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ABSTRACT 
In recent years, the educational data mining and user modeling 
communities have been aggressively introducing models for 
predicting student performance on external measures such as 
standardized tests as well as within-tutor performance. While 
these models have brought statistically reliable improvement to 
performance prediction, the real world significance of the 
differences in errors has been largely unexplored. In this paper we 
take a deeper look at what reported errors actually mean in the 
context of high stakes test score prediction as well as student 
mastery prediction. We report how differences in common error 
and accuracy metrics on prediction tasks translate to impact on 
students and depict how standard validation methods can lead to 
overestimated accuracies in these prediction tasks. Two years of 
student tutor use and corresponding student state test scores are 
used for the analysis of test prediction while a simulation study is 
conducted to investigate the correspondence between performance 
prediction error and latent knowledge prediction. 
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1. INTRODUCTION 
An open question among EDM researchers and policy makers 
with an interest in EDM techniques is what impact the techniques 
reported on will have on students and what performance to expect 
under real world model training constraints. The majority of 
analytical papers presented in the literature using educational 
datasets use n-fold cross-validation. This has become an expected 
standard and a justifiable one which offers clear statistical 
reliability benefits over a single test and train hold out strategy. 
However, as an applied field it is important to take a step back 
from the manipulation of datasets and consider what factors may 
impact the expected performance in a real world deployment of a 
method. Often the culprit of inflated cross-validated accuracy is 
the disregard for time constraints in temporal data. Because this 
type of data is predominant in the field due to the temporal nature 
of studying learning, it is especially important to keep violations 
of time in mind in the evaluation and reporting of our models.  
Data leakage [1] is the more general term for using information 
during training or prediction that should not legitimately be 
available. This kind of leakage of data from the future has been 
prevalent in many data mining competitions including the 2010 
KDD Cup on educational data [2]. In that competition, for 
example, a student’s answers from Unit 2 could be used to predict 
her responses to questions of a related skill in Unit 1. While the 
models which were designed to predict that type of test set may 
very well also push the state of the art in real world prediction 
scenarios, the prediction accuracies reported in that competition 
do not reflect real world performance expectation. Furthermore, 

the relative rankings of algorithms in the competition may vary 
when future information is not available. We investigate the effect 
of leakage on the task of predicting end of year state test scores in 
section 2. 
Removing leakage from evaluation adds confidence in replicating 
the reported error in real world deployment, however; of equal 
significance to deployment considerations is the real world 
meaning of the error and its implications for students. Recent 
work on ensemble learning with educational data [3] chronicles 
the various models introduced in the past years which track 
student knowledge. A common practice among these papers has 
been to compare the error of a newly introduced method to that of 
a longer established method. Generally, the merit of the new 
method is compelling if it demonstrates a statistically reliable 
improvement in error over the established method. With larger 
educational datasets becoming widely available, such as the 20M 
row 2010 KDD Cup dataset1 [2] or the 1M row ASSISTments 
Platform dataset2, finding statistical differences in models can be 
achieved even with prediction error differences among models 
only discernible at the third or fourth decimal. This raises the 
question of whether or not statistical tests are a useful yard stick 
when large datasets are being analyzed and more importantly it 
raises the question of what errors and various magnitudes of 
differences in errors actually mean in terms of their impact on 
students. The most practical application of these models, and a 
reason for their high relevancy in the literature, is to predict when 
a student has attained mastery of a particular skill. Improved 
accuracy of these knowledge tracing models is appealing because 
it presumes that the prediction of mastery will also be more 
accurate and thus reduce the amount of over and under practice on 
skills, a time saving benefit that teachers greatly appreciate. In 
section 3 we run a simulation study to investigate the meaning of 
errors in terms of knowledge assessment. In the simulation study 
both student knowledge and response data is generated from a 
standard model of learning. We evaluate the generated response 
data with several models to evaluate the correspondence between 
performance prediction metrics and accurately inferring when 
mastery was attained.    
Best practices for calculating statistically reliable difference 
between predictions is an open question, however, a frequent 
approach is to calculate a paired t-test of prediction squared errors 
[2] or a Wilcoxn signed rank sum test on per student Area Under 
the Curve (AUC) also referred to as A’ [3].  
 

                                                                 
1http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp 
2http://teacherwiki.assistment.org/wiki/Assistments_2009-
2010_Full_Dataset 
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2. PREDICTION OF STATE TEST SCORES 
In this section we evaluate the effect of leakage in predicting state 
test scores and also provide an analysis of the impact of error 
differences on student test score prediction.  

2.1 Dataset 
We used two datasets [4] collected from the 2004-2005 and 2005-
2006 school years usage of the ASSISTments Platform among 8th 
grade math students in four Massachusetts high schools. The 
datasets had 627 and 760 students respectively. Both datasets 
were organized with one row per student and six features 
summarizing each student’s usage in the system for that year. The 
per student features were: overall percent correct, number of 
problems answered, percent correct on scaffold questions, average 
time spent per problem, average attempts per problem, and 
average number of hints requested per problem. The seventh 
feature is the student’s end of year math state test score, which is 
the target being predicted. The state test is the Massachusetts 
Comprehensive Assessment System (MCAS). The minimum raw 
score for the test is 0 and the maximum score is 54. The raw score 
is scaled to a score between 200 and 280. The scaled score 
contains four ranges that correspond to the following proficiency 
categories shown in Table 1. 

Score Range Category 
200-218 Failing 

220-238 Needs Improvement 
240-258 Proficient 

260-280 Advanced 

Table I. Proficiency categories for the MCAS test 
While the scaled score ranges always map to the same categories, 
the raw score mapping to scaled score changes yearly and is only 
computed after all tests are received and evaluated by the state. 
This presents an additional challenge for category prediction; 
however, scaling is just one of many sources of change between 
the two years’ data. Changes in the tutor as well as changes in 
student instruction outside the tutor also contribute variance and 
are a part of why a two year train/test procedure might be more 
difficult to predict than a one year cross-validated. 
The MCAS test is a high stakes test because of the significance of 
scoring in the Failing or Advanced categories. Failing category 
students cannot graduate high school, regardless of their class 
grade, while students who score in Advanced receive an automatic 
state college scholarship. For this reason, interested parties want 
to know a prediction of the student’s category, not just raw score. 

2.2 Methodology 
Two prediction algorithms were used and two hold out strategies. 
Multiple algorithms were chosen not for the sake of comparison 
but rather to see if the relative performance of the algorithms 
changes between hold out strategies. An algorithm that does not 
fit the cross-validated set very well may capture the appropriate 
level of generality to be better in the train/test scenario. The two 
prediction algorithms chosen were linear regression, used in prior 
work with this dataset [4] and Random Forests [6], a highly 
affective algorithm from the machine learning community. We 
also include a K-means clustering technique that claimed to 
improve prediction accuracy of algorithms on this same dataset 
[5]. This K-means enhancement is an ensemble technique [3] and 
we include it to see if it underperforms in the train/test hold out. 

Two hold out strategies were used, one to demonstrate a typical 5-
fold cross-validation hold out which contains future information 
leakage and the other strategy uses the previous year’s data to 
train the algorithm and uses the next year’s data to test on. For the 
cross-validation, the 2005-2006 data was used. The second hold 
out strategy represent a realistic scenario where only historic data 
is able to be used to train a model whereas the cross-validated 
hold out allows information about test outcomes and scaling 
which the algorithms should not legitimately have access to.  
The actual distribution of students in the different categories is 
presented as well as the predicted distribution according to the 
various algorithms paired with the two hold out strategies. The 
error metrics used are Mean Absolute Difference (MAD) and 
Root Mean Squared Error (RMSE). The formula for RMSE is: 

√
∑ (                  )

  
   

 
 where n is the number of students. 

2.3 Results 
The results presented in Tables II and III are the algorithm errors 
in predicting the raw test scores. Scaled score false positive and 
negative evaluation is reported in Tables VI and V. 

Algorithm RMSE MAD 
Linreg + K-means 9.193 7.240 

Linreg 9.262 7.358 
RF + K-means 9.399 7.463 

RF 9.420 7.540 

Table II. MCAS prediction error using 5-fold cross-validation on 
the 2005-2006 data 
Linear regression with bagged K-means resulted in the most 
accurate prediction of test scores according to RMSE and MAD 
error metrics. The more complex prediction technique of random 
forests did not fare as well with regular linear regression beating 
random forests with bagged K-means and random forests alone. 
The RMSE difference between the best and worse algorithm was 
0.227, or 2.4% worse than the best score. 
We now compare to the other hold out strategy where the same 
2005-2006 test scores are being predicted except using data from 
2004-2005 to train. Prediction results of this second hold out 
strategy are shown in Table III.  

Algorithm RMSE MAD 
Linreg + K-means 9.748 7.957 

Linreg 9.817 8.044 

RF + K-means 9.941 8.204 
RF 10.106 8.337 

Table III. MCAS prediction error of 2005-2006 test scores using 
2004-2005 data. 
Table III shows that the relative rankings of the algorithms have 
not changed using this hold out strategy but the overall errors 
have increased. The RMSE difference between the best score 
using cross-validation versus using the previous year’s data is 
0.555, or 6% worse than the better score. This difference is more 
than twice the difference between the best and worse algorithms 
in Table II. What does this level of difference mean to actual 
student score prediction? To investigate this we look deeper at the 
predicted score category compared to the actual category of the 
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two best algorithms using each hold out strategy. For the train/test 
hold out strategy we used the ’04-’05 scaling to transform the ’05-
’06 raw predictions to categorical predictions. 

 real pred. false pos. false neg. sensitivity 
Adv. 0.083 0.016 0.003 (2) 0.841 (53) 0.159 

Prof. 0.176 0.140 0.099 (62) 0.672 (90) 0.328 

Need. 0.364 0.530 0.444 (215) 0.321 (89) 0.679 

Fail. 0.377 0.315 0.171 (81) 0.445 (128) 0.554 
Table IV. Statistics for Linear regression + bagged K-means 
prediction of the cross-validated 2005-2006 data 
Table IV shows the real percentage of students that fall in to the 
four proficiency categories as well as the predicted percentages 
according to the prediction algorithm. False positives, false 
negatives and sensitivity are also shown. Sensitivity is the 
probability that students who belong to that category will be 
properly placed into that category. We can observe that not many 
students scored in the advanced category and that the majority of 
the distribution (74.1%) lies in the Needs Improvement and 
Failing categories. Two students were placed in advanced that did 
not belong there and 53 students were not placed in that category 
that belonged there. For failing, 81 students were placed there that 
did not belong there and 128 were not placed there who belonged 
there. 

 real pred. false pos. false neg. sensitivity 
Adv. 0.083 0.000 0.000 (0) 1.000 (63) 0.000 

Prof. 0.176 0.152 0.1132 (71) 0.664 (89) 0.336 

Need. 0.364 0.654 0.654 (286) 0.235 (65) 0.765 

Fail. 0.377 0.193 0.089 (42) 0.634 (182) 0.366 

Table V. Statistics for Linear regression + bagged K-means 
prediction of 2005-2006 data using 2004-2005 data to train 
In Table V we can see a different distribution that places the bulk 
of the classification into the Needs Improvement category. 
Looking again at the most important categories, the advanced had 
no false positives but had 63 (100%) students placed outside of 
advanced that should have been in advanced. For failing, 42 
students were improperly classified into that category while 182 
were improperly left out of the category.  
The cross-validated hold out misclassifies more students into 
Failing while the non cross-validated hold out fails to correctly 
classify more students as Failing. Both hold out strategies fail to 
classify all or most of the advance students as advanced. 
This analysis demonstrates the areas of improvement for this test 
score prediction task, particularly in correctly identifying 
Advanced students. The hold out analysis also shows that while 
the previous year training strategy resulted in 6% worse error, it is 
still performing reasonably well compared to the cross-validated 
result in important category classification areas according to the 
statistical analysis. This more in-depth analysis gives us 
confidence that deployment of this prediction method in a real 
world setting would result in raw test score predictions of within 
12% of actual (8/54). Misclassification of Advanced and Failing 
students is an aspect that needs improvement on the algorithm 
end, perhaps with ensemble techniques or the addition of more 
features engineered from the logged data. 

3. INFERRING STUDENT KNOWLEDGE 
In this section we conduct a simulation study to observe the 
correspondence between performance prediction error and 
knowledge inference error. In particular, at which opportunity 
does the model infer knowledge has been attained compared with 
the opportunity at which the simulated student attained knowledge 
in the synthesized data. This correspondence is compared with the 
prediction error of each model. The significance of performance 
prediction is looked at from a different angle than in the previous 
section. Instead of measuring the effect of leakage on prediction, 
we look at how performance prediction corresponds to a different 
objective, that of inferring student knowledge. This type of 
inference of knowledge is used in the Cognitive Tutors [8]. 
Reported performance prediction improvements often come with 
the presumption that knowledge inference accuracy is also 
improved.  

3.1 Dataset 
For this dataset we synthesized data for 500 simulated students 
answering 50 questions each of the same skill. The simulation 
generated 50 responses per student in addition to 50 knowledge 
states per student. Student responses are either 0, representing an 
incorrect answer, or 1, representing a correct answer. Student 
knowledge states are also 0 or 1 corresponding to the skill being 
known or not known.  

3.2 Methodology 
The standard Bayesian Knowledge Tracing [7] model was used to 
simulate data. This is a Hidden Markov Model of learning where a 
student is either in the learned or unlearned state and evidence of 
their past response history can be used as evidence to infer the 
probability of their current knowledge state as well as the 
probability of a correct answer on the next problem opportunity. 
The model has four parameters: prior, learn, guess and slip and 
these parameters were fixed to values of 0.30, 0.09, 0.14 and, 0.09 
respectively for the generation of the data.  
A 5-fold student level cross-validation was run using six different 
knowledge tracing models to attempt to recover the parameters 
and predict simulated student response and also infer the 
probability of knowledge at each opportunity. The six models 
included: 1) the ground truth model (GT) using the real generating 
parameters 2) a model that let Expectation Maximization (EM) 
iterate until convergence 3-6) these models kept three parameters 
at their ground truth values and increased the fourth by 0.20. For 
example, model “gt_guess”  has the guess parameter set to 0.34 
instead of 0.14 while all other parameters remain at ground truth 
level. These models were included so we may observe the 
sensitivity of the various parameters on performance and 
knowledge prediction. RMSE was again used to evaluate results 
as this has been a popular metric to evaluate within-tutor 
prediction and was the metric used to score results in the 2010 
KDD Cup challenge [2]. AUC was used in place of MAD as AUC 
has also been popular in the user modeling literature to score 
prediction accuracy. AUC can only be used with binary prediction 
classes and so it was not applicable to the MCAS scoring. AUC is 
an accuracy metric with a 0.50 score being no better than chance 
and a score of 1 being a perfect prediction. Statistics comparing 
the correspondence between the time that simulated student knew 
the skill and the time that the inferred probability of knowledge 
was 0.95 or above were also calculated. The threshold of 0.95 is 
common in Cognitive tutors [8] for determining that a student has 
mastered a skill and allowing them to move on in the curriculum.  
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3.3 Results 
model RMSE AUC 

EM 0.4273 0.7260 

GT 0.4296 0.7191 

gt_prior 0.4307 0.7154 

gt_guess 0.4367 0.7998 

gt_slip 0.4373 0.7241 

gt_learn 0.4773 0.6480 

Table VI. Cross-validated simulation performance prediction 
results for the eight models.  
Table VI shows that the best model according to RMSE was the 
EM model. The gt_guess model was best according to AUC. It is 
somewhat surprising that the ground truth model, although close 
in RMSE, was not the best. The EM model converged to within 
0.01 of GT parameter values, so the slightly improved accuracy 
may be due to chance that this particular simulated population 
skewed towards the EM converged parameters. AUC is a rank 
order estimation of accuracy and thus, so long as predictions 
correlate with responses, the predictions can be poor and still 
attain high AUC. Nevertheless, this result is surprising. The worse 
model, according to both AUC and RMSE, was the model which 
increased the learn rate parameter by 0.20. This suggests that learn 
rate is a sensitive parameter to prediction error and a potentially 
worthwhile area to focus on for student prediction improvement. 

 Median 
un/over 
predicted 

Mean 
absolute 
difference 

students 
over 
practiced  

students 
under 
practiced  

gt_learn 1 2.37 409 56 

GT 2 2.53 469 21 

gt_prior 2 2.53 469 21 

gt_slip 2 2.64 473 17 

EM 2 2.68 475 18 

gt_guess 4 4.81 494 0 

Table VII. Under and over practice amounts on average caused 
by model inference in students’ knowledge using a mastery 
threshold of 0.95 probability.  
Table VII shows how each model performed at inferring when a 
student has mastered the skill. The median un/over practice 
column shows the median number of over or under practice 
opportunities. Average of absolutes column calculates the average 
absolute under/over prediction which takes the absolute value of 
the residual between inferred mastery opportunity and actual 
mastery opportunity. The lower this value, the better the model 
did at inferring exactly when a student learns and not letting them 
over or under practice the skill. As we can see by the “number 
over practiced” column, the vast number of simulated students are 
inferred to learn the skill after they have actually learned it. The 
worse over predictions was by the gt_guess model caused 
decreased confidence in knowledge when observing positive 
performance which further exacerbated the under prediction bias.  

4. DISCUSSION 
We have investigated the significance of performance prediction 
in the context of test score prediction and within-tutor knowledge 

inference. We have raised the issue of leakage in prediction 
evaluation and its role in cross-validation accuracy inflation. The 
result of leakage was a 6% increase in error from the best cross-
validated model to the best model trained on the previous year’s 
data. A 6% increase is reasonable for training on a separate cohort 
of students. An additional analysis of the results using a confusion 
matrix revealed a decrease in prediction of proficiencies at the 
extremes, and a tendency to predict more towards the average 
proficiency category with the previous year hold out. 
Our simulation study revealed a clear bias towards knowledge 
under prediction among the knowledge tracing models. The 
inflated learning rate model, gt_learn, worked to offset some of 
this bias, reducing the median over prediction from 2 to 1 
opportunity, which provided a better knowledge inference 
estimate but also resulted in the worst performance prediction 
score. This discord underscores the motivation behind studying 
the real impact of performance prediction on the intended 
objectives, although this magnitude of disparity warrants further 
investigation. 
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