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ABSTRACT

Our learning-by-teaching environment, Betty’s Brain, cap-
tures a wealth of data on students’ learning interactions
as they teach a virtual agent. This paper extends an ex-
ploratory data mining methodology for assessing and com-
paring students’ learning behaviors from these interaction
traces. The core algorithm employs sequence mining tech-
niques to identify differentially frequent patterns between
two predefined groups. We extend this technique by con-
textualizing the sequence mining with information on the
student’s task performance and learning activities. Specifi-
cally, we study transformation of action sequences using ac-
tion features, such as activity categorizations, relevance and
timing between actions, and repetition of analogous actions.
We employ a piecewise linear segmentation algorithm in con-
cert with the action transformation and differential sequence
mining techniques to identify and compare segments of stu-
dents’ productive and unproductive learning behaviors. We
present the results of this methodology applied to a recent
middle school class study, in which students learned about
climate change. Our primary focus in this analysis is the
effectiveness and variation in the reading behaviors of high-
versus low-performing students. These results illustrate the
potential of this iterative methodology in identifying and
interpreting learning behavior patterns at multiple levels of
detail.

1. INTRODUCTION

Cognitive scientists have established that metacognition and
self-regulation are important components for developing ef-
fective learning in the classroom and beyond [5; 18]. In
developing a computer-based learning environment (CBLE)
called Betty’s Brain, we have adopted a self-regulated learn-
ing (SRL) framework to help students develop learning strate-
gies. As they explore hypermedia resources on a science
topic, they construct a causal map to teach Betty, their vir-
tual Teachable Agent (TA) [4]. Betty only knows what she
has been taught by the student, but, once taught, she can
use this information to answer questions like “if deforesta-
tion increases, what effect does it have on polar sea ice?”
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and explain her answers as a chain of causal relations [9)].
The student can also ask their TA to take quizzes, which
are a set of questions created and graded by a Mentor Agent
named Mr. Davis. The TA’s quiz performance helps the stu-
dents to assess and reflect on their TA’s, and, therefore, their
own learning performance. This assessment and subsequent
reflection can help guide them as they continue their learn-
ing and teaching tasks. Previous studies have shown that
observing Betty’s quiz performance (which is actually a re-
flection of their own understanding) motivates students to
learn more in order to help Betty improve her quiz score [4].
Overall, the combined learning and teaching task is com-
plex, open-ended, and choice-rich, so learners must employ
a number of cognitive and metacognitive skills to achieve
success. At the cognitive level, they need to identify and
understand relevant information from the resources in the
system, represent that information in the causal map format
to teach their agent, and use questions and quizzes to ex-
plore Betty’s understanding and assess her overall progress.
At the metacognitive level, they need to set goals and choose
strategies related to their knowledge construction and mon-
itoring tasks. In other words, they must decide when and
how to acquire information, build and modify the causal
map, check Betty’s progress, and reflect on their own un-
derstanding of both the science knowledge and the evolving
causal map structure. Their cognitive and metacognitive
activities are scaffolded through dialogue and feedback pro-
vided by Mr. Davis. This feedback aims to help students
progress in their learning, teaching, and monitoring tasks.

Betty’s Brain is designed to track many details of students’
learning interactions along with their teaching performance.
This wealth of data provides opportunities to assess, model,
and understand student learning behaviors and strategies
more accurately. Realizing these opportunities requires ef-
fective methods for identifying interesting learning behavior
patterns in the activity trace data. For example, sequential
pattern mining [2] can be employed to identify frequent pat-
terns in students’ activity trace data. However, this can also
result in a very large number of patterns! To overcome this

1Sequential pattern mining with activity traces of 16 8*"-
grade students working in Betty’s Brain identified over 1,000
patterns that occurred in at least 80% of the traces, when
allowing gaps of one action to account for noise introduced
by random or inconsequential actions.
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problem, we have developed an algorithm that employs a
novel combination of sequence mining techniques to identify
differentially frequent patterns between groups of students
(e.g., experimental versus control conditions or high- versus
low-performers) [8]. Further, this technique can be contex-
tualized with information about the student’s performance
(e.g., productive and counter-productive phases) over the
course of their learning interactions [8].

In this paper, we extend these techniques by incorporating
them in an iterative, exploratory methodology and further
contextualizing the differential sequence mining with action
features, such as activity categorizations, relevance and tim-
ing between actions, and repetition of analogous actions. We
apply this exploratory data mining methodology to learning
trace data gathered during a recent Betty’s Brain study run
in a middle school classroom. Previous analyses have shown
that reading the resources occupies a significant portion of
the students’ learning activities. Therefore, we delve deeper
than previous analyses by exploring reading action features
(e.g., short versus long reads and first reads versus rereads
of a page) and analyze student behaviors and performance
using this more detailed characterization of reading actions.

2. RELATED WORK

In this section, we briefly review relevant past work on us-
ing sequence mining techniques to analyze students’ learning
behaviors. For example, Perera et al. [14] investigate trace
data from mirroring and feedback tools that support effec-
tive teamwork among students collaborating on software de-
velopment using an open source professional development
environment called TRAC. In their approach, they help all
groups improve their work by observing and emulating the
behaviors of the strong groups. They use k-means cluster-
ing to find groups of similar teams and similar individuals,
and then employ a modified version of the Generalized Se-
quential Pattern (GSP) mining algorithm [16] to show that
leadership and group interaction are important to success.
Martinez et al. [12] discovered frequent sequences of actions
that differentiate high-achieving groups from low-achieving
groups of learners, who collaborate around a shared table-
top to answer an open question posed as a mystery prob-
lem. They apply a clustering algorithm to group similar pat-
terns to aid in analyzing the pattern distribution across the
groups. Employing sequential pattern mining allows them to
identify differences between the higher- and lower-achieving
groups in their manner of information gathering to solve
the problem. Like Perera et al. [14] and Martinez et al. [12],
we compare sequential patterns derived from groups of stu-
dent activity sequences. However, our differential sequence
mining algorithm directly incorporates comparisons between
groups with additional metrics to identify interesting pat-
terns, rather than manually performing researcher-directed
comparisons after data mining.

Other researchers have employed sequential pattern mining
(with a single set of student activity sequences or subse-
quences) to understand student learning behaviors. For ex-
ample, Su et al. [17] propose a method for creating personal-
ized activity trees to be used in a Sharable Content Object
Reference Model (SCORM) e-learning system. They use
sequential pattern mining to extract frequent learning pat-
terns as part of a larger process that creates a decision tree
to predict the group/category for a new student. Nesbit et

al. [13] employ sequential pattern mining to investigate self-
regulation in gStudy, which is a software application with
similarities to Betty’s Brain. In this system, students learn
from multimedia documents and organize their knowledge
with notes, concept maps, and other objects. Using sequen-
tial pattern mining, the authors hope to step beyond the
question of whether a tool helps learners construct knowl-
edge and instead investigate when and how learners use the
tool as they self-regulate their knowledge construction ac-
tivities. Similarly, our work investigates learning behav-
iors and self-regulation by identifying sequential patterns
of student activity. However, unlike all of the preceding
applications of sequential pattern mining, our methodology
also analyzes students’ evolving performance to identify, and
group, action subsequences corresponding to productive and
counter-productive phases. Further, our methodology itera-
tively employs action abstraction/transformation using fea-
tures, such as activity categorizations, relevance and timing
between actions, and repetition of analogous actions.

3. DIFFERENTIAL SEQUENCE MINING
METHODOLOGY

To effectively perform sequential data mining on learning in-
teraction traces, raw logs must first be transformed into an
appropriate sequence of actions. Since these logs can con-
tain a significant quantity of information about each student
interaction with the system, as well as other system book-
keeping information, raising the level of abstraction from
raw log events to a canonical set of distinct actions is a vital
first step in effective analysis. Our methodology incorpo-
rates iterative refinement of this action abstraction step to
focus the analysis on various learning activities and actions.

3.1 Action Abstraction with Context Summa-
rization
Action abstraction is the first step of our data mining method-
ology, in which researcher-identified categories of actions de-
fine an initial alphabet (set of action symbols) for the se-
quences. This step filters out irrelevant information (e.g.,
cursor position) and combines qualitatively similar actions
(e.g., querying an agent through different interfaces or about
different concepts in a given topic).
To apply the abstraction process, log events captured by the
CBLE are mapped to a sequence of canonical actions taken
by each student. As in previous work, we abstract student
activities in five primary categories [8]:

e READ: students access a page in the resources;

e LINK or CONCept Edit: students edit the causal map,
with actions further divided by: (i) whether they op-
erate on a causal link (“LINK”) or concept (“CONC”)
and whether the action was an addition (“ADD”),
removal (“REM”), or modification (“CHG”), e.g.,
LINKREM or CONCADD,;

e QUER: students use a template to ask Betty a ques-
tion, and she uses a causal reasoning method to answer
the question [9];

e EXPL: students probe Betty’s reasoning by asking her
to explain her answer to a question, and she uses dia-
logue and animation on the causal map to demonstrate
her use of causal reasoning to answer the question;
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e QUIZ: students assess how well they have taught Betty
by having her take a quiz, which is a set of questions
chosen and graded by the Mentor agent.

However, abstracting the raw log traces through action cat-
egorization, also strips potentially important context asso-
ciated with the actions in the traces. For example, with
the LINK-ADD action, the particular link added can pro-
vide important context information, such as whether this
link relates to resource material the student read in a pre-
vious action. However, if the details of the exact link added
are used to differentiate each edit action, we would end up
with an unwieldy number of distinct actions, making it hard
to discover and interpret behavior pattern sequences. To
maintain a balance between the number of distinct actions
and retaining relevant context information, we employ met-
rics that summarize context in order to distinguish actions.
For example, we employ a relevance summarization metric,
which establishes whether the content/object of an action is
related to a small number of recent activities, where recent
is defined by a configurable window of previous actions [3].
This relevance metric splits each categorized action into two
distinct actions: (1) relevant to at least one of the recent
actions (with the “-REL” suffix) and (2) irrelevant to any
of the recent actions (with the “-IRR” suffix).

In this methodology, the choice of specific context-summary
metrics and their application to different categories of action
is iteratively refined over repeated analyses of the interac-
tion traces. This allows the researcher to focus the analysis,
providing more detail and context associated with specific
learning activities or strategies. In previous work, we pre-
sented an initial analysis of student action sequences apply-
ing only the relevance metric, which illustrated some inter-
esting map editing and monitoring behaviors distinguishing
high-performing and low-performing students [8]. However,
that analysis did not differentiate between reading actions
(e.g., long versus short, or reading pages in sequence ver-
sus using keyword search), which are frequent and vital to
student learning in Betty’s Brain [8; 15].

In this paper, we present the results of a subsequent itera-
tion in this extended methodology, in which we apply ad-
ditional metrics to distinguish different types of READ ac-
tions. As a continuation of the exploratory methodology,
a future iteration might instead focus on actions related to
editing the causal map by applying additional editing met-
rics (e.g., whether the edit increased or decreased the corre-
spondence between the student’s map and the expert map,
or whether the edit introduced a cycle, continued a chain of
causal relationships, or added a branch to a chain of causal
relationships). However, to maintain a reasonable number
of distinct actions in that hypothetical iteration (such that
sufficiently frequent patterns could still be identified), the
number of reading-related metrics would be correspondingly
reduced.

In the analysis and iteration of the methodology presented
in this paper, we apply three reading-related metrics to the
student action sequences:

e Source (TOC/HLNK/HIST): how the student reached
the page he/she is reading - by selecting a page in
the table of contents (TOC) always displayed on the
left of the resources, from a hyperlink (HLNK) on an-
other page, or using the backward or forward button
to move through their history of pages (HIST) like a

web browser;

e Time (SHRT/FULL): a determination of whether the
student spent enough time on the page to have read
a significant amount of the material®> (FULL) or only
spent a brief period of time on the page (SHRT), pos-
sibly skimming the material or checking whether the
page was one for which they were searching;

e Repetition (FRST/REPT): a determination of whether
the student had never done a FULL read of the page
(FRST) or this was a reread of the page (REPT) be-
cause the student had previously done a FULL read;

In addition to metrics related to individual actions, we also
apply another, general transformation to the action sequence.
In an environment like Betty’s Brain, there are cases in
which students often perform a particular type of action
(e.g., adding concepts) repeatedly in sequence, which can
result in a variety of frequent patterns that differ only by
the number of repetitions of that action. To improve this ex-
ploratory analysis, our action abstraction step distinguishes
a single action from repeated actions, which are condensed
to a single action with the “-MULT” suffix. Using the
re-transformed sequences, our differential sequence mining
technique can more efficiently identify trends that could oth-
erwise be hidden by the multitude of frequent patterns dif-
fering only in the length of a repeated action sequence [8].

3.2 Differential Sequence Mining

To identify important activity patterns in a comparison be-
tween two sets of action sequences, our methodology em-
ploys a novel combination of sequence mining techniques.
Sequential pattern mining [2] methods find the most fre-
quent action patterns across a set of action sequences, while
episode mining [11] discovers the most frequently used ac-
tion patterns within a given sequence. However, finding the
patterns most important for interpreting learning behaviors
or differentiating between groups of students is challenging,
because of the need to limit the large set of frequent patterns
to ones that are interesting and important (4.e., our focus is
on the effectiveness of mining techniques in identifying these
important patterns, rather than the efficiency, or speed, in
calculating the frequent patterns [1]).

In comparing across groups of action sequences, such as
high- versus low-performing students, the differences be-
tween the groups provide a natural criterion for identifying
important patterns that may elucidate differences in learn-
ing behavior. To use this criterion for mining important
frequent patterns, we define two measures of frequency and
the corresponding differences calculated across the groups.
The sequential pattern mining frequency measure (i.e., the
number of sequences in which the pattern occurs, regardless
of how many times) is important for identifying patterns
common to a group of action sequences. We refer to this as
the “sequence support” (s-support) of the pattern, following
the convention of [10], and we call patterns meeting a given
s-support threshold s-frequent. The second metric is the

2Based on the length of typical resource pages and the read-
ing abilities of the students in the study, we set the threshold
between short and full reads to be 30 seconds. Further, the
large majority of reads in the short category were actually
under 5 seconds and most of the reads in the full category
were over a minute.
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Map Score

(a) High-performing student

Map Score

(b) Lo-performing student

1: Example student performance evolution with identified phases

episode frequency, defined as the number of times the pat-
tern is repeated within an action sequence. We refer to this
frequency measure as the “instance support” (i-support), fol-
lowing [10]. To calculate the i-support of a pattern in a group
of traces, we use the mean of the pattern’s i-support values
across all sequences in the group.

The details of our differential sequence mining algorithm
are presented in [8], but we briefly outline the main steps of
the algorithm. First, a sequential pattern mining algorithm
(SPAMc [6]) identifies the patterns that meet a minimum
s-support constraint within each group, employing a max-
imum gap constraint to account for noise, which is inter-
preted as a small number of irrelevant actions that may be
interspersed in a pattern. In this paper, we employ a gap
constraint of 1, i.e., we allow at most one irrelevant action
between each consecutive action in a pattern. To compare
the identified s-frequent patterns across groups, we calculate
the mean i-support of every pattern for each group. In order
to identify patterns whose usage more clearly differ between
the two groups, we also filter the patterns based on the p
value of a t-test comparing pattern i-support between the
groups.

This comparison produces four distinct categories of fre-
quent patterns: two categories where the patterns are s-
frequent in only one group, illustrating patterns primarily
employed by that group, and two categories where the pat-
terns are common to both groups but used more often in
one group than the other. The patterns in each of these
qualitatively distinct categories are (separately) sorted by
the difference in mean group i-support to focus the analysis
on the most differentially frequent patterns.

3.3 Performance Evolution Phases

In the Betty’s Brain environment, a student’s work can
be assessed in terms of their performance on the learning
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task, which we define as the student’s current map score®.

By tracking the evolution of students’ map scores, we can
quantify how their learning and map-building performance
develop as they work on the system. To more effectively
identify and contextualize learning behavior patterns, we
consider phases of productive (increasing map score) and
counter-productive (decreasing map score) activity over the
course of learning by tracking their map scores, as illustrated
in Figure 1.

These phases are identified by generating a piecewise, lin-
ear representation (PLR) for a sequence of two-dimensional
points. In this representation, the x-value is a cumulative
measure of student editing activity (i.e., the number of edit
actions the student has performed thus far) and the y-value
is the student’s total map score after the corresponding edit
action [8]. Figures 1(a) and 1(b) illustrate these perfor-
mance phases with plots of map score versus number of
edits for a high-performing and a low-performing student,
respectively. To generate this representation, we employ a
standard bottom-up, time-series linear segmentation algo-
rithm [7] with the sum-squared-error (SSE) of the segments
as the criterion metric [8].

3.4 Summary of Methodology

Our iterative methodology consists of four major steps to
identify learning behaviors contextualized by performance
evolution between groups of students:

1. Action abstraction: Logfiles are processed to produce
a sequence of actions for each student by mapping
sets of interaction events to canonical actions. Each
canonical action is contextualized and split into dis-
tinct actions by applying metrics, such as the relevance

3The map score is defined as the number of correct links
(based on the expert map) in the student’s map minus the
number of incorrect links.
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metric and the reading metrics. At each iteration ad-
ditional metrics can be applied, as well as previous
metrics removed, based on the results of previous iter-
ations. Finally, any subsequences of a repeated action
are condensed into a single “action” identified with the
“-MULT” suffix.

2. Performance phase identification: Student action se-
quences are split into subsequences using the time-
series segmentation algorithm. These subsequences are
filtered to produce two sequential datasets: a) produc-
tive action sequences corresponding to segments with
a positive progress slope above a given cutoff, and b)
counter-productive action sequences corresponding to
segments with a negative progress slope below a given
(negative) cutoft.

3. Differential sequence mining: The student groups, as
well as productive and counter-productive action sub-
sequences within those groups, are compared to iden-
tify differentially frequent patterns of action.

4. Interpretation: The differentially frequent sequential
patterns of action are interpreted in terms of effec-
tive and ineffective learning behaviors exhibited by
students during the learning task. Investigation of
pattern details (i.e., raw event details for instances of
these patterns) may yield further insights into student
cognition and metacognition, as well as potential flags
and triggers for adaptive feedback/scaffolding in the
system.

4. RESULTS

We illustrate our methodology using interaction trace data
from a recent study with 40 8*"-grade students taught by the
same teacher in a middle Tennessee school. At the beginning
of the study, students were introduced to the science topic
(global climate change) during regular classroom instruc-
tion, provided an overview of causal relations and concept
maps, and given hands-on training with the system. For
the next five days, students taught their agent about cli-
mate change and received feedback on metacognitive strate-
gies from the Mentor agent. In this version of the system,
the majority of the metacognitive feedback was related to
knowledge construction strategies [15]. However, the Men-
tor agent also provided advice on monitoring strategies to
help students recognize and correct errors in their casual
maps.

The results of this study presented an interesting dichotomy
in student performance at constructing their causal concept
maps. 16 of the students taught their agent a correct, com-
plete map or one very close to it (these students achieved
map scores between 11 and 15, inclusive, where 15 was the
maximum possible score). Another 18 students taught their
agents relatively poor maps with a map score of 5 or below.
Only 6 students had a map score in between these groups
(i.e., a map score of 6 to 10, inclusive). Therefore, we fo-
cus on an analysis and comparison of the learning activities
of the high-performing (“Hi”) student group and the low-
performing (“Lo”) student group. An initial analysis of the
activity traces from this study was presented in [8]. Here we
focus on the effectiveness and variation in students’ read-
ing behaviors by refining the action abstraction step in our
exploratory methodology with additional (reading-related)

metrics, discussed in Section 3.1. We should note that stu-
dents in the “Hi” group had higher pre-test scores in all of
the categories as compared to the “Lo” group. However, a
detailed analysis shows that 40% of the links added by the
“Hi” group were initially incorrect (this number was 58%
for the “Lo” group). This shows that the “Hi” group had
to put in significant effort into discovering errors in their
maps and correcting them, and the final results show that
they were quite successful in their monitoring and correction
tasks. This was not the case for the “Lo” group. Therefore,
a comparison of the learning behaviors of the two group
should demonstrate an important dichotomy in the strate-
gies employed by the two groups that mirrors the dichotomy
in their performance. To further differentiate behaviors as-
sociated with high and low performance, we compared pro-
ductive and counter-productive phases of student activities.
We discuss the results of our analyses in greater detail below.
To assess students’ overall learning gains, calculated as nor-
malized gains® in pre- to post-test scores, we categorize the
pre- and post-test questions into three groups: (i) defini-
tion questions about the science topic in multiple choice
(MC) format, (ii) questions requiring reasoning about the
science topic that students had to answer by writing sen-
tences (“short answer”), and (iii) questions about causal
reasoning using a causal map that was not related to the
science topic. Table 1 presents the students average scores
(and standard deviations). The results of an ANOVA com-
paring the Hi and Lo student groups on each of the pre-post
gains show significant differences between the Hi and Lo
groups only for the definitional MC questions. Table 1 also
presents ANOVA analyses of the difference in performance
for the map-building metrics: (i) link accuracy - the per-
centage of links added to the map that were correct; (ii)
link creation effort - the total number of student actions
divided by the number of correct link edits, a measure of
the effort by the student in order to produce a correct link
edit; and (iii) action relevance - the percentage of student
actions that were relevant (as described in Section 3.1) to
at least one of the three previous actions show significant
differences in favor of the Hi group with moderate effect
sizes. These results indicate that students in the Hi group
were more accurate in their map edits and generally more
efficient in their learning and teaching activities. Further,
they tended to employ a more systematic approach to the
task, as indicated by their higher action relevance score.
Overall, students who achieved success in teaching Betty
accurate causal maps also learned significantly more factual
information, but their gains in causal reasoning and short
answer questions were not significantly different from the
low-performing group [8; 15].

As a first analysis to elucidate broad differences in reading
behavior between the Hi and Lo groups, Table 2 presents
the relative proportion of reading activities categorized by
each metric presented in Section 3.1. Both groups performed
roughly equal numbers of read actions on pages they had
previously read in-depth (“Repeat” (REPT)) compared to
ones they had not read in-depth (“First” (FRST)). The Lo
group relied slightly more on short (SHRT) reads (74%)
than the Hi group (69%), and the ratio of short to full page
(FULL) reads was approximately 3:1 for the Lo group and
2:1 for the Hi group. Similarly, the Lo group’s read actions

(post—pre)

4The normalized learning gain was calculated as: (maz—pre)
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1: High vs. Low Performers - Learning Gain and Map Score

Metric Hi Group Lo Group F Sig. | Effect Size (Cohen’s f)
Definition MC Norm. Gain 0.535 (0.344) -0.202 (0.769) 12.448 | 0.001 0.624
Causal Reasoning Norm. Gain | 0.130 (0.614) -0.029 (0.414) 0.799 0.378 0.157
Short Answer Norm. Gain 0.027 (0.241) | -0.028 (0.134) 0.700 | 0.409 0.146
Map Score 14.500 (1.155) 2.780 (1.592) 590.171 | 0.001 4.314
Link Accuracy (LA) 60.3% (7.1%) | 42.8% (10.6%) | 31.528 | 0.001 0.992
Link Creation Effort (LCE) | 11.630 (8.196) | 20.665 (5.042) | 12.745 | 0.001 0.652
Action Relevance 53.3% (8.4%) | 40.6% (12.2%) | 12.401 | 0.001 0.622

were deemed more irrelevant (IRR) to recent actions (again
the ratio of IRR to REL (relevant) reads was 3:1). The same

ratio for the Hi group was 2:1.

2: Relative Proportion of Actions by Reading Metrics

Group | First : Repeat Short : Full Irrel. : Rel.
(FRST : REPT) | (SHRT : FULL) | (IRR : REL )
Hi 51% : 49% 69% : 31% 67% : 33%
(SD 12%) (SD 15%) (SD 9%)
Lo 55% : 45% 74% : 26% 4% : 26%
(SD 14%) (SD 12%) (SD 7%)

To analyze specific reading behaviors illustrated by these
students’ interaction traces, we applied the differential se-
quence mining technique described in Section 3.2. This
allowed us to identify a variety of interesting learning be-
haviors related to reading that were not apparent from the
higher level analyses of behavior patterns we had conducted
in the past [8; 15]. Table 3 presents the top five patterns in
each of the differential categories detailed in Section 3.2. For
the analysis, we employed an s-support threshold of 50% to
analyze patterns that were evident in the majority of either
group of students and employed a standard statistical signif-
icance cutoff of p < 0.05. In all of the differential sequence
mining results presented here, we employed a maximum gap
threshold of 1, to allow for “noise” from irrelevant or in-
terchangeable actions in the learning activity sequences, as
described in Section 3.2.

All reads in the differentially frequent patterns distinguish-
ing reading behaviors between high and low students were
pages selected from the table of contents (TOC) rather than
from hyperlinks within pages or the (backward /forward) his-
tory mechanism. This is unsurprising since raw frequencies
of these different types of reading activities indicated that
in both the high and low group, the large majority of read-
ing activities involved selecting pages from the table of con-
tents. Table 3 shows that the high group was much more
likely to add a link (both relevant (REL) or irrelevant (IRR)
links with respect to recent actions) following a full-length
(FULL) re-read (REPT) of a page that was relevant (REL)
to recent actions. This greater reliance on extended re-reads
before adding links suggests the high group employed a more
careful approach to identifying causal links in the resources,
which may have helped increase their accuracy in teach-
ing correct links, and also their ability to correct previously
taught incorrect links.

Further, the high group more frequently employed reading
activities in a monitoring context (i.e., in conjunction with
quiz actions). Besides following extended re-reads by adding
links, the high group was also more likely to follow them with

quizzes, possibly in an attempt to connect what they were
reading with their TA’s right and wrong answers based on
the current map. Following quizzes, they were more likely
to do a quick re-read of a relevant page, which suggests an-
other monitoring strategy, such as confirming links used by
the TA in quiz answers. The differentially frequent patterns
employed more by the low group were various combinations
of reading, especially short reads and ones not relevant to
recent actions. This may be indicative of a less consistent
approach to reading and of strategies that do not system-
atically combine reading with other knowledge construction
and monitoring activities.

To further investigate which reading behaviors may have
contributed to the high performers’ success, we identified
differentially frequent patterns when students were produc-
tive as opposed to being counter-productive during their
map building activities. The method for extracting the
productive versus counter-productive phases was described
in Section 3.3, and we included all segments with a slope
greater than or equal to 0.4 in the productive set and all seg-
ments with a slope less than or equal to -0.4 in the counter-
productive set® [8]. For the differential sequence mining with
performance evolution subsequences analysis, we employed a
lower s-support threshold because the sequences were signifi-
cantly shorter than the complete student activity sequences.
Specifically, we employed an s-support threshold of 20% to
analyze patterns that occurred with some regularity (i.e., in
at least one out of every five subsequences). Similarly, given
the limited length and number of sequences, we employed a
relaxed cutoff on the t-test comparison of p < 0.10.

In comparing the Hi group’s productive to counter-productive
periods, the only differentially frequent pattern observed was
that extended, relevant rereads (READ-TOC-REPT-FULL-
REL) occurred approximately twice as frequently (p = 0.034)
in productive segments (i — support = 0.65) than counter-
productive segments (¢ — support = 0.38). This reliance on
extended, relevant re-reads, especially during productive pe-
riods, provides further evidence that a more careful, system-
atic approach to reading may have been particularly benefi-
cial for the high-performing students. In comparing the Lo
group’s productive to counterproductive periods, the only
differentially frequent pattern observed was that extended,
relevant reading of a page for the first time occurred approx-
imately five times as frequently (p = 0.039) in productive
segments (i — support = 0.28) than counter-productive seg-
ments (:—support = 0.06). This suggests that when the low-
performing students read a page in-depth for the first time

The slope cutoff of 0.4/-0.4 was determined by qualitative
analysis of a sample of student map score plots to distinguish
generally productive/counter-productive segments (8]
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3: High vs. Low Performers - Differentially Frequent Patterns

[-Support | I-Support | t-test S-Freq

Pattern (1) (Lo) (p value) | Group
READ-TOC-REPT-FULL-REL — LINKADD-REL 2.19 0.61 0.005 Hi
READ-TOC-REPT-FULL-REL — QUIZ 1.50 0.39 0.010 Hi
QUIZ — READ-TOC-REPT-SHRT-REL 1.44 0.33 0.018 Hi
READ-TOC-REPT-SHRT-REL — LINKADD-IRR 1.13 0.17 0.008 Hi
READ-TOC-REPT-FULL-IRR — LINKREM-IRR 1.13 0.28 0.016 Hi

READ-TOC-REPT-FULL-REL — LINKADD-IRR 2.00 0.94 0.022 BOTH
READ-TOC-FRST-SHRT-IRR — READ-TOC-REPT-SHRT-IRR-MULT 0.31 0.89 0.043 Lo
READ-TOC-REPT-SHRT-IRR — READ-TOC-REPT-SHRT-IRR-MULT 0.31 1.00 0.040 Lo
READ-TOC-REPT-FULL-IRR — READ-TOC-FRST-SHRT-IRR 0.44 1.17 0.033 Lo
READ-TOC-REPT-FULL-IRR — READ-TOC-REPT-SHRT-IRR 0.63 1.67 0.013 Lo
READ-TOC-REPT-SHRT-REL — READ-TOC-FRST-SHRT-REL 0.50 1.78 0.047 Lo

they tended to extract useful information, especially if the
page was relevant to their recent activities. However, they
did not seem to be as effective as the high-performing stu-
dents in extracting additional information when re-reading
pages.

To gain further insight into differences in productive read-
ing behaviors exhibited by students in Betty’s Brain, we ap-
plied the differential sequence mining technique to compare
the productive subsequences between the Hi and Lo groups.
This analysis, presented in Table 4, illustrates four reading
activities more frequently employed by the low-performing
students during their productive activity periods. The greater
frequency of irrelevant, extended rereads (both from the ta-
ble of contents and from hyperlinks) in the Lo group, sug-
gests that although they tended to be less systematic in their
approach, they were still able to gain some useful informa-
tion from rereading the resources. However, their greater re-
liance on initial, in-depth reads (READ-TOC-FRST-FULL-
REL) in productive periods suggests they may have had a
harder time identifying the less obvious causal relations of-
ten found after multiple reads. Finally, the repeated use of
short, irrelevant reads during productive periods by the Lo
group may indicate an inefficient, but ultimately effective,
searching behavior.

5.  CONCLUSIONS

In this paper, we extended an exploratory data mining method-

ology for identifying important learning behaviors with an
iterative approach to action abstraction using a variety of
action features and presented results analyzing reading be-
haviors of students in a learning-by-teaching environment.
The exploratory methodology combines iterative action ab-
straction, a sequence mining technique to identify differen-
tially frequent activity patterns, and piecewise linear seg-
mentation of activity phases with respect to the evolution
of a performance or progress measure. Results from a recent
classroom study with Betty’s Brain illustrate the effective-
ness of this methodology and iterative action abstraction
for identification of important learning behaviors at multiple
levels of analysis, including behaviors distinguished by their
relationship to productive or counter-productive phases of
activity.

Although the majority of frequent action patterns that could
be identified in these interaction traces are common to both
high-performing students and low-performing students (and
occur throughout the course of students’ interaction with

the system), the analysis employing our differential sequence
mining methodology elucidated some important learning be-
haviors. In this paper, we extended previous results with
a focus on reading behaviors related to successful perfor-
mance in the learning environment and differentiating them
from ones employed by less successful students. Overall,
high-performing students differentially employed reading be-
haviors that indicated a more careful and systematic strat-
egy of reading. Their activity patterns more frequently
involved re-reading pages from the resources, such as em-
ploying full-length re-reads of the resources before adding a
link. Further, the reading activity patterns distinguishing
high-performers from low-performers usually involved read-
ing pages that were relevant to recent actions, suggesting a
more systematic reading behavior overall. Productive peri-
ods were particularly distinguished in high performers by a
larger number of full-length, relevant re-read actions.
Performance was also linked to monitoring behaviors that
incorporated re-reading of the resource material. In par-
ticular, high-performers were more likely to employ various
types of reading actions both before and after assessments of
progress/correctness using the quiz. Low performers, on the
other hand, had a differential tendency to use irrelevant, ex-
tended re-reads of pages in the resources during productive
periods. They may have also had more difficulties identify-
ing the less obvious causal relations, as suggested by their
greater reliance on initial reads of a resource page during
productive periods.

In future work, we also intend to expand upon the presented
data mining techniques through a variety of enhancements
and additional applications. We will enhance the existing
summarization of action-relevance to include determination
of the relationship between the specific actions in all sub-
sequences matching the identified patterns. For example,
this enhanced action-relevance summarization will allow us
to determine how frequently a pattern like READ-TOC-
REPT-FULL-REL — LINKADD-REL involves adding a cor-
rect link and whether the specific link added was discussed
in the resource page from the reading action. Relating iden-
tified patterns of action back to specific details and context
in the interaction traces could provide significant benefits
for more efficient and effective interpretation of learning be-
haviors. Based on this analysis, we will expand and revise
the feedback triggering conditions and student modeling to
improve learning behavior feedback from the Betty’s Brain
agents.
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4: High vs. Low Performers (Productive Segments) - Differentially Frequent Patterns

I-Support | I-Support | t-test S-Frequent
Pattern (Hi) (Lo) (p value) | Group
READ-TOC-REPT-FULL-IRR 0.51 1.00 0.070 BOTH
READ-TOC-FRST-FULL-REL 0.10 0.28 0.091 Lo
READ-HLNK-REPT-FULL-IRR 0.08 0.28 0.057 Lo
READ-TOC-REPT-SHRT-IRR-MULT 0.15 0.39 0.079 Lo
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