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The Variance of Intraclass Correlations in Three and Four Level Models 

 Intraclass correlations play important roles in genetics, epidemiology, 

psychometrics, and the design of social and educational experiments.  In multistage 

sampling models and multilevel statistical models, they play a major role in quantifying 

the amount of clustering inherent in the data.  The intraclass correlation was introduced 

by Fisher (1925) who offered an estimator of the intraclass correlation, derived its 

variance in balanced experiments, and discovered a variance stabilizing transformation.  

Estimators of the intraclass correlation from unbalanced designs and estimators based on 

slightly different principles have subsequently been introduced.  See Donner (1986) for a 

survey of the literature on point and interval estimation of the intraclass correlation.  

Intraclass correlations are important input parameters used for power 

computations and the computation of optimal sample allocations among levels in the 

design of multilevel randomized experiments (see Raudenbush, 1997; Kostantopoulos, 

2009), and for computation of effect size estimates and their variances (see Hedges, 2007, 

2010).  Consequently there has been considerable interest in the estimation of intraclass 

correlations from sample surveys using multistage samples to estimate intraclass 

correlations (e.g., Hedges & Hedberg, 2007).  Such studies typically fit unconditional 

multilevel models to the survey data to estimate variance components at each level of the 

sampling design.  Other studies use datasets that were assembled in the course of carrying 

out randomized experiments (Bloom et al., 2007).  While the surveys often have large 

total sample sizes, the number of sampled units at some levels (typically the higher 

levels) may not be large enough make negligible the sampling uncertainty of estimates of 

variance components and functions of variance components (such as intraclass 
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correlations).  Even experiments that are normatively large (that is large for experiments) 

typically involve much smaller sets of schools than national surveys (typically less than 

100 schools).  Consequently, for either type of study designed to provide reference values 

of intraclass correlations, it is important to provide some assessment of the uncertainty of 

the estimates.  However because the sample sizes in surveys are actually large, estimates 

of sampling uncertainty based on large sample methods should be accurate enough to 

give this guidance. 

Although intraclass correlation was originally introduced in relation to two level 

sampling models, the concept extends naturally to sampling models with three or more 

levels.  The intraclass correlation concept in cases of three and four level sampling 

models is of great interest in the design and analysis of experiments in education (Hedges 

and Rhoads, 2010; Konstantopoulos, 2008ab, 2009).   Three and four level experimental 

designs are of more than theoretical interest.  A survey of recent educational experiments 

revealed that the most common designs actually involve four levels of sampling 

(Spybrook and Raudenbush, 2009).  The literature on estimation of intraclass 

correlations, however, has largely been restricted to the case of two level models.  An 

exception is a paper by Raykov (2010) that derived the large sample standard error for 

one of the intraclass correlations in the three level hierarchical linear model. We became 

interested in the problem of quantifying the uncertainty of estimates of intraclass 

correlations in three and four level sampling models as part of a project to develop 

estimates of three and four level intraclass correlations from survey data to provide 

guidance for planning randomized experiments in education. 
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The object of this paper is to provide simple estimates of the sampling variances 

and covariances of intraclass correlation estimates derived from multilevel statistical 

analyses of survey data. For example, suppose that we estimate the variance components 

associated with three level fully unconditional model (no covariates at any level of the 

model). Let σ1
2, σ2

2, and σ3
2, be the variance components at the levels 1, 2, and 3 and let 

s1
2, s2

2, and s3
2 be their maximum likelihood estimates.  The large sample variances of the 

intraclass correlation estimates depend on the variances of the variance component 

estimates and on their covariances (when there are three or more levels).   

Note that the residuals at different levels are usually assumed to be independent.  

However this does not mean that the estimates of residual variances from different levels 

are independent.  In fact, in balanced designs where closed form expressions for the 

covariances are available, it is easy to see that the estimates are not independent (see 

Casella, McCollough, and Searle, 1992) 

Statistical software for multilevel analyses (e.g., HLM) does not always provide 

estimates of the covariances of variance components at different levels, however.  That is, 

while HLM and other programs provide the variances of s1
2, s2

2, and s3
2, they do not 

provide the covariance of s2
2 and s3

2.  Therefore we have emphasized providing 

expressions for the standard errors of the quantities of interest that do not require 

knowledge of the covariances between variance component estimates at different levels.   

In realistic situations involving large scale survey data, the level 1 variance 

component is essentially known because there are so many level 1 units, so that s1
2 ≈ σ1

2.  

That is, the variance v1 of s1
2 is essentially zero.  Let vj be the variance (squares of the 

standard errors of) the variance component estimates sj
2 for j > 1.  STATA, HLM, or SAS 
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Proc Mixed provide the standard errors of variance component estimates at level 2 or 

higher, so these (and therefore the corresponding vj) are available even in unbalanced 

cases.   

Two Level Model 

 In a two level model there are two variance components σ1
2 and σ2

2, which are 

estimated by s1
2 and s2

2, respectively, where s1
2 ≈ σ1

2.  Let v1 and v2 be the variances of 

s1
2 and s2

2.  The condition s1
2 ≈ σ1

2 implies that v1 = 0.  Let m denote the number of 

clusters (level 2 units) and ni denote the number of level 2 units in the ith level 2 unit.  

When the design is balanced, n1 = … = nm = n.  The interclass correlation in the two level 

model is 

 
2
2

2 2
1 2

σρ
σ σ

=
+

, 

which is estimated by 

 
2
2

2 2
1 2

sr
s s

=
+

. 

Then the large sample variance of r, the estimate of ρ in a balanced design is 

     ( )2 2
4

1

T

vρ
σ

−
         (1) 

where v2 is the variance of s2
2, the sample estimate of the level 2 variance component and 

σT
2 = σ1

2  + σ2
2 is the total variance.  The sample estimate of the variance of r is obtained 

by replacing all of the parameters in (1) by their samples estimates, that is the estimate of 

the variance of r is  

 ( )
( )

2
2
22 2

1 2

1 r v

s s

−

+
. 
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The standard error of r is just the square root of its estimated variance. 

 Expression (1) does not appear to be similar to conventional expressions for 

estimates of the variance of intraclass correlations in balanced designs.  For example, the 

expression given by Fisher (1925) for the large sample variance of the estimator of ρ is 

(in our notation) 

 
( ) ( )

( )( )

222 1 1 1
1 1

ρ n ρ
n n m

⎡ ⎤− + −⎣ ⎦
− −

.                        (2) 

Donner and Koval (1980) gave an expression for the large sample variance of r computed 

from unbalanced designs as  

( )

( ) ( ) ( ) ( )

2

2
22 2

1 1

2 1

1 1 1 1 1 1 1
m m

i i i i i
i i

N ρ

N n ρ n ρ ρ n n n ρ
= =

−

⎡ ⎤⎡ ⎤+ − + − − − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑

,       (3) 

where N is the total sample size.  Note that (3) reduces to (2) when n1 = … = nm = n.   

Noting that the variance of s2
2 in a balanced design is  

 
( )

( )
( )

22 2 241 2
2 2

2 2 1 1

1 1
Tσ nσ σ n ρ

n m n m

⎡ ⎤+ ⎡ ⎤+ −⎣ ⎦ ⎣ ⎦=
− −

, 

we see that (1) differs from (2) only in that the implicit n2 term in the denominator of (1) 

corresponds to an n(n – 1) term in the denominator of (2), that is they differ only in terms 

of order n2, which implies that they are equivalent in large samples (that is, as n → ∞).  

Three Level Model 

 In the three level model, there are three variance components, one associated with 

each level of the model.  Denote the number of level 3 units (clusters) by m, the number 

of level 2 units (subclusters) within the ith level 3 unit by pi, and the number of level 1 
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units (individuals) within the jth level 2 unit within the ith level 3 unit by nij.   For 

example, if level 3 units are schools, level 2 units are classrooms, and level 1 units are 

individuals, then m denotes the number of schools, pi is the number of classrooms in the 

ith school, and nij is number of students within the jth classroom of the ith school.  If the 

design is balanced, then p1 = … = pm and nij = n, i = 1, …, m; j = 1, …, p.  Let σ1
2, σ2

2, and 

σ3
2, be the level 1, 2, and 3 variance components, and let s1

2, s2
2, and s3

2, be their 

maximum likelihood estimates.  In realistic situations, the level 1 variance component is 

essentially known because there are so many level 1 units, so that s1
2 ≈ σ1

2.  Let v2 and v3 

be the variances (squares of the standard errors of) the variance component estimates s2
2 

and s3
2.   

STATA provides the standard errors of variance component estimates, so these 

(and therefore v2 and v3) are available even in unbalanced cases. In the balanced case, it is 

easy to show that covariance between s2
2 and s3

2 is –v2/p.  Using this covariance, we can 

get the (large sample) variance of the intraclass correlation estimates. 

 Define the level 2 intraclass correlation as 

2 2
2 2

2 2 2 2 2
1 2 3

= =
+ + T

σ σρ
σ σ σ σ

 

and its estimate as 

2 2
2 2

2 2 2 2 2
1 2 3

= =
+ + T

s sr
s s s s

. 

Define the level 3 intraclass correlation as 

2 2
3 3

3 2 2 2 2
1 2 3

= =
+ + T

σ σρ
σ σ σ σ

 

and its estimate as 



Standard errors of intraclass correlations  8 
 

2 2
3 3

3 2 2 2 2
1 2 3

= =
+ + T

s sr
s s s s

. 

 The expressions for the large sample variances of intraclass correlations in the 

unbalanced three level model are quite complicated, even asymptotically.  A quick 

approximation can be derived by assuming that the covariances of the maximum 

likelihood estimates of the variance components in the unbalanced case are the same as in 

the balanced case.  In a balanced design, the number p of level 2 units per level 3 unit is a 

constant.  In an unbalanced design, use an average value (such as the mean or harmonic 

mean) in place of p in the formulas below. 

 A straightforward derivation leads to the following variances assuming that the 

covariances between s2
2 and s3

2 are the same as in a balanced design.  The variance of r2 

is 

( ) ( )2
22 2 2 2 2 3

4 4

1 2 1

T T

p v v
p

⎡ ⎤− + −⎣ ⎦ +
ρ ρ ρ ρ

σ σ
,     (4) 

the variance of r3 is 

( ) ( )22
3 3 3 2 3 3

4 4

2 1 1

T T

p v v
p

⎡ ⎤+ − −⎣ ⎦ +
ρ ρ ρ ρ

σ σ
      (5) 

and the covariance between r2 and r3 is 

 
( ) ( )( ) ( )3 2 2 3 2 3 2 2 3 3

4 4

1 1 1 1

T T

p v v
p

⎡ ⎤− − + + − − −⎣ ⎦ −
ρ ρ ρ ρ ρ ρ ρ ρ

σ σ
.   (6) 

Because you have the variance component estimates s1
2, s2

2, and s3
2, you can compute r2 

r3, and sT
2 = s1

2+ s2
2 + s3

2.  Then, because we also have the variances v2 and v3 of the 

variance component estimates s2
2, and s3

2, we can compute estimates of the variances and 

covariance above by substituting the sample estimates r2, r3, and sT
2 in place of ρ2, ρ3, and 
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σT
2 in (4), (5), and (6).  The standard errors of r2 and r3 are just the square roots of their 

estimated variances. 

 When the design is unbalanced, the covariance between maximum likelihood 

estimates of the variance components s2
2 and s3

2 is more complex.  Using results from 

Searle (1970), the covariance c23 between s2
2 and s3

2 is 

( ) ( )

( )

22 2 2 2
2 2 1 3

1 1
23

2 2
3

1

1

1

ipm

ij ij i
i j

m

i i
i

v n n σ σ a σ
c

a a σ

= =

=

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠= −
+

∑ ∑

∑
    (7) 

where ai is given by 

 ( )2 2
2 1

1

ip

i ij ij
j

a n n σ σ
=

= +∑ . 

Note that when the design is balanced so that pi = p and nij = n for all i and j, then this 

covariance reduces to –v2/p as it should. 

 Using this covariance for unbalanced designs, the variance of r2 is  

 ( ) ( )2 2
2 2 2 2 232 3
4 4 4

1 2 1

T T T

ρ v ρ ρ cρ v
σ σ σ

− −
+ −       (8) 

and the variance of r3 is 

 ( ) ( )22
3 3 3 3 233 2

4 4 4

1 2 1

T T T

ρ v ρ ρ cρ v
σ σ σ

− −
+ −       (9) 

 

Calculations using (4) show that, unless there is extreme imbalance, the value of the 

variances of r2 and r3 computed from (8) and (9), respectively are remarkably similar to 

those obtained by using the mean of the pi in (4) and (5) respectively. 

Four Level Model 
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In the four level model, there are four variance components, one associated with 

each level of the model.  Let σ1
2, σ2

2, σ3
2, and σ4

2, be the level 1, 2, 3, and 4 variance 

components, and let s1
2, s2

2, s3
2, and s4

2, be their maximum likelihood estimates.  Denote 

the number of level 4 units (clusters) by m, the number of level 3 units (subclusters) 

within each level 4 unit by q, the number of level 2 units (sub-subclusters) within each 

level 3 unit by p, and the number of level 1 units (individuals) within each level 2 unit by 

n.   For example, if level 4 units are school districts, the level 3 units are schools, the 

level 2 units are classrooms, and level 1 units are individuals, then m denotes the number 

of school districts, q is the number of schools per district, p is the number of classrooms 

per school, and n is number of students per classroom.  Note that we assume the design is 

balanced.  In realistic situations, the level 1 variance component is essentially known 

because there are so many level 1 units, so that s1
2 ≈ σ1

2.  Let v2, v3, and v4 be the 

variances (squares of the standard errors of) the variance component estimates s2
2, s3

2, 

and s4
2.  Standard software provides the standard errors of variance component estimates, 

so these (and therefore v2, v3, and v4) are available even in unbalanced cases. In the 

balanced case, it is easy to show that covariance between s2
2 and s3

2 is –v2/p, where p is 

the number of level 2 units per level 3 unit, the covariance between s3
2 and s4

2 is 

3 2
2

v v
q qp

− + , 

where q is the number of level 3 units per level 4 unit, and the covariance between s2
2 and 

s4
2 is zero. 

Define the level 2 intraclass correlation as 

2 2
2 2

2 2 2 2 2 2
1 2 3 4

= =
+ + + T

σ σρ
σ σ σ σ σ
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and its estimate as 

2 2
2 2

2 2 2 2 2 2
1 2 3 4

= =
+ + + T

s sr
s s s s s

. 

Define the level 3 intraclass correlation as 

2 2
3 3

3 2 2 2 2 2
1 2 3 4

= =
+ + + T

σ σρ
σ σ σ σ σ

 

and its estimate as 

2 2
3 3

3 2 2 2 2 2
1 2 3 4

= =
+ + + T

s sr
s s s s s

. 

Define the level 4 intraclass correlation as 

2 2
4 4

4 2 2 2 2 2
1 2 3 4

= =
+ + + T

σ σρ
σ σ σ σ σ

 

and its estimate as 

2 2
4 4

4 2 2 2 2 2
1 2 3 4

= =
+ + + T

s sr
s s s s s

. 

 Assuming that the covariance of the variance components is the same as in the 

balanced case, the large sample variance of the estimators r2, r3, and r4 of the intraclass 

correlations can be obtained in terms of the variances v2, v3, and v4. 

The variance of r2 is 

 
( ) ( ) ( )

22 2 2 22 2 2 2 2 2 3 2 4
2 4 4 4

1 2 1 2 2

T T T

qp ρ qpρ ρ ρ v q ρ v ρ v
qp σ qσ σ

⎡ ⎤− + − + −⎣ ⎦ + + .   (10) 

The variance of r3 is 

 
( ) ( ) ( ) ( )22 2 23 3 3 33 3 3 2 3 4

2 4 4 4

1 2 12 1 1

T T T

q ρ ρ ρ vqp ρ qp ρ ρ v ρ v
qp σ qσ σ

⎡ ⎤− + −⎡ ⎤+ − −⎣ ⎦ ⎣ ⎦+ + .   (11) 
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The variance of r4 is 

 
( ) ( ) ( ) ( )22 2

4 4 4 2 4 4 4 3 4 4
2 4 4 4

2 2 1 2 1 1

T T T

qp p ρ ρ ρ v qρ ρ ρ v ρ v
qp σ qσ σ

⎡ ⎤ ⎡ ⎤− − − + − −⎣ ⎦ ⎣ ⎦+ + .     (12) 

The covariance between r2 and r3 is  

  
( ) [ ]2

2 3 2 3 2 3 2 3 2 3 2 2 3 2 3 2 3 3 2 3 4
2 4 4 4
T T T

qp ρ ρ qp ρ ρ ρ ρ ρ ρ ρ ρ v qρ ρ ρ ρ ρ ρ v ρ ρ v
qp σ qσ σ

⎡ ⎤− − + − + − +⎣ ⎦ − + ,   (13) 

the covariance between r2 and r4 is  

 
( ) [ ]2

2 4 2 4 2 4 2 4 2 4 2 2 4 2 4 2 4 3 2 4 4
2 4 4 4
T T T

qp ρ ρ qp ρ ρ ρ ρ ρ ρ ρ ρ v qρ ρ ρ ρ ρ ρ v ρ ρ v
qp σ qσ σ

⎡ ⎤− + − + − − +⎣ ⎦ + − ,  (14) 

and the covariance between r3 and r4 is  

 
( ) [ ]2

3 4 3 4 3 4 3 4 3 4 2 3 4 3 4 3 4 3 3 4 4
2 4 4 4
T T T

qp ρ ρ qp ρ ρ ρ ρ ρ ρ ρ ρ v qρ ρ ρ ρ ρ ρ v ρ ρ v
qp σ qσ σ

⎡ ⎤+ − + − + +⎣ ⎦ − − ,   (15) 

where 2 21ρ ρ= − , 3 31ρ ρ= − , and 4 41ρ ρ= − . 

 As in the three level case, we can compute estimates of the variances and 

covariances above by substituting the sample estimates r2, r3, r4, and sT
2 in place of ρ2, ρ3, 

ρ4, and σT
2 in (10) through (15).  The standard errors of r2, r3, and r4 are just the square 

roots of their estimated variances. 

Examples 

 For the examples presented in this paper we utilize a sample of the reading results 

from the 2009-2010 Kentucky Core Content Test, which is the state’s test given to 

students in the spring of the academic year (Kentucky Department of Education, 2012).  

Our data includes reading scores from 46,849 fifth graders.  These test scores are spread 

across 173 districts, 715 schools, and 2,142 teachers.  The harmonic mean of the number 

of schools per district was 1.81 (arithmetic mean was 4.13), the harmonic mean number 
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of teachers per district was 4.12 (arithmetic mean was 12.38), and the harmonic mean 

number of teachers per school was 2.04 (arithmetic mean was 3.00).  The arithmetic 

average of 22 students per teacher (harmonic mean was about 8 students per teacher). 

While the official evaluation of students includes both open ended responses as 

well as multiple choice responses, we focused only on the multiple choice portion of the 

test.  This part of the test includes 39 items that are scored as correct or incorrect, with the 

final score representing the number of correct responses.  In our data, the test scores 

ranged from 0 to 33, with a mean of 27.01 and a variance of 27.51. 

The results of our example analyses are presented in Table 1.  For the two level 

example, we fit a mixed effect model where we nested students (level 1) in schools (level 

2).  For the three level model, we fit a mixed model where we nested students (level 1) in 

teachers (level 2), and teachers in schools (level 3).  In the four level model, our mixed 

effect model nests students (level 1) in teachers (level 2), teachers in schools (level 3), 

and schools in districts (level 4).  In order to keep our example numbers tractable, we did 

not standardize our outcome, nor did we include any covariates in our models.  

Two Level Models 

Fitting a two level model to the Kentucky dataset, with students nested within 

schools, the total variance is estimated to be sT
2 = 27.650, the level 2 variance component 

is s2
2 = 2.409, and the variance of the level 2 variance component is v2 = 0.024.  With 

these parameters, we calculate the estimate of the school level intraclass correlation to be 

r = 0.087.  We then calculate the variance of r as  

( ) ( )2
2

1 0.087 0.024 0.020var 0.00003,
27.650 764.523

r
−

= = =  
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which implies a standard error of 0.00003= 0.005.  Donner’s formula gave 

approximately the same result for the standard error, also rounding to 0.005. 

Three Level Models 

We return to the Kentucky data for our example of a three level fully 

unconditional model, where students are the level 1 units, teachers define the second 

level, and schools define the third level.  The outcome variable is again the raw reading 

scores. The parameter estimates from the model are s2
2 = 3.190, s3

2 = 1.557, sT
2 = 28.582, 

v2 = 0.040, v3 = 0.030, r2 = 0.112, and r3 = 0.054.  The harmonic mean of the number of 

teachers per school is p = 2.042.  Using the formulas for the balanced case with p = 

2.042, we calculate the variance of r2 as 

( )
( ) ( )( )

( )
( )

2
2

2 22

2 042 1 0 112 2 0 112 1 0 112 0 040 0 112 0 030
Var

28 5822 042 28 582

0 072 0 0004 0 00004 0 0000005 0 0000405
1668 173 816 931

r
⎡ ⎤− + −⎣ ⎦= +

= + = + =

. . . . . . .
.. .

. . . . .
. .

 

which implies a standard error of 0.0000405  = 0.006. 

Using the formulas for the balanced case with p = 2.042, we calculate the variance 

of r3 as 

( )
( )( ) ( )( )

( )
( )2 2

3 22

2 042 0 054 2 0 054 1 0 054 0 040 1 0 054 0 030
Var

28 5822 042 28 582

0 004 0 027 0 000002 0 00003 0 000032
1668 173 816 931

r
⎡ ⎤+ − −⎣ ⎦= +

= + = + =

. . . . . . .
.. .

. . . . .
. .

 

which implies a standard error of 0.000032 = 0.006. 

Four Level Models 
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Using the Kentucky data for our four level model example, we fit a fully 

unconditional mixed model with teachers defining the second level, schools defining the 

third level, and school districts defining the fourth level.  We again used the raw reading 

scores. The parameters from the model are s2
2 = 3.160, s3

2 = 0.957, s4
2 = 0.314, sT

2 = 

28.265, v2 = 0.039, v3 = 0.021, v4 = 0.008, r2 = 0.112, r3 = 0.034, and r4 = 0.011.  The 

harmonic mean of the number of teachers per school is p = 2.042, and the harmonic mean 

for the number of schools per district is q = 1.818.  Using the formulas for the balanced 

case, we calculate the variance of r2 as 

( )
( )( ) ( )( ) ( ) ( )

( )
( )( )

( )
( )

( )

22 2

2 2 2

2 2

22

1.818 2.042 1 0.112 2 1.818 2.042 0.112 1 0.112 2 0.112 0.039
Var

1.818 2.042 28.265

1.818 2 0.112 0.021 0.112 0.008
28.2651.818 28.265

0.263 0.00005 0.0001 0.00004 0.00000003
6056.244 1452.419 798.910

r
⎡ ⎤− + − +⎣ ⎦=

−
+ +

−= + + = + − + 0.0000001

0.00004007=
 

which implies a standard error of 0 00004007. = 0.006. 

The variance of r3 is calculated as 

( )
( ) ( )( ) ( )

( )
( ) ( )( )

( )
( )

2 2

3 2 2

2
2

22

1.818 2.042 0.034 2 1.818 2.042 1 0.034 1 0.034 0.039
Var

1.818 2.042 28.265

1.818 1 0.034 2 0.034 1 0.034 0.021 0.034 0.008
28.2651.818 28.265

0.007 0.037 0.00001 0.000001 0.0
6056.244 1452.419 798.910

r
⎡ ⎤+ − −⎣ ⎦=

⎡ ⎤− + −⎣ ⎦+ +

= + + = + 0003 0.00000001+

 

which implies a standard error of 0 00003101. = 0.006. 

The variance of r4 is calculated as  
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( )
( )( )( ) ( )( )

( )
( ) ( )( )

( )
( )

2

4 2 2

2 2

22

1.818 2.042 2.042 2 0.011 2 0.011 1 0.011 0.039
Var

1.818 2.042 28.265

1.818 0.011 2 0.011 1 0.011 0.021 1 0.011 0.008
28.2651.818 28.265

0.001 0.0005 0.008 0.0000002 0.00000
6056.244 1452.419 798.910

r
⎡ ⎤− − −⎣ ⎦=

⎡ ⎤+ − −⎣ ⎦+ +

−= + + = − + 03 0.00001+

 

which implies a standard error of 0 0000101. = 0.003. 

ICCVAR Software for Stata 

 We have developed software to perform these calculations in Stata. Once the user 

downloads and installs the ICCVAR.ado program, performing these calculations is quite 

simple. The first step is to run the mixed model as you normally do in Stata.  Then, 

immediately after the mixed model is estimated, simply type in “iccvar” into the 

command prompt to estimate the ICCs and variances, just as you would any other Stata 

“post-estimation” command.  The program then uses the variance components and 

variances stored by the estimation command to perform the calculations.  The ICCVAR 

program automatically detects the number of levels used in the previous mixed model.  

When a three level model is specified, you can enter an optional “unb” command to use 

the unbalanced formulas.  Figure 1 provides an example session using the program.  This 

program also stores the matrix of intraclass correlations and the variance-covariance 

matrix in the results memory.  This SATA code can be downloaded from 

http://www.ipr.northwestern.edu/qcenter/iccvar.html . 

Conclusions 
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 We have provided formulas for the large sample variances and covariances of 

estimates of intraclass correlations in three and four level models.  These expressions are 

suitable for computing standard errors for estimates of three and four level intraclass 

correlations when the sampling designs are balanced or nearly so.  These should be useful 

in providing some estimates of sampling uncertainty for analyses designed to yield 

reference values of intraclass correlations based on large scale data collections. 
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Figure 1: Example Stata session using ICCVAR 

                                                                 
   readingid    0.11179     0.00658       0.09889      0.12470
       schno    0.03385     0.00512       0.02381      0.04389
       leaid    0.01111     0.00312       0.00500      0.01722
                                                                 
                  ICC      Std. Err.      [95% Conf. Interval]
                                                                 

Harmonic Mean of Level 3 Units per Level 4 Unit  =       1.818
Harmonic Mean of Level 2 Units per Level 3 Unit  =       2.042

Intraclass Correlation Estimates

. iccvar

. quietly : xtmixed reading || leaid : || schno : || readingid :, var

                                                                 
   readingid    0.11162     0.00650       0.09888      0.12436
       schno    0.05447     0.00586       0.04298      0.06596
                                                                 
                  ICC      Std. Err.      [95% Conf. Interval]
                                                                 

Harmonic Mean of Level 2 Units per Level 3 Unit  =       2.042

Intraclass Correlation Estimates

. iccvar, unb

                                                                 
   readingid    0.11162     0.00662       0.09864      0.12460
       schno    0.05447     0.00593       0.04284      0.06610
                                                                 
                  ICC      Std. Err.      [95% Conf. Interval]
                                                                 

Harmonic Mean of Level 2 Units per Level 3 Unit  =       2.042

Intraclass Correlation Estimates

. iccvar

. quietly : xtmixed reading || schno : || readingid :, var

                                                                 
       schno    0.08714     0.00507       0.07720      0.09707
                                                                 
                  ICC      Std. Err.      [95% Conf. Interval]
                                                                 

Intraclass Correlation Estimates

. iccvar

. quietly : xtmixed reading || schno :, var
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Table 1: Example Results 

 Two Level Model  Three Level Model  Four Level Model 

 Estimate Variance  Estimate Variance  Estimate Variance 

Fixed Effect         

Intercept 26.931 0.004  26.665 0.005  26.872 0.007 

         

Random Effects         

District  -- --  -- --  0.314 0.008 

School  2.409 0.024  1.557 0.030  0.957 0.021 

Teacher  -- --  3.190 0.040  3.160 0.039 

Student  25.241 0.000a  23.835 0.000a  23.834 0.000a 

         

Total Variance 27.650   28.582   28.265  

         

ICCS         

District  -- --  -- --  0.011 0.0000101 

School  0.087 0.00003  0.054 0.000032  0.034 0.00003101 

Teacher  -- --  0.112 0.0000405  0.112 0.00004007 

Notes: N= 46,849 students in 2,142 teachers in 715 schools in 173 districts.  The harmonic 

mean of teachers per school is 2.042, the harmonic mean number of schools per district is 

1.818, a: we assume this variance to be 0.000 
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Appendix 

 This appendix describes the multilevel models on which the results of this paper 

are based and the method used to derive those results.   

Two Design 

 Suppose that m clusters of size n.  Let Yij be the jth observation in the ith cluster.  

Then the level 1 (individual level) model is 

 Yij = β0i + εij , i = 1, …, m; j = 1, …n     

where β0i is mean of the ith cluster and the εij are independently normally distributed with 

mean 0 and variance σ1
2.  The level 2 (cluster level) model is 

 β0i = γ00 + η0i, i = 1, ..., m, 

where γ00 is the grand mean and the η0i are independently normally distributed with mean 

0 and variance σ2
2. 

 We use the delta method to obtain the results of the paper (see, e.g., Rao, 1973, pp 

385-387), which implies that if a random variable Y is a function f(T) of another random 

variable T which has variance v, then the variance of Y in large samples is  (∂f(θ)/∂T)2v, 

where θ = E(T).  Starting with s2
2, we note that r is a function of s2

2 which is random and 

s1
2 ≈ σ1

2, which is a constant.  Therefore r = f(s2
2) = s2

2/( s1
2 + s2

2), and ∂f/∂s2
2 =  

(1 – r)/s2
2, which implies (1). 

Three Level Design 

 Suppose that m clusters, each with p subclusters of size n.  Let Yijk be the kth 

observation in jth  subcluster of the ith cluster.  Then the level 1 (individual level) model is 

 Yijk = β0ij + εijk , i = 1, …, m; j = 1, …p;  k  = 1, …n     



Standard errors of intraclass correlations  23 
 

where β0ij is mean of the jth subcluster in the ith cluster, and the εijk are independently 

normally distributed with mean 0 and variance σ1
2.  The level 2 (subcluster level) model 

is 

 β0ij = γ00i + η0ij, j = 1, ..., p; i = 1, ..., m, 

where γ00 is the mean of the ith cluster and the η0ij are independently normally distributed 

with mean 0 and variance σ2
2.  The level 3 (cluster level) model is 

 γ00i = π00 + ξ0i, i = 1, ..., m, 

where π00 is the grand mean, and the ξ0i are independently normally distributed with 

mean 0 and variance σ3
2. 

 We use the multivariate delta method to obtain the results of the paper (see, e.g., 

Rao, 1973, pp 388-389).  This method uses the fact that if a 1 � p vector of random 

variables T = (T1, …, Tp) has p � p covariance matrix Σ, and if Y = f(T) = (f1(T), …, 

fq(T)) is a 1 � q vector of differentiable functions of T, then the covariance matrix of Y in 

large samples is given by AΣA’, where A is a q � p matrix in which the element of the ith 

row and jth column is (∂fi(θ)/∂Tj), where θ = E(T).  Apply this result with q = 2 and p =2. 

Define T = (s2
2, s3

2), note that s1
2 is a constant, r2 = f1(T) = s2

2/( s1
2 + s2

2 + s3
2), and r3 = 

f2(T) = s3
2/( s1

2 + s2
2 + s3

2).  Noting that (∂fi(θ)/∂Tj) = (1 – ρi)/( σ1
2 + σ 2

2 + σ 3
2) when i = j 

and (∂fi(θ)/∂Tj) = – ρi/( σ1
2 + σ 2

2 + σ 3
2) when i ≠ j yields (4), (5), and (6). 

Four Level Design 

 Suppose that m clusters, each with q subclusters in each cluster, and p sub-

subclusters within each subcluster of size n.  Let Yijkl be the lth observation in kth  sub-

subcluster of the jth subcluster of the ith cluster.  Then the level 1 (individual level) model 

is 
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 Yijkl = β0ijk + εijkl , i = 1, …, m; j = 1, …p;  k  = 1, …q; l = 1, …, n   

where β0ijk is mean of the kth sub-subcluster of the jth subcluster in the ith cluster, and the 

εijkl are independently normally distributed with mean 0 and variance σ1
2.  The level 2 

(sub-subcluster level) model is 

 β0ijk = γ0ij + η0ijk,  i = 1, ..., m; j = 1, ..., p; k = 1 , …, q, 

where γ0ij is the mean of the jth subcluster in the ith cluster and the η0ijk are independently 

normally distributed with mean 0 and variance σ2
2.  The level 3 (subcluster level) model 

is 

 γ0ij = π0i + ξ0ij, j = 1, ..., p, i = 1, ..., m, 

where π0i is the mean of the ith cluster and the ξ0ij are independently normally distributed 

with mean 0 and variance σ3
2.  The level 4 (cluster level) model is 

 π0i = θ0 + ζ0i, i = 1, ..., m, 

where θ0 is the grand mean, and the ζ0i are independently normally distributed with mean 

0 and variance σ4
2. 

Use the multivariate delta method again with q = 3 and p = 3. Define the 1 � 3 

vector T = (s2
2, s3

2, s4
2) note that s1

2 is a constant, r2 = f1(T) = s2
2/( s1

2 + s2
2 + s3

2 + s4
2), 

and r3 = f2(T) = s3
2/( s1

2 + s2
2 + s3

2 + s4
2), and r4 =  f3(T) = s4

2/( s1
2 + s2

2 + s3
2 + s4

2).  

Noting that (∂fi(θ)/∂Tj) = (1 – ρi)/( σ1
2 + σ 2

2 + σ 3
2 + σ 4

2) when i = j and (∂fi(θ)/∂Tj) =  

–ρi/( σ1
2 + σ 2

2 + σ 3
2 + σ 4

2) when i ≠ j yields (10) through (15). 

 




