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DYNAMIC BAYESIAN NETWORK MODELING OF GAME BASED  

DIAGNOSTIC ASSESSMENTS 

Roy Levy 

Arizona State University 

 

Abstract 

Digital games offer an appealing environment for assessing student proficiencies, including 

skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian 

network modeling approach for observations of student performance from an educational 

video game. A Bayesian approach to model construction, calibration, and use in facilitating 

inferences about students on the fly is described. 

Introduction 

Games offer an appealing environment for conducting assessment, in part because games 

and assessments share many structural features (Behrens, Frezzo, Mislevy, Kroopnick, & Wise, 

2008). Games that employ digitally based simulations and data recording afford opportunities for 

more complex assessment arguments than typical paper and pencil tests (Levy, 2013), including 

the monitoring of learning and change over time (Rowe & Lester, 2010; Shute, 2011). Finally 

because of their motivational nature, games are often attractive to students and may support the 

integration of assessment and learning activities in a dynamic, longitudinal approach (Shute, 

2011). 

To date, psychometric modeling strategies for game-based assessments have been 

somewhat limited. To expand these strategies, this paper illustrates the construction, calibration, 

and use of a dynamic Bayesian Network (DBN) psychometric model for student performance in 

Save Patch, an educational game targeting rational number mathematics. Bayesian Networks 

(BNs) provide a fruitful framework for modeling student performance during game-based 

assessments (e.g., Iseli, Koenig, Lee, & Wainess, 2010; Rowe & Lester, 2010; Shute, 2011). 

Similarly, BNs have been gainfully employed in a variety of assessments that share features with 

games, such as simulation-based assessments that tend to share digital modalities of presentation 

and data collection (e.g., Almond, Mulder, Hemat, & Yan, 2009) and intelligent tutoring systems 

in which students receive feedback and there is the possibility (really, hope) that students learn 

during their interactions with the system (e.g., Mislevy & Gitomer, 1996; Reye, 2004; Sao Pedro, 

Baker, Gobert, Montalvo, & Nakama, 2013; VanLehn, 2008). 

The conditional probability structures underlying the BN in game-based assessment are 

commonly specified in advance by subject matter experts (Iseli et al., 2010; Rowe & Lester, 
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2010; Shute, 2011). As with other assessment applications, it may be desirable to obtain 

estimates of the conditional probabilities for game-based assessments based on student 

performance data. However, the longitudinal dependence structures of game-based assessments 

(discussed below) pose challenges to estimating these conditional probabilities (Iseli et al., 2010; 

Rowe & Lester, 2010). Procedures for estimating the parameters of DBNs have, to date, been 

applied to models with dichotomous latent and observable variables, as are appropriate for 

tutoring systems (e.g., Baker, Pardos, Gowda, Nooraei, & Heffernan, 2011; Chang, Beck, 

Mostow, & Corbett, 2006; Sao Pedro et al., 2013), which may be leveraged for game-based 

assessment with similar assumptions about latent and observable variables. However, in game-

based assessment, the student workspace is typically quite open, in which case students can 

engage in a variety of behaviors. When distinctions among multiple types of performance are 

warranted, polytomous evaluation of student performance may be necessary, making the 

aforementioned strategies prohibitively difficult. The author knows of no application in which a 

DBN psychometric model has been formally specified and calibrated via fitting the model to a 

dataset from a complex game-based assessment, or an intelligent tutoring system characterized 

by (a) polytomous evaluations of student performances which inform on (b) multiple aspects of 

proficiency. 

This paper proposes methods to aid in filling this void, describing the construction and 

calibration of a DBN psychometric model for student performance during a complex game. The 

proposed methods combine the data with subject matter expertise in the form of hard and soft 

constraints. Challenges to model specification germane to game-based assessments, as well as 

challenges to the estimation of such models, are addressed by formulating the model in a fully 

Bayesian framework using Markov chain Monte Carlo procedures to obtain the posterior 

distribution for the unknown parameters. In addition, we demonstrate the use of a DBN for 

supporting inferences about students. 

The next section describes key features of the game that motivate the modeling choices. 

The model for student performance in Save Patch follows, as well as a description of the 

calibration. This paper describes uses of the model to support inferences about students, then 

concludes with a brief summary and discussion. 

Context: Save Patch 

Save Patch (Chung et al., 2010) is an educational video game targeting rational number 

addition, developed by the National Center for Research on Evaluation, Standards, and Student 

Testing (CRESST) at the University of California, Los Angeles, and the Game Innovation Lab at 

the University of Southern California. This brief overview is oriented toward the description of 



 

3 

the psychometric model developed in this work; more complete descriptions of the game are 

given by Center for Advanced Technology in Schools (2012), Chung et al. (2010), and Kerr and 

Chung (2012a, 2012b). 

In Save Patch, students engage in a number of game levels, in which the student is 

presented with the setup of the board, and a set of resources in the form of ropes. The aim is for 

the student to strategically place the ropes such that the game character, Patch, successfully 

makes it from the starting position to target destination. As is typical in games, gameplay starts at 

Level 1 with subsequent levels presented in order, if the student reaches them. On each attempt, 

the student lays out the ropes, and then sets Patch in motion. If Patch successfully reaches the 

destination, the student proceeds to the next level. If an attempt is unsuccessful, the student 

remains at the current level and tries again. Simple descriptive summaries of student 

performance in Save Patch have been developed in service of evaluations of the game as a 

learning experience as well as an assessment (Delacruz, Chung, & Baker, 2010; Kerr & Chung, 

2012b). The current work seeks to complement those summaries with potentially richer 

summaries through more formal measurement modeling for use in such studies. 

The levels of Save Patch are explicitly designed to target various aspects of proficiency in 

the domain of rational number addition. For brevity, we refer to targeted aspects of proficiency 

as skills. Earlier levels target more basic skills; later levels target more advanced skills. In the 

current work we consider the first 23 levels of the game. The skills and the levels of the game 

that target them are listed in Table 1. 

Table 1 

Targeted Aspects of Proficiency (Skills) and Associated Levels 

Skills Levels 

Whole numbers 1-3 

Unit fractions 4-8 

Whole numbers and unit fractions 9-12 

Crossing the unit bar 13-15 

Adding unit fractions 16-19 

Adding improper fractions 20-23 

 

Save Patch was designed in a principled manner so that student behaviors would be 

reflective of the various skills, with key game mechanics linked to mathematical operations 

(Chung et al., 2010). Student behaviors are recorded in log files, which were likewise designed 
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to record and distinguish between salient features of performance indicative of student thinking 

and decision making. Cluster analyses of log files obtained from students playing early versions 

of the game led to the identification of a number of strategies adopted by students (Kerr & 

Chung, 2012b; Kerr, Chung, & Iseli, 2011). These included various solution strategies, as well as 

strategies that corresponded to misconceptions about mathematics as they occur in the game as 

well as more broadly. Moreover, student behaviors were associated with these strategies. These 

analyses support the characterization of each student attempt in terms of these strategies, be it a 

solution strategy or a misconception. For example, a student who behaved in ways that indicated 

they did not identify the fractional representation correctly was making a partitioning error, 

which is indicative of the misconception that, in the game, the denominator is determined by 

counting the dividing marks along the level, which is in turn indicative that the student does not 

understand that the denominator in a fraction represents the number of identical parts in one 

whole unit. 

Other strategies were identified that reflected approaches to gameplay. For example, 

students sometimes used everything given to them in the order that it was presented. This was 

interpreted as having the misconception that the order in which resources are given corresponds 

to the solution to the level. This does not provide much evidence about the student’s 

mathematical proficiencies beyond their attempt to “game the system” rather than trying to solve 

the problem in the intended manner. 

These analyses and the results are described in detail by Kerr et al. (2011) and Kerr and 

Chung (2012b), who framed the assessment activities in Save Patch in terms of evidence-

centered design (ECD; Mislevy, Steinberg, & Almond, 2003). In the ECD framework, the 

characterization of salient features of student performances constitutes the definition of evidence 

identification rules. For our purposes, these amount to rules to process the log files and produce a 

variable for each student’s attempt on each level that summarizes performance. These variables 

are referred to as observable variables, as they are summaries of student actions, and play the 

role of observable variables in latent variable measurement models, as discussed in following 

sections. 

Table 2 lists the 18 possible observable values for any attempt. The first five represent 

different solutions. For each level there is a Standard Solution, which is taken as evidence of 

mastery of the skill. Certain levels can be successfully completed—that is, Patch can be directed 

to the target destination safely—using other solutions, these are denoted by Fractional Solution, 

Shortcut Solution, and Alternate Solution. Incomplete Solution refers to the situation where the 

student partially lays out a correct solution; in this case Patch does not make it to the destination 

and the student retakes the level. 
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Table 2 

Observable Values and Corresponding Misconceptions 

Observable value Corresponding misconceptions 

Standard Solution  

Fractional Solution  

Alternate Solution  

Incomplete Solution  

Shortcut Solution  

Reset Solution  

Wrong Direction  

Skipped Key  

Wrong Numerator Iterating error 

Saw As Mixed Number Converting to wholes error 

Counted Hash Marks Partitioning error 

Counted Hash Marks and Posts Partitioning error 

Saw As One Unit Unitizing error 

Saw As Wholes Unitizing error 

Saw As One Unit and Counted Hash Marks Partitioning error, Unitizing error 

Saw As One Unit and Counted Hash Marks and Posts Partitioning error, Unitizing error 

Everything In Order Avoiding math 

Unknown Error  

 

Reset Solution refers to the situation where the student lays out a correct solution, but 

instead of setting Patch along the path, s/he elects to reset the level and try again. Wrong 

Direction refers to an attempt where the student lays out ropes in a way that the math appears 

correct, but the orientation of the ropes is not correct. This is viewed as indicative of 

misunderstanding some of the game mechanics, rather than the mathematics. Similarly, Skipped 

Key refers to the situation where the attempt is unsuccessful because the path laid out fails to 

obtain a key needed to open a lock and successfully complete the level. 

The remaining values refer to different types of incorrect attempts. The second column of 

Table 2 lists the misconceptions for these values. The last value, Unknown Error, refers to 

unsuccessful attempts that could not be otherwise characterized. 

Not all observable values are possible on every level. Most levels only have a few possible 

values, in addition to the Standard Solution and Unknown Error, which are possible on every 

level. 
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A simpler approach would be to characterize each attempt dichotomously, such as being 

successful if Patch reaches the destination and unsuccessful if Patch does not reach the 

destination. Such an approach would simplify both the characterization of student performances 

and the accompanying psychometric model, which is the focus of this work, and may be 

sufficient for high level analyses (Kerr & Chung, 2012b). However, such a characterization 

might not be sufficient for supporting other sorts of inferences, including real-time inferences 

regarding student proficiencies and misconceptions. The more complex evidence identification 

processes adopted here may be warranted if they provide a richer summary of performance. Far 

from arbitrary, these choices represent beliefs about how distinct behaviors have differential 

evidentiary bearing on the desired inferences about students (Levy, 2013). In Save Patch we 

wish to draw distinctions between different types of errors, which may differentially constitute 

evidence of lack of proficiency or misconceptions, as well as distinctions between different types 

of solutions, which may differentially constitute evidence of proficiency, efficiency, strategies, 

etc. 

Note that the category Unknown Error is used to denote attempts for which the approach 

could not be summarized with one of the other categories. This is something of a catch-all 

category, capturing unsuccessful attempts that cannot otherwise be characterized. Thus, the 

specification of evidence identification rules, used to evaluate student attempts and yield a 

categorization into one of the categories listed in Table 2, represents purposeful choices made to 

capitalize on the digital records of log files to provide a more nuanced view, without fully 

requiring that all different behaviors be interpreted and categorized separately (Levy, 2013). 

Dynamic Bayesian Network Psychometric Model 

In this section we develop a DBN psychometric model for attempts in Save Patch. Latent 

variables are employed to capture beliefs about proficiencies, and observable variables are used 

to capture student performance. More specifically each observable can take on any of the values 

listed in the first column of Table 2 except for Reset Solution, Wrong Direction, and Skipped 

Key. Attempts with these results were ignored from the current analysis because they were 

associated with game mechanics rather than underlying mathematics proficiency such that there 

are not firm beliefs about the evidentiary relevance of these behaviors. Such attempts were 

ignored in the model-fitting and employment, described in later sections. 

The model departs from traditional psychometric models that include a single, static latent 

variable for each aspect of proficiency and a single observable variable for each task. These 

psychometric features may not be appropriate for games and related systems wherein students 

may take multiple attempts at a particular level, accompanied by feedback provided to the 
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student during the game, leading to the possibility (if not outright desirability) of student learning 

during the game, both within and between levels. Feedback is often made explicit in intelligent 

tutoring systems (e.g., VanLehn & Niu, 2001), but is present in games like Save Patch because a 

student knows whether or not they were successful on an attempt at a level—if they are 

successful, they move on to the next level, if not, they remain at the same level and try again. 

Importantly, this stands in contrast to traditional assessment experiences where the student is not 

informed whether they successfully completed the task until (sometimes long) after the 

assessment, and the student does not get repeat attempts at tasks on which they are unsuccessful. 

In this section, we develop the model more suitable for these features of the game. 

A BN (Pearl, 1988) is a statistical model that represents the joint distribution of a set of 

discrete variables via recursive conditional distributions of the variables. A BN can be 

represented as an acyclic directed graph (commonly referred to as a directed acyclic graph, 

DAG), which depicts the dependence and conditional independence relationships in the model. 

BNs afford considerable flexibility in modeling dependence structures that arise in assessment 

(Almond, DiBello, Moulder, & Zapata-Rivera, 2007; Almond, et al., 2009; Almond, Williamson, 

Mislevy, & Yan, in press; Levy & Mislevy, 2004; Mislevy et al., 2002). 

For the current application, we develop a DBN (Reye, 2004; Rowe & Lester, 2010; 

VanLehn, 2008) which is a type of BN oriented toward modeling time series and related 

longitudinal data structures. Figure 1 shows a DAG for a simple DBN for a model with a 

possibly vector valued latent variable (θ), and possibly vector-valued observable variable (X), 

for each student i at each time point t. The plate over i indicates the structure is repeated over 

students i, which reflects an exchangeability assumption, facilitating the construction of the 

model at the individual student level. Likewise, the plate over t indicates a repeated structure 

over time. The model has two main components. The first is the component within time points, 

represented in the DAG by the directed edge from the latent to observable variable at any point. 

This reflects a structuring where, within time points, the observable variable is modeled as 

stochastically dependent on the latent variable. The second is a transition component between 

time points, represented in the DAG by the directed edges from the latent variable and 

observable variable at one time point to the latent variable at the next time, reflecting the 

stochastic dependence of proficiency at the later time on proficiency and performance at the 

earlier time. 
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Figure 1. Graph for a dynamic Bayesian network. 

Within-Time Component 

The within-time component specifies, at each time point, the joint distribution of the 

observable and the latent variables. Let θit = (θi1t,…,θiMt) denote the values of the M latent 

variables for student i at time t. 

As is common in diagnostic classification models (Rupp, Templin, & Henson, 2010), for 

each of the six skills in Save Patch we specify a dichotomous latent variable with categories 

corresponding to mastery, coded as 1, and nonmastery, coded as 0. Each level targets exactly one 

of these skills. In addition, whether or not the student possesses different misconceptions or 

(listed in the second column of Table 2) is posited to influence performance. Accordingly, we 

specify a dichotomous latent variable for each of the misconceptions with categories 

corresponding to the student possessing/not possessing that misconception, coded as 1 and 0, 

respectively (Bradshaw & Templin, in press). 

At any time point, the latent variables for each student is modeled as the following 

independent Bernoulli distribution 

 P(θimt) ~B(pimt) (1) 

where pimt is a prior probability of mastery/possession for skill or misconception m for person i at 

time t. The notion of it being the prior for time t is meant to indicate that it represents the beliefs 

just before the observation made at time t. It will serve as the prior distribution for an 

instantiation of Bayes Theorem that synthesizes the data observed from time t. Note that in 

general, each student has their own probability distribution for each latent variable at each time. 

At the initial time, t=1, an assumption of exchangeability implies a common prior across 

students: 

θit

Xit

θi(t+1)

Xi(t+1)

Students i

Time t
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 P(θim1) ~B(pm1) (2) 

The parameters governing the distribution of the initial values of the latent variables are assigned 

independent of diffuse prior distributions 

 P(pm1) ~Beta(1,1). (3) 

In Save Patch, not every latent variable is measured in every level, including the first level. 

Accordingly, we specify the prior distribution in (2)-(3) for each latent variable on the first 

attempt for the first level in which the latent variable is measured. As examples, the prior 

distribution for each student’s latent variable for Whole Number is specified on the first attempt 

at Level 1, but the prior distribution for each student’s latent variable for Unit Fractions is 

specified on the first attempt at Level 4. The specification of independent prior distributions for 

the latent variable is a simplification assumed for ease of modeling. A more complex model may 

specify and parameterize dependence structures among the latent variables if they are of 

inferential interest (e.g., de la Torre & Douglas, 2004; Levy & Mislevy, 2004). Importantly, the 

specification of independent priors does not force independence in the posterior distribution, as 

may emerge based on incorporation of the data. 

Distributions of the subsequent values for the latent variables may change over time, as 

governed by the transition component, described in a later section. The measurement model is 

assumed to be time-invariant, and as such time is not salient for the discussion of the 

measurement model and we therefore drop the time index t for the current exposition. 

Let K denote the number of possible categories of the observables, and recall that M is the 

number of latent variables. We note that not every latent variable is measured and not every 

category of the observables is possible in every level of Save Patch. The model can be 

formulated for the individual levels, but for ease of notation we present the model in terms of the 

general case. Where necessary, we will denote the number of latent variables measured in Level j 

and the number of categories for the observable based on Level j as Mj and Kj, respectively. 

As each latent variable is dichotomous, there are 2
M

 possible values of θ, each of which 

corresponds to a different profile of the latent variables. Let πjk|θ=c = P(Xija = k | θi = c) denote the 

probability that student i with a latent variable profile c yields an observable value of k on 

attempt a on level j. Let πj|θ=c = (πj1|θ=c,…, πjK|θ=c) denote the collection of the K category specific 

conditional probabilities for level j and latent variable profile c. Finally, let πj = (πj|θ=1,…, πj|θ=M) 

denote the full collection of conditional probabilities for level j. Because not every level 

measures every latent variable or has every possible category for the observable, in total πj 

contains ( jM
2 )(Kj) conditional probabilities, of which ( jM

2 )(Kj –1) are free owing to the 

restriction that 
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jK

k

cjk θ  (4) 

(i.e., for each latent variable profile the conditional probabilities for the Kj possible values must 

sum to 1). For example, Level 1 contains K1 = 6 possible observable values (Standard Solution, 

Alternate Solution, Saw as One Unit, Saw as One Unit and Counted Hash Marks, Everything in 

Order, Unknown Error) and measures M1 = 4 latent variables (the targeted proficiency Whole 

Numbers, and misconceptions/strategies Partitioning Error, Unitizing Error, and Avoiding 

Math), yielding 96 total and 80 free conditional probabilities. 

To simply the specification and estimation of these probabilities, we employ item response 

theoretic models for structuring the conditional probabilities (Almond et al., 2001; Levy & 

Mislevy, 2004), ultimately reducing the parameterization. Specifically, we leverage innovations 

inherent in the Scaling Individuals and Classifying Misconceptions (SICM) model (Bradshaw & 

Templin, in press). The SICM model employs a continuous latent variable representing 

proficiency and dichotomous latent variables representing misconceptions. The model developed 

here departs from the SICM by using discrete rather than continuous latent variables to represent 

proficiency, along with the discrete latent variables for misconceptions. More generally, we may 

model any skill, misconception, or other attribute as a discrete latent variable, and as such may 

then be viewed as a Skill, Misconception, or Attribute Classification (SMAC) model. In addition, 

the model here extends the SICM model of Bradshaw and Templin (in press) to model multiple 

targeted aspects of proficiency. The proceeding exposition is similar to that of Bradshaw and 

Templin (in press), though departs in several places owing to the aforementioned differences. 

The model parameterizes πj|θ=c via a polytomous logistic regression framework (e.g., 

Agresti, 2002). Owing to the restriction in (4), for each observable we specify one category as a 

baseline and K – 1 non-redundant logits that model the probability of a value in another category 

relative to the baseline category. The model for each of the K categories can be expressed as 

 











jK

k

ijkjk

ijkjk

iijacjk ckXP

1

0

0

|

)exp(

)exp(
)|(

θλ

θλ
θθ




 . 

(5) 

As formulated in (5), the model takes on a form similar to a multidimensional item response 

model (Reckase, 2009). Alternatively, it may be formulated in terms of incidence matrices 

indicating whether certain levels measure certain proficiencies and misconceptions (e.g., 

Bradshaw & Templin, in press), in which case it is an unordered-category extension of the model 

introduced by von Davier (2005). 
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We choose the category of Unknown Error to serve as the baseline category because it is a 

possible value in every level and facilitates a natural interpretation of the parameters, as 

discussed below. Without loss of generality, this baseline category is coded as the highest 

category K. For the remaining categories k ≠ K, the intercept λjk0 is the logit of the observable 

taking on value k over the baseline category of Unknown Error for a student who has not 

mastered the targeted skill and possesses none of the misconceptions relevant for category k. 

Larger values of 0jk  indicate that category k on level j is more likely, holding all else constant. 

λjk = (λjk1,…, λjkM)′ is the (Mj×1) vector of discrimination parameters capturing the effect of 

the corresponding M latent variables on the probability of the student’s attempt being in category 

k. Larger magnitudes of any λjkm indicate larger differences in the probability of the attempt being 

in category k on level j for students with and without the associated skill or misconception. 

Positive values of λjkm indicate that students who possess the skill or misconception are more 

likely to have a value of category k; negative values of λjkm indicate that students who possess the 

skill or misconception are less likely to respond with category k. A value of 0 for λjkm indicates 

that the probability of having a value of k on level j does not vary with whether or not the student 

possesses skill or misconception m. 

As discussed above, each level measures only one of the targeted skills and possibly only 

some of the misconceptions. As a result, not all of the categories for the observable are possible 

in each level. If category k on level j is not possible, its probability is set to 0 (which may be 

viewed as fixing λjkm = 0 for all m and λjk0 = -∞). 

Similarly, we set λjkm = 0 for all m if the level does not measure the associated skill or 

misconception, and λjkm = 0 if category k does not measure skill or misconception m. 

Accordingly, for each level, the discriminations for all of the skills other than the target skill for 

the level are set to 0, as are the discriminations for all misconceptions not measured in that level. 

The implications of the previous are as follows. For any of the solution categories 

(Standard Solution, and if possible on the level, Fractional Solution, Alternate Solution, and 

Incomplete Solution), the discrimination for the latent variable for the targeted skill is included, 

but the remaining discriminations are set to 0. For any category representing a misconception, 

the discrimination parameter for the latent variable representing that particular misconception is 

included, and the discriminations for the remaining latent variables (i.e., those that represent 

skills or other misconceptions) are set to 0. Finally, to identify the model, the parameters for the 

baseline category of Unknown Error are fixed to be λjKm = 0, m=1,…,M. This is summarized in 

Table 3, which generically represents the prior distributions and the structure of the 

discriminations for a hypothetical level in which all categories are possible. 



 

 

Table 3 

Prior Distributions for Model Parameters (Within-Time Component)  

Observable value  

Location 

parameter 

Targeted aspect of 

proficiency (Skill) Iterating error 

Converting to 

wholes error 

Partitioning 

error Unitizing error Avoiding math 

Standard Solution N(0, 10) λSS ~ N(2, 10) C(0, )      

Fractional Solution N(0, 10) N(2, 10) C(0, λSS)      

Alternate Solution N(0, 10) N(2, 10) C(0, λSS)      

Incomplete Solution N(0, 10) N(2, 10) C(0, λSS)      

Shortcut Solution N(0, 10) N(2, 10) C(0, λSS)      

Wrong Numerator N(0, 10)  N(2, 10) C(0, )     

Saw As Mixed Number N(0, 10)   N(2, 10) C(0, )    

Counted Hash Marks N(0, 10)    N(2, 10) C(0, )   

Counted Hash Marks and Posts N(0, 10)    N(2, 10) C(0, )   

Saw As One Unit N(0, 10)     N(2, 10) C(0, )  

Saw As Wholes N(0, 10)     N(2, 10) C(0, )  

Saw As One Unit and Counted 

Hash Marks 
N(0, 10)    N(2, 10) C(0, ) N(2, 10) C(0, )  

Saw As One Unit and Counted 

Hash Marks and Posts 
N(0, 10)    N(2, 10) C(0, ) N(2, 10) C(0, )  

Everything In Order N(0, 10)      N(2, 10) C(0, ) 

Unknown Error        

Note. For all the columns except that for the location parameter, cells with nonzero entries indicate the discrimination is included in the model. 
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These entries specify the prior distribution for the (included) discriminations. For Standard 

Solution, the prior distribution for the discrimination parameter (along the latent variable for the 

targeted skill) is N(2, 10) censored below by 0. This prior is relatively diffuse, and serves to 

resolve the possible label switching of the latent variable (Chung, Loken, & Schafer, 2004); 

likewise for the prior distributions for the discrimination parameters on the other latent variables. 

The prior distributions for the discrimination parameters for the other solution categories 

(along the targeted skill) are also N(2, 10) censored below by 0, but are additionally censored 

above by the just-mentioned discrimination for Standard Solution. This additional constraint 

reflects the theory that the Standard Solution is most reflective of mastery of the skill. 

Finally, for all intercept parameters included in the model we employ the following diffuse 

normal prior distributions 

 λjk0 ~ N(0, 10). (6) 

Transition Component 

The transition component specifies the probability distribution for subsequent values of the 

latent variables. Each latent variable is modeled as being dependent on the corresponding latent 

variable at the preceding time and the observable variable at the preceding time. That is, we 

define a transition structure for each latent variable based on the previous value of the latent 

variable and the just observed value of the observable variable. This is only done for latent 

variables that are measured by the level in question, and this is only done for observable 

categories that occur; if an observable category does not occur for a level, no transition 

probability is specified for that level. 

Let θimjt denote the value of latent variable m for student i on level j at time t, and let Xijt 

denote the value of the observable for person i on level j at time t. We begin by considering the 

model for each skill, and we set the probability of mastery at time t+1 given mastery at time t to 

be 1, regardless of the level and value of the observable at time t: 

 tjPXP imjttimjijtimjttimj   1)1|1(),1|1( )1()1(  . (7) 

This reflects the hypothesis that mastery, once attained, cannot be lost. This is a firm constraint, 

and calls for some discussion about its implications. Mastery here takes on the meaning of 

success with levels that measure the skill in the game. This is not to say that if the student is a 

master of a skill in the game, then they are master outside of the game. The latent variables are 

interpreted in the context of the game and its modality. The probability distribution for a 

student’s latent variable for Whole Numbers captures our understanding of their performance on 

the levels of the game that reflect that aspect of proficiency; likewise the probability distribution 
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for the latent variable for Partitioning Error captures our understanding of the student’s 

performance and our thinking about their propensity to exhibit behaviors consistent with 

partitioning errors in the game. Of course, our desire is for the interpretation of performance in 

the game to generalize to other contexts. The use of a rigorous design process lends support to 

this, but further empirical work relating the characterization of student performance in the game 

to performance outside of the game would be beneficial (Delacruz et al., 2010; Kerr & Chung, 

2012b). 

In modeling the transition from nonmastery to mastery, in general we wish to specify the 

probability that a student is a master at time t+1 given they were a nonmaster at time t and had a 

particular value for the observable at time t. For example, what is the probability that a student 

who was not a master and made a partitioning error on the previous attempt is now a master? 

In the current application, we encounter several problems related to the sparseness of data 

in attempting to estimate these probabilities. These challenges are likely to be present in other 

educational game environments. To begin, certain observations are somewhat rare. For example, 

in the dataset used to fit the model, in Level 3 there were 36 occasions where a student had a 

value of Saw As One Unit and Counted Hash Marks and Posts. Even if we assume that the 

student was a nonmaster of Whole Numbers on each of these occasions, it still does not afford a 

lot of data with which to estimate the transition probability. This may be thought of as a problem 

of too little data. A related problem occurs if the data suggests that the transition probability is 0. 

In this case it is unclear if the data from a larger sample would imply the transition probability is 

0. If we had a larger sample, might we find someone who does transition to mastery? This 

problem is akin to that of sampling vs. structural 0s in contingency table analyses, and may be 

thought of as a problem of empirical sparseness. Importantly, the use of a fully Bayesian 

framework with prior distributions for parameters helps to mitigate these problems. 

There is a third problem, which we term a logical problem of sparseness, related to 

solutions on the last level of the game that measures a latent variable. Consider again Level 3, 

which is the last level that depends on the latent variable for Whole Numbers. Once a student 

provides a viable solution to Level 3, they proceed on to the remaining levels, none of which 

measure the latent variable for Whole Numbers. Thus, there is no subsequent data on which to 

base the estimate of the transition from nonmastery to mastery of Whole Numbers when students 

provide viable solutions. Here again, prior specifications can resolve this. For each solution 

strategy, we can simply set the probability of transition from nonmastery to mastery at a certain 

value. This may be viewed as specifying a prior distribution with all its mass at a particular 

point. Alternatively we can set a prior distribution with a density over a region, expressing 

uncertainty. In these cases the resulting posterior will be identical to the prior. 
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We opt for the related but slightly different approach of specifying the transition 

probabilities via a hierarchical prior construction. For each level j, the probability of mastery for 

the latent variable m, here the latent variable for the targeted aspect of proficiency, at time t+1 

given nonmastery at time t and the observable at time t had a value of k is 

 ),(~),0|1( ,0,0)1( kkijtimjttimj mm
BetakXP     . (8) 

where km ,0 and km ,0 are hyperparameters. Note that the subscript of θm=0 indicates that this 

is for the case where the value of latent variable m is 1, that is, the student does not possesses the 

skill. Additionally note that they are not indexed by j, indicating that these are not level-specific, 

but rather apply to all levels that measure the latent variable for the skill in question. Prior 

distributions for these hyperparameters are specified as 

 
km ,0 – 1 ~ Poisson(1); (9) 

 
km ,0 – 1 ~ Poisson(9); (10) 

The use of these Poisson priors and the “subtract 1” construction defines a Beta distribution in 

(8) that is not U-shaped and additionally reflects the hypothesis that transitions from nonmastery 

to mastery are not likely. The specification in (9)-(10) expresses the belief that the transition 

probability is most likely low, around .10, but that there is considerable uncertainty. With this 

hierarchical construction, the information in the data regarding the transition probabilities (in (8)) 

from the levels before the last level that measures the targeted skill flows up to the parameters 

αmk and βmk, which gets synthesized with the fairly diffuse prior (in (9) and (10)) to yield a 

posterior distribution, which in turn flows down to the transition probabilities (again, (8)) for the 

last level that measures the target aspect of proficiency. For latent variables representing the 

targeted skill, this construction is used for each observable category that occurs on a level; if an 

observable category does not occur for a level, no transition probability is specified. 

We specify the transition probabilities for the latent variables that measure misconceptions 

in a similar fashion, with some slight differences. As just mentioned, if an observable category 

does not occur for a level, no transition probability is specified. 

We do not assume that if a student possesses a misconception then they always will. 

Indeed, the hope is that they will learn by simply playing the game. Accordingly, for latent 

variable m representing a misconception, we specify the probability that a student will retain the 

misconception given they just provided the Standard Solution as 

 ),(~),1|1( ,,1,,1)1( kgkgijtimjttimj jmjm
BetakXP     , k = Standard Solution (11) 
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where kg jm ,,1  and kg jm ,,1  are hyperparameters. Note that the subscript of θm=1indicates that 

this is for the case where the value of latent variable m is 1, that is, the student possesses the 

misconception. In addition to being indexed by θm and k, they are indexed by gj, which stands for 

the group that level j belongs to, where groups of levels are defined by the targeted skill. This 

implies that we will have a hierarchical prior structure for the transition probabilities for 

misconceptions for each group of levels separately. For example, we have a hierarchical prior 

structure for the transition probabilities for the latent variable for Partitioning Error in Levels 1-

3, another hierarchical prior structure the transition probabilities for the latent variable for 

Partitioning Error in Levels 4-8, another hierarchical prior structure the transition probabilities 

for the latent variable for Partitioning Error in Levels 9-12, and so on (Note that this was also 

done for the latent variables for skills, but as the groups were defined by which levels measured 

the same skills, the additional notation was not needed.). Prior distributions for these 

hyperparameters are specified as 

 
kg jm ,,1 – 1 ~ Poisson(1), k = Standard Solution; (12) 

 
kg jm ,,1 – 1 ~ Poisson(1), k = Standard Solution. (13) 

These choices reflect considerable uncertainty regarding the transition probabilities. 

For the remaining solution strategies (Fractional Solution, Alternate Solution, Incomplete 

Solution, Shortcut Solution), we specify a common transition probability with a hierarchical 

prior structure 

 ),(~),1|1( ,,1,,1)1( kgkgijtimjttimj jmjm
BetakXP     , k = Other Solution; (14) 

 
kg jm ,,1 – 1 ~ Poisson(1), k = Other Solution; (15) 

 
kg jm ,,1 – 1 ~ Poisson(1), k = Other Solution. (16) 

Similarly, for the error category or categories associated with the latent variable for the 

misconception we specify a distinct hierarchical prior distribution 

 ),(~),1|1( ,,1,,1)1( kgkgijtimjttimj jmjm
BetakXP     , 

k = Category(ies) associated with misconception captured by latent variable m; 

(17) 

 
kg jm ,,1 – 1 ~ Poisson(1); 

k = Category(ies) associated with misconception captured by latent variable m; 
(18) 

 
kg jm ,,1 – 1 ~ Poisson(1), 

k = Category(ies) associated with misconception captured by latent variable m. 
(19) 
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For the error categories not associated with the latent variable for the misconception we 

specify a distinct hierarchical prior distribution 

 ),(~),1|1( ,,1,,1)1( kgkgijtimjttimj jmjm
BetakXP     , 

k = Category(ies) associated with other errors; 
(20) 

 
kg jm ,,1 – 1 ~ Poisson(1); 

k = Category(ies) associated with other errors; 

(21) 

 
kg jm ,,1 – 1 ~ Poisson(1), 

k = Category(ies) associated with other errors. 
(22) 

The preceding equations specify the architecture of the transition probability structure 

given the student possessed the misconception at the preceding time point. This is reinstantiated 

for the situation in which the student did not possess the misconception at the preceding time 

point; which amounts to the probability of acquiring the misconception. Formally, 

 ),(~),0|1( ,,0,0)1( kgkgijtimjttimj jmjm
BetakXP     , k = Standard Solution; (23) 

 
kg jm ,,0 – 1 ~ Poisson(1), k = Standard Solution; (24) 

 
kg jm ,,0 – 1 ~ Poisson(1), k = Standard Solution; (25) 

 ),(~),0|1( ,,0,,0)1( kgkgijtimjttimj jmjm
BetakXP     , k = Other Solution; (26) 

 
kg jm ,,0 – 1 ~ Poisson(1), k = Other Solution; (27) 

 
kg jm ,,0 – 1 ~ Poisson(1), k = Other Solution; (28) 

 ),(~),0|1( ,,0,,0)1( kgkgijtimjttimj jmjm
BetakXP     , 

k = Category(ies) associated with misconception captured by latent variable m; 

(29) 

 
kg jm ,,0 – 1 ~ Poisson(1), 

k = Category(ies) associated with misconception captured by latent variable m; 

(30) 

 
kg jm ,,0 – 1 ~ Poisson(1), 

k = Category(ies) associated with misconception captured by latent variable m; 

(31) 

 ),(~),0|1( ,,0,,0)1( kgkgijtimjttimj jmjm
BetakXP     , 

k = Category(ies) associated with other errors; 

(32) 

 
kg jm ,,0 – 1 ~ Poisson(1); 

k = Category(ies) associated with other errors; 
(33) 

 
kg jm ,,0 – 1 ~ Poisson(1), 

k = Category(ies) associated with other errors. 
(34) 
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Results of Model Fitting 

The model was calibrated using Markov chain Monte Carlo estimation, via the OpenBUGS 

software (Lunn, Spiegelhalter, Thomas, & Best, 2009), using data from 851 6
th

-8
th

 graders 

playing Save Patch. Student attempts were recorded in log files and evaluated in ways described 

by Kerr and Chung (2012a). Attempts to fit the entire model in one analysis were unsuccessful, 

as the software crashed. The model was fit by running separate analyses for groups of levels. 

With one exception the groups were defined by levels corresponding to the same target skill 

(Table 1). The exception was that unsuccessful attempts at fitting the model for Levels 4-8 and 

led to them being split into Levels 4-6 in one analysis and Levels 7-8 in another analysis. 

To preserve continuity between the separate analyses, for parameters that carried over one 

group of levels to another, the posterior distribution from the former were used as prior 

distributions in the latter. For example, for each student, the posterior distribution for the latent 

variable for Partitioning Error after Level 3 may be viewed as a Bernoulli distribution with a 

certain parameter, denoted here as 3|LevelngPartitioni i
p . Empirically, 3|LevelngPartitioni i

p is estimated as the 

proportion of draws from the MCMC process that the latent variable for Partitioning Error after 

Level 3 for student i takes on corresponding to possessing the misconception. The prior 

distribution for the student’s latent variable for Partitioning Error in Level 4 is then specified as a 

Bernoulli distribution with parameter 3|LevelngPartitioni i
p . More generally, to ensure continuity across 

separate analyses, the posterior probability for the parameter from the preceding analysis serves 

as the prior probability for the parameter in the following analysis. 

For each analysis, two chains were run from dispersed start values. Convergence of the 

chain was evaluated via inspection of the trace plots. Once it appeared that the chains converged, 

an additional 10,000 iterations were obtained for use in summarizing the posterior distribution. 

Density plots and summary statistics of the parameters were inspected for interpretability. In all 

cases, there was no evidence of label switching within or between chains, suggesting the prior 

specifications were sufficient for resolving the indeterminacies inherent in the use of discrete 

latent variables. 

To illustrate the results, Tables 4-6 contain estimates of the conditional probability tables 

for Level 19 based on the posterior means from the analysis in BUGS. Table 4 is the conditional 

probability table for the observable, given the combinations of the targeted skill (Adding Unit 

Fractions) and the misconception associated with Iterating Error. The highest probability of 

Standard Solution occurs when the student is a master of Adding Unit Fractions. If the student 

possesses the Iterating Error misconception, the probability of a solution is lower, and the 

probability of a Wrong Numerator attempt increases. Table 5 is the conditional probability of 
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mastery for Adding Unit Fractions at time t+1 given Adding Unit Fractions at time t and the 

observable at time t. Nonmasters are most likely to become masters following giving the 

Standard Solution (probability = .38), and least likely following an Unknown Error (probability 

= .09). Table 6 is the conditional probability of mastery for Iterating Error at time t+1 given 

Iterating Error at time t and the observable at time t. Students who possess the misconception 

associated with Iterating Error are fairly likely to keep the misconception even if they correctly 

solve the Level (probability = .51). They are somewhat less likely to keep the misconception if 

they have it and just exhibited Wrong Numerator on the previous attempt. The probabilities of 

acquiring the error if they do not possess it are generally low. 

Table 4 

Conditional Probabilities for the Observable for Level 19 

Latent variables  Observable for Level 19 

Adding unit 

fractions Iterating error 
 

Standard 

Solution 

Alternate 

Solution 

Incomplete 

Solution 

Wrong 

Numerator 

Unknown 

Error 

Master Not Possess  0.95 0.00 0.01 0.03 0.01 

Nonmaster Not Possess  0.58 0.02 0.01 0.25 0.13 

Master Possess  0.77 0.00 0.01 0.21 0.01 

Nonmaster Possess  0.33 0.01 0.01 0.58 0.07 

 

Table 5 

Transition Probabilities for Adding Unit Fractions for Level 19 

  Observable for Level 19 at time t 

Adding unit fractions at 

time t 
 

Standard 

Solution 

Alternate 

Solution 

Incomplete 

Solution 

Wrong 

Numerator 

Unknown 

Error 

Master  1 1 1 1 1 

Nonmaster  .38 .17 .19 .20 .09 
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Table 6 

Transition Probabilities for Iterating Error for Level 19 

  Observable for Level 19 at time t 

Iterating error at 

time t 
 

Standard 

Solution 

Alternate 

Solution 

Incomplete 

Solution 

Wrong 

Numerator 

Unknown 

Error 

Possess  .51 .51 .51 .29 .46 

Not possess  0 0 0 .15 .14 

 

Model-Based Reasoning of Student Proficiencies and Misconceptions 

This section details the use of the model for facilitating inferences about students. In a 

Bayesian network (BN), once values of variables are known, they can be entered and their 

information propagated throughout the network to yield posterior distributions for unknown 

variables (Pearl, 1988). This updating is fast, particularly when the size of the network is of 

moderate size and complexity. 

Thus, BNs are attractive for psychometric models with latent variables, particularly when 

the network updating and propagation can be localized. This is indeed possible in the 

psychometric model introduced here. In psychometric applications, making inferences for 

students requires entering known values for observables, then propagating that information 

throughout the network to yield a posterior distribution for the latent variables and any as-of-yet 

unknown observables. 

To facilitate the exposition of this process for the current model, recall the overall structure 

of the model depicted in Figure 1. As the structure and procedures apply for each student, we 

drop the subscript i. Suppose a value for the observable at the current time, Xt, is observed. The 

posterior distribution for the remaining variables is 

 P(θt, θt+1, Xt+1,| X t)  P(θt, θt+1, Xt, Xt+1) 

 P(Xt | θt) P(θt) P(θt+1 | θt, Xt) P(Xt+1 | θt+1) 

 P(θt | Xt) P(θt+1 | θt, Xt) P(Xt+1 | θt+1) 

(35) 

The second line in (35) follows from the conditional independence assumptions implied by the 

structure of the model in Figure 1. The third line results by recognizing that the first two terms 

on the right side of (35) constitute the posterior distribution for θt given Xt. 
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Figure 2. Running history of mastery of skills for a student. 

This last factorization supports a multi-phase updating scheme (Reye, 2004). In the first 

phase, we obtain the posterior distribution for the latent variables immediately prior to the 

observation via Bayes Theorem 

 P(θt | Xt)  P(X t | θt) P(θt), (36) 

where P(θt) is the distribution for the latent variables prior to observing Xt, and P(Xt | θt) is the 

measurement model, here the SMAC model. This represents the updated beliefs about the 

student’s proficiency prior to the attempt, where the measurement model P(Xt | θt) governs the 

revision to our beliefs about θt. 

In the second phase, we obtain the model-based expectations for the latent variables at the 

next time point. This is given by the posterior predictive distribution for the latent variables θt+1 

given the observable, obtained by marginalizing over the posterior distribution for θt 

 )|(),|()|( 11 ttttttt XPXPXP
t

θθθθ
θ

   . (37) 

This distribution represents the updated beliefs about the student’s proficiency subsequent to the 

attempt, where the transition model P(θt+1 | θ t, Xt) captures our beliefs about how student 

proficiency changes in light of their previous proficiency state and performance. 
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These two phases represent the core parts of inference: given an observation of student 

performance, update beliefs about their proficiency prior to the attempt (phase one), and then 

update beliefs about their proficiency subsequent to the attempt (phase two). 

A third phase is possible, in which we obtain the model-based expectations for 

performance at the next time point. This is given by the posterior predictive distribution for 

Xt+1 

 


 
1

)|()|()|( 1111

t

tttttt XPXPXXP
θ

θθ . (38) 

This distribution represents the updated beliefs about the student’s performance on the next 

attempt, given the just updated beliefs about student proficiency for the next attempt. Note the 

role of the measurement model P(Xt+1 | θt+1). Here, reasoning proceeds from the latent variables 

to the observables, which constitutes deductive reasoning through the measurement model. In 

contrast, reasoning from the observables to the latent variables (in (36)) constitutes inductive 

reasoning through the measurement model (Mislevy, 1994). 

The procedure proposed here allows for fast, local computations that capitalize on the 

conditional independence assumptions inherent in the graphical model to work with local 

computations based on one observable at a time, without requiring for the BN to be expanded. 

The decomposition of the propagation of evidence supports a strategy where only a few 

distributions need to be stored. At any time point, we have the probability distribution for the 

latent variables. Once a value for an observable is known, this distribution serves as the prior 

distribution, P(θt) in Bayes Theorem, which in conjunction with the measurement model P(Xt | 

θt) yields the posterior distribution for the latent variables at this time, P(θt | Xt). In turn, we 

employ the transition probability structure P(θt+1 | θt, Xt) to obtain the posterior predictive 

distribution for the latent variables at the following time, P(θt+1 | Xt). This then serves as the prior 

distribution in the next analysis, once additional data are observed. Thus at any point, only a few 

structures need to be stored/employed: the current distribution of the latent variables, the 

conditional distribution of the observable (i.e., the measurement model), and the conditional 

distribution of latent variables in the future (i.e., the transition model). Previous distributions of 

the latent variable need not be maintained, but can be written out, creating a running history of 

beliefs about student proficiency. 

Importantly, the network for each student can be built on fly. We begin with a probability 

distribution for each of the latent variables. The BN fragments for the measurement model and 

the transition model for the level are docked to the latent variables (Almond & Mislevy, 1999). 

The probability distribution for the latent variables is updated via the two-phase updating scheme 
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in (36) and (37). Once values for observables are known and their evidentiary implications 

propagated, they can be discarded (Almond & Mislevy, 1999). The BN fragments for the level 

are dropped from the model and the BN fragments for the measurement model and transition 

model for the next observable are docked. 

The fully Bayesian framework and OpenBUGS software is advantageous for specifying 

and calibrating the model. However it is not optimal for conducting inference for students in 

using the procedures outlined above. To conduct inference, BN fragments corresponding to the 

prior probabilities for the latent variables, conditional probabilities for the observables, and the 

transition probabilities for the latent variables were specified using the posterior means for these 

parameters from OpenBUGS. The gRain package in R (Højsgaard, 2012) was used to conduct 

inference. As described above, each computation involved the current probability distribution for 

observables, the conditional probability distribution for the level of the observable at hand, and 

the transition probability for the latent variables for the level. 

A running history of the latent variables for each of the 851 students in the calibration 

dataset was obtained. To illustrate, Figures 2 and 3 depict the running histories of probability of 

mastery for the latent variables representing the targeted aspects of proficiency and possessing a 

misconception for one student. The points are spaced equally for each attempt along the 

horizontal axis, but the axis is labeled by level, indicating when the student first attempted that 

level. We can interpret the gaps between the tick marks on the axis as representing the number of 

attempts spent on each level. Figures 2-3 reveal the student took several attempts on Levels 6, 9, 

and 12, and relatively few attempts on Levels 19-23. The rises and falls in the trajectories depict 

the change in the probability distributions for the latent variables that occur as the data arrive and 

the distributions are updated. This reflects the changing beliefs about the student, based on the 

model, updated as new information arrives in the form of new observations from student 

attempts on the levels. Figure 2 depicts the change in beliefs over time regarding the student’s 

mastery of the targeted skills, likewise Figure 3 for beliefs regarding the student’s possessing 

certain misconceptions. We see that the student struggled with Level 6, though that is not 

attributed to possessing a misconception, as none of the latent variables for the misconceptions 

have high probabilities. In this case, on the student’s first six attempts at Level 6, they committed 

an Unknown Error. On their seventh attempt, they provided the Standard Solution. In contrast, 

when the student attempted Levels 9 and 10, they exhibited behaviors consistent with having a 

misconception associated with Partitioning Errors, as well a strategy of Avoiding Math by 

putting everything in order. 
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Figure 3. Running history of possession of misconceptions for a student. 

Summary and Discussion 

This work demonstrated the construction, calibration, and use of a DBN psychometric 

model for game-based assessment. The structure of the model, in terms of the specification of 

observable variables, the use of latent variables, and the dependencies of the former on the latter, 

was grounded on prior work that characterizes the evidentiary bearing of student performance on 

inferences about their capabilities, strategies, and misconceptions. This prior work came in the 

form of a principled design process for the game (Chung et al., 2010) as well as empirical 

analyses primarily in the form of cluster analyses and interpretations of log files (Kerr & Chung, 

2012a; Kerr, Chung, & Iseli, 2011). 

The judgments and interpretations on which the current developments are based may be in 

error; as with all statistical models, the current one is a simplification of the more complex real 

world situation. The best we can hope for is that the model is useful, which is less likely to be the 

case when the grounding and simplifying assumptions poorly reflect the real world situation at 

hand. In such a case, inferences based on the model, including characterizations of tasks and 

students, may be suspect. Critiquing the BN model (e.g., Sinharay, 2006), and perhaps some of 

the underlying assumptions regarding student proficiency and performance, is left for future 

work. 
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The current work focused on the construction of the model based off of the current 

theoretical and empirical grounding, followed by an empirical approach to calibrating the model. 

Specifically, a Bayesian approach to modeling facilitated the estimation of parameters based on 

student performance data as well as subject matter expertise. The context for this work, Save 

Patch, was a game that targets multiple skills and misconceptions, with student performances 

that can be characterized polytomously. To facilitate a reduced parameterization of the 

conditional probability tables, a diagnostic SMAC measurement model that used a 

parameterization similar to the SICM model was developed. The procedures developed here may 

support a more nuanced view of students based on data from Save Patch than more descriptive 

summaries, which may then be leveraged in studies that relate Save Patch to other assessments 

or measures of learning (Delacruz et al., 2010; Kerr & Chung, 2012b). Extensions to this work 

include the use of other condensation rules for the latent variables in the measurement 

component (e.g., Almond et al., 2001; Levy & Mislevy, 2004; Mislevy et al., 2002), modeling 

the relationships among the latent variables (e.g., de la Torre & Douglas, 2004; Levy & Mislevy, 

2004). In addition, the modeling framework adopted here could be expanded by allowing for 

time-varying structures in the measurement component, transition component, or both. 
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