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Abstract 

Exploratory factor analysis involves five key decisions.  The second decision, how many factors 

to retain, is the focus of the current paper.  Extracting too many or too few factors often leads to 

devastating effects on study results.  The advantages and disadvantages of the most effective 

and/or most utilized strategies to determine the number of factors to extract will be explored.  

Equipped with this knowledge, researchers can thoughtfully select the best strategies rather than 

relying solely on customary practice.  

 Keywords: factor analysis, Bartlett’s chi-square test, eigenvalue greater than 1.0 rule, 

scree plot, parallel analysis, minimum average partial, bootstrap factor analysis  
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Question Number Two: How Many Factors? 

One goal of factor analysis is to reduce the large number (e.g., hundreds) of variables to 

“a more parsimonious set of factor scores that can then be used in subsequent analyses” 

(Thompson, 2004, p. 5).  There are five consecutive decisions in creating these smaller latent 

constructs: 

1. Which matrix of association coefficients should be analyzed?   

2. How many factors should be extracted? 

3. Which method should be used to extract the factors? 

4. How should the factors be rotated? 

5. How should factor scores be computed if factor scores are of interest? 

(Thompson, 2004, p. 27).   

The current paper focuses on the second question, arguably the most important of the five 

(Mumford, Ferron, Hines, Hogarty, & Kromrey, 2003; Stellefson & Hanik, 2008; Zwick & 

Velicer, 1986).  Mumford et al., (2003) explains, “Since the number-of-factors decision is made 

prior to the factor rotation stage, it subsequently impacts the result of the factor analysis, such as 

rotated factor patterns, factor score estimates, and the interpretability of the factors” (p. 2).   

The fewest number of factors that can be extracted is one.  Table 1 presents an 

intervariable correlation matrix containing correlation coefficients with values of 1.0 or -1.0. 

 (i.e., variables are perfectly correlated) for the variables clean, organized, and messy.  The r
2  

between every pair of variables is 100% (Thompson, 2004).  Researchers extract one factor in 

this scenario, because one underlying construct, general cleanliness, explains the scores of all 

three measured variables.   
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Table 1  

Intervariable Correlation Matrix of Perfectly Correlated Variables 

  Clean Organized Messy 

Clean  1.0  1.0 -1.0 

Organized  1.0  1.0 -1.0 

Messy -1.0 -1.0  1.0 

  

The largest number of factors that can be extracted is equal to the total number of 

variables.  Table 2 presents an intervariable correlation matrix containing correlation coefficients 

with values of 0.0 in every off-diagonal entry.  This matrix is an identity matrix.  There are no 

real factors (i.e., combined variables), only the perfectly uncorrelated variables clean, musical, 

and pet owner.  The r
2  

between every pair of measured variables is 0% (Thompson, 2004).  This 

heuristic example demonstrates that a clean person may or may not be musical and may or may 

not own pets.  There is absolutely no correlation between these three variables.  Researchers 

would extract the total number of variables in this unlikely case. 

Table 2  

Intervariable Correlation Matrix of Perfectly Uncorrelated Variables 

  Clean Musical Pet Owner 

Clean 1.0 0.0 0.0 

Musical 0.0 1.0 0.0 

Pet Owner 0.0 0.0 1.0 

 

Researchers using real data sets typically retain a number of factors somewhere between 

the lower and upper limits described above.  Although there are problems associated with 

extracting too few or too many factors, extracting too few factors leads to greater inaccuracies 
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due to the loss of critical information.  Underextraction occurs when a factor combines with 

other factors or fails to be extracted altogether (Fava & Velicer, 1992; Zwick & Velicer, 1986).  

While extracting too many factors keeps critical information intact, it causes researchers to 

disproportionately consider minor factors over more influential ones (Zwick & Velicer, 1986).   

Numerous strategies have been developed to determine the optimal number of factors to 

retain.  This paper presents (a) Bartlett’s chi-square test, (b) eigenvalue greater than 1.0 rule, (c) 

scree plot, (d) parallel analysis, (e) minimum average partial, and (f) bootstrap factor analysis.  

Strategies are reviewed for their effectiveness in determining the optimal number of factors to 

retain and their accessibility in common statistical software packages (e.g., SPSS, SAS).  The 

first six variables from Holzinger and Swineford’s (1939) data set are used to demonstrate three 

of the six strategies (eigenvalue greater than 1.0 rule, scree plot, parallel analysis). 

Bartlett’s Chi-square Test 

The chi-square test is a test of statistical significance not commonly found in statistical 

analysis software packages (Zwick & Velicer, 1986).  The SPSS syntax necessary to run 

Bartlett’s chi-square test can be found in Appendix A.  The null hypothesis is the correlation 

matrix equals an identity matrix.  If the null hypothesis is rejected, factors are extracted 

sequentially.  After the first factor is extracted, the null hypothesis is again tested.  This process 

continues until a remaining residual correlation matrix equals an identity matrix (i.e., no 

information remains; Thompson, 2004; Zwick & Velicer, 1986).   

The same problems associated with sample size in traditional statistical significance 

testing exist when statistical significance testing is applied to factor retention.  Because large 

sample sizes are used in factor analysis, trivial factors are often deemed statistically significant 

with this strategy.  Real data, with reasonable sample sizes, will never produce correlation 
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matrices equal to an identity matrix (Thompson, 2004).  Not surprisingly, Bartlett’s chi-square 

test is increasingly accurate the larger the sample sizes becomes (Zwick & Velicer, 1982).   

Eigenvalue Greater Than 1.0 Rule  

The eigenvalue greater than 1.0 rule (also known as K1 rule, Kaiser rule, and Kaiser-

Guttman rule) retains all factors with eigenvalues greater than 1.0.  The logic contends that 

factors worthy of retaining should, at a minimum, have more variance than any of the original 

measured variables comprised in the factor.  That is, since a single measured variable has a 

maximum eigenvalue of 1.0, a factor with an eigenvalue greater than 1.0 should have more 

predictive power than any of the measured variables alone (Zwick & Velicer, 1986).  Due to the 

effects of sampling error, a researcher could choose to retain a factor with an eigenvalue less 

than 1.0 or reject a factor with an eigenvalue greater than 1.0 (Thompson, 2004). 

The eigenvalue greater than 1.0 rule should be used with caution due to the documented 

potential to overestimate and underestimate results (Zwick & Velicer, 1986).  Although the rule 

is known to be flawed, it is the most common strategy used by researchers.  In fact, it is the 

default strategy in many statistical analysis software packages (e.g., SPSS, SAS; Thompson & 

Daniel, 1996; Zwick & Velicer, 1986).  Zwick and Velicer (1986) highlight the dangers of using 

this strategy, 

The use of the K1 rule as the default value in some of the standard computer packages 

(BMDP, SPSS, SAS) is an implicit endorsement of the procedure, particularly to naïve 

users.  This pattern of explicit endorsement by textbook authors and implicit endorsement 

by computer packages, contrasted with empirical findings that the procedure is very 

likely to provide a grossly wrong answer, seems to guarantee that a large number of 

incorrect findings will continue to be reported. (p. 439) 
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Using SPSS syntax (see Appendix B), two factors are retained using the eigenvalue 

greater than 1.0 rule.  Table 3 presents the results. 

Table 3 

Eigenvalue Greater Than 1.0 Rule SPSS Output 

 Initial Eigenvalues 

Factor Total Percent of Variance Cumulative Percentage 

1 2.182 36.369 36.369 

2 1.701 28.355 64.725 

3 .744 12.392 77.117 

4 .700 11.674 88.791 

5 .406 6.774 95.565 

6 .266 4.435 100.000 

 

Scree Plot  

 The scree plot is a graphical test available in SPSS and SAS based on eigenvalues.  Scree 

literally refers to “the line of rubble and boulders which forms at the pitch of sliding stability at 

the foot of a mountain” (Cattell, 1966, p. 249).  Trivial factors are analogous to scree and should 

be discarded.  Nontrivial factors are analogous to mountains and should be retained (Thompson, 

2004).   

Trivial and nontrivial factors are determined by visually analyzing a line graph (i.e., scree 

plot) of eigenvalues corresponding to sequentially extracted factors.  As seen in Figure 1, the 

vertical axis of the scree plot represents eigenvalues and the horizontal axis represents factor or 

component sequence numbers.   A line connects all plotted eigenvalues.  Because sequentially 

extracted factors have successively smaller eigenvalues, a downward-sloping (i.e., mountain-

like) plot is created.  A “pencil test” is invoked by positioning a straight edge or pencil on the 
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eigenvalues forming a near straight line (e.g., blue line in Figure 1; Cattell & Vogelman, 1977).  

The arrow in Figure 1 points to the “elbow” or position at which the scree begins.  Factors with 

eigenvalues above the straight line and to the left of the elbow are retained.  Factors with 

eigenvalues on or near the straight line (i.e., scree) are discarded.  Two factors are retained in this 

heuristic example.   

Because visual analysis is subjective and because not all scree plots have such an 

obvious, singular elbow, varying numbers of factors may be retained by different researchers 

examining the same plot (Thompson, 2004; Zwick & Velicer, 1982, Zwick & Velicer, 1986).  

Therefore, the scree plot should never be the only method utilized when deciding how many 

factors to retain (Zwick &Velicer, 1986).    

Figure 1.  Scree Plot SPSS Output 
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Parallel Analysis 

Parallel analysis accounts for sampling error, making it one of the most accurate factor 

retention strategies.  Sampling error is accounted for by comparing eigenvalues from a 

correlation matrix of original data to eigenvalues from a correlation matrix of randomly ordered 

variables of identical sample size (Thompson, 2004; Zwick & Velicer, 1986).    This comparison 

is made because randomly ordered scores create a correlation matrix approximating an identity 

matrix – eigenvalues remain just above and below 1.0 due to sampling error (Horn, 1986; 

Stellefson & Hanik, 2008).  Eigenvalues are exactly 1.0 when derived from a population 

correlation matrix created from randomly ordered, uncorrelated variables.  Factors corresponding 

with eigenvalues of the original data set that are larger than factors corresponding with 

eigenvalues of the randomly ordered data set are retained (Horn, 1965; Zwick & Velicer, 1986).   

O’Connor (2000) provides SPSS and SAS syntax for parallel analysis.  Researchers only 

need to modify the syntax with their specifications for numbers of cases, variables, and datasets.  

The remaining syntax remains unaltered.  Table 4 presents eigenvalues created from syntax 

running 100 cases, 6 variables, and 500 data sets.  Two factors are retained in this parallel 

analysis heuristic example. 

Parallel analysis steps performed by the syntax include creating a random data set using 

real data on measured variables with the same rank (i.e., same number of rows by same number 

of columns).  Each column is randomly ordered separately. Eigenvalues are then calculated and 

aligned.  The eigenvalues generated from real data, “real eigenvalues,” are aligned parallel to the 

eigenvalues generated from randomly ordered data, “fake eigenvalues.” 
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Table 4  

Parallel Analysis SPSS Output 

Number Actual Data Eigenvalue Random Order Eigenvalue 

1 2.182 1.343271 

2 1.701 1.172250 

3 .744 1.043149 

4 .700 .931626 

5 .406 .818577 

6 .266 .691127 

Sum 6.0 (5.999) 6.0 

 

Minimum Average Partial (MAP) 

Although MAP is one of the most accurate strategies, researchers must use syntax to 

execute MAP because it is not a default strategy in statistical software packages (O’Connor, 

2000; Zwick & Velicer, 1986).  O’Connor (2000) provides the syntax necessary to run MAP for 

both SPSS and SAS.    

The rationale of MAP and the processes performed by the syntax commands are 

described as follows.  MAP determines the number of factors to retain by examining the 

correlation matrix.  “Statistically, components (or factors) are retained as long as the variance in 

the correlation matrix represents systematic variance.  Components are no longer retained when 

there is proportionately more unsystematic variance than systematic variance” (O’Connor, 2000, 

p. 397). 

In order to examine variance, a factor is removed from the original matrix of association.  

The values above and below the diagonal of the reproduced, partial correlation matrix are then 

squared.  The squared values are added together and this sum is divided by the number of 
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squared values in the partial correlation matrix.  The next calculation involves removing two 

factors from the original matrix of association before performing the calculations described 

above.  This process of cumulatively removing factors repeats until all potential factors have 

been removed and all calculations are performed.  Finally, the averaged and squared partial 

correlations are vertically aligned.  The number of factors retained corresponds to the number of 

factors removed which produced the lowest average squared partial correlation, unless the 

average squared coefficient from the original matrix is a smaller value.  No factors are retained if 

original matrix results in lowest value (O’Connor, 2000). 

Bootstrap Factor Analysis 

The bootstrap, when utilized in factor analysis, can also determine how many factors to 

retain.  The syntax for this computer-intensive strategy is available at 

http://www.coe.tamu.edu/~bthompson/datasets.htm (Zientek & Thompson, 2007).  Although a 

heuristic example is not provided, the basic steps and logic behind bootstrap factor analysis are 

described below.  

After randomly sampling (with replacement) data from a mega-file created from 

concatenated data (see Thompson, 2006), data are rotated to best-fit positions ensuring all results 

are in a common factor space.  Then eigenvalues and standard deviations are computed for each 

factor over repeated samples (e.g., 5000).  This creates empirically estimated sampling 

distributions of eigenvalues and standard deviations.  Next, sampling distribution data are 

utilized to compute mean eigenvalues and standard errors (SEs) of the estimates.  Finally, 

confidence intervals (CIs) are created using these values (Zientek & Thompson, 2007).   

Unlike the eigenvalue greater than 1.0 rule, bootstrap factor analysis accounts for 

sampling error by examining mean eigenvalues near 1.0 and the width of CIs.  Large SEs result 

http://www.coe.tamu.edu/~bthompson/datasets.htm
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in wider CIs indicating less precise estimates.  A factor with a mean eigenvalue 1.15, SE 0.20 is 

less likely to be retained than a factor with the same mean eigenvalue, SE 0.05.  Typically, 

researchers only retain factors with CI lower limits above 1.0 or CI upper limits above 1.0 

(Zientek & Thompson, 2007).    

Conclusion 

Selecting the number of factors to retain is the most important decision a researcher 

makes and should be done thoughtfully.  Researchers can be more confident when the results 

from several factor retention strategies agree.  Heuristic examples for three of the six strategies 

(eigenvalue greater than 1.0 rule, scree plot, and parallel analysis) were provided.  Each strategy 

resulted in retaining two factors.   When researchers use real data, with far more than six 

variables in the analysis, results may vary.   
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Appendix A 

SPSS Syntax: Bartlett’s Chi-Square Test 

FACTOR 

  /VARIABLES t1 t2 t3 t4 t5 t6 

  /MISSING LISTWISE  

  /ANALYSIS t1 t2 t3 t4 t5 t6 

  /PRINT initial extraction correlation kmo 

  /EXTRACTION PC 

  /ROTATION NOROTATE 

  /METHOD=CORRELATION. 
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Appendix B 

SPSS Syntax: Eigenvalue Greater Than 1.0 

FACTOR 

  /VARIABLES t1 t2 t3 t4 t5 t6 

  /MISSING LISTWISE  

  /ANALYSIS t1 t2 t3 t4 t5 t6 

  /PRINT initial extraction correlation 

  /CRITERIA mineigen(1) ITERATE(25) 

  /EXTRACTION PC 

  /ROTATION NOROTATE 

  /METHOD=CORRELATION. 

     


