CRESST REPORT 842

STUDENT GROWTH PERCENTILES BASED ON MIRT:
IMPLICATIONS OF CALIBRATED PROJECTION

SEPTEMBER 2014

Scott Monroe
Li Cai
Kilchan Choi

National Center for Research
on Evaluation, Standards, & Student Testing

UCLA | Graduate School of Education & Information Studies







Student Growth Percentiles Based on MIRT:

Implications of Calibrated Projection

CRESST Report 842

Scott Monroe, Li Cai, and Kilchan Choi
CRESST/University of California, Los Angeles

September 2014

National Center for Research on Evaluation,
Standards, and Student Testing (CRESST)
Center for the Study of Evaluation (CSE)
Graduate School of Education & Information Studies
University of California, Los Angeles
300 Charles E. Young Drive North
GSE&IS Bldg., Box 951522
Los Angeles, CA 90095-1522
(310) 206-1532



Copyright © 2014 The Regents of the University of California.

The research reported here was supported by the Institute of Education Sciences, U.S.
Department of Education, through Grant R305D140046 to the National Center for Research on
Evaluation, Standards, and Student Testing (CRESST). Li Cai’s research was further supported
by a grant from the Bill and Melinda Gates Foundation (OPP1088937).

The opinions expressed are those of the authors and do not represent views of the Institute, the
U.S. Department of Education, or the Foundation.

To cite from this report, please use the following as your APA reference: Monroe, S., Cai, L., &
Choi, K. (2014). Student growth percentiles based on MIRT: Implications of calibrated projection.
(CRESST Report 842). Los Angeles, CA: University of California, National Center for Research
on Evaluation, Standards, and Student Testing (CRESST).



TABLE OF CONTENTS

L 2 1 3 X O 1
3 I 001 oo 11 0 2
2 The Proposed Method .......nsnsssssssssssssssssssssssssssssssssssssssssssssssssssnsss 3

2.1 Latent Score EStiMation .....iiiismsssmssssssssssssssssssssssssssssssssssssssssssssssssssssasses 5
2.2 Calibrated Projection ... ssssssssssssssssssssssssssssssssssssssasses 6
P25 T €5 S D13 o 14 10 0] . 6
3 Generalizing the Method with SNP-MIRT ... ssssssssssssssssssssssssss 7
3.1 Estimating the Latent Variable Density in IRT ..., 8
3.2 Key Features of SNP-MIRT ... 8
4 SiMulation StUAY ... ————————————_—— 9
4.1 Data Generation and SGP Estimation ..., 9
4.2 Collected StatiStiCS .. ————————— 10
4.3 Results for Simulation 1: Normal Latent Density ... 11
4.4 Results for Simulation 2: Nonnormal Latent Density ..., 13
5 Empirical Application. .. 15
6 Conclusion and Future Directions......mmmmmmsmmsssssssssssssss 17
7 2 =) =3 (1= £ oL, 19
8 TabIES 1-7 iR 21
9 FIGUIe CapPLiONS ..o s s s s sa s s s s 29
10 Figures 1-19... s s R s 32



STUDENT GROWTH PERCENTILES BASED ON MIRT:
IMPLICATIONS OF CALIBRATED PROJECTION

Scott Monroe, Li Cai, and Kilchan Choi
CRESST/University of California, Los Angeles

ABSTRACT

This research concerns a new proposal for calculating student growth percentiles
(SGP, Betebenner, 2009). In Betebenner (2009), quantile regression (QR) is used to
estimate the SGPs. However, measurement error in the score estimates, which
always exists in practice, leads to bias in the QR-based estimates (Shang, 2012). One
way to address this issue is to estimate the SGPs using a modeling framework that
can directly account for the measurement error. Multidimensional IRT (MIRT) is
one such framework, and the one utilized here. To maximize the generality of the
approach, the SNP-MIRT model (Monroe, 2014), which estimates the shape of the
latent variable density, is used to obtain model parameter estimates. These estimates
are then used with the calibrated projection linking methodology (Thissen, Varni, et
al., 2011, Thissen, Liu, Magnus, & Quinn, 2014, Cai, in press-a, Cai, in-press-b) to
produce SGP estimates. The methods are compared using simulated and empirical
data.

Keywords: item response theory, multidimensional, large-scale assessment



1 Introduction

The Student Growth Percentile (SGP, Betebenner, 2009) methodology is used to
locate a student’s current score in a conditional distribution based on the student’s past
scores. Instead of focusing solely on current achievement, SGPs provide context for that
achievement. For example, suppose a student’s current achievement is categorized as
“below basic.” By itself, this evaluation may be considered disappointing. However, if
the accompanying SGP is 90, there is reason for encouragement: the interpretation is
that this student’s current achievement is higher than 90% of students who share the
same score history. In this way, SGPs can add to our understanding of how well
students are doing, and how they are progressing. Consequently, the SGP
methodology has grown in popularity, and is used in numerous states to describe
student performance. Moreover, the measure can be aggregated in an effort to describe
teacher performance. In this latter case, the desired inference is that teachers with

higher aggregate SGPs are more effective.

The original methodology uses quantile regression (QR) to calculate the SGPs,
with past scores serving as covariates and the current score serving as the dependent
variable (Betebenner, 2009). Another regression-based methodology was presented in
Castellano and Ho (2013), which used OLS regression to calculate the SGPs. With either
regression approach, however, measurement error in the scores introduces bias into the
regression parameter estimates. As a consequence, the SGP estimates may also be
biased. Within the context of QR, Shang (2012) applied simulation extrapolation
(SIMEX) in an effort to correct the bias caused by measurement error in the covariates
(i.e., past years’ scores). An alternative strategy is to adopt a different modeling
framework, one that accounts for measurement error more directly. Instead of using
QR, the proposed approach is based on multidimensional IRT (MIRT). Notably,
Lockwood and Castellano (in press) similarly proposes a MIRT framework for
calculating SGPs. Specifically, our work is motivated by recent work on calibrated
projection linking (Thissen et al., 2011; Thissen et al. 2014; Cai, in press-a, in press-b).
Additionally, we consider a generalization of the MIRT approach based on SNP-MIRT
(Monroe, 2014), where the shape of the multidimensional latent variable density is

estimated along with the other model parameters.

The primary goals of the research are to validate the proposed methods and
compare their performance to that of the QR-based method. To focus on these goals,

the scope of the research is limited in numerous ways. For instance, within the MIRT



framework, we show how uncertainty in the latent variable estimates (i.e., achievement)
is directly related to uncertainty in the SGP estimates. However, this issue is not further
explored, as the primary goals concern only the SGP point estimates. As another
example of the limited scope, we do not explore SGP aggregation to the teacher level.

We hope to explore these and other topics in future research.

The remainder of this report is organized as follows. Section 2 outlines the
proposed MIRT-based approach for estimating SGPs. The main steps in the procedure
are presented and relevant supporting methods (e.g., calibrated projection) are
reviewed. In Section 3, the SNP-MIRT model is reviewed, as well as its implications for
estimating SGPs within a MIRT framework. Section 4 presents a simulation study and
results, focusing on the proposed methods and a comparison to the QR-based approach.
Then, in Section 5, state achievement data are analyzed with the different approaches
and the results are compared. Finally, Section 6 provides a discussion of the research

and potential future directions.
2 The Proposed Method
In this Section, the proposed method for calculating MIRT-based SGPs is

presented. The method may be applied to latent scores based on response patterns.
However, the use of full response patterns is inconvenient for introducing the method,
since the number of possible response patterns is exponential in the number of test
items. Instead, we use summed score based calculations, as this facilitates the
presentation.  Further, this choice is not inappropriate, as numerous large-scale
assessment programs currently utilize summed score based scaled scores in reporting.
Additionally, we limit the number of prior years to 1, again to facilitate the presentation
and to make graphical illustrations more straightforward. The proposed method,

though, may accommodate multiple prior years.

At this point, it is convenient to introduce some notation. Let there be N students
who take tests in years 1 (last year) and 2 (current year). Let there be n; and n, items
for the two years, where the subscript indicates the year. For any student, let y; and y,
be vectors of observed response patterns. Similarly, let s; € {0, ...,S;}and s, € {0, ..., S,}
be the analogously defined summed scores by adding elements of y; and y,, where S;
and S, are the respective maximum summed scores observable in years 1 and years 2.
Finally, let 8; and 8, be the latent achievement scores for years 1 and 2. For
convenience, we assume all students take both tests, and that there are no missing data,

though both assumptions may be relaxed.



Before presenting the proposed method, we review the QR approach as
implemented in this research, which serves as a point of comparison. First, two
separate unidimensional IRT models are calibrated, one within each year. The item
responses are modeled using the three-parameter logistic (3PL) model, which can be
written as:

1 (1)
1+ exp[—(a + BO)]

Tyle)=g+(1-9)

where y is the item response (keyed 0 for incorrect and 1 for correct), gis the
guessing parameter, a is the intercept, and f is the item slope. Note that 6 in Equation
(1) generally refers to either 6; or 6,, depending on the test. Next, the respective IRT
scaled scores based on summed scores are calculated, e.g., using the standard Lord-
Wingersky algorithm (see Thissen & Wainer, 2001). For the QR, the estimated scaled
scores from year 2 are the dependent variable, and the scores from year 1 are the
covariate. Finally, the “SGP” R package (Betebenner, Van Iwaarden, Domingue, &
Shang, 2014) can be used to compute the QR-based SGPs. For all packaged functions,
we used the default settings.

Next, we turn to the proposed method. Together, the prior and current years
imply a two-dimensional MIRT model, where each dimension is measured by one
year’s items. A multidimensional version of the 3PL is used:

1 (2)
1+ exp[—(a + B101 + 20,)]

P(yl6,,0,) =g+ (1—g)

where 3; and (8, are the slopes for dimensions 1 and 2, respectively. For all items
measuring 0,, 3, is fixed to 0. Similarly, for all items measuring 6,, B, is fixed to 0. This
specification ensures that each latent dimension is only measured by the corresponding
year’s items, leading to an independent clusters factor pattern. Note, though, that all

free parameters are jointly estimated.

To present the method, we introduce various conditional distributions with the
generic notation p(-|-). Unconditional distributions are indicated by the generic
notation p(-). An example of the former type is p(6;]s;, s;), the posterior distribution of
8,, given both years’ summed scores. An example of the latter type is p(84,0,), the
unconditional distribution (i.e., prior or population distribution) for the latent

achievement variables. Let the correlation of p(8,,6,) be p. Also, to illustrate the



calculation of various quantities, we define a model with n; = 40, n, = 40, so that
s1,S2 = {0, ..., 40}. For the illustrations, p = 0.85.

Calculation of MIRT-based SGPs begins with an estimation of all MIRT item
parameters, as well as the latent correlation p. Then, for any combination of s; and s,,
MIRT-based SGPs are calculated using the following steps:

Step 1. Latent Score Estimation. Estimate the current latent score, based on s,

and s,. This estimate (e.g., an EAP score) is denoted 0,]s4, S5

Step 2. Calibrated Projection. Using calibrated projection, find the reference
conditional distribution, p(8,|s;). This distribution is based on p and only s;.

Step 3. SGP Estimation. Calculate the SGP using 0,|s1,s, and the cumulative
distribution function of p(0,]|s;). The location of the current score estimate within this
conditional distribution gives the MIRT-based SGP.

These steps are explained in greater detail in the three subsections to follow.
2.1 Latent Score Estimation

For Step 1, 0,|s4, s, is based on p(8,]s;,s,) = [ p(01,0,]s4,5,)d6;. Recognizing that
the MIRT model used here is a special case of the two-tier item factor model (Cai, 2010c)
p(8;, 0;]s41,s,) may be found using a modified version of the Lord-Wingersky algorithm
(Cai, in press-a). This algorithm makes it possible to calculate p(84,6,|s1,s;) without
first calculating p(84,6,|y;,y;) for all y; and y,. Again, the numbers of possible
response patterns for y; and y, grow exponentially with n; and n,. Thus, any method
requiring calculations for all possible y; and y, will have practical limitations. On the
other hand, the Lord-Wingersky algorithm makes calculation of p(64,8,[s;,s;) feasible
for very large n; and n,. As an aside, in the case of response pattern scoring, Step 1 is
even more straightforward, as it is then only necessary to calculate p(64,8,[y;,y-) for all

observed y, and y,.

Before proceeding, we note that the posterior distribution p(6,,0;ls;, s;) reflects
the correlated measurement errors for the latent dimensions. While estimation of
separate unidimensional IRT models, as in the QR approach to SGPs, may be used to
estimate p(64|s;) and p(6;]|s;), such an approach does not account for measurement
errors in the joint distribution of s; and's,. Additionally, 0,|s1,s,, Obtained via the
MIRT framework, will be a more efficient estimate than 8,|s,, obtained via
unidimensional IRT (see Cai, 2010c¢).



2.2 Calibrated Projection

The development of calibrated projection (Thissen et al., 2011) was motivated by
the need to link two highly similar, though not identical, constructs for the purposes of
producing a scoring cross-walk. Utilizing a MIRT framework, calibrated projection
provides a means to use item responses from one instrument to produce scores on the
scale of a second instrument. These scores are summaries (e.g., EAPs) of the posterior
distribution p(8,|s;). In the original application of calibrated projection, p(8,]|s;) is

needed because estimates of 0, are desired for people who have not taken test 2.

In contrast, in the current application of calibrated projection, we assume s, exists
for all students. Still, p(6;]|s,) is a key quantity for MIRT-based SGPs: it represents the
conditional distribution of the current latent achievement for all students with identical
score histories. In other words, it is the reference conditional distribution from which
an SGP may be estimated. We now provide an example of how calibrated projection

may be used to find this reference distribution.

Consider Figure 1, which is akin to figures in Thissen et al. (2011) and Cai (2013).
Given a specified s; (e.g., 20), the MIRT model implies a distribution on 8,;, shown on
the y-axis. This distribution is then projected through the relationship between 6; and
8, to imply a distribution on 8,, shown on the x-axis. This latter distribution, p(8,|s;),
is the model-implied achievement distribution for all students with identical score
histories (here, s; = 20). Itis used in Step 3 to estimate an SGP.

Insert Figure 1 about here

Other features of Figure 1 are worth mentioning. First, the light gray central
ellipses represent p(8,, 0;), the prior distribution of the latent achievement variables. In
Figure 1, p(8;,0;) is bivariate normal with p = 0.85. Second, the dark gray central
ellipses represent p(8,, 0;|s;), which does not condition on s,. As a result, p(8,,0;]s;) is
more variable for 8,. Finally, this relative uncertainty is projected onto the x-axis in
p(6,]s;). Given the estimated parameters, the location and scale of p(8,|s;) are

completely determined by s; and p(8;, 6;).
2.3 SGP Estimation

Step 3 is conceptually the most straightforward. Let qg,|s,(8;) be the cumulative
distribution function of p(8,|s;), the reference conditional distribution from Step 2.
Then, the MIRT-based SGP estimate is q92|51((§2|51,52), where 8,|s;, s, is the score

estimate from Step 1. As an example, consider Figure 2, which shows p(8,|s; = 20) as



the large light gray distribution, and p(8,|s; = 20,s, = 30) as the small black
distribution. The solid black vertical line segment marks the EAP of p(8;|s; = 20,s, =
30), 6,|sy,s,. Its position within p(68,|s; = 20) is marked by the solid light gray vertical
line segment, and corresponds to an SGP estimate of 88 for this score combination. That
is, qg,s,(02[s; = 20,s, = 30) = 88.

Insert Figure 2 about here

Figure 2 also shows how uncertainty in the SGP estimate is directly related to
uncertainty in 0,|s1,s,. The dashed vertical lines in Figure 2 correspond to £1 and +2
standard errors of measurement for 6,|s;,s,. Like 8,|s;,s,, these values of 6,
correspond to percentiles of p(6,|s;), which are displayed in Figure 2. For any given s,
the uncertainty in the SGP estimate will vary as a function of s,. This phenomenon is
presented graphically in Figure 3, for s; = 20. For each s,, the boxplot demarcates the
SGP estimates corresponding to 0,|s1,s,, and +1 and +2 standard errors of
measurement for 8,|s;,s,. Note that the boxplots for s, values near s; = 20 are
relatively large. This is because for these values, p(6,|s; = 20, s,) is centrally located in
relation to p(0;|s; = 20), where small changes in 6, lead to large changes in the SGP
estimate. At least for this example, there is considerable uncertainty for most of the SGP

estimates.

Insert Figure 3 about here

3  Generalizing the Method with SNP-MIRT

Recall the calibrated projection example given in Figure 1. Given the specified
MIRT model and estimated parameters, the reference conditional distribution, p(8,|s;)
(shown on the x-axis) depends on two quantities: s; and p(84,6,). Consequently, for a
given s; and s,, different specifications of p(84, 6,) may lead to different SGP estimates.
In other words, the MIRT-based SGP estimates may be sensitive to the specification of
the prior density for the latent variables.

As an example of this potential sensitivity we consider two different specifications
for p(6,,0;), holding all other aspects of the model constant. The first is the bivariate
normal from the examples in Section 2, with null mean vector, unit variances, and
p = 0.85. The second is a nonnormal specification, created using a mixture of normals,
shown in Figure 4. This distribution likewise has null mean vector, unit variances, and
p = 0.85. For a given sy, each of these distributions may lead to a different reference

conditional distribution.



Insert Figure 4 about here

Figure 5 shows the reference conditional distributions formed by using the normal
(dashed gray curves) and nonnormal (solid black curves) priors fors; = 20 (left plot)
and s, = 35 (right plot). Fors; = 20, the two reference conditional distributions are
quite similar, and the corresponding SGP estimates would likely be comparable. On the
other hand, for s, = 35, the two reference conditional distributions are clearly different,
suggesting that the specification of p(8;, 6,) can impact the MIRT-based SGP estimates.
While p(6,,0,) is typically assumed to be normal for MIRT modeling, there are

alternatives, one of which is presented below.

Insert Figure 5 about here

3.1 Estimating the Latent Variable Density in IRT

Numerous efforts have been made to estimate the latent variable density within
the framework of maximum marginal likelihood for unidimensional IRT models (e.g.,
Bock & Aitkin, 1981; Woods & Thissen, 2006; Woods & Lin, 2009; Monroe & Cai; 2014).
In comparison, estimating the latent variable density for multidimensional IRT models
has received less attention. A notable exception is Monroe (2014), which proposed and
evaluated the use of a semi-nonparametric (SNP) density for the (possibly
multidimensional) latent variables. The SNP density is a reparameterization of the
density proposed by Gallant and Nychka (1987), and implemented for unidimensional
IRT in Woods and Lin (2009). The resulting model, called SNP-MIRT, may be used in
lieu of a standard MIRT model to estimate SGPs, following the same steps presented in

Section 2.
3.2 Key Features of SNP-MIRT

It is beyond the scope of this report to present all of the technical details of the
SNP-MIRT model. Instead, we present some key features of the research, with an

emphasis on those most relevant to estimating SGPs.

First, the SNP density (Gallant & Nychka, 1987) is quite flexible, and can
approximate a wide range of densities, including those with multiple modes. The
flexibility of the SNP density is controlled by a tuning constant, with greater values of
the tuning constant leading to a greater number of SNP parameters and greater
flexibility of the density. For example, for two-dimensional densities, a tuning constant

of 2 implies 5 “shape” parameters for the SNP density.



In much of the research utilizing the SNP density (e.g., Zhang & Davidian, 2001;
Woods & Lin, 2009), the density is parameterized in such a way that its mean and
variance are complex functions of all SNP parameters. Such a parameterization,
however, makes it relatively difficult to place constraints on the mean and/or variance.
To address this issue, Monroe (2014) introduced a new parameterization for the density
with 3 types of parameters. Like a normal density, the new parameterization has mean
and variance parameters. Unlike a normal, there are also shape parameters. When
these shape parameters are each constrained to 0, the SNP density reproduces a normal.
Consequently, the newly parameterized SNP density can be considered a generalization
of the multivariate normal. Similarly, SNP-MIRT may be considered a generalization of

standard MIRT (where a normal prior is specified).

Before leaving this section, we note that in empirical applications, the data do not
always suggest nonnormality of the latent density. The decision on whether to use an
SNP density in lieu of a normal can be informed by a likelihood ratio test comparing

nested models, or by standard information criteria (e.g., AIC, HQIC).
4  Simulation Study

A simulation study was conducted to evaluate the proposed methods and to
compare SGP approaches. In Simulation 1, latent variable scores were generated from a
bivariate normal. Then, SGPs were estimated using the QR and MIRT approaches. In
Simulation 2, latent variable scores were generated from the normal mixture shown in
Figure 4. In this latter simulation, SGPs were estimated using the QR, MIRT, and SNP-
MIRT approaches. Generally, data conditions were chosen to be representative of large-

scale state assessments.
4,1 Data Generation and SGP Estimation

For both Simulations, the generating density had a null mean vector, variances
equal to 1, and a correlation of p = 0.85. For Simulation 2, the latent variable density
was a mixture of 2 bivariate normals with parameters: p; = (—0.47,—-0.47)", p, =
(1.09,1.09)" o, = (0.48,0.29,0.48)", 6, = (0.48,0.44,0.48)', mp, = 0.7, and mp, = 0.3,
where o0 = vech(2) stacks the unique elements of the covariance matrix £, and “mp”

stands for mixing proportion.

Each of the two dimensions was measured by 40 items satisfying the three-
parameter logistic (3PL) IRT model. Thus, s;,s; € {0, ...,40}. Slopes were drawn from a

truncated normal, with mean = 1.5 and standard deviation = 0.5, truncated at 0.5 and 3.



Intercepts were drawn from a normal with mean = 0 and standard deviation = 1. Finally,
guessing parameters were drawn from a normal with mean = 0.25 and standard
deviation = 0.05, truncated at 0.1 and 0.35. The logits of the guessing parameters, used
in estimation, are denoted y. All of the data-generating item parameters are presented
in Table 1.

Insert Table 1 about here

Let 15, 5, be the true model-implied probability for the summed-score combination
given s; and s,. For all combinations of s; and s, 75, 5, may be calculated using a
modified version of the Lord-Wingersky algorithm (Cai, in press-a). Figure 6 presents
bubble plots of these probabilities for Simulation 1 (left plot) and Simulation 2 (right
plot), with larger bubbles corresponding to greater probabilities. Although the overall
patterns are similar, differences can be detected, in particular for score combinations
where both s; and s, are high.

Insert Figure 6 about here

For each replication, SGPs based on QR, MIRT, and SNP-MIRT were estimated as
described in Section 2. All SGP estimates were compared to “true” SGPs, calculated

using the data-generating parameter values and MIRT model.
4.2 Collected Statistics

Several measures of accuracy were used to evaluate the SGP estimates.
Momentarily suppressing reference to s; and s,, let {y be a true SGP and U its
corresponding estimate. Bias is defined as M~ ¥M_, (U — {1,,,), where M is the number
of Monte Carlo replications (here, 100). The absolute bias is defined as
§=M"1 x=1|¢—{|\1m| . Root mean square error (RMSE) is defined as

(M- )

For a given s;, the integrated absolute bias is

S2
651 = Z 551»92“/51!52'
SZ=0

—0Ts,s,- In words, this measure gives the expected

)

_ Sz
where Wy ¢, = 1151,52/252

absolute bias for a given s;, averaged across all possible s, values.

The SGP estimates were also evaluated using correct classification rates (CCR).
Given a set of cut-percentiles, such as (0, 35, 65, 100), the rate is defined as:

10



M N ~ (4)
COR = MTINT 3" 3 1y, (i),

m=1i=1
where k() maps an SGP to a classification and 1.y, (kK(Pim) is an indicator
function that returns a 1 if and only if K(Pi) is equal to k(P;,), and O otherwise. The
CCR is simply the proportion of estimated classifications that agree with true

classifications.

Bias and RMSE statistics were also collected for the item parameter estimates. For
Simulation 1, since the models are correctly specified, the estimates should be
approximately unbiased. However, for Simulation 2, all fitted models are misspecified,
since the true latent variable density is a normal mixture. Thus, the bias and RMSE
statistics can help to measure the sensitivity of the models to this misspecification.
Additionally, given the flexibility of the SNP-MIRT model, the bias and RMSE statistics
can shed light on whether SNP-MIRT outperforms standard MIRT in terms of
parameter recovery. Finally, the log-likelihoods and HQIC values of the MIRT and

SNP-MIRT models were collected to make comparisons of overall fit.
4.3 Results for Simulation 1: Normal Latent Density

Table 2 presents some parameter recovery results for Simulation 1. As expected,
the estimates for all parameter types are approximately unbiased. The RMSE values
from the MIRT model are slightly smaller than those from the two separate
unidimensional IRT models used for the QR approach. This is to be expected since the
correlation between dimensions in the MIRT model leads to an increase in efficiency of
the parameter estimates. Table 2 also serves as a point of reference for parameter

recovery results for Simulation 2, when the fitted models are misspecified.

Insert Table 2 about here

Figures 7 and 8 present the bias in SGP estimates for all cross-classifications of s;
and s, for the QR and MIRT-based approaches, respectively. The MIRT-based
estimates are nearly unbiased, and much less biased than the QR-based estimates.
Further, the magnitude and direction of bias for the QR-based estimates clearly depend
on s; and s,. One notable trend is that there is relatively little bias in SGP estimates for
S; = S,, at least when each summed score is around 15 or greater. However, for score
combinations near this diagonal where s; > s,, there is a clear pattern of positive bias.

In contrast, near this diagonal, when s; <'s,, there is a clear pattern of negative bias.

11



Another trend is that for score combinations where both s; and s, are relatively small,

the QR-based estimates are consistently negatively biased.

Insert Figure 7 about here

Insert Figure 8 about here

A shortcoming of the bivariate plots in Figures 7 and 8 is that they do not
incorporate the model-implied probabilities for each summed score combination (see
Figure 6). For example, the bias corresponding to the combinations; = 0ands, =0
may not be particularly important, since T, is extremely small in that case. One way
to focus our attention is to identify the most probable summed score combinations.
Here, the 99% Highest Density Region (HDR, Rosa et al., 2001) of combinations is
identified, which comprises the minimum number of most probable combinations
sufficient to account for 99% of the probability mass. In other words, the least probable
combinations are ignored. Figure 9 plots the mean SGP estimates against the true SGP
values for the 99% HDR score combinations, for both the QR (left plot) and MIRT (right
plot) approaches. Again, the MIRT-based estimates are nearly unbiased, while the QR-
based estimates are systematically biased. Generally, the QR-based SGP estimates are
negatively biased for smaller values and positively biased for greater values. The

implication is that the QR approach tends to “exaggerate” SGPs.

Insert Figure 9 about here

Another way to focus our attention is to look at the integrated absolute bias, given
s,. Figure 10 shows the integrated absolute bias for both QR and MIRT approaches,
with the MIRT approach again outperforming the QR approach. Two other features of
Figure 10 are worth mentioning. First, for this condition, the QR approach performs
better near the middle of the s; range and worse near the extremes. Second, while the
integrated absolute bias for low values of s, is relatively great, those values of s; have

low model-implied probabilities (see Figure 6).

Insert Figure 10 about here

Finally, Table 3 presents CCRs for the two approaches for several sets of cut-
percentiles. For the set with 3 classes, both approaches are quite accurate, with rates of
0.95 and 0.99 for the QR and MIRT approaches, respectively. As expected, as the
number of classes increases, the accuracies for both approaches decrease. However, the
accuracy for the MIRT approach decreases relatively slowly with an accuracy rate of
0.97 for 10 classes.

12



Insert Table 3 about here

Based on the measures considered, the MIRT-based approach performed
extremely well in Simulation 1. These results, however, represent the unrealistic
situation where the model, including the model for the latent variable density, is exactly
correctly specified. This correct specification, in conjunction with the ML estimator,
leads to asymptotically unbiased IRT parameter estimates. Further, the large sample
sizes in the replications (N = 10,000) resulted in highly efficient parameter estimates.
And, since the MIRT-based SGPs are a function of the latent variable density and
parameter estimates, it should not be surprising that the MIRT approach performed so
strongly. Simulation 2, however, presents the more challenging condition where the

latent variable density is misspecified.
4.4 Results for Simulation 2: Nonnormal Latent Density

The plots in Figure 11 show the true generating latent variable density (left column)
and the SNP-MIRT estimated density for Simulation 2. The top row displays the true
bivariate contour and the median of the estimated SNP densities. The resemblance
between the two plots indicates the SNP-MIRT model was, to some degree, effective in
estimating the shape of the latent density. The middle and bottom rows show the
univariate marginal densities for 8; and 6,, respectively. In the left column for these
plots, the true generating density is represented by the black curve, while the gray
curve is a standard normal, provided as a reference. In the right column for these plots,
the median of the estimated SNP densities is shown in black, while the dashed gray
curves provide an empirical 90% confidence interval. Again, the right column (SNP
estimate) resembles the left column (true generating). These results of density recovery
are similar to those reported in Monroe (2014), and suggest that the SNP-MIRT model
can be effective in capturing nonnormality in the latent variable density.

Insert Figure 11 about here

Table 4 presents parameter recovery results disaggregated by parameter type for
the different estimation approaches, including SNP-MIRT. For all parameter types, the
SNP-MIRT model yields estimates with the least bias and the lowest RMSE values. And
in contrast to the results from Simulation 1 (see Table 2), Table 4 suggests that the QR
and standard MIRT approaches lead to biased parameter estimates. These results are
consistent with other research on nonnormal latent variables in IRT (e.g.,, Woods &
Thissen, 2006; Monroe, 2014) that has found that failing to account for the nonnormality
can lead to biased parameter estimates. Also, for every replication, the SNP-MIRT
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model was preferred over the standard MIRT model based on both —2X log-likelihood
and HQIC values.

Insert Table 4 about here

To summarize the results for Simulation 2 thus far, the SNP-MIRT model was
fairly successful in estimating the shape of the true nonnormal latent density, and
performed the best among the methods in terms of parameter recovery. Since the SGP
estimation approach presented in this research depends on the latent density and item
parameter estimates, we should expect the SGP estimates based on the SNP-MIRT
model to be more accurate than those based on the standard MIRT model. We now

turn to those results.

Figures 12-14 present the bias in SGP estimates for all summed score cross-
classifications for the QR, MIRT, and SNP-MIRT approaches, respectively. The pattern
of bias for the QR-based estimates in Figure 12 is similar to the corresponding pattern
from Simulation 1 in Figure 7. Specifically, the pattern of positive and negative bias is
similar. One apparent difference, though, is the magnitude of the bias, in particular for
the highest summed score combinations. The bias in the QR-based estimates for these

combinations is greater in Simulation 2 than the corresponding bias in Simulation 1.

Insert Figure 12 about here

Recall Figure 8 from Simulation 1, which showed that the MIRT-based SGP
estimates were approximately unbiased when the latent trait density was correctly
specified as normal. Figure 13 presents a sharp contrast, as there is considerable bias in
the MIRT-based SGP estimates for many cross-classifications. Also, the pattern of bias
appears to be mostly a function of s,. For lower and higher values of s,, the bias tends
to be positive, whereas for more central values of s,, the bias tends to be negative. We
do not offer an explanation for this pattern, beyond that it likely depends on the shape
of p(84,0;). In any event, Figure 8 makes clear that the proposed method of estimating
SGPs based on standard MIRT is clearly sensitive to the misspecification of the latent
trait density.

Insert Figure 13 about here

Finally, Figure 14 presents the bias by cross-classification for the SGP estimates
based on the SNP-MIRT model. Overall, the SNP-MIRT approach results in much less
bias than the QR and MIRT approaches (see Figures 12 and 13). At the same time, the
approach results in more bias than the MIRT approach in Simulation 1 (see Figure 8).
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This can be explained by the small amount of bias in the item parameter and density
estimation for the SNP-MIRT approach.

Insert Figure 14 about here

As in Simulation 1, we also present plots of mean SGP estimates against true SGP
values for the 99% HDR score combinations. Figure 15 shows these plots for the QR
(left plot), MIRT (center plot), and SNP-MIRT (right plot) approaches. As in Simulation
1, the QR approach seems to exaggerate the SGP estimates at the high and low ends.
The MIRT and SNP-MIRT estimates, in comparison, are better aligned with the 45° line,
and it is more difficult to discern any pattern in the plot. Comparing just the MIRT and
SNP-MIRT estimates, the latter shows a tighter correspondence with the true SGP

values.

Insert Figure 15 about here

The final plot for the results of Simulation 2 is Figure 16, which displays the
integrated absolute bias, given s,, for all three methods. Comparing the QR and SNP-
MIRT methods is straightforward: both have higher values at the extremes of s;, but the
bias for the SNP-MIRT approach is always smaller. The results corresponding to the
MIRT method, however, are not easily summarized. Overall, the bias values for the
MIRT method tend to fall between the SNP-MIRT approach and QR approach, but there
are exceptions. For instance, for s; = 38, the MIRT method produces the smallest bias,
while for s; = 25, it produces the largest bias. This variability across s; is likely due to
the shape of the latent trait density.

Insert Figure 16 about here

As with Simulation 1, we can also examine CCRs for the 3 methods, presented in
Table 5. The SNP-MIRT approach is the most accurate, regardless of which set of cut-
percentiles is used. The other two methods, QR and MIRT, are comparable to one
another, but clearly less accurate than the SNP-MIRT approach.

Insert Table 5 about here

5  Empirical Application

To illustrate the proposed SGP estimation methodology, we use longitudinally-
matched student achievement data from the 2011-2012 and 2012-2013 academic years.
The data are from a state’s mathematics assessments, but due to confidentiality

agreements, the state is not identified. For each year, 44 dichotomous items were
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analyzed. These items do not constitute a vertical scale. A random sample of 10,000

complete cases was drawn.

SGPs based on the QR, MIRT, and SNP-MIRT approach were calculated as
described and illustrated in Sections 3 and 4. As before, a tuning constant of 2 is used
for the SNP density, leading to 5 shape parameters in the SNP-MIRT model. Also, as

before, the 3PL model, or its multidimensional version, was used for all items.

Figure 17 shows the contour plots of the latent trait density for the standard MIRT
(left plot) and SNP-MIRT (right plot) models. The estimated SNP density appears
approximately normal, although the estimated correlation of 0.86 is slightly smaller
than the 0.88 estimate for the standard MIRT model. Figure 18 shows the estimated
univariate marginals for the SNP-density (solid black curves) along with normal
densities (dashed gray curves) provided for reference. For 6, the estimated SNP
density is slightly peaked and left-skewed in relation to the normal. A practical
interpretation of this is that a greater proportion of students in this sample had lower
latent achievement levels in 2011-2012 than would be expected using a normal
distribution. On the other hand, for 68,, the estimated SNP density cannot be

distinguished from a normal.

Insert Figure 17 about here

Insert Figure 18 about here

Turning to model comparison, Table 6 provides —2X log-likelihood and HQIC
values for the different models. Focusing on the multidimensional models, the SNP-
MIRT model is preferred by both of these criteria. Also, since the multidimensional
models are nested, a likelihood ratio test can be used to judge whether the additional
constraints placed on the shape parameters by the standard MIRT model lead to a
significant decrement in model fit. Since the test statistic is highly significant (xZ =
452.5,p < 0.001), we conclude that the standard MIRT model does not fit the data as
well as the SNP-MIRT model.

Insert Table 6 about here

Next, we can compare the SGP estimates from the 3 methods. Figure 19 displays
bivariate plots of SGP estimates for a random subsample of 1,000 students. The
estimates based on the MIRT and SNP-MIRT approaches are highly similar, as
evidenced by the correspondence of estimates in the lower-right plot. As for the QR-

based estimates, they tend to be more extreme than the estimates based on the other
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two methods. Interestingly, this is the same pattern exhibited by the QR-based
estimates in Simulation 1 (see Figure 9) and Simulation 2 (see Figure 15). However,
here, the QR-based estimates are being plotted against the MIRT and SNP-MIRT-based

approaches, as opposed to the true values.

Insert Figure 19 about here

Table 7 also measures the similarity in the 3 sets of estimates by looking at the
pairwise classification agreement rates. For the set of cut-percentiles with 3 classes, all
methods produce similar results, with agreement rates of 0.94 and higher. However, for
the set of cut-percentiles with 10 classes, the results depend substantially on the method.
In particular, the QR-based method has low classification agreement rates (< 0.68) with
the MIRT and SNP-MIRT methods, while the latter two methods have a relatively high

agreement rate (0.92).

Insert Table 7 about here

6 Conclusion and Future Directions

In this research, a new method was presented to calculate SGPs within a MIRT
framework, capitalizing on recent research on calibrated projection. The calibrated
projection technique can be used to find the reference conditional distribution, which is
necessary for SGP estimation. This research also presented a generalization or variation
of the MIRT approach, based on SNP-MIRT (Monroe, 2014). The new methods were
compared to the QR-based method using both simulated and empirical data.

The proposed methods performed well in the simulation study and are worthy of
turther investigation. In Simulation 1, when the true latent trait density was specified
as normal, the MIRT-based approach produced nearly unbiased SGP estimates, while
the QR-based approach led to “exaggerated” SGP estimates. In Simulation 2, when the
true latent trait density was nonnormal, the results were more mixed. For this
condition, the SNP-MIRT approach was effective in estimating the latent trait density
shape, and led to the most accurate SGP estimates.

The empirical example provokes several questions and ideas. The SNP-MIRT
method yielded a density estimate that was nonnormal, but only slightly so.
Consequently, SGP estimates based on the SNP-MIRT and standard MIRT approaches
were highly similar. This suggests that the SNP-MIRT approach may serve as a type of
sensitivity analysis for the standard MIRT approach. It is unclear, however, how
different the SGP estimates need to be to justify the use of the more complex SNP-MIRT
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model. Further, the empirical latent trait density suggests that the specified density in
Simulation 2 may have been too extreme in its nonnormality. Additional empirical
datasets should be analyzed to develop a better understanding of “typical” density
shapes for large-scale longitudinal achievement data.

Finally, there are numerous topics for future research. Some of these topics
involve the generality of the proposed methods. Theoretically, the framework
accommodates scale scores based on response patterns (as opposed to summed scores)
as well as multiple prior years of achievement data. The MH-RM algorithm (Cai, 2010a,
2010b) may be used to obtain maximum marginal likelihood estimates for high-
dimensional MIRT models with arbitrary factor structures. Additionally, Thissen et al.
(2014) demonstrated that calibrated projection could be generalized to more than two
dimensions. However, these generalizations have not been applied to the MIRT-based
approach for SGP estimation. Further, the framework should accommodate residual
dependencies among items across years (Cai, in press-a) that may result from, for
instance, the use of the same item in consecutive year. This too has yet to be
demonstrated. Another interesting direction concerns the uncertainty in the individual
SGP estimates. The preliminary research here suggests a great deal of uncertainty at the
level of the student. On a related note, future research should focus on SGP
aggregation. For instance, how does uncertainty at the student level affect uncertainty
in teacher level estimates? Research on these last two topics, in particular, would be of

great interest to policymakers.
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8 Tables 1-7

Table 1
Generating Parameters for Simulation Studies 1 & 2
item 1 2 3 4 5 6 7 8 9 10
14 -1.41 079 -119 -134 -116 -115 -082 -1.08 -091  -1.24
a -0.71 0.26 -0.25 -035 -095 -005 -078 -167  -0.38 0.92

B1 1.22 1.38 2.28 1.54 1.56 2.36 1.73 0.87 1.16 1.28

item 11 12 13 14 15 16 17 18 19 20
14 -1.04 -1.19 -1.07 -1.35 -1.49 -0.62 -0.94 -1.47 -1.27 -1.45
a -0.58 0.61 -1.62 -0.06 0.52 0.3 0.11 -0.64 -0.85 -1.02

B1 211 1.68 1.7 1.56 1.22 2.39 1.75 0.52 1.85 1.26

item 21 22 23 24 25 26 27 28 29 30
14 -0.77 -1.17 -0.96 -1.21 -1.23 -1.32 -1.26 -0.7 -1.11 -1.07
a 0.12 -0.95 -0.49 -0.26 1.84 -0.65 0.24 0.08 -0.96 -0.07

B1 0.97 1.39 0.99 1.14 1.19 0.66 1.92 1.58 0.93 2.13

item 31 32 33 34 35 36 37 38 39 40
14 -1.03 -0.79 -1.24 -1.38 -0.69 -1.22 -1.3 -1.46 -1.48 -1.26
a 1.44 0.45 0.04 -0.42 -2.05 1.13 -1.46 0.74 1.91 -1.44

B1 1.71 1.35 1.95 1.94 1.91 1.84 1.78 1.47 1.35 1.31

item 41 42 43 44 45 46 47 48 49 50
14 -0.94 -0.82 -0.92 -1.2 -1.08 -1.3 -1.3 -0.87 -1.39 -0.63
a 0.7 -0.26 -1.57 -1.51 -1.6 -0.53 -1.46 0.69 2.1 -1.29

B 1.15 14 0.87 2.58 2.1 0.94 1.3 1.27 1.89 1.46

item 51 52 53 54 55 56 57 58 59 60
14 -1.12 -1.04 -1.31 -1.26 -1.49 -1.15 -0.99 -1.01 -1.32 -1.32
a 0.79 0.77 0.33 -1.01 -0.12 -0.28 0.56 -0.37 0.98 -0.37

B 1.63 1.49 1.48 2.18 1.39 2.26 0.73 1.79 1.56 1.61

item 61 62 63 64 65 66 67 68 69 70
14 -1.24 -0.73 -1.43 -1.15 -0.64 -1.13 -1.5 -1.28 -0.97 -1.2
a 1.05 -1.05 -1.26 3.24 -0.42 0.3 0.64 -0.48 0.52 0.37

B 1.69 1.25 1.33 0.99 0.96 1.65 1.72 1.53 1.96 2.53

item 71 72 73 74 75 76 77 78 79 80
14 -1.25 -1.19 -1.07 -0.71 -1.12 -0.83 -0.94 -1.13 -1.56 -1.24
a -0.22 0.07 -0.03 2.13 -0.74 -1.1 0.04 0.31 0.44 -0.46
B 1.25 2 1.15 1.16 2.01 1.36 0.89 1.59 1.43 1.5
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Table 2
Simulation 1 Results: Parameter Recovery

Bias RMSE
Parameter Type Parameter Type
Method Y @ B |4 a B
QR 0.01 -0.01 0.01 0.15 0.12 0.09
MIRT 0.01 -0.01 0.01 0.14 0.11 0.09

Note. “QR” refers to calibration via two separate unidimensional IRT models, one for

year/test 1, one for year/test 2. “y” is logit-guessing parameter; “a” is intercept; “f” is
slope.
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Table 3

Simulation 1 Results: Correct Classification Rates for SGPs

Correct Classification Rate

Classes Cut-Percentiles QR MIRT
3 (0, 35, 65, 100) 0.949 0.989
4 (0, 25, 50,..., 100) 0.916 0.988
5 (0, 20, 40,..., 100) 0.893 0.985
10 (0, 10, 20,..., 100) 0.749 0.966

Note. Figures based on simulation study with N=10,000 and 100 replications.
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Table 4
Simulation 2 Results: Parameter Recovery

Bias RMSE
Parameter Recovery Parameter Recovery
Method Y a B Y - B
QR 0.22 -0.25 0.23 0.26 0.28 0.26
MIRT 0.20 -0.19 0.18 0.24 0.23 0.21
SNP-MIRT -0.04 0.05 -0.00 0.17 0.13 0.10

Note. “QR” refers to calibration via two separate unidimensional IRT models, one for year/test 1,

“, 0

one for year/test 2. “y” is logit-guessing parameter; “a” is intercept; “f” is slope.
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Table 5

Simulation 2 Results: Correct Classification Rates for SGPs

Correct Classification Rate

Classes Cut-Percentiles OR MIRT SNP-MIRT
3 (0, 35, 65, 100) 0.922 0.917 0.967
4 (0, 25, 50,..., 100) 0.882 0.893 0.947
5 (0, 20, 40,..., 100) 0.835 0.848 0.932
10 (0, 10, 20,..., 100) 0.677 0.705 0.854

Note. Figures based on simulation study with N=10,000 and 100 replications.
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Table 6

Empirical Application Results: Model Comparisons

A~

Model N Parameters p —2X LogL HQIC

IRT (x2) 10000 264 0 987218.00 988390.30
MIRT 10000 265 0.881 978034.28 978545.35
SNP-MIRT 10000 270 0.860 977581.80 978102.51

Note. “IRT (x2)” refers to two unidimensional IRT models, the first for data from year 1, the
second for data from year 2. Together, the fitted models are formally equivalent to a two-

dimensional MIRT model where the latent variable correlation is fixed to 0.
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Table 7

Empirical Application Results: SGP Classification Agreement Rates

Classification Agreement Rate

Classes Cut-Percentiles QR/MIRT QR/SNP-MIRT MIRT/SNP-MIRT
3 (0, 35, 65, 100) 0.953 0.946 0.982
4 (0, 25, 50,..., 100) 0.907 0.890 0.959
5 (0, 20, 40,..., 100) 0.846 0.837 0.953
10 (0, 10, 20,..., 100) 0.676 0.660 0.915

Note. Figures based on sample of N=10,000. Classification Agreement Rates are pairwise.
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9  Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Calibrated projection linking. Given a specified s, (here, sy = 20), the MIRT
model implies a distribution on 6,, shown on the y-axis. This distribution,
p(61|s1), is then projected through the relationship between 61 and 6, to imply a
distribution on 6,, shown on the x-axis. The dark gray central ellipses approximate
p(61,60,|s1). The light gray central ellipses represent the prior distribution of

latent scores, p(64,63).

Hllustration of MIRT-based SGP calculation. The dominating light gray curve is
p(6;|s,) (here, sy = 20). The smaller dark gray curve is p(0;|sq,s,) (here,
s, = 30). The 5 vertical line segments demark the expectation of p(6,|sy,S2), as
well as +1 and £2 standard errors of measurement. The extended line segments
(light gray) correspond to percentile values for p(0,|s,). Here, s; =20 and
s, = 30 yields an SGP point estimate of 88.

Boxplots of MIRT-based SGPs corresponding to EAP scores and +1 and 2
standard errors of measurement for s; = 20 and all possible s,. The horizontal
dotted lines correspond to possible SGP cut-values of 35 and 65. Many boxplots

span all 3 “classifications.” The boxplot above s, = 30 corresponds to Figure 2.

Example of bivariate non-normal density created as a mixture of normals. The
variance for each dimension is 1, and the correlation between dimensions is

p = 0.85. Each marginal distribution is standardized, but skewed right.

Examples of p(8,|s,) for s; = 20 (left plot) and s, = 35 (right plot) using a
normal prior distribution (light gray, dashed curve) and the nonnormal
distribution from Figure 4 (black solid curve). For both prior distributions,

p = 0.85.

Bubble plots of model-implied probabilities of summed score combinations for

Simulations. Larger bubbles correspond to greater model-implied probabilities.
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Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Simulation 1 results: bias for QR-based SGP estimates for all cross-classifications
of sy and s,. Bias is defined as the average estimate across all 100 replications

minus the true value.

Simulation 1 results: bias for MIRT-based SGP estimates for all cross-
classifications of s, and s,. Bias is defined as the average estimate across all 100

replications minus the true value.

Simulation 1 results: integrated absolute bias for QR- and MIRT-based SGP
estimates for all s;. For each replication, for each sy, the absolute bias is integrated
over the true model-implied probabilities for all s,. These values are then averaged

over all 100 replications.

Simulation 1 results: plots of SGP estimates (y-axis) against true SGP values (x-
axis) for QR (left plot) and MIRT (right plot). Estimates are averages over all 100

replications.

Simulation 2 results: plots of true generating (left column) and SNP-estimated
(right column) prior latent trait densities. The top row shows the bivariate
distributions, p(64,0;). The middle row shows the univariate marginal, p(6;).
On the left, the light gray distribution is a standard normal, shown for reference.
On the right, the dashed light gray curves give a 90% empirical confidence interval.

The bottom row provides the same information as the middle row, but for 6,.

Simulation 2 results: bias for QR-based SGP estimates for all cross-classifications
of sy and s,. Bias is defined as the average estimate across all 100 replications

minus the true value.

Simulation 2 results: bias for MIRT-based SGP estimates for all cross-
classifications of s, and s,. Bias is defined as the average estimate across all 100

replications minus the true value.
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Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Simulation 2 results: bias for SNP-MIRT-based SGP estimates for all cross-
classifications of s, and s,. Bias is defined as the average estimate across all 100

replications minus the true value.

Simulation 2 results: integrated absolute bias for SGP estimates for all s,. For each
replication, for each s, the absolute bias is integrated over the true model-implied

probabilities for all s,. These values are then averaged over all 100 replications.

Simulation 2 results: plots of SGP estimates (y-axis) against true SGP values (x-
axis) for QR (left plot) and MIRT (middle plot) and SNP-MIRT (right plot).

Estimates are averages over all 100 replications.

Empirical application results: estimates of bivariate normal (left plot) and SNP
density (right plot) for the prior distribution of latent trait scores. The estimated

correlations are p = 0.88 for the normal and p = 0.86 for the SNP density.

Empirical application results: estimates of univariate marginal prior distributions
of the latent trait scores for 0y (left) and 0, (rvight). The light gray dashed curves
are normal from the standard MIRT estimation; the black solid curves are from the

SNP-MIRT estimation.

Empirical application results: plots of estimated SGPs for a random sub-sample of
1,000 from the full sample of 10,000. The same random sub-sample is used in all 3

plots.
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10 Figures 1-19
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Figure 6

Simulation 2

Simulation 1

©000000000000000
+©000000000000000

©000000000000
©200000000000 ¢
©e000000000000
©000000e

oy 6¢ 0& G9¢ 0c 91 OI
Is

g

0

co s
00000
00000000 e+
©000000000 0
©0000000000 0
0000000000
©0000000000
©000000000000 s«
+060000000000000
©++0060000000000000
©©900000000000000

©0000000000000
©00000000000000

...... ©000000000000
©000000000000 0
©000000000000 ¢
©000000000000
©ee00000000000 0
000000000
©0000000
e0c0000e
ceve

oy ¢¢ 0¢ 62 0¢ <1 01
Is

g

0

15 20 25 30 35 40
S2

10

15 20 25 30 35 40

10

37



S1

40

35

30

25

20

15

10

Figure 7

VVVvVVyvY
vvVvVvyv
vvVvVvyv
\ A A A A4
\ A A A A4
\ A A A A
vvVvVvyv
VVVvVVY
vvvv
VvV
vvvv
vvvv
vvvv
VvV
VvV
VV&©veyV

P 4 4 4 4 4 4 4

4 4 94494 494949494999gq9qa4a94a9aq

P 4 4 4 4 4 4 4 4 44949 49494

a

P 4 4 4 4 4 4 449 4949494

P 4 4d 4 4 4 4 4949494949494

a

4 4 4 4 4 4 4 94 49 49 494
P 4 4 4 4 4 4 4 4 49 494
P 4 4 4 4 4 4 49449 494

a

P 4 4 4 4 4 449 494
4 4 4 4 4 4 4 494

a

P 4 4 4 4 4 4 4 4
P 4 4 4 4 4 4 4

a

s AAAAAAAAAAALAAA
A AAAAAAAAAALAALAAAA

P 4 4 4 4 4
4 4 4 4 4

a

4 4 4 4 4 4 4
P 4 4 4 4 4 4

4 4 4 4
4 4 4 4
4 4 4

a

v
v
v

a

vVVvVvYVw

v v A& a
aaAAA
AAAAA
a s AAAAAAA
aAAAAAAAA

v
a

aAAAAAAAALAAA

a s AAAAALAALAALAALAALAALAA
aAAAAAAAAALAAAA

AAAAAAAAAAAAAA S
a a AAAAAAAAAAAAAA
A AAAAAAAAAAAAAA

s AAAAAAAAAAAAAAAA
VVvvaAAAAAAAAAAAAAAAAAA
VvasAAAAAAAAAAAAAAAAAA
vaAAAAAAAAAAAAAAAAAA G & &

s AAAAAAAALAAAALAAALAAAA

a
a

a

a
a
v

v

a

4 4 b >

v

a

v

v

v

a
a

a

VVVVVVVVVVVVV
VVVVVVVVVVVVY
VVVVVVVVVVVYYV
VVVVVVVVVVVVYYVY
VVVVVVVVVV&©vyVY
VVVVVVVVVVVVVY
AAAAAALAAAAAAAAAAANAAAAS Y YV IV VVVVVVVVVVYY
ALAAAAAAAAAAAAAAANAAAAY vy YVYVVVVVVVVVVVY @
AAAAAAAAAAAAAAAANAAASY v YV VVVVVVVVVVV Y
AAAAAAAAAAAAAAANAAAC vy YYVIVIVVVVVVVVYVY
AAAAAAAAAAAAAANAAALA e YyY TV VVIVVVVVVVVYVY Y
AAAAAAAAAAAANAA L. vy YyYVVVVVVVVVVVVYVY v

a

v

v

v

4aab>b>>DPDDBPDBDP

v

AAAAAAAAAAANAAAST YV VVVVVVVVVVVVY
AAAAAAANAAAA S v YYVVVVVVVVVVVVVVYY

AAAAA L v vy YVVVVVVVVVVVVVVVVVVYV

A YV VVVVVVVVVVVVVVVVVVVVVVY
VVVVVVVVVVVVVVVVVVVVVVVVYVY
VVVVVVVVVVVVVVVVVVVYVVVVY
VVVVVVVVVVVVVVVVVVVVVVY
VVVVVVVVVVVVVVVVVVVVV vV

VVVVVVVVVVVVVVVVYVVVVY Y

VVVVVVVVVVVVVVVYVVVVYY

VVVVVVVVVVVVVVVVVVY
VVVVVVVVVVVVVVVVV~
VVVVVVVVVVVVVVVVY
VVVVVVVVVVVVVVVV
VVVVVVVVVVVVVV vV
VVVVVVVVVVVVV©vVva

v

> b 4 4

L )

> b b b 4 4
> b b b B 44

v
v
a

> b b B B B 444
> b b BB B D4
> b b B B DB B DI

v

v

> b b B B DB B D DA
> b b BB B BB D> D J

v

v

> b b BB DB B DB DB P 44

v

> b b BB DB B DB DB B DI

v

> b b BB B BB D> DB DB DA

v

> b b BB B BB DB DB B D> P AJA
> b b B B BB DB B B D> DB DB DI

s s AAAAAAAAL

AAAAALAAALAAAAY
AAAAAAAVYVY
AAAAA S ayVVY
AAAA s vIVVVY
AAA-VVVVVVY
4LVVVVVVVVYY
A vVVVVVVVVVV
VVVVVVVVVVV
vVVVVVVVVVVV
VVVVVVVVVVV
VVVVVVVVVVYYVY
VVVVVVVVVVY

<« 4

4

> >

>
e e N N R N
=)
—_
—_—

v

> b b BB B BB D> DB DB D> DB DB DI

> b b BB BB DB BB DB DB DB D> DB DI

> b b BB DB B DB BB DB DB DB DB DB DA

> > > b P> B> DBPDBDBPDBDDBPDPDDDBD> DI

> > > b pB> B>DBPDBDBPDBDBPDBDPDBDD>DPD> DI

> > > b P> D>DBPDBDBPDBDDBDBPDDDBDDDDPAAAJ

> > > b P> D>DBPDBDBPDBDBPDBDBPDDDBDDDDBD>DJC

> > > b P> B> DBDBDBPDBDBDBDBPDBDDDBDDD>DPD>DJC

> > > b P> B> DBPDBDBPDBDBPDBPDPDDDBDDDDBDDDDP DI

> > > b pB>B>DBPDBDBPDBDBPDBDBPDDDBDBDDDBDDDDBDDDDAC

15

20

52

38

25

30 35 40



S1

40

35

30

25

20

15

10

Figure 8

4 49 4 4 4949949494949 494949494949 494949494949 4994949494949 49 4949494949494 494924
4 49 4 4 4949949494949 494949494949 494949494949 4994949494949 49 4949494949494 494924
4 49 4 4 4949949494949 494949494949 494949494949 4994949494949 49 4949494949494 494924
4 49 4 4 4949949494949 494949494949 494949494949 4994949494949 49 4949494949494 494924
4 49 4 4 4949949494949 494949494949 494949494949 4994949494949 49 4949494949494 494924
4 49 4 4 4949949494949 494949494949 494949494949 4994949494949 49 4949494949494 494924
4 4 4 4 4949944944949 49P 94949494949 4949494949 494949494949 494949©P 9494949494494
4 4 4 4 449944949 P 4949 494949494949 4949494949 49494949©Pd949P 4949494949 DP 4949494
4 4 4 4 4949949494949 4949494949499 49494949494949p49PpPPpPd94949%PpPPPP4Ad94949349
4 4 P P P 4949 P 49 P 4d 49 P49 P 949494949 4949494949 4949DP 494949 DPd94d9494949©P49P4
4 4 P P4 494 44949 P49 P49 P49 P I 4949494949 DP P 949 Pd9490P49a94d9DPP4aP PP PJA

<« 4

4

> >

>
e e N N N N
=)
—_
[—

P4 P 44 P49 P P I P AP Jd P I 49d9 49494949 0PP4A9PP4I499P4IPPJI49PdI4aDP4aP
4 P4 P4 P 4d9 P P I 49494949 P 94949 P49 49494949 ©PPPIPPJIPI 949494949 P4d94
P P4 P49 P P AP PP PP P A I 49494949 P P49 P AP P4AP A9 P>PI PP PJIP AP PJA
> b b4 B> 49 D> PP DPJDP I I 49494949 494949DP4d949DP4d9DP4A9aDP4AaDP>PD4A9DPDPDBPJIA9DPDBPD>PDPAJA
P 4 4 bbb P DB B DPJI P AP JA49DPJIDPJI 449D 4I49DPJI9DPDBPDB>PDP4AaDPDBPJIDPDBP I 4ADPDPDBPD>DP D
P 4 4 bbb P DB BP DB I DBP DB I PP P A DB>PJIADPDPDBPDBPDPJA9D>PJA94A9DPDDPJIDP4A9a4949DP4d9DP D> 4D
> b b4 B> B DB P DB JI4 B DB DB JAQ DB DBPDBPDB>DBPDBPDBPDPDBPJIDPD>PDPA9JIDPDPJI4A9DPDDPJI490DP D44
>P 4 b b4 P44 Db D> P 44949 D> 49DP D> DP4A9aDPDPJIDPDP I 49 4949DPD>PJIA9DPDPDPJI9JADP DA
> b b4 >4 D> 4B B> DB D> JIDBP4AaDBPDBPDB>PDBPDBPDBPDPDBPDPDPJI A4 4949DPDDPDPJIDPJI490DP49DP4
> b b B4 P D> A4 P JA94A49 D> D> DB D> PP DB>PJIDPDPDPJI I 4949 490DPDPJA94d9DP4A94d9DP 4949494940
> b4 b4 B D> B DB DPJI 449D DB D> P A4 DPDBPDPDP DB P AT 49D DPDP I I 49494949 4949D>DDPDP
> b b B4 BB B DB D> DB D> D> DB DPJIDP D> P A4 49D DB DB I AP DPDBPD>PJIDPDPJIJTDP 44949494
4 b b BB DB B DB P44 DB DB D> DB D> DB>PD>PJAQDPDPDB>PJA9DPDPJADPDBPDPDPDPJAdDPJA9JI949DPD P D> A4
> b > BB B DB B D> DPJI DB DB A9 4A49DP DB D> DPDBPJIDPJIDPDBPJIDPDPJIJA9DPJI9DPDPJI94d94949490DP4
> b > BB B DB B DB D> DB A DB DB D> DB DPJIDP4ADP A9 DB DPDPJIDP A4 494d9DPDDPDPJA9DBPJA9DPD>DPAJA
> b b BB B DB B DBPJIA B DB I DB DBPDBPDBPDB>PJIDBPDPJA9DBPJIDP D> DPAdJT44949DPDDBPDPDBPDBPDPJAD>DP D
> b > BB B DB J4 DB D> DB DB JI P DPJI 449D P I 49 DP4A9DPDB>PDP4AaDPDBPJIDPDPJIDPJI4d94990DPD44q
> b > BB B DB B DB DB DB DB D> P A4 DD DPA9JIDPDPJI 449D A9 49D DBPJI9DPDBPJI94A9DPDP AP P4
> b b BB B DB B DB D> DB DB DB JAQDPDPDPJI I 49D DPDBPJI 449D 4A9DPDPDBPJIDPDPJI4A949DPDDPJH449d4q
> b b BB P44 B DB DB DB DB D> DB DPJIDBPDB>DBPDBPDPDPDBPJI A9 DA DPDPDPJIDP4AaDP AP DP4AD 4D
> b b BB B DB B DB DBPJA DB I DB DB DB JADB>DPDPDPDPJI I 49DP4A9DPDPDP I T4 49490DP> DB D>PDBPD>DP D
> b b BB B DB B DB DB DB DB D> DB D> DB DB D>PJI AP DB DBPJI 449D JA9DPDPJA9DP>PJI9DPDPJA9DPJI94AdDPD44q
> b b BB B DB B A4 D> B DB DB DB D> DB DB D> P A I 4949 490DP D> DPAd49494d9DPDDPDPJA949DPDBPJA9DP4J
> > > > B> BB DBDB>DBPAQDBPDBPADBDPDBPDB>DBDPDBDDPDPDBAIDPAD>DDBPAIDPADdPDB>DPDPJAD>DBPJA
> > > > B> BB DBDB>DBDBDBDBDBPDBDBDDAIQDBD>D>DPDPDBADPDPDPAITIAADTDPAdADdDBPJA
> > b > B> P BB DB DPDPJAQAADPDPDBPDPDPAADDPDPAIDBPAIIAIDDPAIAd494d9949D>4990DP4
> > > B> B> B> BB DB>DBDBDBDBDPDBDBDDDPDPDAIIIADBDAIDPDPDPDPDPADBDAITDPDPADDBPJA
> > b B> B> B BB DA DBDPDB>DBPDBDBDBD>DPDPDDDPDPAIDBPAIAD>DDPDPDPDPITIDPAITDPJA
> > > > B> B BB DB DPDPJAQDBDAADDBPDBPDPDPITIAD>DADPAD>PDPIA494d90DbbP4A4dDdDP4A
> > P> > B> BB D>DB>DBDBDBDDPDPDDDAIADDD>DPDBPAIDDPDPIDBPAIAIITTd949D>4d4dD>

10 15 20 25 30 35 40

S2

39



Mean Estimate

40 60 80 100

20

QR

Figure 9

20

I I
40 60
True SGP

80

100

40

MIRT

20

I I
40 60
True SGP

80

100



Integrated Absolute Bias

15

10

Figure 10

O
O0g (]
UpoogoooO

O QR
© MIRT

nob

0

5

10

15

41

20

S1

25

30

35

40




6
o

-4

Density

Density

True Generating

Figure 11

-4

4 -2 0 4
01
T T I '
4 -2 0 4
61
T T I '
4 -2 0 4
62

42

Estimated




S1

40

35

30

25

20

15

10

Figure 12
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Figure 13
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Figure 14
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Integrated Absolute Bias
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