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ABSTRACT 

 

In a series of two in vivo experiments, we examine whether correct and incorrect examples with 

prompts for self-explanation can be effective for improving students‘ conceptual understanding 

and procedural skill in Algebra when combined with guided practice. In Experiment 1, students 

working with the Algebra I Cognitive Tutor were randomly assigned to complete their unit on 

solving two-step linear equations with the traditional Tutor program (control) or one of three 

versions which incorporated examples; results indicate that explaining worked examples during 

guided practice leads to improved conceptual understanding compared with guided practice 

alone. In Experiment 2, a more comprehensive battery of conceptual and procedural tests was 

used to determine which type of examples is most beneficial for improving different facets of 

student learning.  Results suggest that incorrect examples, either alone or in combination with 

correct examples, may be especially beneficial for fostering conceptual understanding.  

  

Keywords: worked examples; self-explanation; learning from errors; conceptual understanding; 

Algebra 
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Using Example Problems to Improve Student Learning in Algebra: Differentiating Between 

Correct and Incorrect Examples 

1. Introduction 

Numerous studies have demonstrated that learning is improved when students study 

worked examples while they practice solving problems in a laboratory setting (e.g., Sweller, 

1999; Sweller & Cooper, 1985).  Several studies have extended this work to demonstrate that the 

use of worked examples can be beneficial for learning in real world classrooms over short-term 

lessons (Carroll, 1994; Ward & Sweller, 1990), over longer-term computerized lessons 

(Kalyuga, Chandler, Tuovinen, & Sweller, 2001; Kim, Weitz, Heffernan, & Krach, 2009; 

Schwonke, Wittwer, Aleven, Salden, Krieg, & Renkl, 2007), and, most recently, over long-term 

traditional lessons (Booth, Koedinger, & Paré-Blagoev, revision under review).   

The most robust finding regarding the use of worked examples is that replacing 

approximately half of the practice problems in a session with fully worked-out examples to study 

leads to improved procedural knowledge (e.g., Sweller & Cooper, 1985, Ward & Sweller, 1990, 

etc.). That is, after studying examples, individuals learn to solve problems faster by viewing 

examples and practicing rather than doing double the practice. This is thought to occur because 

viewing the examples reduces cognitive load, allowing students to focus on learning and 

understanding the steps of a problem‘s solution (Sweller, 1999; Zhu & Simon, 1987).  However, 

variations on the traditional format of worked examples may lead to different types of learning 

benefits.  In the following sections, we describe two such variations: Combination with self-

explanation prompts and the study of correct vs. incorrect solutions.  

1.1 Worked examples with self-explanation 
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One common variant is to couple worked examples with prompts for students to explain 

the information to themselves. Explaining instructional material has been shown to improve 

learning by forcing students to make their new knowledge explicit (Chi, 2000; Roy & Chi, 

2005).  Logically, it then follows that asking students to explain examples could further improve 

their learning over having them simply study examples.  Indeed, Renkl, Stark, Gruber, and 

Mandl (1998) found that including self-explanation prompts with examples of interest 

calculation problems fosters both near transfer of problem solving skills (i.e., solving the type of 

problem they practiced) and far transfer (i.e., solving problems that are related, but not 

isomorphic to those practiced (Haskell, 2001)); Catrambone and Yuasa (2006) also demonstrated 

that prompting self-explanations yielded greater success at locating the relevant information 

needed to perform transfer tasks when utilizing computerized databases. Aleven and Koedinger 

(2002) also demonstrated that adding self-explanation prompts to a computerized tutor leads to 

increased declarative knowledge in Geometry, and Hilbert, Renkl, Kessler, and Reiss (2008) 

further suggest that adding self-explanation to worked examples improves students‘ conceptual 

knowledge of Geometry. These findings suggest that, at least for mathematical content, the 

addition of self-explanation allows worked examples to improve students‘ understanding of the 

underlying concepts inherent in the problems as well as their ability to carry out the steps they 

were shown.  

1.2 Studying correct vs. incorrect examples 

Another dimension on which examples can differ which has received far less research 

attention is the nature of the solution in the examples. While most worked-example research 

focuses on the use of correct examples, recent work suggests that asking children to explain a 

combination of correct and incorrect examples can be even more effective (Durkin & Rittle-
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Johnson, 2012; Rittle-Johnson, 2006; Siegler, 2002; Siegler & Chen, 2008); similar results have 

also been found with older students (Huang, Liu, & Shiu, 2008) and adults (Curry, 2004) . The 

benefit of explaining errors is twofold. First, it can help students to recognize and accept when 

they have chosen incorrect procedures, leading to improved procedural knowledge over practice 

alone or correct examples plus practice (Siegler, 2002).  Second, and perhaps more important, it 

can draw students‘ attention to the particular features in a problem that make the procedure 

inappropriate. For instance, consider an example in which the equation 3x – 4 = 5 is incorrectly 

solved by subtracting 4 from both sides and resulting in a next problem state of 3x = 1.  By 

explaining how the procedure led to an incorrect answer, students are forced to both accept that 

the procedure is wrong, and to notice that the negative sign that precedes the 4 makes it 

inappropriate to apply the strategy. This can help the student replace faulty conceptual 

knowledge they have about the meaning of the problem features with correct conceptual 

knowledge about those features; the acquisition of accurate, deep features with which to 

represent problem situations is key to building expertise (Chi, Feltovich, & Glaser, 1981).  

Consistent with this assertion, the combination of correct and incorrect examples has been shown 

to lead to improvements in both conceptual understanding and procedural skill in Algebra 

compared with procedural practice alone (Booth et al., revision under review).  In this study, the 

approach was shown to be especially beneficial for minority students (Booth et al., revision 

under review). However, the inclusion of incorrect examples does not always lead to increased 

benefit for all learners. For example, Große & Renkl (2007) found that relatively novice learners 

cannot benefit from incorrect examples when they are expected to locate and identify the error in 

the example themselves.  It makes sense that novice students would have difficulty with this 

component, given that they likely make many of the mistakes themselves and may not recognize 
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them as incorrect. However, further work is needed to determine if removing this requirement 

and instead prompting students to explain what happened in the example and why it is incorrect 

may be beneficial. Further direct testing of correct examples vs. a combination of correct and 

incorrect examples is thus necessary for varied domains and student populations.  

Though research focusing specifically on incorrect examples has only emerged in the past 

decade, the idea that errors can be effective learning tools is not new.  Ohlsson‘s (1996) theory of 

learning  from errors  maintains that individuals choose (perhaps implicitly) between possible 

actions when solving  a problem, but that as initial knowledge is often overly general, beginning 

learners often choose incorrect options.  Ohlsson suggests that in order to improve their task 

knowledge, learners must first detect an error, identify the overgeneral knowledge that caused 

the error, and explain what additional conditions or features must be added to the overly general 

knowledge in order to make it correct.   

These ideas are also consistent with overlapping waves theory (Siegler, 1996), which 

maintains that individuals know and use a variety of strategies which compete with each other 

for use in any given situation. With improved or increased knowledge, good strategies gradually 

replace ineffective ones. However, for more efficient change to occur, learners must reject their 

ineffective strategies, which can only happen if they understand both that the procedure is wrong 

and why it is wrong (i.e., which problem features make the strategy inappropriate (Siegler, 

2002)). Work in the domain of science on conceptual change is based on a similar premise: 

inducing cognitive conflict along with providing accurate information can help students to build 

correct conceptions (e.g., Diakidoy, Kendeou, & Ioannides, 2003; Eryilmaz, 2002).   

 Collectively, these assertions suggest that the combination of correct and incorrect 

examples is beneficial because the incorrect examples help to weaken faulty knowledge and 
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force students to attend to critical problem features (which helps them not only to detect and 

correct errors, but also to consider correct concepts), while the correct examples provide support 

for constructing correct concepts and procedures, beyond that embedded in traditional 

instruction. It seems clear that both types of support are necessary, but what if extra support for 

knowledge construction is achieved through other types of innovative classroom practice? In that 

case, would it still be optimal to provide a combination of correct and incorrect examples, or 

would providing incorrect examples alone suffice for improving student learning?  In the present 

study, we test the contribution of correct vs. incorrect examples in the context of such support for 

knowledge construction--guided problem-solving practice with the Cognitive Tutor, a self-paced 

intelligent tutor system which provides students with feedback and hints as they practice 

(Koedinger, Anderson, Hadley, & Mark, 1997).   

In a series of two experiments, we examine the relative benefit of explaining correct and 

incorrect examples alone and in combination for improving conceptual and procedural learning 

for students beginning Algebra.   Algebra 1 is a particularly useful testbed, because it is 

considered to be a gatekeeper course in which success is thought to be crucial for access to 

advanced opportunities in mathematics and science.  Despite its importance, many students 

entering Algebra 1 do not have accurate conceptual knowledge about the critical features found 

in equations, which hinders their ability to succeed in the course.  For example, students tend to 

think that the equals sign is an indicator of where the answer belongs, rather than of balance 

between the two sides (Baroody & Ginsburg, 1983; Kieran, 1981), that negative signs represent 

subtraction but do not modify the terms they precede (Vlassis, 2004), and that variables represent 

a single value (Booth, 1984; Knuth, Stephens, McNeil, & Alibali, 2006; Küchemann, 1978). 

Such misunderstandings have been found to have a detrimental effect on students‘ ability to 
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solve equations and to hinder students‘ ability to learn new Algebraic content (Booth & 

Koedinger, 2008), and, unfortunately, tend to persist even after targeted classroom instruction 

(Booth, Koedinger, & Siegler, 2007; Vlassis, 2004). Thus, in order to increase student success in 

Algebra, it is imperative to utilize more effective methods of helping students to build stronger 

and more accurate conceptual knowledge, without sacrificing attention to procedural skills. 

These goals may be accomplished by using a combination of worked examples and self-

explanation in the domain of equation-solving, which is fundamental in Algebra 1. 

2. The Present Study 

The present study was conducted in collaboration with the Pittsburgh Science of Learning 

Center (PSLC), one of six research centers created by the National Science Foundation (NSF) for 

the purpose of promoting progress in the learning sciences.  The main goals of the PSLC include 

establishing connections between researchers, educators, and curriculum developers in order to 

conduct high quality research studies to establish the benefit of instructional practices in real 

educational settings (Koedinger, Corbett, & Perfetti, 2012; see also http://learnlab.org).  Teachers 

whose classes take part in these in vivo experiments are encouraged to attend meetings with 

researchers to review research project plans and evaluate the potential benefit a particular study 

may have on student learning or potential difficulties that may arise in classroom 

implementation.  In this setting, researchers, educators, and curriculum developers collaborate to 

improve study ideas, and in ideal cases, devise new ideas for studies.  

There are two research questions for the present study. First, do worked examples with 

self-explanation improve student learning in Algebra when combined with scaffolded practice 

solving problems? Previous work in geometry suggests that there is added benefit to explaining 

examples when embedded within Tutor activities, however, there is no evidence to date on 

http://learnlab.org/
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whether students using the Algebra 1 tutor, who are generally younger than geometry students, 

would benefit similarly.  The Cognitive Tutor has already been shown to be more effective for 

middle school students than traditional instruction (Ritter, Anderson, Koedinger, & Corbett, 

2007; What Works Clearinghouse, 2009), thus we are comparing the worked example approach 

against a more stringent, ecologically valid control group (Corbett & Anderson, 2001). Our 

specific hypotheses for this research question are that (a) students who explain worked examples 

will improve more than students who do not (control condition) (Hypothesis 1a), but that these 

effects will be stronger on the measure of conceptual knowledge (Hypothesis 1b), given that 

procedural performance is already supported and improved through the use of the Cognitive 

Tutor (Ritter et al., 2007).   

Second, are there differential effects on learning when students explain correct examples, 

incorrect examples, or a combination thereof?  Typical use of examples in classrooms is largely 

focused on the use of correct examples to show students what they are to be learning how to do. 

However, as mentioned in section 1 above, there are many reasons to believe that there is value 

added in explaining incorrect examples (e.g., Siegler & Chen, 2008).   Results from such studies 

support the use of incorrect examples in combination with correct examples; the present study 

extends this work by evaluating the effectiveness of incorrect examples when they are 

accompanied by guided practice, but not coupled with correct examples. Our specific hypothesis 

is that students who explain incorrect examples will improve more than students who explain 

only correct examples, again particularly for the measure of conceptual understanding 

(Hypothesis 2). 

3. Experiment 1 

3.1 Methods 
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3.1.1 Participants.   

Participating in Experiment 1 were 134 high school students in nine Algebra 1 

classrooms using the Algebra 1 Cognitive Tutor (Koedinger, Anderson, Hadley, & Mark, 1997). 

This curriculum is commercially available and used in over 2000 school districts across the 

United States. Classes which use this curriculum spend a portion of their instructional time in the 

computer lab using the tutor with students working individually on guided practice problems.    

Participating classrooms were recruited from three high schools. We were not permitted 

to collect demographic data for individual students, but we were able to retrieve ethnicity and 

SES data at the school level. One school was a west-coast high school in which 16% of students 

were economically disadvantaged; the ethnic breakdown of attendees was: 43% Caucasian, 8% 

Black, 37% Hispanic, and 11% Asian.  The other two schools were located in the Mid-Atlantic 

region: a career and trade center for high school students (96% Caucasian, 4% Black), and a 

suburban high school (94% Caucasian, 5% Black, and 1% Asian).  In both of these schools, 30% 

of attendees were economically disadvantaged. In all cases, students taking regular Algebra 1 

(rather than honors or remedial) were tested, thus we expect the demographics of the tested 

samples to reflect those of the larger school populations.  

Students were randomly assigned to one of four conditions: three example-based 

conditions (1 with correct examples only, 1 with incorrect examples only, and 1 with correct and 

incorrect examples) and one control condition.  Eighteen students were excluded from analysis 

because they did not complete the posttest, leaving a final sample of 116 students: 86 example-

based (30 correct examples only, 31 incorrect examples only, and 25 correct and incorrect 

examples) and 30 control.   

3.1.2 Intervention.   
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All conditions were situated within the Solving Two-Step Equations unit of the Algebra 1 

Cognitive Tutor.  Each of the students in the example-based conditions received a total of eight 

examples interspersed into their practice session, with each example replacing a scheduled 

guided practice problem.  The control condition completed the original tutor unit, which 

contained only guided practice problems with no examples.   

Each of the example-based problems illustrated either a correct or an incorrect example 

of solving an equation.  Students were then asked to explain both what was done in the example 

and why the strategy was either correct or incorrect; both steps are thought to be necessary for 

improving conceptual understanding (Rittle-Johnson, 2006). 

See Figure 1 for sample screenshots of the interface for the examples.  In both correct and 

incorrect examples, students were shown the beginning state of a problem and the state of the 

problem after the first step; for incorrect examples, the mistakes were always real student errors 

collected in previous work about the particular features of the problem or about the goal of 

problem-solving in general (Booth & Koedinger, 2008).  Students were told that the step was 

either correct or incorrect, and were asked to explain first ―what‖ was done in the step, and then 

―why‖ it is correct or incorrect. Students built their ―what‖ and ―why‖ explanations from choices 

of sentence fragments.  Students indicated ―what‖ was done by building a sentence from a series 

of three menus. The choices in the first menu were operations (Added, Subtracted, Multiplied, 

Divided, and Moved) and once the student selected an operation, the choices in the 2
nd

 and 3
rd

 

boxes were dependent on that first choice (until a choice is made in the first box, the other boxes 

are inactive).  Students selected a choice from all three boxes to build an explanation, for 

instance, ―Added 3 to both sides‖, and then submitted their answer.  They had to complete the 

―what‖ phase correctly before they could move on to the ―why‖ phase to ensure that they were 
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explaining the appropriate step.  For incorrect examples, students indicated ―why‖ the step was 

wrong by building a sentence from a series of two menus where the choices in the first box 

indicated whether the overall reason was because it was ―illegal‖ or ―legal but not helpful,‖ and 

the choices in the second menu were dependent on the choice made in the first menu (e.g., ―It 

was illegal because it combined terms that were not like terms‖; ―It was legal but not helpful 

because it did not reduce the number of terms‖).  For correct examples, students indicated ―why‖ 

the step was right by using a single menu box to complete the sentences ―It is legal because…‖ 

and ―It is helpful because…‖.  These sorts of menu-based self-explanations have previously been 

shown to improve learning and transfer in other mathematical contexts (Aleven & Koedinger, 

2002).  As with the guided practice problems, feedback and hints were available for all 

examples.   

3.1.3 Measures.  

To distinguish meaningful differences in knowledge growth based on the intervention, 

specific items were designed to measure conceptual knowledge and procedural knowledge.  

Procedural knowledge, for the purpose of this study, is identified as the how, while conceptual 

knowledge is identified as the what and why.  Procedural knowledge encompasses knowing how 

to complete the task, while conceptual knowledge identifies the important features and their 

meaning (the what), taken together to then understand the appropriateness of the procedures (the 

why) (e.g., Booth, 2011). 

3.1.3.1 Conceptual knowledge.  To assess students‘ conceptual knowledge, we used 54 

items that measured understanding of concepts identified in previous research as crucial for 

algebraic equation solving (e.g., the meaning of the equals sign, the significance of negatives in 

terms, identification of like terms, etc.; Booth & Koedinger, 2008; Kieran, 1981; Knuth et al., 
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2006; Vlassis, 2004; α = .72).  The measure was designed to assess a wide variety of concepts 

related to the content, and combined experimenter-designed items with well-established 

conceptual items that have been developed by other top researchers in the field (e.g., Alibali, 

Knuth, Hattikudur, McNeil, & Stephens, 2007; Asquith, Stephens, Knuth, & Alibali, 2007). 

Sample conceptual items can be found in the left-most column of Table 1. 

3.1.3.2 Procedural knowledge.  To assess students‘ procedural knowledge, we used 8 

items that required students to carry out procedures to solve problems.  Four of the items were 

isomorphic to those taught during the tutor unit, and four were transfer problems, which included 

features that students had not yet encountered (e.g., two variable terms in the equation). All items 

were representative of the types of problems found in Algebra 1 textbooks and taught in Algebra 

1 courses; sample items can be found in the middle and right columns of Table 1.  Student 

responses were coded as correct or incorrect.  To establish reliability, 30% of the data were 

coded by a second rater.  Inter-rater reliability was sufficient for both isomorphic (κ = .87) and 

transfer problems (κ = .93).   

3.1.4 Procedure.   

Participating students were administered a paper-and-pencil test assessing their 

conceptual and procedural knowledge of algebra.  Two parallel forms of the test were created, in 

which the structure of the problems was held constant across the two tests, but the surface 

features of the problems (e.g., the numbers and letters) were changed. In order to counterbalance 

presentation, half of the students in each class were randomly assigned to receive Version A, and 

the other half took Version B as their pretest. All students completed the pretest at the same time, 

but worked individually; they took approximately 25 minutes to complete the test. Following 

completion of the pretest, students logged on to the Cognitive Tutor and automatically received 
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their assigned version of the two-step linear equations unit, which they worked on during all of 

the scheduled computer lab sessions for their class until the unit was complete.  The Tutor 

provided guided procedural practice solving two-step equations; students received immediate 

feedback about any errors, and could ask the Tutor for hints if they were unsure of what to do; if 

assistance was requested of the teacher, it was only given after the student had asked the Tutor 

for hints, ensuring that the Tutor registered the student‘s confusion.  Students were told to work 

through the material individually, and at their own pace, until the Tutor had determined that 

mastery was reached on all requisite skills. This was done in order to maintain the ecological 

validity of a Cognitive Tutor classroom; had we instead controlled for time on task, students 

would have gotten varying levels of benefit from the Tutor itself.  As soon as possible after each 

student completed the unit, he or she was administered a posttest
1
, which again took 

approximately 25 minutes.   Because students were allowed to complete the unit to mastery, and 

thus take as long as they needed, the total study time varied for each student; however, most of 

the students had completed the study within 4 weeks (8 class sessions).  There were no 

significant differences between conditions at pretest (F(3,115) = 1.75, ns). 

3.2 Results 

Mean pretest and posttest scores for each condition on each of the three measures can be 

found in Table 2. To test whether explaining examples provided additional benefit to students 

when combined with the Cognitive Tutor, we first conducted a MANCOVA for condition 

                                                           
1
 Students in 8 of the 9 classrooms were administered the alternate version of the paper-and-

pencil test as a posttest (e.g., if they took version A for the pretest, they took version B for the 

posttest); in one classroom, students were given the same version of the test at pretest and 

posttest due to teacher error. Scores from this class did not differ significantly from those in the 

other 8 classes, so data are collapsed across all 9 classes.  
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(examples vs. no examples) on students‘ posttest conceptual knowledge and posttest isomorphic 

and transfer procedural knowledge; composite pretest scores were used as a covariate (see Figure 

2).  The multivariate effect of condition was significant F(1,111) = 2.74, p < .05, ηp
2
=.07). Even 

though students in the experimental condition solved 8 fewer practice problems than those in the 

control, they performed just as well on isomorphic post-test problems (42% correct vs. 41% in 

control group, F(1,113) = 0.03, p = .86, and trended toward better performance on a measure of 

procedural transfer skill (24% vs. 16% correct, F(1,113) = 3.43, p = .07, ηp
2
=.03).  More 

importantly, students who received example-based assignments outscored control students on a 

posttest measure of conceptual knowledge (63% vs. 58% correct, F(1,113) = 5.28, p < .05, 

ηp
2
=.05).  

Next, to determine whether there were any differences among the three example-based 

conditions, we conducted a MANCOVA for condition (3: correct only, incorrect only, correct + 

incorrect) on students‘ posttest conceptual knowledge, isomorphic procedural knowledge, and 

transfer procedural knowledge, with composite pretest scores used as a covariate. The 

multivariate effect did not reach significance, F(6,162) = 0.96, p = .46, ηp
2
=.03, indicating that 

there were no differences detected among the three example-based conditions.  

3.3 Discussion 

 

Results from this experiment indicate that a combination of examples and guided practice 

problems is more beneficial for student learning than guided practice alone (Hypothesis 1a).  

This experience fostered students‘ conceptual understanding of the features in equations 

(Hypothesis 1b) without sacrificing their procedural knowledge, which was as good as or 

perhaps better than that of students in the control group.   This study provides evidence that the 

benefit of worked examples persists, even when combined with a successful, research-based 
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curriculum. It also provides a conceptual replication of the findings of Booth and colleagues 

(revision under review), demonstrating that the laboratory-proven worked example principle 

does indeed transfer to classrooms.  

Results regarding the relative benefit of correct vs. incorrect examples (Hypothesis 2), 

however, were not conclusive. In Experiment 1, students in all three example-based conditions 

performed equally, suggesting that perhaps it doesn‘t matter what kind of examples a student 

gets, as long as examples are studied.  However, it remains possible that such differences in 

benefit do exist for experience with different types of examples, but they were not detected in 

Experiment 1.   

A more important possibility is that our measures of algebraic competence in Experiment 

1 may not have been sufficiently comprehensive. We measured broad conceptual knowledge, 

isomorphic procedural knowledge, and transfer procedural knowledge, however there are 

specific facets of each of these types of mathematical knowledge for which the intervention 

might have had a larger impact. For example, perhaps students in different conditions learn to 

represent problem features more accurately.  Previous work has shown that students do not 

accurately encode equations, often ignoring or changing the placement of the negative signs, 

equals signs, and variables in the problem (Booth & Davenport, revision under review). In 

particular, we expect that viewing incorrect examples might lead students to be more aware of 

the features in the problem as they try to use them to describe why a procedure is inappropriate, 

even if it does not lead to differences in their responses on the conceptual knowledge measures 

of those features. We thus included an additional conceptual knowledge measure of students‘ 

encoding of problem features. 
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Another possibility that we had not previously considered is that the value added of 

viewing multiple correct examples of the same type (as is done in the correct-only condition) 

may not lead to greater gains in equation-solving compared with viewing just one example of 

each type (as is done in the combined condition).  Consistent with this assertion, viewing and 

explaining only one instance has been shown to be sufficient when students‘ conceptual 

knowledge is engaged during the instruction (Ahn, Brewer, & Mooney, 1992). However, 

comparing multiple, varied instances of correct examples (Rittle-Johnson & Star, 2007) and 

generating multiple solution methods (Star & Siefert, 2006) have both previously been shown to 

affect the strategies students choose to use when solving problems on their own, allowing them 

to become more adept at choosing more efficient strategies when available (e.g., Rittle-Johnson 

& Star, 2007). We thus included an additional procedural knowledge measure of this problem-

solving flexibility, in order to extend this work to providing self-explanations of multiple correct 

examples.  .  To capitalize on this potential benefit, we also expanded the correct-only condition 

to include examples of both standard and more unconventional but effective strategies (Star & 

Seifert, 2006). 

Two more minor possibilities are that students didn‘t receive enough exposure to the 

different types of examples for there to be a differential effect; in Experiment 1, students 

received 8 examples over three problem types, meaning that for one of the problem types, 

students received only two examples, regardless of condition.  Exposure to more examples, with 

better balance across problem types, may be more optimal (recall that in all of the original 

worked-example studies, Sweller and colleagues utilize a one-to-one ratio of problems to 

examples (e.g., Sweller & Cooper, 1985)).  Another minor possibility may be that the measure of 

conceptual feature knowledge in Experiment 1 was too broad.  In designing the measure, we 
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included items to evaluate student knowledge of each feature that is found in two-step algebraic 

equations.  However, the intervention was focused on improving student knowledge of three 

features in particular—negative signs, the equals sign, and like terms. A more appropriate 

conceptual measure that would be more sensitive to changes due to different types of examples 

may be one that focuses on those three targeted features. 

Thus, Experiment 2 was designed to specifically address one overarching research 

question: What differences in learning exist when students are exposed to the three types of 

experience with examples? In this experiment, we include more examples in the intervention, 

balanced across problem type. We also use a more targeted measure of conceptual feature 

knowledge, a new measure of skill in encoding problem features, and a new measure of 

flexibility in problem solving, along with measures of isomorphic and transfer equation-solving 

problems. We again test the hypothesis that students who explain incorrect examples (Combined 

and Incorrect only conditions) will improve more on measures of conceptual understanding than 

those who only explain correct examples (Correct only condition) (Hypothesis 2); we also 

hypothesize that students who explain traditional and unconventional correct examples (Correct 

only condition) will improve more in flexibility of problem-solving skills than those who do not 

explain unconventional correct examples (Combined and Incorrect only conditions) (Hypothesis 

3). 

4 Experiment 2 

4.1 Methods 

4.1.1 Participants.   

Participants in Experiment 2 were recruited from eighth-grade Algebra I classrooms that 

used the Cognitive Tutor software in an inner-ring suburban school (i.e., a suburb that is located 
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close to a major city) in the mid-western United States, in which 29% of students are classified 

as low-income.  Sixty-four students participated in this study: 29 females (45%) and 35 males 

(55%).  Fifty two percent of the participants were Black, 37% were Caucasian, and 11% 

identified with multiple races. Students were randomly assigned to one of three example-based 

conditions (1 with correct examples only (N = 22), 1 with incorrect examples only (N = 21), and 

1 with correct and incorrect examples (N = 21)).   

4.1.2 Intervention.   

The intervention was largely the same as in Experiment 1, with the following changes:  

First, each condition incorporated 12 examples rather than 8. This was done in order to make 

sure students had the opportunity to work with the same number of examples in each of the 

problem types presented by the Tutor (i.e., 4 while solving two-step equations with addition and 

subtraction, 4 while solving two-step equations with multiplication, and 4 while solving two-step 

equations with division.)   

Second, because exposure to more of the same type of correct examples may not be 

necessary for learning when students are providing explanations (Ahn et al., 1992), but exposure 

to varied solution strategies for solving the same type of problem may promote flexibility in 

problem solving (Rittle-Johnson & Star, 2007), the Correct only condition in Experiment 2 gave 

students 6 examples solved in the traditional correct method and 6 solved in unconventional but 

effective ways. To illustrate an unconventional correct example, consider the problem x/2 – ½ = 

3/2. One could solve the problem traditionally, by adding ½ to both sides and then multiplying 

both sides by 2 to isolate the variable (x/2 = 4/2; x = 4). However, it is also feasible to first 

multiply the whole problem by 2 and then add 1 to find the value of x (x – 1 = 3; x = 4). This 

method may not be explicitly taught in school, but is an effective method to make the numbers in 
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the problem easier to manipulate. Thus, for each of the problem types presented by the Tutor 

(e.g., solving equations with addition and subtraction), students in the Correct only condition 

received 2 examples using the traditional method for solution and 2 using more innovative 

methods to find the correct solutions. All correct examples presented to students in the combined 

group were conventionally solved. 

Two minor changes were also made to the interface for the intervention. After analysis of 

both the problem tasks as well as grade-level vocabulary, two additional options were added to 

the first pull-down menu to allow students to select ―Removed‖ and ―Took the reciprocal of‖ to 

describe the mathematics occurring in the steps to solve the equation.  The vocabulary of 

describing why the step was right or wrong was also changed, exchanging the words ―legal‖ and 

―illegal‖ for ―valid‖ and ―invalid,‖ respectively, to more accurately represent language used by 

students in the classroom.  

4.1.3 Measures.   

We utilized two measures of conceptual understanding (feature knowledge and encoding) 

and two measures of procedural fluency (equation-solving and flexibility). We describe each of 

the measures in more detail below.  

4.1.3.1 Feature knowledge.  Feature knowledge questions measured students‘ 

understanding of concepts that have been identified in previous research as crucial for success in 

Algebra; it was comprised of 37 items from the conceptual test in Experiment 1 that measured 

student knowledge of three critical features: the meaning of the equals sign, negative signs, and 

like terms (α = .77).  The percentage of feature knowledge items answered correctly was 

computed for each student. 



 Correct vs. Incorrect Examples in Algebra     21 

 

4.1.3.2 Encoding.  Students‘ encoding of problem features was measured using a 

reconstruction task (e.g., McNeil & Alibali, 2004; Matthews & Rittle-Johnson, 2009) in which 

students were presented with an equation for six seconds and then asked to reconstruct the 

problem from memory immediately after it disappeared from view. Students completed this task 

for a series of six equations with different structural formats and different placements of key 

problem features (e.g., 4x = 9 + 7x – 6; p - 5 = -2p + 3).  Student answers were coded for overall 

correctness, and also in terms of the number and types of errors made on the items (e.g., how 

many times did they move, drop, or insert a negative sign from an equation; how many times did 

they switch one numeral with another).  For each individual student we computed the percent of 

equations reconstructed correctly, the total number of errors made on the conceptual features 

(i.e., those involving the negative sign, equals sign, or variable), and the total number of non-

conceptual errors (i.e., those involving letters or numbers). To establish reliability, 30% of the 

data were coded by a second rater.  Inter-rater reliability was sufficient for correct 

reconstructions (κ = 1.00), conceptual errors (κ = .80) and non-conceptual errors (κ = .92).  

4.1.3.3 Equation-solving.   As in Experiment 1, we measured students‘ ability to 

effectively carry out procedures to solve three isomorphic (i.e., problems that are identical in 

structure to those they have been trained on; α = .84) and three transfer problems (i.e., problems 

that include additional features or alternate structures from those they have been trained to solve; 

α = .84).  For each student, we computed the percent of isomorphic problems answered correctly 

and the percent of transfer problems answered correctly. Inter-rater reliability (computed on 30% 

of the data) was sufficient for both isomorphic (κ = .97) and transfer problems (κ = .92). 

4.1.3.4 Flexibility. We evaluated students' ability to recognize and choose an effective 

strategy when solving an equation.  Students were asked to solve three equations using two 



 Correct vs. Incorrect Examples in Algebra     22 

 

different strategies; for these problems, they received a flexibility score that was computed as 

either a 0, 0.5, or 1 for each problem (α = .70).  Receiving a 1 indicated that the student used two 

different methods to solve the problem, getting the correct answer both times.  A score of 0.5 

indicated that the student did attempt two different methods, but was not able to come to a 

correct answer using one of the two methods.  A score of 0 indicated that the student was not 

able to identify two different methods to solve the equation. All items were averaged into a 

flexibility score, with higher scores indicating that students were able to recognize and use more 

effective strategies when solving equations.  

4.1.3.5 Composite Scores. For each student, we also computed three composite scores: 

Overall score (percent correct across all feature knowledge, encoding, isomorphic equation-

solving, transfer equation-solving, and flexibility items), Conceptual Understanding score 

(percent correct across feature knowledge and encoding items), and Procedural Fluency score 

(percent correct across isomorphic equation-solving, transfer equation-solving, and flexibility 

items). The conceptual understanding and procedural fluency measures were positively 

correlated (R(85) = .50, p < .001), and the internal consistency for the composite measure was 

sufficient (α = .83). 

4.1.4 Procedure.   

All procedures were identical to those in Experiment 1 except that to avoid confusion 

about the version of the pretest and posttest that should be given to each student there was only 

one version of the pencil and paper test; all students received that version as both their pretest 

and their posttest.  There were no significant differences between conditions at pretest (F(2,83) = 

.04, ns), and pretest and posttest composite scores were positively correlated (R(65) = .58, p < 

.001). 
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4.2 Results 

 First, to determine whether there was any effect of condition on students‘ scores in 

general, we conducted a 3-level (Condition) ANCOVA on overall scores, controlling for pretest 

scores (see Figure 3). A trend towards a main effect of condition was found for overall 

performance (F(2,64) = 3.063 p < 0.10, ηp
2
 = 0.09). Follow-up pairwise comparisons with 

Bonferroni correction revealed that students in the Combined condition (M = 63%, SD = 16%) 

scored higher than students in the Correct only condition (M = 51%, SD = 22%; p = .05); no 

other comparisions were significant.   

 Mean pretest and posttest scores for each condition on each of the five measures can be 

found in Table 3. To determine whether there was any effect of condition on the conceptual 

understanding measures, we conducted a 3-level (Condition) MANCOVA on posttest feature 

knowledge scores and posttest encoding errors on conceptual features, and posttest encoding 

errors on non-conceptual features, with overall pretest conceptual understanding scores included 

as the covariate (see Figure 4, left 2 columns). The multivariate effect of condition was 

significant, F(6, 120) = 3.11, p < 0.01, ηp
2

 = 0.13. Significant univariate main effects of condition 

were found for conceptual features (F(2,64) = 5.30, p < 0.01, ηp
2

 = 0.15) and conceptual 

encoding errors (F(2,64) = 3.56, p < 0.05, ηp
2

 = 0.10). Follow up pairwise comparisons with 

Bonferroni correction indicated that for the conceptual features measure, students in the 

Combined condition (M = 72%, SD = 15%) scored significantly higher than students who 

received the Correct only condition (M = 53%, SD = 26%, p < 0.01). In addition, students in the 

Incorrect only condition made fewer conceptual encoding errors (M = 2.0, SD = 2.1) than 

students in the Correct only condition (M = 4.4, SD = 4.2; p < .05); the comparison between the 

Combined and Incorrect only conditions was not significant.  The univariate main effect of 
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condition on non-conceptual encoding errors was marginally significant F(2, 64) = 2.55, p < 

0.10, ηp
2

 = 0.08), however, follow-up pairwise tests revealed no significant differences between 

individual conditions. 

 A parallel 3-level (Condition) MANCOVA was conducted on posttest isomorphic 

equation-solving, transfer equation-solving, and flexibility scores, with overall pretest procedural 

fluency scores entered as a covariate (see Figure 4, right 3 columns). The multivariate effect of 

condition did not reach significance for the procedural fluency measures, F(6, 120) = 1.38, p = 

.23, ηp
2

 = 0.06.  

5. General Discussion  

Experiment 1 indicated that combining guided practice with worked example problems 

benefited students‘ conceptual knowledge (Hypotheses 1a and 1b); Experiment 2 measured the 

impacts of particular types of examples. Results indicated that students performed best after 

explaining incorrect examples; in particular, students in the Combined condition gained more 

knowledge than those in the Correct only condition about the conceptual features in the equation, 

while students who studied only incorrect examples displayed improved encoding of conceptual 

features in the equations compared with those who only received correct examples (Hypothesis 

2).   

No differences were found between any of the conditions on any of the procedural 

measures.  For the isomorphic and transfer problems, the combination of guided practice with the 

Cognitive Tutor and examples yields equal or better performance than the Cognitive Tutor alone 

(Experiment 1), but the specific types of examples provided may not have much influence on 

procedural learning when combined with guided practice. In general, the level of performance on 

the isomorphic and transfer problems was much lower than expected in both studies, especially 
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given that prior research has shown the potential for significant improvement in procedural skill 

when using the Cognitive Tutor (Ritter et al., 2007).  Though all problems were of the types 

included in the students‘ textbooks for solving two-step (isomorphic) and multi-step equations 

(transfer), the easiest possible problems (e.g., ones with all positive numbers and/or numbers that 

divided or combined neatly) were not represented in the measure. Future work should include 

simpler problems to more accurately measure the range of learning that occurred in the lesson 

and determine whether differences in condition emerge for students‘ improvement in solving 

such simple problems.  

  Even more surprising, however, is that students in the Correct only condition—the only 

condition to include unconventionally solved problems—did not see any significant 

improvement in procedural fluency when compared to their peers. In particular, we expected that 

viewing unconventionally solved problems would be crucial for improved flexibility (Hypothesis 

3). However, all three groups performed equally on the procedural fluency tasks.  One possible 

reason for this finding is that improved conceptual understanding (as occurred in the Combined 

and the Incorrect only conditions) may be sufficient to prompt improved flexibility; if students 

have a better understanding of what the features in the equation actually mean, then they may be 

more likely to construct non-traditional ways of manipulating those features to solve problems. 

Another possible explanation is that the measure of flexibility in Experiment 2 was focused on 

students‘ recognition of multiple effective methods for solving equations rather than their 

identification of the most effective strategy. A further concern of note is that since only one 

condition included unconventional examples, it is not clear whether receiving them is not 

effective or whether receiving them in that particular context is not useful; it is also unknown 

how much flexibility improves just with the standard Cognitive Tutor curriculum.  Future 
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research is necessary to investigate what types and combinations of instruction are sufficient for 

improving recognition of alternate methods, and whether any of those methods are superior for 

improving students‘ strategy choice.  

In general, the two conditions that included incorrect examples appear to be more 

beneficial improving conceptual knowledge than the Correct only condition.  This supports and 

extends previous work in several important ways.  First, it provides evidence that the 

combination of correct and incorrect examples is more beneficial than correct examples alone in 

the domain of Algebraic equation-solving; previous work in Algebra has focused on correct and 

incorrect examples of word problems (Curry, 2004). It also confirms the effectiveness of this 

combination for middle school students (Huang et al., 2008). The present study was also the first 

to test whether a combination of correct and incorrect examples is more beneficial than incorrect 

examples alone, and suggests that receiving incorrect examples can be beneficial regardless of 

whether it is paired with correct examples.  This finding is especially important to note because 

when examples are used in classrooms and in textbooks, they are most frequently correctly 

solved examples. In fact, in our experience, teachers generally seem uncomfortable with the idea 

of presenting incorrect examples, as they are concerned their students would be confused by 

them and/or would adopt the demonstrated incorrect strategies for solving problems. Our results 

strongly suggest that this is not the case, and that students should work with incorrect examples 

as part of their classroom activities. 

Our results do not suggest, however, that students can learn solely from explaining 

incorrect examples. It is important to note that all students saw correct examples, regardless of 

condition, not only because they are regularly included in textbooks and classroom instruction, 

but because the correctly completed problems the students produced with the help of the 
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Cognitive Tutor could also be considered correct examples of sorts. We maintain that students 

clearly need support for building correct knowledge, however, if that support is coming from 

another source (e.g., guided practice with feedback), spending additional time on correct 

examples may not be as important as exposing students to incorrect examples.  

Future work should continue to investigate how the structure of incorrect examples 

influences their benefit for students of varying ability levels. For example, it seems likely that it 

would be critical to combine incorrect examples with self-explanation rather than promoting 

aimless examination of errors. Further, the way in which students provide that self-explanation 

may change their level of benefit from incorrect examples; lower-achieving students in Große 

and Renkl (2007) were not successful with incorrect examples, but such students in the present 

study did benefit, perhaps in part because they were supported in constructing reasonable self-

explanations through use of the drop-down menu choices. As the benefits of self-explanation are 

reliant on the learner generating the explanation (rather than simply reading a provided 

explanation; Chi, De Leeuw, Chiu, & Lavancher, 1994) this scaffolding may have allowed 

students who would not normally be able to construct self-explanations to succeed in the process; 

affording them benefits for constructing new knowledge (Chi, 2000) and representing the algebra 

problems (Neuman & Schwarz, 2000).  

While results from the present study appear conclusive in supporting the use of incorrect 

examples in classroom activities, several other important questions are raised from the intricacies 

of the results.   For instance, why did no differences emerge between students in the Combined 

and the Incorrect-only conditions on any of the tasks?  It seems odd that an increased number of 

incorrect examples wouldn‘t influence performance, especially since each targeted a different 

possible misunderstanding about the equation features or solution process.  Perhaps as long as 
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students think through ‗enough‘ incorrect solutions, there is no added benefit to seeing more.  

However, then it is strange that the Combined condition—which received ‗enough‘ incorrect 

examples plus the same number of correct examples—did not outperform the Incorrect-only 

condition, even on procedural tasks for which correct examples are frequently shown to improve 

learning.  Perhaps the potential benefit of this combination was minimized because students did 

not directly compare the two types of examples (Rittle-Johnson & Star, 2007). Further work is 

needed to investigate these questions, and to determine whether incorrect examples might be 

more beneficial alone or in combination when they are not also combined with the guided 

practice.  

Another limitation of the present study was that we do not know whether students felt 

they were learning better from the intervention compared to their typical experience with the 

tutor, or whether the teacher believed it to be the case. Observations that were conducted in the 

classrooms suggest that students were able to work well with the intervention and that the lesson 

went smoothly, however it would be useful to know if the advantages of the example-based 

tutors are manifest solely in cognitive benefits, or if students‘ self-efficacy—or the belief that 

they can succeed (Bandura, 1986)—changed as a result of working with any of the conditions.  

Future studies should also examine process data to determine how explaining the examples 

impacted students‘ work with the guided practice problems. For example, did it take them fewer 

problems to reach mastery? Did they make fewer mistakes when solving problems after 

explaining correct vs. incorrect examples? It would also be useful to know whether 

improvements in conceptual understanding as demonstrated on our measures actually yielded 

noticeable differences in students‘ performance in their traditional lessons. All of these factors 

should be examined in future work.   
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Nonetheless, though inadequate conceptual knowledge of features in algebraic equations 

hinders students‘ success in Algebra (Booth & Koedinger, 2008), the present study demonstrates 

a successful plan for intervention: Provide examples along with guided practice problems to 

improve conceptual understanding. Specifically, exposure to incorrect examples which target 

typical student misconceptions about problem features and problem-solving approaches may be 

crucial for developing students‘ conceptual knowledge.  Viewing and explaining such incorrect 

examples may help students to both confront their own misconceptions as well as refine their 

understanding of the features in the problem; this may be especially so when students are guided 

to notice critical features in the problems, either by forcing them to explain what changed 

between steps or by prompting them to answer specific questions about the mistakes in the 

problem.    

Future research should also examine whether the optimal combination of examples 

differs for students with varied levels of background knowledge; such results would not be 

unprecedented (Große & Renkl, 2007; Kalyuga, Chandler, & Sweller, 2001).  Systematic 

exploration of such individual differences in future studies is necessary to identify exactly when 

each type of examples are most beneficial for individual students.  This knowledge would have 

the potential to improve instruction on equation-solving for students in the Cognitive Tutor 

curriculum, as well as to inform all teachers of example-based strategies that can be used to 

differentiate algebra instruction for their students.  
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Table 1: Sample assessment items for Experiment 1. 

Conceptual 
Procedural 

Isomorphic 

Procedural 

Transfer 

State whether each of the following is equal to -4x + 3: 

a. 4x + 3                                   Yes      No 

b. 3 – 4x                                   Yes      No 

c. 4x – 3                                   Yes      No 

d. 3 + (-4x)                               Yes      No 

e. 3 + 4x                                   Yes      No 

-4x + 5 = 8 

 

6 + 3y = -5y + 8 

 

 

If 10x – 12 = 17 is true, state whether each of the 

following must also be true: 

a. 10x – 12 + 12 = 17 + 12                   Yes      No 

b. x – 2 = 17                                          Yes      No 

c. 10x = 29                                            Yes      No 

d. 10x = 17                                            Yes      No 

e. 10x – 10 – 12 – 10 = 17                    Yes      No 

f. 10x – 12 + 12 = 17                            Yes      No 

9
6


b
 1

8
5 

t
 

State whether each of the following is a like term for 8c: 

a. -5                              Yes      No 

b. 8                               Yes      No 

c. 6c                             Yes      No 

d. 3d                             Yes      No 

e. 5(c+1)                      Yes      No 

f. -4c                            Yes      No 

7
3

d
  2

8
7 

v
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Table 2. Mean pretest and posttest scores on each measure in Experiment 1 for students in each 

condition 

 

 

 

 

 

 

 

 

  

 

 

 Conceptual 

Knowledge 

Isomorphic 

Procedural 

Transfer 

Procedural 

 Pre Post Pre Post Pre Post 

Control .62 

(.09) 

.60 

(.11)  

.43  

(.27) 

.44  

(.27) 

.16  

(.19) 

.18  

(.22) 

Correct Only .53 

(.15) 

.62 

(.14) 

.33  

(.27) 

.45  

(.32) 

.23  

(.26) 

.28  

(.30) 

Incorrect Only .59 

(.13) 

.65 

(.10) 

.32  

(.26) 

.40  

(.29) 

.18  

(.26) 

.24  

(.23) 

Combined .59 

(.11) 

.60 

(.14) 

.35  

(.25) 

.39  

(.34) 

.20  

(.23) 

.24  

(.30) 

Note: Mean (SD). 
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Table 3. Mean pretest and posttest scores on each measure in Experiment 2 for students in each 

condition 

 

 

 Encoding 

Conc Errs 

Conceptual 

Features 

Isomorphic 

Procedural 

Transfer 

Procedural 

Flexibility 

 Pre Post Pre Post Pre Post Pre Post Pre Post 

Correct Only 5.04 

(3.18) 

4.48 

(4.20) 

.67 

(.16) 

.52* 

(.26) 

.30 

(.28) 

.28 

(.26) 

.13 

(.22) 

.19 

(.30) 

.15 

(.26) 

.13 

(.29) 

Incorrect Only 3.67 

(2.59) 

1.90* 

(2.10) 

.67 

(.19) 

.63 

(.26) 

.51 

(.39) 

.40 

(.33) 

.32 

(.32) 

.30 

(.38) 

.22 

(.30) 

.15 

(.31) 

Combined 4.38 

(2.52) 

2.90* 

(2.55) 

.66 

(.16) 

.71* 

(.17) 

.30 

(.35) 

.29 

(.30) 

.22 

(.34) 

.32 

(.32) 

.14 

(.33) 

.18 

(.32) 

Note: Mean (SD). *Posttest score significantly different from pretest score at p<.05 
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Figure Captions 

Figure 1: Screenshots of the interface for correct and incorrect examples in Experiment 1.  

Figure 2: Conceptual, procedural isomorphic, and procedural transfer scores for example-based 

and control students in Experiment 1. 

Figure 3: Overall posttest scores (adjusted for pretest scores) for students in each condition in 

Experiment 2. 

Figure 4: Encoding, Feature Knowledge, Isomorphic Equation-Solving, Transfer Equation-

Solving, and Flexibility posttest scores (adjusted for pretest performance) by condition in 

Experiment 2.  

 


