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1 Introduction 

 

Suppose an education researcher wants to test the impact of a high school drop-out prevention 
intervention in which at-risk students attend classes to receive intensive summer school instruction. 
The district will allow the researcher to randomly assign students to the treatment classes or to the 
control group. Half of the students (the treatment group) are assigned to one of four summer classes 
being offered. The other half (the control group) are not assigned to receive any services during the 
summer. Thus, the researcher knows there are four clusters in the treatment group: students in the 
same class share the same teacher and environment and, therefore, are expected to have more 
similar outcomes than students from different classes. The students in the control group, however, 
are not assigned to any classes. How are data for the treatment and control group students to be 
treated in the analysis? 

This scenario is an example of a Partially Nested Randomized Controlled Trial (PN-RCT) where 
treatment students receive intervention services in groups but where this grouping does not occur 
for control students. The purpose of this paper is to provide guidance to education researchers on 
how to recognize, design, and analyze data from PN-RCTs to rigorously assess whether an 
intervention (such as a curriculum, policy, or tutoring program) is effective. 

Chapters 1 and 2 of the paper are written primarily for applied education researchers with an 
introductory knowledge of quantitative impact evaluation methods. Our goal is to help these 
researchers negotiate key concerns when proposing and conducting research using PN-RCT designs. 
The paper addresses design issues such as possibilities for random assignment, cluster formation, 
statistical power, and confounding factors that may mask the contribution of the intervention. 
Chapter 3 is intended for education researchers interested in estimating treatment effects for PN-
RCT designs; it discusses basic statistical models that adjust for the clustering of treatment students 
within intervention clusters, associated computer code for estimation, and a step-by-step guide, 
using examples, on how to estimate the models and interpret the output. Chapter 4 and the technical 
appendixes discuss more advanced statistical topics pertaining to PN-RCTs and are written primarily 
for an audience with a strong statistical background. 

______________________________________________________________________________ 
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Introduction 
 

In the remainder of this introductory chapter, we define PN-RCTs, with specific examples that are 
described in the broader context of the choices for research designs, and provide a roadmap to the 
rest of the paper and a summary of our take away messages. 

1.1 What Is a PN-RCT? 

To clarify the concept of a PN-RCT, let’s consider the distinction between clustered (nested) and 
unclustered (non-nested) randomized trials. In some educational interventions, individual students 
are randomized directly to the treatment or control group, and both intervention and control 
protocols are administered in an individual setting. Such an experiment is an Individual-Level 
Randomized Controlled Trial (I-RCT). An example of an I-RCT would be an experiment with 
home-schooled students in which students in the treatment group are given a tablet computer with 
an adaptive learning program and where students in the control group use the standard curriculum 
without the extra tablet computer. The random assignment to research groups is done at an 
individual level. If 120 students participate in the study, the randomization can be performed by 
placing 60 red balls and 60 white balls in a box and drawing balls without replacement to assign 
students in the list of eligible participants to the control (white ball) or treatment (red ball) group. 
There is no clustering in either the control or treatment arm of the study. Figure 1 depicts an I-RCT. 

In many educational studies, interventions are instead administered at the classroom, school, or 
district level. Consider an experiment to evaluate the effects of a curriculum in which music is used 
to help students understand fractions. Suppose that 20 math classes, each with 25 students, are 
available to participate in the study. In a Cluster Randomized Controlled Trial (C-RCT), 10 classes 
are randomly assigned to the treatment group (where music is used), and the other 10 classes are 
assigned to the control group (where music is not used). In this design, students are nested in classes: 
each student belongs to exactly one class, and students in the same class all receive the same music 
instruction (either treatment or control). Thus, although 500 students participate in the study, there 
are only 20 classes, and, because of the way the randomization was done, classes are the units of 
analysis. In a C-RCT, the pre-intervention characteristics of study teachers and their students will be 
balanced on average across all possible values for the treatment and control classrooms, although 
they could differ numerically in any given RCT due to random sampling. The outcomes of students 
in the same class are expected to be positively correlated because they share the same teacher and 

______________________________________________________________________________ 
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environment, and this correlation must be accounted for in the data analysis to arrive at correct 
conclusions about the effect of the intervention. Figure 2 depicts a C-RCT. 1 

Figure 1. Depiction of an I-RCT 

Figure 2. Depiction of a C-RCT where classrooms are randomized 

1 In this C-RCT example, random assignment could be conducted using intact classrooms. Alternatively, students could be randomly allocated to 
classrooms prior to the random assignment of classrooms to increase the precision of the estimated treatment effects.  Both of these designs are C-
RCTs due to cluster-level random assignment. 
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Figure 3. Depiction of a PN-RCT for a small group tutoring intervention   

A PN-RCT is a hybrid of an I-RCT and a C-RCT. In a PN-RCT, students in the treatment group are 
clustered like those in a C-RCT, and students in the control group are unclustered like those in an 
I-RCT. The design is called partially nested because students in the treatment group are nested in some 
higher level unit, such as a tutoring group or class, but students in the control group are not nested 
as part of the experimental design. Because the design combines features of both an I-RCT and a 
C-RCT, the analysis must combine features of both as well. Figure 3 depicts a PN-RCT. 

PN-RCT designs are common in educational and behavioral research where interventions are often 
delivered in group settings, whereas the control protocol often involves no additional clustering. In a 
literature review of public health research, Bauer, Sterba, and Halfors (2008) found that 32 percent 
of the 94 randomized experiments identified across four journals from 2003-2005 used PN-RCT 
designs. In a similar literature review of educational research, Sanders (2011) found that about 
15 percent of the 75 randomized experiments identified across four journals from 2007-2009 used 
PN-RCT designs. 2  

2 These journals included the American Educational Research Journal, the Journal of Educational Psychology, Contemporary Educational Psychology, and Remedial and 
Special Education. 
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Although much has been written about how to address design and analysis concerns in I-RCTs and 
C-RCTs (see, for example, Donner and Klar 2000, 2004; Raudenbush and Bryk 2002), there is less 
guidance on how to navigate these issues for PN-RCTs. This paper provides such guidance. 

1.2 Recognizing Education PN-RCTs 

PN-RCTs are experimental designs where treatment group students receive intervention services in 
clusters—referred to as intervention clusters (ICs)—but where this type of clustering does not affect 
those in the control group. In a PN-RCT, individuals in the same IC may share common 
characteristics and intervention experiences because they are exposed to the same tutor, teacher, 
curriculum, or learning environment. 

1.2.1 The Basic PN-RCT Design 

The simplest PN-RCT design is where individuals from a single population—such as a single school, 
school district, Head Start center, or summer program location—are randomly assigned to 
experimental conditions. It is assumed that treatment group individuals are subsequently placed into 
ICs, whereas control individuals are not. For this design, the only source of clustering is due to the 
ICs created by the intervention; additional sources of clustering due to other nesting structures are 
not present. 

Sometimes it is difficult to recognize a real-life experiment as having the basic PN-RCT structure 
because real experiments often blend features from several types of designs. We start, then, with the 
hypothetical experiment briefly mentioned in section 1.1 on using music to help students understand 
fractions and proportional reasoning and discuss how it might be alternatively conducted as a 
C-RCT, as an I-RCT, and as a PN-RCT. 

Example 1.1. Three Alternative Designs for an Experiment. The experiment on using music 
described in the introduction is a classic C-RCT. The students are clustered in 20 classes; half of the 
classes are randomly assigned to the treatment group, and the other half are assigned to the control 
group. The teachers in the treatment group classes have the students study songs that illustrate 
different concepts about fractions: the Blue Danube Waltz for thirds and Twinkle Twinkle Little 
Star for halves and fourths, and working up to Mars: Bringer of War (from The Planets by Gustav 

______________________________________________________________________________ 
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Holst) for fifths and The End (from Abbey Road by the Beatles) for combining fractions and 
switching from thirds to fourths. 

In the C-RCT, the students in both the control and treatment groups are clustered. There are many 
potential reasons that students in the same class will tend to perform similarly on the assessment: 
students in the same class may have similar backgrounds, they are all being taught by the same 
teacher (and teachers may vary in effectiveness), and the group setting means that some students can 
influence the performance of their peers. This experiment, therefore, needs to be analyzed in the 
same way as it was randomized. The 20 classes can be considered independent of each other because 
they are the units being randomized, but individual students are positively correlated with other 
students in the same class because of the shared environment and teacher. Thus, when analyzing the 
data, there are only 20 independent units (the classes). The data can be analyzed using hierarchical 
linear modeling (HLM) methods at the student level. Alternatively, a simple but correct analysis can 
be performed by calculating the mean test score for each class so that there are 10 observations for 
the control group and 10 observations for the treatment group and then using a two-sample t test 
with the mean scores as the 20 observations for the experiment.  

It is more difficult to visualize conducting this study as an I-RCT. To do that, the intervention 
would need to be in a form that is administered in an individual setting rather than in a group 
setting. Let’s suppose, then, that the music curriculum is placed on a tablet computer. There is a 
pool of 500 students available for the study. Half of them are randomly selected to get the music 
curriculum to work on by themselves at home, and the other half in the control group do not have 
any additional activities. The students are not clustered in any way in terms of receiving the 
intervention or control protocols; students in both groups can be considered to be independent 
observations. The data can be analyzed by using a two-sample t test with 250 students in each group. 

For a PN-RCT, as in the I-RCT, there is a pool of 500 students available, and half are randomly 
assigned to receive the treatment protocol and the other half to the control protocol. But in the PN-
RCT design, the students in the treatment arm receive the intervention in a group setting: they are 
grouped into 10 ICs of 25 students each, with each IC taught by a different teacher. The students in 
the control arm have no such clustering. The analysis of the experiment needs to treat the students 
in the control arm as independent observations but needs to account for the clustering in the 
treatment arm. Methods for doing this are described in chapter 3. 

The key features of a basic PN-RCT design are 

______________________________________________________________________________ 
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 Individual students are randomly assigned to the treatment or control arm of the 
experiment. 

 The intervention is administered in a group setting, and the ICs are formed after the 
students have been assigned to the treatment arm. ICs can be formed purposively by 
educators (e.g., based on characteristics of students and teachers) or could be formed 
randomly. 

 At least two ICs must be formed, so it is possible to calculate variances of the estimated 
intervention effects. 

 The control protocol is administered to individuals who are not in ICs. 

Thus, the basic PN-RCT design is typically used for interventions that take place outside of the 
typical classroom setting: summer programs, experiments for improving home-schooling, pre-school 
interventions, or after-school programs. The design may also be used for a study within a single 
school, provided that students within the school are randomized individually to the treatment and 
control groups and that the ICs are formed after randomization (that is, the ICs are not the same as 
the regular classrooms). Example 1.2 describes a real-world education study that fits the structure of 
a basic PN-RCT. 

Example 1.2. Pre-K Social-Communication Intervention for Children with Autism. Roberts et 
al. (2011) investigated the effects of an early social-communication intervention program for 
preschool children diagnosed with an autism spectrum disorder. Children were recruited from the 
local area and were randomly assigned to one of two conditions: (1) a small-group, center-based 
intervention or (2) an individualized, home-based intervention. The center-based (treatment) 
condition (n = 29) involved groups of five to six children (with a simultaneous parent support 
group), whereas the home-based condition (n = 27) took place in the child’s home with the parent 
present. Each child and parent was assessed before and after the intervention was delivered over a 
40-week study period. This study has the key features of a basic PN-RCT: (1) individual children 
were randomly assigned to the treatment and home-based groups, (2) children randomized to the 
treatment group were then placed in centers (ICs) and received the intervention in a small group 
setting, and (3) children randomized to the home-based group received the home-based intervention 
individually (not in a group setting).  

The next hypothetical example describes a design that appears at first glance to be a PN-RCT but is 
in fact not a valid study design. This example explains why at least two ICs are needed for the 
design. 

______________________________________________________________________________ 
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Example 1.3. An Invalid Study Design. Consider a hypothetical experiment conducted at one site 
in which half of the students are randomly assigned to the treatment group and the other half are 
randomly assigned to the control group. The students randomly assigned to the control group 
receive no intervention; the students in the treatment group all attend the same tutoring session (IC). 
Note the difference from the PN-RCT design in Example 1.1: in Example 1.1, 10 ICs were formed, 
while in this example, only 1 IC is formed. Here, the effect of the intervention cannot be separated 
from the effect of the treatment students’ classroom or teacher. The students in the same IC may be 
positively correlated, but that correlation cannot be estimated in this experiment. For variance 
estimation purposes, the sample size in the control arm is the number of students in the control 
group, but the sample size in the treatment arm is one: the number of ICs. Stated differently, with 
only one IC, it is not possible to estimate a variance for the treatment group because this variance 
represents the extent to which mean student outcomes vary across the ICs. Thus, with only one IC, it 
is not possible to conduct a two-sample t test. 

This same problem occurs in many fully nested experiments in education, particularly in small-scale 
studies. A researcher has two classrooms available, and randomly assigns one classroom to the 
control group and the other to the treatment group. Essentially, the sample size is one (the number 
of classes) in each treatment arm, and a sample size of one does not allow you to estimate variability. 
This is an improper study design and does not allow for inferences to be made about the 
effectiveness of the intervention. To make valid statistical inferences from a fully nested design, you 
need to have at least two clusters in each study arm. 

The same principle carries over to PN-RCTs. At least two ICs are needed to make inferences about 
the effectiveness of the intervention. The multiple ICs can be in the same site, as described in 
Examples 1.1 and 1.2. Alternatively, multiple sites or blocks may be used, as described in section 
1.2.2. 

1.2.2 The Blocked PN-RCT Design 

It is often the case that a single site will not have enough students to allow the effect of the 
intervention to be detected with sufficient power. In addition, experiments done at a single site may 
have limited generalizability to other sites. In a blocked3 PN-RCT design, the basic PN-RCT design is 

3 Some researchers refer to this type of design as a stratified design and use the term strata instead of blocks. In the following, we use the term block to 
refer to a site in which the basic PN-RCT design is replicated. 
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replicated separately across several sites (blocks), such as cities, schools, or classrooms. In this 
design, students are randomized to treatment and control groups separately in each block.  

The key features of a blocked PN-RCT design are 

 Potential participants in the experiment are arranged in blocks before randomization 
takes place. These blocks can be naturally occurring units such as classrooms, schools, 
districts, or cities. Alternatively, blocks may be deliberately formed by the researcher in 
advance of the study. For example, the researcher may group students into three blocks 
by their score (high, medium, low) on a pretest.  

 Individual students are randomly assigned to the treatment or control arm of the 
experiment. The randomization is carried out separately within each block. Thus, if 
blocks are schools, half of the participating students within School A are randomly 
assigned to the treatment group, and the other half are assigned to the control group. 
The same randomization procedure is carried out for School B, for School C, etc. 

 The ICs are formed for the treatment students separately within each block. Thus, if 
blocks are schools, the students randomized to the treatment group from a school are 
then assigned to one or more ICs; each of those ICs contains students from only that 
school (i.e., ICs are nested in schools). More complex designs, where ICs contain 
students from more than one block, are described in section 4.2. 

 In contrast to the single-site PN-RCTs described in Examples 1.1 and 1.2, in the 
blocked PN-RCT it is permissible to have one IC in each block, as described in 
Example 1.5; the multiple blocks provide the replication needed to make valid 
conclusions from the study. 

 The control protocol is administered to individuals randomized to the control group in 
each block. 

Because the randomization is done separately in each block, the comparison group for the treatment 
students in a block is the set of control students in that block.  

Example 1.4. Elementary Summer Program for Disadvantaged Children. Chaplin and 
Capizzano (2006) conducted a random assignment evaluation of the Building Educated Leaders for 
Life (BELL) program—a summer school program designed to improve academic skills and social 
behaviors among low-income, academically challenged children. In this study, more than 1,000 
elementary school children who applied to the program in New York and Boston in 2005 were 
randomly assigned to either a treatment group that was selected to participate in the program or a 
control group that was not. For academic activities, students selected to participate in the program 
were grouped into more than 30 ICs of about 15 children each, where each IC was taught by a 
regular teacher from the public schools and an experienced teaching assistant.  

______________________________________________________________________________ 
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This design classifies as a blocked PN-RCT design because (1) students were randomly assigned to a 
treatment or control condition within each city (blocking units), (2) treatment students were grouped 
into summer school classes using BELL placement rules in operation at the time of the study, and 
(3) there is no comparable clustering for control students who were not offered summer school 
slots. 

Example 1.5. An After-School Intervention. A PN-RCT design similar to the BELL evaluation 
was used for the impact evaluation of the 21st Century Community Learning Centers program 
(James-Burdumy et al. 2005). This evaluation was conducted in 26 after-school centers in 12 school 
districts, where the after-school programs typically offered homework sessions, academic activities, 
enrichment activities (such as art, drama, or music), and recreation activities. For the elementary 
school design, more than 2,300 elementary school students interested in attending a specific 21st 
Century Center were randomly assigned to a treatment group that could attend the center or a 
control group that could not. 

Random assignment was conducted within each center, so this design is a blocked PN-RCT. The 
blocks consist of the students interested in attending each center. Within each block, the students 
randomly selected to attend the center form the IC, and the students not selected to attend the 
center form the control group.  

Note that if the students attending the center are considered to be the IC, there is one IC per block 
in this design. Because there are 26 blocks, however, the treatment effect can still be estimated from 
this design (unlike the setting in example 1.3 where there is only one IC in the experiment).4 

4 Consider the analogy with a simpler experiment. If an experiment has only two students—one in the control group and one in the treatment 
group—then the effect of the intervention cannot be evaluated because there is no information on the variability in each group. If, however, 10 
students are formed into 5 pairs, and 1 student in each pair is randomly assigned to the control group and the other to the treatment group, then a 
paired t test can be conducted to evaluate the effects of the intervention. 

Examples 1.4 and 1.5 describe blocked PN-RCTs in which the intervention takes place outside of 
the regular school setting. In Example 1.6, students in the treatment group are pulled out of school-
day activities to participate in the intervention.  

Example 1.6. Kindergarten Math Intervention. A smaller-scale example of a blocked PN-RCT 
design was used by Dyson, Jordan, and Glutting (2013) to investigate an intervention intended to 
help kindergarteners develop core number competencies. Participants were recruited from five 
schools with large numbers of students at risk for mathematics difficulties. Children were 
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randomized separately within each kindergarten classroom to the treatment group or to the control 
group. Both groups of children received the usual mathematics instruction during their regular 
mathematics instruction period. Children in the treatment group were placed into groups of 4 for 30 
minutes per day, 3 days per week for 8 weeks; the intervention took place at a time when the 
children were not receiving their regular math instruction and was conducted at a small table either 
inside the classroom or just outside the classroom. 

This example is a blocked PN-RCT with classrooms serving as the blocking unit. The design 
classifies as a PN-RCT because (1) children are randomly assigned to the treatment or control group 
within each classroom, (2) the control group students receive no additional instruction, and (3) the 
treatment group students receive the intervention in a small group setting. 

1.2.3 C-RCTs That Share Features of a PN-RCT 

Other forms of designs also fall under the PN-RCT umbrella. These include designs in which more 
complicated forms of nesting occur along with the basic PN-RCT asymmetry between the treatment 
and control groups. 

As an example, let’s consider a design where schools are randomly assigned to treatment and control 
groups, and then ICs are formed in the treatment schools. Is this a PN-RCT? Such an experiment is 
technically a C-RCT because schools rather than individual students are randomly assigned to the 
treatment and control groups. Thus, school-level clustering applies to both the treatment and control 
groups. But the treatment group has an additional source of variability (the ICs) not found in the 
control group. 

These types of “hybrid” C-RCT designs share features of PN-RCTs in the sense that clustering 
effects differ for the treatment and control groups due to the ICs. Thus, we consider these designs as 
falling into the general class of PN-RCTs because a different design structure exists for the two 
research groups. We consider statistical aspects of these designs in chapter 4, which, for simplicity, 
we label as “PN-RCTs” even though this is a bit of a misnomer because these designs have 
clustering in both research arms but with an additional source of clustering in the treatment group 
due to the ICs.5 Example 1.7 illustrates such a design in which students are pulled out of regular 
classrooms in the treatment schools but not in the control schools. 

5 As discussed in Chapters 3 and 4, the intraclass correlation coefficients (ICCs) that are often used to examine clustering effects in C-RCT designs 
become more complex for hybrid C-RCT designs because the ICCs for the treatment group must reflect multiple layers of clustering. Thus, in these 
designs, the ICCs will differ for the treatment and control groups. 
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Example 1.7. Pull-Out Mathematics Program. In the Evaluation of the Number Rockets 
Intervention (Rolfhus et al. 2012), 76 schools in 4 urban districts were randomly assigned to a 
treatment or control condition. In the treatment schools, grade 1 students at risk for difficulties in 
mathematics were provided intensive mathematics instruction by a tutor—in small groups—that 
met outside the classroom during the regular school day (but not during regular mathematics 
classes). These pull-out groups formed the ICs. 

This design is a C-RCT because schools were randomized. However, this design can also be 
considered to be in the class of PN-RCT designs because students in the treatment schools were 
placed into small tutoring groups (the ICs). Thus, clustering effects differed for the treatment and 
control groups: for the treatment group, students were nested within ICs that were nested within 
schools, whereas for the control group, students were nested only within schools. This asymmetric 
design structure should be taken into account in the analysis (see section 4.1). 

We have discussed the use of schools both as potential blocking units (section 1.2.2) and as potential 
clusters (this section). In both situations, students who are in the same school are expected to be 
more similar than students who are in different schools because they share the same school 
environment, may live in the same neighborhood, or may have other factors in common. A 
researcher might ask, then, why a school is considered a blocking unit for some experiments and a 
clustering unit for others. The answer depends on how the randomization to the treatment and control groups 
is performed. If students are randomly assigned to treatment and control groups separately within 
schools so that each school contains both treatment and control students, then schools are a 
blocking unit. In that case, the similarity of students in the school helps increase the precision of the 
estimated treatment effect because the treatment students in the school are compared with the 
control students in that school, who share the same environmental factors. If entire schools are 
randomly assigned, however, with some schools receiving the treatment protocol for all of their 
participating students and the others receiving the control protocol for all of their participating 
students, then schools are clusters. The treatment students are in completely different schools from 
the control students, so the estimated treatment impact includes the school-to-school variability as 
well as the student-to-student variability. In general, blocking increases precision, while clustering 
decreases it. 

______________________________________________________________________________ 
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1.3 Contrasting I-RCTs, C-RCTs, and PN-RCTs 

Much has been written about the design and analysis of data from C-RCTs and the distinction 
between an I-RCT and a C-RCT. Useful references for C-RCTs include Donner and Klar (2000, 
2004), Campbell, Elbourne, and Miller (2004), and Raudenbush and Bryk (2002). In this section, we 
summarize similarities and differences among I-RCT, C-RCT, and PN-RCT designs and analyses. 
Table 1 outlines the major distinguishing features of the three designs. 

RCTs are considered the gold standard6 for education evaluations that address causal questions 
because, in expectation, the randomization process divides measured and unmeasured factors that 
could influence the outcome approximately evenly between the treatment and control groups. Thus, 
in an I-RCT, we would expect to have about half of the highly motivated students in each study arm; 
in a C-RCT, the classrooms or schools with superior teachers are equally likely to be in the treatment 
or control group, and the academic abilities of students in the randomized clusters will be balanced 
across the two research groups. Ideally, in an RCT, the only difference between the control group 
and the treatment group is the presence of the control or intervention protocol. This feature of a 
randomized study allows us to conclude that an intervention caused a change in student outcomes. 

A PN-RCT is a special form of an RCT in which the intervention is administered in a group setting 
but the control protocol is not administered in a group setting. The basic feature of an RCT—
randomization of units to the treatment or control condition—still holds. Thus, we would expect 
that the randomization process would divide other characteristics approximately evenly between the 
treatment and control groups so that the groups differ only by the presence of the intervention, 
which is administered in a PN-RCT to clusters of students. Importantly, PN-RCTs are RCTs 
whether or not treatment students are randomly assigned to ICs. IC formation has no effect on the 
overall comparability of the treatment and control groups, which is the defining feature of an RCT, 
although there are advantages and disadvantages to whether ICs are formed purposively or 
randomly (as discussed in more detail in chapter 2). 

6 See ies.ed.gov/ncee/pubs/evidence_based/randomized.asp  
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Table 1.  Contrasting features of I-RCT, C-RCT, and Basic PN-RCT designs 

 I-RCT C-RCT PN-RCT 
Randomization Individual students are 

randomized to treatment 
and control groups 

Clusters of students are 
randomized to treatment 
and control groups. 

Individual students are 
randomized to treatment 
and control groups. 
Students in the 
treatment group are 
further assigned in some 
way to the different ICs. 

Cluster formation No clusters Usually naturally  
occurring clusters such 
as classrooms, schools, 
or school districts 

ICs are formed in the 
treatment group only 
after students are 
assigned to study arms.  

Independent units Students Clusters Students in the control 
arm; ICs in the treatment 
arm 

Typical statistical 
method used to evaluate 
intervention impact 
using a continuous 
outcome measure 

Two-sample t test (or 
nonparametric test such 
as Wilcoxon) 

Hierarchical linear 
model, with clusters as 
second-level units and 
students as first-level 
units 

Special form of HLM, 
described in chapter 3 

1.4 Roadmap to the Rest of the Paper and Take Away 
Messages 

The remainder of this paper addresses statistical design and analysis issues for PN-RCTs. Chapter 2 
reviews some of the statistical concerns applied researchers may have when preparing to conduct a 
PN-RCT. Chapter 3 contains more detailed information about how to analyze data collected via the 
simplest type of PN-RCT design and the blocked PN-RCT design. This chapter presents the 
statistical models for the designs and provides SAS code, output, and interpretation of the results for 
data examples. 

Chapter 4 discusses advanced topics and is written primarily for an audience with a strong 
background in HLM methods. In some experiments, PN-RCT features may be incorporated as part 
of a larger study that involves multiple layers of clustering for both the treatment and control 
groups. Chapter 4 discusses these alternative designs and shows how to analyze data from them 
using SAS software. It also discusses statistical issues of power calculations for the basic and blocked 
PN-RCT designs discussed in chapters 1-3 as well as the designs discussed in section 4.1. 
The appendices discuss other topics that may be of interest to researchers. Appendix A, intended for 
readers interested in the statistical formulation of the models, places PN-RCTs in the general 
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context of a mixed linear model. Appendix B discusses issues of degrees of freedom calculations. 
Appendices C and D show how to analyze data from a simple PN-RCT using R and HLM software, 
respectively. Finally, Appendix E gives the complete SAS code for generating the data sets used in 
the examples and analyzing the results. 

We focus on the design and analysis of PN-RCTs for a continuous post-intervention measure, such 
as an achievement test score, that is analyzed at the student level. Our results also apply to binary 
outcomes (for example, high school graduation status or proficiency in math or English) that are 
analyzed using linear models. We do not discuss nonlinear or generalized linear models (such as 
probit or logit models) for analyzing binary or ordinal outcomes. However, the basic concepts 
presented in this report also pertain to nonlinear models. 

The report focuses on statistical aspects of PN-RCTs. We do not discuss other important evaluation 
design issues, such as informed consent and other ethical issues for experimental designs and how 
they might differ for PN-RCTs. For example, PN-RCTs might involve collecting data on teacher-
student links that would otherwise be confidential and not required in other types of RCTs. In this 
case, if students are tracked into high and low-ability groups, parents might not want this 
information to be revealed. The National Forum on Education Statistics (2010) Guide to Data 
Ethics discusses ethical issues and guidelines for education research. 

To help the reader sift through the detailed analyses presented in this paper, we first summarize our 
key points, by topic, as follows: 

Defining PN-RCTs (chapters 1 and 2) 

PN-RCTs occur when the ICs are groupings formed specifically for the study, apart from 
naturally occurring clusters such as classes or schools. In an education PN-RCT, the 
intervention must supplement the status quo learning environment and be administered in a group 
setting. The formation of ICs for the treatment group leads to an asymmetric design structure for 
the treatment and control groups; this asymmetry is the defining feature of PN-RCTs. For simplicity, 
we label designs as “PN-RCTs” even if more complicated forms of nesting occur along with the 
basic asymmetry between the treatment and control groups due to the ICs. 

PN-RCTs are randomized experiments regardless of how ICs are formed. Because of random 
assignment, in expectation, the full treatment and control groups will be balanced in terms of their 
baseline characteristics (both observed and unobserved). Consequently, the comparison of the mean 
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outcomes across the two groups provides unbiased estimates of the causal effects of the 
intervention on key student outcomes. This property holds regardless of how treatment students are 
assigned to ICs.  

Broad Design Considerations for PN-RCTs (chapter 2) 

In PN-RCTs, ICs present in the treatment condition but not the control condition may 
introduce confounds that could bias the impact findings. Care must be taken when designing 
PN-RCTs to ensure that the differences between the treatment and control groups are due to the 
intervention and not some other extraneous factors that correlate with study outcomes and 
treatment status. Confounds may exist because the treatment students receive intervention services 
in a new group environment (the ICs), whereas the control students do not. For instance, the ICs 
may make it easier to administer the evaluation for the treatment group (e.g., obtaining signed study 
consent forms and collecting data) than for control group students who may be more dispersed and 
less invested in the study. As another example, grouping students into small ICs may be an 
intervention in itself.  

The way in which students are assigned to ICs should conform to the study research 
questions and implementation context. In some PN-RCTs, researchers may not have the 
flexibility to design the way ICs are formed; this might occur, for example, in evaluations of existing 
or ongoing interventions where educators have well-established mechanisms for forming the ICs. In 
other PN-RCTs, researchers may not want to alter the IC formation process (even if they could) so 
that they can examine the effects of interventions as typically implemented. In some evaluations, 
researchers may want to randomly assign students to ICs to be able to rigorously compare teacher 
practices across ICs.  

PN-RCTs can accommodate multiple treatment groups. In some PN-RCTs, education 
researchers might want to test the relative effects of several intervention components in isolation or 
in combination, so study results can be used to develop a promising package of intervention 
services. For example, an education researcher may be interested in varying intervention dosage 
levels across ICs or in testing different intervention features (e.g., IC size and curriculum) in a 
factorial design. These multi-armed PN-RCTs have the same general design structure as the PN-
RCT with a single treatment and control group because they share the common feature that 
treatment students are nested within ICs. 

______________________________________________________________________________ 
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Many PN-RCT issues apply also to quasi-experimental designs (QEDs). A partially nested 
design structure can also exist in QEDs, such as matched comparison group, regression 
discontinuity (RD), instrumental variable (IV), or single-subject designs. These designs all share the 
common feature of a treatment group that receives intervention services and some comparison 
group that does not. Thus, a partially nested design structure emerges if the treatment group receives 
intervention services in clusters, whereas IC-level clustering does not exist in the control group. 

Statistical Power Considerations for PN-RCTs (chapters 2 and 4) 

Sample sizes must be somewhat larger under PN-RCT designs than under traditional RCT 
designs without ICs to achieve precise impact estimates. IC effects typically increase the 
variances of the responses for the treatment group, so required student, classroom, and school 
samples must be larger in PN-RCTs than in traditional RCTs without ICs to achieve the same level 
of statistical precision. For similar reasons, specialized sample size formulas are required for PN-
RCTs. 

Precision levels can typically be improved if more ICs and fewer students per IC are 
sampled for the study. Subject to study resource and implementation constraints, researchers 
designing PN-RCTs should be aware that statistical power can be improved by selecting more ICs 
with fewer students per IC. This design could be implemented, for example, by randomly 
subsampling students within ICs to allow for a larger sample of ICs. 

An important area for future research is to obtain empirical values for intraclass correlation 
coefficients (ICCs) for PN-RCT designs. This report presents sample size calculations assuming 
a range of plausible values for clustering effects due to IC formation. An important area for future 
research is to use a range of datasets and alternative outcome measures to obtain empirical values for 
these ICCs in multiple settings, so education researchers can use appropriate values when planning 
their PN-RCTs. 

Statistical Analysis for PN-RCTs (chapters 2, 3, and 4) 

The asymmetric design structure in PN-RCTs complicates the estimation of treatment 
effects and the computer code needed for estimation. In PN-RCTs, the variances of the 
treatment and control group mean outcomes could differ. This asymmetry occurs because IC effects 
pertain to the treatment group but not to the control group. This leads to a different model error 
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structure for the treatment and control groups. SAS, R, and HLM code needs to be adapted to meet 
the programming requirements of PN-RCTs. 

In this paper, we focus on methods for analyzing data from PN-RCTs that treat ICs as 

random factors in the impact estimation models. There is some controversy in the literature 

about whether one should regard variability across ICs as a random factor for purposes of 

generalizing the impact findings to broader IC realizations or whether one should regard ICs as fixed, 

thereby restricting inferences to the particular ICs used in the study. In reality, some IC-related 

factors are likely to be random, and others are likely to be fixed; hence, treating all IC-related factors 

as fixed could result in underestimation of the variance of the treatment impact. Thus, in this paper, 

we take a more conservative approach and provide methods for analyzing data from PN-RCTs that 

treat ICs as random factors. The approach one adopts, however, is based on assumptions. 

The inclusion of detailed baseline covariates in the impact estimation models can help unify 

various statistical approaches for treating IC effects in the analysis. If students are randomly 

assigned to ICs, the various approaches for analyzing PN-RCT data are similar because variability 

across ICs will be minimized. However, if students are tracked into ICs based on their pre-

intervention characteristics, it is critical that baseline covariates be used in the models to help explain 

this tracking. For PN-RCTs, researchers must recognize the importance of collecting information on 

IC assignment rules and collecting baseline data to measure these rules. 
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This chapter reviews some concerns that applied education researchers may have when preparing to 
conduct a PN-RCT in terms of appropriate design and analysis. We discuss topics such as IC 
formation, sample size requirements, data needs, and background issues on statistical estimation. 
The presentation is intended to be conceptual and nontechnical and to build off the presentation in 
chapter 1. A more detailed statistical treatment of estimation methods for PN-RCTs is provided in 
chapters 3 and 4. 

A rigorous PN-RCT evaluation must adhere to basic principles of good scientific practice. First, the 
evaluation research questions should drive the design decisions and not the other way around. Study 
research questions should be based on a clear conceptual model of intervention components and the 
hypothesized causal chain leading to expected intervention effects on key mediating and longer term 
outcomes. As we shall see, PN-RCTs can be designed to address different research questions. 

Second, a PN-RCT needs to be designed with the analysis in mind. The basic rule in analyzing 
randomized experiments is: Analyze as the study was designed. In a PN-RCT, the analysis methods must 
account for the different design structure for the treatment and control groups due to IC formation. 
This leads to statistical models that are more complex than for standard RCT designs where the 
design structure is symmetric for the treatment and control groups. 

Importantly, PN-RCTs are randomized experiments regardless of how ICs are formed. In PN-
RCTs, students are first randomized to treatment and control groups, and second, treatment group 
students are allocated to ICs using some placement mechanism. Thus, in expectation, the full 
treatment and control groups will be balanced in terms of their baseline characteristics (both 
observed and unobserved). Consequently, the comparison of the mean outcomes across the two 
groups provides unbiased estimates of the causal effects of the intervention on key student 
outcomes. 
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Key Design and Analysis Issues for PN-RCTs 

2.1 Design Questions for PN-RCTs 

PN-RCTs should in general be considered only when the ICs are groupings formed specifically for 
the study, apart from naturally occurring clusters such as classes or schools. If the intervention is to 
be administered to entire classes that already exist, then the appropriate control group consists of 
other classes that already exist, and a C-RCT should be used. As discussed in chapter 1, other forms 
of designs also fall under the PN-RCT umbrella. These include designs in which more complicated 
forms of nesting occur along with the basic PN-RCT asymmetry between the treatment and control 
groups.  

PN-RCT designs could be appropriate for testing either existing or new interventions that involve 
group administration outside of the normal classroom environment. The feasibility of PN-RCT 
designs will clearly depend on logistical considerations, such as whether the study schools have 
sufficient sample sizes to generate precise impact estimates and sufficient space and staff for 
delivering the group instruction. 

To help applied education researchers assess whether a PN-RCT is appropriate for their evaluations, 
we consider several design-related questions that might help inform this choice: 

Is there a minimum number of ICs that are required for a PN-RCT? A PN-RCT where IC 
factors are treated as random must contain at least two ICs to produce proper variance estimates. 
The appropriate number of ICs for an evaluation, however, will typically be much larger, so the 
study can produce precise estimates of intervention effects (see section 2.4). 

Is there a minimum number of treatment students per IC that are required for a PN-RCT? 
In a “pure” PN-RCT where IC factors are treated as random, each IC will contain at least two 
treatment students. There may be evaluations, however, where ICs have only one student. This 
could occur, for example, because some students with special needs require their own tutor or 
because some students have missing outcome data. If every IC has only one student, the design is an 
I-RCT, not a PN-RCT. However, designs where some ICs have one student and others have more 
students fit the PN-RCT structure for part of the treatment group but not for those in the 
“singleton” ICs. The estimation methods discussed in chapter 3 for the basic PN-RCT design can be 
easily adapted to account for these singletons.7 

7 Specifically, the random IC-level error terms would not be included in the estimation models for these singletons because these observations are 
independent of other observations. 
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What if the intervention is a pull-out program that removes students from their regular 
classrooms? Is this a PN-RCT? The answer is “it depends.” To help explain this complex issue, it 
is important to remember that we have defined PN-RCTs to include designs where other sources of 
nesting could exist in both the treatment and control groups but where nesting due to ICs pertains only 
to the treatment group. Keeping this in mind, consider the following designs: 

 Suppose students are randomized within classrooms and that the pull-out program 
supplements the normal classroom instruction. The pool of randomized students can 
consist of all students in the classroom or targeted students only (for example, English 
language learners). We assume that the pull-out program meets outside normal 
classroom hours (for example, after school when the control students are no longer in 
school) so that the treatment and control group students spend the same amount of 
time in their regular classrooms. An intuitive way to view this design is that a “mini-
experiment” is being conducted in each classroom, where each classroom is its own 
block (site). Treatment and control students are nested within the same regular 
classrooms, but the treatment students have an extra source of clustering due to the ICs. 
Thus, this design is a PN-RCT due to this extra layer of clustering for the treatment 
students. This design should be treated as a blocked PN-RCT where classrooms are the 
blocks. This design addresses the following research question: Does a supplementary 
pull-out program improve student outcomes? 

 Suppose instead that the pull-out program fully replaces the normal classroom instruction. 
In this case, treatment and control students would attend different classrooms, and 
there is no extra layer of clustering for the treatments. Thus, this design is not a PN-RCT 
because the design structure is parallel for treatments and controls. This design differs 
from the one in the previous bullet because it is answering a different question related 
to the relative effects of two interventions: Is small group instruction more effective 
than regular classroom instruction? 

 Suppose now that the pull-out program partially replaces the normal classroom 
instruction. This could occur, for example, if the treatment group students are pulled 
out of their regular classrooms for part of time (for instance, for 15 minutes during a 
1-hour reading instruction period). Although this design is a hybrid of the designs in the 
first two bullets above, it can be classified as a PN-RCT because of the extra layer of 
clustering in the treatment groups due to the ICs. However, because treatment and 
control students spend different amounts of time in their regular classrooms, the 
correlation structures due to shared regular classroom experiences could differ for the 
two groups of students. 

 Suppose now that classrooms rather than students are randomly assigned to the treatment 
and control groups and that students in the treatment classrooms receive the pull-out 
intervention. In this design, classrooms are clusters, not blocks as in the previous 
examples. Thus, we have a C-RCT. However, if the pull-out program supplements or 
partially replaces the regular classroom instruction, we have classified these designs as 
“PN-RCTs” because there is an extra layer of clustering in the treatment group due to 
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the ICs. If the pull-out program instead fully replaces the traditional curriculum, then this 
design would not be a considered a PN-RCT because there is a parallel data structure 
for the treatment and control groups. 

Although these designs may appear at first glance to be similar, they require quite different methods 
for estimating treatment effects (see chapters 3 and 4). 

What if teachers provide services in multiple ICs? Is this a PN-RCT? The answer is “yes” in 
general, although the nesting structure becomes more complex. For example, consider an evaluation 
with 10 ICs and 2 teachers (Teachers A and B) where 5 ICs are taught by Teacher A and the other 
5 ICs by Teacher B. In this case, treatment students in different ICs who are taught by Teacher A 
may have correlated outcomes because they are affected by the general competence of the teacher. 
In addition, treatment students in the same IC might be expected to have even greater similarity 
because they share not only the same teacher but also the same IC environment. Thus, we obtain a 
complex three-stage hierarchical structure for the treatment group (students nested within ICs 
nested within teacher), but no such clustering exists for the control group. 

As another example of a design where teachers provide services in multiple ICs, consider an 
evaluation where a tutor has one-on-one sessions with treatment students but teaches several 
students in the sample. Although this design has only one student per tutoring session, it could be 
considered to be a PN-RCT if we assume that students with the same tutor are in the “same” IC. In 
this design, the intervention is administered to students individually, but students taught by the same 
tutor could have correlated outcomes, so this design could fit the PN-RCT structure. 

What confounding issues can arise in PN-RCTs that could bias the impact estimates? 
Confounding occurs when an effect that is actually due to another source is attributed to the 
intervention. Confounding can lead to spurious impact findings to the extent that observed 
treatment-control differences can be explained by extraneous factors other than the offer of the 
treatment. Confounding could occur from a poorly designed study or from factors that occur after 
random assignment (such as treatment-control differences in study attrition). An example of 
confounding in education is an experiment in which exactly two teachers participate in the study: all 
of the students of Teacher A are assigned to the control group, and all of the students of Teacher B 
are assigned to the treatment group (see example 1.3 in chapter 1). In this example, the effect of the 
intervention cannot be separated from the effect of the teacher. 
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Extraneous variables that affect all students in the study equally are not confounding variables. For 
example, in an experiment conducted entirely in a high-poverty school district, poverty status is not 
a confounding variable because it affects both the treatment and control group students to an 
equivalent degree (although restricting the sample to a homogenous set of schools could reduce the 
generalizability of study findings to broader contexts). Rather, we are concerned about variables that 
systematically affect students in the treatment group differently from how they affect students in the 
control group. 

PN-RCTs have several sources of potential confounding less commonly found in other RCTs. 
These originate because the treatment group has a different structure from the control group. A 
consideration of these confounding factors is an important dimension for assessing whether a PN-
RCT design should be used for an evaluation. Examples of such confounding factors are 

 Grouping students into ICs can be considered to be an intervention in itself. 
With a PN-RCT, the effect of the intervention being tested is always confounded with 
the effect of placing the treatment students in new types of clusters (without any 
intervention program). For instance, in a PN-RCT with a pull-out intervention that 
meets outside the normal classroom, it is possible that the treatment group students 
would experience performance changes by being placed in small groups without the pull-
out curriculum. In this case, the observed treatment-control differences could reflect 
both grouping effects as well as the effects of the intervention curriculum. Grouping 
effects could lead to increased performance (for example, because of an improved 
learning environment or more attention from teachers) but could also lead to decreased 
performance (for example, because of stigma effects). 

 Student and teacher knowledge of the experiment might be greater in the 
treatment group. Students in ICs are likely to know that they are participating in the 
study, especially for interventions that change the learning environment (e.g., a pull-out 
program). Control students may not have this same knowledge and may be less invested 
in evaluation outcomes than are treatment students. Thus, there may be a study effect, 
unrelated to the nature of the intervention, for students in merely being selected to 
receive the treatment. 

 Attrition may differ in the treatment and control groups. If students in the control 
group are less involved in the study, they may be more likely to drop out before the 
outcomes are measured. In an alternative scenario, if an intervention requires large time 
commitments or is intrusive, students in the treatment group may be more likely to 
drop out. In either case, it is possible that the students with complete data for all 
outcomes may have different characteristics in the treatment and control groups. 
Nonresponse adjustments using available baseline data can be employed to help correct 
for differential attrition across the two research groups (for example, by adjusting the 
sample weights using propensity score procedures or using instrumental variable 
methods). However, if the reasons students drop out are related to the outcome variable 
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but cannot be fully explained by baseline covariates, then the differential attrition may 
lead the estimated treatment impact to be biased. Note that differential attrition 
between the treatment and control groups could also be an issue for I-RCTs and C-
RCTs. 

 Sources and levels of measurement error may differ in the treatment and control 
groups. Because students in the treatment group are in new types of clusters, it may be 
easier to administer the evaluation for these students (e.g., collecting data) than for 
control group students who may be more dispersed and less invested in the study. 
Furthermore, IC leaders may be more invested than control group educators in ensuring 
high study participation rates (e.g., obtaining signed study consent form from parents) 
and the collection of high-quality outcome data. In addition, students may perform 
differently if their teachers are supportive of the study than if they are not. A related 
issue is that outside data collectors may be more aware of (less “blinded” to) the 
research assignments of treatment students in the ICs than the control students, and 
this could affect data responses and quality. Treatment-control differences in data 
measurement and study participation could be related to study outcomes and 
intervention effects. These confounding factors could lead to biased impact estimates. 

In the BELL summer school study (example 1.3 in chapter 1), for example, some of the 
outcome measures were observed onsite at the BELL program. The control group 
students, however, were less likely to show up at the site for testing and, therefore, were 
more likely to have data collected later at their homes. Thus, the control students were, 
on average, tested later than the intervention students. The testing time was partially 
confounded with the intervention in the study.8 

If a PN-RCT is to be conducted, care must be taken to help overcome these sources of confounding 
to ensure that the only difference between the two research groups after random assignment is the 
administration of the intervention. If confounding is likely to be a major concern in a PN-RCT, 
researchers may want to consider whether a C-RCT design could be implemented instead. For 
example, in some studies, it might be possible to have control students grouped in study halls of the 
same size as the ICs. Then both arms of the study would have clustering, and the study would 
measure whether the intervention has any effect beyond that observed by having students grouped 
together. Because the students are in a study hall, the outcome measurement can be administered 
more uniformly for the two study arms. 

To help overcome these sources of confounding, education researchers could also consider 
allocating a greater share of evaluation resources to the control than treatment group for study 
recruitment and data collection efforts. This approach could help minimize attrition and data quality 
differences across the two research samples. 

8 Chaplin and Capizzano (2006) adjusted student test scores for the time lag between the program end and the test score measurement. 
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2.2 How Should ICs Be Formed? 

A critical issue in designing a PN-RCT is the approach for assigning students and teachers to ICs to 
best answer the key evaluation research questions. In the education context, many factors can 
contribute to how students and teachers are placed into ICs. In some studies, students and teachers 
may be assigned randomly to ICs. In other studies, ICs may be formed naturally based on student 
characteristics (e.g., prior academic achievement and age), teacher characteristics (e.g., experience, 
preferences, and expertise), or practical constraints (e.g., students’ daily schedules and tutor 
availability). In these cases, IC formation is not an evaluation design parameter but is part of the 
evaluation context. Regardless of how IC assignments are made, PN-RCTs are randomized 
experimental designs because individuals are randomly assigned to the treatment and control groups. 
Thus, PN-RCTs provide causal estimates of average treatment effects (full treatment-control 
differences) on key study outcomes. PN-RCTs are not quasi-experimental designs (QEDs), which are 
based on comparison groups that are formed using methods other than random assignment. 

In some PN-RCTs, researchers may not have the flexibility to design the way ICs are formed; this 
might occur, for example, in evaluations of existing or ongoing interventions where educators have 
well-established mechanisms for forming the ICs. In other PN-RCTs, researchers may not want to 
alter the IC formation process (even if they could), so they can examine the effects of interventions 
as typically implemented; this approach could improve the generalizability of study results. In yet 
other evaluations, researchers may want to randomly assign students to ICs to address a broader set 
of research questions by comparing outcomes across ICs to rigorously assess the relative effects of 
particular IC features (for example, IC tutor characteristics). 

This section discusses several design options for IC formation under PN-RCT designs, and the 
advantages and disadvantages of each one. The issue of how large an IC should be is discussed in 
section 2.4. 

Natural assignment of students and teachers to ICs. For most PN-RCTs that have been 
conducted in the social sciences, study ICs were formed naturally after random assignment using IC 
assignment rules in place at the time of the evaluations. For example, in a large, nationwide random 
assignment evaluation of the Job Corps program—the nation’s largest residential education and 
training program for disadvantaged youth ages 16 to 24—eligible program applicants were randomly 
assigned to treatment and control groups, and treatment students were then assigned to Job Corps 
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centers (the ICs) using existing program rules (Schochet et al. 2009). Similarly, in nearly all of the 
many experimental evaluations that have been conducted in the U.S. to examine the effects of 
group-based case management services for welfare recipients, unemployment insurance recipients, 
criminal offenders, drug addicts, and myriad other populations, ICs were formed using existing 
program rules. In these studies, researchers did not interfere with IC placements, so they could 
examine intervention effects in typical implementation settings. 

The main advantage of a PN-RCT that uses status quo procedures for forming ICs is that the 
impact findings could be germane to the way in which the program would be rolled out more 
broadly. For instance, in an education PN-RCT, if students are normally tracked into ICs based on 
their ability level, there might be policy interest in conducting an evaluation that uses ICs formed in 
this manner rather than a design where students are randomly assigned to ICs, thereby undoing this 
tracking. Thus, the design with purposeful IC placements aims to address the following policy-
relevant research question:  What are the effects of the intervention as typically implemented? 

There are, however, several disadvantages to this design. First, the design could reduce the precision 
of the impact estimates by increasing the estimated variances of outcomes across ICs (see section 
2.6). Differences across ICs could arise due to systematic variation across ICs in the characteristics 
of students, the quality of teachers, the teacher-student-fit, the course curriculum, and the extent of 
peer interaction effects. If higher ability or lower ability students at baseline are systematically 
grouped together to facilitate group learning, the variance of outcomes across ICs could be sizable. 

There are several ways to help mitigate this variation inflation problem. First, including student-level 
baseline covariates in the estimation models can improve precision by explaining some of the 
variation in student outcomes across ICs due to the nonrandom sorting of students to ICs (see 
section 3.4); this is the preferred method. Such covariates will vary depending on the evaluation 
context but could include measures of prior year academic achievement, risk factors for adverse 
outcomes (for example, special education or English language learner status), socioeconomic status, 
class schedules, and other indicators of how students were sorted into ICs. Thus, for PN-RCTs, it is 
important that researchers collect information on IC assignment rules and, to the extent possible, 
collect baseline data to measure these rules, including qualitative information from school staff. 
Second, ICs could be treated as fixed effects for the study rather than as randomly selected from a 
broader population, although such an approach may underestimate the true variability (see 
section 2.5). Finally, researchers could improve precision by selecting study sites with uniform types 
of students, learning environments, interventions, and providers. Although this approach will likely 
reduce IC heterogeneity, the cost is that the study results will likely generalize to a narrower 
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population. Thus, the desire to obtain more precision for the estimated treatment effects must be 
balanced with the desire to generalize to a wider population. 

Alternatively, if ICs are formed based on student characteristics, a blocked PN-RCT design might be 

used, as described in section 1.2.2. In this design, the researcher would assign all participating 

students to blocks using the existing placement rules, where each block would have twice as many 

students as would typically be assigned to an IC. Then, within each block, half of the students would 

be randomly assigned to the treatment group and the other half to the control group. The students 

assigned to the treatment group within a block would form one IC and receive the intervention in 

the IC setting; the students in the control group in that block receive the control protocol. The 

benefit of this design is that information on IC placements would be available for both the treatment 

and control students, and block indicator variables could be added to the models. The blocks would 

control for all potential explicit and subjective factors that were used when assigning students to ICs. 

Thus, this blocked design could control for the mechanisms used to assign students to ICs, thereby 

increasing the precision of the impact estimates. 

A second drawback of a PN-RCT where ICs are formed naturally is that the design would have no 
statistical basis for comparing the outcomes of treatment group students across ICs or comparing a 
subset of ICs to the control group. Thus, this design would not be suitable for addressing research 
questions such as: “Do intervention effects differ for more experienced tutors than less experienced 
ones?” Thus, under this design, it would be harder to rigorously assess the relative effects of 
particular IC features in improving student outcomes, which could be important to inform decisions 
about how best to target specific intervention services and how to improve the design or 
implementation of the tested interventions. 

Random assignment of students to ICs. In some PN-RCTs, researchers may feel that the study 
research questions can best be addressed if students are randomly assigned to ICs. There are several 
advantages to this approach. First, the random assignment of students to ICs will, in expectation, 
balance student characteristics across ICs. Thus, this design could improve the precision of the 
average treatment effects (ATE) estimates by reducing variability across ICs, although these effects 
would still remain because of IC differences in teacher quality, peer effects, and sampling error. 
Statistical power issues might be an important consideration in smaller scale PN-RCTs that are 
conducted in only few schools or classrooms. 
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A second benefit of a design that randomly assigns treatment students to ICs is that it could be used 
to compare ICs to each other and to the control group. In particular, this design could be used to 
address research questions pertaining to the relative effectiveness of intervention providers with 
different characteristics, for example, teachers with varying experience or education levels, in 
improving students’ academic achievement. This design could answer a research question such as: 
“What are intervention effects for the average student who is taught by an experienced teacher?” An 
example of an influential C-RCT that used this type of design was the Evaluation of Teach for 
America (TFA) (Decker et al. 2004) that compared TFA teachers with traditionally trained teachers. 
Students were randomly assigned to classrooms, so the evaluation could rigorously assess whether 
student achievement outcomes differed for the two types of teachers and across TFA teachers with 
different background characteristics. 

If these types of questions are of particular importance for the evaluation, statistical power for these 
comparisons could be improved if a higher percentage of students were assigned to the treatment 
than control group. For example, if logistically feasible, rather than a design with a 50-50 treatment-
control split, the design could use a 70-30 treatment-control split, so more ICs would be available 
for analysis. This approach, however, would reduce precision for the overall treatment-control 
contrast. 

The main disadvantage of a design that randomly assigns treatment students to ICs is that the ATE 
estimates based on the full treatment and control groups might not pertain to intervention effects 
more generally. For example, consider a tutoring intervention where students are normally placed 
into small learning groups based on their reading ability, but where the evaluation instead randomly 
assigns students to ICs. In this case, it is likely that the IC learning environment for the study would 
not be typical of the IC learning environment if the intervention were rolled out more broadly. 
Thus, in this case, the study results might not be generalizable to broader settings, and policymakers 
could criticize study findings as not being germane to their own contexts. Clearly, this would not be 
a concern if, in typical intervention settings, students would be more or less randomly assigned to 
ICs. But the generalizability issue could be problematic if typical implementation involves the 
nonrandom tracking of students into ICs. This is an important concern because the intent of many 
evaluations is to identify promising interventions for broader use. Thus, to the extent possible, 
researchers may want to conduct evaluations in real world settings. 
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2.3 Can PN-RCTs Accommodate Multiple Treatment Groups? 

In some PN-RCTs, education researchers might want to test the relative effects of several 
intervention components in isolation or in combination, so study results can be used to develop a 
promising package of intervention services. For example, an education researcher may be interested 
in varying intervention dosage levels across ICs (e.g., the number of tutoring sessions per week or 
session length) to examine the association between impacts and dosage. Or there may be interest in 
testing different intervention features (e.g., IC size and curriculum) in a factorial design. These 
designs have multiple treatment groups: in the first example, each dosage would be considered a 
different treatment, and in the second example, four treatment groups would be formed using the 
four possible combinations of IC size and curriculum. 

These multi-armed PN-RCTs have the same general design structure as the PN-RCT with a single 
treatment and control group. The common feature of these designs is that the treatment students 
are nested within ICs. Thus, the statistical estimation framework discussed in chapters 3 and 4 can 
be easily generalized to the multi-armed design. 

In some multi-armed experiments, there may not be a pure control group. In the PN-RCT context, 
this would mean that all students in the sample are assigned to ICs. This design is no longer partially 
nested but is fully nested because the same design structure applies to all research groups; this 
simplifies the estimation models. 

For multi-armed PN-RCTs, it is preferable that students are randomly assigned to ICs along with the 
various treatment packages. This design is appropriate because multi-armed experiments are typically 
conducted to test out new treatments or combinations of treatments, and, thus, there might not be 
existing mechanisms for assigning students to these types of ICs. Furthermore, although in theory 
the multi-armed design could also be used for the design where ICs are formed naturally, results 
from this design would be difficult to interpret, and statistical power would likely be lower. 

Researchers should realize that statistical power may be a concern in multi-armed PN-RCTs due to 
potentially small sample sizes in each treatment arm, as well as statistical adjustments to significance 
levels that should be used to account for the multiple comparisons problem (see Schochet 2009). 
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Thus, these designs will typically require large samples so that the study can rigorously compare the 
intervention packages to each other. These designs may not be suitable for small-scale PN-RCTs. 

2.4 How Many ICs and Students Per IC Should Be Selected? 

An important part of any evaluation design is determining appropriate sample sizes to ensure that 
the study will have a good chance of finding a statistically significant ATE estimate, if the true ATE 
is of a size that is meaningful and attainable. Lipsey et al. (2012) provide a framework for defining 
meaningful and attainable ATEs for education evaluations (where ATEs are measured in effect size 
or standard deviation units). For instance, they suggest that researchers examine the natural growth 
in student achievement in a school year, policy-relevant performance gaps across student subgroups 
or schools, and observed effect sizes from previous similar evaluations. Education researchers can 
use this framework for their evaluations to set targets for anticipated treatment effects—that is, 
“precision targets”—and to determine appropriate sample sizes to achieve those targets. 

In education RCTs, the statistical precision of the impact estimates (often loosely referred to as the 
“statistical power” of the evaluation) depends on the variances of the ATE estimates (measured in 
effect size units). These variances are primarily a function of sample sizes and the design structure. 
For unclustered designs (I-RCTs), variances are primarily a function of the number of treatment and 
control students in the sample. For clustered designs (C-RCTs), variances are primarily a function of 
(1) the number of clusters, (2) the number of students per cluster, and (3) the correlation among two 
students in the same cluster—the intraclass correlation— described in chapter 3. For all designs, 
variances of ATE estimates can be reduced by including baseline covariates in the statistical model, 
and the reduction in variance can be measured using the regression R2 value. 

The basic PN-RCT design with random IC factors is a hybrid of an I-RCT and C-RCT design; thus, 
the power calculations for PN-RCTs must incorporate variance features of both designs. These 
power calculations will determine the required number of control group students, ICs, and treatment 
group students per IC so that the evaluation can estimate ATEs with the desired precision level. 

In some PN-RCTs, the number of students per IC will be determined by program staff based on 
their normal IC assignment mechanisms. In these cases, researchers will need to assess the required 
number of ICs, given these IC student sizes. In other instances, researchers may have some latitude 
in determining IC student sizes for their evaluations. This choice could depend on the nature of the 
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intervention and its theory of change, implementation considerations (such as the availability of 
space and teachers), and precision and cost tradeoffs of selecting more ICs as compared to selecting 
more students per IC. 

Chapter 4 provides a detailed mathematical discussion of sample size calculations and formulas for 
all the PN-RCT and related designs considered in this paper. Table 2 displays illustrative sample size 
results for the basic PN-RCT design with random IC effects.9 The table displays total sample sizes—
split evenly between the treatment and control groups—that are required to achieve ATE precision 
targets measured as minimum detectable impacts in effect size units (MDEs). The figures are 
presented for various intraclass correlations ( )θρ , regression R2 values that range from 0 (the model 

with no covariates) to .75, and IC sizes that range from 2 to 20 students to allow for designs with 
small ICs (e.g., groups with tutors) and larger ICs. 

Table 2. Total sample size calculations for students for the basic PN-RCT design with random 
IC effects, for treatment and control groups of equal size 

Regression R2 value from model covariates 

Average IC sample size  0 .25 .50 .75 
MDE Target = .10;  ρθ = .1 

2 3,489 2,617 1,745 872 
5 4,013 3,010 2,006 1,003 

10 4,885 3,664 2,443 1,221 
20 6,630 4,972 3,315 1,657 

MDE Target = .10;  ρθ = .2 

2 3,926 2,944 1,963 981 
5 5,103 3,827 2,552 1,276 

10 7,066 5,300 3,533 1,767 
20 10,992 8,244 5,496 2,748 

MDE Target = .20; ρθ = .1 

2 872 654 436 218 
5 1,003 752 502 251 

10 1,221 916 611 305 
20 1,657 1,243 829 414 

MDE Target = .20; ρθ = .2 

2 981 736 491 245 
5 1,276 957 638 319 

10 1,767 1,325 883 442 
20 2,748 2,061 1,374 687 

9  Sample size calculations for the model where IC effects are treated as fixed are shown in section 4.3.3. 

                                                 



Key Design and Analysis Issues for PN-RCTs 
 

Table 2.  Total sample size calculations for students for the basic PN-RCT design with random IC 
effects, for treatment and control groups of equal size (Continued) 

 

Regression R2 value from model covariates 

Average IC sample size  0 .25 .50 .75 
MDE Target = .30; ρθ = .1 

2 388 291 194 97 
5 446 334 223 111 

10 543 407 271 136 
20 737 552 368 184 

MDE Target = .30; ρθ = .2 

2 436 327 218 109 
5 567 425 284 142 

10 785 589 393 196 
20 1,221 916 611 305 

MDE Target = .40; ρθ = .1 

2 218 164 109 55 
5 251 188 125 63 

10 305 229 153 76 
20 414 311 207 104 

MDE Target = .40; ρθ = .2 

2 245 184 123 61 
5 319 239 159 80 

10 442 331 221 110 
20 687 515 343 172 

MDE Target = .50; ρθ = .1 

2 140 105 70 35 
5 161 120 80 40 

10 195 147 98 49 
20 265 199 133 66 

MDE Target = .50; ρθ = .2 

2 157 118 79 39 
5 204 153 102 51 

10 283 212 141 71 
20 440 330 220 110 

NOTES: All calculations were conducted assuming a 5 percent significance level, two-tailed test at 80 percent power, and equal 
treatment and control group sample sizes. The figures in the table show total sample sizes (split evenly between the treatment and 
control groups) that are required to achieve the indicted ATE precision targets measured in effect size units.  The figures are shown for 

various precision targets, intraclass correlations ( )θρ and regression R2 values. See chapter 4 for formulas and details.  

Our key results are as follows: 

In the basic PN-RCT design, accounting for the clustering of students in ICs will increase 
required sample sizes. Consider the required total sample size of 957 students (split evenly 
between the treatment and control groups) that is displayed as the second shaded entry in the table. 
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This is the sample size that would be required if we anticipate that the ATE will be .20 standard 
deviations; the number of students per IC will be 5 (in 191 ICs); the intraclass correlation θρ will be 

.10; and the regression 2R value will be .25. Under an I-RCT design with no clustering due to the  
ICs, the required sample size would reduce to 589 students (not shown). Required sample sizes 
become smaller as 2R and precision targets increase and as θρ  values decrease. 2R values have a 

particularly large effect on precision; thus, the collection of detailed baseline variables is an 
important design feature for improving the precision of the impact estimates. 

Precision levels can typically be improved if more ICs and fewer students per IC are 
sampled for the study. In the above example, using the shaded figures in Table 2, we find that 
reducing the IC sample size from 5 to 2 students will reduce the required sample size from 957 
students (in 191 ICs) to 736 students (in 368 ICs). Thus, subject to study resource and 
implementation constraints, researchers designing PN-RCTs should be aware that statistical power 
can be improved by selecting more ICs with fewer students per IC. This design could be 
implemented, for example, by subsampling students within ICs to allow for a larger sample of ICs. 
The subsampling should be done randomly to ensure that the selected sample is representative of all 
students in the ICs. 

We refer interested readers to chapter 4 for the sample size formulas that were used to calculate 
these quantities and those for other PN-RCT designs considered in chapters 3 and 4. These 
formulas can be used by researchers to perform power calculations for their own evaluations using 
specific power analysis parameter values that fit their contexts. 

2.5 What Should Be Done About Other Sources of Clustering in 
PN-RCTs? 

In any experimental evaluation of an education intervention, students in the sample are likely to be 
connected in some way that could lead to correlations among their outcomes. Regardless of the 
study design, students may be clustered in classrooms, schools, or neighborhoods. Students eligible 
for the study could also have social or familial connections to other students. 

Because sources of clustering exist in all evaluations, as background for discussing statistical analysis 
for PN-RCTs, it is useful to ask the following general question that pertains to all experimental 
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designs: When is it necessary to statistically account for clustering effects in the analysis? This 
question has caused quite a bit of confusion in the literature. 

In general, only clustering that occurs as part of the design of the experiment needs to be considered in the analysis. 
Other forms of clustering do not need to be considered. This idea seems somewhat non-intuitive at 
first. Why would one type of clustering be considered in the analysis but not another? The answer 
lies in the randomization process. 

Let us first consider this issue for an I-RCT with a pool of students from different schools. It is 
almost impossible that none of the students have connections to others. Some of those connections 
may be observed (such as attending the same school), while others are unobserved (such as 
belonging to the same church, softball team, or play group). When those students are individually 
randomly assigned to treatment or control groups, however, the randomization process randomly 
divides students who originate in the same school to the two research groups. The randomization 
essentially cancels out the pre-existing clustering effect from the original schools, just as it cancels 
out pre-existing effects from unobserved connections between the students such as belonging to the 
same church, softball team, or play group. If the randomization were redone, a different subset of 
students from a specific school or church or softball team or play group would end up in the 
treatment group. Thus, in the analysis of data from an I-RCT design, the models must account for 
the variance of outcomes across students (because students are randomized) but not across the pre-
existing clusters (which cancel). 

The situation is different in a C-RCT. There, the pre-existing clusters are the units that are 
randomized to the treatment or control group. Let’s suppose a C-RCT is conducted in which the 
clusters are schools. Students in the same school always end up together in the same study arm. If 
the school is randomized to receive the intervention, all the students in the school receive the 
intervention; if the school is randomized to receive the control, all the students in the school receive 
the control. If the randomization were redone, the students in the same school would still end up 
together. Thus, for a C-RCT, the analysis must account for the variability of outcomes across 
clusters (that we label as “clustering effects”). There is widespread agreement across many 
disciplines that clustering effects due to the random assignment of clusters must be taken into 
account in the analysis (see, for example, Donner and Klar 2000, 2004; Murray 1998; Raudenbush 
1997; Schochet 2008; Walsh 1947). In a C-RCT, the random assignment of clusters to treatment or 
control provides the basis for inference; an analysis that ignores the clustering effects will calculate 
“standard errors” that are misleadingly smaller than the true standard errors. As Cornfield (1978, 
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p. 101) said, “Randomization by cluster accompanied by an analysis appropriate to randomization by 
individual is an exercise in self-deception.” 

In a PN-RCT in which individual students are randomly assigned to the treatment or control group, 
the randomization essentially cancels out the effects of pre-existing clustering, just as in an I-RCT. 
The randomization does not, however, cancel out the effect of clustering by the ICs. If the 
experiment were repeated and new students were randomized to the treatment and control groups, 
the students in the treatment group in the replicated experiment would also experience clustering 
from the ICs. The question then becomes how the analysis should treat clustering effects induced by 
the formation of the ICs after randomization. This is a design choice based on researcher assumptions. 
This issue gets at the heart of the fixed-versus-random IC effects issue that we discuss next. 

2.6 An Overview of the Literature on Statistical Analysis of PN-
RCTs: How Should IC-Level Clustering Be Treated? 

The statistical analysis of the basic PN-RCT design has been considered in other disciplines, 
particularly in the area of psychological counseling. Martindale (1978) discussed experiments where 
control group subjects receive no psychotherapy while treatment group subjects receive 
psychotherapy, with multiple subjects being treated by the same therapist. Although the intervention 
is not conducted in a group setting, patients seeing the same therapist are expected to have more 
similar outcomes than patients who see different therapists; essentially, the group of patients in the 
study seeing one therapist forms an IC. 

Since Martindale’s (1978) article, there has been a robust debate in the literature on the proper 
statistical analysis of PN-RCTs for experimental evaluations of psychotherapy interventions (Crits-
Christoph and Mintz 1991; Crits-Christoph, Tu, and Gallop 2003; Hoover 2002; Serlin, Wampold, 
and Levin 2003; Siemer and Joormann 2003; Wampold and Serlin 2000). The central issue addressed 
by this literature is how “therapist effects” or, in our terminology IC effects, should be handled in 
the impact analysis. The statistical problem is that even though random assignment is conducted at 
the patient level, treatment patients are clustered (nested) within therapists and, thus, may have 
correlated outcomes that could inflate the variance estimates.10 

10 More precisely, these studies consider designs where patients are randomly assigned to one of two treatment groups that are offered different types 
of therapy. Thus, therapist effects would apply to both research groups in these designs. The statistical issues associated with these designs are similar 
to those discussed in this report. 
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The debated issue for these designs is whether IC effects should be treated as (1) random factors 
where the model error structure includes random IC effects or (2) fixed factors where the model 
excludes the random IC effects. The central question is whether one should regard intervention 
providers as a random factor for purposes of generalizing the impact findings to a broader provider 
population or whether one should regard providers as a fixed factor, thereby restricting inferences to 
the particular providers used in the study. Several articles in the 2003 issue of Psychological Methods 
(volume 8) take differing stances on this issue. 

In the education context, under the random effects assumption, ICs are assumed to be sampled 
from a larger population of possible IC realizations. It is assumed that in a re-run of the experiment, 
not only would the specific students assigned to the treatment and control groups change (because 
of random assignment), but such factors as IC assignment mechanisms, intervention teachers, 
curricula, and implementation fidelity could also change. Thus, under this approach, researchers 
would use an HLM approach for estimation where ICs are treated as another HLM level. 
Accordingly, variances of the estimated ATEs would be inflated to account for the extent to which 
mean outcomes vary across ICs. In this framework, the study results generalize outside the study 
sample (see, for example, Baldwin et al. 2005; Bauer et al. 2008; Lee and Thompson 2005; Roberts 
and Roberts 2005; Sanders 2011; Siemer and Joorman 2003; Wampold and Serlin 2000). 

Under the fixed effects assumption, ICs are instead assumed to be fixed (not sampled) for the study. 
This approach assumes that study findings pertain only to the IC assignment mechanisms, specific 
teachers, curricula, and service delivery that were in place at the time of the evaluation. Under this 
framework, it is assumed that in a re-running of the experiment, the treatment and control students 
would change but that the IC structure would remain fixed (that is, the same tutors and curriculum 
would be in place, and the same procedures would be used to assign students and tutors to the ICs). 
In this scenario, variability between ICs is soaked up in the student-level variance. In essence, with 
student-level random assignment, this approach reduces to an I-RCT, and simple ordinary least 
squares (OLS) methods can be used for estimation. Siemer and Joorman (2003) argued that if 
therapists are deliberately chosen for the study, they may not be representative of a larger population 
of therapists, and, therefore, a fixed effects approach should be considered. In that case, the results 
of the study apply to the treatment as delivered by the specific IC providers in the particular study. 

In education evaluations, some IC-level factors are likely to be fixed, and some are likely to be 
random. Thus, the decision of whether education researchers should adopt the random or fixed 
framework is complex. To help navigate this choice, it is helpful to categorize sources of variation 
across ICs into two groups: (1) student-sorting factors due to pre-existing differences in the baseline 
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characteristics of students assigned to ICs; and (2) intervention-related factors due to differences across 
ICs in the characteristics of IC tutors, instructional approaches, peer effects, and any other 
unmeasured factors that might affect all of the students in an IC. 

Variation due to student-sorting factors. Under the random effects specification, it is important 
that the variance estimates not reflect pre-existing differences in the baseline characteristics of 
students across ICs that are correlated with key study outcomes. If students are tracked into ICs 
based on these characteristics, the estimate of IC-level variability under the random effects 
specification will in general overestimate the true IC-level contribution to the variance because it will 
capture student compositional differences across ICs. This could lead to variance estimates in the 
treatment group that are unrealistically large. For example, suppose that there is considerable 
tracking of students into ICs and that there are zero treatment effects for all sample members. In 
this case, the random effects framework will generate a much larger estimated variance for the 
treatment group mean than the control group mean simply because of the nonrandom sorting of 
students into ICs. 

We, therefore, recommend that if the random effects approach is adopted and students are 
nonrandomly sorted into ICs based on their characteristics, detailed baseline data should be collected for 
modeling the student assignment to ICs. Model covariates are needed to explain differences in student 
compositional differences across ICs. These covariates must be available for both the treatment and 
control students. The idea is that after conditioning on the covariates, the model will mimic the design 
where students are randomly assigned to ICs. The exact covariates to include in the model will 
depend on the specific IC formation process but are likely to include pre-intervention achievement 
measures (such as pre-test scores and grades) and demographic variables (such as language ability 
and grade level). If such baseline data are not available, researchers could consider analyzing the data 
using the fixed effects framework, but this approach will likely understate the true variance and is 
not the recommended approach.11 

Variation due to intervention-related factors. Absent student-sorting factors, variability across 
ICs will primarily reflect intervention-related factors, such as differences in teacher quality, IC 
curriculum, peer effects, and so on. This type of IC-level variation may be of policy interest because 
it could reflect variation that might be expected in more widespread implementation of the 

11 We define the fixed effects model (with student-level randomization) as a standard I-RCT or OLS impact model that (1) does not include random IC 
factors in the model error terms and (2) does not include indicators of IC membership as model covariates for the treatment group. If students are 
tracked into ICs, including these IC indicators in the model may underestimate the variance of the treatment group mean because these IC fixed 
effects will attribute student-level characteristics to the ICs for the treatment group but not for the control group; thus, these indicators will remove 
too much of the student-level variability from the variance of the estimated impact (Lockwood et al., 2013). 
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intervention. Accordingly, education researchers may wish to adopt the random effects specification 
to account for this type of IC-level variation. 

A complication, however, is that the variation in ICs due to intervention-related factors could have 
both fixed components (for example, tutor experience) as well as random components (for example, 
teacher-student interactions and peer effects). If researchers deem that the fixed components are 
important, the random effects specification may produce variance estimates that are upwardly 
biased. One approach for handling this issue would be to include fixed IC-level factors (for example, 
teacher experience) as model covariates (see section 3.4). This scenario might be germane, for 
instance, if  schools targeted for the intervention always have a mix of experienced and 
inexperienced teachers, in which case it might be of policy interest to assess IC-level variation 
conditional on teacher experience (that is, across teachers with the same experience level). 

Summary and focus of paper.  In education evaluations, some IC-level factors are likely to be 
fixed and some are likely to be random. Thus, it is likely that the random effects framework will 
provide upper bound estimates on the “true” variances for the treatment group, while the fixed 
effects framework will likely provide lower bound estimates. The main concern for the random 
effects framework is that the estimation models adequately control for the potential variation across 
ICs due to the nonrandom sorting of students to ICs. This type of “spurious” variation could 
seriously reduce the precision of the impact estimates and erode statistical power. The IC-level 
variance due to intervention-related factors is of greater policy interest. 

In the remainder of this paper, we assume the random effects framework with rich baseline 
covariates available to explain some of the variation across ICs in student composition. This 
approach provides a unified framework for estimating ATE effects and their standard errors that 
account for the heterogeneity of treatment effects that could exist across the student population.  

This approach is also appealing in that it likely provides conservative upper bound estimates on the 
“true” variances of the impact estimates. Finally, the random effects approach is more general than 
the fixed effects approach because it reduces to the fixed effects approach if the IC-level random 
effect is removed from the model error term (or equivalently, if the IC random effect is assumed to 
have zero variance; see chapter 3). Thus, the models that we discuss in this paper largely apply also 
to the fixed effects framework, with appropriate model restrictions. 
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2.7 What Are Key Data Collection Issues to Help Interpret the 
Study Findings? 

There are several key data collection issues that are particularly important for PN-RCT designs. 
First, evaluators should collect identifying information on the ICs that each treatment group 
member attended during the follow-up period, including dates of attendance and changes in IC 
membership status over time. These data will be necessary to describe IC characteristics and IC 
formation. These data will also be needed to create covariates to include in the impact estimation 
models to explain some of the variation in mean outcomes across ICs, thereby increasing the 
precision of the estimates (as discussed more formally in chapter 3). 

Second, for PN-RCT designs, it will be important for the evaluation to collect process information 
on how interventions and providers were selected for the study. Data should also be collected on 
key IC features, such as student and teacher characteristics, teacher practices, IC curricula, the 
fidelity of intervention implementation within each IC, and the mechanisms used to assign students 
and teachers to ICs. These process data can be collected as part of site visits, from teacher or 
principal interviews, or from other sources. These data can be used to form model covariates to 
adjust for pre-existing differences in the baseline characteristics of students and teachers assigned to 
ICs. The analysis of these data will also provide contextual information to help explain any observed 
variation in outcomes across ICs and the credibility of the random or fixed effects paradigm. This 
information can be used to help interpret the overall and subgroup impact findings and the extent to 
which they can be replicated and generalized to broader settings. 

2.8 Do PN-RCT Issues Apply Also to Quasi-Experimental Designs? 

Thus far, we have considered partially nested designs in experimental settings only. It is not always 
possible, however, to conduct RCTs of education interventions for a variety of logistical and ethical 
reasons. Instead, education researchers often conduct evaluations using QEDs such as matched 
comparison group, RD, or IV designs. Although a full consideration of partially nested designs in 
QED settings is beyond the scope of this paper, we briefly comment on a few big picture issues. 

First, similar to experiments, QEDs all involve the identification of a treatment group that receives 
intervention services and a comparison group that does not. Furthermore, in all partially nested 
designs, the treatment group receives intervention services in clusters, whereas IC-level clustering 
does not exist in the control group. Thus, the design issues that we have discussed for PN-RCTs, 
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such as IC formation for the treatment group, the handling of IC clustering in the analysis, and data 
needs are largely germane to QEDs also. 

Second, in QEDs where treatment group members are matched to comparison group members 
from another data source (using propensity score matching or related methods), overall statistical 
issues for impact estimation should be very similar to those for PN-RCTs. In these QEDs, the 
comparison sample serves as a proxy for an experimental control group; thus, similar differences-in-
means estimation methods apply. This will not be the case, however, for other QEDs (such as RD 
and IV designs) that involve alternative impact estimation strategies to account for sample selection 
biases (e.g., local linear methods for estimating local average treatment effects for RD designs and 
two-stage least squares methods for IV designs). These methods have been adapted for C-RCT 
designs; thus, we surmise that they can also be adapted to partially nested designs. 

Finally, QEDs typically require substantially larger samples than RCTs to achieve the same level of 
statistical precision. For instance, RD and IV designs require at least three to four times as many 
students as RCTs (Schochet 2009, 2011). This occurs in RD designs because of the substantial 
correlation (by design) between two model covariates: (1) the treatment status indicator variable and 
(2) the score variable used to determine who receives the treatment. In an IV design, precision is a 
function of the correlation between the instrument and treatment status, which is often low. Thus, 
education researchers designing partially nested QEDs will need to conduct careful power analyses 
to ensure that their evaluations have sufficient samples to produce precise impact estimates. 
Similarly, they will need to think carefully about the feasibility of conducting exploratory analyses 
(e.g., comparing outcomes across ICs) and multi-armed evaluations. 
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3 Statistical Analysis of the Basic and Blocked 
PN-RCT Designs  

  
 

This chapter discusses statistical methods that can be used to analyze data from a basic or blocked 
PN-RCT where IC factors are treated as random. We first consider the simplest PN-RCT design, 
where students from one sample or population—such as a single school, school district, Head Start 
center, or summer program location—are randomly assigned to experimental conditions. It is 
assumed that treatment group students are subsequently placed into ICs, whereas control group 
students are not. We consider IC effects but not clustering effects due to other factors, such as the 
schools and classrooms that students regularly attend. Thus, in this design, the clustering of 
treatment group students in ICs is the only source of clustering that might occur in the data set. As 
discussed in chapter 2, we assume that IC effects are random. We consider analysis of a continuous 
post-intervention measure, such as an achievement test score, that is analyzed at the student level. 

We start with the simplest PN-RCT design in this chapter to illustrate basic concepts of impact 
estimation for PN-RCT designs. Chapter 4 presents estimation approaches for more complex 
models, such as hybrid C-RCT designs, where schools or classrooms are randomized, and treatment 
students are subsequently placed into ICs, and cross-nested designs. 

The complicating feature of a basic PN-RCT is that the treatment group and the control group have 
different data structures. The treatment group has clustering, while the control group does not. As 
background for showing how these features can be unified in the basic PN-RCT, in section 3.1 we 
first review models for estimating treatment effects in I-RCTs and C-RCTs. Section 3.2 then 
provides an overview of the estimation theory for the basic PN-RCT design. 

In section 3.3, we provide a constructed example with SAS code12 and output that illustrates how to 
analyze the data from the basic PN-RCT design. Section 3.4 describes how to include covariates in 
the model. Section 3.5 then presents the model and shows how to estimate treatment impact from a 
blocked PN-RCT. The mathematical theory for these models is given in appendix A. 

12 Version 9.3 of SAS software was used to develop all of the code presented in this report. The code uses some features that are not available in earlier 
versions of SAS. 
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3.1 Review: Statistical Models for I-RCTs and C-RCTs 

Statistical Model for an I-RCT. In an I-RCT, all observations can be treated as being independent. 
There are Tn students in the treatment group and Cn students in the control group, for a total of  

T Cn n n= +  students in the experiment. Let jy  represent an outcome score for student j . In the 

control group, assume that 

0 ,j jy β ε= +  

where 0β  is the theoretical mean of the control group and jε  is a normally distributed random 

variable with mean 0 and variance 2σ . In the treatment group, it is assumed that the observations 
have the same variance, but the treatment mean can differ. Let 0 1β β+  denote the theoretical mean 
of the treatment group, so the ATE is given by 1β . Then the model for an observation in the 

treatment group is 

0 1 ,j jy β β ε= + +  

where again jε  is a normally distributed random variable with mean 0 and variance 2σ . In this 

model, we assume that the variance of the students in the control group is the same as the variance 
of the students in the treatment group. 

We can present the model in unified form by using an indicator variable jT  that describes whether 
the student is in the treatment group or the control group. Let 1jT =  if student j  is in the treatment 
group, and 0jT =  if student j is in the control group. The statistical model may then be written in a 

unified form as 

0 1 ,j j jy Tβ β ε= + +  (3.1) 

where 2~ (0, )j N εε σ . Because the experiment is randomized at the individual level, the error terms 

jε  can be assumed to be independent random variables. Figure 4 displays the distribution of student 

test scores for the treatment and control groups under the model in equation (3.1). 
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Figure 4. Distribution of test scores for treatment and control groups for an I-RCT. 

Under this model, the least squares estimate of the ATE 1β  is 

1̂ ,T Cy yβ = −  

where Ty  is the mean score of the treatment group students, and Cy  is the mean score of the 

control group students. Under the I-RCT design, which allows us to assume that all students are independent, 
the variance of the ATE is  

2 2

1̂( )I RCT
T C

Var
n n
ε εσ σβ− = + . 
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The variance of the sample mean of each group is 2
εσ  divided by the sample size; this is the formula 

used for the two-sample t test as taught in introductory statistics classes. 

Note that in some experiments, the student-level variances may differ in the treatment and control 
groups. Then, instead of assuming that 2

εσ  is the same for both groups, we may generalize the 

model to assume that 2~ (0, )j CN εε σ for observations in the control group and 2~ (0, )j TN εε σ  for 

observations in the treatment group. Then, 

2 2

1̂( ) T C
I RCT

T C

Var
n n
ε εσ σβ− = + . 

Statistical Model for a C-RCT. C-RCTs are designs in which random assignment to the treatment 
and control groups is conducted at the cluster level. These designs are generally used for educational 
studies when the intervention affects all students in a classroom (such as a teacher professional 
development program) or in the entire school (such as a schoolwide behavior modification 
initiative). In education experiments, the clusters are usually classes, schools, or school districts, 
although sometimes families or cities serve as clusters. Suppose that H classes are available for the 
experiment and that TI  of the classes are randomly assigned to the treatment group, and the 
remaining C TI H I= −  classes are in the control group. Students in the same class share a teacher, 

classroom environment, and other factors that cause their outcomes to be more similar than 
outcomes of students in different classes. Let 

  ijy   = test score of student j in cluster i  

  iT    = 1 if cluster i  is in the treatment group, 0 if in the control group 
  iθ    = random effect of cluster i  
  ijε   = student-level error (residual) for student j in cluster i . 

The observed outcome for student j of cluster i  is ijy ; this is indexed by a double subscript to keep 

track of the cluster membership as well as the student within the cluster. The treatment indicator
iT  depends only on the cluster: if a cluster is assigned to the treatment group, then all of the 

students in that cluster will receive the treatment protocol. 

An HLM is often used to account for the effects of the clustering in a C-RCT. The HLM captures 
that additional similarity by including an extra error term in the model. The random effect iθ  is a 
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random variable that captures variability at the cluster level that cannot be explained by the baseline 
covariates included in the model. The same random effect applies to all students in the same cluster, 
which is how the model accounts for correlated outcomes. Clustering occurs for both the treatment 
and control groups. The random effect is assumed to follow a normal distribution with mean 0 and 
variance 2

θσ ; the larger the value of 2
θσ , the larger the effects of teacher, classroom environment, 

and other class-level factors. 

The model for the response of a student in a C-RCT is 

0 1 ,ij i i ijy Tβ β θ ε= + + +      (3.2) 

where 2~ (0, ),i N εθ σ 2~ (0, ),ij N εε σ  and all of the variables iθ  and ijε  are independent. The 

random effect iθ  in equation (3.2) captures unmodeled factors at the cluster level. For example, 
suppose that clusters are classrooms and that class  i  has an excellent teacher. Then, iθ  is likely to 

be positive, and that positive quantity is added to the scores of all the students in that class. Because 
each student in class i shares the same value of iθ , students in the same class tend to be more 
similar than students in different classes; if  iθ is positive, all of the students start with a tendency to 

be above the mean for the treatment group. 

If each class has the same number of students, the generalized least squares estimate of the ATE 1β  

in a C-RCT is the same as in an I-RCT:13 

1̂ ,T Cy yβ = −  

where Ty  is the mean score of the treatment group students, and Cy  is the mean score of the 

control group students. Because of the clustering, however, the variance of the ATE is larger in a C-
RCT than in an I-RCT. If all classes have the same number of students and there are TI  classes in 
the treatment group and CI  classes in the control group, then 

2 2

1

2 2
ˆ( .)C RCT

T T C C

Var
n I n I
ε θ ε θσ σ σβ σ

− = + + +  

13 If the classes have different numbers of students, the ATE is calculated by subtracting a weighted average of the control cluster means from a 
weighted average of the treatment cluster means, where the weights depend on the sample sizes and the estimated variance components; see 
appendix A. 
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Note that 1̂( )C RCTVar β− has two additional terms not found in 1̂( )I RCTVar β− , due to the presence of 
the clustering terms: 2 / TIθσ  and 2 / CIθσ . The only way to decrease those terms in the variance of 

the ATE is to increase the number of clusters. 

Figure 5 shows a possible distribution of student test scores in the treatment and control groups 
under a C-RCT design in which 2 2 / 2θ εσ σ= . Each of the six clusters has its own mean score, and the 
students in that cluster are more similar to each other because they share that same value for iθ (that 

is, a common cluster mean). The intraclass correlation coefficient (ICC) for students in the same 
cluster is 

( )
( ) ( )

2

2 2

,
.

 
ij ik

ij ik

Cov y y

Var y Var y
θ

εθ

σρ
σ σ

= =
+

 

The ICC measures the degree of similarity among students in the same cluster. For the situation 

displayed in figure 5, 
2

2 2 1/ 3θ

θ ε

σρ
σ σ

= =
+

. If 0ρ = , then the clusters induce no similarity, and all 

observations are essentially independent. If we were to redraw figure 5 for the case of 0ρ = , all of 
the normal distributions in the control group would have mean 0β , and all of the normal 
distributions in the treatment group would have mean 0 1 β β+ . If 1ρ = , then all of the students in 

the same cluster have the same test score. If we were to redraw figure 5 for the case of 1ρ = , the 

individual cluster normal distributions would have no variability, and the only variance would come 
from the cluster means. If 1ρ = ,  there is no advantage to observing more than one student per 

cluster because they all provide the same information. Typically, in education studies, the ICC when 
clusters are schools is in the range of 0.05 to 0.25 (Hedges and Hedberg 2007; Schochet 2008). 
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Figure 5. Distribution of test scores for treatment and control groups for a C-RCT. 

As with the I-RCT, the model for a C-RCT can be generalized to allow for different cluster-level and 
different student-level variances in the treatment and control groups. To allow for different 
variances in the treatment and control groups, we can assume that ( )2~ 0,i CN θθ σ  and  

2~ (0, )ij CN εε σ  for clusters in the control group, that ( )2~ 0,i TN θθ σ  and  2~ (0, )ij TN εε σ  for 

clusters in the treatment group, and, as before, that all of the variables iθ  and ijε  are independent. 

Such a model might be appropriate if the intervention is expected to result in greater similarity 
among the students in a cluster. If, for example, the classes randomized to the control group have a 
study hall while classes randomized to the treatment group have different volunteers come in to 
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teach students about nutrition, we might expect the variances of the treatment and control group to 
differ at both the student and class levels. The control group would have the usual class-to-class 
variability and within-class variability of 2

Cθσ  and 2
Cεσ . The treatment group, however, might have 

2 2
T Cθ θσ σ>  because the volunteers might have very different levels of effectiveness, and the class 

means in the treatment group would be more variable than those in the control group. Alternatively, 
or additionally, the within-class variability of the treatment students, 2

Tεσ , might be less than that of 
the control students, 2

Cεσ , if the treatment results in more cohesion among students in the same 

class. 

3.2 Statistical Model for the Basic PN-RCT 

The basic PN-RCT model with random IC effects is a hybrid of the I-RCT and C-RCT models. The 
students in the treatment group follow the C-RCT model, while the students in the control group 
follow the I-RCT model. Suppose that there are TI  ICs in the treatment group and that there are a 
total of Tn  students in the treatment group and Cn  students in the control group. 

Let’s start with the model for the treatment group. The treatment group has clustering, so its model 
follows the form in a C-RCT. Let ijy  denote the test score of student j  from IC i , for 1i =  to TI , 

just as in the C-RCT. The subscript j  refers to students, with 1  to  ij J=  for treatment group 

students in IC i . The total number of treatment students is 
1

TI

T i
i

n J
=

=∑ . The model for a test score in 

the treatment group is  
0 1 ,ij i ijy β β θ ε= + + +  

where 0 1β β+  is the mean score for students in the treatment group, 2~ (0, )i N θθ σ  is a random 

effect for IC i , and 2~ (0, )ij TN εε σ  is the student-level error term for student j  in IC i . 

The control students are not formed in ICs. To express the model in unified fashion, we let 0 jy  

denote the test score of student j  in the control group (the “0” denotes that the student does not 

belong to an IC). Students in the control group have no variability at the IC level, so the test score 
of student j in the control group can be modeled as 

0 0 0 .j jy β ε= +  
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Here, 0β  is the mean score for students in the control group, and we assume that 2
0 ~ (0, )j CN εε σ  

is the student-level error term for student j  in the control group, for 1j =  to Cn . Note that for 
flexibility in modeling, we allow the student-level variability in the control group, 2

Cεσ , to differ from 
the student-level variability in the treatment group, 2

Tεσ . The student-level variances could differ for 
the treatment and control groups because 2

Tεσ  reflects variation within ICs for the treatment group, 
whereas 2

Cεσ  reflects variation across the entire control group for control students. It is possible that 

peer interactions or the intervention could result in more homogeneity within an IC for the 
treatment group, so the model allows for that possibility. When fitting models in section 3.3, we 
allow the student-level variance to differ in the treatment and control groups. 

The separate models for the control and treatment groups can be combined into one unified model 
(this will be important in section 3.4, when we include other covariates in the model) by defining the 
treatment status indicator variable 1ijT =  if student j  in IC i  is in the treatment group and 0 
otherwise. Note that because ICs are formed only in the treatment group, 1ijT =  for all students 

when 1i =  to TI , and 0 0jT = . Then, for 0,1, , Ti I= … , we can write 

0 1 .ij ij i ij ijy T Tβ β θ ε= + + +   (3.3) 

In equation (3.3), the IC effect iθ  occurs only in the treatment group, reflecting the partially nested 

structure. We assume that 2~ (0, )i N θθ σ  and that 2~ (0, )ij TN εε σ  for students in the treatment 

group ( 1i =  to TI ) and 2
0 ~ (0, )j CN εε σ  for students in the control group, and that all iθ  and ijε  

are independent.14 

Note that the model in equation (3.3) differs from an approach sometimes used in the literature 
where controls are treated as belonging to one “cluster” with effect 2

0 ~ (0, )N θθ σ . Bauer et al. 

(2008) explain why this approach (Approach 2 in their paper) is incorrect. It assumes that the 
control group students exhibit the same clustering as the treatment group students in an IC. The 
essential feature of a basic PN-RCT is that the treatment group has IC-level variance, while the 
control group does not. The model in equation (3.3) reflects that asymmetric structure by having the 
extra variability due to ICs in the treatment group only. 

14 Note that alternatively the model can be written as 
0 1ij ij i ij

y Tβ β θ ε= + + +  if we have 2

~ (0, )
i

N
θ

θ σ  for ICs 1 to 
T
I  in the treatment group, 

and we prescribe 
0

~ (0, 0)Nθ  for the control group. Using a (0, 0)N  distribution forces 
0

θ  to be equal to 0 and says that there is no additional 

variability due to clustering in the control group. This is the form of the model that we use when estimating model parameters using SAS software. 
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Figure 6 displays the distribution of student test scores from a basic PN-RCT, assuming arbitrarily 
that 2 20.15 Tθ εσ σ= . Note that the control group scores all come from the same normal distribution 

but that the ICs in the treatment group have mean scores that deviate from the overall treatment 
group mean of 0 1 β β+ . This causes students in the same IC to be more similar, on average, than 

two students from different ICs. 

Figure 6. Distribution of test scores for treatment and control groups for a PN-RCT. 

The total variability for a student’s score differs for students in the treatment and control groups. In 
the control group, the total variability of a score is 2

Cεσ . In the treatment group, the total variability 
of a score is 2 2

Tε θσ σ+ . 
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The generalized least squares estimator for 1β  in equation (3.3) and its variance are derived in 

appendix A. If ICs in the treatment group all have the same number of students (i.e., the design is 
balanced), this is the difference-in-means estimator 1̂ T Cy yβ = − , where Ty  is the mean score for all 
students in the treatment group and Cy  is the mean score for all students in the control group. The 

variance of 1̂β  is the sum of the variance for the treatment group mean when IC sizes are equal15 
2 2( / / )T T TI nθ εσ σ+  and the variance for the control group mean 2( / )C Cnεσ : 

2

1

2 2
ˆ( .) T C

PN RCT
T T C

Var
I n n
θ ε εσ σ σβ− = + +  

The variance of the treatment group will typically be larger than that for the control group because 
the IC variance component 2 / TIθσ  enters the variance expression for the treatment group only. 

This additional variability reflects the clustering from the ICs. There is an intraclass correlation only 
within the treatment group: 

2

2 2
T

θ
θ

ε θ

σρ
σ σ

=
+

  (3.4) 

which represents the fraction of the total treatment group variation that is due to the variation in 
mean scores between ICs. 

3.3 Constructed Data Example for the Basic PN-RCT Design 

To illustrate how SAS software can be used to estimate the models from above, we consider an 
after-school pull-out reading intervention where treatment students are provided services in small 
groups. For our constructed example, we assume that there are 125 students in the control group 
and 125 students in the treatment group. We assume further that students in the treatment group are 
assigned to 25 ICs, each containing 5 students. Thus, we are considering a relatively small PN-RCT 
design with intensive, small-group instruction. 

15 For unequal IC sizes, the variance expression is given in equation (A.6) of appendix A.  
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We generated test score data using the random IC effects model in equation (3.3) under the 
assumption that the IC-level intraclass correlation coefficient, θρ , is 0.1. This intraclass correlation 

reflects differences in mean test scores across the ICs as a result of potential differences in the 
characteristics of students and teachers assigned to the ICs and the heterogeneity of treatment 
effects across ICs. The control group mean is assumed to be 100, and the treatment group mean is 
assumed to be 106, so the ATE in this example is 6 scale points. The variance due to students is 
assumed to be 2 2 2225 1 5C Tε εσ σ= = =  for each group. Because 2 2 / (1 ),Tθ θ ε θσ ρ σ ρ= −  these 
assumptions imply that 2 25θσ = . The sample sizes of 125 students in each group were chosen so as 

to give 80 percent power to detect an impact of about 6 scale points, corresponding to an effect size 
of 0.4 standard deviations.16 Appendix E gives the SAS code used to generate this data set. 

The 250 observations for the students were graphed using SAS code displayed in figure 7. 
Table 3 gives the variable names and values for the data. The data are displayed graphically in figures 
8 and 9. The simple side-by-side boxplot in figure 8 gives a rough idea of the relative means, 
medians, and variability of test scores for the treatment and control groups. As expected, the 
variability of test scores is greater for the treatment group because of the assumed IC variability. 
Figure 9 displays a more refined boxplot for the individual ICs in the treatment group that can be 
used to assess the variability of test scores across ICs and to detect ICs that have unusual values. As 
shown in figure 9, there are considerable differences in mean test scores across the ICs. Some of 
that variability is due to the residual variability among students, but some is also due to the intrinsic 
variability among the ICs. 

Table 3. Description of variables used in example 

Name Description Type Values 

Y Response variable Numeric  

Trt Indicator variable for treatment group (this 
is the Tij  variable in equation (3.3). 

Numeric 0 for control group, 
1 for treatment group 

trtname Character variable for treatment group, 
used in plots 

Character “Control” for control group 
“Treatment” for treatment group 

Ic Intervention cluster Numeric 0 for control group, 
1 – 25 for ICs in treatment group 

Subjid ID for each student, unique within each IC Numeric  

16 Power calculations for this example are given in table 2; the sample size from that table for precision target 0.40, 0.1
θ

ρ = , average IC sample size = 

5, and 
2 0R =  is 251. 
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Figure 7. SAS code to produce figures 8 and 9 

proc sgplot data = model1;  /* Figure 8 */ 
   vbox y / category = trtname; 
   yaxis label = "Score"; 
   xaxis label = "Treatment Group"; 
run;  
/* Next plot assumes data are sorted by ascending value of IC median */ 
proc sgplot data = model1 noautolegend;  /* Figure 9 */ 
   vbox y / category=trtname group=ic grouporder=data; 
   yaxis label = "Score"; 
   xaxis label = "Treatment Group"; 
run; 

NOTE: The SAS code in figure 7 produces the basic plots. The full set of graphical options used to produce the shading and coloring is 
given in appendix E. 

Figure 8. Boxplots of scores from control and treatment groups 

NOTE: The median for each group is indicated by the center line in the box, and the mean is indicated by the diamond symbol. The first 
and third quartiles are the edges of the boxes (the length of the shaded box is the inter-quartile range). The lines extending above and 
below the boxes are the whiskers: the upper whisker extends from the third quartile to the maximum data point that is less than the 
third quartile + 1.5 x (inter-quartile range), and the lower whisker is defined analogously. The circles denote points whose distance below 
the first quartile or above the third quartile exceeds 1.5 x (inter-quartile range). 
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Figure 9. Plot of data, showing 1 boxplot for the control group and individual boxplots for the 
25 ICs in the treatment group. The boxplots for the ICs in the treatment group are 
ordered by increasing value of the IC median 

NOTE: The symbols used in this graph are described in figure 8. 

After displaying the data, we are now ready to perform a statistical analysis. SAS PROC MIXED will 
analyze data from PN-RCTs by forcing the IC-level variability in the control group to equal 0. This 
is done through the PARMS statement, which is used in PROC MIXED to specify initial values for 
the covariance parameters. When the PARMS statement is used without options, PROC MIXED 
iterates, starting with the values for the covariance parameters given in the PARMS statement, to 
obtain final estimates for the covariance parameters. For a PN-RCT though, the IC-level variance in 
the control group is fixed at 0. This is done in PROC MIXED by specifying the initial value to be 0 
and then placing a “hold” on that value, so it also forms the final estimate. 

With large data sets, PROC MIXED can be slow to converge. The convergence can be speeded by 
using good initial estimates; this also helps ensure that the procedure converges to the correct values. 
You can obtain initial estimates of the residual variability by fitting a simple regression model to the 
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data, ignoring the IC effects (using PROC REG or PROC GLM); alternatively, for this design, you 
can obtain initial estimates by finding the variance of the control students and separately fitting a 
completely nested model to the treatment students. By doing this, we obtain initial estimates for 2

Cεσ , 
2
Tεσ , and 2

θσ  of 197, 204, and 52 respectively. If no initial estimates are available, the non-zero 

variance components could be set to 1 as a default, but this will slow convergence. 

The SAS code in figure 10 will give estimates of the treatment effect and the covariance parameters 
for Design 1 with random IC effects.17 The code is general and can be modified to include baseline 
covariates and other model characteristics. It can be adapted to experiments with multiple treatment 
conditions by declaring “trt” to be a categorical variable in the CLASS statement. 

The code exploits several features of SAS that would not typically be used when conducting a 
traditional C-RCT analysis. The first, as mentioned above, is the PARMS statement. The first 
variance component is fixed at 0; the others are estimated iteratively using initial values 52, 197, and 
204, respectively. The ordering of the values in the PARMS statement is important: it follows the 
ordering of the variance components expressed in the RANDOM and REPEATED statements. 
The second feature is the use of the GROUP option, which tells SAS to fit separate variance 
components for each treatment group. The REPEATED statement calculates different student-level 
variances in the treatment and control groups. If you want to require 2 2

C Tε εσ σ= , then omit the 

REPEATED statement. 

17  Note that we use two separate variables for the treatment group: “trt” is a numeric variable taking on values 0 and 1, and “trtname” is a class 
variable, used to specify the groupings for the variance components. This is done so that the main model can be fit as a regression with independent 
variable “trt”, and the estimate of β1 is the ATE. The same p-values would result, however, if “trt” were replaced with “trtname” throughout: the 
only difference is that then the solution given by SAS is that for the estimate of -β1 rather than β1. The code in figure 10 provides the ATE, its 
standard error, and estimates of the variance parameters. It will work for both balanced and unbalanced data. 
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Figure 10. SAS code to fit mixed model for basic PN-RCT design  

proc mixed data=model1; 
  class subjid trtname ic;  
  model y=trt / solution ddfm=sat;  
     /* Fit a model in which the slope is the ATE */ 
  random intercept / group=trtname subject=ic(trtname);  
     /* The random statement fits the hierarchical model in the treatment    
        group; using the option group=trtname allows different variances in  
        the control and treatment groups */ 
  parms (0) (52) (197) (204) / hold = 1; 
     /* The parms statement gives initial values for the variance parameters;  
        setting the first parameter to 0 with the hold statement ensures that  
        no IC-level clustering is fit in the control group */ 
  repeated subjid/ group=trtname;  
     /* The repeated statement allows different student-level variances to be      
        fit in the control and treatment groups. This statement can be     
        deleted if the student-level variances are assumed to be equal. */ 
  title 'Random Effects Estimator for Basic PN-RCT Model'; 
run; 

When running the SAS code in figure 10, researchers will get the following message in the SAS log: 

NOTE: Estimated G matrix is not positive definite. 
NOTE: Asymptotic variance matrix of covariance parameter 
estimates has been found to be singular and a generalized 
inverse was used. Covariance parameters with zero variance 
do not contribute to degrees of freedom computed by 
DDFM=SATTERTH. 

This is not an error message. SAS gives the note that the G matrix is not positive definite whenever a 
covariance parameter estimate is 0. This always occurs in PN-RCTs because the IC effect is 
deliberately set to 0 for the control group.18 Do not worry if you see the above messages in your 
SAS log. You should worry, though, if you see a message that says: 

WARNING: Did not converge 

In that case, you may have misspecified the model or given poor initial values for the covariance 
parameters. The SAS log message 

NOTE: At least one element of the gradient is greater 
than 1e-3 

18 See appendix A for further discussion of the G matrix and positive definiteness in this model. 
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may also indicate a convergence problem. Kiernan, Tao, and Gibbs (2012) give useful guidance for 
diagnosing problems and error messages in PROC MIXED. 

The following output is produced by the SAS code in figure 10. SAS first repeats the information 
you provided to it. 

Model Information 
Data Set WORK.MODEL1 
Dependent Variable Y 
Covariance Structure Variance Components 
Subject Effect ic(trtname) 
Group Effects trtname, trtname 
Estimation Method REML 
Residual Variance Method None 
Fixed Effects SE Method Model-Based 
Degrees of Freedom Method Satterthwaite 

 
Class level information 

Class Levels Values 
Subjid 250 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 
250 

Trtname 2 Control Treatment 
Ic 26 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

The code did not specify a method for estimating the covariance parameters, so SAS uses the default 
method of restricted maximum likelihood (REML). The option “method = ML” could be used if 
maximum likelihood estimators are preferred or if likelihood ratio tests are to be done comparing 
different models (see below). 

SAS then gives you its understanding of the number of covariance parameters and other terms in the 
model. Here, there are four covariance parameters: 0 (for the IC effect in the control group), 2

θσ , 
2
Cεσ , and 2

Tεσ . The subjects for this analysis are the ICs: there are 25 treatment ICs (coded 1 to 25) 

and one IC for the control group (coded as 0). 
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Dimensions 
Covariance Parameters 4 
Columns in X 2 
Columns in Z Per Subject 2 
Subjects 26 
Max Obs Per Subject 125 

SAS then shows details of the iterative model fitting process, followed (if all is well) by the words 
“Convergence criteria met.” The estimates of the covariance parameters are shown next. 

 2ˆθσCovariance Parameter Estimates 
Cov Parm Subject Group Estimate 
Intercept ic(trtname) trtname Control 0 
Intercept ic(trtname) trtname Treatment 52.4786 
Subjid  trtname Control 197.13 
Subjid  trtname Treatment 204.32 

 2ˆ Cεσ

 2ˆεσ 

As requested in the code, the IC variance in the control group is set to 0. The residual variance 
component in the control group, 2

Cεσ , is estimated to be 197.1. The IC-level variability and residual 
variability in the treatment group are estimated as 52.5 and 204.3, respectively. The 2ˆθσ  value of 52.5 

is larger by chance than the value of 25 used to construct the data because of sampling error due to 
relatively small numbers of ICs.  The model in equation (3.3) captures the key features of the PN-
RCT design. Most importantly, it incorporates the different variance structures in the treatment and 
control groups, which is crucial for obtaining the appropriate standard error of the ATE. 

The final parts of the output are the solutions for the fixed effects. The intercept value of 99.9 is the 
test score mean for the control group students, and the estimated treatment effect is 5.16 scale 
points with a p-value of 0.0299. Thus, in this example, the reading intervention improved English 
language learner student outcomes by 5.16 scale points (which translates into an effect size of about 
0.35 standard deviations), and this estimated ATE is statistically significant. Note that 46.9 degrees 
of freedom are used for this estimate. These are the degrees of freedom calculated using the 
Satterthwaite (1946) approximation, which is recommended when the two groups being compared 
have unequal variances. Details about the degrees of freedom (and why they can take on non-integer 
values) are given in appendix B. 
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Solution for Fixed Effects 
Effect Estimate Standard error DF t Value Pr > |t| 

Intercept 99.9174 1.2558 124 79.56 <.0001 
Trt 5.1610 2.3045 46.9 2.24 0.0299 

p-value for ATE ATE Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

trt 1 46.9 5.02 0.0299 

An analysis of the residuals and regression diagnostic statistics from this model (using the 
RESIDUAL and INFLUENCE options to the MODEL statement in PROC MIXED) revealed no 
unusual features except for one potentially outlying student in the control group (shown as the circle 
at the bottom of the control group boxplot in figures 8 and 9). Guides to regression diagnostics for 
mixed models are found in Schabenberger (2004), Jiang (2007, section 2.4), and SAS Institute (2011, 
section on Residuals and Influence Diagnostics). 

Note that although this particular balanced data set may be analyzed more simply (as discussed in 
the next subsection), PROC MIXED and the structure given in figure 10 are needed for unbalanced 
data, when there are baseline covariates, or whenever information about the sources of variability is 
desired. A likelihood ratio test may be used to test certain hypotheses about the covariance structure. 
For this example, a hypothesis of interest is whether the residual variances are equal in the control 
and treatment groups ( 2 2

0 :  C TH ε εσ σ= ). To perform a likelihood ratio test, refit the full, unrestricted 

model using the code in figure 10 with maximum likelihood rather than the default restricted 
maximum likelihood method (add METHOD = ML to the PROC MIXED line). The value of-2 
Log Likelihood from SAS is 2053.5. Then fit the restricted model where 2 2

C Tε εσ σ=  (by deleting the 

REPEATED statement in figure 10) with maximum likelihood. SAS gives the value 2053.6 for-2 
Log Likelihood. The likelihood ratio test statistic is then 2053.6 – 2053.5 = 0.1. This value is 
compared to a chi-squared distribution with degrees of freedom equal to the number of restrictions 
(1 in our case), resulting in a p-value that is greater than 0.10, indicating that there is no significant 
difference between the two variance parameters. This is to be expected because we constructed our 
data assuming equal residual variances for the treatment and control groups, but data sets from 
other experiments may exhibit unequal variances. A similar test statistic can be used for all models 
that we consider below.19 

19 Note that SAS PROC MIXED also provides an option COVTEST for testing whether covariance parameters are equal to 0. This test, however, is 
based on a normal approximation to the distribution of the estimated variance component and, as stated in SAS Institute (2011), is inaccurate with 
small numbers of groups (see also Lohr and Divan 1997). Self and Liang (1987) and Skrondal and Rabe-Hesketh (2004) discuss methods that can be 
used to test whether variance components are 0. SAS PROC GLIMMIX (Version 9.2 and later) implements some of these methods. 
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Alternative Methods for Estimating ATEs 

The SAS code in figure 10 is general and can be modified to include baseline covariates and other 
model characteristics. This code, however, makes use of features unique to SAS software such as the 
PARMS statement. In this section, we present two methods that can be used with SAS or other 
software packages to estimate the ATE for the model given in equation (3.3). Both methods would 
need modification to work if the model has additional covariates. 

Both methods exploit the fact that the ATE is 1̂ T Cy yβ = − , where Cy  is the mean test score of all 

students in the control group, and where 1

1

TI

T T i Ti
i

y n J y−

=

= ∑  is a weighted average of the individual IC 

means in the treatment group, weighted by the number of students in each IC. 

The first method involves estimating separate models for the treatment and control groups and 
aggregating the findings. This can be performed by noting that in the basic PN-RCT design, 

( ) ( ) ( )T C T CVar y y Var y Var y− = + because Ty  and Cy  are independent. We can estimate ( )CVar y
by 2ˆ /C Cnεσ  and can estimate ( )TVar y by fitting the one-way random effects model 

ij T i ijy µ θ ε= + +  

to the observations in the treatment group. This was, in fact, done earlier to obtain initial parameter 
estimates for the full SAS code in figure 10. For our example, ( )CVar y  = 197.13/125 = 1.577 and 
( )TVar y  =3.734. Then,  ( ) 3.734 1.577 5.311T CVar yy − = + =  and the test statistic for testing 

0 1:  0H β =  is 

 ( )
105.08 99.92 2.24.

5.311
T C

T C

yT
V

y

yyar

− −
= = =

−
 

 
This test statistic can be compared to a normal distribution, or, alternatively, the Satterthwaite 
degrees of freedom approximation to the t-test (appendix B) may be applied. Note that the test 
statistic is the same value as was produced by the code in figure 10. It just requires some extra 
calculation to assemble the component statistics. 

The second method analyzes the data using IC means for the treatment group and the full data for 
the control group. This method gives an exact analysis for balanced data and an approximate 
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analysis for unbalanced data. This method relies on the model assumption that the IC means for the 
treatment group are independent observations. When each IC has the same number of students, 

1( ) ( ) /  T T TVar y Var y I= . This implies that we can analyze the data using a two-sample t test with 

Cn  independent observations in the control group (each with variance 2
Cεσ ) and TI  independent 

observations 1( , , )
TT TIy y…  in the treatment group (each with variance 2 2 /T Jθ εσ σ+ ). If you use this 

method for the analysis, make sure you do the t test with unequal (not pooled) variances, so you capture 
the extra variability in the treatment group arising from the ICs. The SAS code to perform this t-test 
is given in appendix E; the estimated ATE and its p-value are the same as in the full analysis 
produced by figure 10 for this example. This method can be used to provide an approximate analysis 
when IC sizes are unequal by assigning weight 1 to each control group observation and weight iJ  to 

IC group i . 

Both methods depend on the identity ( ) ( ) ( )T C T CVar y y Var y Var y− = + . When baseline covariates 

are included, the covariate-adjusted estimated treatment means from the two groups may be 
correlated, so these methods would not extend to that case. 

3.4 Including Covariates in the Models 

Baseline covariates are often used to analyze RCT data to improve the precision of the estimates and 
to adjust for residual treatment-control differences in baseline characteristics due to random 
sampling. Baseline covariates can be measured at the student, educator, school, or site level. 

The basic PN-RCT analysis is easily modified to include other covariates. In SAS PROC MIXED, 
simply include the additional covariates in the MODEL statement. Thus, for example, to fit a model 
with student-level indicator variables for sex and free or reduced-price lunch status (labeled as frl), 
the MODEL statement from each design would be modified to read 

model y=trt sex frl/solution ddfm=sat; 

SAS will then automatically adjust the treatment effect and estimated variance components to 
account for the covariates. Interactions between covariates and the treatment effect may be of 
interest as well, and these may be fit by including the interaction terms trt*sex and trt*frl in 
the MODEL statement. 

In experiments in which a pretest and a posttest are measured for all students, interest centers on 
whether the growth in the treatment group differs from the growth in the control group. This can 
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be evaluated in two ways: (1) by defining the response variable to be the gain score, with 
y posttest pretest= − , or (2) by defining the response variable to be the posttest score and 

including the pretest score as a covariate in the model (see Brogan and Kutner 1980; Dugard and 
Todman 1995; and Laird 1983 for discussion of the relative merits of the two approaches). The 
latter approach can be implemented by using the statement 

model posttest=trt pretest/solution ddfm=sat; 

The inclusion of model covariates will increase the precision of the ATE estimates because the 
random error terms are now conditional on the covariates. Because of random assignment, the 
covariates are uncorrelated with treatment status in expectation. Thus, in the presence of covariates, 
the variance components in the above variance expressions can be deflated by the factor 2(1 )qR− , 

where 2
qR  is the proportion of the total variance of the outcome at hierarchical level q  that is 

explained by the covariates. For instance, for the basic PN-RCT design with student-level 
randomization and random IC effects, the variance expression with covariates is 

( ) ( ) ( ) ( )2 2 2 2 2 21 1 1
,

   
T T T C C

T T C

R R R
Var Impact

n I n
ε ε θ θ ε εσ σ σ − − −

 = + +
  

 

where 2
qR  values can differ across three variance components. 

The section on forming ICs in chapter 2 discussed that in some experiments, students may be 
tracked into ICs based on their pre-intervention characteristics. This sort of deliberate grouping can 
inflate the IC-level variability because the differences among ICs would be partly due to the 
differences in those student characteristics. Controlling for these preexisting differences using 
baseline covariates will help mitigate this problem and yield intraclass correlation estimates that 
reflect more policy-relevant variation across ICs due to differences in teacher quality, curriculum, 
and so on. 

A baseline covariate that applies only to the treatment group (e.g., a covariate that describes a 
characteristic of the IC instruction) needs to be constructed carefully in SAS, so the covariate applies 
only to the treatment group and not to the control group. As an example, consider a situation for 
the basic PN-RCT design in which some of the ICs have experienced tutors and others have novice 
tutors. Fitting equation (3.3) with IC as a random factor will include the differences due to tutor 
experience (a fixed factor) in the IC-to-IC variability. Including a measure of IC tutor experience, 
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IC_Exp, as a covariate (where the value of the covariate for each student is the measure of 
experience associated with his or her IC tutor) will increase precision because the IC-level variance 
component will be the variability remaining after accounting for the effects of tutor experience. 

We have to be careful about constructing the variable IC_Exp because it only pertains to students in 
the treatment group. One approach is to construct a centered IC_Exp variable, C_IC_Exp, that 
equals 0 for the control group and equals IC_Exp minus the mean of IC_Exp for the treatment 
group. This approach allows the variable trt to estimate the overall treatment effect because 
C_IC_Exp will be orthogonal to trt. More specifically, C_IC_Exp can be constructed as follows: 

0 if  student  is in the control group ( 0)
_ _

_ _ if student  in IC  is in the treatment group
ij

ij

j i
C IC Exp

IC Exp IC Exp j i

== 
−

 

where _IC Exp is the mean value of the IC tutor experience measure across all students in the entire 

treatment group. The following SAS code will estimate parameters in this model:  

proc mixed data=model1 ; 
  class subjid trtname ic; 
  model y=trt c_ic_exp / solution ddfm=sat ;  
  random intercept / group=trtname subject=ic(trtname);  
  parms (0) (50) (200) / hold = 1; 
  title 'IC random effects nested in fixed factor'; 

When including IC-level covariates, it is important to have sufficient ICs in the experiment to allow 
assessing the significance of those covariates. In section 1.2.1, we stated that a PN-RCT must have 
at least two ICs to be able to estimate the IC-level variability. If there are k IC-level covariates, the 
experiment must have at least 2k + ICs to be able to assess their significance. 

Finally, it is important to recognize that valid model covariates must be measured at baseline and not 
have been affected by the intervention. This issue is complex for IC-related covariates because ICs 
are typically formed after random assignment. When students are randomly assigned to ICs, then 
including IC-level covariates such as tutor experience accounts for some of the IC-to-IC variability. 
When students are purposively assigned to ICs, however, caution is needed. If, for example, the 
students viewed as most in need of help are assigned to the most experienced tutors, a covariate for 
tutor experience would also be including effects of a baseline characteristic of the students in the IC. 
The tutor experience covariate would then be partially controlling for the student characteristic in 
the treatment group but there would be no comparable covariate for the control group. 
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3.5 The Blocked PN-RCT Design 

In many PN-RCTs, randomization will be done separately within sites or schools. The BELL 
evaluation in example 1.4 was of this type. Thus, for the BELL study, students in Boston were 
randomized to treatment or control, and students in Chicago were randomized to treatment or 
control. The basic PN-RCT design was, thus, carried out independently in each site. The control 
students in each site are from the same school system as the treatment students. Because there are 
multiple sites, the results can be generalized to the types of sites that participated in the experiment. 

The difference between the basic PN-RCT and a blocked PN-RCT hinges on where the randomization 
is performed. In the basic PN-RCT, students in the full population are randomly assigned to the 
treatment or control condition. In this design, it is possible for any number of students originating 
from a specific school or neighborhood to end up in the treatment group. If, however, schools are 
used as a blocking unit, the randomization is done separately for each school. In this design, exactly 
half the students in each school would be randomly assigned to the treatment group, and the other 
half would be randomly assigned to the control group. 

Note that students within the same block are generally positively correlated because they share the 
same environmental factors. Sometimes this can generate confusion between blocks and clusters; in 
some experiments, schools might serve as blocks, while in other experiments, schools might be 
clusters. Here is the difference: in a blocked design, the positive correlation generally increases the 
precision of the ATE because half of the students in each block receive the treatment and the other 
half receive the control. Comparing the treatment and control students within a block subtracts out 
the effects of common environmental factors from being in the same school. In a C-RCT with 
schools as clusters, all students in the school receive either the treatment or control, so the positive 
correlation decreases the precision of the ATE. 

One consideration when contemplating a blocked PN-RCT is whether there are likely to be 
“spillover” or contamination effects between the treatment and control students within a block. 
Suppose that students are randomly assigned to treatment and control groups within classes: the 
treatment students in each class are pulled out into ICs after school to learn about better study 
habits, while the control students in the class receive no additional instruction. The students in the 
control group will know that the treatment students are getting a special intervention, and they will 
very likely learn something about that intervention. Several possible contamination scenarios can be 
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imagined. The control students might learn about the helpful study habits from their friends in the 
treatment group and start adopting them, thereby reducing the observed treatment effect. There 
might be a negative contamination effect in other experiments. Students might not understand that 
the treatment students were chosen randomly for the intervention and may think there is a specific 
reason that some students were chosen while others were not. It is possible that students in the 
control group (not chosen for the intervention) may be demoralized and, therefore, perform worse 
than they would in a classroom not selected for the study; this would produce an estimated 
treatment effect that is exaggerated. 

Potential contamination should be considered when deciding whether to use a blocked PN-RCT 
(Jenney and Lohr, 2009; Moerbeek 2005). In general, contamination is less likely if the blocking units 
are larger (e.g., districts, neighborhoods, or cities) than if they are small (e.g., classrooms). If there is 
concern that contamination effects can be large, it might be better to use a cluster-randomized 
design instead of a blocked PN-RCT, as discussed in section 4.1. 

3.5.1 Model and Model Implications 

To help make the concepts concrete, assume that the blocking factor is a school. A total of H
schools are available for the experiment, and students are randomized to control or treatment group 
separately within each school. Following the initial randomization to treatment or control, the 
students in the treatment group are then assigned to one of the ICs formed within the school. 

We first consider models where school effects are treated as random and then consider models 
where school effects are treated as fixed. If school effects are treated as random, it is assumed that 
the study schools are randomly sampled from a broader population of schools, so study results 
generalize to this population. Under the fixed effects assumption, the study schools are assumed to 
be representative of themselves only. These two scenarios on handling block effects lead to 
considerably different estimation models. 

Treating School Effects as Random. To help provide intuition on the estimation methods for the 
blocked PN-RCT design, we first describe an analysis for a balanced design, in which each school has 
the same number of treatment students and the same number of control students, and each IC has 
the same number of students. Let h be the index for the school, let Thy  denote the mean score of 
the treatment group students in school h , and let Chy  denote the mean of the control group 

students in school h . The ATE is given by 
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1
1 1

1 1( ) .ˆ
H H

T C Th Ch h
h h

y y y y u
H H

β
= =

= − = − =∑ ∑  

Note that ( )Thh Chyu y= −  is the estimated treatment effect in school h . We thus estimate the 

overall effect of the treatment by averaging the H separate school treatment effects. In essence, we 
have H  independent replications of the basic PN-RCT design and average their results to calculate 
the ATE. 

The schools are independent units, so in this balanced design the variance of the ATE may be 
estimated by  

 ( )
2

 1
ˆˆ u

Blocked PN RCTVa
H

r σβ− =  

where 2 2

1

1ˆ ( )
1

H

u h
h

u u
H

σ
=

= −
− ∑   is the sample variance of the H  individual schools’ estimated 

treatment effects. Note that the estimate 2ˆuσ  will include the IC-level variability as well as the 

variability in treatment impact across schools. Essentially, we can evaluate the treatment impact in a 
balanced design by using a one-sample t test with 1H −  degrees of freedom, where the 
“observations” are the observed treatment effects ( )Thh Chyu y= −  for each of the H  schools. 

We need a more complicated setup if the experiment is not perfectly balanced, if it is desired to 
include covariates in the analysis model, or if there is interest in the estimates of the different 
variance components. The remainder of this section describes the general model for a blocked PN-
RCT and may be skipped by readers not interested in the technical details. 

Let the subscript h  represent the school, i  represent the IC within the school, and j  represent the 

student. The following notation is used: 

          hijy test scoreof student j in IC iof school h=  

   h effect of school hξ =  
      hi effect of IC i in school hθ =  

  ( )          .hij student level error residual term for student j in IC iof school hε = −   

The subscripts take values  1   to  h H=  for schools,   0  to  Thi I=  for students in school h  (as for the 

basic PN-RCT, IC 0 is the value assigned to the control students, who are not in an IC, and ICs 1 
through ThI  are the intervention clusters for the treatment students within school h ). The students 
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within the control group in each school are indexed by 01 to hj J= . The treatment group students in 
IC i of school h  are indexed by  1   to hij J= . There are thus a total of 0Ch hn J=  students in the 

control group in school h , and a total of 
1

ThI

Th hi
i

n J
=

=∑  students in the treatment group in school h . 

The assignment to the treatment or control group differs for different students within the same 
school, so we let the treatment indicator depend on h , i , and j : 

1 if student  in IC  of school  is in the treatment group,  0 if in the control grouphijT j i h=  

To help fix concepts, we first present a simplified model that assumes that the treatment impact is 
the same for all schools. In this case, the model for the blocked PN-RCT design is 

0 1 .hij hij h hi hij hijy T Tβ β ξ θ ε= + + + +   (3.5) 

As before, we assume that 2~ (0, )hij CN εε σ  for students in the control group and that 
2~ (0, )hi N θθ σ  and 2~ (0, )hij TN εε σ  for ICs and students in the treatment group, respectively. The 

school effect pertains to students in both the treatment and control groups, so we assume 
2~ (0, )h N ξξ σ  for  1   to  h H= . 

Let’s now look at the estimated treatment effect for school h , which is Th Chy y−  under the  

model in equation (3.5). We have 

( ) ( )
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1 1 1
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∑∑ ∑

∑∑ ∑

∑∑ ∑

 

Because each school has both treatment and control students, the school-level terms  hξ cancel for the 

individual school-level treatment effects. For balanced designs, then, the school-to-school variability 
will not appear in the variance of the estimated treatment effect. 

A more general formulation of the model for this design (which is equivalent for balanced data to 
the paired t test analysis described above) allows treatment effects to vary across schools. In that 
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case, there may be an interaction effect between the school and the treatment (see Gates 1995; Lohr 
1995; and McLean, Sanders, and Stroup 1991 for a discussion of interaction terms in mixed models). 
If these potential treatment-by-school interaction effects are assumed to be random, we obtain the 
following random coefficient regression model: 

0 1 .hij hij h h hij hi hij hijy T T Tβ β ξ η θ ε= + + + + +   (3.6) 

In equation (3.6), the random effect hη  is an additional source of variability in school h  that could 

arise, for example, because of potential varying implementations or supports across schools. We 
consider the school-level effects ( , ) h hξ η to follow a bivariate normal distribution with ( ) 2

hVar ξξ σ=

, ( ) 2
hVar ηη σ= , and ( ),h hCov ξηξ η σ= . 

The ATE variance structure for this general design is derived in appendix A. The variance takes a 
special form in a balanced design where each school has the same number of treatment and control 
students, and each IC has the same number of students. In that case, letting TI  be the number of 
ICs in each school, Tn  be the total number of treatment students (across all schools), and  Cn be the 

total number of control students, we find that 

( )
2 2 2 2

.T C

T T C

Var ATE
H H I n n
η θ ε εσ σ σ σ

= + + +
×

 

The leading variance term in this expression pertains to the extent to which treatment effects vary 
across schools. 

Treating School Effects as Fixed. In some studies, it may be preferable to treat school effects as 
fixed effects. This would be the case if schools were chosen deliberately to meet some criterion: for 
example, school 1 is a large urban school, school 2 concentrates on arts education, and so on. Fixed 
school effects may also be preferred when there are only a few schools (or sites). In this case, it is 
difficult to think of the study schools as representative of a population of schools. In the basic PN-
RCT, the school (or site) effect is always treated as fixed; variability among schools cannot be 
considered when there is only one school in the study, so the study school is considered to represent 
itself alone. 

Models in which schools are fixed effects may be fit by constructing indicator variables for the 
school effects and their interactions with treatment, then running the regression model. In essence, 
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impact and variance estimates are obtained for each school and are then averaged to obtain overall 
estimates. In this model, the ICs may be treated either as fixed (the likely scenario given that school 
effects are being treated as fixed) or as random. 

3.5.2 Constructed Data Example for the Blocked PN-RCT 

For this example, we assume that 15 schools participate in the study, and 20 students participate 
from each school. We assume that schools are random blocks. In every school, 10 of the students 
are randomly assigned to the control group; the other 10 are randomly assigned to 1 of 2 ICs (each 
with 5 students) in the school. The variance parameters are also set to the same values, with 

2 2 175C Tε εσ σ= =  for the student-level (residual) variance in each group, 2 45ξσ = , and 2 25θσ = . For 

this example, we set 2 10ησ =  and 0ξησ = , so we can illustrate the features of the model in equation 

(3.6). The data were generated with a mean of 100 scale points for students in the control group and 
106 scale points for students in the treatment group. 

Figure 11 gives SAS code used to produce the plots of the data shown in figure 12. In this design, 
we want to examine the difference between treatment and control students separately within each 
school. Thus, we look at side-by-side boxplots separately for each school in figure 12. From figure 
12, it can be seen that the treatment student mean is higher than the control student mean within 10 
of the schools; in the other 5 schools, the control student mean is higher. There is also substantial 
variability among the schools; some schools have both treatment and control groups that are high, 
and other schools have both treatment and control groups that are low. However, as shown above, 
this school-to-school variability is removed from the estimated treatment effect in the blocked PN-
RCT because it pertains to both treatment and control groups. 

Figure 11. SAS code used to construct figure 12  

proc sgplot data=model2;  /* Figure 12 */ 
   vbox y / category=school group=trtname meanattrs=(symbol=Diamond)   
            medianattrs = (color=black); 
   yaxis label= 'Score'; 
   xaxis label = 'School'; 
   title 'Boxplots of Test Scores, by School';  
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Figure 12. Boxplots of test scores for control and treatment students for each school 

NOTE: The symbols used for the boxplots are defined in figure 8. 

For this balanced design, the overall ATE for the experiment is the average of the 15 individual 
within-school ATEs, and its standard error is the sample standard deviation of those values divided 
by 15 . A simple analysis, therefore, uses a one-sample t test on the values of the individual 
estimated treatment effects ( )Th Chy y−   from the 15 schools. These 15 values are: 

School 1 2 3 4 5 6 7 8 
(ӯTh-ӯCh) 15.36 5.81 11.84 8.51 -3.34 9.74 13.68 15.51 

School 9 10 11 12 13 14 15 
(ӯTh-ӯCh) 18.49 -1.52 -7.94 4.90 5.43 -11.11 -3.48 

The mean of the 15 values is ATE= 5.4608, and the standard deviation of the 15 values is 9.1228. 
The t statistic for the ATE is, therefore, 15 (5.4608)/9.1228 = 2.32, which, when compared to a t 
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distribution with 14 degrees of freedom, gives a p-value of 0.0361. The output from SAS PROC 
TTEST is given in figure 13. 

The SAS code in figure 14 is used to calculate the overall ATE and its standard error for the model 
in equation (3.6) and applies to unbalanced as well as balanced designs. The code provides estimates 
of variance components for the blocking (school) effects, the IC effect, and the control and 
treatment group residual variances. The initial parameter estimates are obtained by fitting a 
preliminary mixed model without the IC effects and with a common student-level variance. 

Figure 13. Output from SAS Proc TTEST, performing a t test on the 15 individual school ATEs. 

N Mean Std Dev Std Err Minimum Maximum 

15 5.4608 9.1228 2.3555 -11.1059 18.4901 

Mean 95% CL Mean Std Dev 95% CL Std Dev 

5.4608 0.4087 10.5128 9.1228 6.6791 14.3876 

DF t Value Pr > |t| 

14 2.32 0.0361 

Figure 14. SAS code for estimating parameters in equation (3.6). 

proc mixed data=model2 noclprint; 
   class trtname school ic subjid; 
   model y = trt/ ddfm = sat solution cl; 
   /* First random statement: Fit random coefficient regression model */ 
   random intercept trt/ subject=school type=un;   
   /* Second random statement: Random effect of ICs,  
      only for treatment students */ 
   random intercept/ group=trtname subject=ic(trtname school);  
   /* Allow separate student-level variances */ 
   repeated subjid /group=trtname ;   
   parms (15) (-10) (50) (0) (8) (160) (155)/ hold = 4; 
   title 'Random Block PN-RCT'; 

We again suppress the output relating to class levels and iteration history (although you should 
check this in practice to make sure nothing is amiss). After fitting the model, we first examine the 
estimated variance components. 
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Covariance Parameter Estimates 
Cov Parm Subject Group Estimate 
UN(1,1) School  15.6042 
UN(2,1) School  -9.8197 
UN(2,2) School  48.1723 
Intercept ic(trtname*school) trtname Control 0 
Intercept ic(trtname*school) trtname Treatment 5.2726 
Subjid  trtname Control 162.30 
Subjid  trtname Treatment 161.87 

For this example, SAS estimates 2ˆ 162.30Cεσ = , 2ˆ 161.87Tεσ = , and 2ˆ 5.27θσ =  for the residual and 

IC-level variance components. The estimates for the school-level variance components are
2ˆ 15.6ξσ = , 2ˆ 48.1ησ = , and 2ˆ 9.8ξησ = − . The option TYPE = UN in the first RANDOM statement 

in figure 14 allows the school-level effects for the slope and intercept to be correlated. The values of 
the estimated variance components are imprecise because of the small number of schools.20 

20 You can also perform a formal hypothesis test for whether specific variance parameters are 0. See Self and Liang (1987) for methods that can be 
used to test hypotheses that are on the boundary of the parameter space in hierarchical models. 

The estimated treatment effect for this example is 5.46 scale points, with p-value 0.0361. Note that 
the degrees of freedom used for the treatment effect is (number of schools) - 1. With the full model 
from equation (3.6), this analysis for balanced data has exactly the same ATE, p-value, and degrees 
of freedom as the t test using the 15 school-level ATEs as observations, given above. 

Solution for Fixed Effects 
Effect Estimate Standard error DF t Value Pr > |t| 
Intercept 102.21 1.4568 14 70.16 <.0001 
Trt 5.4608 2.3555 14 2.32 0.0361 

 
Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 
Trt 1 14 5.37 0.0361 

                                                 



4 Clustered PN-RCT Designs and Power Analyses 

  
 

Chapter 3 described the statistical models for the basic and blocked PN-RCTs and showed how to 
analyze data sets for those models using SAS software. In this chapter, we consider other types of 
PN-RCT designs and provide detailed information on how to conduct power analyses for all the 
designs. Section 4.1 describes how to analyze data from the designs introduced in section 1.2.3, 
where naturally occurring clusters such as schools or classrooms are randomly assigned to the 
treatment or control condition, and ICs are formed within the clusters randomized to the treatment 
group. For these designs, both treatment and control groups have clustering, but the treatment 
group has an extra level of variability not found in the control group. Section 4.2 discusses cross-
nested designs, where the ICs can cut across clusters or blocks. Finally, section 4.3 presents methods 
for calculating power for the different PN-RCT designs discussed in this paper. 

4.1 Clustered RCTs With ICs Formed in the Treatment Group 

Example 1.7 discussed the Number Rockets evaluation, in which 76 schools were randomly assigned 
to the treatment group or the control group. At-risk first-grade students in the treatment schools 
were assigned to different ICs that met after school; at-risk first-grade students in the control 
schools received no intervention. In this design, the schools are clusters, and the entire clusters are 
randomized to the treatment or control group. All participating students in a control school receive 
the control protocol, and all participating students in a treatment school receive the treatment 
protocol. This design, therefore, is a C-RCT because clusters are randomly assigned to the two study 
arms. However, this design can also be considered to be in the class of PN-RCT designs because the 
students were placed into small tutoring groups (the ICs). Thus, clustering effects differed for the 
treatment and control groups, because the treatment students received the intervention in a group 
setting, while the control students did not have that extra level of grouping; thus, this design has the 
distinguishing asymmetric design structure of PN-RCTs. 

Note the difference between this design and the blocked PN-RCT design described in section 3.5. 
In the blocked PN-RCT design, half of the students in each school are in the treatment group, and 
the other half are in the control group. The shared environmental factors for that school therefore 
affect the treatment and control students in the school equally. Those environmental factors largely 
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cancel out when we look at the difference between the treatment and control students in that 
school. In the clustered design considered in this section, however, all the students in a school are in 
the same study arm (treatment or control). Therefore, the school environment affects all students in 
a specific school in the same direction: as discussed in section 3.1, this means that the variability 
between schools increases the variance of the ATE. 

This clustered design, therefore, yields less precise estimates of the ATE than does a blocked PN-
RCT. It has some major advantages for implementation, however. The contamination effects 
discussed in section 3.5 are not a concern for this design because all students in the school receive 
the same protocol, and this will help to minimize contact between treatment and control students. 
The clustered design may also have other advantages. For instance, it could increase administrative 
efficiency for implementing the intervention and could enhance study recruitment or student and 
teacher compliance because all students and educators in the school will share the same treatment 
status. Furthermore, this design might be more similar to how the intervention would be 
implemented on a widespread scale if found effective. These benefits of the clustered design could 
outweigh its reduced precision for estimating the ATE. Note that precision could be increased using 
regression models that include baseline covariates measured at the cluster level (the most important 
variables for increasing power) and at the student level. 

When schools are randomized to treatment or control, there is clustering due to the schools in both 
arms of the study. The novel feature caused by the ICs is that the variability of a school mean is 
expected to be larger in a treatment school than in a control school because the treatment schools 
have an extra source of variability from the IC formation. 

Although this section focuses on PN-RCT designs with school-level random assignment, similar 
methods apply to PN-RCT designs with classroom-level random assignment. An example of such a 
design is if classrooms within schools are randomly assigned to a treatment or control group and the 
intervention (e.g., a pull-out math program) is provided to students in treatment classrooms only. 
More generally, the methods we discuss in this section pertain to evaluations where education 
groups (such as schools, classrooms, districts, or neighborhoods) are the units of randomization. 

4.1.1 Model and Model Implications 

For the clustered design, let the subscript h  represent the school, i  represent the IC within the 
school (for schools randomized to the treatment group), and j  represent the student. We assume 
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that there are H  schools, with CH  control schools ( 1, , Ch H= … ) and TH  treatment schools 
( 1, , )Ch H H= + … . We use the same convention as in section 3.2 to deal with the asymmetry of the 

two research groups arising from the partially nested structure, letting 0i =  refer to the “fictional” 
ICs in control group schools and i  =1 to ThI  for the “real” ICs in school h  in the treatment group. 
For students, we have 01  to  hj J=  for control group students in school h  and 1  to  hij J= for 

treatment group students in IC i  in treatment school h . The total number of control students is 

0
1

 
CH

C h
h

n J
=

=∑ and the total number of treatment students is 
1 1

Th

C

IH

T hi
h H i

n J
= + =

= ∑ ∑ . Let 

 hijy  = test score of student j in IC i and school h 

 hT  = 1 if school h is in the treatment group, 0 otherwise 
 hiθ  = effect of IC i in school h 
 hijε  = student-level error (residual) for student j, in IC i and school h, 

where the treatment indicator hT  depends only on the school (h) because randomization is done at 

the school level. 

Combining the treatment and control group models yields the following unified model for the 
clustered design: 

0 1 .hij h h hi h hijy T Tβ β ξ θ ε= + + + +   (4.1) 

In this model, we assume that 2~ (0, )h CN ξξ σ  and 2~ (0, )hij CN εε σ  for schools and students in the 

control group, respectively, and that 2~ (0, )h TN ξξ σ , 2~ (0, )hi N θθ σ , and 2~ (0, )hij TN εε σ  for 

schools, ICs, and students in the treatment group, respectively. As in the basic PN-RCT design, a 
special case of this model sets 2 2

C Tξ ξσ σ=  and 2 2
C Tε εσ σ= . We allow different variances for the 

school effects in the treatment and control groups because of potential heterogeneity of treatment 
effects across schools beyond those caused by IC-level variability. 

The model in equation (4.1) has a very similar structure to the C-RCT model in equation (3.2). The 
cluster-level random effect in equation (4.1) is hξ , and the student-level error term is .hijε  The only 

difference is that equation (4.1) has an extra term h hi hTξ θ+  for the added variance in the treatment 

group caused by the IC-to-IC variability. This modification means that the total variability for a 
student’s score differs for students in the treatment and control groups. In the control group, the 
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total variability of a score is 2 2( )C Cξ εσ σ+ . In the treatment group, the total variability of a score is 
2 2 2( )T Tξ ε θσ σ σ+ + . 

The model in equation (4.1) appears similar to the model in equation (3.5) for the blocked PN-RCT. 
However, there is a fundamental difference. In the cluster-randomized design, every student 
receiving the control protocol is independent of every student receiving the treatment protocol. In 
the blocked PN-RCT, however, treatment and control students in the same school are positively 
correlated because they share environmental factors specific to that school.  

The variance expression for the mixed model ATE estimator for 1β  in equation (4.1) is derived in 

appendix A. For balanced designs, this variance is the sum of the variances for the treatment and 
control group means:  

( )
2 22 2 2

.
     

T CT C

T T TH T C C

Var Impact
H H I n H n
ξ ξθ ε εσ σσ σ σ   

= + + + +   
×      

 

Note that the school-level variance term enters both the treatment and control group variance 
expressions and will typically be the largest variance term because it is divided by the number of 
schools, which is likely to be considerably smaller than the total number of ICs or students. The 
extent to which these school-level terms will inflate the variances will depend on the intraclass 
correlation at the school level, which measures the extent to which mean scores vary across schools. 

As discussed in section 3.1 for a C-RCT, school effects in the clustered design must always be treated 
as random; there is no fixed effects version of this model. Note that the observed variability across 
treatment school means will incorporate the additional variability caused by the presence of ICs. 
This result occurs because in multi-stage clustered designs, the highest level of clustering drives the 
variance estimates.  

To demonstrate this result more formally for a balanced design, let Thy be the mean score for 
treatment school ,h  and let Ty  be the overall treatment group mean. Then, using equation (4.1), we 
find that the Thy  means, for 1  to Ch H H= + , are independent and identically normally distributed 

with mean [ ]TE y and variance ( )
2 2

2[ ]T
T

T T
ThV

I
ar y

I J
θ ε

ξ
σ σσ + += . An unbiased estimator for ( )ThVar y  is 

the sample variance of treatment school means:  
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2

1

1 ( )
1

C

H

Th T
h HT

Tvar y y
H = +

= −
− ∑   (4.2) 

and that an unbiased estimator for ( )TVar y is ( / ) TTvar H . Thus, in expectation, the variability 

among the school means in equation (4.2) will capture all sources of variation, including the IC-level 
variability and the student-level variability. Similarly, an unbiased estimator for ( )CVar y  for the 

control group is the sample variance of the control school means, Cvar , divided by CH . Because 

the schools in the control and treatment groups are independent, ( ) ( )T C TVar y y Var y− = +

( )CVar y . Consequently, ( )T CVar y y− in the cluster-randomized design may be estimated by
 ( )  ( )T CV yar Var y+ . In a balanced design,   ( ) / /T C T CVar y Tvar H Cvay r H− = + . 

4.1.2 Constructed Data Example  

In this example, a population of 70 schools is available for the study. Thirty-five of the schools are 
randomly assigned to the treatment group, and the other 35 are assigned to the control group. Each 
school has 40 participating students. All participating students in the control schools receive the 
control protocol. The targeted students in each treatment school are randomly assigned to one of 
the four ICs within their school (e.g., a remedial pull-out program), so each IC has 10 students. 

The data were generated using equation (4.1) under the assumption that the intraclass correlation 
coefficient is 0.15 for schools and 0.1 for ICs. The variances used for this example are: 

2 2 2225 1 5C Tε εσ σ= = =  for the student-level (residual) variance in each group, 2 2 45C Tξ ξσ σ= = , and 
2 30θσ = . The data were generated with a mean of 100 scale points for students in the control group 

and 103 scale points for students in the treatment group. The number of schools was chosen to 
achieve a desired standardized minimum detectable treatment effect of 0.3 standard deviations with 
80 percent power.21  
The plots from figures 8 and 9 from section 3.3 are also appropriate for these data. Figure 15 gives 
the boxplot for all of the students in the control and treatment schools. The IC effects cause the 
treatment students to have larger within-school variability than the control students. Figure 16 
displays the relative magnitudes of the within-school and between-school mean variability for the 
70 schools in the study. Note the large variability among school means for both the treatment and 

21 See section 4.3 for the power calculations for this example. This corresponds to a treatment effect of 5.2 scale points. The values of the variances are 

determined so the intraclass correlation at the school level is 0.15, and the intraclass correlation at the IC level is 0.1. This results in 
2 2 / 5C Cξ εσ σ=  

and 2 2 *1.2 / 9Cθ εσ σ= . 
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control groups. That variability reflects both the school-to-school variability and the student-to-
student variability within schools (and, for the treatment schools, the IC-to-IC variability as well). 
For this balanced clustered design, the overall mean for the control group is the average of the 
35 individual control school means, and its standard error is the sample standard deviation of the 
control school means divided by 35 , with a similar calculation for the treatment group. No 
unusual data features are apparent in figure 16, but with other data sets, the plot might be used to 
detect unusual scores for schools and/or students. The SAS code used to obtain these plots is 
similar to that in figure 7. 

Figure 15. Boxplot of scores from control and treatment groups for data set in the clustered 
design 

NOTE: Symbols used in the plot are described in figure 8. 
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Figure 16. Plot of data, showing individual boxplots for the schools in the control and 
treatment groups. Within each group, the schools are arranged in order of 
increasing median test score 

NOTE: Symbols used in the plot are described in figure 8. 

The code in figure 17 allows the general structure in equation (4.1) to be fit in SAS. The PARMS 
statement and GROUP option are used to allow the variance components at all levels (school, IC, 
and student) to differ between the treatment and control groups. To fit a model in which these are 
constrained to be equal, simply omit the GROUP option. The HOLD option is again used to force 
the IC-level variance in the control group to equal 0. The initial values for the parameter estimates 
are calculated from mixed models fitted separately for the treatment and control group students. 
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Figure 17. SAS code to analyze data from the cluster-randomized design 

proc mixed data=model2 noclprint;  
   class trtname school ic subjid; 
   model y = trt / ddfm = sat solution; 
   random intercept / group=trtname subject=school(trtname) ; 
   random intercept / group=trtname subject=ic(school trtname) ; 
   repeated subjid / group=trtname ; 
   parms (38) (58) (0) (31) (221) (233)/ hold = 3; 
   title 'Random Effects Analysis for Cluster-Randomized Design'; 

We omit the information on class levels and model fit. The SAS log gives the message that the G 
matrix is not positive definite, as we expected, but otherwise indicates no convergence problems. As 
requested, SAS estimates six covariance parameters and two fixed effects (the intercept and slope, 
which equals the number of columns in X). Schools serve as the 70 subjects in this analysis because 
schools are the units at the top of the hierarchy. 

Dimensions 
Covariance Parameters 6 
Columns in X 2 
Columns in Z Per Subject 10 
Subjects 70 
Max Obs Per Subject 40 

The covariance parameter estimates are essentially the same as the input initial values. This is 
because SAS uses only the data in the control group to compute the control variance parameters and 
uses only the data in the treatment group to compute the treatment variance parameters. The IC 
effect for the control schools is 0, as requested. In the control group, it is estimated that about 15 
percent [=38/(38+221)] of the variability comes from the variability among schools and the 
remaining 85 percent comes from the variability among students within the school. In the treatment 
group, it is estimated that about 18 percent [=59/(59+3233)] of the variability is from the school 
level, 10 percent [=31/(59+31+233)] from the IC-to-IC variability, and the remainder from the 
student-to-student variability.22 

22 We omit the residual analysis and regression diagnostics for space reasons; however, these analyses should always be conducted. 
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Covariance Parameter Estimates 
Cov Parm Subject Group Estimate 
Intercept school(trtname) trtname Control 38.3656 
Intercept school(trtname) trtname Treatment 58.6294 
Intercept ic(trtname*school) trtname Control 0 
Intercept ic(trtname*school) trtname Treatment 30.8832 
subjid  trtname Control 221.24 
subjid  trtname Treatment 232.84 

The estimated treatment effect is 1.42 scale points, which is not significantly different from 0 (p-
value = 0.44). Note that the Satterthwaite method gives 64.2 degrees of freedom. This is slightly 
different from the 68 degrees of freedom one would expect from an analysis with 70 schools. With 
this large of a sample of schools, however, the degrees of freedom make no difference to the 
inference because a t distribution with 64 degrees of freedom is very similar to a t distribution with 
68 degrees of freedom. 

Solution for Fixed Effects 
Effect Estimate Standard error DF t Value Pr > |t| 
Intercept 99.3217 1.1199 34 88.69 <.0001 
Trt 1.4222 1.8211 64.2 0.78 0.4377 

 
Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 
Trt 1 64.2 0.61 0.4377 

For the clustered design, the variability among control school means is the appropriate error term 
for the overall control group mean, and the variability among treatment school means is the 
appropriate error term for the overall treatment group mean. We may, thus, check the results of the 
above analysis by noting that ( ) ( ) ( )T C T CVar y y Var y Var y− = + and estimating the two variances 

separately.23 For the control group, the sample variance among school means is 43.90; for the 
treatment group, the sample variance among school means is 72.18 (the larger variance in the 
treatment group occurs because of the IC effects). Then, 

 ( ) 43.90 72.18 3.32
35 35T CV r yya − = + =  

and the test statistic is 1 .42 / 3.32 0.78T = = , as obtained in the full analysis by SAS above. This 
result is exact for the balanced design considered here and will be approximately correct for 
unbalanced designs. 

23 It is important to find separate, not pooled, estimates of the variance when doing this analysis, particularly if the numbers of schools differ in the 
treatment and control groups. A pooled analysis, particularly with unbalanced data, can lead to incorrect p-values. 
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Finally, it is important to note that under the clustered design with school-level randomization, 
correlations in the data might exist due to the grouping of students in regular classrooms. These 
correlations would pertain to both treatment and control group students. Analytic issues surrounding 
the statistical treatment of these regular classroom effects are very similar to the issues discussed 
above for treating IC effects. In particular, the treatment of school effects as random implies that 
the lower level classroom effects are also random by extension. Regular classroom effects could be 
included as additional random errors in the estimation model in equation (4.1); the resulting variance 
expressions would include variance terms that represent the variability of mean outcomes across 
classrooms (within schools) for both research groups. Analytic complications arise, however, if IC 
formation cuts across regular classrooms, thus leading to cross-nested designs (see section 4.2). 

4.1.3 Random Assignment of Schools Within Districts  

The clustered design may also be replicated in different districts (or other blocking units such as 
cities or states). In this case, the basic design of randomly assigning entire schools to the treatment 
or control condition is replicated across different districts. The same structure applies to designs 
where classrooms within each school are randomized, and students in the treatment classrooms are 
then assigned to ICs. 

We first examine the model for a blocked design with cluster-level randomization where district 
effects are treated as random. Let 1  to d D=  denote the districts available for the study. Because 
entire schools are randomly assigned to the treatment or control condition, the treatment indicator 
depends only on district and school. Let  

dhijy  =test score of student j in IC i of school h in district d 

dδ  =effect of district d 

dhξ  =effect of school h in district d 

dhiθ  =effect of IC i in school h of district d 

dhijε  = student-level error (residual) term for student j in IC i of school h in district d 

dhT  = treatment indicator for school h in district d: 1 for treatment and O for control. 

We assume that 2~ (0, )d N δδ σ , 2~ (0, )dh N ξξ σ , 2~ (0, )dhi N θθ σ , and 2~ (0, )dhij N εε σ  for districts, 

schools, ICs, and students, respectively, and that all of those random effects are independent. If 
desired, different variances, 2

Tεσ  and 2
Cεσ , may be used for treatment and control group students. 
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In many implementations of this design, there will be relatively few districts, so estimates of a 
random district-by-treatment interaction effect will be unstable. Therefore, equation (4.3) omits a 
district-by-treatment interaction in the error term:  

0 1 [ ].dhij dh d dh dhi dh dhijy T Tβ β δ ξ θ ε= + + + + +   (4.3) 

As in the blocked PN-RCT considered in section 3.5, the district-level effects cancel in a balanced 
design, as shown in appendix A. 

There may be instances, however, where researchers want to include a random district-by-treatment 
interaction term. This model would be applicable if a large number of districts participate in the 
study. Thus, for equation (4.4), we assume that the random district effects are independently 
generated from a bivariate normal distribution with variances 2

δσ  and 2
ϕσ  and covariance σδϕ : 

0 1 [ ].dhij dh d d dh dh dhi dh dhijy T T Tβ β δ ϕ ξ θ ε= + + + + + +   (4.4) 

The variance of the ATE for this model is given in equation (A.8) of appendix A. 

We have already illustrated the main features of SAS output for this design in the previous sections, 
so we do not include a constructed data example for this blocked design. Sample SAS code for 
constructing and analyzing a data example is provided for this design in appendix E, however. 

Finally, researchers may prefer to treat the district effects and their interactions with the treatment as 
fixed effects rather than as random effects. This might be the case if there are only a few districts in 
the study, or if districts are chosen to exemplify certain characteristics, such as high poverty, high 
numbers of Hispanic students, or other features. In that case, the school-to-school variability within 
the district-by-treatment interaction will form the error term for evaluating the treatment impact. 
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4.2 Cross-Nested Designs 

Thus far, we have considered hierarchical (nested) experimental designs in which each lower level 
unit (e.g., a student) belongs to exactly one unit at each higher level (e.g., an IC, classroom, or school). 
In the design in section 4.1.3, where schools are randomized within districts, we have assumed that a 
student in the treatment group belongs to exactly one IC that belongs to exactly one school that in 
turn belongs to exactly one district. Some designs in education research, however, have a “non-
nested” or “cross-nested” structure. For example, students can change primary schools during the 
study period, in which case students can be associated with more than one school. As another 
example, students in the same middle school may attend different high schools, and high schools 
may serve students from different middle schools. Thus, if the goal of the study is to estimate 
middle and high school contributions to student achievement, a cross-nested or multiple 
membership design structure results (see, for example, Goldstein 1995). A similar cross-nested 
structure occurs for studies that aim to estimate the relative contributions of neighborhoods and 
schools to student outcomes (Raudenbush 1993). 

Adapting the literature on cross-nested designs to the estimation of treatment effects in PN-RCTs is 
beyond the scope of this paper. In this section, we discuss and give examples of various types of 
cross-nested designs in which the cross-nested structure is due solely to the IC formation. Under 
cross-nested designs, the model error structure becomes more complex than under fully  nested 
designs. Although this error structure can be specified in most instances, estimation procedures 
using a mixed model framework become more complex and rely on additional model assumptions. 
The additional computational complexity occurs because the variance-covariance matrices required 
for estimation are no longer block diagonal (see appendix A). An example of a model that may be 
used to capture the covariance structure for cross-nested PN-RCT designs is given in section A.5. 
Computational methods for these models are a subject of ongoing research (see, for example, 
Cameron, Gelbach, and Miller 2011; Fielding and Goldstein 2006; and Karl, Yang, and Lohr 2013). 
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4.2.1 Changes in IC Membership Over Time 

In some PN-RCTs, students may switch ICs during the follow-up period, which can lead to non-
nested error structures. This may occur, for example, if a student’s schedule changes or the initial IC 
placement is ultimately not the best fit for the student. For instance, a student may switch pull-out 
programs mid-year or attend after-school programs on different days. In these instances, students 
may be associated with multiple ICs, so students are not uniquely categorized into ICs. 

Several analytic approaches can be used to reduce these designs to those considered in this paper. 
First, students may be coded to the IC to which they attended for the longest period or to the initial 
IC. If this approach is adopted, then the models described in chapter 3 and section 4.1 may be used 
to analyze the data. An alternative approach is to modify the basic PN-RCT model in equation (3.3) 
so that the treatment indicator variable may be replaced by variables describing the fraction of the 
time the student spent in each IC. The mathematical form for the modified model requires a 
different notational setup and is described in the last paragraph of section A.1 in appendix A. 

4.2.2 Teachers are in Charge of Multiple ICs 

In some PN-RCTs, the same teacher may teach more than one IC. For example, a tutor may coach 
more than one group of students. This can lead to correlated outcomes for treatment group 
members who are in different ICs but who have the same teacher. In the basic PN-RCT design, this 
leads to a nested design with students in the treatment group nested in ICs that are in turn nested in 
teachers. But consider a blocked PN-RCT design where students are randomly assigned to the 
treatment and control groups within schools and where the treatment students attend after-school 
programs (ICs) in a few central locations. In this case, the ICs are formed from students belonging 
to different blocks. Then, this blocked PN-RCT is an example of a “cross-nested” design because 
students in different blocks are nested within the same teacher. The analysis of such a design needs to 
account for the similarity among students in the same blocks (schools) as well as the extra similarity 
among students who attend the same IC. The resulting complex covariance structure can be 
specified using the methods described in Appendix A. 

Cross-nested designs could also arise under the clustered design from section 4.1 (with school-level 
randomization) if teachers lead multiple ICs across different schools. In the evaluation of the 
Impacts of Comprehensive Teacher Induction (Glazerman et al. 2010), 418 elementary schools from 
17 school districts serving low-income students were randomly assigned to a treatment or control 
group. In the treatment schools, novice teachers were offered mentoring services from experienced, 
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trained full-time mentors. Each mentor was assigned to an average of 12 treatment group teachers. 
Teachers who received intervention services from the same mentor can be considered to be in the 
same IC and may have had correlated outcomes because of common characteristics and intervention 
experiences. Mentors typically served teachers from multiple treatment schools. For example, 
Mentor A served teachers in Schools 1 and 2; Mentor B served teachers in Schools 1, 2, and 4; and 
Mentor C served teachers in schools 3, 4, and 5. Consequently, ICs are no longer nested with 
schools. A crossed random effects model may be used to estimate parameters in this model (see 
Raudenbush 1993). 

4.2.3 ICs That Cut Across Schools or Classrooms 

In some PN-RCTs, ICs may consist of students from different schools or classrooms. For example, 
consider the design in section 4.1 where (1) classrooms are randomized within schools and (2) the 
intervention is a pull-out program where ICs are formed using students across different classrooms. 
In this design, ICs are not fully nested within classrooms. Section A.5 of appendix A describes a 
model that can be used to capture the correct covariance structure for this cross-nested design. 

As another example, consider an after-school intervention that serves treatment students from 
multiple schools. Under the designs in section 4.1 (with school-level random assignment) or 3.5 
(with student-level random assignment within schools and random school effects), this grouping 
could lead to non-nested designs where ICs are no longer uniquely nested within schools. Similar to 
the approaches from above, the IC effects can be excluded from the estimation models if the higher 
level school effects are included in the models. It is important, however, that the treatment and 
control group variances are allowed to differ. 

4.3 Statistical Power for PN-RCTs 

An important part of any evaluation design is the statistical power analysis, which demonstrates how 
well the design of the study will be able to distinguish real impacts from chance differences. There is 
a growing literature on appropriate methods for conducting power analyses in education RCTs (see, 
for example, Hedges and Rhoads 2010; Jenney and Lohr 2009; and Schochet 2008), but no 
comparable literature for PN-RCT and related designs where ICs are formed in the treatment group. 
This section aims to close this gap by building on the previous literature to consider statistical power 
issues for the various designs considered in chapter 3 and section 4.1. For lack of a better label, we 
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refer to all designs as PN-RCTs even though, technically, the designs in section 4.1 are C-RCTs with 
clustering in both study arms. 

The presence of IC effects in PN-RCTs complicates the power analysis because the variance 
expressions differ for the treatment and control groups, with the treatment group having a source of 
variability not found in the control group. Furthermore, because the variance structure differs in the 
control and treatment arms, it may be desirable to have more students assigned to the research 
condition with the larger variance (which will often be the treatment group). The power calculations 
given in this section consider the possibility of unequal variations and allocations. 

Note that for all designs considered, a simple but conservative power analysis can be performed by 
assuming that the larger treatment-group variance also applies to the control group. For the basic 
PN-RCT design, this conservative analysis would be done by pretending that the control group also 
has variability due to ICs and calculating the power using C-RCT formulas. Since the actual PN-
RCT variance is smaller than assumed in this analysis, this approach will give a conservatively large 
sample size for the experiment. 

This section is in three parts. First, we define statistical power and then provide an overview of our 
theoretical framework for the sample size calculations. Finally, we provide sample size formulas and 
present illustrative sample size calculations using empirically based parameter values. Our analysis 
pertains to both small- or larger scale PN-RCT designs and to interventions with small or large 
effects. 

4.3.1 Defining Minimum Detectable Impacts 

To determine appropriate sample sizes for impact evaluations, researchers typically calculate 
minimum detectable impacts, which represent the smallest program impacts—average treatment and 
comparison group differences—that can be detected with a high probability. In addition, it is 
common to standardize minimum detectable impacts into effect size units—that is, as a percentage of 
the standard deviation of the outcome measures (also known as Cohen’s d)—to facilitate the 
comparison of findings across outcomes that are measured on different scales (Cohen 1988). 
Hereafter, minimum detectable impacts in effect size units are denoted as “MDEs .”  
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Mathematically, the MDE  formula can be expressed as follows: 

( , , ) ( ) /MDE Factor df Var Impactα β σ= ,  (4.5) 

where ( )Var Impact  is the variance of the impact estimate, σ  is the standard deviation of the 
outcome measure, and ( , , )Factor dfα β  is a constant that is a function of the significance level (α ), 
statistical power ( β ), and the number of degrees of freedom ( df ) that was discussed in chapter 3.24 

(.)Factor  becomes larger as α  and df decrease and as β  increases (see table 4). 

A key issue for any RCT is the precision standard to adopt for the impact estimates. This decision 
determines appropriate sample sizes because higher precision standards will require larger samples. 
Two key factors need to be considered. First, the precision standard should depend on what impact 
is deemed to have practical significance in terms of future, longer term student outcomes. Second, 
the precision standard should depend on what intervention effects are realistically attainable. Recent 
research has discussed several approaches for selecting appropriate MDE  targets for education 
evaluations using such frameworks as typical (normative) growth in student outcomes during a 
school year, differences between subgroups of students and schools with recognized practical 
significance, the effects found for other similar interventions, and cost (Bloom, Richburg-Hayes, and 
Black 2008; Lipsey et al. 2012; Schochet 2008). Precision targets for a particular evaluation will 
depend critically on the characteristics of the students included in the study (such as their ages and 
achievement levels), the intensity of the interventions, and the nature of the primary outcome 
measures (e.g., proximal or mediator outcomes may require smaller sample sizes than more distal 
student achievement outcomes). 

24 Specifically, (.)Factor  can be expressed as ( ) ( )1 1

[ ]T Tα β
− −

+  for a one-tailed test and ( ) ( )1 1[ / 2 ]T Tα β− −+  for a two-tailed test, where 

( )1 .T −
  is the inverse of the student’s t distribution function with df degrees of freedom. 
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Table 4. Values for (.)Factor  in equation (4.5) of the text, by the number of degrees of 
freedom, for one- and two-tailed tests, and at 80 and 85 percent power 

Number of degrees of 
freedom 

One-tailed test Two-tailed test 

80 Percent power 85 Percent power 80 Percent power 85 Percent power 
2 3.98 4.31 5.36 5.69 
3 3.33 3.61 4.16 4.43 
4 3.07 3.32 3.72 3.97 
5 2.94 3.17 3.49 3.73 
6 2.85 3.08 3.35 3.58 
7 2.79 3.02 3.26 3.49 
8 2.75 2.97 3.20 3.42 
9 2.72 2.93 3.15 3.36 

10 2.69 2.91 3.11 3.32 
11 2.67 2.88 3.08 3.29 
12 2.66 2.87 3.05 3.26 
13 2.64 2.85 3.03 3.24 
14 2.63 2.84 3.01 3.22 
15 2.62 2.83 3.00 3.21 
20 2.59 2.79 2.95 3.15 
30 2.55 2.75 2.90 3.10 
40 2.54 2.74 2.87 3.07 
50 2.53 2.72 2.86 3.06 

100 2.51 2.70 2.83 3.03 
Infinity 2.49 2.68 2.80 3.00 

NOTE: All figures assume a 5 percent significance level. 

4.3.2 Overview of Theoretical Approach 

Treatment and control group student sample sizes,  Tn and Cn , enter equation (4.5) as part of 
( )Var Impact . Thus, for a given design structure, equation (4.5) can be used to solve for  Tn and Cn  

to attain a targetMDE . This calculation is more complex for PN-RCTs than for typical RCTs 
because the variance structure for PN-RCTs differs for the treatment and control groups, whereas 
the power analysis literature for RCTs typically assumes equal variances for the two research groups. 

We use the following staged approach to obtain mathematical formulas for sample size calculations 
for the PN-RCT designs considered in chapter 3 and section 4.1: 

 Develop sample size formulas for a “reference” design with no hierarchical IC 
structure. Our reference design is the basic PN-RCT with student-level randomization 
where IC effects are treated as fixed; this is an I-RCT design. 

 Develop “design effect” formulas for other PN-RCTs relative to the reference 
design. The design effect is the ratio of the variances of the impact estimates of the considered 
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PN-RCT design relative to the reference design. These design effects will typically be 
greater than 1. 

 For each PN-RCT design, calculate sample sizes to attain a givenMDE value by 
multiplying the required sample sizes under the reference design (from Step 1) 
by the design effect (from Step 2). For example, if 150 treatment and 150 control 
students are required to obtain an MDE  of .3 standard deviations under the reference 
design and the design effect for a particular PN-RCT design is 1.4, the corresponding 
sample size for that PN-RCT would be 210 treatments and 210 controls. 

In what follows, we discuss these steps in more detail using the variance formulas and notation from 
chapter 3 and section 4.1. 

4.3.3 The Reference Design:  An I-RCT Design 

The reference design for our analysis is the basic PN-RCT design with student-level random 
assignment, where IC effects are treated as fixed. We adopt this design because it is the most 
common design specification used in education research for non-clustered RCT designs and applies 
to both blocked and unblocked designs. The variance of the treatment effect under this design 
(without the inclusion of baseline model covariates) has the simple form: 

( )
2 2 2

,
  (1 )

T CVar Impact
np n p

θ ε εσ σ σ+
= +

−
  (4.6) 

where p  is the proportion of students who are randomly assigned to the treatment group, 

T Cn n n= +  is the total student sample size, and other parameters are defined as in chapter 3 and 

section 4.1. 

During the design stage of an evaluation, researchers may not have specific information on the 
extent to which student-level variances will differ for treatment and control students. Thus, in what 
follows, we assume that 2 2 2

T Cε ε εσ σ σ= = . This specification assumes that the treatment group 

variance will be larger than the control group variance (which might not always hold in practice). It 
assumes also that the treatment group variance will be influenced by the heterogeneity of IC effects 
but not by the heterogeneity of treatment effects from other sources. 

To generalize equation (4.6) to allow for the inclusion of baseline covariates (e.g., pretests) and block 
indicators, we assume that the covariates will reduce each variance component by a common factor 
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( )21 R− . Thus, under our simplifying assumptions, we can express the variance for the reference 

design with baseline covariates as:  

( ) ( ) ( )
2 2 2

21 .
  1

Var Impact R
np n p

θ ε εσ σ σ +
= + − 

−  
  (4.7) 

We can then use equations (4.5) and (4.7) to solve for n  to ensure that the reference design has a 
high probability (say, 80 percent) of detecting a true standardized impact equal to a pre-specified 
MDE  value. An important analytic issue is what value of σ  to use in equation (4.5) to standardize 
the impacts into effect size units. A common approach, which we adopt, is to use the control group 
(status quo) standard deviation, which is εσ  for our reference design. An alternative approach is to 

use the full sample standard deviation 2 2p θ εσ σ+ , which uses the weighted average of the 

treatment and control group variances. 

Using this approach, we find that the sample size formula for the reference design is: 

( )
( ) ( )

( )

2 2

2

1 (.) 11 ,
1 1Ref

R Factor p
n

p p MDE
θ

θ

ρ
ρ

 −   −
 =    

− −        
  (4.8) 

where 2 2 2/ ( )θ θ θ ερ σ σ σ= +  is the intraclass correlation coefficient (ICC) at the IC level for the 
treatment group. Note that if θρ  is set to 0, we obtain the usual sample size formula found in the 

literature for non-clustered RCT designs. The associated treatment and control student sample sizes 
can be calculated using ,Ref T Refn n p=  and , (1 )Ref C Refn n p= − , respectively. 

Table 5 displays illustrative total sample size calculations for  Refn using equation (4.8) assuming a 5 

percent significance level for a two-tailed test at 80 percent power and equal treatment and control 
group sample sizes ( .5p = ). These are standard assumptions used in power calculations in the 

education field. To provide a range of realistic sample sizes that can be used in practice, we perform 
the calculations assuming various empirically based values for MDE , 2R , and θρ . Using results 

found in Schochet (2008); Bloom et al. (2007); Hedges and Hedberg (2007); and Raudenbush, 
Martinez, and Spybrook (2007), we allow (1) MDE  values to range from .10 to .50, which are 
impact values typically found for promising interventions in the education field and often used as 
targets in power calculations for education RCTs, and (2) 2R  values to range from 0 (for models 
without baseline covariates) to .75 (for models that include highly predictive baseline pretest scores). 
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There is less literature on plausible values for θρ  (which is an important area for future research). 
Thus, we use values for θρ  that range from 0 to .2 based on intraclass correlations at the classroom 

level that have been found in the literature (see, for example, Schochet 2008). 

Table 5. Total sample size calculations for students for the reference design (the basic PN-
RCT with student randomization and fixed IC effects), for treatment and control 
groups of equal size 

Regression R2 value from model covariates 

Intraclass correlation (ρθ)  0 .25 .50 .75 

MDE Target = .10 
0.0 3,140 2,355 1,570 785 
0.1 3,315 2,486 1,657 829 
0.2 3,533 2,650 1,767 883 

MDE Target = .20 
0.0 785 589 393 196 
0.1 829 622 414 207 
0.2 883 662 442 221 

MDE Target = .30 
0.0 349 262 174 87 
0.1 368 276 184 92 
0.2 393 294 196 98 

MDE Target = .40 
0.0 196 147 98 49 
0.1 207 155 104 52 
0.2 221 166 110 55 

MDE Target = .50 
0.0 126 94 63 31 
0.1 133 99 66 33 
0.2 141 106 71 35 

NOTES: All calculations were conducted using equation (4.8) in the text assuming a 5 percent significance level, two-tailed test at 80 
percent power and equal treatment and control group sample sizes (that is, p=.5). For simplicity, all calculations assume 

( ). 2.802Factor =  regardless of the degrees of freedom. The figures in the table show total student sample sizes (split evenly 
between the treatment and control groups) that are required to achieve the indicted precision targets measured in effect size units.  The 

figures are shown for various MDE targets, IC-level ICCs ( )
θ

ρ , and regression R2 values. 

As an example of how to interpret the entries in table 5, we find that the required total sample size, 

Refn , is 622 students (311 treatments and 311 controls) if .20MDE = , .10θρ =  and 2 .25R = . 

Under these assumptions, the required sample size reduces somewhat from 622 to 589 students 
under a traditional RCT design without ICs (where 0θρ = ). Consistent with results from the 

literature, required sample sizes become smaller as 2R  and MDE  values increase and as θρ values 
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decrease. 2R  values have a particularly large effect on precision; thus, the collection of detailed 
baseline variables (and especially, pretests) is an important design feature for improving the precision 
of the impact estimates. 

Note that in traditional RCTs that assume equal treatment and control group variances, for a given 
sample size, an equal treatment-control split with .5 p = yields the most precise impact estimates. 

However, in PN-RCTs where the treatment and control group variances could differ, the optimal 
treatment-control allocation will place more students into the research group with the larger 
variance. For the reference design in equation (4.7), the variance of the impact estimates will be 
minimized if 

1 .
1 1Optp

θρ
=

+ −
  (4.9) 

Thus, for example, if .2.θρ = , we find that  .53Optp = , or that the most precise impact estimates 

would be obtained if 53 percent of students were randomized to the treatment group and 47 percent 
were randomized to the control group. For most realistic values of θρ , however, the optimal 

treatment-control split does not stray too far from 50-50, and thus, we do not consider this issue 
further below for the other designs. Furthermore, there are also other advantages to maintaining a 
50-50 design, such as ease of administration and simplified recruitment. In addition, in many 
experiments, the treatment protocol will be more expensive to implement than the control protocol 
will, so the optimal allocation in equation (4.9) would be moderated by cost considerations. Taking 
costs into account, we derive the following expression for the optimal allocation: 

1 ,
1 ( / )(1 )Opt

T C

p
costs costs θρ

=
+ −

  (4.10) 

where Tcosts  and  Ccosts are study costs per treatment and control group student, respectively. 

4.3.4 The Basic PN-RCT: Student Randomization; Random IC Effects 

In this section, we consider the basic PN-RCT design discussed in chapter 3, where IC effects for 
the treatment group are treated as random effects. These random IC effects will reduce the precision 
of the impact estimates. Using the notation of chapter 3, we can write the variance of an impact 
estimate for this random effects design as 
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( )
2 2 2

2( ) 1 ,
   T T C

Var Impact R
n I n
ε θ εσ σ σ 

= + + − 
 

  (4.11) 

where TI  is the number of ICs and where other parameters are defined as above. The critical 
difference between this design and the reference design is that 2

θσ  is divided by TI  rather than by  

Tn . It is assumed in equation (4.11) that the inclusion of baseline covariates in the model reduces 

each variance component by the same factor ( )21 R− , an assumption that we make hereafter. 

The design effect for the random effects design can be calculated by dividing the variance in 
equation (4.11) by the variance of the reference design in equation (4.7) to yield 

( )1 ( 1)
1 ,

(1 )
p J

deff
p

θ

θ

ρ
ρ

− −
= +

−
  (4.12) 

where /T TJ n I=  is the (average) number of treatment students per IC and where other parameters 

are defined as above. A critical feature of this expression is that the design effect increases as the IC 
sample size increases. Stated differently, for a given total sample size, we obtain more precise impact 
estimates if we increase the number of sampled ICs and decrease the number of students sampled 
per IC. If J  equals 1, this PN-RCT design reduces to the reference design from above because the 
design effect is 1 in this case. 

To achieve a target MDE  value, we can now calculate required student samples for the random 
effects design by multiplying the design effect in equation (4.12) by the corresponding sample size 
for the reference design in table 5. Table 6 displays such illustrative sample sizes, where we allow J  
to range from 2 to 20 to allow for designs with small ICs (e.g., pull-out groups) and larger ICs (e.g., 
entire classrooms). The structure of the table is similar to table 5 except that we omit some rows to 
keep the presentation manageable. 
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As an example to show how the figures in table 6 were calculated, note first using equation (4.12) 
that if .2θρ = , .5p = , and 5J = , the design effect is 1.44. Thus, as shown in table 6, to achieve an 

 MDE value of .2 with an 2R  value of .25, the required sample for the random effects design is 957 
students (662 students from table 5 multiplied by the 1.44 design effect). Stated differently, the 
random effects design requires a 44 percent larger sample to obtain impact estimates with the same 
precision level as the reference design. For 2J = , the design effect reduces substantially from 1.44 
to 1.11, and the required sample size reduces from 957 to 736 students. 

Table 6. Total sample size calculations for students for the basic PN-RCT design with random 
IC effects, for treatment and control groups of equal size 

Regression R2 value from model covariates 

Average IC sample size  0 .25 .50 .75 

MDE Target = .10; ρθ = .1 

2 3,489 2,617 1,745 872 
5 4,013 3,010 2,006 1,003 

10 4,885 3,664 2,443 1,221 
20 6,630 4,972 3,315 1,657 

MDE Target = .10; ρθ = .2 

2 3,926 2,944 1,963 981 
5 5,103 3,827 2,552 1,276 

10 7,066 5,300 3,533 1,767 
20 10,992 8,244 5,496 2,748 

MDE Target = .20; ρθ = .1 

2 872 654 436 218 
5 1,003 752 502 251 

10 1,221 916 611 305 
20 1,657 1,243 829 414 

MDE Target = .20; ρθ = .2 

2 981 736 491 245 
5 1,276 957 638 319 

10 1,767 1,325 883 442 
20 2,748 2,061 1,374 687 

MDE Target = .30; ρθ = .1 

2 388 291 194 97 
5 446 334 223 111 

10 543 407 271 136 
20 737 552 368 184 

MDE Target = .30; ρθ = .2 
2 436 327 218 109 
5 567 425 284 142 

10 785 589 393 196 
20 1,221 916 611 305 
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Table 6. Total sample size calculations for students for the basic PN-RCT design with random 

IC effects, for treatment and control groups of equal size (Continued) 
  

Regression R2 value from model covariates 

Average IC sample size  0 .25 .50 .75 

MDE Target = .40; ρθ = .1 
2 218 164 109 55 
5 251 188 125 63 

10 305 229 153 76 
20 414 311 207 104 

MDE Target = .40; ρθ = .2 
2 245 184 123 61 
5 319 239 159 80 

10 442 331 221 110 
20 687 515 343 172 

MDE Target = .50; ρθ = .1 
2 140 105 70 35 
5 161 120 80 40 

10 195 147 98 49 
20 265 199 133 66 

MDE Target = .50; ρθ = .2 
2 157 118 79 39 
5 204 153 102 51 

10 283 212 141 71 
20 440 330 220 110 

NOTES: All calculations were conducted assuming a 5 percent significance level, two-tailed test at 80 percent power, and equal 
treatment and control group sample sizes. The figures in the table show total sample sizes (split evenly between the treatment and 
control groups) that are required to achieve the indicted ATE precision targets measured in effect size units.  The figures are shown for 

various precision targets, intraclass correlations ( )
θ

ρ  and regression R2 values. See the text for formulas.  

The sample sizes in table 6 are all larger than the corresponding figures in table 5 because of the 
presence of design effects, which range from about 1.05 (when 2J = ) to 1.30 (when 5J = ) to 2.0 
(when 10J = ) to 2.5 (when 20J = ). This highlights the important point that precision levels in 
PN-RCTs can typically be improved if more ICs and   fewer students per IC are sampled for the 
study, to the extent that study resources allow. 

4.3.5 C-RCT with ICs in the Treatment Group: School Randomization; 
Random School and IC Effects 

In this section, we consider clustered designs where groups, such as schools or classrooms, rather 
than students are the unit of random assignment. Students in the treatment clusters are subsequently 
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assigned to ICs. To focus the analysis, we consider designs where groups are schools but where the 
analysis applies equally to classroom-based designs. 

Using the notation from section 4.1, the variance expression for an impact estimate under this 
design is 

( )
2 22 2 2

,
     T T TH T C C

Var Impact
H H I n H n
ξ ξθ ε εσ σσ σ σ   

= + + + +   
×      

  (4.13) 

where 2
ξσ  is the variance of the random school effect (which, for simplicity, is assumed to be the 

same for treatment and control schools). TH  and  CH are the number of treatment and control 
schools, respectively, where TH H= +  CH  is the total number of schools,  THI is the average 

number of ICs per treatment school, and other parameters are defined as above. The leading 
variance terms for both the treatment and control groups are the school-level variances, which are 
divided by the number of schools (not the number of students); thus, random IC effects will 
typically have less of an influence on the variance estimates for this design than the basic PN-RCT 
design. 

The design effect for this C-RCT design relative to the reference design can be expressed as follows: 

( ) ( )1 1 ( 1)
1

(1 )
T H T H

T H

m p J
deff

p
ξ θ

θ

ρ ρ
ρ

− + − −
= +

−
  (4.14) 

where 

Hm  is the average number of students per school  and equals THI J×  in the treatment 

schools 
 J  is the average number of treatment students per IC 
 /H Tp H H=  is the proportion of schools randomly assigned to the treatment group 

 
2

2 2 2 T
ξ

ξ
ξ θ ε

σ
ρ

σ σ σ
=

+ +
 is the school-level ICC for the treatment group 

 
2

2 2 2 T
θ

θ
ξ θ ε

σρ
σ σ σ

=
+ +

 is the IC-level ICC for the treatment group.25 

25 The design effect in equation (4.14) is calculated by dividing equation (4.13) by the variance for the reference design that includes the school-level 

error component:  
2 2 2 2 2{ } /  { } / . 

T C
n n

ξ θ ε ξ ε
σ σ σ σ σ+ + + + The control group ICC, 

2 2 2/{ },Cξ ξ ξ ερ σ σ σ= +  is embedded in this formula. 
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For a given total sample size of students, the design effect in equation (4.14) becomes larger as we 
increase the number of students per school ( Hm ) and the number of students per IC ( J ). Thus, 

precision levels can always be improved if more schools and fewer students per school are sampled 
for the study, and similarly for ICs. The design effect for the C-RCT designs reduces to the design 
effect for the basic PN-RCT if 0Tξρ =  and Hp p= . Stated differently, the two designs will 

coincide if there are no systematic differences in average test scores across schools. 

Table 7 shows the number of schools (H ) that is required to attain a given MDE  value, where we 
vary the average number of students per school ( Hm  = 5, 20, or 40) and the average number of 

students per IC ( J  = 2, 5, 10, or 20). To keep the presentation manageable, we assume for all 
calculations that  .15Tξρ =  based on empirical values found in the literature (see, for example, 

Schochet 2008). For most calculations, we assume .10Tθρ =  but also present figures where 
0Tθρ =  to examine the extent to which IC effects influence the sample size calculations. Sample 

sizes for students can be obtained from the figures in table 7 by multiplying the displayed sample sizes 
for schools by the number of students per school ( Hm ). 

As an example of how to interpret the figures in table 7, we find that 62 schools (31 treatment and 
31 control schools) would be required under the C-RCT design to attain an MDE  of .30 standard 
deviations assuming Hm  =5, 2J = , and 2R =.50. The total student sample size for this design 

would be 310 students, compared to 194 students under the basic PN-RCT design with random IC 
effects, and 184 students under the reference design. In a traditional RCT without ICs ( 0Tθρ = ), 

the comparable required number of schools would reduce from 62 to 56 schools, suggesting that IC 
effects have some influence on power. The design effects for the figures in table 5 are about 1.8 
when 5Hm = , about 4.2 when 20Hm = , and about 7.4 when 40Hm = . 
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Table 7. Total sample size calculations for schools for the C-RCT design with random school 
and IC effects, for treatment and control groups of equal size 

Regression R2 value from model covariates 

Average IC sample size ( J ) 0 .25 .50 .75 

MDE Target = .10;  mH = 5* 

1; ρθT = 0 1,005 754 502 251 
2 1,117 837 558 279 

MDE Target = .10; mH = 20* 

1; ρθT = 0 605 453 302 151 
2 672 504 336 168 
5 698 523 249 174 
10 742 556 371 185 

MDE Target = .10; mH = 40* 

1; ρθT = 0 538 403 269 134 
2 598 448 299 149 
5 611 458 305 153 
10 632 474 316 158 
20 676 507 338 169 

MDE Target = .20; mH = 5* 

1; ρθT = 0 251 188 126 63 
2 279 209 140 70 
      

MDE Target = .20; mH = 20* 

1; ρθT = 0 151 113 76 38 
2 168 126 84 42 
5 174 131 87 44 
10 185 139 93 46 

MDE Target = .20; mH = 40* 

1; ρθT = 0 134 101 67 34 
2 149 112 75 37 
5 153 114 76 38 
10 158 119 79 40 
20 169 127 85 42 

MDE Target = .30; mH = 5* 

1; ρθT = 0 112 84 56 28 
2 124 93 62 31 
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Table 7. Total sample size calculations for schools for the C-RCT design with random school and IC 

effects, for treatment and control groups of equal size (Continued) 
 

Regression R2 value from model covariates 

Average IC sample size ( J ) 0 .25 .50 .75 

MDE Target = .30; mH = 20* 

1; ρθT = 0 67 50 34 17 
2 75 56 37 19 
5 78 58 39 19 
10 82 62 41 21 

MDE Target = .30; mH = 40* 

1; ρθT = 0 60 45 30 15 
2 66 50 33 17 
5 68 51 34 17 
10 70 53 35 18 
20 75 56 38 19 

MDE Target = .40; mH = 5* 

1; ρθT = 0 63 47 31 16 
2 70 52 35 17 

MDE Target = .40; mH = 20* 

1; ρθT = 0 38 28 19 9 
2 42 31 21 10 
5 44 33 22 11 
10 46 35 23 12 

MDE Target = .40; mH = 40* 

1; ρθT = 0 34 25 17 8 
2 37 28 19 9 
5 38 29 19 10 
10 40 30 20 10 
20 42 32 21 11 

MDE Target = .50; mH = 5* 

1; ρθT = 0 40 30 20 10 
2 45 33 22 11 

MDE Target = .50; mH = 20* 

1; ρθT = 0 24 18 12 6 
2 27 20 13 7 
5 28 21 14 7 
10 30 22 15 7 
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Table 7. Total sample size calculations for schools for the C-RCT design with random school and IC 
effects, for treatment and control groups of equal size (Continued) 

 

Regression R2 value from model covariates 

Average IC sample size ( J ) 0 .25 .50 .75 

MDE Target = .50; mH = 40* 

1; ρθT = 0 22 16 11 5 
2 24 18 12 6 
5 24 18 12 6 
10 25 19 13 6 
20 27 20 14 7 

NOTES: All calculations were conducted using equations (4.9) and (4.14) assuming a 5 percent significance level, two-tailed test at 

80 percent power,  .15Tξρ = , .10Tθρ =  (except where otherwise noted), and equal treatment and control group school sample sizes 

(that is, .5Hp = ). For simplicity, all calculations assume ( ). 2.802Factor =  regardless of the degrees of freedom.  The figures in the 

table show total sample sizes for schools (split evenly between the treatment and control groups) that are required to achieve the 
indicted precision targets measured in effect size units.  The figures are shown for various MDE targets, number of students per school 

( )Hm , the average IC sample size J , school-level ICCs (
Tξρ ), IC-level ICCs (

Tθρ ), and regression R2 values. 

* Sample sizes for students can be obtained by multiplying sample sizes for schools by the number of students per school ( Hm ). 

4.3.6 Blocked Designs: Randomization of Students or Schools Within 
Blocks 

Under the blocked PN-RCT design, students are randomly assigned to the treatment or control 
groups within schools (or school districts). For this design, the school (block) effects can be treated 
as either fixed or random. If the school effects are treated as fixed, the model could include school 
membership indicator variables as covariates. Thus, the sample size requirements for this 
specification are very similar to the random effects version of the basic PN-RCT if IC effects are 
treated as random, where the 2R  values are adjusted to reflect the predictive power of the school 
indicator variables. 

If both the school and IC effects are treated as random in the blocked PN-RCT design, we can use 
the notation from section 3.5 to express the variance of an impact estimate as follows: 
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( )
2 2 2 2

,
    S TH T C

Var Impact
H H p I n n
η θ ε εσ σ σ σ 

= + + + 
× ×  

  (4.15) 

where 2
ησ  is the variance of the impacts across schools, Sp  is the average proportion of students 

assigned to the treatment group within each school, and other parameters are defined as above. The 
design effect for this PN-RCT design is 
 

( ) ( )(1 ) 1 1 ( 1)
1 ,

(1 )
T H S S T S

T S

m p p p J
deff

p
ξ θ

θ

ρ ω ρ
ρ

− − + − −
= +

−
  (4.16) 

where 2 2/η ξω σ σ=  is the ratio of the variation in test score impacts across schools to the variation in 

mean test scores across schools. In most instances, ω  will be less than 1, so impact estimates will 
typically be more precise under this design than the C-RCT design. If ω  equals 0 (so impacts are 
constant within each school), the blocked design reduces to the basic PN-RCT design with random 
IC effects. 

Table 8 replicates table 7 for the blocked PN-RCT design. We assume for these calculations that 
.5Sp =  and .5ω = , where other parameter values are the same as for table 7. We find that required 

samples are considerably smaller for this design than for the C-RCT design. For example, if 
.30MDE = , 5Hm = , 2J = , and 2 .5R = , the blocked PN-RCT design requires only 37 schools 

compared to 62 schools for the C-RCT design. These precision gains occur because random 
assignment of students is conducted within schools rather than at the school level. In effect, we have 
a mini-experiment within each school. Of course, random assignment within schools has the 
potential problem that intervention effects could “spill over” from treatment to control students, 
which could lead to contaminated impact estimates (see, for example, Rhoads 2011). 
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Table 8. Total sample size calculations for schools for the blocked PN-RCT design with 
random school and IC effects for treatment and control groups of equal size 

Regression R2 value from model covariates 

Average IC sample size ( J ) 0 .25 .50 .75 
MDE Target = .10; mH = 5* 

1; ρθT = 0 593 445 296 148 
2 659 494 329 165 

MDE Target = .10; mH = 20* 
1; ρθT = 0 192 144 96 48 
2 214 160 107 53 
5 240 180 120 60 
10 284 213 142 71 

MDE Target = .10; mH = 40* 
1; ρθT = 0 126 94 63 31 
2 140 105 70 35 
5 153 114 76 38 
10 174 131 87 44 
20 218 164 109 55 

MDE Target = .20; mH = 5* 
1; ρθT = 0 148 111 74 37 
2 165 123 82 41 

MDE Target = .20; mH = 20* 
1; ρθT = 0 48 36 24 12 
2 53 40 27 13 
5 60 45 30 15 
10 71 53 35 18 

MDE Target = .20; mH = 40* 
1; ρθT = 0 31 24 16 8 
2 35 26 17 9 
5 38 29 19 10 
10 44 33 22 11 
20 55 41 27 14 

MDE Target = .30; mH = 5* 
1; ρθT = 0 66 49 33 16 
2 73 55 37 18 

MDE Target = .30; mH = 20* 
1; ρθT = 0 21 16 11 5 
2 24 18 12 6 
5 27 20 13 7 
10 32 24 16 8 

MDE Target = .30; mH = 40* 
1; ρθT = 0 14 10 7 3 
2 16 12 8 4 
5 17 13 8 4 
10 19 15 10 5 
20 24 18 12 6 
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Table 8. Total sample size calculations for schools for the blocked PN-RCT design with random 

school and IC effects for treatment and control groups of equal size (Continued)  
Regression R2 value from model covariates 

Average IC sample size ( J ) 0 .25 .50 .75 
MDE Target = .40; mH = 5* 

1; ρθT = 0 37 28 19 9 
2 41 31 21 10 

MDE Target = .40; mH = 20* 
1; ρθT = 0 12 9 6 3 
2 13 10 7 3 
5 15 11 7 4 
10 18 13 9 4 

MDE Target = .40; mH = 40* 
1; ρθT = 0 8 6 4 2 
2 9 7 4 2 
5 10 7 5 2 
10 11 8 5 3 
20 14 10 7 3 

MDE Target = .50; mH = 5* 
1; ρθT = 0 24 18 12 6 
2 26 20 13 7 

MDE Target = .50; mH = 20* 

1; ρθT = 0 8 6 4 2 
2 9 6 4 2 
5 10 7 5 2 
10 11 9 6 3 

MDE Target = .50; mH = 40* 

1; ρθT = 0 5 4 3 1 
2 6 4 3 1 
5 6 5 3 2 
10 7 5 3 2 
20 9 7 4 2 

NOTES: All calculations were conducted using equations (4.9) and (4.14) assuming a 5 percent significance level, two-tailed test at 

80 percent power,  .15Tξρ = , .10Tθρ =  (except where otherwise noted), and equal treatment and control group school sample sizes 

(that is, .5Hp = ). For simplicity, all calculations assume ( ). 2.802Factor =  regardless of the degrees of freedom.  The figures in the 
table show total sample sizes for schools (split evenly between the treatment and control groups) that are required to achieve the indicted 

precision targets measured in effect size units.  The figures are shown for various MDE targets, number of students per school ( )Hm , the 

average IC sample size J , school-level ICCs (
Tξρ ), IC-level ICCs ( )Tθρ , and regression R2 values. 

* Sample sizes for students can be obtained by multiplying sample sizes for schools by the number of students per school ( Hm ). 
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Finally, the analysis above can be generalized to the blocked C-RCT design, where schools or 
classrooms are randomly assigned within higher units, such as school districts, although the notation 
becomes onerous. For example, in specifications where both district and IC effects are treated as 
random, the variance of an impact estimate is 

( )
2 2 2 2

2 2

    

                         ,
(1 )  

D D D D TH T

D D C

Var Impact
D D H p D H p I n

D H p n

ϕ ξ θ ε

ξ ε

σ σ σ σ

σ σ

 
= + + + 

× × × × ×  
 

+ + 
× × −  

                    (4.17) 

where 2
ϕσ  is the variance of impacts across districts, D  is the number of districts in the sample, DH  

is the average number of schools per district, Dp  is the average proportion of schools per district 

that is assigned to the treatment group, and other parameters are defined as above. The design effect 
for this design can be calculated by dividing this expression by the variance of the reference design 
in equation (4.7) to yield 

( ) ( ) ( )(1 ) 1 1 1 ( 1)
 1 ,

(1 )
T D D D D T H T D

T D

m p p m p J
deff

p
π ξ θ

θ

λ ω λ λ
λ

− − + − + − −
= +

−
           (4.18) 

where Dm  is the average number of students per district; qλ  are ICCs of the form 2 2 /q q λλ σ σ=  

where 2 2 2 2 2( )Dλ ξ θ εσ σ σ σ σ= + + +  and ( , , , )q D ξ θ ε ; 2  Dσ is the variance of the random district 

effects; 2 /D πω σ=  2
Dσ ; and other parameters are defined as above. 

4.4 Summary of Statistical Power Considerations 

The main finding from this chapter is that if researchers aim to treat IC effects as random, student 
and school sample sizes to achieve precise impact estimates must be somewhat larger under PN-
RCT and related designs than under traditional RCT designs without ICs. The main reason this 
occurs is that IC effects increase the variances of the impact estimates for the treatment group. For 
similar reasons, the sample size formulas are more complex for PN-RCT designs than for traditional 
RCT designs, although similar methods can be used to obtain formulas for each type of design. 

Another important take away message is that required sample sizes are much smaller if random 
assignment is conducted within schools rather than at the school level. Thus, if potential study  
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contamination due to spillover effects is not a concern, within-school random assignment designs 
should be considered. This same finding also holds for traditional RCTs. 

Finally, to apply the formulas developed in the chapter, it is necessary to input plausible ICC values 
at the IC level. An important area for future research is to obtain empirical values for these ICCs in 
multiple settings, so education researchers can use appropriate values when planning for their PN-
RCTs. 
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Appendix A 
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All of the models discussed in chapter 3 and 4 may be written in the form of a general mixed model. 
In this Appendix, we express each model in standard mixed model form, using the notation in the 
“Mixed Models Theory” section of the PROC MIXED documentation in SAS Institute Inc. (2011). 
We use standard convention that a boldface letter denotes a matrix or vector, and standard matrix 
notation for transpose ( )'  and inverse 1( )−  of a matrix. Let rI  denote the  r r×  identity matrix, let 

0rc  denote the  r c×  matrix with each entry equal to zero, and let rc1  denote the  r c×  matrix with 

each entry equal to one. 

The individual models have different numbers of subscripts describing the student response. To 
achieve a uniform notation, we refer to each student using the subscript l  rather than the subscripts 
denoting the full hierarchical structure: the hierarchical structure for each model will be defined by 
the random effects and the covariances for each model separately. The outcome for student l  may 
be written as 

0 1  l l ly Tβ β ε= + + +lz 'γ   (A.1) 

where lT  = 1 if the student is in the treatment group and 0lT =  if the student is in the control 
group. The vector γ  contains all of the random effects, lz  describes which random effects are 
associated with the response of student l , and lε  is an error term associated with student l ’s 

individual response, assumed to be independently normally distributed with mean 0 and variance 

    
2

2

 if  0
( )

  if  1 
C l

l
T l

T
Var

T
ε

ε

σ
ε

σ
 =

= 
=

 

The parameter 1β  is the impact of the treatment on student outcomes (ATE). For all designs 

considered, the generalized least squares estimator 1̂β  of 1β  will be derived, along with its theoretical 

variance. 

This model is a special case of the general mixed model (see Demidenko 2004; SAS Institute 2011), 

[  ]= + +y Xβ Zγ ε   (A.2) 
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where 1 2( , , )ny y y ′= …y , ( )0 1, β β ′=β  is the vector of fixed effects, γ  is a K -vector of random 

effects, X  is the  2n×  matrix whose l th row is (1, )Tl , Z  is the  n K×  matrix whose l th row is lz ' , 

and ( )1 2, , , nε ε ε ′= …ε  is the vector of error terms.26 We assume that ~ (0, )Nγ  G  and ~ (0, )Nε  R  

are independent so the  n n×  variance-covariance matrix of the vector of responses is 

( ) .= = +'V V y ZGZ R   (A.3) 

The fixed effects β are estimated by the empirical best linear unbiased estimator 

( ) 11 1ˆ ˆ−
− −=β X'V X X'V y,  (A.4) 

where V̂  is a consistent estimator of the theoretical variance matrix V. Typically, maximum 
likelihood (ML) or restricted maximum likelihood (REML) methods are used to obtain estimates of 
the components of V  that are substituted into V̂ . 

The variance of the fixed effects estimates is estimated by 



1 1ˆ ˆ( ) ( ' ) .Var − −= X V Xβ  

This estimator, which is typically used in practice, may have a slight downward bias because it does 
not account for the variability in estimating the components of .V  This bias is small, however, for 
large or well balanced data sets (SAS Institute, 2011, p. 4803).  

The structures of the random effects vector γ , its associated descriptive vector iz , and the matrices 

G  and R  are the only features that differ among the designs considered. We now express each of 
the models in the form of Equation (A.2) and derive the properties of the estimator of the ATE, 1̂β , 

for each model. We shall work through the model for the basic PN-RCT design in detail, then 
provide the variance structure and properties of the ATE estimator for the other models. 

26 The model in equation (A.1) includes only the fixed effects for the intercept and the treatment effect. It is easily extended to include additional 
covariates by appending fixed effects terms. In that case, β  will be a vector of length p (the total number of fixed effects parameters), and X  will 
be an   n p×   matrix. The variance structures presented in the Appendix will be unchanged, and the empirical best linear unbiased estimator for β  

will be given by Equation (A.4), using the larger X  matrix. 
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A.1 Equation (3.3) for Basic PN-RCT Design 

For Equation (3.3), order the data so the first Cn  observations are in the control group, followed by 
the treatment group observations in ICs 1 through TI , where IC i  has iJ  students. The sample 
consists of a total of C Tn n n= +  observations. The control group has no intervention clusters, and 
each IC has its own random effect in the treatment group, so we set 1 2(0, , , )

TI
θ θ θ ′= …γ . To 

capture the correct IC effect for each student, set (1,0,0, ,0)′= …lz  if student l  is in the control 
group and (0,0, ,0,1,0, ,0)′= … …lz , with a 1 in position ( 1)i +  and zeroes elsewhere, if student l  
is in IC i  in the treatment group. Since it is assumed that 2~ (0, )i N θθ σ  are independent for 1i =  to 

TI , G  is the ( 1) ( 1)T TI I+ × +  diagonal matrix: 

( )
2

1,

2
,1

2

0 0  0
0  0 0  0

.
    0       

   0  0

T

T T

I

I I

Var θ

θ

θ

σ
σ

σ

… 
   … = = =       

… 

  

G γ
I

 

The G  matrix in this formulation is singular because the first diagonal entry is 0. It is thus non-
negative definite but not positive definite. 

The covariance matrix for the student-level error terms is also diagonal, with diagonal entry 2
Cεσ  for 

each student in the control group and diagonal entry 2
Tεσ  for each student in the treatment group. 

Thus, R  is an  n n×  matrix with the form: 

( ) ( )
2

,2 2 2 2
2

,

 
, , , , , .

 
C C T

T C T

C n n n
C C T T

n n T n

Var diag ε
ε ε ε ε

ε

σ
σ σ σ σ

σ
 

= = … … =  
  

0
0

I
R ε

I
  (A.5) 

This structure leads to a block diagonal form for the  n n×  covariance matrix, V :  

( ) 1

0   0 
0   0 

.

0  0
T

C

I

Var

… 
 … ′= = + =
 
 …  

 

 

V
V

V y ZGZ R

V
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Because students in the control group are independent, CV  = 2
CC nεσ I . The matrix iV  for each IC in 

the treatment group reflects the clustering induced by the ICs: iV  is the  i iJ J×  matrix with diagonal 
entries 2 2

Tε θσ σ+  and off-diagonal entries 2
θσ , written as 

2 2 2 2

2 2 2 2
2 2

,

2 2 2 2

 
  

 1 
i i i

T

T
i T J J J

T

ε θ θ θ

θ ε θ θ
ε θ

θ θ ε θ

σ σ σ σ
σ σ σ σ

σ σ

σ σ σ σ

 + …
 + … = + =
 
 

… +  

   

V I  

This variance structure implies that the covariance among students in the same IC is 2
θσ  and the 

intraclass correlation of students in the same IC is 2 /θ θρ σ=  2 2( )Tε θσ σ+ . Note that the same 

variance structure is assumed to hold in each IC. 

Note that 1
2

1
CC n

Cεσ
− =V I  and 

2
1

2 2 2

1 .
ii J

T T iJ
θ

ε ε θ

σ
σ σ σ

−  
= − + 

i iJ ,J1V I  

Using Equation (A.4), then, 

1

ˆ ,
ˆ

TI

i i

C

C
i

y

y

yω
=

 
 =  −
  
∑

β  

where Cy  is the mean of the control group students, iy  is the mean of the treatment group students 

in IC i , and 

2 2 2 2
1

1 1/
ˆ ˆ ˆ ˆ( / ) ( / )

TI

i
kT i T kJ Jε θ ε θσ

ω
σ σ σ=

  
=   + +   

∑  

is the weight accorded to IC i  when estimating the mean of the treatment group. This results in 
precision weighting, where larger ICs get a larger weight in the calculation of the overall treatment 
group mean than smaller ICs (although this effect is dampened somewhat by the common 2ˆ  θσ term 

that is not deflated by the IC size). Note that if all the ICs have the same size, i.e., 
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2 Ti IJ J J J= =…= = , then ˆ 1/i TIω =  and 1̂ T Cy yβ = − , where Ty  is the simple average of the IC 

means. Also note that if the variance due to ICs is zero, then 
1

 /ˆ
TI

i i k
k

J Jω
=

= ∑  so the estimated mean 

of the treatment group is a weighted average of the individual IC means, where the weights are 
proportional to IC size. 

We now derive the variance of the estimator. To facilitate the theory, we derive the variance of the 
best linear unbiased estimator,  

( ) 11 1 ,
−− −′ ′=β X V X X V y  

which is the estimator of the same form as β̂  but assumes that the variance components are known. 

For the model in Equation (3.3), 

( )

2 2

11
2 2

2 2
1

( ) .
11/

( / )

T

C C

C C

I
C C

kC C T k

n n
Var

n n J

ε ε

ε ε

ε θ

σ σ

σ σ
σ σ

−−

=

 
− 

 ′= =   
 − +  +   

∑
β X V X  

Thus, the variance of the ATE is 

2

1 2 2
1

1( ) 1/  .
( / )

TI
C

kC T k

Var
n J
ε

ε θ

σβ
σ σ=

 
= +  + 

∑   (A.6) 

If all the ICs have the same size, i.e., 1 2 TI
J J J J= =…= = , then 

2 2 2

1( )  C T

C T T

Var
n n I
ε ε θσ σ σβ = + +  

which is the expression given in section 3.2 and used in chapter 4. Note that when 2 0θσ > , the size 
of the variance of the estimator depends on the number of ICs. If TI  is small relative to Tn  and Cn , 

then the variance will be dominated by the 
2

TI
θσ  term no matter how many students are in the control 

group or how many students are in each IC. Results in Demidenko (2004, chapter 3) can be used to 
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show that 1 1( ) ( )Var Varβ β≈  for either ML or REML estimators of the variance parameters when TI  

is large. 

The basic model structure for the basic PN-RCT can be modified for the situation described in 
section 4.2.1 in which a student may attend multiple ICs. Instead of defining 

(0,0, ,0,1,0, ,0)′= … …lz  for a treatment group student, with a 1 corresponding to the IC 
membership, allow the entries of lz  to correspond to the fraction of time that student l  spent in 

each IC. Thus, a student who spent half of the time in IC 1 and half of the time in IC 2 would have 
(0,1 / 2 ,1 / 2 ,0, ,0)′= …lz . Note that this change in lz  also changes the correlation structure 

because treatment group students are no longer nested in ICs. Equation (A.3) must be used to find 
the covariance matrix for the observations. 

A.2 Equations (3.5) and (3.6) for Blocked PN-RCT Design 

For the blocked PN-RCT design, order the observations by school, with the schools labeled as 1 to 
H . Within schools, order the observations by IC, with the control students followed by the students 
in each of the ICs in that school. This model can be expressed in the general form of the models in 
(A.1) and (A.2) by defining the vectors lz  and γ . The covariance structure becomes more complex 

because each school now contains both control and treatment group students. 

The random effects in the vector γ  now consist of the school-level effects hξ  and the IC-level 

effects hiθ  within each of the H  schools, with respective variances 2
ξσ  and 2

θσ . We thus define 

11 11 12 1, ,1 ,2 ,( , , ,0, , , , , , , )
T THH I H H H Iξ ξ θ θ θ θ θ θ ′= … … … …γ  

which lists the H  school effects, followed by 0 to represent the IC effect for the control students in 
each school (IC 0 within each school), and then followed by a separate set of IC effects for each IC 
in the H  schools. For all students, set (0,0, ,0,1,0, ,0)′= … …lh  to be the H -vector with a 1 in 

position h  if student l  is in school h . To account for the IC effects in the treatment (but not 
control) group, let (1,0,0, ,0)′= …lc  if student l  is in the control group of school h , and 

(0,0, ,0,1,0, ,0)′= … …lc , with a 1 in position ( 1)i +  and zeroes elsewhere, if student l  is in IC i  
within school h . Then ( )′ ′ ′=l l lz h , c . Since it is assumed that all variance components are 

independent, for this model G  is the 
1 1

1  1  
H H

Th Th
h h

H I H I
= =

   
+ + × + +   

   
∑ ∑  diagonal matrix: 
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( )

1

2

2

0 .
H

THh
I

H

Var

θ

ξ

σ

σ

=

 
 
 = =
 

∑ 
I

0 0
0 0
0 0

I
G γ  

The student-level covariance matrix, R,  is, as before, the  n n×  matrix given in Equation (A.5). 

The  n n×  covariance matrix V  is again block diagonal: 

( )
1

H

Var
 
 ′= = + =  
  

0 0
0 0
0 0


V
V y ZGZ R

V
 

where the submatrices 1V  through HV  give the covariance structure within each of the H  schools. 

The blocked PN-RCT design consists of H  independent replicates of the basic PN-RCT design, so 
each submatrix hV  has the form of the V  matrix from the basic PN-RCT, with the addition of a 

school-level random effect in each entry of the submatrix: 

1 2
,

    
     

    
    

h h

Th

hC

h
h m m

hI

ξσ

… 
 … = +
 
 

…  

0 0
0 0

1

0 0
 

 

V
V

V  

V

 

where hm  is the total number of students in school h . In this matrix, 2  hC Cεσ=V I  and hiV =
2 2

,  
hi hiT J Jε θσ σ+ 1I   , where hiJ  is the number of students in IC i  of school h . 

Note that the block diagonal structure of the matrix V  implies that students from different schools 
are independent. All students in the same school, however, are positively correlated. The covariance 
of two control students, or the covariance of two students in different ICs, is 2

ξσ . The covariance of 

two treatment students in the same IC is 2 2
ξ θσ σ+ . 

The variance structure for Equation (3.6) is similar, with the addition of the extra covariance terms 
in G  and V . Because we allow the school-level random effects, G is no longer a diagonal matrix: 
we form ( , )′ ′ ′=l l lz h  c  as above but now modify lh  to be the 2H -vector with a 1 in position 2 1h −  
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if student l  is in school h  and in the control group, and 1’s in positions 2 1h −  and 2h  if student l  
is in school h  and in the treatment group. Then, 

( )
2

1

1

0 .
H

THh
I

Var

θσ
=

 
 
 

∑

= =
 
  

0 0
0 0
0 I0

G
G γ  

where 1G  is block diagonal consisting of H  blocks 2G : 

2

2 2 .ξ ξη

ξη η

σ σ
σ σ
 

=  
  

G       (A.7) 

This structure for G results in the following covariance structure for the students in school h : 

 1  , 2
2,

 ,  , 

   
    

 
 ( 2 ) 

  

hC hT

h h
hT hC hT hT

Th

hC

h m m
h m m

m m m m

hI

ξη
ξ

ξη η ξη

σ
σ

σ σ σ

… 
 …   = + +    +  

…  

0 0
0 0 0 1

1
1 1

0 0
 

 

V
V

V

V

 

For either Equation (3.5) or (3.6), the form of β̂  in Equation (A.4) is complex for unbalanced data, 

but simplifies for balanced designs. In the balanced design case, each school has the same number of 
students ( Tm  students in the treatment group and C Tm m=  students in the control group), and each 

IC has the same number ( )TI of students. This implies that the “hat” matrix 1 11ˆ ˆ− − −X)(X'V X'V  

from Equation (A.4) does not depend on the values of any of the variance components: the first row 
of 1 11ˆ ˆ− − −X)(X'V X'V  contains the value 1/ ( )CHm  for students in the control group and 0 for 

students in the treatment group, while the second row of 1 11ˆ ˆ− − −X)(X'V X'V  contains the value 
1/ ( )CHm−  for each student in the control group and 1/ ( )THm  for each student in the treatment 

group. Consequently, 0
ˆ

Cyβ =  and 1̂ T Cy yβ = − . In the balanced case, then, the variance of the ATE 

is 

( )
2 2 2

2
1 2

1

1 1ˆ( )
H

T C
Th Ch

h T T C

Var Var y
H H I m

y
m

θ ε ε
η

σ σ σβ σ
=

 
= − = + + + 

 
∑  
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A.3 Equation (4.1) for Clustered Design 

To express the model in Equation (4.1) in matrix terms, order the observations by school, with the 
control schools labeled as 1 to CH  and the treatment schools labeled as 1  to  CH H+ . Within the 

treatment schools, order the observations by IC. This model can be expressed in the general form of 
the models in Equations (A.1) and (A.2) by defining the vectors lz  and γ . 

The random effects in the vector γ  now consist of the school-level effects hξ  for the treatment and 

control groups and the IC-level effects hiθ , with respective variances 2
Tξσ , 2

Cξσ  and 2
θσ . We thus 

define 

 ( ) ( ) ( ) ( ), 11 1 ,1 ,2 ,1 ,1 1 ,2 1 ,( , , , , ,0, , , , , , , )
C C THC C C T HC

H H H H H H IH H H Iξ ξ ξ ξ θ θ θ θ θ θ
++ + + + ′= … … … … …γ  

which lists the H  school effects, followed by 0 to represent the IC effect for the control schools 
(inserted to match the SAS formulation), and then followed by a separate set of IC effects for each 
treatment school. For all students, set (0,0, ,0,1,0, ,0)′= … …lh  to be the H -vector with a 1 in 

position h  if student l  is in school h . To account for the IC effects in the treatment (but not 
control) group, let (1,0,0, ,0)'= …lc  if student l  is in the control group and 

(0,0, ,0,1,0, ,0)'= … …lt , with a 1 in position ( 1)i +  and zeroes elsewhere, if student l  is in IC 
( )hi  in the treatment group. Then ( , )′ ′ ′=l l lz h c  if student l  is in the control group and 

( , )′ ′ ′=l l lz h t  if student l is in the treatment group. Since it is assumed that all variance components 

are independent, for this model G  is the 
1 1

1  1  
C C

H H

Th Th
h H h H

H I H I
= + = +

   
+ + × + +      

   
∑ ∑  diagonal matrix:  

( )

1

2

2

2

 
  
0

H
ThC

C

T

h H
I

C H

T H
Var

ξ

ξ

θ

σ
σ

σ
= +

 
 
 

= =  
 
 
 ∑

0 0 0
0 0 0
0 0 0
0 0 0

I
I

G γ

I

 

The G  matrix in this formulation is singular (as in the basic PN-RCT design) because of the zero 
diagonal entry. The covariance matrix for the student-level error terms is also diagonal, and has the 
same form as before, with R  the  n n×  matrix given in Equation (A.5). 

This structure leads to a block diagonal form for the  n n×  covariance matrix, V : 
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( ) .C

T

Var
 

= = + =  
 

0
0

V
V y ZGZ' R

V
 

The submatrices CV  and TV  are also block diagonal with diagonal blocks 1, , 
CC CH…V V  and 

, 1, , 
CT H TH+ …V V  respectively. Each submatrix of CV  has the form: 

2 2 2 2

2 2 2 2
2 2

,

2 2 2 2

   
   

 
   

   

Ch Ch

C C C C

C C C C
Ch C C m m

C C C C

ε ξ ξ ξ

ξ ε ξ ξ
ε ξ

ξ ξ ε ξ

σ σ σ σ
σ σ σ σ

σ σ

σ σ σ σ

 + …
 + … = + =  
 

… +  

1
   

V I  

for  1 h=  to CH , where Chm  is the number of students in control school h . The structure for TV  is 
more complex because of the additional variance component due to the ICs: for school h  = CH + 1 

to H , 

 

1 1

2 2

2 2
,

2 2
,

                                          
                                

                                       
                                     

h h

h h

T J J

T J J
Th

ε θ

ε θ

σ σ
σ σ

+ …
+ …

=

1 0 0
0 1 0

0 0
 

 

I
I

V 2
,

2 2
,

  

   

Th Th

hI hITh Th

T m m

T J J

ξ

ε θ

σ

σ σ

 
 
  + 
 

… +  

1

1I

 

The form of β̂  in Equation (A.4) is complex for unbalanced data, but simplifies for balanced 

designs. With a balanced design, the “hat” matrix ( ) 11 1ˆ ˆ−
− −X'V X X'V  from Equation (A.4) does not 

depend on the values of any of the variance components. If each school has the same number of 
students, and each IC in the treatment group has the same number of students, then 0

ˆ
Cyβ =  and 

1̂ T Cy yβ = − . In the balanced case, the variance of the ATE is 

( ) ( )
2 22 2 2

1
1

ˆ( ) C TC T

C C T T H C
C T

T

Var Var Var
H n H H I

y
n

y ξ ξε θ εσ σσ σ σβ
   

= + = + + + +      ×   
 

which was used in the power calculations in chapter 4. 
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A.4 Equations (4.2) and (4.3) for Design with Randomization of 
Schools Within Blocks 

To express the model in (4.2) in matrix terms, order the observations by district, then by school 
within district (with control schools preceding treatment schools), IC within treatment schools, and 
finally by student. We rely on the derivations already done in section A.3 to simplify the presentation 
of the matrix structure for this design. 

As with all designs considered, the covariance matrix V  is block diagonal: here, districts are assumed 
independent of each other. Thus, 

( )
1

.

D

Var
 
 = =  
  

0 0
0 0
0 0


V
V y

V
 

Each submatrix dV , for  1 d =  to D , then gives the covariance structure for students within that 

district. We can write 

2 ,dC
d

dT
δσ

 
= + 
 

0
1

0
V

V
V

 

where the submatrices dCV  and dTV  have the same general structure as the submatrices CV  and TV  

in section A.2. 

The only difference, then, between the variance structure for this design and that for the single 
district structure in section A.3 is that all of the students within a district have the additional 
covariance term 2

δσ . This implies that control students in a district are positively correlated with 

treatment students in the district, which enhances the precision of the ATE because the covariance 
of the mean treatment student score in a district with the mean control student score is positive. 

In a balanced design, the ATE is once again 1̂ T Cy yβ = − . For the model in Equation (4.2) with a 

balanced design, 

( )
2 2 2 2

1 2
1

1 1ˆ( )
H

T C
Td Cd

h D D T D T D C

Var Var y
D D H H I H m

y
m H

ξ θ ε εσ σ σ σβ
=

 
= − = + + +  

 
∑  
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where there are DH schools in each district, TI  ICs in each treatment school,  Cm  students in each 
control school, and   T Cm m=  students in each treatment school. In this case, the district-to-district 

variability cancels when taking the difference between the average treatment and control school 
scores within each district 

For the model in Equation (4.3), the leading term of the variance for a balanced design is the 
additional variability assumed to be due to differential treatment impacts across the districts: 

( )
2 2 2 2

2
1 2

1

1 1ˆ( )
 

H
T C

Td Cd
h D D T D T D C

Var Var y
D D H H I H m

y
H m

ξ θ ε ε
ϕ

σ σ σ σβ σ
=

 
= − = + + + +  

 
∑   (A.8) 

The additional variability due to differential treatment impact will often be small in practice; in many 
cases the model in Equation (4.3) can be refit without the terms d dhTϕ . In some settings, a 

differential treatment effect may occur because some districts are more supportive of interventions 
than others. But when the differential treatment impact arises because of unmeasured differences 
among students or schools, we expect that in general, the larger the topmost experimental unit in the 
hierarchy (in this case, districts), the smaller the value of 2

ϕσ . This is because students tend to be 

more heterogeneous in larger experimental units: schools are more heterogeneous than classrooms, 
districts are more heterogeneous than schools, states are more heterogeneous than districts, etc. 
Thus, as the unit size grows, all of the variance components associated with that unit tend to 
decrease. 

A.5 Cross-Nested Designs 

Cross-nested designs can be expressed in the general mixed model framework. In this section, we 
illustrate how to express the model in section 4.2.3 using the notation in this appendix.  As in 
section A.3, suppose there are H  schools, with the control schools labeled as 1 to CH  and the 
treatment schools labeled as 1  to  CH H+ . For a cross-nested design, however, the ICs may be 

formed from students in multiple treatment schools. This is in contrast to the nested model in 
section A.3, where the each IC contained students from exactly one treatment school.  
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Consider the situation where there are a total of TI  ICs.  The random effects in the vector γ  consist 
of the school-level effects hξ  for the treatment and control groups and the IC-level effects iθ , with 

respective variances 2
Tξσ , 2

Cξσ  and 2
θσ . For this cross-nested design, define 

( )1 1 1 2, , , , ,0, , , .
C C TH H H Iξ ξ ξ ξ θ θ θ+

′= … … …γ  

This vector of random effects lists the H  school effects, followed by 0 to represent the IC effect for 

the control schools and then followed by the TI  IC effects. As in section A.3, set 

(0,0, ,0,1,0, ,0)′= … …lh  to be the H -vector with a 1 in position h  if student l  is in school h . To 

account for the IC effects in the treatment (but not control) group, let (1,0,0, ,0)′= …lc  if student 

l  is in the control group and (0,0, ,0,1,0, ,0)′= … …lt , with a 1 in position ( 1)i +  and zeroes 

elsewhere, if student l  is in IC i  in the treatment group. Then ( , )l′ ′ ′=l lz h c  if student l  is in the 

control group and  ( , )l′ ′ ′=l lz h t  if student l  is in the treatment group. Since it is assumed that all 

variance components are independent, for this model G  is a ( ) ( )1  1  T TH I H I+ + × + +  diagonal 

matrix with diagonal entries  2
Cξσ (repeated CH  times), 2

Tξσ  (repeated TH  times), 0, and 2
θσ  

(repeated TI  times). 

Because each IC is formed from students originating from multiple treatment schools, however, the 

covariance matrix = +V ZGZ' R  is not necessarily block diagonal.  The response of a student in the 

treatment group is correlated with the responses of other students in his or her school, and is also 

correlated with the responses of other students in his or her IC. The students in the IC, however, are 

drawn from multiple schools in the cross-nested design. As a consequence, the covariance matrix for 

the treatment group students can have a positive entry in any position, depending on how students 

are assigned to ICs.  
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In large studies, degrees of freedom are immaterial for the conclusions of the study. For large 
degrees of freedom, the t distribution is very close to the normal distribution. For example, the 0.05-
level critical value for the normal distribution is 1.96, while the 0.05-level critical value for the t 
distribution with 40 degrees of freedom is 2.02; hypothesis tests and confidence intervals formed 
using the t distribution will be practically identical to those formed using the normal distribution. 
For small studies, however, inferences can differ depending on how the degrees of freedom are 
calculated. We first give general guidelines to degrees of freedom and then discuss adjustments to 
those degrees of freedom that arise from considering unequal variances in the treatment and control 
groups. 

Note that most rigorous, well-powered education RCTs have sufficiently large sample sizes to justify 
the use of the normal distribution as an approximation to the t distribution for hypothesis testing. 
However, the number of degrees of freedom can sometimes be small (that is, less than 40) when 
schools or classrooms are the units of random assignment, and in that case, degrees of freedom 
should be considered when performing tests or constructing confidence intervals. 

The general guideline for degrees of freedom in hierarchical models is to use 

 df = (number of independent units) – (number of parameters estimated), 

where the number of parameters estimated includes the intercept, the treatment status indicator, and 
all baseline covariates (including block effects). In a two-sample t  test with all student observations 
independent, this guideline results in using 2n −  df, where n  is the total number of students. By 
contrast, for a C-RCT design with a total of n  students nested in  H schools with half of the schools 
receiving the control protocol and the other half receiving the treatment protocol, the guideline 
indicates that df = 2H −  because there are only H  independent units, corresponding to the 
schools, in the data. In a blocked design with H  schools, where half of the m  students in each 
school receive the treatment and the other half receive the control, we have ( 2)m −  degrees of 
freedom in each block, and the guideline results in ( 2)H m −  df. 

The simple guideline, however, assumes that the variance for each independent unit is the same. 
This is not the case in PN-RCTs because the independent units in the control group often have a 
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different variance than the independent units in the treatment group due to the ICs. We (and SAS) 
use Satterthwaite’s (1946) method to adjust the degrees of freedom for the unequal variances and 
illustrate the method for the basic PN-RCT design. The adjustment is similar for the other designs. 
The method also will adjust the df to account for estimating other covariates; a formula that may be 
used when other covariates are present is given by Fai and Cornelius (1996). 

For the basic PN-RCT design, the problem of testing the ATE may be viewed as a special case of 
the Behrens-Fisher problem (see Dudewicz, Ma, Mai, and Su 2007 for a discussion) for conducting a 
hypothesis test of the difference between two treatment means with unequal variances in the two 
groups. Using the notation in section 3.2, if each IC in the treatment group has the same number of 
students, J , and if the control group has Cn  students, then the estimated treatment effect 1̂β  may 

be written as the difference between the mean of the students in the treatment group and the mean 
of the students in the control group: 

1 0 0
1 1 1 1 1

1 1 1 1 ˆ
C CT Tn nI IJ

T C ij j Ti j
i j j i jT C T C

y y y y y y
n n I n

β
= = = = =

= − = − = −∑∑ ∑ ∑ ∑  

The problem may be viewed as having Cn  independent observations in the control group, each with 
variance 2

C Cv εσ= , and TI  independent observations in the treatment group, each with variance 
2

2 T
Tv J

ε
θ

σσ= + . With this setup, Satterthwaite’s (1946) approximation to the degrees of freedom is 

2

2 2

2 2

 

( 1) ( 1)

C T

C T

C T

C C T T

v v
n I

df
v v

n n I I

 
+ 

 =
+

− −

 

 
The df provided by this formula lies between the smaller value ( 1)TI −  and the sum 
( 2)C Tn I+ − . 

For the example in section 3.3, we estimate Cv  by 197.13 and Tv  by (52.48 + 204.32/5) = 93.34. 

The Satterthwaite formula then gives 46.9 degrees of freedom, which is the value that SAS used for 
the test. 
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The examples in chapter 3 are all analyzed using SAS software. Using the same software package for 
all examples in chapter 3 allows the design and analysis features to be easily compared, without 
forcing the reader to switch between different output formats. Not all readers will want to use SAS 
for analysis, however. This appendix presents annotated commands and selected output for the 
designs in sections 3.3, 3.5, and 4.1 for use with the R statistical software package (R Core Team, 
2013). 

The contributed R package lme4 (Bates, Maechler, and Bolker 2012) may be used to fit mixed 
models in R. The package lme4 is constructed to allow a wide range of potential covariance 
structures and thus can be adapted for use with PN-RCTs. The main function in the package for 
fitting linear mixed models is lmer, and we shall use that exclusively. We assume the reader is familiar 
with fitting linear models in R using the function lm. Note that since lme4 is a contributed package 
to open-source software, features are subject to change in future versions. The code presented 
below was developed for use with version 2.15.2 of R and with version 0.999999-0 of lme4. 

C.1 Basic PN-RCT Design (Sections 3.2 and 3.3) 

We first demonstrate a method for analyzing data from the basic PN-RCT design that works in R or 
any package that will fit a hierarchical model. We estimate the mean and variance of each group 
separately and then find the p-value for a large-sample test using those means and variances. The 
variable names used for this analysis are described in table 3. The data are assumed to be in a data 
frame named model1. The following code could alternatively be written as a function. 
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library(lme4) # load the lme4 package 
model1$ic = factor(model1$ic) # Declare ic as a factor 

# Find the mean and variance of the mean: control group 

controlfit = lm(y ~ 1, subset=(trt==0), data=model1) 
controlmean = controlfit$coef 

controlmean_var = summary(controlfit)$sigma^2/ 
 length(model1$y[model1$trt==0]) 

# Find the mean and variance of the mean: treatment group 

treatfit = lmer(y ~ 1 + (1 | ic), subset=(trt==1), data=model1, 
 REML=TRUE) 
treatmean = attr(treatfit,”fixef”) 
treatmean_var = diag(vcov(treatfit)) 

# Combine the estimates from the treatment and control groups 
# and perform the test 

diff_mean = treatmean - controlmean 
diff_var = treatmean_var + controlmean_var 
t_stat = diff_mean/sqrt(diff_var) 
p_value = (1 - pnorm(t_stat))*2 # can use t value with Satterthwaite 
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The object treatfit gives the variance components for the treatment group, and the objects t_stat and 
p-value contain the test statistic and p-value for the test of significance for the ATE. The values of 
these objects from R are: 

> treatfit 
Linear mixed model fit by REML  
Formula: y ~ 1 + (1 | ic)  
   Data: model1  
 Subset: (trt == 1)  
  AIC  BIC logLik deviance REMLdev 
 1042 1051 -518.1     1039    1036 
Random effects: 
 Groups   Name        Variance Std.Dev. 
 ic       (Intercept)  52.485   7.2446  
 Residual             204.324  14.2942  
Number of obs: 125, groups: ic, 25 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)  105.078      1.932   54.38 
> diff_mean 
(Intercept)  
   5.161021  
> diff_var 
[1] 5.310493 
> t_stat 
(Intercept)  
   2.239588  
> p_value 
(Intercept)  
 0.02511767 

This p-value was calculated using a normal approximation, but the Satterthwaite degrees of freedom 
could be used instead with a t distribution. 

If you are willing to assume that 2 2
C Tε εσ σ= , the following command in R will fit the PN-RCT in 

Equation (3.3). This command fits the IC effect only within the treatment group but assumes a 
common residual variance. Covariates can be added to this model after the ‘~’ in the calling 
statement. 

lmefit_model1 = lmer(y ~ trt + (0 + trt | ic), data=model1, REML=TRUE) 

The object lmefit_model1 gives the estimated variance components and treatment effect. 

______________________________________________________________________________ 
 C-3 



Appendix C 
Analyzing PN-RCT Data Using R Software 

> lmefit_model1 
Linear mixed model fit by REML  
Formula: y ~ trt + (0 + trt | ic)  
   Data: model1  
  AIC  BIC logLik deviance REMLdev 
 2056 2070  -1024     2054    2048 
Random effects: 
 Groups   Name Variance Std.Dev. 
 ic       trt   53.281   7.2994  
 Residual      200.343  14.1543  
Number of obs: 250, groups: ic, 26 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)   99.917      1.266   78.92 
trt            5.161      2.310    2.23 
 
Correlation of Fixed Effects: 
    (Intr) 
trt -0.548 

The model fit in R gives the same parameter estimates as a SAS model that assumes the student-
level variance components are the same in the control and treatment groups. The treatment effect is 
estimated as 1̂β =  5.16 with standard error 2.31. The variance parameter estimates, from the output, 
are 2ˆθσ =  53.3, and 2ˆεσ =  200.3.Note that R gives a standard deviation behind each estimated 

variance component. This is the square root of the variance component (for example, 7.2994 is the 
square root of 53.281), not a standard error for the variance component. R does not give standard 
errors for the variance components. Standard errors are usually based on a normal approximation to 
the distribution of the statistic. Estimated variance parameters generally have a skewed distribution 
so the normal approximation performs poorly. 

C.2 The Blocked PN-RCT Design (Section 3.5). 

For the blocked design, we cannot fit the control and treatment groups separately and then combine 
the variances as we did for the basic PN-RCT design in section C.1. However, R will fit a unified 
model in which the residual student-level variance is assumed to be the same for the treatment and 
control groups. The ICs must be uniquely identified across all of the schools for the model to be fit 
correctly, and all random factors must be declared to be factors before using the function lmer. 
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model2$school = factor(model2$school) 
model2$ic = factor(model2$ic) 
model2$schic = interaction(model2$school,model2$ic) 
lmefit_model2 = lmer(y ~ trt + (1 + trt | school) + (0 + trt | schic), 
 data=model2, REML=TRUE) 

The following output shows 0β̂ =  102.212 with standard error 1.457. The treatment effect is 

estimated as 1̂β =  5.461 with standard error 2.356. The variance parameter estimates, from the 

output, are 2ˆξσ =  15.6241, 2ˆησ =  48.1926, 2ˆθσ =  5.2278, and 2ˆεσ =  162.0988. The VarCorr command 

will extract the covariance matrix at each level in the hierarchy, and the $school component gives the 
school-level covariance parameter estimate of ξη σ̂ = −  9.84. 

> lmefit_model2 
Linear mixed model fit by REML  
Formula: y ~ trt + (1 + trt | school) + (0 + trt | ic2)  
   Data: model2  
  AIC  BIC logLik deviance REMLdev 
 2416 2442  -1201     2408    2402 
Random effects: 
 Groups   Name        Variance Std.Dev. Corr    
 ic2      trt           5.2278  2.2864          
 school   (Intercept)  15.6241  3.9527          
          trt          48.1926  6.9421  -0.359  
 Residual             162.0988 12.7318          
Number of obs: 300, groups: ic2, 31; school, 15 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)  102.212      1.457   70.16 
trt            5.461      2.356    2.32 
 
Correlation of Fixed Effects: 
    (Intr) 
trt -0.506 
>  
> VarCorr(lmefit_model2) 
$ic2 
         trt 
trt 5.227778 
attr(,"stddev") 
     trt  
2.286433  
attr(,"correlation") 
    trt 
trt   1 
 
$school 
            (Intercept)       trt 
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(Intercept)   15.624131 -9.839705 
trt           -9.839705 48.192641 
attr(,"stddev") 
(Intercept)         trt  
   3.952737    6.942092  
attr(,"correlation") 
            (Intercept)        trt 
(Intercept)   1.0000000 -0.3585864 
trt          -0.3585864  1.0000000 
 
attr(,"sc") 
[1] 12.7318 

C.3 The Clustered Design (Sections 4.1.1 and 4.1.2) 

As with the basic PN-RCT, for the clustered design we can fit the treatment and control groups 
separately and then combine the information if unequal variances are desired, or we can use one lmer 
command if the school-level and residual variances are assumed equal for the two groups. 

Commands that may be used to fit the control and treatment schools separately, and then combine 
the results, are: 

# Control group 

controlfit=lmer(y~1 + (1 | school), subset=trt==0, data=model3) 
controlmean = attr(controlfit,”fixef”) 
controlmean_var = diag(vcov(controlfit)) 

# Treatment group 

treatfit = lmer(y ~ 1 + (1 | school/ic), subset=trt==1, data=model3, 
REML=TRUE) 
treatmean = attr(treatfit,”fixef”) 
treatmean_var = diag(vcov(treatfit)) 

# Combine the estimates from the treatment and control groups 

diff_mean = treatmean - controlmean 
diff_var = treatmean_var + controlmean_var 
t_stat = diff_mean/sqrt(diff_var) 
p_value = (1 - pt(t_stat,68))*2 
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The following command will fit the unified model, assuming a common variance at the student 
level. Note that to fit this model in R, the ICs must have unique labels for all ICs in the study. 
Covariates can be added to this model after the ‘~’ in the calling statement. 

model3$trtname = factor(model3$trt) 
model3$schic = interaction(model3$school,model3$ic) 
lmefit_model3 = lmer(y ~ trt + (0+ trtname | school) + 
 (0 + trt| schic), data=model3, REML=TRUE) 

> lmefit_model3 
Formula: y ~ trt + (0 + trtname | school) + (0 + trt | schic)  
   Data: model3  
   AIC   BIC logLik deviance REMLdev 
 23393 23435 -11690    23384   23379 
Random effects: 
 Groups   Name     Variance Std.Dev. Corr   
 schic    trt       31.486   5.6112         
 school   trtname0  38.231   6.1831         
          trtname1  58.642   7.6578  0.000  
 Residual          226.810  15.0602         
Number of obs: 2800, groups: schic, 175; school, 70 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)   99.322      1.120   88.68 
trt            1.422      1.821    0.78 
 
Correlation of Fixed Effects: 
    (Intr) 
trt -0.615 

The treatment effect is estimated a 1̂β =  1.42 with standard error 1.82. The variance parameter 

estimates, from the output, are 2ˆ Cξσ =  38.2, 2ˆ Tξσ =  58.6, 2ˆθσ =  32.3, and 2ˆεσ =  226.8. 

C.4 Randomization of Schools Within Blocks (Section 4.1.3) 

The design in which schools are randomly assigned to treatments within blocks is fit similarly to the 
clustered design in R. The following commands may be used: 

model4$trtname = factor(model4$trt) 
model4$dist = factor(model4$dist) 
model4$school = factor(model4$school) 
model4$schdist = interaction(model4$school,model4$dist) 
model4$icschdist = interaction(model4$ic,model4$school,model4$dist) 
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lmefit_model4 = lmer(y ~ trt + (1 + trt | dist ) + (1 | schdist) + 
 (0 + trt | icschdist), data=model4, REML=TRUE) 

The output is interpreted in the same way as in section C.3: the command 
VarCorr(lmefit_model4)will give the covariance of the district-level effects. 
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We now demonstrate a method for analyzing data from a basic PN-RCT design that works in HLM 
for Windows, Version 7.0 (Raudenbush, Bryk, & Congdon 2011). We do not provide methods for 
estimating parameters from the blocked and clustered designs in sections 3.5 and 4.1, and 
recommend using SAS or R for those designs. HLM software (as of Version 7) is not readily 
amenable for the blocked and clustered designs because it is designed for data in which the 
hierarchical variance structure is the same in the treatment and control groups. Although we 
examined potential ways to work around the HLM software limitations for the more complex PN-
RCTs, none of these approaches calculated standard errors correctly.  

The following discussion is for the basic PN-RCT design only. The variable names used for this 
analysis are described in table 3. The data are assumed to be in a data frame named model1. There are 
three important notes regarding using HLM for analyzing PN-RCT data that will be discussed in 
turn. 

First, the cluster identification (IC) values for the control condition should be renumbered as if each 
control is a singleton cluster, instead of using IC=0 for all controls. Using the model1 data, for 
example, the first control subject would be coded as 26 in the IC column (after the 25th treatment 
IC), the second control subject would be coded 27, the third coded as 28, and so forth through 125. 
Coding in this manner (rather than using IC=0 for all control subjects) will not change the variance 
component estimates. Rather, it assists the software in treating each control as an independent unit 
rather than as one large cluster for df estimates. The model to be estimated in HLM is as follows. 

Level 1 Model:  Y = β0 + β1(TRT) + r 
Level 2 Model:  β0 = γ00 
    β1 = γ10 + u1 

Mixed Model:  Y = γ00 + γ10(TRT) + u1(TRT) + r 

Because TRT is coded 1=treatment and 0=control, γ00 is the expected value of the control 
condition, γ10 is the expected value of the treatment effect, u1 the treatment cluster error, and r is the 
residual error. Although TRT is used as a “Level 1” predictor in the HLM framework, in “Level 2” 
the variance of the intercept will be specified as fixed while the variance of the slope is specified as 
random. This specification allows HLM software to limit estimation of the IC variance component 
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to the treatment condition. Once the data are imported into HLM2 using procedures specified in the 
software manual (i.e., create a new MDM file using ASCII or other software files for Level 1 and 
Level 2 datasets), specify Y as the outcome, add TRT as a Level 1 predictor (uncentered), turn off the 
Level 2 random intercept (clicking on u0 in the β0 line), and turn on the Level 2 random slope 
(clicking on u1 in the β1 line). The window should look as follows. 

In Basic Settings, one can tailor output file names as desired; in Other Settings, one can select 
Estimation Settings and REML or ML, depending on preference. To save the command file, select 
File and Save As (browse and name the file). Finally, click Run Analysis. Below, the relevant output 
using REML estimation is given in the order in which the output is displayed. 

 The outcome variable is        Y 
 Final estimation of fixed effects: 
 ---------------------------------------------------------------------------- 
                                       Standard             Approx. 
    Fixed Effect         Coefficient   Error      T-ratio   d.f. P-value 
 ---------------------------------------------------------------------------- 
 For       INTRCPT1, B0 
    INTRCPT2, G00          99.917357   1.265972    78.925        99    0.000 
 For      TRT slope, B1 
    INTRCPT2, G10           5.161021   2.310760     2.233       149    0.027 
 ---------------------------------------------------------------------------- 
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The mean for the control condition is estimated as 0β̂ =  99.9 with standard error 1.3. The df were 

computed as the total number of subjects (250) – the sum of the control subjects and treatment 
clusters (150) – the number of predictors (1) = 99. The treatment effect is estimated as 1̂β =  5.16 

(SE=2.31), with a t-test value of 2.23 based on df=149, giving a p-value of 0.027. The df for the 
treatment slope was calculated as the sum of the number of control subjects and treatment clusters 
(150) – number of predictors (1) = 149. Note that the df estimates in HLM software correspond 
with SAS software’s ddfm=BW option. 

 The outcome variable is        Y 
 Final estimation of fixed effects 
 (with robust standard errors) 
 ---------------------------------------------------------------------------- 
                                       Standard             Approx. 
    Fixed Effect         Coefficient   Error      T-ratio   d.f. P-value 
 ---------------------------------------------------------------------------- 
 For       INTRCPT1, B0 
    INTRCPT2, G00          99.917357   1.250779    79.884        99    0.000 
 For      TRT slope, B1 
    INTRCPT2, G10           5.161021   2.269156     2.274       149    0.024 
 ---------------------------------------------------------------------------- 

HLM next provides robust, or “sandwich,” estimators of the variance; these result in the same 
conclusions for the tests. 

 Final estimation of variance components: 
 ----------------------------------------------------------------------------- 
 Random Effect           Standard      Variance     df    Chi-square  P-value 
                         Deviation     Component 
 ----------------------------------------------------------------------------- 
      TRT,       u1        7.30424      53.35185    24      55.91587    0.000 
  level-1,       r        14.15400     200.33567 
 ----------------------------------------------------------------------------- 
 
NOTE: The chi-square statistics reported above are based on only 25 of 150 
units that had sufficient data for computation. Fixed effects and variance 
components are based on all the data. 
 
 Statistics for current covariance components model 
 -------------------------------------------------- 
 Deviance                       = 2048.156042 
 Number of estimated parameters = 2 

The final pieces of HLM output provide the variance component estimates of 2ˆθσ =  53.4 and 
common variance for the residuals 2ˆθσ =200.3, as well as the value of the deviance that can be used 

to evaluate the model and the number of estimated fixed effects. 

For comparison, the analyses of the same data using ML estimation instead of REML (in HLM, 
select Other Settings, then Estimation Settings, and then click on ML) are given below. Notice that 
the variance components and fixed effect coefficients’ standard errors are slightly smaller than with 
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REML estimation. Finally, notice that the deviance (-2LL, given at the end of the output) is slightly 
larger, and is based on four parameter estimates (fixed and random effects) rather than two 
(reflecting the ML prediction of both the fixed and random effects). 

 Final estimation of fixed effects: 
 ---------------------------------------------------------------------------- 
                                       Standard             Approx. 
    Fixed Effect         Coefficient   Error      T-ratio   d.f. P-value 
 ---------------------------------------------------------------------------- 
 For       INTRCPT1, B0 
    INTRCPT2, G00          99.917357   1.263179    79.100        99    0.000 
 For      TRT slope, B1 
    INTRCPT2, G10           5.161021   2.276015     2.268       149    0.025 
 ---------------------------------------------------------------------------- 
 
 The outcome variable is        Y 
 Final estimation of fixed effects 
 (with robust standard errors) 
 ---------------------------------------------------------------------------- 
                                       Standard             Approx. 
    Fixed Effect         Coefficient   Error      T-ratio   d.f. P-value 
 ---------------------------------------------------------------------------- 
 For       INTRCPT1, B0 
    INTRCPT2, G00          99.917357   1.250779    79.884        99    0.000 
 For      TRT slope, B1 
    INTRCPT2, G10           5.161021   2.269156     2.274       149    0.024 
 ---------------------------------------------------------------------------- 
  
 Final estimation of variance components: 
 ----------------------------------------------------------------------------- 
 Random Effect           Standard      Variance     df    Chi-square  P-value 
                         Deviation     Component 
 ----------------------------------------------------------------------------- 
      TRT,       u1        7.05160      49.72502    24      56.16343    0.000 
  level-1,       r        14.12277     199.45263 
 ----------------------------------------------------------------------------- 
 
NOTE: The chi-square statistics reported above are based on only 25 of 150 
units that had sufficient data for computation. Fixed effects and variance 
components are based on all the data. 
 
 Statistics for the current model 
 -------------------------------------------------- 
 Deviance                       = 2053.598202 
 Number of estimated parameters = 4 

While HLM can estimate heterogeneous residual variances for the treatment and control conditions 
(as recommended previously in this paper), it can only do so using a maximum likelihood (ML) 
algorithm. The reason is that it automatically conducts a likelihood ratio test comparing the fit of the 
homogeneous and heterogeneous residual variance models, a test that requires use of ML estimation 
(there is currently no way to turn this test off in HLM software). Note that, for smaller samples, 
using ML instead of REML in multilevel modeling can downwardly bias variance component 
estimates. Given the large sample size in the example data, there will be a negligible difference 
between REML and ML estimates. 
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To estimate this PN-RCT model with heterogeneous residual variances for the treatment and 
control conditions, use the same specifications previously discussed but now select Other Settings, 
then Estimation Settings, then Heterogeneous Sigma^2. Next, click TRT twice and the variable will 
move into the box labeled “Predictors of level-1 variance.” Then select “OK”. The model that HLM 
will estimate is the same as before, except that the variance of the residual error, r, is restructured as 
follows. 

Mixed Model:  Y = γ00 + γ10(TRT) + u1(TRT) + r 
where Var(r) = σ2, and ln(σ2) = α0 + α1(TRT) 

Given the restructuring of r and the coding of TRT, the estimated residual variance for the 
treatment condition is exp(α0 + α1*0) = exp(α0), and the estimated variance for the treatment 
condition is exp(α0 + α1*1) = exp(α0 + α1). 

Once the model is specified in HLM, the window should look as follows. 

Finally, click “Run Analysis.” The results will appear in a sequence, with the homogeneous variance 
assumed first (same as prior output with ML estimation shown above), then the likelihood ratio test, 
and finally the heterogeneous variance model results. For brevity, only the likelihood ratio test and 
heterogeneous variance results are presented below. 
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RESULTS FOR HETEROGENEOUS SIGMA-SQUARED 
(macro iteration 3) 
 Var(R) = sigma^2 and 
 log(sigma^2) = alpha0 + alpha1(TRT) 
 
 Model for level-1 variance 
 -------------------------------------------------------------------- 
                                      Standard 
    Parameter        Coefficient      Error       Z-ratio   P-value 
 -------------------------------------------------------------------- 
 INTRCPT1    ,alpha0     5.27585      0.126491     41.709     0.000 
      TRT    ,alpha1     0.04290      0.189737      0.226     0.821 
 -------------------------------------------------------------------- 

The HLM output above gives the estimates of α0 and α1. Hence, the control condition residual 
variance is estimated to be exp(5.27585) = 195.56, and the treatment condition residual (within-
cluster) variance is estimated to be exp(5.27585+0.04290) = 204.13. 

Summary of Model Fit 
 ------------------------------------------------------------------- 
 Model                                Number of         Deviance 
                                      Parameters 
 ------------------------------------------------------------------- 
 1. Homogeneous sigma_squared              4           2053.59820 
 2. Heterogeneous sigma_squared            5           2053.54477 
 ------------------------------------------------------------------- 
 ------------------------------------------------------------------- 
 Model Comparison                 Chi-square       df    P-value 
 ------------------------------------------------------------------- 
 Model 1 vs Model 2                   0.05343       1     >.500 
 
tau 
      TRT,B1     48.93062  
 
Standard error of tau 
      TRT,B1     26.03519  
 
 ---------------------------------------------------- 
  Random level-1 coefficient   Reliability estimate 
 ---------------------------------------------------- 
       TRT, G1                        0.545 
 ---------------------------------------------------- 
 
NOTE: The reliability estimates reported above are based on only 25 of 150 
units that had sufficient data for computation. Fixed effects and variance 
components are based on all the data. 
The value of the log-likelihood function at iteration 2 = -1.026772E+003 

The likelihood ratio test comparing the heterogeneous and homogeneous residual variance models 
has p-value > 0.5, indicating that for these data, the extra complication of modeling heterogeneous 
variances is not necessary. The estimated IC-level variance is 48.9. The other parts of the HLM 
output, giving the fixed effects estimates using ML estimation, are similar to the results displayed 
above. 
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The third and final issue in using HLM software is that it does not calculate Satterthwaite (1946) df 
for heterogeneous residual variances. However, the calculations described in Appendix B can be 
used to adjust the df if needed. 

 The outcome variable is        Y 
 Final estimation of fixed effects: 
 ---------------------------------------------------------------------------- 
                                       Standard             Approx. 
    Fixed Effect         Coefficient   Error      T-ratio   d.f. P-value 
 ---------------------------------------------------------------------------- 
 For       INTRCPT1, B0 
    INTRCPT2, G00          99.917357   1.250779    79.884        99    0.000 
 For      TRT slope, B1 
    INTRCPT2, G10           5.161021   2.270461     2.273       149    0.024 
 ---------------------------------------------------------------------------- 
 
 The outcome variable is        Y 
 Final estimation of fixed effects 
 (with robust standard errors) 
 ---------------------------------------------------------------------------- 
                                       Standard             Approx. 
    Fixed Effect         Coefficient   Error      T-ratio   d.f. P-value 
 ---------------------------------------------------------------------------- 
 For       INTRCPT1, B0 
    INTRCPT2, G00          99.917357   1.250779    79.884        99    0.000 
 For      TRT slope, B1 
    INTRCPT2, G10           5.161021   2.269156     2.274       149    0.024 
 ---------------------------------------------------------------------------- 
 
 Final estimation of variance components: 
 ----------------------------------------------------------------------------- 
 Random Effect           Standard      Variance     df    Chi-square  P-value 
                         Deviation     Component 
 ----------------------------------------------------------------------------- 
      TRT,       u1        6.99504      48.93062    24      54.87687    0.001 
 ----------------------------------------------------------------------------- 
 
NOTE: The chi-square statistics reported above are based on only 25 of 150 
units that had sufficient data for computation. Fixed effects and variance 
components are based on all the data. 
 
 Statistics for the current model 
 -------------------------------------------------- 
 Deviance                       = 2053.544767 
 Number of estimated parameters = 5 
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/***************************************************************/ 
/******************BASIC PN-RCT DESIGN**************************/ 
/***************************************************************/ 

/* Generates data and computes parameter estimates for the basic PN-RCT 
   design in Section 3.2. Code was developed using SAS Version 9.3. 
   Students randomly assigned to treatment or control: no clustering except  
   for ICs. */ 

/* Initialize parameters for generating data */ 

%let ncontrol = 125;     /* number of students in control arm */ 
%let nclustrt = 25;      /* number of ICs in treatment arm */ 
%let icsize = 5;         /* number of students in each IC */ 
%let trtmean = 106;      /* mean for treatment group */ 
%let controlmean = 100;  /* mean for control group */ 
%let sig2C = 15**2;      /* sigma^2 at student level for control group */ 
%let sig2T = 15**2;      /* sigma^2 at student level for treatment group */ 
%let sig2theta = 25;     /* sigma^2_theta:  IC-level variance component */ 
%let numicm1 = %eval(&nclustrt - 1); 
%let binary_cut = 115;   /* cutoff value for creating binary variable */ 

/* Generate data set */  

data model1 (drop=u controlsd trtsd sigma_theta j);  
   call streaminit(20850); 
   retain trt u controlsd trtsd sigma_theta; 
   controlsd = sqrt(&sig2C); 
   trtsd = sqrt(&sig2T); 
   sigma_theta = sqrt(&sig2theta); 
   do ic = 1 to &nclustrt; 
       trt = 1; 
    u = rand('normal',&trtmean,sigma_theta); 
       do j = 1 to &icsize; 
      y = rand('normal',0,trtsd) + u; 
   if y > &binary_cut then ybin = 1; 
   else ybin = 0; 
      subjid =  (ic- 1)*&icsize + j; 
   subjidnest = j; 
   icnest = ic; 
   trtname = "Treatment"; 
      output; 
     end; 
 end;  
   do subjid = &nclustrt*&icsize + 1 to &nclustrt*&icsize + &ncontrol; 
       trt = 0; 
    trtname = "Control"; 
    y = rand('normal',&controlmean,controlsd); 
    if y > &binary_cut then ybin = 1; 

    else ybin = 0; 
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    ic=0; 
    icnest = subjid - &nclustrt*&icsize; 
    subjidnest = icnest; 
    output; 
 end; 

/* Plot the data */ 

/* Start with side-by-side boxplots for control, treatment groups */ 
/********************* Figure 8 ********************************/ 

proc sgplot data=model1; 
   vbox y / category=trtname; 
   yaxis label="Score"; 
   xaxis label = "Treatment Group" ; 
run;  

/* Sort the ICs by median in preparation for Figure 9 */ 

proc means data= model1 noprint nway; 
  class trt ic; 
  var y; 
  output out= icmedian (drop= _type_ _freq_) median= icmedian; 
run; 

proc sort data=icmedian; 
   by trt descending icmedian; 

data icmedian; 
   set icmedian; 
   if trt = 0 then icval = 0; 
   if trt = 1 then icval = _n_; 
run; 

proc sort data=model1; 
  by trt ic; 
proc sort data=icmedian; 
  by trt ic; 
data icplot; 
   merge model1 icmedian; 
   by trt ic; 

proc sort data=icplot; 
   by trt icmedian; 

/* Plot ICs in ascending order (since we sorted by icmedian) */ 
/********************* Figure 9 ********************************/ 

proc sgplot data=icplot noautolegend ; 
   vbox y / category=trtname group=ic grouporder=data meanattrs = 
(symbol=Diamond color=black) outlierattrs = (symbol=Circle color=gray) 
medianattrs = (color=black) whiskerattrs = (pattern=Solid color=gray) 
lineattrs = (pattern=Solid color=gray) fillattrs = (color=lightgray); 
   yaxis label="Score"; 
   xaxis label="Treatment Group"; 
run; 
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/* Perform simple alternative analysis appropriate for balanced data, from 
Section 3.3 */ 

/* Calculate IC means for treatment group */ 

proc means data= model1 noprint nway; 
  class trt ic; 
  var y; 
  output out= mean_ic (drop= _type_ _freq_) mean= icmean; 
run; 

/* Set ygrp = y for control students, ygrp = IC mean for treatment group */ 
data control_icmeans; 
   set model1 mean_ic; 
   if (icmean ne . and trt = 1) or (icmean = . and ic=0); 
   ygrp = y; 
   if trt = 1 then ygrp = icmean; 

proc sort data=control_icmeans; 
   by descending trt ; 

proc ttest data=control_icmeans order=data; 
   class trt; 
   var ygrp; 
run; 

/* Perform 'first alternative analysis' in Section 3.3. This is also used to 
   obtain initial values for parameters used in Figure 10. */ 

proc sort data=model1; 
   by trt; 
/* gives initial value for residual variance of control group; ignore output 
for trt=1 */ 
/* also gives standard error for ybar_C of control group */ 
proc mixed data=model1;  
   by trt; 
   model y= /solution; 
run; 

/* gives initial value for IC and residual variance of treatment group; 
ignore output for trt=0 */ 
/* also gives estimated standard error for ybar_T of treatment group */ 
proc mixed data=model1; 
   by trt; 
   model y=/solution; 
   random intercept/subject=ic; 
run; 

/*************************Code in Figure 10 ******************************/ 
/* Using ic = 0 for control group */ 

proc mixed data=model1 ; 
  class subjid trtname ic; 
  model y=trt / solution ddfm=sat ;  
  random intercept / group=trtname subject=ic(trtname);  
  parms (0) (52) (197) (204) / hold = 1; 

______________________________________________________________________________ 
 E-3 



Appendix E 
Full SAS Code for Examples 

  repeated subjid/ group=trtname;  
  title 'Random Effects Estimator'; 
run; 

/* The following commands give variations of the model */ 

/* Fit model, including regression diagnostics */ 
 
proc mixed data=model1; 
  class subjid trt ic; 
  model y=trt / solution ddfm=sat influence residual;  
  random intercept / group=trt subject=ic(trt);  
  parms (0) (52) (197) (204) / hold = 1; 
  repeated subjid/ group=trt;  
run; 

/* Fit the models using maximum likelihood, to test whether the residual 
variances are equal */ 

proc mixed data=model1 method=ml; /* with both variances */ 
  class subjid trtname ic; 
  model y=trt / solution ddfm=sat ;  
  random intercept / group=trtname subject=ic(trtname);  
  parms (0) (52) (197) (204) / hold = 1; 
  repeated subjid/ group=trtname;  
run; 

proc mixed data=model1 method=ml; /* with common residual variances */ 
  class subjid trtname ic; 
  model y=trt / solution ddfm=sat ;  
  random intercept / group=trtname subject=ic(trtname);  
  parms (0) (52) (197)  / hold = 1; 
run; 

/***************************************************************/ 
/****************BLOCKED PN-RCT DESIGN**************************/ 
/***************************************************************/ 

/* Generates data and computes parameter estimates for Section 3.5  
   Students randomly assigned to treatment or control within each school;  
   treatment students randomly assigned to ICs. Schools are blocking factor  
   in this design. */ 

/* Initialize parameters for generating data */ 

%let nschool = 15; /* number of schools */ 
%let ncontrol = 10;  /* number of control students in each school */ 
%let nclustrt = 2;  /* number of ICs in each school */ 
%let icsize = 5;     /* number of students in each IC */ 
%let trtmean = 106;    /* mean for treatment group */ 
%let controlmean = 100;  /* mean for control group */ 
%let sig2C = 175;   /* sigma^2_student in control group */ 
%let sig2T = 175;  /* sigma^2_student in treatment group */ 
%let sig2theta = 25;  /* variance component for ICs */ 
%let sig2xi = 45; /* variance component for schools  */ 
%let sig2eta = 10; /* variance component for random school slope */ 
%let sigxieta = 0;  /* covariance of school intercept and slope */ 

______________________________________________________________________________ 
E-4 



Appendix E 
Full SAS Code for Examples 

data model2 (drop=u controlsd trtsd schoolint schoolslope sigma_theta 
sigma_eta sigma_xi rhoschool j); 
   call streaminit(02134); 
   retain trt trtname u controlsd trtsd sigma_theta sigma_eta sigma_xi ; 
   controlsd = sqrt(&sig2C); 
   trtsd = sqrt(&sig2T); 
   sigma_theta = sqrt(&sig2theta); 
   sigma_xi = sqrt(&sig2xi); 
   sigma_eta = sqrt(&sig2eta); 
   if sigma_eta = 0 or sigma_xi = 0 then rhoschool = 0; 
   else rhoschool = &sigxieta/( sigma_xi*sigma_eta); 
   do school = 1 to &nschool; 
     schoolint = rand('normal',0,1);  
/*generate correlated variables, then multiply by sd's*/ 
  schoolslope = rhoschool*schoolint +  
            sqrt(1-rhoschool**2)*rand('normal',0,1); 
  schoolint = schoolint*sigma_xi; 
  schoolslope = schoolslope*sigma_eta; 

  /* control students */  

     do j = 1 to &ncontrol; 
         trt = 0; 
         trtname = 'Control   '; 
   ic = 0; 
         y = rand('normal',&controlmean,controlsd) + schoolint; 
   subjnest = j; 
   subjid = subjnest + (school-1)*(&ncontrol + &nclustrt*&icsize); 
         output; 
     end; 
  /* treatment students */ 
  do ic = 1 to &nclustrt; 
        if sigma_theta > 0 then u = rand('normal',0,sigma_theta); 
  else u = 0; 
        do j = 1 to &icsize; 
             trt = 1; 
        trtname = 'Treatment'; 
             y = rand('normal',&trtmean,trtsd) + u + schoolint + schoolslope; 
   subjnest = j; 
   subjid = subjnest + &ncontrol + (ic-1)*&icsize +  
                  (school-1)*(&ncontrol + &nclustrt*&icsize); 
             output; 
        end; 
      end;      
    end; 
run; 

data model2put; 
   set model2; 
   file model2 delimiter=','; 
   put trt school ic subjid y; 
run; 

/* graph the data */ 

/* Do boxplots of treatment/control scores in each school */ 
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/********************* Figure 12 ********************************/ 
/*The code below produces the default SAS colors of blue and red.  
  To obtain the grayscale plot in Figure 12, use 
  %modstyle(parent=statistical,name=fig9st,type=CLM, 
          LineStyles=solid,markers=circle, 
          colors=gray82 gray46,fillcolors=grayBE gray6E); 
  ods listing style=fig9st;   */ 
 
proc sgplot data=model2; 
   vbox y / category=school group=trtname meanattrs=(symbol=Diamond) 
medianattrs = (color=black); 
   yaxis label= 'Score'; 
   xaxis label = 'School'; 
   title 'Boxplots of Test Scores, by School';  
run; 

/********************* Figure 13 ********************************/ 

/* Perform a t test using the 15 values of the ATEs for 
   the individual schools. */ 

proc sort data=model2; 
   by school trt;  
proc means data=model2 noprint; 
   by school trt; 
   var y; 
   output out = schmean mean = groupmean; 

data schoolmean; 
   set schmean; 
   retain control; 
   if trt = 0 then control = groupmean; 
   else if trt = 1 then do; 
      trt = groupmean; 
   output; 
   end; 

proc ttest data=schoolmean; 
   paired trt*control; 

/********************* Figure 14 ********************************/ 

/* Obtain initial parameter estimates by fitting model without IC effects */ 

proc mixed data=model2 noclprint; 
   class trtname school ic subjid; 
   model y = trt/ ddfm = sat solution; 
   random intercept trt/ subject=school type=un;  /* Fit random coefficient 
regression model */  
   title 'Blocked PN-RCT, get initial estimates for parameters'; 

/* Fit model with code in Figure 14 */ 

proc mixed data=model2 noclprint; 
   class trtname school ic subjid; 
   /* Model: 'solution' gives ATE; 'cl' gives confidence interval */ 
   model y = trt/ ddfm = sat solution cl; 
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   /* First random statement: Fit random coefficient regression model */ 
   random intercept trt/ subject=school type=un;   
   /* Second random statement: Random effect of ICs,  
      only for treatment students */ 
   random intercept/ group=trtname subject=ic(trtname school);  
   /* Allow separate student-level variances */ 
   repeated subjid /group=trtname ;   
   parms (15) (-10) (50) (0) (8) (162) (155)/ hold = 4; 
   title 'Random Block PN-RCT'; 
run; 
/* Fit model with common student-level variance for comparison with R */ 

proc mixed data=model2 noclprint noitprint; 
   class trtname school ic subjid; 
   model y = trt/ ddfm = sat solution; 
   random intercept trt/ subject=school type=un; 
   random intercept/ group=trtname subject=ic(trtname school); 
   parms (15) (-10) (50) (0) (8) (160) / hold = 4; 
run; 

/***************************************************************/ 
/*********************CLUSTERED DESIGN *************************/ 
/***************************************************************/ 

/* Generates data and computes parameter estimates for Section 4.1.  
   Schools randomly assigned to treatment or control: students in treatment 
   schools randomly assigned to different ICs*/ 

/* Initialize parameters for generating data */ 

%let nschcont = 35;  /* number of control schools */ 
%let nschtrt = 35;   /* number of treatment schools */ 
%let ncontrol = 40;  /* number of students in each control school */ 
%let nclustrt = 4;   /* number of ICs in each treatment school */ 
%let icsize = 10;     /* number of students in each IC */ 
%let trtmean = 103;    /* mean for treatment group */ 
%let controlmean = 100;  /* mean for control group */ 
%let sig2C = 225;   /* sigma^2_student in control group */ 
%let sig2T = 225;   /* sigma^2_student in treatment group */ 
%let sig2theta = 30;  /* variance component for ICs */ 
%let sig2xiC = 45;  /* variance component for schools in control group */ 
%let sig2xiT = 45; /* variance component for schools in treatment group */ 
%let binary_cut = 115;  /* cutoff value for creating binary variable */ 

data model3 (drop=u schooleff controlsd trtsd sigma_theta sigma_xiT sigma_xiC 
j);  
   call streaminit(90210); 
   retain trt u controlsd trtsd sigma_theta sigma_xiT sigma_xiC schooleff trt 
trtname; 
   controlsd = sqrt(&sig2C); 
   trtsd = sqrt(&sig2T); 
   sigma_theta = sqrt(&sig2theta); 
   sigma_xiT = sqrt(&sig2xiT); 
   sigma_xiC = sqrt(&sig2xiC); 
   do school =  1 to  &nschcont; 
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     schoolnest = school; 
     schooleff = rand('normal',0,sigma_xiC); 
     trt = 0; 
  trtname = "Control   "; 
     do icnest = 1 to &ncontrol; 
    y = rand('normal',&controlmean,controlsd) + schooleff; 
    subjid = icnest + (school-1)*&ncontrol; 
    ic = 0; 
    if y ge &binary_cut then ybin = 1; 
    else ybin = 0; 
    output; 
  end; 
 end; 
   do school = &nschcont+1 to &nschtrt+ &nschcont; 
     schoolnest = school - &nschcont; 
     schooleff = rand('normal',0,sigma_xiT); 
     trt = 1; 
  trtname = "Treatment"; 
     do ic = 1 to &nclustrt; 
    u = rand('normal',&trtmean,sigma_theta); 
    icnest = ic; 

       do j = 1 to &icsize; 
      y = rand('normal',0,trtsd) + u + schooleff; 
      if y ge &binary_cut then ybin = 1; 
      else ybin = 0; 
      subjid =  (school-1)*&nclustrt*&icsize + (ic-1)*&icsize + j; 
      output; 
     end; 
   end; 
    end;  
run; 

/* Plot the data */ 
/********************* Figure 15 ********************************/ 
proc sgplot data=model3; 
   vbox y / category=trtname; 
   yaxis label="Score"; 
   xaxis label = "Treatment Group" ; 
   title 'Boxplots of Test Scores'; 
run;  

/********************* Figure 16 ********************************/ 
/* Calculate the median value for each school */ 

proc means data= model3 noprint nway; 
  class trt school; 
  var y; 
  output out= school_median (drop= _type_ _freq_) median= schmedian; 

proc sort data=model3; 
  by trt school; 
proc sort data=school_median; 
  by trt school; 
data school_plot; 
   merge model3 school_median; 
   by trt school; 
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proc sort data=school_plot; 
   by trt schmedian; 

/* Plot ICs in ascending order (since we sorted by schmedian) */ 

proc sgplot data=school_plot noautolegend; 
   vbox y / category=trtname group=school grouporder=data meanattrs = 
(symbol=Diamond color=black) outlierattrs = (symbol=Circle color=gray) 
medianattrs = (color=black thickness=2) whiskerattrs = (pattern=Solid 
color=gray) lineattrs = (pattern=Solid color=gray) fillattrs = 
(color=lightgray); 
   yaxis label='Score'; 
   xaxis label='Treatment Group'; 
   title 'Boxplots of Test Scores for Each School';  

/* Check means, variances of treatment and control schools; do t test using 
school means */ 

proc sort data=model3; 
  by trt school ic subjid; 

proc means data=model3 noprint; 
   by trt school; 
   var y; 
   output out=sch_means mean = sch_mean n = sch_n; 

proc univariate data=sch_means; /* Find variance among control, trt group 
means */ 
   by trt; 
   var sch_mean; 

proc sort data=sch_means; 
   by descending trt; 

proc ttest data=sch_means order=data plots=none; 
   class trt; 
   var sch_mean; 
   weight sch_n; 

/* find initial values for proc mixed */ 

proc mixed data=model3;  /* Gives variance components for control group; 
ignore output for trt=1 */ 
   by trt; 
   class school; 
   model y = /solution; 
   random intercept / subject=school; 

proc mixed data=model3;  /* Gives variance components for treatment group; 
ignore output for trt=0 */ 
   by trt; 
   class school ic; 
   model y = /solution; 
   random intercept / subject=school; 
   random intercept / subject=ic(school); 
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/* assumes common school variance component */ 
proc mixed data=model3;  
   class trtname school ic subjid; 
   model y = trt / ddfm = sat solution; 
   random intercept / subject=school(trtname) ; 
   random intercept / group=trtname subject=ic(school trtname) ; 
   repeated subjid / group=trtname ; 
   parms (40) (0) (30) (230) (250)/ hold = 2; 

/* allows school variance components to differ */ 
/************************** Figure 17 *******************************/ 
proc mixed data=model3 noclprint;  
   class trtname school ic subjid; 
   model y = trt / ddfm = sat solution; 
   random intercept / group=trtname subject=school(trtname) ; 
   random intercept / group=trtname subject=ic(school trtname) ; 
   repeated subjid / group=trtname ; 
   parms (38) (58) (0) (31) (221) (233)/ hold = 3; 
run; 

/***************************************************************/ 
/**********Blocked design with school randomization ************/ 
/***************************************************************/ 

/* Generates data and computes parameter estimates for the PN-RCT of Section  
   4.1.3. (Output not shown in paper.) Schools randomly assigned to treatment  
   or control within each district; treatment students randomly assigned to  
   ICs. Districts are the blocking factor in this design, 
   and schools are the randomization units. */ 

/* Initialize parameters for generating data */ 

%let n_district = 40;   /* number of districts */ 
%let n_control_school = 2; /* number of control schools in each district*/ 
%let n_treat_school = 2; /* number of treatment schools in each district*/ 
%let ncontrol = 40;  /* number of students in each control school */ 
%let nclustrt = 4;  /* number of ICs in each treatment school */ 
%let icsize = 10;     /* number of students in each IC */ 
%let trtmean = 103;    /* mean for treatment group */ 
%let controlmean = 100;  /* mean for control group */ 
%let sig2C = 225;   /* sigma^2_student in control group */ 
%let sig2T = 225;  /* sigma^2_student in treatment group */ 
%let sig2theta = 20;  /* variance component for ICs */ 
%let sig2xi = 30; /* variance component for schools within districts  */ 
%let sig2delta = 40; /* variance component for random district intercept  */ 
%let sig2phi = 30; /* variance component for random district slope */ 
%let sigdeltaphi = 0;  /* covariance of district intercept and slope */ 

data model4 (drop=u controlsd trtsd distint distslope sigma_theta sigma_delta 
sigma_xi sigma_phi rhodist j); 
   call streaminit(02134); 
   retain trt trtname u controlsd trtsd sigma_theta sigma_xi ; 
   controlsd = sqrt(&sig2C); 
   trtsd = sqrt(&sig2T); 
   sigma_theta = sqrt(&sig2theta); 
   sigma_xi = sqrt(&sig2xi); 
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   sigma_delta = sqrt(&sig2delta); 
   sigma_phi = sqrt(&sig2phi); 
   if sigma_delta = 0 or sigma_phi = 0 then rhodist = 0; 
   else rhodist = &sigdeltaphi/( sigma_delta*sigma_phi); 
   do dist = 1 to &n_district; 
     distint = rand('normal',0,1); /*generate correlated variables, then 
multiply by sd's*/ 
  distslope = rhodist*distint + sqrt(1-rhodist**2)*rand('normal',0,1); 
  distint = distint*sigma_delta; 
  distslope = distslope*sigma_phi; 
  /* control schools */  
     do school = 1 to &n_control_school; 
  schoolint = rand('normal',0,sigma_xi) + distint; 

     do j = 1 to &ncontrol; 
         trt = 0; 
         trtname = "Control   "; 
   ic = 0; 
         y = rand('normal',&controlmean,controlsd) + schoolint; 
   subjnest = j; 
   subjid = subjnest + (dist-
1)*(&n_control_school*&ncontrol+&n_treat_school*&nclustrt*&icsize) +(school-
1)*(&ncontrol ); 
         output; 
     end; 
  end; 
  /* treatment schools */ 
     do school = &n_control_school + 1 to &n_treat_school + 
&n_control_school; 
  schoolint = rand('normal',0,sigma_xi) + distint + distslope; 
  do ic = 1 to &nclustrt; 
        if sigma_theta > 0 then u = rand('normal',0,sigma_theta); 
  else u = 0; 
        do j = 1 to &icsize; 
             trt = 1; 
          trtname = "Treatment"; 
             y = rand('normal',&trtmean,trtsd) + u + schoolint ; 
       subjnest = j; 
       subjid = subjnest + (dist-1)* 
(&n_control_school*&ncontrol+&n_treat_school*&nclustrt*&icsize) + 
&n_control_school*&ncontrol + (ic-1)*&icsize + (school-&n_control_school-
1)*(&nclustrt*&icsize); 
             output; 
        end; 
      end;    
    end;  
    end; 
run; 

/* Fit Mixed Model. SAS ensures the G matrix 
   is positive definite, but you need to verify the positive definiteness for  
   the unrestricted components of the district-level variance. */ 

proc mixed data=model4; 
   class dist trtname school ic ; 
   model y = trt/ ddfm = sat solution; 
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   random intercept trt/ subject=dist type=un;  /* Fit random coefficient 
regression model for district */ 
   random intercept / subject=school(dist trtname);  /* Random effect for 
school */ 
   random intercept/ group=trtname subject=ic(dist school trtname); /* Random 
Effect of ICs- Only for Ts */ 
   parms (40) (-20) (12) (10) (0) (1) (238) / hold = 5; 
   title 'Random Blocks (Districts) with Schools as Unit of Randomization';  

proc mixed data=model4; 
   class dist trt trtname school ic subjid; 
   model y = dist*trt/ ddfm = sat solution; 
   random intercept/ subject=school(trt dist); 
   random intercept/ group=trt subject=ic(trt dist school); 
   parms (40) (0) (1) (238) / hold = 2; 
   title 'Fixed Block Effects (Districts) with Schools as Unit of 
Randomization: Model 4'; 

run; 
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