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Summary 

Researchers often study how students’ academic outcomes are associated with the charac­
teristics of their classrooms, schools, and districts. They also study subgroups of students 
such as English language learner students and students in special education. However, 
district personnel may not be aware that commonly used analytic methods might give 
inaccurate readings of the statistical significance of results when individual (student) 
data are nested within groups (classrooms, programs, schools) or when group-level data 
are disaggregated to predict individual outcomes. In these cases, it may be necessary to 
use multilevel regression modeling (also known as hierarchical linear modeling or linear 
mixed modeling) to analyze data. This primer on conducting multilevel regression analy­
ses to address these issues using the Advanced Statistics module of SPSS IBM Statistics 
should be useful to applied researchers and district staff engaged in or in charge of data 
analysis. 

A recent study by Regional Educational Laboratory Northeast & Islands focusing on the 
achievement of a cohort of English language learner students (Parker, O’Dwyer, & Irwin, 
2014) asked which characteristics of students, English language learner programs, and 
schools were most closely related to the students’ English proficiency scores. Such research 
is often addressed using a prediction modeling technique called ordinary least squares 
(OLS) regression. OLS regression is used to examine the strength and direction of the rela­
tionship between two variables in a statistical model while holding other variables con­
stant. It is used extensively as an exploratory, explanatory, and predictive tool. However, a 
standard OLS model may not be appropriate in situations where individuals are nested in 
groups because nesting may lead to a statistical dependency among the observations in the 
sample.1 

Statistical dependencies can occur for multiple reasons, including situations in which indi­
viduals share the same educational context—where individuals are nested in classrooms 
or schools—and situations in which group-level characteristics are used to predict individ­
ual outcomes. An example of the first situation is English language learner students who 
attend the same school. These students are likely to be more similar to each other than to 
individuals in other schools (they are drawn from the same communities, use similar school 
resources, have the same teachers), and so statistical dependency may occur. The second 
situation occurs when the analysis aims to examine the relationships between group char­
acteristics and individual outcomes. Because each individual in a group is assigned the 
same value for a group characteristic, a statistical dependency can occur. 

In the presence of statistical dependency and assuming that the model is correctly speci­
fied, standard OLS regression can produce unbiased estimates of the relationships between 
variables (the regression coefficients). However, the standard errors associated with the 
regression coefficients may be biased, leading to incorrect conclusions about the statistical 
significance of the observed relationships. One of the key assumptions of OLS models (and 
several other common analysis procedures) is that each individual provides a unique piece 
of statistical information that is unrelated to the information provided by other individuals 
in the sample. Statistical dependency violates this assumption and can lead to downwardly 
biased estimates of the standard errors associated with the regression coefficients and ulti­
mately to incorrect statistical conclusions. 

i 



Multilevel regression modeling does not correct bias in the regression coefficient estimates 
compared with an OLS model; however, it produces unbiased estimates of the standard 
errors associated with the regression coefficients when the data are nested, and easily 
allows group characteristics to be included in models of individual outcomes (Snijders 
& Bosker, 1999; Raudenbush & Bryk, 2001; Bickel, 2007, Gelman & Hill, 2007; Hox, 
2010). Although multilevel modeling is an advanced data analysis procedure that requires 
specialized software and data analysis skills, several readily available statistical packages 
provide the capability to conduct such analyses, including the Advanced Statistics module 
of SPSS IBM Statistics, used for the analysis in this primer. 

ii 



 

 

 
 

 

 
 

 
 

 

 
 

 
 

  
 

 

 

  

 
 

Contents 

Summary	 i
 

Why this primer?	 1
 

Challenges in using ordinary least squares regression analysis with nested data	 3
 
Statistical significance tests evaluate the strength of relationships 4
 
Danger of false-positive or false-negative errors 4
 

Analyzing nested data with multilevel modeling	 4
 
Accounting for statistical dependency 5
 
Variance and covariance can be partitioned into within-group and between-group components 5
 
Comparing the two statistical models 6
 
Sample size is important 7
 

An illustration using English language learner student and school data	 7
 
Two-level model used to predict English proficiency scores 7
 
Interpreting the results of ordinary least squares and multilevel regression models 8
 
Implications of statistical dependency 10
 

Appendix A	 Step by step procedure for using the Advanced Statistics module of 

SPSS IBM Statistics A-1
 

Notes	 Notes-1 

References	 Ref-1 

Box 
1	 Key terms 2
 

Table 
1	 Comparison of results for a multilevel model and an ordinary least squares model 


predicting English language learner students’ scores on a test of English proficiency 8
 

iii 



 

 

 
 
 

 
 

Why this primer? 

A recent study by the Regional Educational Laboratory Northeast & Islands on the 
achievement of a cohort of English language learner students in a large school district in 
Connecticut asked which characteristics of students, English language learner programs, 
and schools were most closely related to the students’ English proficiency scores (Parker 
et al., 2014). 

A common statistical method used to address this type of question is ordinary least squares 
(OLS) regression analysis. OLS regression, which can examine the strength and direction 
of the relationship between two variables while holding other variables constant, is used 
extensively as an exploratory, explanatory, and prediction tool. However, a standard OLS 
model may produce misleading results about the statistical significance of a relationship 
when it is used to analyze data collected from students in classrooms and schools because 
of this “nesting” of data—students nested within classrooms. 

A key assumption of OLS models (and several other common analysis procedures) is that 
each individual in the sample provides a unique piece of statistical information unrelated 
to the information provided by other individuals in the sample. Because students who 
attend the same school are likely to be more similar to each other than they are to indi­
viduals in other schools (they are drawn from the same communities, use similar school 
resources, have the same teachers), meeting this assumption can be difficult. A standard 
OLS regression can produce statistically unbiased estimates of the relationships among 
variables (regression coefficients); however, the nesting of students in schools leads to cor­
related observations (a dependency among the data) and the possibility of downwardly 
biased estimates of the standard errors associated with the regression coefficients. If adjust­
ments are not made to the OLS model to account for the statistical dependency introduced 
by nesting, analysts can make substantive errors in interpreting the statistical significance 
of relationships (Raudenbush & Bryk, 2001).2 

Education researchers also frequently examine how group or organizational characteristics, 
such as the characteristics of schools, are associated with individual outcomes. Each indi­
vidual in a group is assigned the same value for the group characteristic. However, a group 
characteristic that is disaggregated to the individual level cannot explain individual differ­
ences within a group. For example, the percentage of students who receive free or reduced-
price lunches at a school cannot explain student-to-student differences in test performance 
within a school. A standard OLS model that includes a disaggregated variable will use the 
individual-level sample size, which is inaccurate for a variable measured at the group level, 
for determining statistical significance. This practice can also lead to incorrect conclusions 
about the significance of the relationships under investigation. 

The REL Northeast & Islands study of English language learner students examined the 
characteristics of students, English language learner programs, and schools most closely 
related to their English proficiency scores (Parker et al., 2014). The researchers had to con­
sider the possibility of a statistical dependency among the English language learner stu­
dents who attended the same school while also including school characteristics in models 
for predicting individual student outcomes. 

A standard 
ordinary least 
squares regression 
can produce 
statistically 
unbiased estimates 
of the relationships 
among variables; 
however, the 
nesting of students 
in schools leads 
to statistical 
dependency and 
the possibility of 
downwardly biased 
estimates of the 
standard errors 
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Over the past two decades, multilevel modeling (also known as hierarchical linear mod­
eling or linear mixed modeling)3 has become a popular way to analyze data with statis­
tical dependency (see box 1 for definitions of key terms). Multilevel regression modeling 
does not correct bias in the regression coefficient estimates compared with an OLS model; 
however, it produces unbiased estimates of the standard errors associated with the regres­
sion coefficients when the data are nested and easily allows group characteristics to be 
included in models of individual outcomes (Snijders & Bosker, 1999; Raudenbush & Bryk, 
2001; Bickel, 2007, Gelman & Hill, 2007; Hox, 2010).4 Although multilevel modeling is an 
advanced data analysis procedure that may require specialized software and data analysis 
skills, several readily available statistical packages make it more accessible. For example, 
Stata and SAS allow analyses that account for statistical dependency in the estimation 
of standard errors. Likewise, the Advanced Statistics module of SPSS IBM Statistics uses 
multilevel modeling to analyze data with statistical dependency. 

This primer provides guidance to applied researchers and district staff engaged in or in 
charge of analyzing data with nested components and who have access to the Advanced 
Statistics module of SPSS IBM Statistics.5 Although this discussion focuses on OLS regres­
sion analysis, the effects of nesting are relevant for other commonly used inferential tests 

Box 1. Key terms 

Intercept-only model: A type of multilevel regression model in which only the intercept is 

allowed to vary from group to group. 

Intraclass correlation coefficient: The proportion of variance in the dependent variable that lies 

between groups. The intraclass correlation coefficient ranges from 0 to 1 and is used to estimate 

the degree of statistical dependency in the data. If there is no statistical dependency, all of the 

variance would be expected to lie among individuals, and the intraclass correlation coefficient 

would be zero or close to zero. Conversely, with highly dependent data, the largest proportion of 

variance would lie among groups, and so the intraclass correlation coefficient would be closer to 1. 

Multilevel regression modeling: A set of statistical models that accounts for the statistical 

dependency that may result from nested data. When the assumptions of the models are met, 

they provide unbiased estimates of the standard errors associated with regression coefficients 

and allow group characteristics to be included in statistical models of individual outcomes 

(Snijders & Bosker, 1999; Raudenbush & Bryk, 2001; Bickel, 2007, Gelman & Hill, 2007; Hox, 

2010). The approach is also known as hierarchical linear modeling or linear mixed modeling. 

Nested data: When data are collected from multiple individuals in a group, the individual data 

are considered nested within that group. 

Ordinary least squares (OLS) regression: A statistical model used to describe the relationship 

between an array of variables (independent variables) and a dependent variable. OLS models 

assume that the relationship between the dependent and independent variables is linear, that 

the prediction errors are normally distributed and equally variable across the range of scores, 

and that the prediction errors for individuals are uncorrelated with each other. 

Statistical dependence: When the prediction error for the ith individual is correlated with the 

prediction error for the ith+1 individual. It occurs when individuals are nested in groups or when 

group characteristics are disaggregated to the individual level and leads to biased estimates 

of the standard errors associated with the regression coefficients in an OLS model. 

Multilevel 
regression 
modeling produces 
unbiased estimates 
of the standard 
errors associated 
with the regression 
coefficients when 
the data are 
nested and easily 
allows group 
characteristics 
to be included 
in models of 
individual 
outcomes 
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such as t-tests, analysis of variance, and correlation. While this primer considers data with 
two levels, such as individuals nested within groups (students nested within schools), mul­
tiple levels of nesting, such as students within classrooms, classrooms within schools, or 
schools within districts, are also common.6 

The following sections describe the challenges to OLS regression presented by statisti­
cal dependency and the inclusion of group characteristics; how multilevel modeling can 
accommodate nested data and the inclusion of group characteristics; and the use of multi­
level modeling in a study of English language learner students in a large urban school 
district (Parker et al., 2014). 

Challenges in using ordinary least 

squares regression analysis with nested data
 

In OLS regression analysis a statistical model specifies an array of variables (independent 
variables) and uses them to predict some other variable (the dependent variable). The sta­
tistical model generated by OLS analysis shows the strength and direction of the relation­
ship between a particular independent variable and the dependent variable while holding 
constant all other independent variables in the model. The focus here is on prediction 
models in which there is a single dependent continuous variable.7 For example, an OLS 
regression model for a continuous dependent variable for i individuals, Yi, and three inde­
pendent variables X1i, X2i, and X3i measured at the individual level, and one independent 
variable W1j measured at the group level takes the following form: 

Yi = a + b1X1i + b2X2i + b3X3i + b4W1j + ei. (1) 

The dependent variable for individual i, Yi, is predicted from a linear combination of vari­
ables X1i, X2i, X3i, and W1j plus some amount of error, ei. For example, in the study used 
as an illustration in this primer (Parker et al., 2014), English language learner students’ 
English proficiency scores (Yi) might be predicted using students’ school attendance rate 
(X1i), their dominant language (X2i), the program in which they are enrolled (X3i), and the 
percentage of students achieving math proficiency in the school (W1j). 

The intercept, a, and the regression coefficients, b1, b2, b3, and b4, are fixed values that 
are the same for every i individual in the dataset. The model predicts a value of Yi based 
on individuals’ unique values on X1i, X2i, X3i, and W1j. The value of the intercept, a, rep­
resents the predicted value of Yi when all Xi and Wj variables in the model are zero. Each 
regression coefficient in the model (b1, b2, b3, and b4) indicates the predicted change in Yi 
for every one unit increase in the value of the associated independent variable, holding 
constant the other independent variables in the model. Holding all other independent 
variables in the model constant means that the regression coefficient is the relationship 
between Yi and a particular independent variable for individuals who have the same value 
for all other independent variables in the model. 

Unless the independent variables predict Yi perfectly, there will be error in the prediction 
model; for some individuals the predicted Yi value will be higher than their actual Yi value, 
while for others it will be lower. The error term in the model, ei, is of particular interest 
when analyzing data that have a statistical dependence; it is discussed in more depth later. 

Unless the 
independent 
variables in an 
ordinary least 
squares regression 
predict the 
dependent variable 
perfectly, there 
will be error in the 
prediction model 
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Statistical significance tests evaluate the strength of relationships 

Significance tests are typically used to evaluate the strength of the relationships represent­
ed by the regression coefficients. They show whether the predicted change in Yi associated 
with a one-unit change in an independent variable is statistically significantly different 
from zero. Decisions about statistical significance in a sample rely on the probability of 
observing a regression coefficient of the size observed or larger by chance if the coefficient 
is really zero in the population. If the probability of a chance relationship is large, the 
regression coefficient is not statistically significantly different from zero (Xi is not a sig­
nificant predictor of Yi). If the probability of a chance relationship is small, the regression 
coefficient is statistically significantly different from zero (Xi is a significant predictor of Yi). 

For analysts to be confident in a decision about the significance of the regression coeffi­
cient, the data must meet several assumptions.8 First, the relationship between the depen­
dent and independent variables is assumed to be linear—that is, it can be described using 
the equation of a straight line that contains only the intercept, a, the regression coeffi­
cients, bs, and some amount of error, e. Second, the OLS model assumes that the errors 
are normally distributed and equally variable across the range of scores. Third, and most 
pertinent to this discussion, the prediction errors for i individuals are assumed to be uncor­
related with each other. When this assumption is met, each piece of data in the sample is 
unique and statistically independent of all other pieces of data, and the prediction error for 
the ith individual is not correlated with the prediction error for the ith+1 individual. 

Danger of false-positive or false-negative errors 

However, the assumption of uncorrelated errors is difficult to meet when there is a statisti­
cal dependency in the data because individuals are nested in the same group (students in 
the same school are drawn from the same communities, use similar school resources, and 
have the same teachers). In that case the estimated probability of observing a relationship 
of the size observed or larger in the sample, if the relationship is really zero in the popu­
lation, is artificially reduced. Because of this reduction, a relationship may be considered 
statistically significant when it is not (Snijders & Bosker, 1999; Raudenbush & Bryk, 2001; 
Bickel, 2007; Gelman & Hill, 2007; Hox, 2010). This type of incorrect false-positive deci­
sion is called a Type I error. It is also possible for an independent variable to be nonsignifi­
cant in an OLS model and significant in a multilevel model. In this case the OLS result is 
considered a false-negative or Type II error. 

Type I errors are problematic because they may lead to the conclusion that a particular 
student characteristic is associated with higher academic performance or that a school- 
or district-wide program or policy is effective for improving academic outcomes when in 
reality there is no effect. Type II errors are problematic because they could miss a signifi­
cant relationship in the data that could guide decisionmaking. 

Analyzing nested data with multilevel modeling 

Multilevel modeling techniques were developed to help analysts avoid erroneous conclu­
sions from using inappropriate analysis procedures, such as using OLS regression with unad­
justed standard errors when analyzing nested data. In a multilevel model the associations 
between the dependent variable and the independent variables are expressed as regression 

The assumption 
of uncorrelated 
errors is difficult to 
meet when there 
is a statistical 
dependency in 
the data because 
individuals are 
nested in the 
same group 
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coefficients and interpreted in the same way as OLS regression coefficients. However, in a 
multilevel regression analysis the coefficients refer to specific levels (for example, students 
within schools) in the nested data. The details of how this is done are described in this 
section. A step-by-step procedure for running a multilevel regression analysis using the 
Advanced Statistics module of SPSS IBM Statistics is shown in appendix A. 

Accounting for statistical dependency 

Multilevel regression modeling accounts for statistical dependency by assigning each level 
in the data hierarchy its own statistical model that includes an intercept, regression coef­
ficients, and error term. For example, an analysis of students nested within schools would 
require the use of a model that includes separate statistical expressions for students at level 
1 and schools at level 2. Since there are error terms in each level of the data, the result is a 
more complex error structure than in a standard OLS model. 

Because statistical models are formulated for each level in the data hierarchy, group char­
acteristics can be included in models of individual outcomes, which can improve estimates 
of the effects within the groups and allow testing of hypotheses about cross-level effects.9 

When the assumptions of the multilevel model hold, the bias in the standard errors of the 
regression coefficients is reduced, the estimated probability that researchers rely on to eval­
uate statistical significance is no longer artificially reduced, and the incidence of Type I, 
false-positive errors is reduced (Snijders & Bosker, 1999; Raudenbush & Bryk, 2001; Bickel, 
2007; Gelman & Hill, 2007; Hox, 2010). 

Variance and covariance can be partitioned into within-group and between-group components 

Another advantage of multilevel modeling is that it allows the variance and covariance 
components to be partitioned across the levels of the data. Whereas OLS regression pro­
vides a single value to indicate the proportion of variability in the dependent variable 
explained by the combination of independent variables (referred to as R2), the multilevel 
model’s more complex error term allows partitioning the total variance in the dependent 
variable into a within-group component (student-to-student variation within schools, for 
example) and a between-group component (variation between schools, for example). It also 
allows calculating the reduction in variance with the addition of independent variables at 
the individual and group levels in subsequent models. 

The available variance in the dependent variable is partitioned into its within-group vari­
ance (σ2) and between-group variance (τ00) components using an unconditional multi­
level model that includes only a random group effect. The intraclass correlation coefficient 
(ICC) in equation 2 is used to calculate the portion of variance in the dependent variable 
that is explained at each level in subsequent models with the addition of individual and 
group measures: 

τ00ICC = . (2) 
σ2 + τ00 

If there is no statistical dependency in the data, all of the variance would be expected to lie 
among individuals, and the intraclass correlation coefficient would be expected to be zero 
or close to zero. Conversely, with highly dependent data, the largest proportion of variance 
would lie among groups, and so the intraclass correlation coefficient would be closer to 1.10 

Multilevel 
modeling 
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analysis 
procedures, such 
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nested data 

5 



 
 

 

 

 

 

 
 

 
 

 

 

  

 
   

 
 

 

 

 

  

  

   

  

  

 
 

 
 

Comparing the two statistical models 

To draw parallels between the statistical models for OLS and multilevel regression, a 
two-level model in which individuals are nested in groups is described. For individual i 
nested in group j, a multilevel regression model analogous to equation 1, with a continuous 
dependent variable Yij and three independent variables, X1ij, X2ij, and X3ij, measured at the 
individual level, would take the following form: 

Yij = β0j + β1X1ij + β2X2ij + β3X3ij + rij. (3) 

This model states that the dependent variable Yij, for individual i in group j, is predicted 
from a linear combination of variables X1ij, X2ij, and X3ij, and an individual-level prediction 
error term, rij. Despite the different notation, this model is similar to the OLS expression 
in equation 1 in that it consists of an intercept, β0j; regression coefficients β1j, β2j, and β3j; 
and an individual-level error term, rij, that is assumed to be normally distributed with a 
mean of zero. As in the OLS model, the value of the intercept, β0j, represents the predicted 
value of Yij when all Xij in the model are zero and each of the regression coefficients, β1j, β2j, 
and β3j, indicates the predicted change in Yij for every one-unit increase in the value of the 
associated Xij variable, holding constant the other variables in the model. 

Since i individuals are nested in j groups, a group-level model can be formulated. To illus­
trate the model, consider the situation in which a characteristic measured at the group 
level, W1j, is included in the group model to predict the intercept in the individual model, 
β0j: 

β0j = γ00 + γ01W1j + u0j. (4) 

Again, this model contains an intercept, γ00, a regression coefficient, γ01, and a group-level 
prediction error term, u0j. The regression coefficient, γ01, represents the predicted increase 
in Yij for every one-unit increase in the group-level measure, W1j, holding constant the 
individual-level variables in the model. Each group has a unique error term, u0j, which is 
assumed to be normally distributed with a mean of zero. 

Models may also be formulated for the level 1 (individuals) regression coefficients. In the 
simplest case these models are as follows:11 

β1j = γ10, β2j = γ20, and β3j = γ30. (5) 

The similarity between multilevel models and OLS models (equation 1) is evident when 
the multilevel models (equations 3–5) are combined into a single model, referred to as a 
linear mixed model: 

Yij = γ00 + γ10X1ij + γ20X2ij + γ30X3ij + γ01W1j + rij + u0j. (6) 

As in the OLS model, the value of the intercept, γ00, represents the predicted value of 
 when all predictors in the model (X1ij, X2ij, X3ij, and W1j) are zero, and each regression Yij

coefficient (γ10, γ20, γ30, and γ01) indicates the predicted change in Yij for every one-unit 
increase in the value of the associated independent variable, holding constant the other 
variables in the model. The linear mixed model also shows a more complex error structure 

Whereas ordinary 
least squares 
regression provides 
a single value 
to indicate the 
proportion of 
variability in the 
dependent variable 
explained by the 
independent 
variables, the 
multilevel model 
allows partitioning 
the total variance 
into a within-group 
component and 
a between-group 
component 
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than the OLS model. Instead of the single-error term, ei, in the OLS model, the linear 
mixed model indicates a within-group error, rij, and a between-group error, u0j. 

Sample size is important 

Multilevel modeling procedures require a minimum sample size to achieve accurate 
estimates of the regression coefficients and their standard errors, as well as of the vari­
ance components and their standard errors (Raudenbush & Bryk, 2001). Typically, the 
minimum sample size refers to the highest level in the data hierarchy (for analyzing stu­
dents nested in schools, the number of available schools is the primary sample-size con­
sideration), though the numbers of individuals within groups and the magnitude of the 
intraclass correlation coefficient may also have an effect on the model estimates (Hox & 
Maas, 2002). The sample size will also affect the complexity of the models that can be 
formulated.12 Guidelines for sample-size requirements and their implications for model 
complexity, the regression coefficients, variance components, and their standard errors are 
given in various studies and texts. For example, models with fewer than 20–25 groups may 
not provide accurate estimates of the regression coefficients and their standard errors, or 
of the variance components and their standard errors. Simulation studies have shown that 
analyses with fewer than 50 groups can lead to biased estimates of the standard errors at 
the group level (Hox & Maas, 2002).13 

An illustration using English language learner student and school data 

The recent study by the REL Northeast & Islands on the achievement of a cohort of 
English language learner students in a large school district in Connecticut is used here 
to illustrate how multilevel regression modeling was applied to examine the relationships 
between student, program and school characteristics and English proficiency scores. The 
study asked which characteristics of students, English language learner programs, and 
schools were most closely related to the students’ English proficiency scores (Parker et al., 
2014). Data compiled for English language learner students in grades K–1 are used in the 
illustration (see appendix F and table G1 in Parker et al., 2014, for the complete results). 

Complete data were available for 566 English language learner students in grades K–1 who 
attended 28 schools (with an average of 20 English language learner students per school). 
The unconditional model showed that the within-school variance was 1,990.4 (σ2) and 
the between-school variance was 579.7 (τ00). Using equation 2, the intraclass correlation 
coefficient was calculated as 0.23, or 23  percent. Thus 23  percent of the variability in 
the students’ English proficiency scores was due to school-to-school differences (such as 
differences in school socioeconomic status, communities, and policies or practices) and 
77 percent to student-to-student differences within schools (such as differences in student 
attitudes and socioeconomic status). 

Two-level model used to predict English proficiency scores 

A two-level intercept-only model was used to predict the students’ English proficiency 
scores using student and school characteristics. At the student level the model included 
indicators of students’ dominant home language (0 = Spanish, 1 = language other than 
Spanish), special education status (0 = does not have an individualized education program, 
1 = has an individualized education program), attendance rate (continuous variable, total 

Multilevel 
modeling 
procedures require 
a minimum sample 
size to achieve 
accurate estimates 
of the regression 
coefficients and 
their standard 
errors, as well as 
of the variance 
components and 
their standard 
errors 
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number of days in attendance divided by the possible number of days in attendance), and 
dichotomous variables for comparing the English language learner programs to the grand 
mean across all programs (transitional bilingual, dual-language bilingual, eligible for but 
not attending a program by parent request, and English as a second language services). 

At the school level the model included two variables: the percentage of students in the 
school who achieved proficiency in math and the percentage who achieved proficiency in 
reading. These school variables were constant for every English language learner student 
in the same school and had no variation within schools. (See appendix A for a step-by-step 
guide with screenshots for running this type of analysis using the SPSS menu interface as 
well as the syntax that these steps produced.) 

Interpreting the results of ordinary least squares and multilevel regression models 

Table 1 compares the fixed components from a multilevel regression analysis predicting 
English language learner students’ scores on a test of English proficiency (see appendix F 
and table G1 in Parker et al., 2014) along with the results from an OLS analysis conducted 
with the same data. 

Student-level independent variables. Both analyses produced regression coefficients for 
the student-level independent variables that were generally in the same direction, with 
approximately similar magnitudes. English language learner students whose dominant 
home language was not Spanish, who were not in special education (did not have an 

Table 1. Comparison of results for a multilevel model and an ordinary least squares model predicting 
English language learner students’ scores on a test of English proficiency 

Variable 

Multilevel model Ordinary least squares model 

Regression 
coefficient 

Standard 
error 

Significance 
(p value) 

Regression 
coefficient 

Standard 
error 

Significance 
(p value) 

Constant 418.23 5.02 <.001 420.75 1.88 <.001 

Student-level independent variable 

Dominant home language not Spanish 49.95 14.55 .001 55.14 14.70 <.001 

Special education status (has an individualized 
education program) –20.25 6.18 .001 –20.65 6.41 .001 

Attendance rate (10 percentage point increment 
above the grand mean) 14.90 3.70 <.001 16.50 3.80 <.001 

Transitional bilinguala 

Dual-language bilinguala 

–13.36 

17.26 

2.49 

8.92 

<.001 

.054 

–9.60 

–8.81 

2.20 

6.63 

<.001 

.184 

Eligible but not served due to parent requesta 35.16 7.88 <.001 33.48 8.16 <.001 

English as a second language services (for 

Math proficiency rate (10 percentage point 
increment) –14.09 8.00 .091 –1.65 3.20 .603 

students speaking languages other than Spanish)a –28.54 14.19 .045 –24.01 13.57 .077 

School-level independent variable 

Reading proficiency rate (10 percentage point 
increment) 16.57 7.60 .040 4.38 3.20 

Note: Dependent variable: English proficiency scores. 

a. Compared with the grand mean.
 

Source: Authors’ analysis based on data from Parker et al. (2014).
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individualized education program), and who attended school more frequently were predict­
ed to have higher English proficiency scores, holding all other variables constant. Students 
who were eligible for a language program but did not attend due to parental request were 
predicted to have English proficiency test scores that were higher than the grand mean, 
whereas English language learner students in transitional bilingual or English as a second 
language services were predicted to have scores lower than the grand mean, holding all 
other variables in the model constant. For several independent variables the statistical 
decisions are the same under both approaches. For example, students with a home lan­
guage other than Spanish and students with higher attendance rates were predicted to 
have higher English proficiency scores. 

For English language learner program indicators the results were also similar under the 
two approaches. Holding all else constant, students enrolled in transitional bilingual 
programs were predicted to have English proficiency scores that were significantly lower 
than the grand mean English proficiency score, while students who were not served 
due to parental request were predicted to have significantly higher English proficiency 
scores than the grand mean. Despite the similarities in magnitude, the coefficient for 
enrollment in English as a second language services was significant only in the multilevel 
model, likely because of the reweighting that occurs in that model based on the variances 
and covariances of the error term. For student enrollment in a dual-language bilingual 
program the direction and magnitude of the associated regression coefficients were dif­
ferent under the two approaches; however, the coefficients were not significant in either 
model. 

The multilevel model produced smaller standard errors for the regression coefficients for 
four of the seven student-level independent variables than did the OLS model. Although 
this seems at odds with what was expected, it is not surprising given that the parame­
ters were based on different estimation algorithms. OLS analysis, like other general linear 
model approaches, relies on least squares estimation to produce the model parameters and 
gives equal weight to each student but not to each school. Conversely, multilevel analysis 
uses maximum likelihood or restricted maximum likelihood procedures for estimating 
model parameters, which tend to downweight the contribution of individuals from larger 
groups, in this case, students from larger schools. Moreover, the results are reweighted 
based on the variances and covariances of the error terms in the model, which, when the 
assumptions are met, produce more precise estimates than the OLS model.14 

School-level independent variables. The school-level regression coefficients indicat­
ing the predicted increase in English proficiency scores associated with a 10 percentage 
point increase in the percentage of students achieving proficiency in both math and 
reading differed under the two approaches. The only coefficient significantly associat­
ed with English proficiency was the coefficient for reading proficiency in the multilevel 
model. For the school-level variables the standard errors of the OLS coefficients were 
smaller than those in the multilevel model. When data are nested, the estimated prob­
ability of observing a school-level regression coefficient of the size observed or larger in 
the sample, if the coefficient is really zero in the population, tends be artificially reduced. 
Because of this reduction, a relationship may be considered statistically significant when 
it is not. 

The ordinary 
least squares 
and multilevel 
regression 
approaches 
provided similar 
results regarding 
the relationship 
between the 
dependent 
variable and the 
independent 
variables; however, 
some significant 
relationships 
could have been 
overlooked had 
the ordinary least 
squares approach 
alone been used 
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Implications of statistical dependency 

The two approaches provided similar results regarding the relationship between the depen­
dent variable and the independent variables. However, some significant relationships could 
have been overlooked had the OLS approach alone been used. For example, enrollment in 
English as a second language services reached statistical significance only in the multilevel 
model, as did the school-level variable of reading proficiency rate. Although not statisti­
cally significant, the different direction and magnitude of the associated regression coef­
ficients of student enrollment in a dual-language bilingual program indicate a negative 
relationship in the OLS approach but a positive relationship in the multilevel model. 

When data possess some degree of statistical dependency such as what was observed for 
the K–1 data (approximately 23 percent of the variability in English language learner stu­
dents’ English proficiency score was due to school-to-school differences), analysts should 
use appropriate procedures that provide accurate results for guiding policy and practice. In 
the example used here, the lack of statistically significant school-level variables in the OLS 
model could lead administrators to erroneously conclude that there were no school effects 
predicting English language learner students’ English proficiency. 
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Appendix A. Step by step procedure for using the 

Advanced Statistics module of SPSS IBM Statistics
 

Steps for running the type of intercept-only, two-level model described in this primer using 
the Advanced Statistics module of SPSS IBM Statistics are given with screenshots. The 
SPSS syntax produced through these steps and syntax for a parallel ordinary least squares 
(OLS) regression model are shown at the end. 

Step 1: Select the Linear option from the Mixed Models menu under Analyze. 

Step 2: Select the variable that identifies the groups within which individuals are nested. 
Select Continue. 

A-1 



Step 3: Select the Dependent and Independent Variables. 

Step 4: Select the Random button on the right to open a new dialogue box. Under Subject 
Groupings, move the variable that identifies the groups within which individuals are 
nested into Combinations. Check the box titled Include intercept. Select Continue. 

A-2 



Step 5: Select the Fixed button on the right to open a new dialogue box. Select the Inde­
pendent Variables in the Factors and Covariates window and move them into the Model 
window. Select Continue. 

Step 6: Select the Statistics button on the right to open a new dialogue box. Check the 
box next to Parameter estimates. Select Continue. 
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Step 7: Select OK to run the model that will produce the output. 

This seven-step process produced the following syntax for an intercept-only, two-level 
model with two fixed independent variables: 

MIXED DependentVar WITH IndependentVarA IndependentVarB

 /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) 

HCONVERGE(0, ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)

 /FIXED=IndependentVarA IndependentVarB | SSTYPE(3)

 /METHOD=REML

 /PRINT=SOLUTION

 /RANDOM=INTERCEPT | SUBJECT(ClusterID) COVTYPE(VC). 

A parallel OLS model would be formulated using the Linear Regression option available 
in both the Base version and the Advanced Statistics module of SPSS IBM Statistics. The 
syntax would be as follows: 

REGRESSION

 /MISSING LISTWISE

 /STATISTICS COEFF OUTS R ANOVA

 /CRITERIA=PIN(.05) POUT(.10)

 /NOORIGIN

 /DEPENDENT DependentVar

 /METHOD=ENTER IndependentVarA IndependentVarB. 
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Notes 

1.	 Some statistical packages such as Stata and SAS allow analysts to adjust the standard 
errors in an OLS regression to account for the effects of nesting. 

2.	 Some statistical packages such as Stata and SAS allow analysts to adjust the standard 
errors in an OLS regression to account for the effects of nesting. 

3.	 Multilevel regression modeling is a special case of the more general linear mixed 
model. See Raudenbush (1993). 

4.	 Multilevel modeling is not appropriate in all situations, even in the presence of statis­
tical dependency. For example, multilevel regression models reweight the data based 
on the variances and covariances of the error terms in the model (Selden, 1994) and 
tend to downweight the contribution of individuals from larger clusters. In situations 
where unweighted results are substantively necessary, it may be more appropriate to 
use an OLS model in which the standard errors are adjusted for the dependency. For 
additional information, see Raudenbush and Bryk (2001), Gelman and Hill (2007), 
and Hox (2010). For additional information about the procedures and diagnostic infor­
mation for correctly specifying prediction models (such as OLS and multilevel regres­
sion models), including the specification of models with interaction terms, see applied 
linear regression modeling texts such as Chatterjee and Haldi (2012) and Gelman and 
Hill (2007). 

5.	 A poll of school districts in the Northeast & Islands Region showed that SPSS IBM 
Statistics is the most frequently used statistical software package. Not all school dis­
tricts have access to the Advanced Statistics module. 

6.	 For more information about analyses with multiple levels of nesting, see Raudenbush 
and Bryk (2001) and Gelman and Hill (2007). 

7.	 Prediction models that use multiple dependent variables or have noncontinuous 
(dichotomous or multicategorical) dependent variables are not discussed here. For 
further information about these types of models, see Snijders and Bosker (1999), 
Raudenbush and Bryk (2001), and Hox (2010). 

8.	 The assumptions described here are also common to other types of analyses, such as 
correlation, testing the difference between means, and analysis of variance. 

9.	 Providing that the assumptions of the model are met. 
10.	 The impact of a nonzero intraclass correlation coefficient on the standard errors asso­

ciated with the regression coefficients depends on the size of the groups in which indi­
viduals are nested, and so there are no set guidelines for what constitutes a large or 
small intraclass correlation coefficient. For additional information about the partition­
ing of variance in multilevel models, see Snijders and Bosker (1999), Raudenbush and 
Bryk (2001), Bickel (2007), Gelman and Hill (2007), and Hox (2010). 

11.	 The models described here are intercept-only models. For information about other 
model formulations, see Snijders and Bosker (1999), Raudenbush and Bryk (2001), and 
Hox (2010). 

12.	 For example, models that allow the relationships between individual-level measures 
and the dependent variable to vary across groups and models that include interactions 
between individual-level and group-level measures generally require larger samples 
than the simple intercept-only model described here. 

13. For additional information about sample size requirements, see Raudenbush and Bryk 
(2001), Gelman and Hill (2007), and Hox (2010). 

14.	 The weighting in multilevel modeling could produce model parameters that are no 
longer generalizable to all students, thereby resulting in biased parameters. In situations 
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where weighting is not desirable, OLS with cluster- corrected standard errors (available 
in Stata) may be more appropriate. For additional information about the estimation 
procedures and their consequences, see Raudenbush and Bryk (2001), Gelman and 
Hill (2007), and Hox (2010). 
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The Regional Educational Laboratory Program produces 7 types of reports
 

Making Connections 
Studies of correlational relationships 

Making an Impact 
Studies of cause and effect 

What’s Happening 
Descriptions of policies, programs, implementation status, or data trends 

What’s Known 
Summaries of previous research 

Stated Briefly 
Summaries of research findings for specific audiences 

Applied Research Methods 
Research methods for educational settings 

Tools 
Help for planning, gathering, analyzing, or reporting data or research 
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