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Abstract 

Location estimates calculated from heuristic data were examined using traditional and robust 

statistical methods.  The current paper demonstrates the impact outliers have on the sample mean 

and proposes robust methods to control for outliers in sample data.  Traditional methods fail 

because they rely on the statistical assumptions of normality and homoscedasticity that are often 

not met with real data.  Robust means are superior due to their ability to maintain power and 

control for Type I errors.  Two robust location estimates, L-estimators (e.g., the trimmed mean 

and the Winsorized mean) and M-estimators, are reviewed.   

 Keywords: L-estimators, M-estimators, outliers, robust statistics   
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The Utility of Robust Means in Statistics 

Statistical analysis has traditionally relied on the assumptions of normality and 

homoscedasticity (i.e., homogeneity of variance).  These assumptions are rarely met with real 

data, because real data contain “weird” people (i.e., outliers; Thompson, 2006; Wilcox, 2010).  

When weird people cause even small violations of normality or homoscedasticity, it can greatly 

impact the rate of Type I and Type II errors (Erceg-Hurn & Mirosevich, 2008; Wilcox, 1998, 

2010).  Robust statistical methods (i.e., “the capacity of a statistic to be less influenced by 

outlying scores”; Thompson, 2006, p. 47) overcome the inherent weakness of traditional 

methods by maintaining power and controlling for Type I errors when statistical assumptions are 

not met in the data (Erceg-Hurn & Mirosevich, 2008; Rousseeuw, 1991).  Although not an 

exhaustive list, modern methods have been developed for calculating robust measures of (a) 

location, (b) variance, (c) test statistics, and (d) effect sizes (Erceg-Hurn & Mirosevich, 2008; 

Wilcox, 2005, 2010).   The current paper focuses on outliers in measures of location (e.g. mean, 

median), the need for robust measures of location, and discusses specific robust means including 

L- and M-estimators.  

Outliers in Measures of Location 

Measures of location or central tendency look for a single value to represent the typical 

individual in a data set (Wilcox, 2001).  Well known measures of location or central tendency in 

research include the mean and the median.  The sample mean is simply the mathematical average 

of sample data expressed as   

MX = ∑Xi / n      (1) 

As the formula demonstrates, each score, Xi, is summed prior to dividing by the number of 

scores, n, in the sample (Thompson, 2006).   
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The median is obtained by ordering the data by numerical value.  When the number of 

scores is odd, the median is the middle score.  When the number of scores is even, a 

mathematical average is taken of the two middle scores (Wilcox, 2001).  Although beyond the 

scope of this paper, interested readers are directed to Thompson (2006) for the advanced 

statistical method to calculate the median: 

Mdnx = P50 = L + [((q * n) – cum.f) / f]   (2) 

 Outliers are not necessarily bad.  Thompson (2006) defined an outlier as “a participant 

whose data are distinctly atypical and thus would unduly influence characterizations of the data” 

(p. 43).  Dixon (1950) described outliers as “dubious in the eyes of the researcher” (p. 488).  

These dubious outliers occur for many reasons.  Data may be inaccurately recorded during the 

data collection process due to human or equipment error.  Participants may intentionally 

misreport data, particularly with sensitive topics such as time spent studying, frequency of 

church attendance, and sexual history.   Outliers also result from sampling error caused by 

pulling a sample from a population other than the population the sample is intended to 

generalize.  Finally, outliers may occur in data due to the legitimate weirdness of individuals 

(Osborne & Overbay, 2004).   

Heuristic data in Table 1 illustrate that an individual can be an outlier in one area but not 

another (e.g., John is an outlier for variable X1 but not for variables X2 and X3, Levi is an 

outlier for X2 but not for variables X1 and X3, George is an outlier for variable X3 but not for 

variables X1 and X2).  Although identifying outliers in the heuristic data presented in Table 1 is 

easily achieved upon visual inspection alone, visual inspection is not a practical method for 

outlier detection in large data sets.   
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Table 1 

Impact of Outliers on Mean and Median 

 

Score Individual 

Number of Children 

X1 

Income                   

X2 

Number of Pets       

X3 

1 Shane 2 $39,000  1 

2 Ron 4 $45,000  2 

3 Steven 2 $48,000  3 

4 Mick 1 $50,000  2 

5 Chris 3 $51,000  4 

6 George 4 $59,000  17 

7 Zach 3 $61,000  2 

8 Paul 2 $65,000  0 

9 John 13 $70,000  1 

10 Levi 0 $950,000  4 
 

 

    Mean 3.4 $143,800  3.6 

 Median 2.00 $55,000  2.00 

 

     

Figure 1 demonstrates one method for identifying outliers, the box plot (also known as  

the box-and-whiskers plot).  The horizontal lines in the boxes represent each variables respective 

medians.  The stars in the box plots identify outlying scores.   There is 

one outlier for each variable.  The outliers are (a) score nine, 13, for children, (b) score ten, 

$950,000, for income, and (c) score six, 17, for pets.   

Computer intensive methods for identifying outliers are easily computed using statistical 

software such as SPSS® (IBM, 2010).  For more information on outlier detection including the 

box plot, bootstrap, and jackknife procedures see Thompson (2006).   

Sample means and medians are compared including and excluding outlying scores for 

heuristic purposes.  The mean for income calculated without Levi’s $950,000 income is 
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Figure 1. Box Plot Calculated with SPSS® 

    

 

$54,222.22.  In contrast, the median for income calculated without Levi is $51,000.  Levi’s 

income alone alters the mean by a substantial amount (e.g., $143,800 - $54,222.22 = $89,577.78 

or a 165.20% increase) and has a much smaller impact on the median (e.g., $55,000 - $51,000 = 

$4,000 or a 7.27% reduction).  The heuristic data demonstrate that the median is a more robust 

measure of location than the mean.   

Need for Robust Means in Statistics 

One option for dealing with outliers is to omit them from analysis entirely.  Rejecting 

outlying scores results in means that are much closer to their respective medians.  Although it 

may produce desirable results, rejecting outliers without reason is not a robust method for 

calculating the mean. 

If we don’t reject or partially reject outliers, the mean fails to represent the typical 

respondent.  The mean income of $143,800 is not a typical income earned by any of the 

individuals in Table 1.  Regardless of whether outliers result from error or from the weirdness of 
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individuals, outliers often cause the sample mean to differ substantially from the population 

mean.  When Type I and Type II errors are not controlled, valuable research findings are often 

dismissed when the results would have held up using robust statistical methods (Wilcox, 1998).  

Statistical measures need to remain stable with or without outliers included and provide reliable 

information under various statistical assumptions.  Researchers should not assume sample data is 

normally distributed or meets the homogeneity of variance assumption.   

Robust methods “accommodate them (outliers) in a wider inferential scheme” (Barnett, 

1978, p. 47).  Location estimates derived by robust methods better represent the typical 

individual by minimizing the effects of extreme scores (Rousseeuw, 1991; Wilcox, 2001).   

Many strategies exist for minimizing the effects of outliers.  Outliers may be eliminated from a 

data set by (a) excluding a predetermined percentage of scores, (b) substituting a predetermined 

percentage of scores for other values, (c) altering the weights of scores, or (d) using rejection 

tests.  Each of these methods controls for the effects of outliers without bias.     

Robust Means 

L-estimators.  The trimmed mean and Winsorized mean are the two most common L-

estimators used in robust statistics (Wilcox, 2005).   L-estimators require ordering data prior to 

calculating a weighted mean (Wilcox, 2003).   When calculating a weighted mean, the weights 

typically add to 1 (Wilcox, 2001).  Table 2 illustrates calculating a sample mean and a weighted 

mean using variable X2 from Table 1.   

Weighted Means.  The sample mean is typically calculated by adding individual scores 

together and dividing by the total number of values (e.g., 1,438,000 divided by 10) as expressed 

by Equation 1.  An alternative method for sample mean calculation is to multiply each score by a 

weight.  The numerator of the weight is always one.  The denominator equals the number of 
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values in the data set (e.g., 1/10).  Because there are 10 values in Table 2, each score is 

multiplied by a weight of 1/10 or .10 which results in the sample mean of $143,000.   

 

Table 2 

Mean Calculation with Weights 

Individual 

Income                   

X2 

Weights for 

Sample Mean 

Weights for 

Weighted Mean 

Shane $39,000  .10 .20 

Ron $45,000  .10 .10 

Steven $48,000  .10 .10 

Mick $50,000  .10 .10 

Chris $51,000  .10 .10 

George $59,000  .10 .10 

Zach $61,000  .10 .10 

Paul $65,000  .10 .10 

John $70,000  .10 .05 

Levi $950,000  .10 .05 

 

   Mean 

 

$143,800  $96,700 

 

    

The weights for weighted mean calculation in Table 2 were selected for heuristic 

purposes only.  The weighted mean resulted in a mean smaller than the original sample mean due 

to putting less emphasis on extreme values (i.e., .05 weight versus .10 weight on the outlying 

$950,000 value).   

Trimmed Means.  Trimmed means are calculated by removing a predetermined 

percentage of scores from both tails of a distribution prior to evaluating the data (Wilcox, 1997).  

Table 3 contains a 20% trimmed mean for the heuristic data originally presented in Table 1 on 

the variable X2.  The top and bottom 20% of scores were given a weight of zero.  The remaining 
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values in the heuristic data set have a weight of 1/6 applied to calculate the trimmed mean.  The 

denominator of the weight, six, was determined by the number of remaining values after 

trimming 20% of scores from each tail of the sampling distribution. 

 

Table 3 

Comparison of Mean to Trimmed and Winsorized Means for X2, Income  

Individual 

Original Values 

Income 

 X2 

Trimmed 

Scores                   

X2 

Winsorized 

Scores 

X2 

Chris $39,000  ---  $48,000 

George $45,000  ---  $48,000   

John $48,000  $48,000  $48,000  

Levi $50,000  $50,000  $50,000  

Mick $51,000  $51,000  $51,000  

Paul $59,000  $59,000  $59,000  

Ron $61,000  $61,000  $61,000  

Shane $65,000  $65,000  $65,000  

Steven $70,000  ---  $65,000 

Zach $950,000  ---  $65,000 

    Mean $143,800 $55,667
a
  $56,000

b 

Median $55,000 $55,000  $55,000 

 

   
a  

The mean trimmed 20% on each side of the distribution. 
b  

20% Winsorized mean 

 

The median and mean can be described in reference to trimming.  The median is a 

trimmed mean, trimmed at 50%.  At the opposite extreme, the mean is a location measure with 

0% of the scores trimmed prior to calculation (Wilcox, 2001).  A 20% trimmed sample mean is 

recommended by Wilcox (2003b) as a compromise between the 0% trimming of the mean and 
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the 50% trimming of the median.  As previously discussed, the original mean of $143,800 is not 

representative of any of the individuals in the table.  The trimmed mean, $55,667, is much more 

successful at deriving a single score that represents the typical income of the individuals in this 

data set.  The trimmed mean lies between the original sample mean of $143,800 and the sample 

median of $55,000. 

A sample trimmed mean is not intended to estimate the population mean for the entire 

distribution.  Instead, the sample trimmed mean estimates the population trimmed mean.  When 

normal distribution assumptions are not met in the population, the population trimmed mean 

often better represents the typical individual than the population mean (Wilcox, 2003b).  When 

normal distribution assumptions are met, the trimmed population mean and population mean 

have identical values (Erceg-Hurn & Mirosevich, 2008).   

Winsorized Means.  Table 3 contains a 20% Winsorized distribution.  A Winsorized 

distribution substitutes a predetermined percent of scores at both tails of the distribution for less 

extreme values (Wilcox, 2003a).  Emphasis is put on the values in or near the center of the 

distribution of sample scores (Wilcox, 2005).  The less extreme values that replace original data 

are the smallest and largest numbers not trimmed when computing the trimmed mean (Wilcox, 

2003a).  The Winsorized mean is the mathematical average (i.e., Equation 1) of the Winsorized 

distribution.  The heuristic data resulted in a Winsorized mean similar to the trimmed mean.  

Like the trimmed mean, the Winsorized mean is between the values of the original sample mean 

and median.    

M-estimators.  M-estimators have more flexibility in the way outliers are controlled than 

L-estimators.  Like the trimmed mean, M-estimators rely on trimming as the robust statistical 

procedure to control for or reject outliers in sample data.  Unlike the trimmed mean, empirical 
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methods, as opposed to predetermined percentages, are used to determine how much trimming 

occurs (Wilcox, 2005).  This results in the M-estimator being better equipped to deal with large 

numbers of outliers since the amount trimmed is not bound to a predetermined percentage (i.e., 

an M-estimator could trim 30% of scores or more).  M-estimators are also more flexible than L-

estimators in that they do not require the amount of trimming on each tail of the distribution to be 

symmetrical.  In fact, M-estimators may trim from one tail and not the other (Wilcox, 2005).   

The downside to M-estimators is that they are not easily calculated by hand or easily 

demonstrated with heuristic data.  Fortunately, M-estimators are easily calculated with software 

created by Wilcox (1998).   

Discussion  

When robust means are calculated, Type I errors are controlled and power is maintained.  

Controlling for Type I and Type II errors allows us to preserve important research findings.  

Outliers should not be omitted without reason.  Outliers must be minimized without bias.  The 

effects of outliers are minimized by excluding a predetermined percentage of scores when 

calculating a trimmed mean.  The Winsorized mean substitutes a predetermined percentage of 

scores for other values.  Both the trimmed mean and the Winsorized mean use altered weights to 

calculate robust means.  Finally, empirical methods are used to reject outlying scores when 

calculating an M-estimator.   

Robust statistical procedures produce sample means that are more representative of the 

typical respondent in a data set.  Researchers should report statistics with robust measures.  Due 

to the ease of calculation provided by statistical software programs, there is no reason not to 

report robust means in research.   
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