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Abstract.  Students in introductory programming classes often articulate their 
questions and information needs incompletely.  Consequently, the automatic 
classification of student questions to provide automated tutorial responses is a 
challenging problem.  This paper analyzes 411 questions from an introductory 
Java programming course by reducing the natural language of the questions to a 
vector space, and then utilizing cosine similarity to identify similar previous 
questions.  We report classification accuracies between 23% and 55%, obtaining 
substantial improvements by exploiting domain knowledge (compiler error 
messages) and educational context (assignment name).   Our mean reciprocal 
rank scores are comparable to and arguably better than most scores reported in a 
major information retrieval competition, even though our dataset consists of 
questions asked by students that are difficult to classify.  Our results are 
especially timely and relevant for online courses where students are completing 
the same set of assignments asynchronously and access to staff is limited. 

1 Introduction 

Students often ask their questions and express their information needs incompletely.  
Consequently, the automatic classification of student questions, with the goal of 
ultimately providing automated tutorial responses, is a challenging problem. For 
example, the following are information requests from novice programming students: 

• “How do i [sic] return the file extension only?” 
• “I need help extracting a file extension from a filename.” 

Although phrased differently, both sentences indicate the same need, namely help with 
the file extension extraction problem; therefore, they should be classified the same way.   

This paper classifies student questions by matching them to previous questions with 
similar meanings but different phrasings.  We deployed a software system in an 
introductory computer science course for approximately one semester to collect 
ecologically valid data.  The system mediated and logged help requests between students 
and teaching assistants(TAs), capturing both the students’ natural language and the 
associated Java files.   The goal of this phase of the research is to quantitatively compare 
various approaches of classifying the questions that novice programming students ask.   
The ultimate goal is to be able to provide automated answers to free form student 
questions by recycling answers to similar previous questions. 

2 Prior Work   

The AutoTutor project has researched a number of different analytical approaches for 
processing student language in response to tutorial prompts.  They demonstrated that 
Latent Semantic Analysis(LSA)[8]  and cosine similarity with natural language were 
viable approaches to selecting text for intelligent tutoring dialog with human raters as the 
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gold standard[13, 14].  The PedaBot project followed a similar line of research with a few 
fundamental differences.  First, the PedaBot project matched student discussions to 
similar previous student discussion[7].  Because students are notoriously bad at 
articulating their discussion points, matching student input to student input is a more 
difficult problem than matching student input to expert-provided input.  Second, although 
the PedaBot approach did not require expert-provided answers, it did require a list of 
expert-provided technical terms.  The PedaBot project avoided generating these manually 
by automatically extracting them from a textbook or other authoritative, expert provided 
resource[7].   Like the AutoTutor group, the PedaBot group examined various techniques 
for calculating similarity of the discussions in the system, with the focus on LSA and 
cosine similarity[7].  

Together, these groups have demonstrated convincingly that LSA and cosine similarity 
are a promising direction for processing tutorial dialogue, but the general approach still 
has a number of serious weaknesses.  First, the research results are not as compelling as 
they could be.  The AutoTutor group reports correlations with r < 0.5[13], and the 
PedaBot group reports finding discussions of “moderate relevance” or discussions that 
rank three on a four point Likert scale[7].   Second, the approaches outlined require 
significant expert-authored resources, either in the form of a list of ideal answers in the 
case of AutoTutor or in the form of a list of technical terms for PedaBot, and matching 
these technical terms is critical to both approaches.  However, students (especially novice 
programming students), often do not use technical vocabulary in articulating questions.  
Third, the approaches seem to rely on students being unrealistically verbose in their 
interactions with the system.  In the AutoTutor dataset, the average length of student 
responses was 18 words[13], and in our dataset, after stop words are removed, the median 
length of a student question is six terms.  Literature in the information retrieval 
community has shown that longer queries are often more effective and robust[2], and 
LSA is most effective with between 300 and 500 terms in the final matrix[3, 13].   

By contrast, work in the information retrieval community has generally focused on the 
query or perhaps a question as the articulation of a user’s information needs.  A typical 
web query is between two and three words in length (e.g. [2]) which is quite a bit shorter 
than a discussion.  Although a typical factoid question is longer than two or three words, 
it is also quite short compared to a discussion. Providing automated answers to factoid 
questions extracted from community question answering services has been extensively 
studied as part of the Question Answering Track at Text Retrieval Conference (TREC) 
(e.g. [12]).  Later versions of the TREC competition utilized more difficult datasets and 
more difficult tasks.  Consequently, the scores in later years of the competition were often 
lower (e.g. [4]), and comparing TREC results across years is like comparing apples and 
oranges.  The relatively low TREC competition scores suggest that answering questions 
is a difficult task, even without the extra complications from student generated data.  

One of the best systems submitted to TREC-9, LCC-SMU, specifically mentions 
exploiting a technique called “answer caching” to provide answers to some questions that 
utilize different wordings to express the same information need[9].  Answer caching is a 
technique that matches an incoming question to a similar previous question (or group of 
questions with the same answer) in order to recycle an answer.  The original paper on 
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answer caching reports a 1-3% improvement on a dataset with well-formed, grammatical, 
well-spelled questions.  This paper reports a similar result on a more difficult dataset.   

Classifying the questions that students ask is a more challenging task than automatically 
answering factoid questions for several reasons.  First, most questions that students ask 
tend to be about assignments and exams(e.g. [6]) instead of factoids. Factoid questions 
can usually be answered with a word or a phrase, while questions about assignments and 
exams generally require answers with one or more sentences.  Thus, the space of correct 
answers for questions that students ask is much larger than the space of correct answers 
to a factoid question, and the larger space makes question classification more difficult.  
Second, questions asked by students in a class exist in an extensive educational context, 
so the question “How do I draw a pyramid?” has a very different meaning in an 
introductory programming class than it would in an introductory art class.  Third, 
questions asked in class are often of a more subjective nature, such as coding style, but 
factoid questions are often of a more objective nature.  Fourth, the questions students ask 
tend to be ungrammatical and contain typos and spelling errors. 

3 Data 

Questions asked in Introduction to Computer Science 1 (CS1410) at the University of 
Utah form the dataset for this paper.   Most students in Computer Science 1 are age 18-
22.  Computer Science 1 is the first required computer science course for computer 
science majors, with a strong emphasis on the Java programming language.  The course 
has long hours for novice programmers and typically high dropout, fail, and withdrawal 
rates.  The majority of students who take Computer Science 1 hope to major in computer 
science or a related field, but they must pass that class along with three others with 
sufficiently high grades to attain official status as a computer science major.  Although 
approximately 233 students were active in the course during the study period, only 63 of 
them asked questions while using the study’s logging software during the study period.   

The goal of this research is to classify the questions that students ask by automatically 
identifying similar previous questions.  To facilitate analysis of student questions, a 
proprietary software system logged the questions that the students asked and the 
accompanying source code during the study period.  The long term goal is to complete 
the analysis for a question in real time and exploit it for an instant tutorial intervention.  
In the interim, when a student asks a question, the system logs the student’s question and 
source code and passes it to a teaching assistant (TA) who can answer the question in 
person or remotely.  The TA then tags the question to indicate an answer category.   

We tagged all of the data by associating all questions that could be answered with the 
same response to the same, unique tag.  Then an undergraduate TA tagged approximately 
15% of the data, assigning tags from a set devised for that assignment.  The TA did not 
recode the other 85% of the data, but because the inter-rater reliability for the questions 
we sampled was better than 95%, we included all of the data in the final dataset.  This left 
a dataset of 411 questions from 13 different assignments covering a total of 136 answer 
categories or information needs.  Of the 411 questions, 275 of the questions (136 
subtracted from 411) were repetitive in nature, and had a similar previous question.  That 
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means that 66% of the questions were repetitive.   Excluding stop words, length of 
student questions ranged from 0 to 93 terms, with a median of six words and a mode of 
four words.  Approximately 2% of the questions had no terms after stop words were 
excluded.   More than 90% of the questions had 16 terms or fewer.  

4 Similarity Scoring 

We follow typical practice for processing the natural language in the questions that the 
students asked. The sentences were tokenized based on spaces and other special 
characters.  Stop words (e.g. “me”, “you”, and “the”) were excluded.  Then, a Porter 
stemmer[10] removed the word endings leaving just the word stem (e.g. the word 
“extension” became “extens”).  The word stems from each question then form a vector.  
Table 1 shows some sample student questions and the corresponding vectors of stems.   

Table 1: Sample Questions, Vector Stems, and Answer Categories 
 Natural Language Vector Stems Answer Category 
Q1 How do i return the file extension only? return file extens 

 
File extension 
extraction 

Q2 my variable for rectSideOne is suppose to be 
1/9, the program is returning a 0 for this 
calculation.  I have no idea why. 

Variabl rectsideon suppos 
1/9 
program return calcul idea 

Integer division 

Q3 I need help extracting a file extension from a 
filename. 

need help extract file extens 
filename 

File extension 
extraction 

Q4 program is not computing volume correctly Program comput volum 
correctly 

Integer division 

Q5 Im having trouble understanding why (1/9) 
equals 0.0 instead of  
0.111111 

trouble understand 1/9  
equal 

Integer division 

 

The word stems that remained for each question populated a frequency matrix fij, which 
gives the number of times word stem j appears in question i.  This matrix has 411 rows 
(one per question) and one column per unique word stem.  The questions were compared 
in the order they were originally asked by the students to all previously asked questions.   
Specifically, we used cosine similarity (Equation 1) to compare question i against each of 
questions 1 through i-1, using weights wij computed from the frequencies fij with standard 
term frequency, inverse document frequency (tfidf) weighting.  The tfidf weights were 
recomputed each time the algorithm advanced to the next question, which effectively 
enlarged the model by one question. 

The remainder of the analysis utilizes an online learning framework to identify similar 
previous questions.  Each question is compared to all previous questions, and the 
previous question with the highest cosine similarity score (as shown in Equation 1) when 
compared to this question is considered the most similar.  If the current question and the 
most similar question have the same answer category, the system earns a point for 
accuracy.  For example, in Table 1, Q2 would only be compared to Q1, and the system 
would not earn a point for accuracy.  However, Q5 would be compared to Q1, Q2, Q3, 
and Q4.  Of these, Q2 would be the most similar, and since Q2 and Q5 share an answer 
category, the system would earn one point for accuracy.   
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Equation 1: Cosine Similarity 

5 Analysis and Results 

5.1 Baseline Cosine Similarity 

As shown in Figure 1 and Table 2, we report accuracy scores with three different 
denominators.  In total questions, 411 is always the denominator.  In repetitive questions, 
either 275 or 204 is the denominator depending whether or not the data is disaggregated.  
Of these, only the repetitive questions bar could theoretically reach 100%.  In both cases, 
the numerator is the number of correct similar questions found(93).   As a baseline, 
cosine similarity is applied to the natural language of the students’ questions. With that 
baseline, the algorithm can classify approximately 35% of the repetitive questions or 23% 
the total questions.  For those questions, an answer to a previous question could 
theoretically be recycled to answer that question.     

Table 2: Classification Accuracy Counts and Percentages 

 Aggregated Disaggregated 
 Total Questions Repetitive Questions Total Questions Repetitive Questions 
Baseline 
 

93/411 
(23%) 

93/275 
(35%) 

113/411 
(27%) 

113/204 
(55%) 

With Error Msgs 
and Answer Cache 

104/411 
(25%) 

104/275 
(39%) 

111/411 
(27%) 

111/204 
(54%) 
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Figure 1 Classification Accuracy 
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5.2 With Error Messages and Answer Caching 

The classification techniques described so far are inherently domain independent.  
However, the low accuracy of question classification suggests room for substantial 
improvement.   One possible way to improve classification is to leverage some domain 
specific knowledge, specifically the error messages from the compiler.  Since more than 
40% of the questions were submitted with code that did not compile, the compiler error 
messages represent a source of substantial unused data.   

A naïve approach to incorporating compiler output would be to simply tokenize the errors 
and include them just as the natural language was included.  The problem is that errors 
such as missing import and capitalization will appear to be very similar because they 
contain four similar tokens (“cannot”, “find”, “symbol”, and “class”), and the algorithm 
will be unable to distinguish between them.  To remediate this problem, some of the most 
common compiler errors and code snapshots are processed by Java code that generates a 
brief description of the underlying error based on the code snapshot, and then the 
underlying error is incorporated into the model.  For example, the common error message 
“cannot find symbol- class Scanner” is processed and becomes “missingImport”, and the 
common error message “cannot find symbol –class string” becomes “capitalization”. 

Previous work has exploited a technique called “answer caching” to provide answers to 
some questions that utilize different wordings to express the same information need[10].  
Answer caching matches an incoming question to a similar previous question in order to 
recycle an answer.  The answer caching technique then leverages the additional language 
in the similar question to build a more robust language model of that information need.  
Specifically, answer caching merges the data from vectors that indicate a similar 
information need to form a single vector. Without answer caching, the five questions in 
Table 1 are modeled with five vectors.  With answer caching, they are represented with 
two vectors, one for “File extension extraction”(the sum of the vectors for Q1 and Q3) 
and one for “Integer division”(the sum of the vectors for Q2, Q4, and Q5).   

The original paper on answer caching reports a 1-3% improvement on a dataset with 
well-formed, grammatical, well-spelled questions.  Figure 1 demonstrates a similar 
improvement when incorporating both answer caching and the processed error messages, 
even though our data consists of student questions with typos and other complications.  
Interestingly, the processed error messages alone do not improve classification, and 
answer caching alone produces a minor improvement of less than 1%, but the 
combination of the techniques improves accuracy by 3% of the total questions.  The 
numerator in for the “With Answer Caching and Error Messages” method is 104, and the 
denominators are the same as they were in the baseline conditions, 411 for total questions 
and 275 for repetitive questions. 

5.3 Disaggregating by Assignment 

For a final improvement in classification accuracy, the data was disaggregated by 
assignment.  For example, assignment1 questions were compared only to other 
assignment1 questions and assignment5 questions were compared only other assignment5 
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questions.  As shown in Figure 1, this technique improved the numerator to 113 questions 
classified correctly or 27% of total questions and 55% of repetitive questions 

With the data disaggregated by assignment, incorporating answer caching and error 
messages reduced accuracy slightly(111 questions classified correctly). The lack of 
sufficient data to model different kinds of compiler errors is probably the cause of a drop 
in accuracy when answer caching and error messages are incorporated.  Because 
compiler errors are being reduced to a single term, several of them are necessary to boost 
the compiler error terms to a heavy enough weight to influence the similarity algorithm.  
Excluding error messages and answer caching returns the classification algorithm to a 
domain independent state.  Compiler error messages are a source of data that are only 
relevant in the computer science domain.  By contrast, natural language and assignment 
numbers are a data source that is available in virtually every educational domain.   

5.4 Discussion 

We have shown that the baseline algorithm can be improved by incorporating an answer 
caching/compiler error extension (an additional 4% of repetitive questions classified.)  
This improves on the earlier results on answer caching[9], and is especially noteworthy 
given that we obtained our results on a student-generated corpus. 

Most importantly, we have shown that the baseline algorithm can be improved by 
disaggregating by assignment (an additional 7% of repetitive questions classified.)  In 
fact, this percentage substantially understates the actual improvement that we observed. 
To facilitate comparison in the bar charts, we use the same denominators throughout.  
However, when comparing questions only within the same assignment, the number of 
repetitive questions is actually smaller (204).  Using that as the denominator yields a 
classification accuracy of 55% of repetitive questions. 

Classification accuracies of 55% are neither great nor terrible.  They are good enough 
that a desperate student who is working on an assignment at midnight might actually be 
able to find a useful bit of information when a human TA is not on duty.  In such a 
situation, a bad answer may be better than no answer.  However, they are low enough to 
raise concern that the system may not answer student questions correctly, and worse, the 
system might lead the student astray.   At least two alternatives are possible intermediate 
steps to deploying this in a real classroom.  First, the existing corpus could be leveraged 
as a starting point for designing common error detectors and appropriate interventions.  
Second, a human TA could supervise the classification algorithm, and override any 
incorrect decisions that it makes, until the number of incorrect decisions decreases.   

6 Limitations and Future Work 

6.1 Classification Schemes for Questions that Novice Programmers Ask 

Given a set of categories, classifying questions appears to be relatively straightforward 
for humans.  However, no widely accepted set of categories or taxonomy exists for the 
questions that novice programmers ask.  Previous work has suggested either 42, 88, or 
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226 different categories for compiler errors [1, 5, 11], and compiler errors only account 
for half of the questions in the data set presented in this paper.  Those papers are simply 
trying to classify compiler errors based on the compiler error message, not the underlying 
misconception the student has expressed. Furthermore, a single piece of code may have 
multiple issues. Ideally, students would request help at the point of a partial impasse, but 
students appear to frequently wait until they have reached a full impasse before 
requesting help.  The resulting code often has many problems.  In this study, such a 
question would have probably been assigned a label that encompasses a broad range of 
problems.  Work on classification schemes that allow free-response student-input to be 
assigned multiple, more-fine-grained designations would be applicable for question 
classification as well as other problems.  That research will probably also require work on 
partial parsing, and other approaches for handling poorly formed student input that 
cannot be parsed with readily available tools.   

6.2 Usability issues 

A number of usability issues on both the teacher and the student side must be resolved 
before an automatic question answering system can be deployed in a classroom setting.  
On the teacher side, training may be necessary to classify student questions correctly. 
Once automated interventions are added, the teacher will need to determine if the student 
still needs human help because the system classified the question incorrectly or because 
the automated intervention was ineffective.  On the student side, studies should 
investigate whether or not a drop-down menu of frequently asked questions can help 
students articulate their questions, and whether or not students accept automated answers 
to their questions, especially if they know that a human TA is on duty and available. 

6.3 Model of time spent 

The data collected for this study could be reanalyzed to build a model of how long it 
takes to answer a particular question taking into account factors such as the student 
asking the question, the question that was asked, and the teacher answering the question.  
Such a model could help answer questions about which factors are most important in 
predicting the amount of time it will take to answer a question.  Such a model may also 
allow the system to automatically perform triage, determining which questions are the 
quickest and most urgent to answer and suggesting that a teacher answer those first, thus 
reducing total student wait time.  However, some students who are accustomed to first in 
first out service might complain that such an approach is unfair. 

6.4 Improving the feature set and data set 

A larger dataset may support stronger claims and possibly allow interesting 
disaggregations in different dimensions. For example, with more data, the combination of 
disaggregating by assignment and including error messages and answer caching may be 
more accurate than disaggregating by assignment alone.  The feature set could be better.  
For example,  compound words are not well analyzed, so a question containing the words 
“monthly” and “payment” may not have any terms in common with a question containing 
the word “monthlyPayment” even though they are clearly semantically similar.  
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Additionally, many compiler errors and features that could be extracted from student 
source code, such as extra semicolons before the body of a loop, are ignored.   

7 Contributions and Conclusions 

We show that cosine similarity is a non-trivial baseline for experiments to improve 
accuracy in question classification.  We discuss previous results showing that answer 
caching can improve accuracy by 1-3% and extend previous work on answer caching by 
achieving similar improvement on a more difficult dataset and demonstrating that it is a 
valid approach for tutorial dialogue by utilizing an ecologically valid dataset.  We 
demonstrate that additional improvements in accuracy are possible by exploiting other 
sources of data beyond the natural language of student questions, and we demonstrate 
additional modest gains in accuracy using some compiler errors.  These techniques 
produce a 4-7% improvement in question classification accuracy, bringing total question 
classification accuracy to 28% of all questions or 42% of repetitive questions, or 56% of 
repetitive questions when disaggregated by assignment.  

Our classification methods work over half the time for student-generated questions, 
assuming that the questions can be separated by assignment.  Thus, our methods would 
work particularly well in a course in which the same assignments are used over and over, 
and our long-term goal of using a classification-based approach to automatically answer 
questions would be especially valuable in a course in which students have low access to 
course staff.  These two conditions are typical of online classes, which represent a fast 
growing segment of courses in higher education. 
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