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A standardized mean difference effect
size for single case designs

Larry V. Hedges,a James E. Pustejovskya*† and
William R. Shadishb
Single case designs are a set of research methods for evaluating treatment effects by assigning different
treatments to the same individual and measuring outcomes over time and are used across fields such as
behavior analysis, clinical psychology, special education, and medicine. Emerging standards for single case
designs have focused attention on the need for effect sizes for summarizing and meta-analyzing findings
from the designs; although many effect size measures have been proposed, there is little consensus
regarding their use. This article proposes a new effect size measure for single case research that is directly
comparable with the standardized mean difference (Cohen’s d) often used in between-subjects designs.
Techniques are provided for estimating the new effect size, as well as its variance, from balanced or
unbalanced treatment reversal designs. The proposed estimation methods are further evaluated using a
simulation study and then demonstrated in two applications. Copyright © 2012 John Wiley & Sons, Ltd.
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Single case designs are distinguished by the fact that they assign different treatments to the same individual and
measure an outcome over time. Such designs are a special type of the broader category of repeated measures
designs. These designs are widely used in behavior analysis, clinical psychology, and special education, and
sometimes used in medicine. In principle, single case designs permit the detection of treatment effects from a
study that involves a single case and a comparison between two periods (one that is a baseline or control period
and another period in which a treatment is assigned to that case). In practice, studies using single case designs
usually involve more than one period in each treatment condition and replications of the design with more than
one case. Emerging standards for single case designs emphasize at least two periods of each treatment (leading to
three treatment contrasts or reversals) and replications across several individuals. [15]

Evaluation of the results of single case designs involves the search for functional relations between treatment
assignment and an outcome. That is, in the ideal, the study is designed so that each treatment (or baseline) phase
is continued for enough measurements that the pattern of outcome values is clearly established. To establish
functional relations, researchers prefer stability within treatment phases, with treatment effects conceived as
differences in these stable patterns between treatment and control phases. Stability, however, can be
conceptualized in many different ways. For example, the pattern could be one of fluctuation around a constant
value with a common mean within a phase and a common residual variance within all phases. The pattern could
also involve systematic increase or decrease across measurements in a phase, such as a linear or quadratic trend,
and a common residual variance within phases. Alternatively, the pattern could include a constant mean or a
trend over measurements accompanied by larger or smaller residual variation around the trend, depending on
whether the treatment is in effect. From this perspective, functional relations between treatment and outcome
(what one would call treatment effects in between-subjects designs) are understood to be contrasts between
the stable states established within treatment phases.

Statistical analysis is not always used in assessing treatment effects in single cases designs. One reason for this
is that repeated measurements from the same individual often cannot be considered independent (i.e. they
involve an autocorrelation structure), which complicates statistical analysis. Another reason is that stability within
phases may take many forms, each of which requires a somewhat different statistical analysis to evaluate
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comparisons among phases. Still, once a particular conception of stability is posited, there is no principled reason
that statistical methods (including hypothesis tests) cannot be used in the analysis of treatment effects in single
case designs. For a review of statistical methods for such analyses, see Kratochwill and Levin. [16]

Treatment effects are quantified using measures called effect sizes, which are useful for a variety of reasons.
Effect size measures are often used as a supplement to hypothesis tests and as a way to quantitatively summarize
study results (see [25]). Effect size measures also have an important function in making more comparable the
results of studies using different designs and outcome measures (see, e.g. [12,24]). In one approach to systematic
research review, effect sizes provide the basis of formal quantitative syntheses (see, e.g. [7]). There is substantial
consensus on methods for computing effect sizes in between-subjects designs, and many ‘standard’ effect size
measures are well known among researchers (e.g. [5,8]). In contrast, there is much less consensus on methods
for computing effect sizes in single case designs (see, e.g. [2,18,20,22,4]).

One reason that defining effect sizes in single case design is difficult is that they represent differences between
stable patterns in different phases. Because there are many different kinds of stability, it is difficult to propose an
effect size measure that is equally appropriate for expressing differences between phases for all of them. We
believe that some progress can be made by focusing on specific types of stable data patterns and defining effect
size measures that express the differences between phases for stable patterns of a single, given type.

The purpose of the present paper is to propose a new effect size measure and corresponding estimation
techniques for single case designs. The focus is on a single type of stable pattern, arguably the simplest type:
fluctuation around a constant value (a common mean with a common residual variance within phases). We offer
a statistical model in which the effect size parameter corresponds to the standardized mean difference (Cohen’s
d), a well-known effect size parameter in between-subjects designs. Our effect size measure thus has the virtue of
expressing the treatment effect from single case designs on the same metric as that often used in between-
subjects designs. We propose an estimator for this effect size, derive its approximate sampling distribution
(including expressions for the mean and variance), and evaluate the accuracy of the analytic expressions for the
mean and variance of the estimator. The initial exposition describes the effect size in the context of a two-phase
(AB)1 design with equal numbers of time points within each phase, where A indicates one phase (e.g. baseline), B
indicates a second phase (e.g. treatment), and the superscript indicates the number of AB sequences in the study.
In a later section, we generalize the results to designs with 2k phases, so-called (AB)k designs, in which each
individual may have an unequal number of time points in different phases.
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1. The balanced (AB)1 design with n observations in each phase

1.1. Model

We begin by positing a structural model for the data collected from an AB design. This model is broad enough to
encompass both a between-subjects experiment and a single case design with replications across individuals,
making it possible to identify a parameter that is a conventional effect size (the standardized mean difference
or d-index) in the between-subjects design. We then show that it is possible to estimate the same parameter using
data collected with a single case design.

To simplify the initial exposition, consider a two-period (AB)1 design. Let Yij be the jth observation from the ith

individual, where there are m> 2 individuals, and for each individual, suppose that the first n observations are in
the baseline period, followed by n observations in the treatment period. Thus, the data are denoted Yij for i=1, . . .,m
and j=1, . . ., 2n. We can describe the entire data layout as follows.

There is a between-groups experiment with total sample size m embedded within this data structure. Suppose
that m1 cases are randomly assigned to receive the treatment condition, the remaining m0 cases receive the
control condition, and a single observation is made from each case at time j = 1. We can adjust the numbering
of cases so that the first m0 cases (i=1, . . ., m0) are the control condition and the second set of m1 cases (i=m0 +
1, . . ., m) are in the treatment condition. This is shown by the two boxes in the illustration that follows. Note that
because there is only one observation per case and it is reasonable to assume that cases are independent, the
data should meet the usual assumptions invoked in the analysis of a between-subjects design. Further, note that
Copyright © 2012 John Wiley & Sons, Ltd. Res. Syn. Meth. 2012, 3 224–239
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we have chosen one subset of the data that yielded a between-subjects experiment, but this is only one of many
possibilities. For example, we might choose the first observation in each period, or the second, or the third, and so
on. Similarly, we might choose to use the first observation in both periods, or we might choose the first in the
control period but the second (or the third) in the treatment period, and so on.

We posit the following stochastic model for such data: (1) the Yij are normally distributed, (2) the data series for
each case lacks any time trend, and (3) within each case, the deviations from the mean at each point in time are
weakly stationary, with first-order autocorrelation f. Specifically, the statistical model for the first period is

Yij ¼ mC þ �i þ eij; i ¼ 1; . . . ;m; j ¼ 1; . . . ; n

and the statistical model for the second period is

Yij ¼ mT þ �i þ eij; i ¼ 1; . . . ;m; j ¼ nþ 1; . . . ; 2n

where mT – mC=Δ represents the shift between baseline and treatment periods. We assume that the individual
level effects �i are normally distributed with zero mean and variance t2. The assumption that each time series
is weakly stationary implies that, conditional on the �i, the covariance of Yij with Yi(j+t) depends only on t. We
assume further that the eij have variance s2 and first-order autocorrelation f within individuals, so that

Cov eij; ei’j’
� � ¼ 0 if i 6¼ i’

f j�j’j js2 if i¼i’
:

�

The 2n� 2n covariance matrix of the errors within individuals therefore has the form

s2 fs2 . . . f2n�1s2

fs2 s2 . . . f2n�2s2

⋮ ⋮ ⋱ ⋮
f2n�1s2 f2n�2s2 . . . s2

0
BB@

1
CCA:
2. The effect size parameter

Because the variance of observations within cases is s2 and the variance of observations between cases is t2, the
total variance of each observation is s2 + t2. Under this model, define the effect size parameter

d ¼ mT � mCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ t2

p (1)

This definition of the effect size is precisely the standardized mean difference (Cohen’s d-index) that is widely used
in between-subjects experiments. Note that the variance here consists of a within-person component s2 and a
between-person component t2 that are not separable in a between-subjects design. Thus, the variance estimated
in the between subjects design is s2 + t2. Because the effect size parameter is the same in either the single case
Copyright © 2012 John Wiley & Sons, Ltd. Res. Syn. Meth. 2012, 3 224–239
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design or a corresponding between-subjects design, estimates of this parameter will be on the same scale, and
thus comparable in magnitude, whether they are based on data from a single case design or a between-subjects
design.
2
2
7

3. Estimation of effect size

There are several possible approaches to estimation of d. The approach used in this paper is to compute a pooled
(across cases) estimate of (mT� mC) and a pooled (across cases) estimate of (s2 + t2) and to combine those
estimates to obtain an estimate of d.

Other approaches to the estimation of d are certainly possible. One approach is to estimate (mT� mC), s, and
t individually (e.g. using maximum likelihood) and combine the estimates to obtain an estimate of d. This
approach has the disadvantage that the small sample properties of the combined estimate of d are difficult
to obtain analytically; consequently, there is no obvious method to determine the bias of the resulting
estimate, so that it can be reduced or eliminated. A second approach is to note that comparing single points
in time in the control and treatment phases (the implicit between-subjects study) can yield an estimator that
is a conventional standardized mean difference, one whose sampling distribution is known. A disadvantage of
that estimator is that it throws away most of the data. A third approach is to average a series of estimates
using the second approach (e.g. one for each time point). This has the advantages that it uses all the data
and has known (but rather complicated) multivariate t-distribution theory, but it has the disadvantages that
the average has a very complex distribution. Also, we found in preliminary, unreported simulation work that
this estimator is much less efficient than others; that is, its sampling distribution has larger variance than other
approaches.

The approach presented in this paper is to compute pooled estimates of (mT� mC) and (s2 + t2) and to use these
estimates to obtain an estimate of d. This is similar to approaches two and three. It has the advantage of providing
direct estimates of the numerator and denominator of d. Moreover, the numerator has a normal distribution, and
the denominator is approximately the square root of a random variable having a chi-squared distribution; the ratio
therefore has a distribution that is approximately proportional to a non-central t-distribution, just as in the case of
between-subjects experiments. This approach also has a less obvious advantage. The bias and to some extent
variance of the effect size estimate depend on the effective number of degrees of freedom in the denominator
(more is better). Whereas approaches two and three have a denominator withm� 1 degrees of freedom (one less
than the number of individuals), the approach used here has a denominator whose sampling distribution has
more than m� 1 degrees of freedom and thus has improved sampling properties. Some rather extensive
simulation studies confirmed that the approach used in this paper has more desirable sampling properties (less
bias, more accurate variance approximations, and smaller mean squared error) than the three alternatives
mentioned earlier.

Define the effect size estimate ES via

ES ¼
�D

S
(2)

where

�D ¼ 1

m

Xm
i¼1

1

n

X2n
t¼nþ1

Yit � 1

n

Xn
t¼1

Yit

 !
(3)

S2 ¼ 1

2n m� 1ð Þ
X2n
t¼1

Xm
i¼1

Yit � �Y�tð Þ2 (4)

and �Y�t is the mean across individuals at the tth time point given by

�Y�t ¼ 1

m

Xm
i¼1

Yit:

It follows that �D is an unbiased estimator of (mT� mC), and S2 is an unbiased estimate of the total variance
(s2 + t2).

Under this model, the variance of �D is

V �D
� � ¼ 2 b1 � c1ð Þs2

m
(5)

where bp and cp are functions of the autocorrelation f and the phase length n, defined in general as
Copyright © 2012 John Wiley & Sons, Ltd. Res. Syn. Meth. 2012, 3 224–239
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bp ¼ 1

n2

Xn
s¼1

Xn
t¼1

fp s�tj j ¼ 1

n
þ 2

n2

Xn�1

t¼1

fpt n� tð Þ (6)

and

cp ¼ 1

n2

Xn
s¼1

Xn
t¼1

fp nþt�sj j ¼ 1

n2

Xn�1

t¼1�n

fp nþtð Þ n� tj jð Þ: (7)

Here, we define bp and cp in general because, although the variance of �D depends only on b1 and c1 (that is bp and
cp for p=1), we will need b2 and c2 in expressions for the variance of S2. Under the aforementioned model, the
variance of S2 is

V S2
� � ¼

b2 þ c2ð Þ 1� rð Þ2 þ 2 b1 þ c1ð Þr 1� rð Þ þ 2r2
h i

s2 þ t2ð Þ2

m� 1
(8)

where

r ¼ t2

t2 þ s2
(9)

is a kind of intraclass correlation that represents the between-person variance t2 as a fraction of the total variance
(t2+s2).

Using a theorem in Box [6] on the distribution of quadratic forms in normal variables, it follows that the
sampling distribution of S2 is approximately a chi-squared with n degrees of freedom, where n is given by

n ¼ 2 m� 1ð Þ
b2 þ c2ð Þ 1� rð Þ2 þ 2 b1 þ c1ð Þr 1� rð Þ þ 2r2

: (10)

Therefore, ES is a constant θ times a random variable with the non-central t-distribution with n degrees of
freedom, where θ is given by

θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V �D
� �

t2 þ s2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 b1 � c1ð Þ 1� rð Þ

m

r
(11)

It follows from the results in Hedges [9] that the bias in ES can be corrected by multiplying ES by the factor

J nð Þ ¼ 1� 3

4n� 1
: (12)

so that the effect size

G ¼ J nð ÞES (13)

is approximately an unbiased estimator of d.
It also follows that the variance of G is approximately

V Gf g ¼ J nð Þ2 nθ2

n� 2
þ d2

n
n� 2

� 1

J nð Þ2
 !" #

(14)

A slightly simpler asymptotic approximation of the variance is

VA Gf g ¼ J nð Þ2 θ2 þ d2

2n

� �
: (15)

Note that the expressions (13) for G and (14) and (15) for its variance involve the nuisance parameters f and r. In
application, (14) or (15) will need to be evaluated using the estimate G in place of d, along with estimates for the
nuisance parameters.
4. Accuracy of the approximate sampling distribution

We investigated the sampling distribution of the estimator under two conditions: first, when the nuisance
parameters f and r were known and second, when the nuisance parameters were estimated. For each part,
we limited consideration to the (AB)1 design because this is the simplest design, although it has the essential
Copyright © 2012 John Wiley & Sons, Ltd. Res. Syn. Meth. 2012, 3 224–239
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features of all (AB)k designs. Designs with more periods should have larger sample sizes; we would therefore
expect the estimator to perform no worse (and probably better) in these designs. For each analysis, we varied
f and r over their entire parameter spaces. We considered values of n and m that appear to be representative
of values found in the single case literature, based on a recent survey by Shadish and Sullivan. [23] Table 1 reports
the parameter values and sample sizes used in the analyses.

First, we considered the bias of G and the accuracy of the expressions for its variance if known values of the
nuisance parameters are used. For known f and r, analytic expressions are available for the moments of G; we
provide a derivation in Appendix A. Using these to evaluate the bias of G, we found it to be small, as expected.
For example, when m= 4 and n=4, the estimated bias never exceeds 0.04d (relative bias of 4%). For more
moderate values of 0< r ≤ 0.4 and �0.5 ≤f ≤ 0.5, the bias is always less than 0.02d.

The variance (14) is quite accurate when the intraclass correlation r is small to moderate (say below 0.3), but it
tends to overestimate the variance somewhat as r becomes large, a tendency that is exaggerated when there is
a large negative or positive autocorrelation. The simpler variance estimate (15) tends to underestimate the
variance, often substantially. A typical result is shown in Fig. 1, which plots the estimated relative variance (the
average value of the variance estimate divided by the exact value of the variance) on the vertical axis against f
on the horizontal axis. The effect size is fixed at d= 0.4, and separate curves are plotted for r=0.2, 0.4, and 0.6;
each of the panels in the figure corresponds to a different combination of values of m and n. In this figure, all
of the curves above the relative variance of 1.0 correspond to the variance estimate (14), whereas those below
a relative bias of 1.0 correspond to the simpler variance estimate (15). Note that the vertical scale of these graphs
varies depending on the value of m.

To determine the properties of the effect size estimate G and its variance when the nuisance parameters are
estimated, we carried out a simulation study. The simulation involved five parameters, the levels of which are
reported in Table 1. The number of cases, m, was varied from 4 to 12 to capture a range of values observed in
practice. The number of observations per period, n, assumed to be equal in the baseline and treatment periods,
was varied from 4 to 12. The average treatment effect may range greatly depending on the treatment under study;
we therefore examined a wide range of levels. We varied the autocorrelation f and the intraclass correlation r over
all but the most extreme possible values. The total variance t2 +s2 was fixed equal to one. For each combination of
the parameters d, f, r, m, and n, we simulated 8000 iterations of the model. Rather than attempting to summarize
the results across the entire set of simulation parameters, we report results for selected margins. Full simulation
results, as well as the R code used to generate the simulations, are available from the second author.

For purposes of simulation, we used the simplest estimators of f and r, the method-of-moments (sometimes
called the Yule–Walker) estimators, with simple bias-reducing corrections; see Appendix C for details. These
estimators are known to be biased, even after correction, when computed from single short time series (see,
e.g. [14]). Other estimators are available from the literature on single time series, but the generalization of these
estimators to unbalanced multiple time series is not straightforward, nor is it obvious whether, or how much,
these generalizations might improve on simpler estimators of f and r.

Our simulation studies when f and r are estimated from the data confirmed that the bias of G remains small,
except in the case of very large (and probably unrealistic) negative autocorrelations (e.g. f=�0.9). When
|f | ≤ 0.5 and r ≤ 0.5, the relative bias of G is always less than 3% in absolute value. It appears that the variance
of G is estimated more poorly when f and r are estimated from the data, regardless of whether (14) or (15) is
used. Figure 2 provides an illustration; it is constructed just as Fig. 1, plotting the relative variance (the average
estimated variance divided by the true variance) as a function of f for various values of m, n, and r. It is likely that
improved estimation of f and r may yield improved variance estimation; this remains a topic for future
investigation.
5. The (AB)k design with unequal numbers of observations in each phase for
each individual

Suppose that a study uses an (AB)k design, so that there are 2k phases, andm cases. We allow that each individual
case may have a different number of observations in each phase. Let ni

a, a= 1, . . ., 2k, i=1, . . .,m be the number of
observations in the ath phase for the ith individual, and define n i

0 = 0 for all i= 1, . . ., m.
Table 1. Simulation parameter values

Parameter Definition Number of levels Minimum Step Maximum

m Number of cases 3 4 4 12
n Observations per period 3 4 4 12
d Effect size 4 0.0 0.4 1.2
f Autocorrelation 10 �0.9 0.2 0.9
t t2/( t2 + s2) 5 0.0 0.2 0.8

Copyright © 2012 John Wiley & Sons, Ltd. Res. Syn. Meth. 2012, 3 224–239
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Because the number of observations within phases is not the same across individuals, we need a notation that
can denote the first, second, and so on observation within each phase for each individual. Define the total number
of observations (j-values) for the ith individual through the ath phase to be Ni

a, so that

Na
i ¼ n0i þ n1i þ... þ nai

and define N●
● to be the total number of observations (the sum of the ni

a) so that
Copyright © 2012 John Wiley & Sons, Ltd. Res. Syn. Meth. 2012, 3 224–239
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1

N�
� ¼

Xm
i¼1

N2k
i ¼

Xm
i¼1

X2k
a¼1

nai :

The ath phase for the ith individual includes the j-values between Ni
a�1 + 1 and Ni

a�1 + ni
a=Ni

a inclusive. Thus, the
design consists of observations

Yij; i ¼ 1; . . . ;m; j ¼ Ni
a�1 þ 1; . . . ;Ni

a�1 þ ni
a

for phases a=1, . . ., 2k.
As in the case of the (AB)1 design, we posit a stochastic model in which the Yij are normally distributed, the data

series for each individual lacks any time trend, and within individual, the deviations from the mean at each point in
time are weakly stationary with first-order autocorrelation f. Specifically, the statistical model for the ath phase is

Yij ¼ 1

2
1þ �1ð Þa�1� 	

mC þ 1

2
1þ �1ð Þa½ �mT þ �i þ eij

for i=1, . . ., m and j=Ni
a�1 + 1, . . ., Ni

a�1 + ni
a. The expressions in square brackets just assure that, in odd-

numbered phases (baseline phases), the coefficient of mC is one and the coefficient of mT is zero and that in
even-numbered phases (treatment phases), the coefficient of mT is one and the coefficient of mC is zero, where
mT� mC=Δ represents the shift between baseline and treatment periods. We assume that the individual level
effects �i are normally distributed with zero mean and variance t2. The assumption that each time series is weakly
stationary implies that, conditional on the �i, the covariance of Yij with Yi(j+t) depends only on t. As before, we
assume that the eij have variance s2 and first-order autocorrelation f within individuals, so that

Cov eij; ei’j’
� � ¼ 0 if i 6¼ i’

f j�j’j js2 if i¼i’
:

�

The denominator of the effect size estimate is based on the variance across individuals for each time point,
averaged over time points. Because each individual can have a different number of observations within each
phase, there may not be a complete set of m observations for some time points. The contribution to the variance
for a time point is computed only if there is an observation at that time point for every individual. Define the
minimum number of observations for any individual in the ath phase by Ma, so that

Ma ¼ Minimum na1; . . . ; n
a
m

� �
(16)

and define M● to be the sum of the Ma, so that

M● ¼ M1 þ⋯þM2k : (17)

The variance pooled across phases and across individuals is

S2 ¼ 1

M� m� 1ð Þ
X2k
a¼1

XNa�1
i þMa

j¼Na�1
i þ1

Xm
i¼1

Yij � �Y�j

 �2

(18)

where �Y�j is the average across individuals of the jth observations, given by

�Y�j ¼ 1

m

Xm
i¼1

Yij:

Note that when k=1, ni
a= n for i= 1, . . ., m, and a= 1,2, it follows that M�=2n and expression (18) reduces to

expression (4) for the pooled variance. The numerator of the effect size is the unweighted mean difference
between phases A and B, defined as

�D ¼ 1

mk

Xm
i¼1

Xk
a¼1

�Y
2a
i� � �Y

2a�1
i�

� 

¼ 1

mk

Xm
i¼1

Xk
a¼1

1

n2ai

XN2a
i

j¼N2a�1
i þ1

Yij � 1

n2a�1
i

XN2a�1
i

j¼N2a�2
i þ1

Yij

0
@

1
A (19)

Define the effect size estimate ES exactly as in (1), namely,

ES ¼
�D

S
(20)

where �D is given in (19) and S2 is given in (18).
Define the auxiliary constant A via
Copyright © 2012 John Wiley & Sons, Ltd. Res. Syn. Meth. 2012, 3 224–239
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2

A ¼ 1

k2

Xm
i¼1

X2k
a¼1

X2k
b¼1

�1ð Þa �1ð Þb
nai n

b
i

XN a
i

s¼N a�1
i þ1

XN b
i

t¼N b�1
i þ1

f s�tj j

0
@

1
A (21)

and the auxiliary constants B, C, and D via

B ¼
Xm
i¼1

X2k
a¼1

X2k
b¼1

XMa

s¼1

XMb

t¼1

f Na�1
i �Nb�1

i þs�tj j (22)

C ¼
Xm
i¼1

X2k
a¼1

X2k
b¼1

XMa

s¼1

XMb

t¼1

f2 Na�1
i �Nb�1

i þs�tj j (23)

and

D ¼
X2k
a¼1

X2k
b¼1

XMa

s¼1

XMb

t¼1

Xm
i¼1

f Na�1
i �Nb�1

i þs�tj j
 !2

: (24)

The expected value of �D is mT� mC, and the variance of �D is

V �D
� � ¼ As2

m2
: (25)

The expected value of S2 is s2 + t2, and the variance of S2 is

2 s2 þ t2ð Þ2
M�ð Þ2 m� 1ð Þ M�ð Þ2r2 þ 2r 1� rð Þ B

m

� �
þ 1� rð Þ2

m� 1

m� 2

m

� �
C þ D

m2

� �" #
(26)

where r is the intraclass correlation defined in (9). Proof of these facts is given in Appendix B.
If �D and S2 are independent, it follows by Box’s [6] theorem that the sampling distribution of ES is a constant θ

times a non-central t-distribution with n degrees of freedom, where θ is given by

θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V �D
� �

t2 þ s2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A 1� rð Þp
m

(27)

and n is given by

n ¼ M�ð Þ2 m� 1ð Þ2
M�ð Þ2 m� 1ð Þr2 þ 2r 1� rð Þ m�1

m


 �
Bþ 1� rð Þ2 m�2

m


 �
C þ D

m2

� 	 : (28)

It follows from the results in Hedges [9] that the bias in ES can be corrected by multiplying ES by the correction
factor J(n) defined in (11), so that the effect size

G ¼ J nð ÞES (29)

is approximately an unbiased estimator of d. It also follows that the variance of G is approximately

V Gf g ¼ J nð Þ2 nθ2

n� 2
þ d2

n
n� 2

� 1

J nð Þ2
 !" #

: (30)

As a caveat, it should be noted that independence of �D and S2 might not hold in unbalanced (AB)k designs. Still,
unless the degree of imbalance is severe, these approximations should remain fairly accurate.

Note that when k= 1 and ni
a= n, for i=1, . . ., m; a= 1,2, so that we have an (AB)1 design, the auxiliary constant

A=2m(b1� c1), where b1 and c1 are as previously defined. Also, note that under these restrictions, B=2mn2(b1 + c1),
C=2mn2(b2 + c2), and D=2m2n2(b2 + c2), where b2 and c2 are as previously defined. Thus, when both phases have
equal numbers of observations for all individuals, the expressions for the effect size and its variance in the unbalanced
(AB)k design reduce to the corresponding expressions given earlier for the (AB)1 design.
6. Example 1

Here, we analyze data from an unbalanced (AB)2 design reported by Lambert et al. [17]. This design has four
phases: a baseline (control) phase followed by a treatment phase, another baseline phase, and another treatment
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phase. Note that there are m=9 cases, with each case having between 6 and 10 observations in each baseline
phase and between 4 and 11 observations in each treatment phase. The minimum number of time points for
the first phase is M1 = 6, and the minimum numbers of time points for the second through fourth phases are
M2 = 4, M3 = 6, and M4 = 7, respectively, so that M●=23. Approximately 10% of the data are missing, with missing
observations scattered intermittently across cases and phases. For present purposes, missing data are ignored in
the computations provided in the succeeding texts; a more thorough analysis of these data would use slight
modifications to our methods to account for the missing data points. This example illustrates the computation
of the effect size and its variance in an (AB)2 design that is close to balanced, although not perfectly. The example
was chosen because it has a relatively large number of replications across cases (m= 9).

The weighted average difference between phases is �D=�5.458, S2 = 4.674, and S=2.162. The estimate of effect
size (before bias correction) is therefore

ES ¼ �5:458

2:162
¼ �2:525:

This estimate can be used to describe study results in the same metric as the standardized mean difference of a
between-subjects study. It can also be combined with estimates from other studies in meta-analysis, both
estimates from other single case designs and from between-subjects studies on the same question.

The results of this paper involving the autocorrelation structure can be used to calculate a correction for the
estimation bias of ES as well as an estimate of effect size variance. Because the number of cases is relatively large
for single case designs, the bias correction has little effect; however, this will not be true for many single case
designs where the number of replications across cases is small. Following the method described in Appendix C,

we estimate that the autocorrelation in these data is f̂ = 0.225. Following the method described in Appendix C,

we obtain an estimate of the within-case variation ŝ2 = 4.534; combining this with S2 = 4.674, we obtain an
estimate of 0.030 for the intraclass correlation r. Using the autocorrelation f=0.225, the values of the auxiliary
constants are A= 1.754, B= 294.751, C= 223.488, and D= 2002.444. Inserting the value r=0.030 and the values
of the auxiliary constants B, C, and D into (28), we obtain n=164.492 degrees of freedom. This value of the degrees
of freedom permits us to compute G, the bias-corrected estimate of effect size. Using ES =�2.525 and inserting
164.492 degrees of freedom into (29), we obtain G=�2.513. Inserting the value of the auxiliary constant A and
r= 0.030 into (27), we obtain the value θ=0.145. Finally, inserting the values n, θ, and d=G=�2.513 into (30),
we obtain V{G} = 0.041.

Because the estimation of the variance and bias correction involves estimation of the nuisance parameters f
and r, it is useful to see how plausible variation in the estimates of these parameters might affect the bias
correction and the variance estimates. The large-sample variance of the maximum likelihood estimator of f is
0.004, which corresponds to a standard error of 0.060; a range of plausible values (a range of two standard errors
around the estimate) for f is therefore about 0.10–0.35. Holding fixed the values of ES, S2, and the within-case,
within-phase sample variance ĝ�� 0ð Þ (defined in Appendix C), we now examine how varying f affects our estimates
of n, G, and V{G}. The estimated degrees of freedom n ranges from 152.6 to 164.5. This variation has only a trivial
impact on the effect size estimate: G ranges only from �2.512 to �2.513. The impact on the variance estimate is
also minor, with V{G} ranging from 0.037 to 0.047.
2
3
3

7. Example 2

Here, we analyze data from an unbalanced (AB)2 design reported in Anglesea et al. [3]. This design has four phases:
a baseline (control) phase followed by a treatment phase, another baseline phase, and a final treatment phase.
Note that there are m= 3 cases with n1

1 = 7, n1
2 = 6, n1

3 = 7, n1
4 = 7 for the first case; n2

1 = 4, n2
2 = 4, n2

3 = 3, n2
4 = 3 for

the second case; and n3
1 = 4, n3

2 = 4, n3
3 = 4, n2

4 = 2 for the third case. Here, the minimum number of time points
for the first phase is M1 = 4; the minimum number of time points for the second phase is M2 = 4; the minimum
number of time points for the third phase is M3 = 3; and the minimum number of time points for the fourth phase
is M4 = 2; so that M●= 13. This example was chosen because it is extreme, with just enough replications across
cases (m= 3) to permit estimation of a variance.

The weighted average difference between phases is �D = 86.870, S2 = 2347.8, and S= 48.455. The estimate of
effect size (before bias correction) is therefore

ES ¼ 86:870

48:455
¼ 1:793:

This estimate can be used to describe study results in the same metric as a standardized mean difference from a
between-subjects study and can be combined with estimates from other studies in meta-analysis.

Although using a bias-corrected effect size typically has little effect in between-subjects studies, this is not true
for the present example. The estimated autocorrelation in these data is again small: the corrected Yule–Walker

estimate is f̂ = 0.176. The estimated within-cases variation is ŝ2 = 198.4; using this estimate and S2, we obtain
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an estimate of 0.916 for r. Using the autocorrelation f=0.176, the values of the auxiliary constants are A=0.889,
B=52.162, C=41.030, and D=122.725. Inserting r=0.916 and the values of the auxiliary constants B, C, and D into
(28), we obtain n= 2.340 degrees of freedom. Using ES= 1.793 and inserting 2.340 degrees of freedom into (29),
we obtain G=1.150. Inserting the value of the auxiliary constant A and r=0.916 into (27), we obtain the value
θ= 0.091. Finally, inserting the values n, θ, and d=G= 1.150 into (30), we obtain V{G} = 2.440.

Because estimation of the bias correction and variance involves the nuisance parameters, it is useful to see how
plausible variation in the estimates of the nuisance parameters might affect the bias correction and the variance
estimates. The large sample variance of the maximum likelihood estimator of f is 0.019, which corresponds to a
standard error of 0.137; a range of plausible values for f is therefore about �0.10 to 0.45. Using f=�0.10, we
obtain estimates of n=2.310 degrees of freedom and a bias-corrected effect size of G=1.140, with variance
estimate V{G} = 2.636. In comparison, using f= 0.45 leads to n= 2.399 degrees of freedom, G= 1.167, and
V{G} = 2.140. The impact of plausible variation of the nuisance parameters on the estimate (G) is small, but
the impact on the variance is not. This is largely because the degrees of freedom are so small; one or two
additional degrees of freedom would have substantially reduced the influence of the nuisance parameters
on the variance. It is generally advisable to have at least a few additional case beyond m= 3.
8. Conclusion

We have introduced an effect size measure for one kind of effect in single case designs (mean shift between
baseline and treatment phases) that estimates the same parameter as in the corresponding between-subjects
design. The estimator itself depends on nuisance parameters only for a bias correction term. Even when nuisance
parameters are estimated rather crudely, the estimator has relatively small bias. This makes the proposed
estimation techniques suitable for use even in designs with as few as three independent cases, as in the second
example earlier. However, the proposed variance estimator tends to have somewhat larger bias, typically being
underestimated when nuisance parameters are estimated.

The problem of effect size estimates whose variances depend on nuisance parameters is not unknown in meta-
analysis. One example is when synthetic composite effect size estimates are created to ‘average’ or ‘difference’
correlated estimates within studies (see, e.g. [11]). The variance of the composite depends on the correlation
structure of the estimates, which is typically unknown in detail. In this case, meta-analysts usually construct a
variance estimate for the composite on the basis of the values of the correlations chosen so that the estimate
is conservative (i.e. overestimating the variance of the composite effect size). Another example is when effect sizes
are adjusted for clustering in experiments that involve multilevel sampling (see, e.g. [10]). In this case, meta-
analysts usually choose values of the intraclass correlation that are designed to be conservative, yielding
overestimates of the variance of the effect size. Choosing conventional but conservative values of the nuisance
parameters in this case would be consistent with these precedents.

If the estimates proposed here are used in meta-analyses, it would be advisable to use at least partially
empirical variance estimation procedures, such as random effects models. Entirely empirical variance estimates
for meta-analysis, such as those based on bootstrapping or randomization tests (e.g. [1]) or fully empirical robust
standard errors [13], could also be used in the meta-analysis. If this approach is taken, the analyst can avoid
entirely computations of variances of individual effect size estimates (except perhaps for crude decisions about
weighting). If effect size estimates based on single case designs are included in meta-analyses alongside those
from between-subjects designs, the latter are likely to receive much higher weight given their typically much
larger sample sizes. Small biases in the variance of estimates from single case designs may therefore have
relatively little impact on the overall analysis.

Our statistical model and estimation procedures assume that the series shows no trend over time. Although
this assumption appears plausible in many single case designs that we have seen, [23] little research has
investigated the presence and form of trend empirically. If the researcher doubts the validity of this
assumption in a particular application, there are several options. The easiest option to execute is to de-trend
the data with regression, then analyze the residuals. However, de-trending (or other techniques such as taking
first differences) can implicitly change the underlying modeling assumptions. Our preferred approach would
be to make such assumptions explicit, by directly specifying a trend component in the statistical model. We
anticipate that the methods described in this paper can be extended to a model with a time trend that
is common across both phases and cases. However, more elaborate modeling assumptions, such as time
trends that differ across phases or vary randomly across cases, may require specifying new and further effect
size parameters.

Similarly, our model assumes a first-order autocorrelation process. Again, little research exists about whether
such an assumption holds, or whether higher order autocorrelations might be present in single case design data.
However, the first-order assumption is common in this kind of research, exactly because of lack of either evidence
or strong theory leading us to expect the contrary. This is a fruitful area for future research.

Future research may also provide improved estimators of the variance of the effect size estimates proposed in
this paper, as well as of related estimators. For example, our preliminary work suggests that bias corrections may
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substantially improve estimation of autocorrelations when the total number of observations for each individual is
small. The use of external information about autocorrelations to stabilize estimates (e.g. via empirical Bayes
estimation) also has potential to improve variance estimation.

Finally, the fact that the standard errors of study-level effect sizes can be large, especially when the number
of cases is minimal, means that study effects may be statistically non-significant. This may dismay researchers,
especially those who are used to judging effect size visually even when the number of case is small. We can
say four things to ameliorate such concerns. First, our method is not intended to replace visual analysis but to
complement it, while at the same time providing some statistical sense of how much confidence in the effect
should be influenced by sampling error. Second, hopefully, both the present work and emerging standards for
single case designs (e.g. [15]) will encourage single case design researchers to see the benefits of increasing
the number of cases in each study. Even relatively small increases are likely to ameliorate the power problem
greatly. Third, increasing the number of data points within each case will also increase power and may be
especially helpful when increasing the number of cases is not feasible. Finally, the present method also allows
single case researchers to aggregate the results of multiple studies on the same question, even when the
dependent variables are in different metrics, using meta-analytic techniques. The meta-analysis of studies
using single case designs, whether combined with results from between-subjects experiments or not, will
greatly increase the power of the resulting effect size estimates (e.g. [21]).
Appendix A

The exact expectation and variance of ES can be derived from the moments of �D and the inverse moments of
S2. To simplify the notation, we limit this presentation to the balanced (AB)1 design. First, observe that S2 is a
quadratic form of the 2nm-dimensional normal random variable y with covariance matrix Σ, so that 2n(m – 1)
S2 = y0Ay= y0A0Ay. Then, it follows that Ay~N(0, AΣA). The covariance matrix AΣA has 2n unique nonzero
eigenvalues l1, . . ., l2n, each repeated m – 1 times, and each a function of f, r, m, and n. It follows by
Theorem 3.2b.4 in Mathai and Provost [19] that, for values h< n(m – 1),

E y
0
Ay

� 
�h
� �

¼ ah

Γ hð Þ
Z1
0

uh�1 1� uð Þn m�1ð Þ�h�1
Y2n
j¼1

1� u 1� 2alj

 �� 	�m�1

2 du

where a is an arbitrary constant such that |1 – 2alj|< 1for j= 1, . . ., m – 1. This expression can be evaluated
numerically. Because �D is independent of S, the moments of ES are the products of the moments of �D and the
inverse moments of S.
2
3
5

Appendix B

Here, we give the derivation of the effect size estimator for the general (AB)k design, allowing unequal number of
time points per phase and per individual. The expected value and variance of �D follow from basic properties of
the multivariate normal distribution. It remains to find the sampling distribution of S2.

Partition the data mM●� 1 vector of observations into 2k subvectors so that

y’ ¼ y1’● ; . . . ; y
2k’
●


 �
where the vector y●

a is the vector of mMa observations in the ath phase. Further, partition y●
a into the observations

for the Ma time points (shared across all individuals) in the ath phase as

ya�
0 ¼ ya1

0
; . . . ; yaMa

0
� 


; a ¼ 1; . . . ; 2k

where the vector ys
a of m observations at the sth time point is given by

yas
0 ¼ Y1 Na�1

1 þsð Þ; . . . ; Ym Na�1
m þsð Þ

� 

; s ¼ 1; . . . ;Ma:

The complexity of this partition arises for two reasons. First, the number of time points per phase shared across
all individuals, Ma, need not be the same across phases (if it were, we could set Ma=M). Secondly, the number of
time points per individual in each phase is not the same across either individuals or across phases. Moreover, the
number of time points per individual need not be the same as the number of time points shared across individuals
in any phase. For example, the first time point in a phase may be the fifth time point overall for individual i but the
eighth time point for individual j.
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Partition the mM●�mM● covariance matrix ΣT of y into a 2k� 2k partitioned matrix

where ΣT
ab is the mMa�mMb matrix of covariances of y●

a with y●
b. Further, partition each matrix ΣT

ab into a total of
MaMb submatrices each of dimension m�m as follows

where Σst
ab is the covariance matrix of ys

a with yt
b. Because observations from different individuals are independent,

each of the Σst
ab is an m�m diagonal matrix. That is, the covariances between any observation in phase a for

individual i and any observation in phase b for individual j is zero if i 6¼ j. Only the covariances between different
observations on the same individual are non-zero. However, because of the imbalance in the design, the diagonal
elements of Σst

ab are not equal. This is because the covariance between observations on the same individual
depends on the number of observations separating them, but the sth observation in phase a for individual i
(observation Ni

a�1 + s) is separated from the tth observations in phase b for individual i (observation Ni
b�1 + t)

by (Ni
a�1 + s�Ni

b�1� t) observations. Because this quantity depends on i, it is different for each individual.
The matrix Σst

ab can be written as the sum of two diagonal matrices

Σab
st ¼ t2Im þ s2Dst

ab;

where the the ith diagonal element of Dst
ab is the autocorrelation f raised to the power diabst= | Ni

a�1
–Ni

b�1 + s – t|,
that is,

Dab
st ¼ diag ’d1abst ; . . . ; ’dmabst


 �
:

Note that Dst
ab=Dts

ba, because interchanging both a and b and s and t simply changes the sign of the exponent
within the absolute value.

The quadratic form S2 can be written as S2 = y0ATy/M
●(m – 1), where the matrix AT can be partitioned

conformably to ΣT, that is, partition the mM●�mM● matrix AT into a 2k� 2k block diagonal partitioned matrix

AT ¼
A1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ A2k

0
@

1
A

where Aa is the mMa�mMa block diagonal matrix. Further, partition each matrix Aa into a total of (Ma)2

submatrices each of dimension m�m as follows

where As is anm�mmatrix defined by As=A= Im – 1m1m0/m and Im is anm�m identity matrix and 1m is am� 1
vector of 1’s.

The expected value of M●(m� 1)S2, the numerator of S2, is

.

Now, each AaΣT
ab is of form

.

Therefore, the expected value of M●(m – 1)S2 is
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X2k
a¼1

tr AaΣaa
T


 � ¼X2k
a¼1

XMa

s¼1

tr AΣaa
ss


 � ¼X2k
a¼1

XMa

s¼1

s2 þ t2

 �

m� 1ð Þ ¼ M� m� 1ð Þ s2 þ t2

 �

and the expected value of S2 = s2 + t2.
The variance of S2 can be obtained from the variance of M●(m – 1)S2, the numerator of S2, as

so that

2tr ATΣTATΣTð Þ ¼ 2
X2k
a¼1

X2k
b¼1

tr AbΣba
T AaΣab

T


 �
:

Now, each AbΣT
baAaΣT

ab is of form

.

Therefore,

2tr ATΣTATΣTð Þ ¼ 2
X2k
a¼1

X2k
b¼1

XMa

s¼1

XMb

t¼1

tr AΣba
ts AΣ

ab
st


 �
:

Recall that Σst
ab= t2Im+s2Dst

ab, so that

AΣba
ts AΣ

ab
st ¼ A t2Iþ s2Dba

ts


 �
A t2Iþ s2Dab

st


 � ¼ t4A2 þ t2s2A2Dab
st þ t2s2ADba

ts Aþ s4ADba
ts AD

ab
st :

Using the facts that A is idempotent and that Dst
ab=Dts

ba is diagonal, we see that

tr AΣba
ts AΣ

ab
st


 � ¼ m� 1ð Þt4 þ 2s2t2
m� 1

m

� �
tr Dab

st


 �þ s4tr ADba
ts AD

ab
st


 �
:

Recalling that A= Im – 1m1m0/m and using the elementary properties of the trace, we obtain an expression for the
trace of ADts

abADst
ab in the last term as

tr ADba
ts AD

ab
st


 � ¼ tr Dab
st

� 	2� 

� 2

m
tr Dab

st

� 	2� 

þ 1

m2
tr 1m1m

0
Dba
ts 1m1m

0
Dab
st

� 

¼ m� 2

m

� �
tr Dab

st

� 	2� 

þ 1

m2
tr Dab

st


 �� 	2

Using the fact that Dts
ab is diagonal, we see that
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tr Dab
st


 � ¼Xm
i¼1

fdiabst

and

tr Dab
st

� 	2� 

¼
Xm
i¼1

f2diabst

so that

tr AΣba
ts AΣ

ab
st


 � ¼ m� 1ð Þt4 þ 2s2t2
m� 1

m

� �Xm
i¼1

fdiabst þ s4
m� 2

m

� �Xm
i¼1

f2diabst þ 1

m2

Xm
i¼1

fdiabst

" #2( )
:

Summing this expression over a=1,. . .,2k; b=1,. . .,2k; s =1,. . .,Ma; and t =1,. . .,Mb, then rearranging terms, we obtain
expression (26).
Appendix C

Here, we give formulas for estimators of f and r in the unbalanced (AB)k design, of which the (AB)1 design is a
special case. Define the sample auto-covariance for case i and phase a as a function of the lag h:

ĝai hð Þ ¼ 1

nai

XNa
i �h

j¼Na�1
i þ1

Yij � �Y
a
i�


 �
Yi jþhð Þ � �Y

a
i�


 �

where �Y
a
i� is the average across observations of the ith individual within the ath phase given by

�Y
a
i� ¼

1

nai

XNa
i

j¼Na�1
i þ1

Yij:

For improved precision, these can be pooled across phases and cases, yielding

ĝ�� hð Þ ¼ 1

N��

Xm
i¼1

X2k
a¼1

nai ĝia hð Þ:

An estimate of f is then given by

f̂ ¼ ĝ�� 1ð Þ
ĝ�� 0ð Þ þ c

where the constant c is given by

c ¼
Pm
i¼1

P2k
a¼1

1� 1
nai

� 

Pm
i¼1

P2k
a¼1

nai � 1

 � ¼

2km�Pm
i¼1

P2k
a¼1

1=nai

N�� � 2km
:

The use of the c correction makes f̂ approximately unbiased when f=0. However, for non-null f, the estimate
remains biased towards zero, particularly so when each phase is short. Note that for balanced designs (in which ni

a=n
for i=1,. . .,m and a=1,. . .,2k), the constant simplifies to c=1/n, the correction studied by Huitema and McKean [14].

An estimate of s2 is needed for the purpose of estimating r. The Yule–Walker estimate of s2 is simply ĝ�� 0ð Þ, the
within-phase-within-individual variance (using divisor N●

● rather than N●
●� 2mk). The expected value of ĝ�� 0ð Þ is

Es2/N●
●, where

E ¼
Xm
i¼1

X2k
a¼1

nai �
1

nai

Xnai
s¼1

Xnai
t¼1

f s�tj j
 !

:

It follows that ŝ2 ¼ N�
�g

�
� 0ð Þ=E is an unbiased estimator of s2 for known f. Note that in the balanced (AB)1 design,

E/N●
● reduces to (1 – b1). We then estimate r via

r̂ ¼ 1� ŝ2

S2
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