problem component (WP; n = 79), and control (CON; 

n = 78). Six EXP, 5 WP, and 7 CON children moved before the end of the study. They did not 

differ statistically from the remaining students on pretest measures and did not differ 

significantly on any pretest measure as a function of condition. We omitted these children, 

leaving 218 students in the final sample: 73 in EXP, 74 in WP, and 71 in CON.  

There were no significant differences among conditions on WRAT, with mean standard 

scores of 85.03 (SD = 7.22) for EXP, 85.61 (SD = 7.76) for WP, and 85.41 (SD = 7.56) for CON, 
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or on WASI IQ, with mean standard scores of 93.63 (SD = 10.42) for EXP, 93.33 (SD = 12.57) 

for WP, and 93.27 (SD = 11.40) for CON. In the three groups, respectively, 58, 55, and 48% 

were female; 15, 17, and 19% were English learners; 93, 90, and 87% received subsidized lunch; 

and 7, 13, and 13% received special education. In EXP, the percentages of African-American, 

white, Hispanic (all white), and other students was 49, 19, 27, and 4; in WP, 57, 19, 23, and 1; in 

CON, 43, 21, 30, and 6. Chi-square tests indicated groups were demographically comparable.  

Screening Measures 

The mathematics screening measure was WRAT-4-Math Calculations (Wilkinson & 

Robertson, 2006) in which students complete calculation problems of increasing difficulty. 

Alpha on this sample was .87. The IQ screening measure was the WASI (Weschler, 1999). With 

Vocabulary, students identify pictures and define words. With Matrix Reasoning, students select 

the option that best completes a visual pattern. Reliability exceeds .92.   

Fraction Measures 

We assessed five outcomes. The first two pertained to these questions: Does EXP 

improve the accuracy of fraction magnitude comparisons?, Does WP enhance word-problem 

solving?, and Do cognitive processes moderate intervention effects between the two conditions? 

With the magnitude comparison/explanation measure, children identify which of two fractions is 

greater and explain why. The word-problem measure assesses skill with the types of 

multiplicative word problems addressed in that intervention component. The remaining three 

measures pertained to the replication of the multi-component fraction intervention. The 

generalized measure of fraction knowledge comprised released fraction items from the NAEP, 

which assess the part-whole and measurement interpretations of fractions with similar emphasis 

and are similarly distal across conditions (few items were aligned with any instructional tasks). 

The second measure, Siegler et al.’s (2011) Fraction Number Line Task, was not used for 

instruction in any study condition, but it indexes the measurement interpretation of fractions, 
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which received greater emphasis in both intervention conditions than in the control group. The 

content of the third task, adding/subtracting fractions, received greater focus in the control group.  

The Fraction Magnitude Comparisons/Explanations task, which is from the Fraction 

Battery-revised (Schumacher et al., 2013), comprises nine items: three with the same numerator; 

three with the same denominator; and three with a different numerator and denominator. 

Students place the greater than or less than symbol between fractions and write words/draw 

pictures to explain why the fractions differ in magnitude. The measure is scored as comparison 

accuracy (total number of items with the correct sign; max score = 9) and explanation quality 

(max score = 27). The focus of the explanation quality scoring is the conceptual content of 

explanations. For each items, students receive 1 point for explaining that the numerator indicates 

the number of parts and 1 point for explaining the denominator indicates the size of the parts. 

(“Both fractions have the same number of parts, but fifths are bigger than eighths so 4/5 is 

greater than 4/8” earns 2 points.) Students earn 1 more point if a picture shows two units of the 

same size, each showing the unit divided into the correct number of equal parts and the correct 

number of parts shaded. Alpha on this sample was .74 for accuracy and .92 for quality. Two 

independent coders scored all of the tests. On accuracy of magnitude comparisons, agreement 

was 100%; on explanation quality, computed point-by-point, 99.1%. Discrepancies were 

discussed and resolved.  

Multiplicative Word Problems, from the Fraction Battery-2012-revised (Schumacher et 

al., 2013), includes six problems requiring students to make fractions from units (the “splitting” 

problem type), six problems requiring students to make units from fractions (the “grouping” 

problem type), and two distractor problems requiring students to compare fraction quantities 

(e.g., “Ruby ate ¼ of the pizza, and Bob ate 1/8 of the pizza. Who ate less pizza?”). None of the 

tested problems was used for instruction. Two near-transfer splitting problems rely on the 

vocabulary/question structure used in instruction (e.g., Lauren has 3 yards of ribbon. She cuts 
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each yard of ribbon into sixths. How many pieces of ribbon does Lauren have now?). Four far-

transfer splitting problems include novel vocabulary and/or questions (e.g., Jamie has 5 cups of 

batter to make cupcakes. Each cupcake needs 1/2 cup of batter. How many cupcakes can Jamie 

make? [novel vocabulary and question because 5 cups of batter is the unit and cupcakes are the 

“pieces” in this problem, when students generally think of cupcakes as a unit]). Four near-

transfer grouping problems incorporate unit fractions (e.g., Dante is making 8 peanut butter bars. 

Each peanut butter bar needs 1/4 cup of peanut butter. How many cups of peanut butter does 

Dante need?); two far-transfer grouping problems include non-unit fractions (e.g., Gabby needs 

to read 3 chapters in her book. Each chapter takes 2/3 of an hour to read. How many hours does 

Gabby need to spend reading?). The tester reads each item aloud while students follow along on 

paper. Students can ask for one rereading. For each problem, students earn 1 point for the correct 

numerical answer and 1 point for the correct label (e.g., pieces of ribbon). The maximum score is 

26 (for distractor problems, only 1 point can be earned, which is for finding the correct numerical 

answer). Alpha on this sample was .82 - .90. 

The NAEP measure comprised 19 released items from 1990-2009 NAEP: easy, medium, 

or hard fraction items from the fourth-grade assessment and easy items from the eighth-grade 

assessment. Testers read each problem aloud (with one rereading upon request). Eight items 

assess the part-whole interpretation (e.g., given a rectangle divided into six equal parts, the 

student shades 1/3); nine items assess the measurement interpretation (e.g., given four lists of 

three fractions, students identify which of the three fractions are arranged from least to greatest); 

one requires subtraction of fractions with like denominators; and one asks how many fourths 

make a whole. Students select an answer from four options (11 items); write answers (3 

problems); shade a portion of a fraction (1 item); mark a number line (2 items); write a short 

explanation (1 item); or write numbers, shade fractions, and explain the answer (1 items with 

multiple parts). The maximum score is 25. Alpha on this sample was .71 - .78. 
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With the Fraction Number Line task (Hamlett, Schumacher, & Fuchs, 2011, adapted 

from Siegler et al., 2011), students place proper fractions, improper fractions, and mixed 

numbers on a number line labeled with endpoints of 0 and 2. A fraction is presented in large font 

below the number line. Students practice with two fractions and then estimate the location of 20 

items: 12/13, 7/9, 5/6, ¼, 2/3, ½, 1/19, 3/8, 7/4, 3/2, 4/3, 7/6, 15/8, 1 1/8, 1 1/5, 1 5/6, 1 2/4, 1 

11/12, 5/5, and 1. Items are presented in random order. The score for each item is the absolute 

difference between the placement and the correct position. Scores are averaged across items; 

divided by 2 (the numerical range of the number line); and multiplied by 100 to derive the 

percent of absolute error. Lower scores indicate stronger performance (in some analyses, we 

multiplied scores by -1). Test-retest reliability, on 63 students across 2 weeks, was .80.  

From the Fraction Battery-revised (Schumacher et al., 2013), Fraction Addition includes 

five problems with like denominators and seven with unlike denominators; Fraction Subtraction 

includes six problems with like denominators and six with unlike denominators. In each subtest, 

half the problems are presented vertically and half horizontally. One point is awarded for the 

correct numerical answer; 2 points if reduced/rewritten one time (7 addition items; 8 subtraction 

items; e.g., ⅛ + ⅜ = 4/8 = ½; ¾ + 2/4 = 5/4 = 1 ¼); 3 points if reduced/rewritten two times (1 

subtraction item: 10/6 - 2/6 = 8/6 = 1 2/6 = 1 ⅓). We used total score across subtests (r = .83), 

with a maximum score of 41. Alpha on this sample was .90 - .94.  

For NAEP, Calculations, and Word Problems, we had normative data on 265 not-at-risk 

students in 45 classrooms in 14 schools from a study conducted in the same district in the year 

preceding the present randomized control trial (Fuchs, Schumacher, et al., in press). We used 

these not-at-risk data to compute pre- and posttest achievement gaps for the at-risk conditions.  

Moderator Measures 

Working memory. To assess the central executive component of working memory, we 

used The Working Memory Test Battery for Children (WMTB-C; Pickering & Gathercole, 
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2001)-Counting Recall. The task includes six dual-task items at span levels from 1-6 to 1-9. 

Passing four items at a level moves the child to the next level. At each span level, the number of 

items to be remembered increases by one. Failing three items terminates the subtest. For each 

item, the child says how many objects are in an array and then recalls the series of counts in the 

trial. We used the trials correct score. Test-retest reliability ranges from .82-.91.  

Listening comprehension. With Woodcock Diagnostic Reading Battery (WDRB) - 

Listening Comprehension (Woodcock, McGrew, & Mather, 2001), students supply the word 

missing at the end of sentences or passages that progress from simple verbal analogies and 

associations to discerning implications. At age 9, internal consistency reliability is .81.  

Reasoning. WASI Matrix Reasoning (Wechsler, 1999) measures reasoning with pattern 

completion, classification, analogy, and serial reasoning tasks. Students select among five response 

options to complete a matrix, from which one section is missing. At age 9, internal consistency 

reliability is .94. 

Mathematics Instructional Time for the Two Interventions Conditions versus Control 

On questionnaires, teachers reported an average of 419.71 min of weekly mathematics 

instruction (SD = 81.67). They also reported that CON students received an average of 27.43 min 

(SD = 50.43) per week of supplemental math instruction, delivered mainly in small groups. This 

sums to ~447 min of mathematics instruction per week for CON students. Teachers also reported 

that the present study’s intervention (105 min per week) typically occurred during part of 

classroom mathematics instruction or the school’s intervention period. (When intervention did 

occur at other times, there was no systematic pattern to the types of instruction students missed.) 

Intervention students’ weekly mathematics instructional time, including this study’s intervention, 

averaged 453.63 min (SD = 57.61). So, on average, intervention students received 7 min per 

week more mathematics instruction compared to CON students (not a significant difference).  

District’s Fraction Program  
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 The district’s mathematics program was enVisionMATH (Scott Foresman-Addison 

Wesley, 2011). At fourth grade, the fractions units are “Understanding Fractions” and “Adding 

and Subtracting Fractions,” with 70% of lessons allocated to understanding fractions. For 

understanding fractions, the program relies mainly on part-whole understanding by using shaded 

regions and other area model manipulatives, while encouraging students to write and draw when 

explaining fraction concepts. In a single lesson, benchmark fractions and equivalent fractions are 

introduced to teach students to make magnitude decisions (number lines are not included). 

Adding and Subtracting Fractions are taught via procedural rules. Fraction word problems are 

addressed by focusing mostly on additive reasoning and equal sharing (e.g., Eight friends divide 

3 pizzas equally. How much does each friend eat?), with a smaller emphasis on multiplicative 

reasoning (e.g., Danielle bought 3 ¼ yards of ribbon. How many pieces of ¼-yards of ribbon did 

Danielle buy?). As per What Works Clearinghouse (WWC; U.S. Department of Education, 

2013), enVisionMATH has “potentially positive effects.” The one study meeting WWC 

standards (Resendez & Azin, 2008) reported an average effect size (ES) of 0.15 at grade 4. Only 

1.9% of teachers reported relying exclusively on this program. Most (84.6%) relied on a 

combination of enVisionMATH and CCSS, while 13.5% relied exclusively on CCSS.  

Distinctions among the Three Study Conditions  

See Table 1 for teacher questionnaire responses concerning CON fraction instruction, 

which includes the schools’ intervention period, as contrasted to the EXP and WP intervention 

conditions. Note that instructional practice information was reported at the classroom level and 

the amount of intervention time for each at-risk student was reported at the individual student 

level. (Classroom instruction was not recorded or directly observed.) 

To describe the relative emphasis on different types of fraction representations, teachers 

distributed 100 points across response options. Part-whole representations (tiles, circles, pictures 

with shaded regions, blocks) constituted 75.96% of their emphasis; number lines accounted for 
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20.87%. By contrast, number lines reflected 70% of the intervention’s emphasis, with only 30% 

on part-whole interpretation.  

For instructional strategies to help students identify the relative magnitude of fractions, 

CON relied heavily on finding common denominators, rather than focusing on understanding 

why fractions have differing magnitudes. When combined with cross multiplying (addressed 

procedurally), 41.82% of the CON emphasis was procedural – not focused on the ideas essential 

to why fractions magnitudes differ. Yet, 56.15% of the CON emphasis was on activities and 

strategies that address ideas about why fraction magnitudes differ: thinking about relative 

placement on number lines, comparing fractions to benchmark fractions, using manipulatives, 

and considering the meaning of numerators and denominators. (As shown in Table 2, the 

remaining 2.03% of responses were “other.”) By contrast, 90% of intervention activities focused 

on these conceptual strategies/activities.  

CON students explained their work with fractions an average of 4.36 times per week (SD 

= 1.68), as reported by the teachers. This contrasts to an average of 21 times per week for the 

EXP condition and 15 times per week in the WP condition (EXP and WP provided explanations 

for fraction work in other portions of the multi-component program, not just in the EXP 

condition’s 7-min component; see below). The CON group put more emphasis on drawing 

pictures than in EXP or WP, while EXP and WP emphasized providing explanations via words 

in oral and written form. EXP students were also taught to label pictures. 

For word problems, CON included the following strategies to help students understand 

word-problem narratives: drawing pictures, writing equations, using words to explain thinking, 

and making tables. Yet, 20.13% of the instructional emphasis was on key words, which can 

discourage deep thinking about word problems and often produces incorrect solutions 

(Schumacher & Fuchs, 2012). The WP condition did not address key words and instead relied on 

using words to explain thinking, identifying problem types, and using arrays to represent the 
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multiplicative structure of problems. Only WP (not EXP) received intervention on word 

problems; so, EXP students’ word-problem instruction was the same as in the CON condition. 

Thus, four major differences between CON and EXP/WP were as follows. (1) CON 

focused on part-whole understanding; EXP/WP emphasized measurement interpretation. (2) 

CON did not restrict the range of fractions; EXP/WP limited the range of denominators (2, 3, 4, 

5, 6, 8, 10, 12) and equivalent fractions (1/2, 1/3, 2/3, ¼, 1/5, 2/5, 1/1). (3) CON required 

students to explain work substantially less often than EXP/WP, and CON explanations 

emphasized words more than pictures while the reverse was true in EXP/WP. (4) For word 

problems, CON focused more on drawing pictures, making tables, and using key words; WP 

focused more on words to explain thinking, identifying problems as belonging to problem types, 

and representing the structure of problems.  

The Multi-Component Fraction Intervention 

The multi-component fraction intervention is referred to as Fraction Face-Off! (see 

Fuchs, Schumacher, et al., in press, for tutor training, the structure of the manual/materials, and 

activities). Sessions occurred 3 times per week for 12 weeks with pairs of children. Tutors were 

employees of the research grant. Some were licensed teachers; most were not. Each was 

responsible for 2-4 groups, distributed across the EXP and WP conditions. To avoid 

contamination between conditions, we color coded materials, conducted periodic live 

observations, regularly monitored fidelity of implementation audiotapes, and provided guidance 

and engaged in problem solving during bi-weekly meetings.  

Of each 35-min session, 28 min were the same in EXP/WP, primarily focused on the 

measurement interpretation of fractions, with instruction on comparing, ordering, placing 

fractions on number lines, and equivalencies. This was preceded by attention to the part-whole 

interpretation (showing objects with shaded regions) and equal sharing to build on prior 

knowledge and classroom instruction. Number lines, fraction tiles, and fraction circles were used 
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to introduce and review concepts across the 36 lessons. See Figure 1 for timeline and see Fuchs, 

Schumacher, et al. (in press) for additional information. 

  Instruction was explicit. Tutors (a) introduced topics with worked examples, while 

explaining how work is completed and what the tutor thought when completing each step; (b) 

provided explanations in simple, direct language, with students explaining their thinking in their 

own words; (c) relied on efficient solution strategies and required students to practice applying 

strategies while they explained how/why strategies make sense; (d) ensured students had the 

necessary background knowledge/skills to succeed with strategies; (e) provided practice so 

students used strategies to generate many correct responses; and (f) included systematic 

cumulative review. 

To address at-risk students’ difficulties with attention, motivation, and self-regulation 

(Montague, 2007), tutors taught the meaning of on-task behavior and its importance for learning. 

A timer beeped at 3 unpredictable times per lesson. If all students were on task at the beep, each 

earned a checkmark. In The Individual Contest, two problems were pre-designated bonus 

problems for which students received checkmarks if their work was completed correctly, but 

students were not told which problems earned a bonus point until all work was completed. Tutors 

awarded a “half dollar” or “quarter dollar” for each checkmark. Once per week, tutors opened 

the “Fraction Store,” where students spent earnings on small prizes priced at $1, $7, $13, or $20, 

exchanging fraction dollars for whole dollars to determine which prizes they could afford or 

saved for more expensive prizes.  

EXP and WP Components  

With EXP instruction (see Figure 1 for timeline), tutors modeled a 4-step problem-

solving sequence, gradually transferring responsibility to students while scaffolding to ensure 

understanding. In the first step, students wrote whether the fractions had the same denominator 

(“same D”), the same numerator (“same N”), or different numerators and denominators (“both 
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diff”). In the second step, students explained why a good drawing shows two units of the same 

size, with each unit divided into the correct number of parts, with all parts in each unit the same 

size, and with the correct number of parts shaded. In the third step, students labeled each drawing 

of a fraction with its numerical value and described how the parts in the fractions compared 

(“same size parts” to indicate each unit was divided into the same number of parts or “bigger 

parts” to indicate the fraction with fewer parts had bigger parts). When numerators and 

denominators both differed, students rewrote ½ so both fractions had the same denominator and 

updated the picture to show how ½ is equivalent to the original fraction and how finding a 

common denominator allowed them to compare two fractions with the same size parts. Then 

students circled the larger fraction. In the final step, students wrote a short sentence or phrase to 

explain why the circled fraction was greater (e.g.., “more same size parts means bigger fraction”; 

“same number of parts, but fourths are bigger than eighths”). Tutors provided corrective 

feedback as needed. The ideas underlying EXP instruction were the same as those addressed in 

the multi-component intervention. Later lessons focused on discriminating between viable 

explanations for same denominator versus same numerator problems. Tutors solved a same 

denominator and same numerator problem side by side. Students highlighted and discussed 

important distinctions between the problem types. Note, however, that we did not incorporate 

schema-based instruction into self-explaining (i.e., students did not classify problems into 

problem types prior to formulating explanations). 

WP instruction (see Figure 1 for timeline) relied on schema theory, with which students 

categorize WPs as belonging to a WP type based on their underlying mathematical structure and 

then apply a WP-solving strategy specific to that WP type. Once both WP types were taught, 

practice included distractor WPs in which students identified the larger or smaller fraction. The 

goal was to increase students’ ability to recognize non-examples of the taught WP types, 

decrease the tendency to overgeneralize strategies, and add practice on comparing fractions. 
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The two WP types taught were “Splitting” and “Grouping.” Tutors introduced Splitting 

WPs first, using an intact story about a “Splitting” situation (e.g., Melissa had 2 lemons. She cut 

them in half. Then she had 4 pieces). Tutors used fraction circles to explain what cutting 2 

lemons to produce 4 pieces means. Then, they presented the same story, with the final sentence 

as a question, “How many pieces of lemon did she have?” Tutors completed a worked example, 

providing a rationale for each step of the solution strategy and using fraction circles to explain 

the solution methods. Then tutors taught that we call WPs with the same structure as the 

“Melissa” problem “Splitting” WPs, which describe a unit being cut, divided, or split into equal 

parts. On the next day, tutors reviewed the underlying structure of the Splitting WP type. Then, 

they presented a novel Splitting problem, and students explained why it was a Splitting problem. 

Next tutors taught a series of steps to help students organize their papers, synthesize information 

in the WP, and solve the WP: (1) underline the unknown; (2) identify the units and the size of 

each piece and label them “U” and “S”; (3) draw an array to represent the structure of splitting 

WPs; (4) enter into the array information from the WP to show each unit divided into the 

fractional pieces (e.g., for each unit divided into fifths, they wrote 1/5 to represent each piece for 

each unit); and (5) solve the WP and write the numerical answer and word label.  

To challenge and extend identification of Splitting WPs and encourage flexibility in WP-

solving strategies, we incorporated transfer features that altered the language typically found in 

splitting WPs. This included activities to promote recognition of different vocabulary (e.g., 

synonyms for pieces such as wedges) and promote recognition of unfamiliar question formats. 

Consider this problem: The relay race is 4 miles. Each leg of the race is ½ mile. How many kids 

do we need to run the relay race? This example has novel vocabulary and a novel question 

because there are no familiar vocabulary words initiating a Splitting or dividing action and 

because kids, the “pieces” in this WP, are not typically thought of as pieces. 
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“Grouping” problems (e.g., Keisha wants to make 8 necklaces for friend. For each 

necklace, she needs ½ of a yard of string. How many yards of string does Keisha need?) were 

introduced using parallel methods, with two major distinctions that clarified the underlying 

structure of Grouping problems. First, students identified “items” (instead of units), which refers 

to how many fractional pieces are needed. Second, the array was structured to accommodate 

WP-solving strategies representing this underlying structure. Later grouping problems included 

non-unit fractions, which required an additional WP-solving step.  

Fidelity of Implementing Intervention  

Every intervention session was audiotaped. We randomly sampled 20% of 2,556 

recordings to represent tutor, student, and lesson comparably. A research assistant listened to 

each sampled tape, while completing a checklist to identify essential points implemented. The 

mean percentage of points addressed was 98.43 (SD = 2.03) in EXP and 98.57 (SD = 4.66) in 

WP. Two research assistants independently listened to 20% of the 511 coded recordings to assess 

concordance. The mean difference in score was 1.27%. With a test for dependent samples, we 

assessed the comparability of fidelity between conditions because each of the 19 tutors 

conducted sessions in both conditions. The difference was not significant, t(18) = 0.13, p = .896. 

Procedure  

 In August/September, testers screened in large groups using WRAT; then administered 

the WASI individually to students who met the WRAT risk criterion. In September/October, to 

assess pretreatment comparability among study groups on fraction knowledge, testers 

administered the NAEP, the Fraction Addition/Subtraction measure, the magnitude 

comparison/explanation measure, and the word-problem measure in two small-group sessions. 

The Fraction Number Line task was administered individually. From late October to early 

February, intervention occurred for 12 weeks. In early March (after an intervening spring 

vacation), we assessed intervention effects, by re-administering Fraction Addition/Subtraction, 



EXPLAINING WHY FRACTION MAGNITUDES DIFFER-24  
      
NAEP, the magnitude comparison/explanation measure, and the word-problem measure in two 

small-group sessions and re-administering Fraction Number Line individually. Time permitted 

students to complete all tests. All sessions were audiotaped; 20% of tapes were randomly 

selected, stratifying by tester, for accuracy checks by an independent scorer. Agreement on test 

administration and scoring exceeded 98%. Testers were blind to conditions when administering 

and scoring tests. 

Results 

Preliminary Analyses  

We conducted preliminary analyses to evaluate the nested structure of the data (a cross-

classified partially nested design in which nesting occurred at the classroom level for all three 

conditions and at the tutoring-group level for the two intervention conditions). First, we 

estimated the proportion of variance in each outcome due to classrooms and tutoring groups. 

Respective intraclass correlations were negligible to small (~.00 and ~.00 for number line; .03 

and .01 for calculations; .01 and .05 for NAEP; ~.00 and ~.00 for EXP, and ~.00 and .02 for 

WPs). Then, we examined the random effects model for EXP and WP, while accounting for 

nesting involved in the tutoring conditions. Results indicated the random effects due to tutoring 

clusters could be ignored. Next, having dropped the tutoring clusters and addressed all three 

conditions together, we ran multilevel regression models examining tutoring effects on each 

outcome while accounting for nesting at the classroom level. Results did not alter any inferences 

based on single-level models. Given these results along with the fact that random assignment 

occurred at the individual student level, we report single-level analyses.  

We then confirmed that pretest performance of the three groups on each fraction measure 

was comparable. Next, because we relied on a residualized change approach to analyze effects of 

condition (covarying pretest performance to reduce within-group error variance), we assessed the 

homogeneity of regression assumption, which was met for all measures except word problems, 
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F(2,208) = 23.43, p < .001. Therefore, in models involving word problems, we controlled for the 

interaction between pretest word-problem score and condition. 

Does Teaching Students to Explain Their Mathematics Work Enhance Accuracy of 

Magnitude Comparisons and Quality of Explanations?  

We conducted 1-way analyses of variance (treatment condition was the factor) on 

comparison accuracy and explanation quality posttest scores (only posttest data were collected). 

Although our question centered on the contrast between the EXP versus WP conditions, we 

included the CON group to assess whether the EXP or WP condition outperformed CON. (Given 

the multi-component intervention’s focus on the measurement interpretation, for which 

magnitude comparisons is a central task, we expected WP to outperform CON.) Table 2 shows 

posttest means and SDs by condition. Table 3 shows inferential test statistics, pairwise follow-up 

comparisons (Fisher least significant difference post hoc procedure; Seaman, Levin, & Serlin, 

l991), and ESs comparing conditions (difference in posttest scores divided by the pooled posttest 

SD). On comparison accuracy, EXP outscored WP (ES = 0.43), and both intervention conditions 

outperformed CON (ES = 1.37 for EXP vs. control; 0.89 for WP vs. control). On explanation 

quality, EXP provided higher quality explanations than WP (ES = 0.93) and CON (ES = 1.37), 

and WP provided higher quality explanations than CON (ES = 0.60). (We also ran an analogous 

analysis of variance controlling for language comprehension. Results were similar, 

F(2,208)=32.98, p < .001, with respective ESs of 0.98, 1.29, and .54.) 

Does WP Enhance Word-Problem Solving? 

We ran analysis of covariance on the word-problem outcome to assess the efficacy of the 

WP component’s efficacy. The model included the pretest covariate and the interaction between 

pretest word-problem score and condition. Again, we included the CON group to assess whether 

the WP or EXP condition outperformed CON. (Because neither EXP nor the multi-component 

intervention included word problems, we did not expect an advantage for EXP.) Table 2 shows 
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pretest, posttest, and posttest means adjusted for pretest scores by condition. Table 3 shows 

inferential test statistics, follow-up tests (Fisher least significant difference post hoc procedure), 

and ESs comparing conditions (differences in adjusted posttest scores divided by the pooled 

posttest SD). WP outscored EXP (ES = 1.48) and CON (ES = 1.20), with no significant 

difference between EXP and CON (ES = 0.12). For WPs, normative data for not-at-risk peers 

were available to estimate pre- and posttest achievement gaps for at-risk study participants by 

condition (see Table 2, last 3 columns). These gaps are expressed as ESs (raw score difference in 

means, divided by the not-at-risk SD). The pretest gap on fraction word problems was ~0.90 for 

each condition. At posttest, the gap closed for WP, but increased somewhat for EXP and CON. 

Do Individual Differences in Cognitive Processes Moderate Effects between EXP and WP? 

To test whether a moderator effect qualified the main effects between the EXP and WP 

conditions, we followed the recommendation of Preacher and Hayes (2008; Hayes, 2012), using an 

ordinary least squares path analytic framework to evaluate the moderator effects of pretest 

reasoning, working memory, and language comprehension. We conducted three analyses on the 

comparison accuracy score. In each analysis, one of the three cognitive variables was tested as the 

moderator, while controlling for the other two cognitive/linguistic variables. We ran three analogous 

models for the word-problem outcome, while also controlling for pretest word-problem skill and the 

interaction between pretest word-problem score and condition. Sample-based standard scores across 

the two conditions were employed for all measures. See Table 4 for raw and standard score 

means/SDs and correlations for variables included in these analyses. See Table 5 for results of the 

moderation analyses. 

For analyses conducted on comparison accuracy, R2 = .20 for working memory as the tested 

moderator, F(5,136) = 6.81, p < .001; R2 = .18 for language comprehension as the tested moderator, 

F(5,136) = 6.02, p < .001; and R2 = .18 for reasoning as the tested moderator, F(5,136) = 6.07, p < 

.001. Working memory was the only significant moderator (see Table 5 for interaction F values). 
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To probe this interaction between working memory and the effect of EXP over WP, we relied on 

the Johnson-Neyman technique (Bauer & Curran, 2005; Hayes & Matthes, 2009), which derives 

the value along the full continuum of the moderator at which the effect of X on Y transitions 

from statistical significance to nonsignificance. Figure 2 is a visualization of the significant 

interaction, with illustrative points on the distribution of within-sample working memory 

percentile ranks (x-axis). As shown, for students with lower working memory, the EXP condition 

(white bars) produced significantly stronger outcomes than the WP condition (black bars, i.e., non-

EXP). However, for students with more adequate working memory, effects favoring EXP were not 

significant. As shown, this is because the relation between working memory and the outcome was 

stronger in the WP condition than in the EXP condition. The effect favoring EXP over WP 

transitioned to nonsignificance at 1.09 SDs above the at-risk sample mean on working memory. 

Thus, consistent with expectations, a compensatory moderator effect was demonstrated.1  

For the word-problem outcome, R2 = .49 for working memory as the tested moderator, 

F(7,134) = 18.33, p < .001; R2 = .48 for language comprehension as the tested moderator, F(7,134) 

= 17.61, p < .001; and R2 = .51 for reasoning as the tested moderator, F(7,134) = 20.20, p < .001. 

Reasoning was the only significant moderator (see Table 5 for interaction F values). Figure 3 shows 

that effects favoring WP (now white bars) over EXP (now black bars, i.e., non-WP) were not 

significant for students with very low reasoning, but were significant for students with more 

adequate reasoning. This is because the relation between reasoning and the outcome was stronger in 

the WP condition than in the EXP condition. The effect favoring WP transitioned to nonsignificance 

at 1.81 SDs below the at-risk sample mean on reasoning. Thus, the intervention did not adequately 

compensate for the word-problem demands.  

Does the Multi-Component Intervention Enhance Other Forms of Fraction Knowledge 

More than the Control Group? 
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 We conducted 1-way analyses of covariance on NAEP, number line, and calculation 

posttest scores, controlling for pretest scores on the relevant measure. See Table 2 for pretest, 

posttest, and posttest means adjusted for pretest scores and for achievement gap data for NAEP 

and calculations, by condition. Table 3 shows inferential test statistics, follow-up tests (Fisher 

least significant difference post hoc procedure), and ESs between conditions (differences in 

adjusted posttest scores divided by the pooled posttest SD). NAEP, number line, and calculations 

performance was stronger for each intervention condition compared to CON. ESs favoring EXP 

over CON ranged from 0.57 to 1.98; ESs favoring WP over CON ranged from 0.70 to 2.08. 

Thus, each intervention condition outperformed CON on generalized fraction knowledge 

(NAEP), the measurement interpretation of fractions (number line), and fraction calculations. 

(We also tested moderator effects between each intervention condition and the control 

group on magnitude comparisons and word problems. This was not central to our research 

questions, but can be found at provide link here [this is at end of this file for review purposes].) 

Discussion 

The main purpose of this study was to test the effects of teaching at-risk fourth graders to 

provide explanations for their mathematics work, while examining whether those effects occur 

by compensating for limitations in basic cognitive processes. We focused on children’s 

explanations because high-stakes assessments increasingly emphasize student explanations of 

mathematics work. This emphasis reflects the belief that when children explain mathematics 

work, their understanding deepens (Kilpatrick et al., 2001; Whitenack & Yackel, 2002). We 

relied on a supported self-explaining approach, with which we modeled high-quality 

explanations and provided children with practice in analyzing and applying the explanations, as 

we encouraged them to elaborate on and discuss important features of the explanations.  

Does Supported Self-Explaining Enhance Content Knowledge and Explanation Quality? 
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In terms of effects on students’ conceptual content knowledge – the accuracy with which 

they identified larger and smaller fractions, EXP outperformed the WP condition with a 

moderate ES of 0.43. On the quality of explanations about why fraction magnitudes differ 

(scored for the explanations’ conceptual content), effects more dramatically favored EXP over 

WP, with an ES of 0.93. These outcomes for EXP over WP are noteworthy because the multi-

component fraction intervention provided children in both conditions the same instruction on 

essential ideas and efficient procedural strategies for comparing fraction magnitudes. What 

distinguished EXP from WP was supported self-explaining.  

Results provide support for a generative model of learning (Wittrock, 1990), which posits 

that learning requires actively processing and elaborating on the to-be-learned information while 

meaningfully connecting new information to existing knowledge. Results also corroborate 

studies showing that the benefits of self-explaining can be derived from practicing and operating 

on high quality explanations, without inventing those explanations, as in Crowley and Siegler 

(1999) and Rittle-Johnson et al. (2015). Although prior work on this point is inconsistent (Kwon, 

Kumalasari & Howland, 2011; Schworm & Renkl, 2002), the positive relation between 

explanation quality and learning is consistent across sources of evidence. So, it is concerning that 

even typically developing children experience difficulty inventing sound conceptual explanations 

(Rittle-Johnson, 2006). The ability to create such explanations may depend on the cognitive 

processes associated with strong learning. Thus, for students with histories of poor mathematics 

learning, who experience limitations in such basic cognitive processes and are at-risk for 

generating subpar explanations, supported self-explaining may provide a better option. Future 

research should directly contrast these two forms of self-explaining among at-risk learners. 

Does Supported Self Explaining Compensate for Limitations in Cognitive Processes? 

We tested the hypothesis that the effects of our supported self-explaining intervention 

occurred via such a compensatory mechanism. Toward this end, we assessed whether individual 
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differences in each targeted cognitive ability (reasoning, working memory, language 

comprehension) moderated the effect favoring the EXP over the WP condition on fraction 

magnitude comparisons. We hypothesized what we refer to as a compensatory moderator effect. 

In the contrast condition (i.e., the WP condition that did not receive the EXP component), we 

expected student outcomes to correlate with cognitive processing scores, such that students with 

severe cognitive deficits experience poorer outcomes than those with more adequate cognitive 

processing. By contrast, we expected the supported explaining intervention to compensate for 

cognitive limitations, such that students achieve similarly regardless of where they fall along the 

cognitive processing continuum.  

We found such a compensatory moderator effect for working memory, while controlling 

for the effects of reasoning and language comprehension. The accuracy of magnitude 

comparisons in the EXP condition (white bars in Figure 2) were similar regardless of students’ 

working memory capacity (the correlation between working memory and magnitude 

comparisons in the EXP condition was -.04). By contrast, accuracy in the non-EXP condition 

(the WP condition, shown with black bars) significantly correlates with students’ working 

memory (r = .32). Without EXP, students with weaker working memory suffered lower accuracy 

than did students with more adequate working memory, and the effect favoring EXP over non-

EXP transitioned from significance to nonsignificance at 1.09 SDs (86th percentile) above the 

sample’s mean on working memory.  

Finding this compensatory moderator effect extends the longitudinal, descriptive 

prediction literature by providing a more stringent form of evidence for working memory’s role 

in mathematics learning generally and in processing fraction magnitude comparisons in 

particular. It also suggests a stronger role for working memory than for reasoning or language 

comprehension – at least in the context of a multi-component fraction intervention that provides 

explicit instruction on understanding and executing those comparisons. More generally, the 
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significant compensatory moderator effect for working memory on fraction magnitude 

comparisons indicates that supported self-explaining increases learning by decreasing cognitive 

load. More practically, by revealing where along the distribution of cognitive process scores the 

effect of supported self-explaining transitions from significance to nonsignificance, results may 

help schools identify which learners are more and less likely to benefit from such intervention.  

Were Effects of the WP Component Also Moderated by Basic Cognitive Processes? 

On the word-problem outcome measure, the main effect favoring WP over EXP was 

strong, with an ES of 1.48. Our WP instructional approach was rooted in schema-based 

instruction, which is designed to compensate for limitations in students’ cognitive resources by 

teaching them to identify word problems as belonging to categories that share structural features 

(splitting vs. grouping) and to represent the underlying structure of the word-problem category 

with a number sentence (Fuchs et al., 2003, 2009, 2010) or visual display (Fuchs, Schumacher, et 

al., in press; Jitendra & Star, 2012, Jitendra, Star, Rodriguez, et al., 2011; Jitendra, Star, Starosta, 

et al., 2009). The main effect favoring WP over EXP replicates the efficacy of our fraction word-

problem intervention component (Fuchs, Schumacher, et al., in press). It also corroborates 

previous schema-based instruction research on word problems with whole and rational numbers 

(Fuchs et al., 2003, 2009, 2010; Jitendra & Star, 2012; Jitendra et al, 2011; Jitendra et al., 2009).  

Even so, because schema-based instruction is designed to compensate for limitations in 

students’ cognitive resources, we hypothesized a compensatory moderator effect involving WP. 

Although we found a significant moderator effect (while controlling for the effects of working 

memory, language comprehension, pretest word-problem performance, and the interaction 

between scores intervention), it did not indicate a compensatory mechanism. Instead, it 

suggested that responsiveness to the WP component grew stronger as reasoning ability increases. 

That is, word-problem outcomes for correlated with reasoning ability more strongly for students 

in the WP condition (white bars in Figure 3, r = .36) than for students in the EXP (non-WP) 
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condition (black bars in Figure 3, r = .05). The effect favoring WP over non-WP transitioned 

from significance to non-significance at 1.81 SDs (4th percentile) below the sample’s mean on 

reasoning. This suggests that the WP intervention’s instructional methods demanded higher 

quality reasoning than the EXP (non-WP) condition.  

This makes sense for the following reason. The EXP intervention provided no word-

problem instruction. Therefore, EXP students called upon strategies taught in their 

classrooms/school interventions to solve word problems. As in Table 1, these strategies required 

superficial analysis (e.g., key words) rather than deep reasoning. By contrast, in relying on the 

schema-based strategies, WP students exercised more analytical strategies. As such, students 

with more severe reasoning deficits benefited less from WP intervention than students with more 

adequate reasoning. This prerequisite ability moderator effect therefore reveals the need to 

develop the intervention further to address the full range of learners’ reasoning ability.  

Both types of moderator effects qualify main effects in ways that identify characteristics 

that make students more or less responsive to intervention and therefore can help schools make 

service delivery more efficient and effective. Results suggest that students with adequate 

working memory do not require the EXP intervention component but instead benefit more from 

the WP intervention component. By contrast, students with very low reasoning ability require 

additional support to benefit from the WP component. In this way, a prerequisite ability 

moderator effect also permits insight about the need to strengthen intervention so that the needs 

of students with very low cognitive or linguistic processes are addressed more effectively.  

In this vein, results reveal a potential avenue for strengthening the WP condition for 

students who did not respond to intervention. The effect of language comprehension in the model 

testing the reasoning interaction on the word-problem outcome was large (2.62), while the 

corresponding effect on the explanation outcome was 0.07. This reflects the importance of 

language comprehension in multiplicative word problems. Future research should examine 
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whether a focus on language comprehension in the WP intervention further decreases inadequate 

response to intervention. 

We nevertheless remind readers that moderation analyses are correlational, so inferences 

about causation should be applied cautiously. Also, although these interactions suggest the need to 

account for individual differences in response to intervention, corroborating studies are required. 

Research is specifically needed to address the challenges of “personalizing” instruction, because 

many at-risk students experience limitations across multiple cognitive processes. 

The hope, however, is that identifying such moderator effects may eventually help 

schools deploy interventions in ways that improve effectiveness and efficiency, and this study’s 

moderator effects involving the contrast between WP and EXP illustrate how this might occur. 

At the same time, it is important to note that the pool of children who did not respond to the WP 

intervention was very small: The effect of the WP condition over the EXP (non-WP) condition 

transitioned to nonsignificance when reasoning ability fell below the 4th percentile of this at-risk 

sample’s mean (and this sample scored one-half SD below the test’s normative framework; see 

Table 4). Thus, the WP intervention component was effective, relative to the EXP condition, for 

all but a small group of learners with extremely low reasoning. Moreover, effects were robust for 

the contrast between the EXP condition and the control condition on the content knowledge that 

served as the focus of the self-explaining, with a large ES of 1.37, and for the contrast between 

the WP condition versus the control condition on word problems, with a large ES of 1.20.  

Effects of the Multi-Component Fraction Intervention  

This brings us to the overall effects of the multi-component fraction intervention. In the 

present randomized control trial, both versions of the multi-component fraction intervention, each 

focused mainly on the measurement interpretation of fractions, outperformed the control group, 

which focused mainly on the part-whole understanding of fractions. ESs ranged from 0.63 to 
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1.98 for the multi-component version that included the EXP component and from 0.71 to 2.08 

for the multi-component version that included the WP component.  

This advantage for both intervention conditions over the control group included the 

NAEP items, which assessed measurement and part-whole interpretations with comparable 

emphasis, as well as fraction calculations, even though the control group focused more than the 

intervention conditions on this topic. This supports previous findings suggesting that 

understanding of fractions supports accurate fraction procedures (Hecht et al., 2003; Mazzocco 

& Devlin, 2008; Ni & Zhou; 2005; Rittle-Johnson et al., 2001). It is also important to note that at 

this grade level, when classroom fraction instruction gains momentum, the control group’s 

achievement gap with respect to not-at-risk student local norms grew approximately 70% on 

NAEP and nearly doubled on calculations. By contrast, the achievement gap of at-risk students 

who received the multi-component intervention held approximately steady on NAEP and closed 

entirely on calculations.  

In these ways, each intervention condition produced superior fraction learning for at-risk 

fourth graders compared to the business-as-usual at-risk control group. These results echo earlier 

randomized control trials suggesting the importance of supplemental explicit fraction 

intervention (Fuchs et al., 2015) that incorporates a strong emphasis on the measurement 

interpretation of fractions (Fuchs, Schumacher et al., 2013, 2014, in press). Finding that the 

measurement interpretation of fractions is a key instructional target is also in line with the 

perspective expressed in the NMAP report (2008).  

Before closing, however, we caution readers about several study limitations. First, the 

control group received less instructional time than the two intervention conditions in groups of 

two students – although the difference in time was not statistically significant. Moreover, it is 

important to note that this limitation does not apply to the main study analyses, contrasting the 

EXP and WP conditions. These two conditions received the same amount of 2:1 intervention 
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time. Second, in the explanation quality analyses, we did not control students’ writing skill but as 

noted in the results section, controlling for language comprehension (which is related to written 

expression) did not alter results. Also, the writing demands on the explanation quality measure 

were not extensive. This caveats notwithstanding, we conclude that the overall efficacy of the 

multi-component fraction intervention and for its EXP and WP components appears strong. 

Future studies should extend this line of work by examining how instruction on decimals might 

strengthen fraction understanding and might employ longitudinal designs to assess maintenance 

and determine which children require longer-term fraction intervention for sustained success 

beyond fourth grade. 
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Footnote 

1 In Table 4, correlations between some moderator variables [measured at the start of the study] 

and outcomes [measured at the end of the study] are low because during the study, intervention 

was delivered to disturb the natural relation between the variables, but only for half the sample - 

for the condition that received relevant intervention. Across the two conditions, as shown in 

Table 4, this reduces the magnitude of these relations. 
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Table 1 
Curricular Emphases in Study Conditions (n =52 teachers) 
______________________________________________________________________   
          Fraction  Control 
       _ Faceoff!___   Group 
Emphasis      EXP   WP  M   (SD) 
______________________________________________________________________  
% Types of Fraction Representations Used   
  Fraction tiles      10 10  15.87 (15.46) 
  Fraction circles     15 15    9.94 (10.33) 
  Pictorial representations with shaded regions    5   5  33.94 (15.67)  
  Fraction blocks       0   0  16.21 (13.06) 
  Number lines      70 70  20.87 (11.06) 
  Other         0   0    3.17 (  7.67) 
 
% Activities/Strategies for Comparing Fraction Magnitudes  
  Cross multiplying       0   0  21.15 (23.00) 
  Finding common denominator     5    5  20.67 (16.42) 
 Thinking about relative placement on number lines  30 30  12.40 (  8.94) 
  Comparing fractions to benchmark fraction   30 30  13.08 (11.38)  
  Drawing a picture of each fraction      1    0   15.38 (  9.54) 
  Using manipulatives        5   5    7.12 (  8.24) 
  Considering meaning of numerator &denominator  29 30    8.17 (  9.08) 
  Other          0   0    2.03 (  5.96) 
 
% Explanation Strategies 
  State explanations for answers      5   0  22.06 (12.40) 
  Write important information       3    0  19.65 (12.11) 
  Draw picture       85 85  21.38 (  9.48) 
  Label picture         7 10  14.17 (  8.90) 
  Make a table         0   0    6.95 (  7.24) 
  Write an equation        0   0  15.79 ( 8.01) 
  Other          0   0    0.00 ( 0.00) 
 
% Explanations 
  Oral          80    100   46.44 (17.47)  
  Written        20   0   53.56 (17.47) 
 
% Word-Problem Strategies 
  Draw a picture       NA   4  24.27 (13.35) 
  Make a table        NA   0    7.64 (  8.17) 
  Make an array       NA 32     0.00 (  0.00)  
  Write a number sentence      NA   0  18.77 (  8.84) 
  Use words to explain thinking     NA 32  19.27(   6.65) 
  Relies on key words       NA   0   20.13(12.72) 
  Identifies problem within a problem type    NA 32     9.92(  9.70)   
  Other         NA   0     0.00(  0.00) 
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Table 2 
Pretest and Posttest Fraction Scores by Condition, with Not-At-Risk Norms and Achievement Gaps  
 
 At-Risk Condition     
 WP 

 (n=69)  Explain 
 (n=73)  Control 

 (n=70)  Not-at-Risk 
(n=320)  Achievement Gap (Effect Sizea) 

              Not-at-Risk  vs. 
Variable Mean (SD/SEb)  Mean (SD/SE)  Mean (SD/SE)  Mean (SD)  WP  Explain  Control 
Magnitude Comparison/Explanation Measure              
        Correct Comparisons-Post 5.94 (1.38)  6.47 (1.09)  4.59 (1.65)  --        
        Explanation Quality-Post 2.93 (3.89)  9.10 (9.30)  1.14 (2.09)  --   --  --  -- 
Word Problems                  
        Pre 4.83 (4.67)  4.66 (3.61)  4.74 (4.06)  9.48 (5.38)  -0.86  -0.89  -0.88 
        Post 13.61 (6.48)  5.88 (3.84)  6.49 (5.37)  13.52 (6.46)  +0.01  -1.18  -1.09 
        Adjusted-Post 13.57 (0.59)  5.91 (0.58)  6.48 (0.59)  --        
NAEP                  
        Pre 9.71 (3.55)  10.14 (2.78)  10.50 (3.33)  14.48 (4.18)  -1.14  -1.03  -0.95 
        Post 14.88 (4.20)  14.45 (3.35)  12.68 (3.85)  18.95 (3.81)  -1.07  -1.18  -1.64 
        Adjusted-Post 15.19 (0.36)  14.44 (0.35)  12.39 (0.35)  --        
Number Line                  
        Pre 0.29 (0.08)  0.31 (0.07)  0.31 (0.09)  --        
        Post 0.20 (0.09)  0.21 (0.08)  0.26 (0.08)  --   --  --  -- 
        Adjusted-Post 0.20 (0.01)  0.21 (0.01)  0.26 (0.01)  --        
Calculations                   
        Pre 5.57 (4.35)  5.05 (4.59)  4.74 (4.58)  8.35 (4.85)  -0.57  -0.68  -0.74 
        Post 21.75 (7.10)  20.42 (6.63)  8.89 (4.92)  19.21 (9.25)  +0.27  +0.13  -1.12 
        Adjusted-Post 21.59 (0.73)  20.45 (0.71)  9.02 (0.73)  --          
aEffect size achievement gaps are difference in posttest scores, divided by not-at-risk SDs. 
bSE is standard error, reported for adjusted posttest scores; SD is standard deviation. 
Fraction Number Line (0-2) is Schumacher et al. (2011). NAEP is National Assessment of Educational Progress items (19 easy, 
medium, and hard fourth-grade and easy eighth-grade released fraction items). Correct Comparisons and Explanation Quality are from 
Magnitude Comparisons/Explanation Quality in the Fraction Battery-revised (Schumacher et al., 2013). Word Problems is 
Multiplicative Word Problems from the Fraction Battery-revised (Schumacher et al., 2013).  
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Table 3 
Intervention Effects, Follow-Up Tests, and Effect Sizes 
 

 Outcome 

 Mag  Compare 
Correct  Explain Quality  WPs  NAEP  Number Line  Calculations 

Corrected Model 34.66 (<.001)  36.10 (<.001)  28.88 (<.001)  53.30 (<.001)  16.68 (<.001)  67.97 (<.001) 
Intercept 3526.47 (<.001)  116.44 (<.001)  144.51 (<.001)  92.74 (<.001)  33.48 (<.001)  572.02 (<.001) 
Pretest NA  NA  35.91 (<.001)  138.06 (<.001)  24.59 (<.001)  14.53 (<.001) 
Condition 34.66 (<.001)  16.52 (.005)  23.93 (<.001)  16.52 (.005)  10.70 (<.001)  91.07 (<.001) 
Pretest x Condition NA  NA  3.77 (.155)  NA  NA  NA 
Follow-Upb 2>1>3  2>1>3  1>2=3  1>2=3  1>2=3  2=1>3 
Effect Sizesc               
    Explain v. Control 1.37  1.37  -0.12  0.57  0.63  1.98 
    WP v. Control 0.89  0.60  1.20  0.70  0.71  2.08 
    WP v. Explain -0.43  -0.93  1.48  0.20  0.12  0.16 

aFor Number Line, NAEP, and Calculations, F(3,208) for corrected model; F(1,208) for intercept; F(1,208) for pretest; and F(2,208) 
for condition. For Word Problems, F(5,206) for corrected model; F(1,206) for intercept; F(1,206) for pretest; F(2,206) for condition; 
and F(2,206) for pretest x condition. For Magnitude Comparison-Correct and Explain-Quality, F(2,209) for corrected model; F(1,209) 
for intercept; and F(2,209) for condition. 
b1=WP; 2=Explain; 3=Control. 
cPositive effect sizes indicate stronger performance (the Number Line effect size were multiplied by -1). ES is the difference between 
adjusted posttest means divided by the pooled SD of the unadjusted posttest scores. For the Explain variables, ES is the difference 
between posttest means divided by the pooled SD of the posttest scores 
Fraction Number Line (0-2) is Schumacher et al. (2011). NAEP is National Assessment of Educational Progress items (19 easy, 
medium, and hard fourth-grade and easy eighth-grade released fraction items). Mag Compare and Explain Quality are number of 
correct comparisons and explanation quality from the Magnitude Comparison/Explanation Quality measure in the Fraction Battery-
revised (Schumacher et al., 2013). WPs is Multiplicative Word Problems from the Fraction Battery-revised (Schumacher et al., 2013). 
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Table 4 
Descriptive Information and Correlations for Moderation Analysis Variables for Explanation 
and Word-Problem Condition Students (n=142) 
 
 Raw Scores  Standard Scores  Correlations 
Variables Mean (SD)  Mean (SD)  W R L M WP1 
Working Memory (W) 16.65 (4.24)  77.25 (14.96)       
Reasoning (R) 15.99 (6.16)  44.75 (10.18)  .26     
Language Comprehension (L) 20.92 (3.39)  89.57 (13.40)  .37 .18    
Magnitude Compare– Post (M) 6.20 (1.28)        NA   .14 .08 .07   
Word Problems – Pre (WP1) 4.74 (4.14)        NA   .16 .25 .23 .12  
                          – Post  9.63 (6.54)        NA   .21 .15 .26 .02 .29 
Bolded correlations are significant (p < .05). Working memory is Working Memory Test Battery 
for Children - Counting Recall (Pickering & Gathercole, 2001). Reasoning is WASI Matrix 
Reasoning (Wechsler, 1999). Language comprehension is Woodcock Diagnostic Reading Battery 
- Listening Comprehension (Woodcock et al., 2001). Magnitude Compare is from the Magnitude 
Comparison/Explanation Quality measure from the Fraction Battery-revised (Schumacher et al., 
2013). Word problems is Multiplicative Word Problems from the Fraction Battery-revised 
(Schumacher et al., 2013). 
Note. Correlations between some moderator variables (which were measured at the start of the 
study) and outcomes (which were measured at the end of the study) are low because, over the 
course of the study, intervention was delivered to disturb the natural relation between these 
variables, but only for half the sample - for the condition that received relevant intervention. 
Across the two conditions (as reported in this table), this reduces the magnitude of these relations.  
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Table 5 
Moderation Analyses 
 
 Outcome/Moderator 

 Magnitude Comparison  Word Problems 

 Working  
Memory 

 Language 
Comprehension  Reasoning  Working 

Memory  Language 
Comprehension  Reasoning 

Effects t (p)  t (p)  t (p)  t (p)  t (p)  t (p) 

Constant -0.11 (.914)  0.00 (.998)  0.02 (.981)  -0.06 (.951)  0.19 (.849)  -0.56 (.575) 

Moderator -2.03 (.044)  0.17 (.865)  1.11 (.268)  1.01 (.315)  2.23 (.027)  0.52 (.605) 
Condition  4.97 (<.001)  4.93 (<.008)  4.94 (<.001)   6.08 (<.001)   5.74 (<.001)   6.57 (<.001) 
Moderator x Condition -2.02 (.047)  0.15 (.879)  -0.47 (.640)  -1.62 (.108)  0.00 (.996)  -3.07 (.003) 
Control Variables                  
      Pretest WPs NA  NA  NA  1.21 (.228)  1.35 (.181)  0.59 (.553) 
      Pre-WPs x Condition NA  NA  NA  0.04 (.971)    -0.20 (.843)  0.62 (.536) 
      Working Memory NA  -1.71 (.089)  -1.73 (.086)  NA  1.30 (.182)  1.20 (.233) 
      Language Comp  0.07 (.947)  NA   0.22 (.823)  2.13 (.035)  NA  2.62 (.010) 
      Reasoning  1.18 (.239)  1.25 (.213)  NA  1.10 (.273)  1.17 (.243)  NA 
Working memory is Working Memory Test Battery for Children - Counting Recall (Pickering & Gathercole, 2001). Language 
comprehension is Woodcock Diagnostic Reading Battery - Listening Comprehension (Woodcock et al., 2001). Reasoning is WASI 
Matrix Reasoning (Wechsler, 1999). Magnitude Comparison is from the Magnitude Comparison/Explanation Quality measure from 
the Fraction Battery-revised (Schumacher et al., 2013). Word problems is Multiplicative Word Problems from the Fraction Battery-
revised (Schumacher et al., 2013). 
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Figure 1. Timeline of intervention focus in EXP, WP, and Core (the multi-component program) 
by study week. 
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Figure 2 
Visualization of the statistical interaction showing how students’ incoming working memory 
capacity (x-axis) moderates the effect of intervention condition (EXP scores in white bars versus 
WP scores in black bars) on the explanation quality outcome. 
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Figure 3 
Visualization of the statistical interaction showing how students’ incoming reasoning ability (x-
axis) moderates the effect of intervention condition (WP scores in white bars versus EXP scores 
in black bars) on the word-problem outcome. 
 

 


