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Learning in educational settings most often emphasizes declarative and proce-
dural knowledge. Studies of expertise, however, point to other, equally important 
components of learning, especially improvements produced by experience in the 
extraction of information: Perceptual learning. Here we describe research that 
combines principles of perceptual learning with computer technology to address 
persistent difficulties in mathematics learning. We report three experiments in 
which we developed and tested perceptual learning modules (PLMs) to address 
issues of structure extraction and fluency in relation to algebra and fractions. 
PLMs focus students’ learning on recognizing and discriminating, or map-
ping key structures across different representations or transformations. Results 
showed significant and persisting learning gains for students using PLMs. PLM 
technology offers promise for addressing neglected components of learning: Pat-
tern recognition, structural intuition, and fluency. Using PLMs as a complement 
to other modes of instruction may allow students to overcome chronic problems 
in learning.
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1.	 Introduction

What does it mean to learn? To understand? To have expertise in some domain? 
Although approaches to mathematics teaching and learning vary widely, virtually 
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all current approaches emphasize some combination of declarative knowledge — 
facts, concepts, and lines of reasoning that can be explicitly verbalized — and pro-
cedural knowledge — sequences of specified steps that can be enacted. Verbaliz-
able knowledge may include memorized facts or co-constructed explanations, and 
procedures may be invented by learners or taught by direct instruction. Regardless 
of the pedagogical approach used to acquire them, these kinds of learning still fit 
within the typology of declarative and procedural knowledge.

A primary goal of this paper is to introduce a different dimension of learning 
that we believe has been neglected in most instructional settings. In contrast to 
declarative and procedural learning, we focus on perceptual learning, which refers 
to experience-based improvements in the learner’s ability to extract structural pat-
terns and relationships from inputs in the environment.1 Rapid, automatic pick-up 
of important patterns and relationships –including relations that are quite abstract 
— characterizes experts in many domains of human expertise. Experts tend to 
see at a glance what is relevant to a problem and to ignore what is not. They tend 
to pick up relations that are invisible to novices and to extract information with 
low attentional load. From the standpoint of conventional instruction, the expert’s 
fluency is mysterious — attainable only by long experience or “seasoning”. Yet the 
passage of time is not a satisfactory explanatory mechanism for cognitive change.

We believe that persistent problems in mathematics learning, including dif-
ficulties in retention, failure to transfer, lack of fluency, and poor understanding 
of the conditions of application of knowledge, might be improved by systemati-
cally introducing perceptual learning interventions. In this article we consider the 
hypotheses that (1) some perennial difficulties in learning and instruction derive 
from an incomplete model of learning, specifically a neglect of perceptual learning, 
and (2) perceptual learning can be directly engaged, and accelerated, through ap-
propriate instructional technology.

1.1	 Perceptual learning

Perceptual learning (Gibson 1969) refers to experience-induced improvements in 
the pick-up of information. Unlike most computer-based sensor systems, which 
pick up information using unchanging routines,2 humans have an astonishing 
ability to change their information extraction to optimize particular tasks. Al-
though seldom mentioned in discussions of instruction or learning technology, 
perceptual learning underlies many, if not most, of the profound differences be-
tween experts and novices in any domain — differences such as rapid selection of 
task-relevant information, pick-up of higher-order relations and invariance, and 
effective classification.
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Perceptual learning (PL) actually involves several kinds of improvements in 
information processing (Gibson 1969; Goldstone 1998). Kellman (2002) has ar-
gued that these may be broadly categorized in terms of discovery effects and flu-
ency effects. Table 1 shows some of these effects and categorizes them according 
to this dichotomy. Discovery effects refer to learners finding the information that 
is most relevant to a task. One well-known discovery effect is increased atten-
tional selectivity. With practice on a given task, learners come to pick up the rel-
evant information for classifications while ignoring irrelevant variation (Gibson 
1969; Petrov, Dosher, and Lu 2005). Practice also leads learners to discover invari-
ant or characteristic relations that are not initially evident (cf. Chase and Simon 
1973) and to form and process higher level units (Goldstone 2000; for reviews, see 
Gibson 1969; Goldstone 1998; Kellman 2002). These discovery processes, while 
seldom addressed explicitly in school learning, are pervasive, natural forms of 
learning. When a child learns what a dog, toy, or truck is, this kind of learning 
is at work. From a number of instances, the child extracts relevant features and 
relations. These allow later recognition of previously seen instances, but more im-
portant, even a very young child quickly becomes able to categorize new instances. 
Such success implies that the learner has discovered the relevant characteristics or 
relations that determine the classification. As each new instance will differ from 
previous ones, learning also includes the ignoring of irrelevant differences.

Fluency effects refer to changes in the efficiency of information extraction 
rather than discovery of the relevant information. Practice in classifying leads to 
fluent and ultimately automatic processing (Schneider and Shiffrin 1977), where 
automaticity in PL is defined as the ability to pick up information with little or no 
sensitivity to attentional load. As a consequence, perceptual expertise may lead to 
more parallel processing and faster pickup of information.

Table 1.  Some characteristics of Expert and Novice information extraction. Discovery 
effects involve learning and selectively extracting features or relations that are relevant 
to a task or classification. Fluency effects involve learning to extract relevant information 
faster and with lower attentional load. (See text.)

Novice Expert
Discovery effects
Selectivity: Attention to irrelevant and 

relevant information
Selective pickup of relevant infor-
mation / Filtering

Units: Simple features “Chunks” / Higher-order relations
Fluency effects
Search type: Serial processing More parallel processing
Attentional load: High Low
Speed: Slow Fast
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The distinction between discovery and fluency effects is not razor sharp. For ex-
ample, becoming selective in the use of information (a discovery effect) surely 
increases efficiency and improves speed (fluency effects). Nonetheless, clear cases 
of each category are evident. Experimentally, one might expect to see effects of 
discovery in pure accuracy measures (without time constraints), whereas fluency 
changes may be more evident in speed (or speed/accuracy relations when time 
constraints are present).

PL should not be considered a detached aspect of learning. Rather, it is in-
tertwined with, in fact presupposed by, declarative and procedural knowledge. To 
be useful, both facts and procedures need to be deployed in relevant situations. 
Relevance depends on classifying the situation. In a geometry problem, one might 
recall the theorem specifying that a triangle having two equal sides must also have 
two equal angles. Whether this recollection is immediately useful or merely dis-
tracting, however, depends entirely on classifying the situation at hand. Classifying 
depends on picking up information about the structure of a problem or situation. 
The abilities to classify, discriminate, recognize patterns, and notice invariance in 
new instances are exactly the abilities that improve in task-specific fashion via PL 
(Gibson 1969; Kellman 2002). Applying procedures also depends on pattern rec-
ognition. For example, some leading approaches to computer-based learning (e.g., 
Anderson et al. 1992; Anderson, Corbett, Koedinger, and Pelletier 1995) have em-
phasized the analysis of learning content into sets of particular procedures (“pro-
ductions,” in a production-system approach). Instruction then consists of teaching 
these productions that make up the “cognitive model” for the task. Implicit in 
these approaches is the need for the learner to come to recognize the situations 
in which particular procedures apply. This task is not directly instructed in most 
applications, yet it is a crucial complement to the learning of procedures. When 
concrete instances reoccur, classifying or recognizing can be merely a matter of 
specific memory, but in real-world tasks, this is seldom the case. More commonly, 
problem-solving situations vary in many particulars but possess underlying struc-
tures that determine which procedures can be fruitfully applied. For the learner, 
extraction of this relevant underlying structure across variable examples is crucial. 
This is the role of PL, and evidence suggests such abilities change dramatically 
with practice and form a crucial foundation of expertise.

The PL effects listed in Table 1 are very general. They suggest that methods for 
addressing PL in instruction would have applications to almost any learning do-
main. As these characteristics of expertise are well-known, we might wonder why 
conventional instructional methods rarely address PL directly. Likewise, comput-
er-based and web-based instructions mostly incorporate the traditional emphases 
on declarative and procedural knowledge. Substantial work has gone into making 
tutorial formats more realistic in computer-based learning (e.g., by incorporating 
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realistic facial expressions in an animated tutor on screen), but technology to ad-
dress PL has been missing.

In our view, the lack of focus on PL derives both from inadequate apprecia-
tion of certain dimensions of learning and from a lack of suitable techniques. We 
can teach, or at least present, facts and procedures, but how do we teach pattern 
recognition or structural intuition? Whereas some PL no doubt occurs during the 
consideration of examples in a lecture or in the working of homework problems, 
these activities are not strong methods for targeting perceptual learning.

In most learning domains, the answer for the student has been to learn the 
facts and procedures and then to spend time immersed in that domain. This ad-
vice applies to the student pilot who cannot judge the proper glide slope on ap-
proach to landing, the radiology resident who cannot spot the pathology in the 
image, the chess novice who cannot see the imminent checkmate, and the algebra 
student who cannot see that an expression can be simplified by using the distribu-
tive property in reverse (e.g., (2x2 − x + 2x − 1) can become (2x − 1)(x + 1)). The 
expert’s magical ability to see these patterns at a glance has various names: Judg-
ment, insight, intuition, perspicacity, and brilliance. These originate from vague 
sources: Experience, practice, seasoning. None of these are methods of instruc-
tion; rather, they point enigmatically to the passage of time, a range of experiences, 
or to an innate ability.

A special issue in teaching information extraction skills is that these often in-
volve unconscious processing. The skilled expert who intuitively classifies a prob-
lem or grasps a complex relationship often cannot verbalize the process or content 
of these accomplishments. Even when the process or content can be stated, hear-
ing the description does not give a student the expert’s vision or fluency.

These limitations of instruction need not be fatal. We believe there are system-
atic approaches for engaging PL in instructional settings. These can be realized 
through a combination of PL principles and digital technology.

1.2	 Research in perceptual learning

Although issues of PL have been considered off and on for more than a century 
(e.g., James 1890; Gibson and Gibson 1955; E. Gibson 1969), not many educa-
tional applications have flowed from this work. Since the late 1980s, there has been 
a resurgence of basic research in PL. Overwhelmingly, however, the contemporary 
focus has been on low-level, sensory aspects of information extraction (for a re-
view, see Fahle and Poggio 2002; for a critique, see Garrigan and Kellman 2008). 
The reason for this focus is that sensory change can provide an important window 
into plasticity in the brain (e.g., Recanzone, Schreiner, and Merzenich 1993). In 
the most recent wave of research, there has been little effort to connect PL with 
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issues of higher-order structure (as the Gibsons emphasized earlier) and not much 
integration with issues of learning and thinking in cognitive psychology.

Some efforts have been made in recent years to apply PL methods in real-
world learning environments. Success has been reported in adapting auditory 
discrimination paradigms to address speech and language difficulties (Merzenich 
et al. 1996; Tallal, Merzenich, Miller, and Jenkins 1998). Tallal et al. showed that 
auditory discrimination training in language-learning-impaired children, using 
specially enhanced and extended speech signals, improved not only auditory dis-
crimination performance but speech and language comprehension as well. Simi-
lar methods have also been applied to complex visual tasks. Kellman and Kaiser 
(1994) designed PL methods to study pilots’ classification of aircraft attitude (e.g., 
climbing, turning) from primary flight displays (used by pilots to fly in instru-
ment conditions). They found that an hour of training allowed novices to process 
configurations as quickly and accurately as civil aviators averaging 1000 hours 
of flight time. Experienced pilots also showed substantial gains, paring 60% off 
their response times. More recently, PL technology has begun to be applied to the 
learning of structure in mathematics and science domains, such as the mapping 
between graphs and equations, or apprehending molecular structure in chemis-
try (Silva and Kellman 1999; Wise et al. 2000). However, applications to middle 
school mathematics that we report here, specifically investigating PLMs for frac-
tion learning and algebra, have not previously been attempted.

1.3	 Elements of PLMs

The critical learning activity for PL involves classification episodes. In applica-
tions to structure in mathematics and mathematical representations, the learner 
may be asked to recognize or discriminate a relational structure or asked to map 
related structures across different representations (e.g., graphic versus numeric 
representations) or across transformations (e.g., algebraic transformations). In 
designing learning interventions based on principles of PL, we engage the learner 
in large numbers of brief classification episodes — not just one or two examples. 
This approach departs from common practice in mathematics classrooms in two 
notable ways. First, learners see many more instances of the target structures and 
relationships and in more contexts than would normally occur in classroom set-
tings. There, most often, a teacher works one or two problems with the whole class, 
students explore a rich example in small groups, or a textbook presents a small 
number of worked examples in each chapter section, and students may then go on 
to solve problems that are similar to the model in fairly obvious ways. Often it is 
assumed that clear statement of relevant aspects of a problem type or procedure 
should be sufficient for good students to learn it. Yet, this assumption is suspect 
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and, even when correct, refers to the declarative or procedural content with little 
consideration of pattern recognition skills. This is related to the second charac-
teristic of PLMs: When PL is the instructional goal, students’ time and effort is 
devoted to problem recognition and classification, rather than completing calcu-
lations and procedures to solve problems. Learning trials go quickly: A student 
might complete a dozen or more classification trials in the time it would take to 
work a problem.

Another critical feature of PL is that the learning instances must incorporate 
systematic variation across classification episodes. To allow the learner to extract 
invariant structure, it must appear in a variety of contexts. Irrelevant aspects of 
problems need to vary, so that the learner does not mistakenly correlate incidental 
features with the structure to be learned. The failure of conventional instruction to 
fulfill this requirement is responsible for many limitations in math learning, such 
as the familiar observation that students solve algebra problems more easily when 
“X” naturally ends up on the left side of the equation.

When the learning task involves discriminating among a set of target struc-
tures, particularly ones that may initially be confused with each other, learning 
trials should incorporate direct contrasts. Learning to discriminate among a set of 
items that at first look alike is a frustrating learning problem commonly faced by 
novices. What is more, this learning problem is often underestimated by experts 
who have already automatized the discriminations, without necessarily being able 
to articulate how they make them. Because the goal of PL is learning to pick up 
invariant structure across varying contexts, the learning set should include novel 
and varied instances. In this respect, PL differs from “drill” characterized by rote 
repetition. In rote repetition, the same learning items repeat over and over. In 
PL, particular instances ideally never repeat. PL thus gives the learner the ability 
to intuit relevant structure and relations in novel contexts, whereas rote learning 
does not. Motivationally, the situation also differs from rote learning. Properly 
arranged, the seeing of increasingly discernible structure in each new instance is 
exciting to the learner, as it is in natural learning situations, such as when a novice 
birdwatcher becomes able to recognize a new bird.

Computer-based learning technology provides a natural environment for PL 
interventions. It can allow learners to interact in systematic ways with large sets 
of examples that have the desired kinds of variability. It also allows continuous 
tracking of the performance of each individual learner (e.g., collecting accuracy 
and response time data on each trial), to evaluate progress toward mastery, and 
to customize the learning experience so time and effort are spent where they are 
most needed. These same features also make learning technology a powerful tool 
for conducting research on PL. Elements such as feedback, task format, learning 
sets, and problem sequencing can be naturally and systematically manipulated, 
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and detailed performance data automatically collected for each user provide use-
ful dependent measures for tracking and assessing learning.

1.4	 Applying perceptual learning to high-level, symbolic, explicit tasks

We anticipate at this point a natural concern. How can PL apply to high-level, 
symbolic, and explicit domains such as mathematics? Perceptual aspects may be 
thought to apply only to low level or relatively incidental aspects of mathematics, 
such as the use of specific visual representations (e.g., pie slices used to teach frac-
tions). Higher-level relations and structure are often considered non-perceptual. 
Moreover, mathematics is symbolic in that the relation between its representations 
and their meanings is often arbitrary (e.g., use of the character “4” to represent 
the number four). Arbitrary meanings, arguably, cannot be discovered from the 
pickup of information available in scenes, objects, or events — i.e., they are non-
perceptual. Finally, mathematics is largely an explicit discipline. Not only is un-
derstanding important, but it is important to give reasons and proofs. If structural 
intuitions gotten from PL are not consciously accessible, they cannot be sufficient 
for mathematics.

Although these concerns are plausible, we find them to be ultimately ill-
founded. With regard to the scope of perception, it is not uncommon to encoun-
ter the view that “perceptual” attributes are things like color, but relations and 
higher-order structure are cognitive constructs. Such ideas represent in part the 
long shadow of traditional empiricist theories of perception and in part a confu-
sion of sensory properties with perceptual ones (for discussion, see J. Gibson 1966; 
Kellman and Arterberry 1998). We share with a number of modern theorists of 
perception (such as James and Eleanor Gibson, David Marr, Albert Michotte, and 
Gunnar Johansson) the idea that perception is not primarily about low-level sen-
sory properties, such as color; it involves extracting information about the mean-
ingful structures of objects, arrangements, and events. This extraction uses stimu-
lus relations of considerable complexity. Michotte, for example, offered compelling 
evidence and arguments that we perceive causality and that perception often has 
an “amodal” character — i.e., it is not tied to simple, local, sensory stimulation 
(Michotte 1962; Michotte, Thines, and Crabbe 1964). J. Gibson (1966, 1979) was 
most programmatic in arguing that perception involves extraction of higher-order 
invariance in the service of acquiring functionally relevant information about ob-
jects, relations, and events.

Applied to mathematics, what this means is that mathematical ideas, as given 
in the representations we use to communicate them, have structure, and efficient 
processing of this structure is a crucial component of learning. There is structure 
in equations, for example, and also in graphs. Even fraction notation or the super-
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scripting of a number to indicate exponentiation are structural features important 
to doing mathematics. If the novice fails to notice some important marking or 
relation, fails to select the aspects relevant to a problem, fails to map a structural 
feature to the correct concept, expends cognitive resources too heavily, or simply 
processes structure too slowly, advancement in math will be impaired.

One virtue of a higher-order, ecological view of perception is that it leads nat-
urally to the idea that structural representations furnished by perception form the 
foundations of other cognitive processes (Barsalou 1999; Kellman and Arterberry 
1998). Real-world learning and thinking tasks partake of both perceptual extrac-
tion of structure and symbolic thinking in seamless and cooperative fashion. Be-
ing involved with only one of these or the other may be a property of research 
communities but not of cognitive activities in complex tasks.

1.5	 Perceptual learning and cognitive load

Some of the issues we raise regarding fluency and structure learning have been 
examined in the context of research on cognitive load effects in learning. Consid-
erable evidence indicates that cognitive load is an important determinant of learn-
ing and performance in various domains (Chandler and Sweller 1991), including 
mathematics learning. In problem solving contexts, manipulations as straight-
forward as combining, rather than separating, textual information and diagrams 
can make an appreciable difference in outcomes (Sweller, Chandler, Tierney, and 
Cooper 1990). Presumably, such effects indicate that the demands of extracting 
information or processing relations in a learning or problem solving situation may 
exceed limits in attentional or working memory capacity.

Most efforts to ameliorate cognitive load limits in instruction have focused on 
altering instructional materials. In learning or problem solving, performance may 
be improved by combining graphics and text (Chandler and Sweller 1991), using 
visual and auditory channels in ways that expand capacity (Mayer and Moreno 
1998), or presenting passively viewed worked examples (Paas and van Merrien-
boer 1994; Sweller, Chandler, Tierney, and Cooper 1990). The value of such inter-
ventions has been clearly demonstrated. Our approach, however, suggests another 
avenue for escaping cognitive load limits: Changing the learner. It has long been 
known that practice in information extraction leads to faster grasp of structure 
(Chase and Simon 1974) with lower cognitive load (Shiffrin and Schneider 1977), 
freeing up attentional capacity to organize the parts of a task or to allow attention 
to higher-order structure (Bryan and Harter 1899). PL technology has the poten-
tial to allow learners to overcome load limits and access higher level structure.
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1.6	 Experimental objectives

In the experiments below, we report initial attempts to apply PL concepts directly 
to mathematics learning in the middle and early high school years. We chose do-
mains that are known to present difficult hurdles for many students: Reasoning 
and problem solving with fractional quantities, and algebra. These domains make 
plausible points of entry for at least two reasons. First, we suspect that a substantial 
part of students’ learning difficulties in these areas involve structure extraction, 
pattern recognition, and fluency issues potentially addressable by PL interven-
tions. Moreover, these areas are both central to the mathematics curriculum, and 
both form important foundations of later mathematics.

2.	 Experiment 1: Perceptual learning in fractions

Learning in the domain of rational numbers is complicated (e.g., Behr, Harel, Post, 
and Lesh 1992; Lamon 2001; Post, Behr, and Lesh 1986), and we did not take on its 
full scope, but rather focused on several important ideas. We selected issues that 
are known to be problematic for many learners and that may reveal the value of PL 
technology in improving learning.

Specifically, we targeted students’ abilities to recognize and discriminate among 
structures that underlie the kinds of fraction problems commonly encountered in 
the upper elementary and middle school curriculum. We also addressed students’ 
ability to map these structures across different representational formats, including 
word problems, fraction strips, and number sentences. In designing the instruc-
tional interventions for this study (both classroom lessons and learning software), 
we drew heavily on detailed analyses of the conceptual progressions involved in 
the development of fraction concepts and problem solving that have appeared in 
the research literature in recent years (e.g., Hackenberg 2007; Olive 1999, 2001; 
Olive and Steffe 2002; Olive and Vomvoridi 2006; Steffe 2002; Thompson 1995; 
Thompson and Saldanha 2003; Tzur 1999).

Consider the following two problems:

	 (1)	 10 alley cats caught 5/7 of the mice in a neighborhood. If they caught 70 
mice, how many mice were in the neighborhood?

	 (2)	 A school principal ordered computers for 10 classrooms. 5/7 of the 
computers came with blue mice. How many mice were blue, if there were 70 
mice in all?

Both of these word problems use the same object quantities (70 mice), fraction 
(5/7), irrelevant number information (10), and the same order of presentation of 
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the numeric quantities (10, 5/7, and 70). Despite these superficial similarities, the 
two problems have contrasting underlying structures. The first problem could be 
restated in a simplified way as “70 mice is 5/7 of how many mice?” while the sec-
ond problem could be restated as “How many mice is 5/7 of 70 mice?” Problem (1) 
is what we term a “find-the-whole” problem — we know that 70 mice is 5/7 of a 
whole quantity and we need to use that information to figure out what that whole 
quantity is. Problem (2) is a “find-the-part” problem — we know that the whole 
quantity of mice is 70 and we need to use that information to figure out how many 
mice would comprise 5/7 of that whole. The structural distinction between these 
two problems is not transparent in the structure of the word problem, and many 
upper elementary and middle school students do not seem to be able reliably to 
extract the underlying structure and carry out a corresponding solution strategy. 
(Indeed, we have repeatedly observed that when students encounter a find-the-
part and find-the-whole problem with similar “cover stories” in a test or classroom 
assignment, they will frequently complain that the teacher made an error and gave 
them the same problem twice.)

In Experiment 1 we targeted these issues using PL technology. A central goal 
of the study was to help students become fluent in recognizing and discriminating 
find-the-whole and find-the-part fraction problems. A second, related goal was to 
enable them to identify and map these abstract structures across a series of differ-
ent but mathematically relevant representations. That is, whether presented with a 
full word problem, a simplified question, a fraction strip representation, or a set of 
number sentences, they should be able to identify which kind of structure it rep-
resents and connect it to the corresponding structure in the other representational 
formats. Our hypothesis was that fluency in structure recognition and mapping is 
a critical component in problem solving, and that training that focuses on achiev-
ing it will transfer to significant improvements in open-ended problem solving.

The design of this study also provided an opportunity to explore another is-
sue related to incorporating PL approaches into the learning interventions. As 
described above, a critical feature in PL is exposure to a widely varying set of ex-
amples that embody the relevant structures. Naturally occurring PL situations, 
such as children learning categories like dog or toy or machine, indicate that PL 
proceeds perfectly well in complex natural environments that have not been de-
liberately decomposed in any particular way to facilitate the child’s learning. This 
observation is somewhat at odds with common approaches to the design of in-
struction in classroom settings, in which knowledge domains are often deliber-
ately broken down and sequenced, with simpler concepts being introduced first 
and then used as building blocks for more complex concepts and relationships. 
Also, some experimental research on PL suggests that introduction of easy cases 
first may facilitate learning (e.g., Ahissar and Hochstein 1997).



	 Perceptual learning and technology in mathemathics	 367

In research on memory and motor learning, the related issue of blocked vs. 
randomized learning trials has received significant attention, with findings that 
might seem surprising in the K-12 classroom. Schmidt and Bjork (1992), for in-
stance, argue from a review of a number of training studies that mixing item types 
to be learned produces better long-term learning, as well as better ability to apply 
learning appropriately in a variety of circumstances. Paradoxically, mixing may 
actually depress performance levels during (and immediately at the end of) train-
ing, but it leads to better performance in the long run.

In this context, we considered the specific question of whether to introduce 
first unit fraction examples and problems (i.e., those involving fractions with a 
numerator of 1) as a simple case and then build to the more complex cases of 
non-unit fractions. Alternatively, unit and non-unit fractions could be introduced 
at the same time, so students might notice relations between them from the begin-
ning.

With these contrasting ideas in mind — a progression from simple to com-
plex versus mixed complexity and task variability throughout the learning peri-
od — we developed two different forms of the learning software. For one group, 
unit fractions were introduced first, in a series of classroom lessons and then in 
training sessions with PLM software that involved only unit fraction problems. 
Subsequently, the students in this group participated in another round of class-
room instruction that introduced non-unit fractions and then worked with PLM 
software that intermixed unit and non-unit fractions. In a contrasting condition, 
students participated in classroom instruction that introduced both unit and non-
unit fractions and then worked with a version of the PLM software in which both 
types were intermixed from the beginning.

This study also included a control group that, like the two PLM groups, par-
ticipated in a full 16-lesson instructional sequence on fractions and problem solv-
ing with fractions but did not work with the PLM technology. Both the software 
and classroom lessons were designed with an explicit focus on structural aspects 
of problems involving fractions and on relating and mapping fraction concepts 
across different representations. The control group allowed us to ask whether 
deliberately introducing and developing fraction concepts and problem solving 
strategies from a structural point of view in teacher-led instruction is (a) effective 
at all in promoting learning and problem solving with fractions, (b) sufficient in 
itself, or (c) able to be further complemented by additional PLM training. Com-
paring PLM and No-PLM conditions provided an assessment of the value of the 
PL intervention. A pre-test, immediate post-test, and delayed post-test design al-
lowed us to us to compare these conditions in both immediate learning gains (at 
the end of instruction) and also in terms of durability of learning over time.
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2.1	 Methods

2.1.1	 Participants
Participants were 76 students (44 female, 32 male) who were enrolled in the 7th 
grade in an urban public school serving a predominantly minority low-income 
neighborhood. Details of their demographic profile and related information may 
be found in Supplementary Materials at http://www.kellmanlab.psych.ucla.edu.

2.1.2	 Design
All students were pre-tested on a custom-designed pencil and paper assessment 
and then randomly assigned to conditions with the constraint that the groups have 
approximately equal pre-test scores. Students in all three conditions participated 
in a series of classroom lessons. Students in the Unit First PLM condition and the 
Mixed PLM condition spent a number of sessions working individually with the 
software. Students in the No-PLM Control group had no further learning interven-
tion after the classroom lessons. Following the learning phase, students were given 
an immediate post-test. A delayed post-test was given approximately 9 weeks later. 
No research-related learning activities occurred between the immediate post-test 
and the delayed post-test.

2.1.3	 Materials
Classroom lessons. The classroom instruction involved a series of 16 interactive 
lessons, each about 40 minutes long, designed and conducted by one of the au-
thors (ZR, an experienced middle school mathematics teacher and curriculum 
specialist). These lessons presented a foundational introduction to fractions, with 
a focus on structural relationships that underlie fraction concepts. In direct in-
struction and in small group activities, four different representations were used 
to help students develop useful intuitions about and to reason quantitatively with 
numeric quantities involving fractions. The same representations were also used 
in the PLM software, so the classroom instruction also served as an orientation to 
the software.

After instruction on fraction concepts and representations, these were con-
nected to problem solving situations with “find-the-whole” and “find-the-part” 
problems (as described above). Four kinds of representations were introduced, 
which were also used in the PLM software. These four representation types were 
termed Word Problems (WP), Simple Questions (SQ), Number Sentences (NS), 
and Fraction Strips (FS). Figure 1 gives an example of three of these representa-
tions for the two contrasting problem types.

The Simple Questions were open-ended questions stated in a direct, canoni-
cal form. Fraction strips were representations that summarized the information 
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that was known in relation to the overall problem structure. The fraction strip 
was a continuous strip segmented according to the number of units in the frac-
tion denominator. In the Find-the-part problem, the known quantity was the total, 
indicated by a labeled bracket underneath the fraction strip. In the corresponding 
Find-the-whole problem, the known quantity was the fractional part, indicated by 
a labeled bracket. Green highlighting indicated the quantity the student was try-
ing to find. Fraction strips also included a marker that pointed to the unit fraction. 
The Number Sentences represented a solution strategy that could be used to find 
the unknown quantity.

In addition to working with the Simple Question, Fraction Strip, and Number 
Sentence representations, students worked on solving open-ended find-the-whole 
and find-the-part Word Problems, extracting a Simple Question from a Word 
Problem and representing the Word Problem in a Fraction Strip. Over the course 
of these lessons, students worked on solving a total of 10 open-ended fraction 
problems. The final activity in the sequence of classroom lessons involved match-
ing all four representations to each other for both kinds of problem types. This 
concluding lesson also served as an orientation to the learning tasks for students 
in the two PLM conditions.

It is important to note that both the instructor-led classroom lessons and the 
learning software were created using design principles drawn from PL research: 
Specifically, they focused on (1) developing clear concepts of the structural rela-
tionships and patterns involved in quantities expressed as fractions, (2) the rela-
tionship between fractions and the operations of multiplication and division, and 
(3) recognition and mapping of target structures and patterns across representa-
tional formats. The critical differences between the classroom instruction and the 
PLM software were that the PLMs engaged students with a much larger and more 
varied set of examples, and the software-based learning experiences were designed 

Figure 1.  Examples of simple question, fraction strip, and number sentence represen-
tations for contrasting “Find-the-Part” (left) and “Find-the-Whole” (right) fraction 
problems. These representations were used in both the classroom instruction and PLM 
software in Experiment 1.
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to help students extract the target relationships on their own by interacting with 
them in a structured way, rather than having the learning guided and explained 
by a teacher. Our hypothesis was that both the classroom instruction and PLM 
software would advance students’ learning; however, we predicted that the PLMs 
would enhance students’ learning of structure and improve the fluency and dura-
bility of students’ ability to recognize and reason with the targeted concepts.

2.1.4	 PLM software
The PLM software presented learners with many short learning trials on which 
their task was to map a target structure given in one representational format to the 
corresponding structure in a different representational format. Learners selected 
from among several choices, which typically included distractor items that corre-
sponded to common errors. Learners did not have to perform calculations or solve 
problems — instead the focus was on recognizing, discriminating, and mapping 
target structures. Figure 2 illustrates a typical learning trial.

Requiring learners to find a common structure across different representation 
types on each trial promotes the extraction of an abstract relational structure that 
cuts across superficial similarity. The choices, which were always of the same rep-
resentation type, resembled each other much more than any one of them resem-
bled the target. Thus the learner had to discriminate among stimuli with similar 
appearances (the choices) while mapping an abstract structure across stimuli with 
very different appearances (the target and its corresponding choice). The software 
drew on a large set of learning items so that unique items were presented on each 
learning trial, and memorization of the particulars of a correct answer on any 

Figure 2.  Sample learning trial from fractions PLM software. Learners match a target 
in one representational format (e.g., simple question) to the corresponding structure in 
another format (e.g., fraction strip). In this case, the correct choice is in the center.



	 Perceptual learning and technology in mathemathics	 371

given trial was not likely to help on other trials. Users received feedback on each 
trial as to whether they were correct or incorrect; if they were incorrect, the cor-
rect response was illustrated with a short interactive feedback sequence (described 
further below).

The learning set consisted of 6 categories of items, representing bidirectional 
pairings of each of the four representation types with each other. Learning trials 
contained one target representation and three choices, except for trials in which 
Word Problems were presented in the choice position, in which case only two 
choices were presented. This was done to reduce the cognitive load for learners 
with weaker reading skills. The program drew from a set of 112 problem families 
(i.e., sets of representations using the same fractions, quantities, and objects), each 
containing 8 potential target items and all of the related choice sets. This created a 
large pool of problem combinations.

The Simple Questions, because they were stated in a canonical form, had a 
sentence structure such that the fraction always appeared before the whole num-
ber in find-the-part problems (e.g., How many dollars is 1/5 of 20 dollars?) and 
vice versa for find-the-whole problems (e.g., 20 dollars is 1/5 of how many dol-
lars?). This rigid structure may invite learners to form a rule based on the order 
in which the numbers appear that could guide their choice of a matching repre-
sentation. To prevent such superficial rules from being useful, the Word Problems 
introduced the fractions and the quantities in varying orders in the same kind of 
problem. In addition, Word Problems included irrelevant numbers to discourage 
“number grabbing” strategies. These irrelevant numbers were used as distractors 
in corresponding incorrect choices.

Additional considerations related to constructing distractors included the 
use of common student errors, particularly in confusing structural relationships 
involved in find-the-part and find-the-whole problems. In all cases the number 
sentences were mathematically correct, and all fractions were fully reduced except 
for fractions with 100 as the denominator, which served as a bridge to thinking 
about percents.

The PLM software automatically created a time-stamped record of the prob-
lem presented on each trial, the student’s responses, and reaction time. It also 
tracked the student’s performance level within each category according to a set 
of pre-determined mastery criteria. A given category was considered to be mas-
tered, and retired from the learning set, when the student answered 10 of the last 
12 items correctly and met certain response time criteria. Time criteria were less 
than 90 sec per item for problems containing Word Problems and 20 seconds per 
item for others. As students mastered various categories, their learning effort was 
automatically concentrated on categories they had not yet mastered.
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Feedback. The PLM provided students feedback on their performance in three 
ways: immediate feedback on accuracy, active feedback on incorrect responses, 
and block feedback on every twelve problems. Active feedback (see Figure 3) fol-
lowed mistakes and presented the student with the correct answer again. The stu-
dent was then asked to select the question that matches it. If the user was encoding 
the feedback, this selection was simple, because it had just been shown on the pre-
ceding screen. If an error occurred, the correct answer was highlighted. This active 
feedback was designed so that the student would have to attend to feedback infor-
mation before moving on and could also gain practice on matching the represen-
tations in the opposite direction. Bi-directional practice may enhance discovery 
of relevant structures. Block feedback (every 12 problems) provided information 
on the student’s accuracy and average reaction time. It also displayed a horizontal 
“mastery” bar that indicated (as a percentage) how close to completion the student 
was on the PLM. Thus, the student was able to see his or her cumulative progress.

2.1.5	 Pre-test/post-test fraction assessment
To test for learning gains and their durability over an extended period of time, 
equivalent versions of a 27-item pencil-and-paper learning assessment were ad-
ministered to students as a pre-test at the beginning of the study, after students had 
completed the learning activities for their condition, and after a delay of about two 
months. Items on the assessment were divided into six subscales related to differ-
ent aspects of fraction knowledge and fraction problem solving. The assessment 
was comprised primarily of problems that did not directly resemble the kinds of 
problems that students worked on in either the classroom instruction or in the 

Figure 3.  Active feedback screen following an incorrect response. Note that the cor-
rect response becomes the target in the active feedback on an incorrect response and the 
learner must match it to the original problem.
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PLM training and thus emphasized transfer of learning. No problem on the test 
was identical in structure to the learning trials included in the training. How-
ever, some — particularly the open-ended Simple Questions — were fairly close. 
Although students never had to solve such problems during their PLM training, 
they did gain considerable experience in mapping them to Number Sentences. 
Other problems on the assessment were less directly related to the PLM training 
and focused more on knowledge such as understanding unit fractions in relation 
to non-unit fractions and interpreting numerators and denominators in fractions. 
The assessment also required students to solve open-ended word problems that 
mixed other types of fraction problems in with find-the-whole and find-the-part 
problems. The subscales comprising the assessment are described in detail in the 
Supplementary Materials.

2.1.6	 Apparatus
Students completed the PLM sessions on laptop PCs using the Windows operating 
system. The laptops were arranged on separate desks in an empty classroom at the 
students’ school. Monitors were 13–15” in diagonal measurement.

2.1.7	 Procedure
Classroom Instruction. Following the pre-test, students in all three conditions 
participated in the first round of classroom instruction involving unit fractions, 
which was the same for all conditions, in their regular math classes. The first round 
of instruction included nine lessons on unit fractions, followed by seven lessons 
on non-unit fractions. One of the researchers, an experienced middle school math 
teacher who was familiar to most of the students, designed and led the instruc-
tion with assistance from several research assistants who were available to help 
students as they worked on their own or in small groups. Following the first set 
of unit fraction lessons, students in the Unit First condition started the Unit First 
PLM. Simultaneously, students in the Mixed PLM and No-PLM Control condi-
tions continued with classroom instruction that incorporated non-unit fractions. 
When they had completed this set of lessons, students in the Mixed PLM condi-
tion began PLM training on a version of the PLM software that intermixed unit 
fraction and non-unit fraction problems from the start. Students in the Unit First 
PLM condition completed the first phase of PLM training working only with unit 
fraction problems, then returned for the remaining seven classroom lessons incor-
porating non-unit fraction problems. They then returned to PLM training using 
the Mixed PLM.

PLM Sessions. Students in the Mixed and Unit-First groups were taken out 
of their regular classrooms for 30–40 minute sessions with the PLM software. A 
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mini-computer lab was created using eleven laptops in an empty classroom. Stu-
dents were given calculators and scrap paper but were not required to use them.

In addition to the category retirement criteria described above, the Unit First 
group had a group criterion in which all students had to either reach criterion 
within each category or complete at least 400 learning trials before all students in 
this group moved to Phase II. In Phase II students worked on the PLM until they 
either reached criterion or were stopped by the researcher due to time constraints. 
Students in both PLM conditions thus completed a varying number of PLM ses-
sions, depending on their level of performance. Number of sessions ranged be-
tween 2 and 6 in Phase 1 of the Unit First PLM, 2 and 9 in Phase 2, and 2 and 13 
for the Mixed PLM.

Immediate and delayed post-test administration. After reaching criterion or 
concluding their use of the PLM, each participant completed an immediate post-
test. Students in the No-PLM Control group received their post-test following 
completion of instruction on non-unit fractions. Delayed post-tests were adminis-
tered to all participants nine weeks later. At each administration, participants were 
allowed to use scrap paper and a calculator. There was no time limit, although 
most students completed each part of the assessment in less than thirty minutes.

2.2	 Results

2.2.1	 Overall results
The main results of Experiment 1 are shown in Figure 4. All three groups improved 
from pre-test to immediate post-test and delayed post-test. In the immediate post-
test, the two PLM groups showed similar performance, with both outperforming 
the No-PLM Control Group. In the delayed post-test, however, the Mixed PLM 
group showed best performance, maintaining its learning gains over the 9-week 
interval. The No-PLM Control Group maintained its smaller learning gain after 
the delay. The Unit First PLM group’s mean score dropped in the delayed post-test 
to a level lower than that of the Mixed PLM but higher than that of the control 
group.

These observations were confirmed by the statistical analyses. A two-way re-
peated measures ANOVA with Test Phase (Pre-test, Immediate Post-test, Delayed 
Post-test) as a within subjects factor and Condition (Unit First PLM, Mixed PLM, 
No-PLM Control) as a between subjects factor was performed on students’ pro-
portion correct scores on the fractions learning assessment. There was a main ef-
fect of Test Phase, F(2,138) = 89.66, p < 0.001. There was no reliable main effect 
of Condition, but there was a significant Condition by Test Phase interaction, 
F(4,138) = 5.396, p < 0.001, indicating different learning effects across conditions.
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Planned comparisons (two-tailed t-tests) were carried out to examine the condi-
tion differences in more detail. The improvement between pre-test and immediate 
post-test was greater in the Unit First PLM Group than in the Control Group, 
t(51) = 2.60, p < .02, and improvement was also greater in the Mixed PLM than in 
the Control Group, t(47) = 3.07, p < .01. Improvement from pre-test to immediate 
post-test did not differ between the Unit First PLM Group and the Mixed PLM 
Group, t(48) = 0.34, n.s.

Learning gains between the pre-test and delayed post-test did not differ reli-
ably between the Unit First PLM and the Control groups (t(48) = −0.528, n.s.). 
However, the Mixed PLM Group showed greater improvement from pre-test to 
delayed post-test than both the Control Group, t(43) = 2.86, p < .01, and the Unit 
First PLM Group, t(47) = 2.15, p < .04.

2.2.2	 Results by subscale
The subscales that comprise the fraction assessment provided a profile of different 
aspects of students’ understanding. Table 2 summarizes the changes in average 
scores for each subscale from the pre-test to the immediate post-test and from the 
pre-test to the delayed post-test by condition.

Students in each condition showed substantive learning gains on all of the 
subscales. The largest and most durable learning gains generally favored the Mixed 

Pre-test Post-test

Test Phase

Delayed Post-test

Figure 4.  Mean accuracy by condition and time of test on the fraction assessment. Error 
bars indicate ±1 standard error of the mean.
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PLM condition, which also had the highest average scores in every subscale on 
the delayed post-test (as can be seen by adding their change score to their pre-
test score). Statistical tests showed that most of these gains were highly reliable, 
including 5 of 6 subscales showing robust main effects of Test Phase (p < .001) and 
4 of 6 subscales showing a reliable interaction of Condition by Test Phase. (See 
Supplementary Materials.)

2.3	 Discussion

On both overall assessments and individual subscales from pre-test through de-
layed post-test, all conditions showed significant learning gains. The Mixed PLM 
intervention, however, was most effective in yielding substantial learning gains 
(on the order of 80%) that were fully maintained more than two months later. 
These primary assessments were not tests of improvement in the PLM tasks but 
measured transfer to fundamental learning tasks, such as solving problems involv-
ing fractions and comparing fractional quantities.

These results provide clear empirical support for our motivating hypotheses. 
First, instruction that focuses on identifying structural patterns related to frac-
tions, as opposed to focusing on computing solutions, is effective in leading to 
gains in students’ ability to solve fraction problems. Although the PLM interven-
tions required students to practice recognizing and differentiating structures, the 

Table 2.  Performance on assessment subscales by condition.  Pre-test columns show 
average proportion correct.  Other columns show change from pre-test to post-test for 
immediate and delayed post-tests.

Pre-test proportion 
correct

Change from pre-test to 
immediate post-test

Change from pre-test to 
delayed post-test

Subscale Type Unit 
First 
PLM

Mixed 
PLM

No 
PLM 
Control

Unit 
First 
PLM

Mixed 
PLM

No 
PLM 
Control

Unit 
First 
PLM

Mixed 
PLM

No 
PLM 
Control

Open-ended 
Word Problems

.30 .28 .26 +.27 +.29 +.18 +.18 +.27 +.14

Simple Find-
the-part and 
Find-the whole 
Problems

.35 .33 .30 +.35 +.36 +.17 +.15 +.27 +.11

Fraction Com-
parisons

.64 .64 .76 +.09 +.16 −0.08 +.03 +.19 −0.13

Unit Fractions .44 .44 .42 +.30 +.29 +.16 +.23 +.25 +.09
Find-the-
Whole

.24 .32 .30 +.34 +.30 +.14 +.25 +.21 +.08

Find-the-Part .33 .26 .24 +.28 +.34 +.15 +.12 +.31 +.17
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assessments required them to solve open-ended problems. These problems were in 
formats differing from what students saw during the learning phase.

Second, supplementing the classroom instruction with PLM training substan-
tially increased both overall levels of performance and the durability of learning 
over a two-month period. Although students in the No-PLM condition showed 
significant learning gains following the series of 16 classroom lessons, they did not, 
on average, achieve the same levels of performance as students in the PLM condi-
tions. This suggests that classroom instruction in mathematics may aptly address 
some aspects of learning but not others. Declarative and procedural components 
need to be supplemented by learning activities in which learners practice extrac-
tion of structure and reach some level of fluency with the structures and classifi-
cations in a given domain. It suggests, further, that PLM instructional resources 
may be a cost-effective way to help students to attain the relevant information 
extraction skills and fluency. Our data indicate that students varied widely in the 
amount of practice needed to achieve mastery criteria. The technology introduced 
here constitutes an efficient way to provide varying amounts of practice to differ-
ent students, as well as to monitor and certify their individual progress.

A third important finding from this experiment was that the Mixed PLM con-
dition produced stronger learning gains than either the Unit First PLM or the 
No-PLM Control conditions. The Mixed PLM condition was distinctive in yield-
ing both high levels of performance following the instructional intervention and 
long-term durability of learning. There was virtually no decrement in performance 
after a delay exceeding two months. The finding is noteworthy, given that the two 
PLM conditions were similar in many respects: Both groups experienced the same 
classroom lessons, and the software used by the Unit First group in Phase 2 was 
identical to that used by the Mixed PLM group throughout. The critical difference 
was that students in the Mixed PLM group saw unit and non-unit fraction prob-
lems intermixed from the beginning of their PLM training.

Why should this manipulation make such a difference? The result is consis-
tent with earlier research indicating the value of mixed rather than blocked prac-
tice (e.g., Schmidt and Bjork 1992). In this domain, we suggest that presenting 
the more complete and complex learning set from the beginning allows learners 
to compare and contrast elements, so that their understanding of concepts such 
as unit and non-unit fractions and their relationship to a whole quantity is con-
structed in a more comprehensive and relational way from the outset. Breaking 
the learning apart in a simple-to-complex progression may give the learner an 
incomplete understanding of the elements and relationships, which must then be 
revised when more complexity is introduced.
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3.	 Perceptual learning in algebra: Experiment 2

A major function of ordinary perception is to register the shapes and arrange-
ments of objects and spatial layout in the world. Equally crucial is perceiving 
change, the structure of events, and the potential for transformation (J. Gibson 
1966, 1979; Shipley and Zacks 2008). These abilities are not static: PL leads to 
improvements, often vast, in picking up structure, selecting relevant aspects, and 
becoming aware of potential for action and change (E. Gibson 1969; Goldstone 
1998; Kellman 2002).

If knowledgeable scholars were asked to name specific contexts to which these 
descriptions of perception and PL apply, it would be a shock if any mentioned alge-
bra. The idea that these concepts apply not only to ordinary perception but to higher 
mathematics is admittedly a novel one. Indeed, we assume we are among few if any 
investigators ever to suggest such a thing (but see Landy and Goldstone, in press).

On reflection, however, the idea may not be preposterous. Algebraic equations 
and expressions have structure, and the doing of algebra is related to the seeing of 
this structure. Selectivity is important: Some characteristics of algebraic represen-
tations, such as the shapes of characters, their order and arrangements, are crucial 
to comprehending algebra, but others, such as the size of the characters or their 
colors, are not. The chunking of groups of characters into meaningful entities is 
important in working with equations, as it is in other domains demanding per-
ceptual expertise (e.g., Chase and Simon 1973). Efficient detection of important 
relations in novel exemplars — relations invisible to novices — is also key. And 
becoming aware of the potential for transforming equations or expressions is the 
bread and butter of symbolic manipulation in algebra — in simplifying an expres-
sion, classifying structure, or solving an equation.

If these aspects of learning in algebra are important, it is a matter of conse-
quence that conventional instructional methods do little to address them directly. 
As in a number of complex PL domains, the expert’s intuitive grasp of structure 
may not be available to conscious access (Chase and Simon 1973; Gibson 1969; 
Hoffman and Murphy 2006; Kellman 2002; Mettler and Kellman 2006). If so, the 
relevant pattern recognition is unlikely to be conveyed by lectures or tutorials. 
Even if relevant structural relations can be described, hearing the description does 
not turn the learner into an expert pattern recognizer. Working problems contrib-
utes to the relevant learning but perhaps not in the most systematic and efficient 
manner.

In two experiments, we applied PL technology to algebra learning. We were 
motivated by two linked hypotheses. One is that there is a learning gap in con-
ventional instruction, such that students learn the factual and procedural aspects 
of algebra in their first algebra course, but are relatively impaired in terms of the 
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seeing aspects, as might be evidenced in the speed and fluency of problem solving. 
The other is that PLMs providing practice in seeing structure and mapping across 
transformations of equations might rapidly improve these missing dimensions of 
instruction.

It is important to emphasize that we believe the declarative and procedural 
components of mathematics learning are important. Our aim is not to replace 
these components, but to address complementary, and neglected, learning issues, 
specifically those related to structure extraction and fluency. In light of this goal, in 
both studies we worked with students who were past mid-year in their first algebra 
course (Algebra I), expecting that these students would have reasonable knowl-
edge of the facts and goals of algebra and the procedures for solving equations in 
one variable. We hypothesized that they might nevertheless have poor recognition 
skills and fluency. We predicted that a relatively short intervention, consisting of 
two to three days’ use of a PLM with 40–45 minutes per day, might make a large 
and lasting difference in fluency and possibly accuracy of pattern recognition and 
problem solving in algebra.

Experiment 2 tested the primary hypotheses, along with tests relating the gen-
erality of problem types seen in learning to transfer. Experiment 3 was designed 
especially to examine endurance of learning gains, as tested after a 3-week delay, 
in a larger sample. Secondarily, Experiment 3 also made a first attempt to look at 
novel category sequencing algorithms that adapt to the individual learner.

The primary goal of Experiment 2 was to test whether principles of PL em-
bodied in PLMs could noticeably impact algebra pattern recognition and fluency. 
The PLM was designed to provide practice in seeing the structure of equations 
and mapping across algebraic transformations. On each trial a target equation was 
presented, along with 4 equations shown below, labeled A through D. The partici-
pant’s task was to select which of the choices could be obtained by a legal algebraic 
transformation of the target equation. Accuracy and speed were measured, and 
feedback was given.

We hypothesized that, despite offering learners no new explicit declarative 
or procedural information, they would show improvement from pre-test to post-
test in their speed and accuracy of processing algebraic transformation problems. 
We also hypothesized that PLM experience might show its influence on a transfer 
task: Algebra problem solving. Given that solving of equations in one variable had 
already been taught to students, we expected that they would come to the ex-
periment with some level of proficiency in obtaining correct answers. However, we 
predicted that PLM training would have a large impact on fluency, as revealed by 
students’ speed in solving equations. A secondary objective of Experiment 2 was 
to look at variations in structure mapping experience. Specifically we varied the 
number of operations involved and direction of transformations.
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3.1	 Methods

3.1.1	 Participants
Participants were 13 9th grade students and 17 8th grade students at an inde-
pendent philanthropic school system in Santa Monica, California, all taking 
Algebra I.

3.1.2	 Apparatus
The learning modules were tested on standard PCs using the Windows operat-
ing system in computer-equipped classrooms. Monitors were 17–21” in diagonal 
measurement. All assessments and the PLM were presented on computer, with 
participants’ data being sent to a central server.

3.1.3	 Design
The experiment was set up to assess effects of our learning technology on speed and 
accuracy of recognition of algebraic transformations and algebra problem solving. 
A pre-test was given on one day, followed by 2 days in which students worked on 
the PLM for 40–45 minutes per day. A post-test was administered the next day. For 
a subset of subjects, a delayed post-test was administered two weeks later.

3.1.4	 Algebraic transformations PLM
In the PLM, participants on each trial selected from several choices the equation 
that could be obtained by a legal algebraic transformation of a target equation. An 
example is shown in Figure 5. Problems involved shifts of constants, variables or 
expressions (e.g., (x − 2)). Accuracy and speed were measured, and feedback was 
given.

Participants were randomly assigned to one of four learning conditions. In 
Single operation conditions, participants saw problems in the learning module 
that always involved one operator used to transform the target equation into the 
correct answer (either subtract or divide). In Double operation conditions, partici-
pants saw two different operators during the learning module (on separate trials). 
Half of the participants in both Single and Double conditions received Unidirec-
tional training, in that they saw problems that required transformation in only 
one direction, involving the shift of some constant, variable, or expression from 
left to right. The other half of subjects received Bidirectional training; they saw, on 
separate trials, either right-to-left or left-to-right transformations. Because these 
condition manipulations did not figure prominently in the results, we include fur-
ther details in the Supplementary Materials.
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3.1.5	 Assessments
All assessments were presented on the computer. Three parallel versions were con-
structed. Corresponding problems on separate versions varied in the specific con-
stants, variables, or expressions appearing in each equation. Each participant saw 
a different version in pre-test and post-test (and, for a subset, in delayed post-test), 
with order counterbalanced across participants. Each version of the assessment 
included two sections: Recognition problems and solve problems. Recognition 
problems were similar to those in the learning module; they required the learner 
to select a choice that comprised a legal transformation of a target equation. In the 
assessments, only three choices were used — the correct answer and two distrac-
tors. Solve problems, requiring the participant to solve algebra equations contain-
ing one variable, were used as a transfer test. There were 16 recognition problems, 
4 each involving the operators add, subtract, multiply, and divide. The left/right 
orientation of problems in every category was balanced. There were 17 solve prob-
lems, 8 of which were based on the single operators add, subtract, multiply, and di-
vide. The other 9 problems were two-step problems. For example, solving 4 = 2t / 3 
might involve multiplying both sides by 3 and then dividing by 2. Participants first 
worked on solve-for-variable problems and then transformation problems. These 
problems were presented individually in random order for each participant.

Figure 5.  Sample problem from the Algebra PLM. A target equation appears at the top 
and the user selects which of the four choices on the bottom corresponds to a legal alge-
braic transformation of the target.
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3.1.6	 Procedures and stimuli
Depending upon individual progress, participants completed the experiment (pre-
test, PLM, post-test) in 2–4 sessions lasting about 45 minutes each and usually tak-
ing place on consecutive days. The interval between sessions did not exceed 2 days 
and the post-test was taken within 2 days of completing the PLM. All problems 
were presented on the computer. Scratch paper was provided for solve-for-variable 
problems on the pre-test and the post-test.

On each learning trial, an equation was presented at the top with an equiva-
lent transformed equation given along with three distractor equations (making 4 
choices in all). Participants were instructed to select the equivalent equation and 
to be accurate but respond as promptly as they could. Following either a correct 
or incorrect selection, portions of the original equation and the equivalent one 
that were relevant to the transformation were highlighted in red. If the participant 
chose the correct answer, a green box appeared around that choice and under-
neath the equations appeared the message “Correct!” and a prompt to press the 
spacebar to go onto the next problem. If the wrong answer was chosen, a red X 
crossed out the incorrect choice, a blue box surrounded the correct one, and the 
message “Incorrect” appeared beneath the equations. A participant timed-out on 
a problem if there was no response within 30 seconds. In this case, a blue box 
appeared around the correct answer and the message “Time is up!” appeared be-
neath the equations.

Following either an incorrect choice or time-out, the participant was required 
to interact with the feedback. A feedback screen appeared, presenting the origi-
nal equation and the correct answer choice, marking in red the portions of both 
equations that related to the transformation. The participant was then given four 
choices of what operations and terms the transformation involved. If the partici-
pant made the correct choice, a green box would appear around it; otherwise, a 
red cross would mark out the incorrect choice and the correct choice would be 
highlighted with a blue box around it. The participant was then prompted to press 
the spacebar to continue.

After each block of 10 trials, a summary feedback screen appeared. It showed 
graphically the accuracy and mean reaction time for that block and up to nine 
preceding blocks. Participants performed a minimum of 100 learning trials and 
ended the learning module according to accuracy and speed criteria. These learn-
ing criteria were two blocks with accuracy ≥ 85% and an average reaction time 
(for correctly answered items) ≤ 8 seconds. Participants either reached learning 
criteria or performed a maximum of 300 learning trials before proceeding to the 
post-test.

For the high school participants who finished the learning module on a dif-
ferent day than the day of the post-test, a refresher of 30 learning trials preceded 
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the post-test. This refresher was eliminated for the middle school participants, as 
it was found to be cumbersome and annoying to participants.

3.2	 Results

3.2.1	 Achievement of learning criteria
Of the 30 participants, 24 reached learning criteria. Six participants retired after 
100 trials, 10 between 100 and 200 trials, and an additional eight under 300 tri-
als. Number of operations did not markedly affect learning time but bidirectional 
conditions took longer than unidirectional ones (see Supplementary Materials for 
details).

3.2.2	 Overview of results
The main results for performance in recognizing algebraic transformations are 
shown in Figures 6A and 6B, which present accuracy and response time results 
respectively. The PLM improved recognition accuracy from pre-test to post-test. 
There was a robust gain in fluency as well, with response times decreasing about 
50%. Figures 7A and 7B show pre-test and post-test results for accuracy and re-
sponse time on the transfer test, which involved solving open-ended algebra prob-
lems. There was little change in accuracy; students in Algebra I performed at a 
high level (about 80%) in the pre-test and post-test, indicating that as a group, they 
knew how to solve basic equations. There were, however, large changes in fluency. 
The data show that for solving simple equations (e.g., 3 + y = 12) students in Alge-
bra I take about 25 seconds per problem! Use of the PLM improved the speed of 
equation solving, producing an average drop in solution time of 46%. Learning ef-

Post-testPre-test

Test Phase

Post-testPre-test

Test Phase

Figure 6.  Students’ mean accuracy and response times for recognizing algebraic trans-
formations in the pre-test and post-test of Experiment 2. Error bars indicate ±1 standard 
error of the mean.
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fects were for the most part consistent across all conditions; the variations in train-
ing conditions produced only modest differences. These findings were confirmed 
by the analyses, which we consider in separate sections below.

3.2.3	 Recognizing algebraic transformations: Accuracy
The recognition problems presented in the pre-test and post-tests resembled 
those presented during the learning module. Accuracy in recognizing algebraic 
transformations improved in all conditions through the use of the PLM. Recogni-
tion accuracy data were analyzed in a 2 (Test Phase) by 2 (Familiar vs. Unfamiliar 
Problem Type) by 2 (Operators in Learning) by 2 (Transformation Directions in 
Learning) ANOVA, in which the first two factors were tested within subjects and 
the latter two between subjects. There was a significant main effect of test phase, 
indicating overall improvement from pre-test to post-test, F(1,26) = 9.11, p < .01. 
There were no other reliable main effects or interactions.

3.2.4	 Recognizing algebraic transformations: Response times
PLM exposure led to faster performance on recognition problems in all condi-
tions. All but one participant improved. Response times were analyzed in a 2 (Test 
Phase) by 2 (Familiar vs. Unfamiliar Problem Type) by 2 (Operators in Learning) 
by 2 (Transformation Directions in Learning) ANOVA, in which the first two fac-
tors were tested within subjects and the latter two between subjects. The analysis 
showed a significant main effect of test phase, F(1,26) = 56.91, p < .001, reflecting 
the overall improvement in speed.

Post-testPre-test

Test Phase

Post-testPre-test

Test Phase

Figure 7.  Students’ mean accuracy and response times on transfer problems involving 
solving algebra equations in the pre-test and post-test of Experiment 2. Error bars indi-
cate ±1 standard error of the mean.
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3.2.5	 Solving algebra problems: Accuracy
Accuracy of problem solving was good overall and did not change noticeably, 
from 74.5% overall on the pre-test to 76.9% on the post-test. Accuracy data were 
analyzed in a 2 (Test Phase) by 2 (Familiar vs. Unfamiliar Problem Type) by 2 (Op-
erators in Learning) by 2 (Transformation Directions in Learning) ANOVA, in 
which the first two factors were tested within subjects and the latter two between 
subjects. The overall effect of accuracy from pre-test to post-test did not reach 
significance, F(1,26) = 2.816, p = .105, and there were no other reliable main effects 
or interactions.

3.2.6	 Solving algebra problems: Response times
Use of the Algebraic Transformations PLM led to dramatic reductions in response 
time in algebra problem solving. Whereas Algebra I students after the midpoint of 
the course do well overall in solving simple equations, remarkably, our response 
time data indicate that they average 24.7 sec to do so! After the PLM, the average 
response for the same kinds of problems was 13.2 sec. All but two participants 
showed faster algebra problem solving after the PLM; most showed robust gains 
(median = 9.2 sec per problem). These gains appear to be lasting, as shown in a 
delayed post-test administered to a subset of participants (see below).

Response times were analyzed in a 2 (Test Phase) by 2 (Familiar vs. Unfamiliar 
Problem Type) by 2 (Operators in Learning) by 2 (Transformation Directions in 
Learning) ANOVA, in which the first two factors were tested within subjects and 
the latter two between subjects. There was a substantial main effect of test phase, 
F(1,26) = 46.44, p < .001, but no other reliable main effects or interactions.

3.2.7	 Delayed post-test results
A small subset of subjects (n = 5) was run on a delayed post-test two weeks after 
working on the PLM. Figure 8 displays the results from this group. Considering 
the pre-test and first post-test performance, this subgroup appears reasonably rep-
resentative of the complete set of participants. They vary somewhat in showing no 
overall accuracy gain in recognition problems. What the delayed post-tests show 
is that the learning gains that did occur in this group were completely preserved 
across a two-week delay. There is a small indication that accuracy for solving equa-
tions improved from the first to the delayed post-test. The most conspicuous re-
sult, however, is that the data suggest that PLM usage produced relatively enduring 
gains in fluency.
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3.3	 Discussion

Use of the Algebra PLM produced substantial learning gains in the recognition 
of algebraic transformations. Both speed and accuracy improved, and almost all 
participants showed these gains. Practice in structure extraction and recognition 
of algebraic transformations also transferred to the task of solving equations. Pre-
liminary data suggested that these effects were lasting, although only a small num-
ber of participants were tested after a delay.

These results support the two linked hypotheses that motivate these studies: 
That changes in information extraction (perceptual learning) are not adequately 
developed by conventional instruction and that technology embodying PL prin-
ciples can address these missing dimensions of learning.

Post-test Delayed Post-testPre-test

Test Phase

Post-test Delayed Post-testPre-test

Test Phase

Post-test Delayed Post-testPre-test

Test Phase
Post-test Delayed Post-testPre-test

Test Phase

Figure 8.  Delayed post-test results for Experiment 2. Pre-test, post-test, and delayed 
post-test data are shown for the subgroup of students who completed the delayed post-
test. Top row: Mean accuracy and response time for recognizing algebraic transforma-
tions. Bottom row: Mean accuracy and response time for solving equations. Error bars 
indicate ±1 standard error of the mean.
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Although in presenting the results, we naturally focused on the latter issue 
— the success of the PLM in improving fluency — our data also speak to the 
former issue. The declarative and procedural components of learning in algebra 
do not directly address the perceptual extraction and pattern recognition aspects 
of learning. Students in this study were past mid-year in Algebra I, and pre-test 
data showed their high level of competence in solving a range of equations. These 
results for problem solving, prior to our intervention, gave a strong indication that 
the students knew the basic declarative and procedural requirements of basic alge-
bra: What to do and how to do it. Yet, the pre-test data also revealed that students 
at this level require approximately 25 sec per problem. For an experienced adult, 
it is hard to fathom how someone who knows how to do algebra could take more 
than several seconds for problems such as 8 = x + 3. Even for the more complicated 
problems in our assessment (e.g., 3x + 4 = −8), it is hard to understand what is go-
ing on for 25 sec or more. Our surprise at these response times reflects the fact 
that we have acquired the experience in extracting structure and seeing transfor-
mations in this domain. Early algebra students have not. Nor do the instructional 
modes they normally encounter do much to facilitate these skills, at least not in the 
first two-thirds of the course.

Other aspects of the data point to these same crucial and neglected compo-
nents of learning. Although the different learning groups (differing by number of 
operations seen and number of directions of transformation) did not differ much 
in outcomes, there was some interaction of these variables with time to complete 
the PLM. For example, learners who saw two directions of transformation generally 
took markedly longer to complete the module. The fact that direction matters (e.g., 
x − 4 = 8 vs. 8 = x − 4) makes a crucial point about the importance of PL concepts 
in algebra. Mathematically, there is no important difference between x − 4 = 8 and 
8 = x − 4. The equal sign is symmetric, and one hopes that no mathematics teacher 
has ever presented these cases as different with regard to facts, concepts, or proce-
dures. Yet, in our results, there was both a reliable main effect of mixing directions 
of transformation and evidence of an interaction: When learning involved more 
than one possible operator on different trials, it took substantially longer when 
bidirectional transformations were involved. These outcomes speak to the impor-
tance of the “seeing” aspects of algebra proficiency. Bidirectional transformations 
add to learning time because they place greater demands on the processing of 
structure and selection of relevant inputs in mapping across transformations.

The greater difficulty posed by bidirectional transformations also suggests 
connections to the well-documented finding that algebra students often do not 
recognize the equal sign as signifying the symmetrical relationship of equivalence; 
instead, they may interpret it as a signal that the preceding operation should be 
carried out or a marker that the answer follows (e.g., Foster 2007; Knuth et al. 
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2005, 2006). While interpreting the equal sign operationally rather than relation-
ally has generally been interpreted as a conceptual misconception, we suggest that 
it may arise at least in part from PL principles and from exposure, perhaps prior 
to algebra, to a biased subset of examples of equations. Unfortunately, perceptual 
learning is not confined to the instructor’s intentions: Given habitual exposure to 
equations in which x is on the left, students extract this directional structure and 
attempt to give it meaning.

The present results suggest new opportunities for combining PL technology 
with declarative and procedural instruction. Issues of how to optimize the tech-
nology and combine it with other modes of learning are important priorities for 
research. One such issue involves learning criteria. In this study, the learning phase 
ended when a learner achieved 85% correct or better over 20 trials, with average 
response time below 8.5 sec. One problem with this criterion is that, within the 
constraints of each condition, different problems were selected randomly. It is pos-
sible that learners could sometimes meet the criterion due to a fortuitous selection 
of problems. Nothing in the design guaranteed that learners had reached compe-
tence on particular types of problems. The limitations of the learning criteria may 
relate to one feature of the data. Although average performance on the final two 
blocks of the module was well above 85%, post-test performance for recognition 
was about 75%. Even allowing for the fact that 6 subjects did not reach criterion, 
these data suggest that performance was slightly lower for the wider range of prob-
lems on the post-test than at the end of learning. We explored the issue of learning 
criteria a bit further in Experiment 3.

4.	 Perceptual learning in algebra: Experiment 3

Experiment 2 indicated the promise of PLM technology in improving students’ 
abilities to recognize algebraic transformations, and it showed that these improve-
ments transferred to students’ fluency in solving algebra problems. Experiment 3 
aimed to extend these findings in several respects.

One limitation of Experiment 2 was the small size of the group receiving a 
delayed post-test. A number of studies have suggested that performance on an im-
mediate post-test may not be indicative of longterm learning (Schmidt and Bjork 
1992). If PL interventions are to have value as supplements to conventional math-
ematics instruction, it is important that they produce lasting effects. Accordingly, 
we tested our Algebra PLM with a larger sample of students, and we assessed per-
formance after a 3-week delay.

Another goal of this experiment, albeit a preliminary one, was to begin to 
examine category sequencing in learning technology. Although this initial effort 
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turned out to have little effect on the data, we describe it here because it was in-
cluded in the design and it gives some introduction to issues of sequencing that we 
believe are important and which we are pursuing in other research.

Adaptive sequencing for the individual learner, we believe, is one of the great-
est potential benefits of learning technology. By assessing and tracking perfor-
mance through a learning module, items and concept types can be presented at 
the best times to boost learning for each individual. Items or categories meeting 
certain learning criteria can be retired from a learning set. Sequencing and re-
tirement allow a number of laws of learning to be implemented in ways that can 
make learning more efficient, and more durable, for each individual. We have been 
working with recently patented algorithms3 that use both the learner’s accuracy 
and speed in short interactive trials to determine when an item or category should 
recur as learning proceeds. In brief, each item (or category, in category sequenc-
ing) is given a priority score that updates each trial, based on accuracy and speed 
of recent performance, time since last presentation, and other variables. The al-
gorithm, tested previously on fixed learning items (e.g., basic math facts), imple-
ments several laws of learning. For example, it prohibits an item from coming up 
on consecutive learning trials (in order to ensure recall from long-term, rather 
than short-term memory). It also ensures that missed items recur fairly soon, as 
their learning strength was likely low. Further, to ensure durability of learning, the 
retention interval is stretched as learning strength increased (Landauer and Bjork 
1978). To do this, response times (for correct responses) are used as a proxy for 
a hypothetical construct of learning strength. Specifically, the algorithm uses a 
function of response time to stretch the reappearance interval for that individual 
on that item, such that faster responses produce longer retention intervals. Ear-
lier work on item sequencing showed it to be particularly powerful in improv-
ing learning in conjunction with retirement criteria. When an item has been an-
swered several times accurately and faster than some criterion response time, it is 
removed from the learning set. The use of dynamically updating priority scores, 
based on trials since presentation, learner accuracy and speed for each item, al-
lows for optimization of the efficiency of learning the entire set. For memory items 
(e.g., learning multiplication tables, vocabulary words, or electronic components), 
sequencing reduces learning time by about 50% and often improves efficiency of 
learning (learning gains per unit learning trial invested) by 200% or more (Kell-
man and Massey 2005).

Whereas much is known about laws of learning and retention for individual 
items, not much is known about perceptual learning of categories, where specific 
exemplars are novel on each trial. For example, in learning a memory item, it is not 
useful to have the item appear on consecutive learning trials. Because the answer 
is still in short-term memory when the second trial occurs, there is little gain in 
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long-term learning strength (Karpicke and Roediger 2007; Landauer and Bjork 
1978). In learning a new structural concept, however, such as whether a word in a 
sentence is an adverb or whether a certain molecule belongs in a certain chemical 
family, it may be advantageous to have consecutive learning trials relating to the 
same concept, at least early in learning. Thus, in the present study, we used 4 con-
ditions: Sequenced with retirement (SR), Sequenced with retirement and blocking 
(SRB), Random with retirement (RR), and random with no retirement (RN). As 
not much is known about the optimal arrangement of category sequencing, we in-
cluded blocking of trials as an additional manipulation. Whereas, in item learning, 
immediate reappearance of a just-tested item is known to be a poor arrangement 
for learning, the situation could differ in learning category structure. As each in-
stance differs, the learner’s extraction of invariance from multiple examples might 
be facilitated by blocking of trials. Thus, we tested cases in which sequencing oper-
ated on single presentations of each category (NB = no blocking) but also a case 
in which what were sequenced were 3-trial blocks from a given category (B = 
Blocked).

4.1	 Method

The experimental methods were as in Experiment 2, except as noted below.

4.1.1	 Participants
Participants were 56 high school students (mostly in grade 9) and 38 8th grade 
middle school students at the same schools as in Experiment 2, all taking Algebra 
I. Five students from the middle school and six students from the high school were 
excluded from the final data set for failing to complete all three phases of the as-
sessments. One of the middle school subjects was removed from the study for dis-
ruptive behavior. The final sample contained 34 8th grade students, 42 9th grade 
students, 6 10th grade students, and 1 11th grade student. There were 40 males and 
43 females in the final sample.

4.1.2	 Design
The experiment was set up to assess effects of our learning technology on speed and 
accuracy of recognition of algebraic transformations and algebra problem solving. 
A pre-test was given on one day, followed by 2–3 days in which students worked 
on the PLM for 40–45 minutes per day. A post-test was administered the next day. 
A delayed post-test was administered to all participants three weeks later.
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4.1.3	 Algebraic transformations PLM
The PLM was similar to that in Experiment 1, with a few modifications. We re-
duced the number of choices for each PLM problem to 3, one correct transformed 
equation and two distractors. Compared to Experiment 2, problems were sim-
plified somewhat, and all participants received all problem types in the learning 
phase. In addition, whereas transformations relating the target and the correct 
choice in Experiment 2 had all involved a shift of a term using some operator, Ex-
periment 3 included a wider variety of items. Learning items were defined by type 
of operation (add, subtract, multiply, and divide) and transformation type (shift 
or other). Sixty percent of all problems were shift problems, in which the target 
“moved” from one side of an equation to another, via use of an operation. For 
example, for a subtract/shift problem with the target x + 5 = a, the correct choice 
would appear as x = a − 5. The remaining 40% of learning items involved other 
kinds of transformations, such as adding a new quantity to both sides of the equa-
tion. To ensure little or no repetition of specific problems, 100 exemplars were 
constructed for each kind of operation.

4.1.4	 Category sequencing
For purposes of category sequencing, problems were grouped into 8 categories. 
These were defined by operation (add, subtract, multiply, divide) and by whether 
the problems involved shifting or not.

Participants were assigned randomly to one of several presentation condi-
tions. Conditions differed in the way categories were arranged for display. They 
were either selected randomly for use on each learning trial, or they were selected 
based on the adaptive sequencing algorithm described above, which implemented 
several laws of learning. Particular learning items did not repeat during the mod-
ule. Adaptive sequencing involved priority scores and reappearance of categories 
of problems, with problems within categories being chosen randomly within the 
constraints described earlier. A separate manipulation applied sequencing either 
to single presentations of each category (NB = no blocking) or to 3-trial blocks 
from a given category (B = Blocked). A retirement feature was used to remove cat-
egories on which the learner had achieved certain learning criteria. The four con-
ditions were then as follows: Sequenced with Retirement with single trials (SRs), 
Sequenced with Retirement and 3-Trial Blocks (SRb), Random, No Retirement, 
Blocked (RNb), and Random with Retirement, Blocked (RRb). Although there 
could be other combinations of these features, these choices were constrained by 
the limit on available test participants and our own intuitions about what might be 
most revealing in a first study of category sequencing.
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4.1.5	 Learning criteria
The criteria for retiring a category, when the retirement feature was used, were 5 
out of the last 6 problems from that category answered correctly, with an average 
response time for correct responses averaging 8 sec or less. A participant finished 
the learning phase when these criteria were met for all 8 categories. Note that in 
the condition not using retirement, the learning criterion could still be imple-
mented, although problems from “retired” categories could still be presented to 
the learner. For learners who did not achieve the learning criteria, the learning 
phase was ended on the third day, and post-test was given the next day.

4.1.6	 Assessments
The assessments were constructed along the same lines as in the preceding experi-
ment, with some modifications (see Supplementary Materials).

4.1.7	 Procedure
Testing occurred at the regular class time. The first day included only a pre-test. 
Days 2–4 (depending on a student’s achievement of learning criteria) allowed about 
45 minutes per day on the PLM. PLM trials were broken into 10-trial groups, with 
feedback on accuracy being provided after each 10 trials. Students were encour-
aged to take short breaks as needed at these intervals. The post-test was given on 
the day following completion of the PLM. Delayed post-tests were given three 
weeks later.

4.2	 Results

4.2.1	 Achieving learning criteria
Out of 83 participants, 32 reached criterion. Generally, experimental effects in the 
group reaching retirement did not differ from those of the full group, although 
levels of performance were higher and learning effects somewhat clearer in the 
former group. For brevity, we present statistical results from the full set of subjects 
only, rather than two full sets of analyses.

4.2.2	 Overview of results
Figures 9A and 9B show the accuracy and response time results for recognition 
problems in Experiment 3 by presentation condition. Learners showed clear im-
provement from pre-test to post-test in accurately mapping algebraic transforma-
tions, and these gains were mostly preserved in the delayed post-test (mean = .63). 
There was a robust gain in fluency as well, with response times decreasing about 
29% from pre-test to post-test, and decreasing even more, about 36%, from pre-
test to delayed post-test. Figures 10A and 10B show the accuracy and response 
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time results for algebra problem solving before and after completing the learning 
module. There was no change in accuracy, but large gains in fluency: Problem 
solving time dropped about 32% from pre-test to post-test, and these gains were 
preserved in the delayed post-test. Improvements in performance in both imme-
diate and delayed post-tests were seen in all conditions, with little effect of the 
sequencing, retirement, and blocking manipulations.

These findings were confirmed by the analyses, considered below.

A

B

Figure 9.  Students’ mean accuracy (A) and response times (B) for recognizing algebraic 
transformations in the pre-test, post-test and delayed post-test of Experiment 3. Data are 
shown separately for 4 category blocking, sequencing, and retirement conditions (see 
text). Error bars indicate ±1 standard error of the mean.
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4.2.3	 Recognizing algebraic transformations: Accuracy
Accuracy was analyzed via a 3 (Phase) by 4 (Condition) ANOVA with repeated 
measures on Phase (pre-test, post-test, delayed post-test). There was no main ef-
fect of Condition, F(3,78) = .19, n.s., nor any Condition by Test Phase interaction, 
F(6,158) = 1.69, n.s. The overall improvement in accuracy from pre-test to the 
post-tests was shown by a highly reliable main effect of Test Phase, F(2,156) = 49.5, 

A

B

Figure 10.  Students’ mean accuracy (A) and response times (B) for solving equations in 
the pre-test, post-test and delayed post-test of Experiment 3. Data are shown separately 
for 4 category blocking, sequencing, and retirement conditions (see text). Error bars indi-
cate ±1 standard error of the mean.
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p < .001. Individual comparisons showed clear improvement from pre-test to im-
mediate post-test, t(82) = 3.82, p < .001, and from pre-test to delayed post-test, 
t(82) = 3.43, p < .001. There was no reliable difference between performance on 
immediate post-test and after a three week delay, t(82) = .35, n.s.

4.2.4	 Recognizing algebraic transformations: Fluency
Response times were also analyzed in a 3 (Phase) by 4 (Condition) ANOVA with re-
peated measures on Phase. Performance did not differ by Condition, F(3,79) = .84, 
n.s., and there was no interaction of Condition and Phase, F(6,158) = .66, n.s. Strong 
learning effects were shown by the main effect of Phase, F(2,158) = 80.97, p < .001. 
Individual comparisons showed clear improvement from pre-test to immediate 
post-test, t(82) = 6.81, p < .001 and from pre-test to delayed post-test, t(82) = 9.06, 
p < .001. Delayed post-test performance was also better than performance in the 
immediate post-test t(82) = 2.35, p < .02, suggesting that learners continued to con-
solidate fluency gains following the study.

4.2.5	 Solving algebra problems: Accuracy
Transfer to problem solving accuracy did not vary as a result of the learning mod-
ule, remaining level at about .65 in all phases of the study. Accuracy was ana-
lyzed via a 3 (Phase) by 4 (Condition) ANOVA with repeated measures on Phase 
(pre-test, post-test, delayed post-test). There was no main effect of Condition, 
F(3,79) = .13, n.s., nor any Condition by Test Phase interaction, F(6,158) = 1.73, 
n.s. There was no overall improvement in accuracy from pre-test to the post-tests 
(main effect of Phase), F(2,158) = .10, n.s.

4.2.6	 Solving algebra problems: Fluency
Transfer to the speed of algebra problem solving showed strong effects of the PLM. 
Response times were analyzed in a 3 (Phase) by 4 (Condition) ANOVA with repeat-
ed measures on Phase. Learning gains did not differ by Condition, F(3,79) = .18, 
n.s., and there was no interaction of Condition and Phase, F(6, 158) = .65, n.s. 
There was a substantial main effect of Test Phase, F(2,158) = 95.75, p < .001. In-
dividual comparisons showed clear improvement from pre-test to immediate 
post-test, t(82) = 7.24, p < .001 and from pre-test to delayed post-test, t(82) = 6.92, 
p < .001. Delayed post-test performance did not differ from that in the immediate 
post-test t(82) = .08, n.s., suggesting that learners maintained their improved skills 
after the experiment.

4.2.7	 Problem type analyses
Additional analyses were carried out to investigate whether the experimental ef-
fects varied for problem types, specifically which operator was used (add, subtract, 
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etc.), and whether the transformation involved a shift or some other change. These 
analyses also furnished some potentially useful baseline data about the relative dif-
ficulty of different kinds of problems for algebra students. The most notable find-
ing was that divide problems were easier for both recognition and solve problems. 
(See Supplementary Materials section for details.)

4.3	 Discussion

The results of Experiment 3 confirm and extend those of Experiment 2. Short inter-
ventions using PL technology improved both accuracy and speed in the recogni-
tion of algebraic transformations, and they produced conspicuous improvements 
in the fluency of algebra problem solving. The fluency gains in solving equations, 
as well as both accuracy and fluency gains for recognition problems, were fully 
preserved after a three-week delay.

Less informative in this experiment were our initial attempts to study catego-
rization, sequencing, blocking, and retirement. Categorizations of problem types 
figured in two efforts — to begin to look at category sequencing and to be able to 
track particular components of learning, provide practice where it is most needed, 
and lead learners to meet objective criteria for each category.

Although we strongly believe in the importance and ultimate potential of these 
concepts, the present results make clear that their study is just beginning. There 
were few indications of effects of sequencing, blocking, or retirement in this study. 
Unfortunately, these negative findings are difficult to interpret. One reason was 
that fewer than half of participants met the learning criteria. Obviously, tests of 
manipulations involving learning criteria must be long enough to allow students 
to meet the criteria. Moreover, in retrospect it is not clear that the experimenters’ 
categories (e.g., categorization of problem by operator type and by shift vs. “other” 
transformation) tapped different learning components for the learners. Benefits of 
category sequencing, blocking, and retirement hinge heavily on using categories 
that have validity for the learner. Finding ways to determine such categories and 
optimizing sequencing, blocking, and retirement schemes is a challenging but ex-
citing priority for future research.

5.	 General discussion

Perceptual learning contributes enormously to expertise. It allows selective ex-
traction of information for specific tasks, reduces required effort and attention, 
leads to chunking of important patterns in the input, and enables the discovery 
of higher-order invariance. Although these changes in information pickup can 



	 Perceptual learning and technology in mathemathics	 397

develop unsystematically through experience, attempts to address them directly 
in instruction have been lacking.

We hypothesized that interventions in middle school mathematics designed 
to foster and accelerate PL, in the form of PLM technology, might produce learn-
ing gains in pattern recognition and fluency, and that such gains might transfer to 
problem solving. We chose the domains of fraction learning and algebra due to 
their difficulty for many students and their importance in the curriculum.

The results of three experiments in two different learning domains confirm 
our hypotheses. In fraction learning, PLM interventions markedly improved per-
formance on fundamental learning tasks such as solving problems involving frac-
tions and comparing fractional quantities. Although response times were mea-
sured in the learning phase as an indicator of student progress, only accuracy in 
these tasks was measured in the assessments. We interpret the large learning gains 
across all item types in the assessments to reflect advancement of students’ abilities 
to extract relevant relations from fractional notation and other representations, 
including word problems, and map them accurately across representations. The 
observed gains from this intervention are encouraging, especially when one con-
siders that these students had previously had considerable exposure to fractions 
in their normal coursework. We found that classroom instruction combined with 
PLM interventions produced learning gains that exceeded and persisted beyond 
those gotten from classroom instruction alone. Notably, our classroom compo-
nent, focusing on extracting structure and mapping structures across representa-
tions, also produced noticeable learning improvements relative to students’ ini-
tial levels. This suggests that there may be value in specifically discussing relevant 
stuctures and structure mapping, even in conventional instructional modes. The 
enhanced learning produced by PLMs, however, indicates that PL technology can 
most directly and effectively address these aspects of learning. The results showed 
lasting, not transitory, changes brought about by PLMs: Learning gains survived 
intact over a 9-week delay.

The fraction research is special among the studies reported here in that it com-
bined instructional techniques. This synergy underscores an important element of 
our approach. Although we believe that PL techniques are a sorely needed addi-
tion to most instructional contexts, they do not replace declarative and procedural 
components of learning. Finding the right blend of introducing facts, concepts, 
and procedures, along with accelerating pattern recognition and fluency through 
PL technology, is likely to be of maximal benefit to learning in mathematics and 
many other domains. The role of the teacher in introducing concepts and proce-
dures and the role of PL technology in developing pattern recognition and fluency 
are complementary. Improving students’ latter abilities during individual com-
puter-based learning will allow teachers to make better use of class time. When 
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students become fluent with basic structures and representations, their cognitive 
load is reduced, allowing them greater capacity to focus on new concepts or ap-
plying their knowledge. The question of how to optimize learning by combining 
instructional modes remains a prime question for further research.

Our experiments testing PL technology in algebra showed improvements in 
recognition of algebraic transformations and major gains in speed on the transfer 
task: Solving equations. In contrast to the fraction study, students started out with 
high levels of problem solving accuracy. Having recently passed the halfway point 
of Algebra I, they demonstrated a command of basic concepts and procedures 
of algebra. Students’ performance illustrated vividly, however, the split between 
the knowing and seeing aspects of doing mathematics: In both studies, students 
started out requiring, on average, about 25 sec to solve simple equations. The data 
suggest that Algebra PLMs helped students by directly addressing pattern recogni-
tion and transformation abilities in this domain. Students practiced, not the solv-
ing of problems, but the mapping of equations onto other equations. Two to three 
40-minute sessions of the Algebra PLMs improved students’ accuracy and speed 
in recognizing algebraic transformations and produced a nearly 50% drop in the 
time required to solve equations. These gains proved to be lasting.

5.1	 Discovery and fluency effects in PL

Earlier we distinguished discovery and fluency effects in perceptual learning. 
When might we see one or the other in particular PLM interventions? When 
learners have not yet identified what the important structures are, which parts or 
relations in a representation are relevant to a given task, or which features in one 
representation map onto those in another, one might expect that effective PLMs 
will produce gains in discovery, most evident in students’ accuracy on assessments. 
Where the relevant information is known, but pattern extraction is effortful, slow 
and piecemeal, effective PLMs will tend to produce fluency gains.

5.2	 Accuracy and speed in mathematics learning

We must also note, however, that in practical applications, such as those consid-
ered in this paper, accuracy and speed are to some degree interchangeable. As in 
typical psychophysical experiments, we could no doubt have changed the mea-
sured fluency differences into accuracy differences by limiting problem exposure 
or problem solving time. The important point for mathematics and other learning 
domains is not that PL discovery and fluency effects are indistinguishable. We 
believe these effects are different, and the present results furnish some evidence 
of this. The point is that both fluency and accuracy should be considered equally 
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important in mathematics (and many other learning domains). Although this con-
tention is hardly novel, it is unusual in educational contexts to measure response 
times item by item. (A test period may be time-limited, but individual problems 
are usually not.) The reason fluency and accuracy should be considered together is 
that, as students progress in mathematics, earlier learning is assumed as a founda-
tion for new material. The student who must stop to consider the structure of frac-
tion notation will necessarily be left behind when fractions appear in the context 
of a chemistry problem. And it is not just the speed at which new material appears, 
but its cognitive load. For many purposes, not knowing and knowing too slowly 
will have indistinguishable effects in impeding students’ progress.

5.3	 A paradox: Natural PL vs. PL technology

We claimed earlier that PL is not systematically addressed in typical instruction, 
but we also noted that PL is a natural, implicit learning process. The process we 
are trying to add into instruction and enhance through technology is the same 
process that allows three-year-olds to learn to classify new instances of dogs, toys, 
and trucks, or squares and triangles, or natural concepts of any sort. If such a pro-
cess occurs naturally for three-year-olds (without lectures on the distinguishing 
features of dogs and cats), perhaps perceptual learning also happens in ordinary 
instructional settings as teachers present examples and students work problems. If 
so, what is the special role of systematically constructed PL technology?

There are two, related answers to this question. First, some advance in the 
learning and pickup of structure surely does come from seeing examples and 
working problems. However, this happens haphazardly, and such activities prob-
ably comprise “low doses” of PL, ultimately (perhaps years later) effective for some 
students but less so for others. Second, systematic targeting of PL through PLM 
technology can accelerate learning, through a variety of features. These include 
providing many more classification instances in short periods of time, systemati-
cally arranging instances to allow learning of invariance as well as learning what 
variation is irrelevant to a given classification, and tracking, adaptively sequenc-
ing, and retiring particular categories and classifications.

That PL technology can provide such advantages is shown in our data. In the 
Fractions PLM, for example, several examples and a great deal of discussion of 
relevant structure were presented in the control group; yet, participants in PLM 
groups showed greater learning gains. In the Algebra PLMs, students had seen nu-
merous in-class and homework examples over the first 2/3 of the school year (not 
to mention in Pre-Algebra), but this seemed to produce little fluency, as docu-
mented in pre-test performance. Large and lasting improvements in the fluency of 
problem solving were produced by the PLM in only two to three class periods.
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5.4	 Other features of learning technology

Our discussion has emphasized novel PL techniques for mathematics instruction, 
but some other features of learning technology play complementary, facilitative, 
or in some cases, unknown roles. We required students to interact with feedback 
after errors, because we have learned in other work that without this feature some 
students may not attend much to, nor benefit much from, feedback. Although its 
role was not explicitly tested here (because it was always present), we highly rec-
ommend this feature for learning technology, especially when the learning activity 
has many short trials. Our style of reversing the question in interactive feedback 
may also be considered a PL manipulation, in that it again draws attention to the 
structure, and often, to the mapping across representations, developing flexibility 
in the direction of mapping. Other features, such as category sequencing, block-
ing, and optimal use of retirement features, were tentatively explored, but not 
much illuminated, by Experiment 3. These features of learning technology in a 
PLM format will likely prove important, but their optimal deployment will require 
further investigation.

We began by noting some persistent problems in mathematics learning. The 
present results suggest that PL technology can help address many of these issues. 
Theoretically, we believe PL is a neglected dimension of learning, one that requires 
special techniques to address systematically. The present work suggests that PLMs 
of relatively short duration can produce large gains in the fluency and accuracy of 
structure extraction, and that these gains can transfer to the fluency and accuracy 
of mathematics problem solving. This approach to learning technology also of-
fers significant promise in tracking separate components of learning, continuing 
learning until mastery criteria are met, and incorporating response time measures 
to assess fluency and to include it in learning milestones. If we are correct in the 
assessment that most instruction does not much address PL, that pattern recog-
nition and fluency issues arise for many students, and that these problems com-
pound as one advances through the curriculum, then interventions made possible 
by principles of PL and digital technology are vitally needed. Nor do we think 
these issues are limited to mathematics. It is hard to think of any learning domain 
in which advanced performance does not rely heavily on fluent extraction of fea-
tures and patterns, and on detection of invariance in changing contexts. Whether 
in other academic subjects, such as science or language learning, or in professional 
fields, such as electronics, radiology or air traffic control, the need for and promise 
of PL technology seem unlikely to be overestimated.



	 Perceptual learning and technology in mathemathics	 401

Notes

*  This work was supported by the National Science Foundation under Grant REC-0231826 to 
PK and CM. Any opinions, findings, and conclusions or recommendations expressed in this 
material are those of the authors and do not necessarily reflect the views of the National Science 
Foundation. We gratefully acknowledge Whitney Huston, Patricia McCarrin, Eric Irwin, and 
Donna Perretta for their assistance and cooperation in implementing the Fractions study, and 
Christina Schofield and Lindsey Engle Richland for assistance in the first Algebra experiment.

1.  Without further discussion, the label “perceptual” may seem overly restrictive to some. If so, 
the terms “structural learning” or “pattern recognition” may be used instead. In any case, what 
we intend should be become clear regardless of terminology, and we consider issues regarding 
the scope of perceptual learning below.

2.  Obviously, systems that learn, either through feedback or in an unsupervised manner via the 
statistics of the input, would be exempt from this characterization. Such systems have been used 
to model human perceptual learning.

3.  System and Method for Adaptive Learning, US Patent 7052277, issued May, 2006. Insight 
Learning Technology, Inc. holds the rights to the use of this patent. For further information, 
contact Insight at info@insightlearningtech.com.

References

Ahissar, M. and Hochstein, S. 1997. “Task difficulty and learning specificity”. Nature 387: 
401–406.

Anderson, J.R., Corbett, A.T., Fincham, J.M., Hoffman, D., and Pelletier, R. 1992. “General prin-
ciples for an intelligent tutoring architecture”. In J. Regian and V. Shute (eds), Cognitive 
Approaches to Automated Instruction. Hillsdale, NJ: Lawrence Erlbaum, 81–106.

Anderson, J.R., Corbett, A.T., Koedinger, K.R., and Pelletier, R. 1995. “Cognitive tutors: Lessons 
learned”. The Journal of the Learning Sciences 4(2): 167–207.

Barsalou, L. W. 1999. “Perceptual symbol systems”. Behavioral and Brain Sciences 22: 577–660.
Behr, M.J., Harel, G., Post, T., and Lesh, R. 1992. “Rational number, ratio, and proportion”. In 

D. Grouws (ed), Handbook of Research on Mathematics Teaching and Learning. New York: 
Macmillan, 296–333.

Bryan, W.L. and Harter, N. 1899. “Studies on the telegraphic language. The acquisition of a hier-
archy of habits”. Psychological Review 6(4): 345–375.

Chandler, P. and Sweller, J. 1991. “Cognitive load theory and the format of instruction. Cognition 
and Instruction 8: 293–332.

Chase, W.G. and Simon, H.A. 1973. “Perception in chess”. Cognitive Psychology 4 (1): 55–81.
Fahle, M. and Poggio, T. (eds). 2002. Perceptual Learning. Cambridge, MA: The MIT Press.
Foster, D. 2007. “Making meaning in algebra: Examining students’ understandings and miscon-

ceptions”. Assessing Mathematical Proficiency 53:163–176.
Garrigan, P. and Kellman, P.J. 2008. “Perceptual learning depends on perceptual constancy”. 

Proceedings of the National Academy of Sciences, USA. 105(6): 2248–2253.

mailto:info@insightlearningtech.com


402	 Philip J. Kellman et al.

Gibson, E.J. 1969. Principles of Perceptual Learning and Development. New York: Appleton-Cen-
tury-Crofts.

Gibson, J.J. 1966. The Senses Considered as Perceptual Systems. Boston: Houghton Mifflin.
Gibson, J.J. 1979. The Ecological Approach to Vision Perception. Boston: Houghton Mifflin.
Gibson, J.J. and Gibson, E.J. 1955. “Perceptual learning: Differentiation or enrichment?” Psycho-

logical Review 62: 32–41.
Goldstone, R.L. 1998. “Perceptual learning”. Annual Review of Psychology 49: 585–612.
Goldstone, R.L. 2000. “Unitization during category learning”. Journal of Experimental Psychol-

ogy: Human Perception & Performance 26 (1): 86–112.
Hackenberg, A.J. 2007. “Units coordination and the construction of improper fractions: A revi-

sion of the splitting hypothesis”. Journal of Mathematical Behavior 26: 27–47.
James, W. 1890. The Principles of Psychology (1983 ed.). Cambridge, MA: Harvard University 

Press.
Karpicke, J. and Roediger III, H.L. 2007. “Expanding retrieval practice promotes short-term re-

tention, but equally spaced retrieval enhances long-term retention”. Journal of Experimental 
Psychology: Learning, Memory, and Cognition 33(4): 704–719.

Kellman, P.J. 2002. “Perceptual learning”. In R. Gallistel (ed), Stevens’ Handbook of Experimen-
tal Psychology, Vol. 3. Learning, Motivation, and Emotion, Third Edition. New York: Wiley, 
259–299.

Kellman, P.J. and Arterberry, M.E. 1998. The Cradle of Knowledge: Development of Perception in 
Infancy. Cambridge, MA: The MIT Press.

Kellman, P.J. and Kaiser, M.K. 1994. “Perceptual learning modules in flight training”. Proceedings 
of the 38th Annual Meeting of the Human Factors and Ergonomics Society, 1183–1187.

Kellman, P.J. and Massey, C. 2005. “Background and validation research on perceptual learning 
and adaptive sequencing technologies”. Unpublished Technical Report, Insight Learning 
Technology, Inc.

Knuth, E.J., Alibali, M.W., McNeil, N.M., Weinberg, A., and Stephens, A.C. 2005. “Middle school 
students’ understanding of core algebraic concepts: Equivalence & variable”. Zentralblatt 
für Didaktik der Mathematik 37(1): 68–76.

Knuth, E.J., Stephens, A.C., McNeil, N.M., and Alibali, M.W. 2006. “Does understanding the 
equal sign matter? Evidence from solving equations”. Journal for Research in Mathematics 
Education 37(4): 297–312.

Lamon, S. 2001. “Presenting and representing: From fractions to rational numbers”. In A. Cuoco 
and F. Curcio (eds), The Roles of Representation in School Mathematics. 2001 Yearbook. Res-
ton, VA: National Council of Teachers of Mathematics, 146–165.

Landauer, T.K. and Bjork, R.A. 1978. “Optimum rehearsal patterns and name learning”. In M.M. 
Gruneberg, P.E. Morris, and R.N. Sykes (eds), Practical Aspects of Memory. London: Aca-
demic Press, 625–632.

Landy, D. and Goldstone, R.L. In press. “How abstract is symbolic thought?” Journal of Experi-
mental Psychology: Learning, Memory, and Cognition.

Mayer, R.E. and Moreno, R. 1998. “A split attention effect in multimedia learning: Evidence 
for dual processing systems in working memory”. Journal of Educational Psychology 90: 
312–320.

Merzenich, M.M., Jenkins, W.M., Johnston, P., Schreiner, C., Miller, S., and Tallal, P. 1996. “Tem-
poral processing deficits of language-learning impaired children ameliorated by training”. 
Science 271(5245): 77–81.



	 Perceptual learning and technology in mathemathics	 403

Mettler, E. and Kellman, P.J. 2006. “Unconscious discovery in concrete and abstract percep-
tual learning”. Paper presented at the Annual Meeting of the Psychonomics Society, Houston, 
Texas.

Michotte, A. 1962. The Perception of Causality. Andover, MA: Methuen.
Michotte, A., Thines, G., and Crabbe, G. 1964. Les Compléments Amodaux des Structures Per-

ceptives [The Amodal Complements of Perceptual Structures]. Louvain: Publications de 
l’Université de Louvain.

Olive, J. 1999. “From fractions to rational numbers of arithmetic: A reorganization hypothesis”. 
Mathematical Thinking and Learning 1(4): 279–314.

Olive, J. 2001. “Connecting partitioning and iterating: A path to improper fractions”. In M. van 
den Heuvel-Panhuizen (ed), Proceedings of the 25th Conference of the International Group 
for the Psychology of Mathematics Education (PME-25, Vol. 4). Utrecht: Freudenthal Insti-
tute, 1–8.

Olive, J. and Steffe, L.P. 2002. “The construction of an iterative fractional scheme: The case of 
Joe”. Journal of Mathematical Behavior 20: 413–437.

Olive, J. and Vomvoridi, E. 2006. “Making sense of instruction on fractions when a student 
lacks necessary fractional schemes: The case of Tim”. Journal of Mathematical Behavior 25: 
18–45.

Paas, G. W. C. and van Merrienboer, J. J. G. 1994. “Variability of worked examples and transfer 
of geometrical problem solving skills: A cognitive load approach”. Journal of Educational 
Psychology 1: 122–133.

Petrov, A.A., Dosher, B.A., and Lu, Z. 2005. “The dynamics of perceptual learning: An incre-
mental reweighting model”. Psychological Review 112(4): 715–743.

Post, T.R., Behr, M.J., and Lesh, R. 1986. “Research-based observations about children’s learning 
of rational number concepts”. Focus on Learning Problems in Mathematics 8(1): 39–48.

Recanzone, G.H., Schreiner, C.E., and Merzenich, M.M. 1993. “Plasticity in the frequency rep-
resentation of primary auditory cortex following discrimination training in adult owl mon-
keys”. Journal of Neuroscience 13(1): 87–103.

Schmidt, R.A. and Bjork R.A 1992. “New conceptualizations of practice: Common principles in 
three paradigms suggest new concepts for training”. Psychological Science 3(4): 207–217.

Schneider, W. and Shiffrin, R.M. 1977. “Controlled and automatic human information process-
ing: I. Detection, search, and attention”. Psychological Review 84 (1): 1–66.

Shiffrin, R.M. and Schneider, W. 1977. “Controlled and automatic information processing: II. 
Perceptual learning, automatic attending and a general theory”. Psychological Review 84(2): 
127–190.

Shipley, T.F. and Zacks, J.M. (eds). 2008.  Understanding Events:  From Perception to Action.  NY:  
Oxford University Press.

Silva, A. and Kellman, P.J. 1999. “Perceptual learning in mathematics: The algebra-geometry 
connection”. In M. Hahn and S.C. Stoness (eds), Proceedings of the Twenty-first Annual 
Conference of the Cognitive Science Society. Mahwah, NJ: Lawrence Erlbaum, 683–689.

Steffe, L.P. 2002. “A new hypothesis concerning children’s fractional knowledge”. Journal of 
Mathematical Behavior 20: 267–307.

Sweller, J., Chandler, C., Tierney, P., and Cooper, M. 1990. “Cognitive load as a factor in the 
structuring of technical material”. Journal of Experimental Psychology: General, 119(2): 
176–192.

Tallal, P., Merzenich, M., Miller, S., and Jenkins, W. 1998. “Language learning impairment: Inte-
grating research and remediation”. Scandinavian Journal of Psychology 39(3): 197–199.



404	 Philip J. Kellman et al.

Thompson, P. 1995. “Notations, convention, and quantity in elementary mathematics”. In J. 
Sowder and B. Schapelle (eds), Providing a Foundation for Teaching Middle School Math-
ematics. Albany, NY: SUNY Press, 199–221.

Thompson, P. and Saldanha, L. 2003.“Fractions and multiplicative reasoning”. In J. Kilpatrick, G. 
Marti, and D. Schifter (eds), Research Companion to the Principles and Standards for School 
Mathematics. Reston, VA: National Council of Teachers of Mathematics, 95–114.

Tzur, R. 1999. “An integrated study of children’s construction of improper fractions and the 
teacher’s role in promoting the learning”. Journal for Research in Mathematics Education 30 
(4): 390–416.

Wise, J.A., Kubose, T., Chang, N., Russell, A., and Kellman, P.J. 2000. “Perceptual learning mod-
ules in mathematics and science instruction”. In D. Lemke (ed), Proceedings of the TechEd 
2000 Conference. Amsterdam: IOS Press, 169–176.

Authors’ addresses

Philip J. Kellman
UCLA Human Perception Laboratory
University of California, Los Angeles
405 Hilgard Avenue
Los Angeles, CA 90095-1563
U.S.A.

Kellman@cognet.ucla.edu

Christine M. Massey
Institute for Research in Cognitive Science
University of Pennsylvania
3401 Walnut Street, Suite 400A
Philadelphia, PA 19104-6228
U.S.A.

massey@seas.upenn.edu

Zipora Roth
Institute for Research in Cognitive Science
University of Pennsylvania
3401 Walnut St., Suite 400A
Philadelphia, PA 19104-6228
U.S.A.

zroth@seas.upenn.edu

Timothy Burke
UCLA Human Perception Laboratory
University of California, Los Angeles
405 Hilgard Avenue
Los Angeles, CA 90095-1563
U.S.A.

mizerai@ucla.edu

Joel Zucker
UCLA Human Perception Laboratory
University of California, Los Angeles
405 Hilgard Avenue
Los Angeles, CA 90095-1563
U.S.A.

zuckerj@ucla.edu

Amanda T. Saw
8617 Abilene St.
Rosemead, CA 91770
U.S.A.

AmandaTSaw@aol.com

Katherine Aguero
Harlem Children’s Zone – Promise 
Academy II
2005 Madison Ave 2nd Fl
New York, NY 10035
U.S.A.

kaguero@gmail.com

Joseph A. Wise
Center for Effective Learning
New Roads School
3131 Olympic Blvd
Santa Monica, CA 90404
U.S.A.

jwise@newroads.org

mailto:Kellman@cognet.ucla.edu
mailto:massey@seas.upenn.edu
mailto:zroth@seas.upenn.edu
mailto:mizerai@ucla.edu
mailto:zuckerj@ucla.edu
mailto:AmandaTSaw@aol.com
mailto:kaguero@gmail.com
mailto:jwise@newroads.org


	 Perceptual learning and technology in mathemathics	 405

About the authors

Philip J. Kellman, PhD, is Professor and Chair of the Cognitive Area in the Department of Psy-
chology at the University of California, Los Angeles, and Director of the UCLA Human Percep-
tion Laboratory. He is also the founder and President of Insight Learning Technology, Inc. and 
the author of patents in learning and display technology. His research spans basic and applied 
areas in visual perception, cognition, and learning.

Christine Massey, PhD, is the Director of Research and Education at the Institute for Research 
in Cognitive Science at the University of Pennsylvania. Her research interests connect basic 
research in developmental cognitive science with mathematics and science learning in educa-
tional settings.

Zipora Roth is the director of curriculum development at PENNlincs, the pre-college education 
group at the Institute for Research in Cognitive Science at the University of Pennsylvania. For 
nearly four decades she has been invested in mathematics and science learning at the elementary 
and middle-school levels, both as a classroom teacher and as a curriculum developer. In recent 
years she has focused on linking current research on learning with educational practice, creating 
technology-based instructional tools to support mathematics learning.

Timothy Burke is Lead Developer for the UCLA Human Perception Laboratory and Vice 
President of Insight Learning Technology, Inc. He is a graduate of UCLA where he received a 
Bachelors of Science in Cognitive Science with a Specialization in Computing and a minor in 
mathematics.

Joel Zucker is Director of Research for the UCLA Human Perception Laboratory and Chief In-
formation Officer for Insight Learning Technology, Inc. He has over 20 years experience in the 
technology industry as an IT professional, programmer, and Head of Engineering for Lava2140, 
LLC. He is a graduate of UCLA and holds a Bachelors of Science in Cognitive Science.

Amanda Saw is a graduate student in cognitive psychology at the Claremont Graduate School. 
She is interested in learning and evaluating educational technologies. She helps to maintain and 
develop the Web Interface for Statistics Education website which features interactive tutorials 
and other statistics education resources.

Katherine Aguero graduated from the University of Pennsylvania with a B.A. in Psychology. 
She completed her degree of Master of Science in Education at Bank Street College of Education 
while teaching in Brooklyn through the Teach for America program. She is currently teaching at 
Promise Academy II, a charter school that is part of Harlem Children’s Zone.

Joseph A. Wise is the director of The Center for Effective Learning at New Roads School. For-
merly, he was a science teacher at Crossroads Upper School for Arts and Sciences for fourteen 
years, and served as the Science Department Chair from 1988–1996. While at Crossroads, Mr. 
Wise was founder and director of the W. M. Keck Math Science Institute from 1996–2001.




