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The ability to log tutorial interactions in comprehensive, longitudinal, fine-

grained detail offers great potential for educational data mining – but what data 

is logged, and how, can facilitate or impede the realization of that potential.  We 

propose guidelines gleaned over 15 years of logging, exploring, and analyzing 

millions of events from Project LISTEN’s Reading Tutor and its predecessors. 

1 Introduction 

There is presumably unanimous consensus in the EDM community that it is useful to log 

tutor data.  However, there is far from a consensus about which data to log, or how.  As a 

step toward this goal, this paper attempts to distill lessons from over fifteen years of 

experience in logging and mining data from Project LISTEN’s Reading Tutor [1] and its 

predecessor [2].  We cite relevant publications about that work, but work on logging tutor 

data in other projects is outside the scope of this paper and hence not cited here.  Rather 

we describe some guidelines we have developed along the way.   We do not claim they 

are the best possible way to log tutor data, only that we have found them sufficiently 

helpful in our project to recommend them in considering why, what, and how to log. 

The Reading Tutor uses speech recognition to listen to children read aloud, and helps 

them learn to read [3-8].  It logs its interactions with students throughout the school year 

in fine-grained, comprehensive detail, logging – and timestamping – every launch of the 

tutor, session with a student, story read in whole or part, text sentence displayed, multiple 

choice question and response, utterance by student or tutor, word recognized, keyboard 

input, and mouse click.  The Reading Tutor logs this data directly to a relational database. 

The school server then forwards the data overnight to an aggregated database in our lab. 

2 Why to log 

Project LISTEN illustrates multiple purposes that logging tutor data can serve. 

2.1 Tutoring 

Besides logging data for later analysis, a tutor can query logged data itself at runtime.  

The Reading Tutor queries 12 of the 32 database tables that it logs: 

 Enrollment and login use tables of classes and students. 

 Usage tracking queries tables of launches and sessions, e.g. to track how long the 

student used the Reading Tutor so far today, which it displays on the screen. 

 The database keeps the student’s place even if the student logs out or the tutor 

exits or crashes [9].  The story choice mechanism uses the table of story 
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encounters to bookmark the student’s position in a story, and to remember whose 

turn it is to pick a story next. 

 The tables for the student model determine which level of stories to pick, when to 

promote or demote the student based on oral reading fluency, which letter-sound 

mappings to teach, and which words to practice. 

2.2 Reporting 

A separate program used the database to generate various types of password-protected, 

web-accessible reports on demand.   A report for teachers summarized students’ usage 

and progress [10].  A report for technical support staff computed usage and reliability at 

each school, and flagged possible technical problems indicated by falloff in usage. 

2.3 Browsing  

Project LISTEN’s Session Browser [11, 12] enables researchers to find examples of 

tutorial interactions with specified characteristics, display them in human-understandable 

form, explore them in dynamically variable detail, and annotate them, as Figure 1 shows.   

 

Figure 1:  Event tree displayed by Project LISTEN’s Session Browser 

The event highlighted in the tree is a 9-second-long encounter of the sentence It was easy 

to find because it was bright yellow, 45 seconds after the previous sentence encounter, 

which lasted 19 seconds and occurred 3 minutes into a 6-minute encounter of the Level B 

(grade 2) story “Vicky’s Airport Visit, Part 2,” which the student picked 2 seconds after 

starting an 11-minute-long session at 1:33pm on January 1, 2006.  A human annotator 

later rated both sentences on a scale from 1 to 4 for four items of a fluency rubric [13].  

The second sentence encounter has been expanded here to reveal three utterances, the last 
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of which is expanded to show the text words was bright yellow aligned against the speech 

recognizer output.  The Session Browser derives the tree structure from the temporal 

relationships among the events stored in the database. 

2.4 Mining 

Researchers query Reading Tutor databases from different school years for educational 

data to mine.  These queries are shorter, faster to write, easier to understand, and less 

error-prone than the scripts used to analyze tutor log files [1]:  “For example, analysis of 

the preemptive assistance experiment was hampered by the absence of a single uniform 

log entry for the generic event “give help on a word.”  Instead, an ad hoc script had to 

recover this implicit event by aggregating over the more specific events logged for each 

specific type of help, and for the Reading Tutor’s spoken outputs.  This script is 

sufficiently complex to doubt its correctness.” 

3 What to log 

To put tutor data logging in perspective, it is helpful to think of the tutor and student as 

each sensing, thinking, and acting within the wider environment surrounding them – 

physically, socially, institutionally, culturally, and so forth.  This environment includes 

the machine on which the tutor runs, the classroom and school where it’s located, the 

student’s classmates and teacher(s), and so on. 

We can use this framework to characterize logged information.  To illustrate with 

authentic concrete examples, we use it to categorize database tables logged by the 2007-

2008 version of the Reading Tutor – as well as additional information that might be 

useful to log, but that we currently do not. 

3.1 Environmental data 

A “Candid Camera” analysis of video recorded by a camera mounted on a Reading Tutor 

monitor [14] showed that a tutor equipped with computer vision could potentially capture 

useful information about its physical and social context, such as whether a student is 

present or absent, looking at the screen or off-task, alone or with classmates, and working 

independently or interacting with a teacher.  However, at present a typical tutor has 

limited if any ability to observe its environment directly.   

In the absence of such observations, a tutor may input information about the student and 

context directly from the student, teacher, or other sources.  Information logged about the 

environment may be a static fact (seldom or never updated), a maintained value (updated 

more or less frequently), or a timestamped event (appended to the ongoing historical 

record of the interaction).  The 2007-2008 Reading Tutor’s static environmental data 

included listed 11 schools, 37 classes, and 540 users (446 with at least one session).  Its 

maintained data included 960 stories, updated when students added stories. 
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3.2 Raw input 

A tutor’s sensors are typically limited to keyboard, mouse, and microphone, enabling it to 

observe a subset of the student’s actions.  2007-2008 raw input included 458,984 mouse 

clicks, 491,095 oral reading utterances, and 9,188 free-form spoken responses. 

3.3 Interpreted input 

A tutor’s input observations go through layers of interpretation.  For instance, the 2007-

2008 Reading Tutor asked 105,223 multiple choice questions, of which 5,158 had a 

designated right answer.  It interpreted 3,988 of these 5,158 responses as correct, 1,009 as 

incorrect, and 161 as null due to timing out, logging out, or crashing. 

Similarly, the speech recognizer interpreted the 476,713 oral reading utterances as 

1,747,259 spoken words, against which the Reading Tutor aligned 3,550,641 text words 

to interpret them as read, misread, or omitted. 

Since the Reading Tutor’s speech recognizer is imperfect, we rely on later manual 

transcription when we want to know what the student actually said.  However, due to its 

cost, we transcribe only selectively.  For our research on teaching reading strategies, we 

transcribe only students’ free-form spoken responses to comprehension prompts [15]. 

Human interpretation of recorded speech is not restricted to transcribing it.  For instance, 

an expert reading teacher annotated the transcribed student answers with how she would 

have responded to each answer, and why.  Likewise, for an analysis of students’ oral 

reading prosody, two annotators independently rated a sample of 200 recorded oral 

reading utterances on a 4-point fluency rubric [13].   

3.4 Student model 

A tutor cannot observe students’ thinking directly, but may infer student models from 

observed student behavior.  Fine-grained models represent estimates of individual skills.  

The 2007-2008 Reading Tutor tracked exposure to vocabulary by maintaining 265,579 

counts of how many times 480 students saw or typed 16,932 distinct words.  It tracked 

individual phonics skills with knowledge tracing of students’ performance in word-

building activities where they clicked on letter tiles to spell out a word spoken by the 

Reading Tutor.  During 4,190 such activities, students built 26,562 words.  The Reading 

Tutor interpreted the student’s first attempt at each letter in a word as correct or incorrect.  

It accordingly made 78,069 updates to its estimates of students’ phonic skills. 

3.5 Tutor decisions 

A tutor’s observations guide layers of tutorial decision.  For instance, after classifying 

words in the current utterance (if any) as read, misread, or omitted, the Reading Tutor 

decides whether to wait, backchannel, prompt the student, give praise,  go on, read the 

sentence aloud, or give help on an individual word, and if so, what type of help.  The 

2007-2008 Reading Tutor logged 181,788 such decisions. 
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In analyzing such decisions, it is necessary not only to know the tutor’s observable 

actions and the decisions that led to them, but the alternative choices for each decision.  

The 2007-2008 Reading Tutor logged this information for some types of decisions.  For 

example, it logged not only its randomized decisions to backchannel or prompt the 

student, but also its decisions not to do so.  Logging this additional information is crucial 

for subsequent analyses of the randomized controlled experiments embedded in the 

Reading Tutor. 

Reading Tutor activities and interventions can set variables to record randomized 

decisions about which word to give which if any treatment, or outcomes in the form of 

what responses the student chose or typed.  It logged 175,978 such timestamped variable 

assignment events.  For example, it used this mechanism to log its randomized decisions 

about whether to explain a vocabulary word in depth, briefly, or not at all [16]. 

Without such logging the alternatives for each decision, it is necessary to reconstruct 

them.  For example, the Reading Tutor’s decisions about what type of decoding 

assistance to give on words are randomized, but are constrained by the types of help 

feasible and appropriate for a given word.  The Reading Tutor cannot give a rhyming hint 

for the word orange because no words rhyme with it.  It could sound words longer than 

four phonemes but refrains from doing so on grounds of inadvisability.  In analyzing the 

relative efficacy of different types of help, a “level playing field” comparison requires 

knowing which types were possible on a given word.  Otherwise, comparing the success 

of help based on the student’s later performance on the word will be biased in favor of 

help such as rhyming hints, which tend to be available only on easier words.  Proper 

analysis of help efficacy involved approximating this information based on lexical 

properties of the word and detailed knowledge of the Reading Tutor implementation [17].  

In retrospect, it would have been better to log the actual set of choices for each decision. 

Tutorial decisions go through layers of implementation to transform them into external 

behavior (acting).  For instance, the 2007-2008 Reading Tutor logged 41,177 decisions 

about how to intervene before a story, before a sentence, or after a story.  These 

interventions are specified in the same activity language used to represent stories as 

sequences of different types of steps, such as reading, listening, editing, and choosing. 

3.6 Tutor actions 

A tutor’s external actions are typically limited to graphical display and audio output.  The 

2007-2008 Reading Tutor logged 1,964,620 records of .wav files played in full or in part. 

We refrain from logging every individual graphical action because there are too many, 

nor does it seem useful to do so.  However, the text displayed by the Reading Tutor is 

generally logged as part of the action that displays it.  For instance, logging a sentence 

encounter includes the text of the sentence.  Likewise, logging a multiple choice question 

includes the displayed prompt and menu of choices. 
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3.7 Events 

Tutorial interaction can be described at different temporal grain sizes.  The 2007-2008 

Reading Tutor logged 3,184 launches, of which 71 ended in crashes with logged stack 

dumps, and 10,462 sessions, defined as starting when a student logged in, and ending by 

logging out, timing out, or crashing.  It logged 193,101 executions of scripts for logging 

in or out, picking a story or other activity, performing an activity, editing a story, and 

updating information about a class, student, or story.  The 21,580 story encounters logged 

included 357,630 sentences displayed.  The 310,375 logged steps included, among others, 

120,506 reading, 120,506 picking, 18,412 editing, 17,8891 timing out, 9,253 free-form 

speaking, 4,191 word building, 2,240 entering a password, and 861 “WordSwap” games 

comprising 11,728 sentences, each with one misread word to click on, and 19,581 clicks. 

3.8 Observing the tutor 

Reconstructing the exact appearance of the screen from logged tutor data is problematic. 

One reason is that the actual screen appearance at a given moment depends not only on 

what the tutor intends to display, but on what the operating system draws, and how 

promptly.  One approach to this problem is the ability to replay logged tutor sessions. 

This feature can be very useful, but is infeasible to add after the fact to the Reading 

Tutor, and might be impractical anyway due to its multimodal, mixed-initiative, 

overlapping, stochastic, time-sensitive nature.  Replay is much simpler for tutors limited 

to mouse and keyboard input and strict turn-taking, especially if their responses are 

deterministic and independent of student response time. 

Another problem is that graphical design evolves across successive tutor versions.  Old 

versions may not run as before (if at all), due to environmental changes such as updates 

to external content, upgrades to the operating system, and porting to faster computers.   

We have found over the years that the most reliable way to document the appearance and 

behavior of a given version is to videotape children using it.  However, this method is 

cumbersome and expensive to do well, and the result is inconvenient to use without the 

additional expense of indexing it to internally logged tutor data.  Programmable screen 

capture software, fast PCs, and cheap disk space enable tutors to record video or at least 

occasional screenshots of their interactions, which we plan to do in the future. 

We generally assume that tutor actions are observable by students.  This assumption can 

be false.  For instance, the display monitor may be turned off, broken, or maladjusted.  

Even likelier, the headset may be broken, disconnected, or plugged in to the wrong 

socket.  Unlike humans, whose motor actions are accompanied by sensory feedback, 

computers do not actually see and hear the same displays and audio as their users.  Screen 

capture is only a partial solution to this problem.  A full solution will require additional 

devices to sense how tutor output actually looks and sounds in the environment. 

4 How to log 

Our experience has led us to develop the following 10 guidelines for logging interactions. 
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4.1 Log directly to a database. 

Log files are easy to record, flexible in what information they can capture, (sometimes) 

human-understandable to read, and useful in debugging.  However, we have found them 

unwieldy to aggregate across multiple sessions and computers, and difficult to parse and 

analyze in ways not anticipated when they were designed [1]. 

Logging tutorial interactions directly to a suitably designed and indexed database instead 

of to log files eliminates the need to parse them – a time sink and error source in our past.  

Starting with the 2003-2004 school year, the Reading Tutor has logged its interactions to 

a database, making their analysis easier, faster, more flexible, less bug-prone, and more 

powerful than analyzing conventional log files.  This practice has enabled or facilitated 

nearly all the dozens of subsequent papers listed on Project LISTEN’s Publications page.  

Moreover, logging straight to a database supports immediate efficient access.  This 

capability is essential for real-time use of logged information – in particular, by the tutor 

itself.  The Reading Tutor’s student model relies on information logged to its database.  

In contrast, although the Pittsburgh Science of Learning Center’s DataShop (located at 

pslcdatashop.web.cmu.edu) uses a database, it generates the database only after the fact 

by parsing tutor logs in the form of XML files.  

Each year’s version of the Reading Tutor adds, drops, or modifies tables or fields in the 

database schema, and therefore has its own archival database.  This practice facilitates 

running a query on one school year’s data at a time.  Also, each Project LISTEN member 

has his or her own database to modify freely without fear of altering archival data. 

4.2 Include computer, student ID, and start time as standard fields.  

A key insight is that student, computer, and time typically suffice to identify a unique 

tutorial interaction of a given type.  Together they distinguish the interaction from those 

of another type, computer, or student.  (We include computer ID in case the student ID is 

not unique, and also because some events, such as launching the Reading Tutor, do not 

involve a student ID.)  There are two reasons this idea is powerful.  First, these fields 

serve as a primary key for every table in the database, simplifying both access and the 

learning curve for working with the data.  Second, nearly every tutor makes use of the 

concepts of students, computers, and time, so this recommendation is broadly applicable.   

4.3 Index event tables by computer, student ID, and start time. 

Database indices enable very fast retrieval even from tables of millions of events. 

4.4 Log end time as well as start time. 

This additional information makes it possible to compute the duration of a non-

instantaneous event, measure the hiatus between the end of one event and the start of 

another, and determine if one event starts before, during, or after another event – 

capabilities essential for the Session Browser [11, 12] described in Section 2.3 above, in 
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particular to infer hierarchies of events based on temporal relations among them.  

Logging the start and end time of an event in the same record requires the tutor to 

remember until the end of the event what information to log about it, such as when it 

began.  Logging start and end times to different records merely replaces this requirement 

with the messier task of matching them up after the fact.  Some tutors log start times but 

not end times.  For instance, logging the end time of an event may be problematic for a 

web-based tutor that doesn’t know when the student leaves a page or window.     

4.5 Include a field for the parent event start time. 

A field for an event’s parent makes joins easier to write and faster to execute.  For 

example, the sentence_encounter_start_time field of the record for a read word makes it 

easier and faster to find the sentence encounter containing the word than by querying for 

the sentence encounter that started before the word and ended after it. 

4.6 Log each school year’s data to a different database.  

Each year’s version of the Reading Tutor adds, drops, or modifies tables or fields in the 

database schema, and therefore has its own archival database.  This practice also 

facilitates running a query on one school year’s data at a time.  Also, each team member 

has his or her own database to modify freely without fear of altering archival data.  

Making it easy for researchers to create new tables and views that are readily accessible 

to each other is key.  This step enables “best practices” to propagate quickly, whereas if 

separate copies of the data are kept, “version skew” can become a problem. 

4.7 Design databases to support aggregation across sites.  

To merge separate databases from multiple schools into a single database, the MySQL 

server at each site sends each day’s transactions to our lab server, which simply re-

executes them on the aggregated database.  To make this solution possible, each table 

must be able to combine records from different sites.  Therefore the Reading Tutor uses 

student IDs unlikely to recur across different classes or schools, so as to distinguish data 

from different students.  Similarly, it uses computer, ID, and start time to identify events, 

instead of numbering them from 1 separately at each site. 

4.8 Name standard fields consistently within and across databases. 

Naming fields consistently in successive versions of a tutor makes them easier for the 

Session Browser to extract.  Thus most of the tables in a Reading Tutor database have 

fields named machine_name, user_id, start_time, and (for non-instantaneous events) 

end_time.  Timestamps in MySQL (at least the version we used) are limited to 1-second 

resolution, so tables that require higher resolution encode the milliseconds portion of start 

and end times in fields named sms and ems, respectively.  Adding new tables and fields is 

fine, but keeping the names of the old ones facilitates reuse of code to analyze tutor data. 

Educational Data Mining 2009

276



4.9 Use a separate table for each type of tutorial event. 

Using a separate table for each event type (e.g. story, sentence, utterance, click) lets us 

include fields for features specific to that event type, such as the title of a story, the text 

of a sentence, the audio recording of an utterance, or the word the student clicked on. 

4.10 Logging the non-occurrence of an event is tricky. 

“Subjunctive logging,” or recording what could have happened but did not, is still an 

active topic of discussion in the EDM community.  But tutor designers and data miners 

should be aware that recording some non-events can greatly simplify later analyses.  For 

example, the Reading Tutor logs each word it hears the student read.  The time at which a 

skipped word wasn’t read is undefined, so the Reading Tutor logs its start and end time as 

null.  However, logging its (non-null) sentence_encounter_start_time, and the position in 

the text sentence where it should have been read, lets analysis queries and the Session 

Browser retrieve words as ordered in the sentence, whether or not they were read. 

5 Conclusion 

The goal of this paper is to provide useful advice for logging tutor data.  We discussed 

why to log tutor data, giving four examples from Project LISTEN – tutoring, reporting, 

browsing, and mining.  We discussed what to log, with examples from the Reading Tutor.  

Finally, we proposed ten concrete guidelines for how to log tutor data. 

Our guidelines exploit three simple but powerful ideas.  First, logging tutorial interaction 

directly to a suitably designed and indexed database instead of to log files eliminates the 

need to parse them, and supports immediate efficient access.  Second,  student, computer, 

and time interval suffice to identify a tutorial event of a given type.  Third, temporal 

relations among time intervals define a useful hierarchical structure of tutorial events. 

Evidence for our guidelines includes the dozens of publications they have enabled.  They 

helped us implement a flexible, efficient tool to browse tutor data in understandable form 

yet with minimal dependency on tutor-specific details.  A short vignette may best 

illustrate their power.  In a research talk, Dr. Vincent Aleven reported a partial correlation 

of students’ learning gains in his tutor with the rate at which they asked for hints, 

controlling for pretest scores.  The second author of this paper used the Reading Tutor 

database to replicate Dr. Aleven’s result – before he finished his talk. 
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