
SREE Fall 2011 Conference Abstract Template  

Abstract Title Page 
Not included in page count. 

 
 
Title: 
 
Using Propensity Score Methods to Approximate Factorial Experimental Designs*

 
 

Author(s): 
 
Nianbo Dong, Ph.D.  
Peabody Research Institute  
Vanderbilt University  
 
nianbo.dong@vanderbilt.edu 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

                                                 
* Updated on July 15, 2011. The author thanks Mark Lipsey and two anonymous reviewers for their valuable 
comments on previous versions. All errors remain the author’s. Any comments/suggestions would be appreciated. 



 

SREE Fall 2011 Conference Abstract Template  1 

Abstract Body 
 

Background / Context:   
When randomized experiments are not feasible, propensity score methods can be applied to 

approximate randomized experiments. The propensity score is the conditional probability for a 
study unit to receive treatment given a vector of covariates, and propensity score methods can 
produce unbiased estimate of treatment effect if there are no unmeasured confounders 
(Rosenbaum, 2002; Rosenbaum & Rubin, 1983). Propensity score methods have been widely 
applied to approximate experiments with one factor with two levels (e.g., treatment vs. control 
groups). The propensity scores can be estimated using binary logistic regression. The estimated 
propensity scores can be further used to estimate treatment effects through many conventional 
approaches, e.g., subclassification, matching, as covariate, or as weighting function, etc. (see 
Steiner & Cook (in press) for a review). Recently propensity score methods were generalized to 
analyze one factor with multiple levels (>2). The generalized propensity scores can be estimated 
as the conditional probability of receiving a particular level of treatment using polytomous 
choice model (e.g., multinomial or ordinal logit model) (Imbens, 2000). The resulting estimated 
propensity scores are then used in subsequent analyses by weighting (inverse of propensity 
scores) (Imbens, 2000), or optimal nonbipartite matching (Lu, Greevy, Xu, & Beck, 2011; Lu & 
Rosenbaum, 2004). Furthermore, Imai & van Dyk (2004) generalized propensity score methods 
to a continuous treatment variable and bivariate treatment variables, and applied the estimated 
propensity score to subclassify sample to estimate the treatment effects. 

Recently researchers and policy makers had increased interested in knowing the effects of 
multiple factors, particularly the interaction effects of these multiple factors. For example, people 
not only want to know the main effects of the new math curriculum and high quality teachers, 
respectively, they also want to know if the new math curriculum taught by the high quality 
teachers has better effects than taught by the low quality teachers, i.e., the interaction effect. For 
another example, people want to know the effects of both Head Starts (as compared with other 
center-based care) and the child care quality on child outcomes, as well as if children in high-
quality Head Starts have better outcomes than their counterfactuals (i.e., if they were in high-
quality other center-based care). 

Ideally, we can use a 2×2 factorial design (Figure 1 in Appendix B), i.e., randomly assign 
students to four groups, to estimate the main and interaction effect. However, when the full 
random assignment is not feasible, e.g., students could be randomly assigned to new math 
curriculum and business as usual groups, but could not be randomly assigned to different teacher 
quality groups, or no any random assignment is feasible, the four cells (groups) in Figure 1 may 
be systematically different from each other. The challenge is how we can get unbiased estimates 
of the main and interaction effects of these two factors. 

Researchers have applied propensity score methods to analyze two factors, e.g., analyzing 
the impact of one program (Factor A) on subgroups (Factor B) (see Hill, Brooks-Gunn, & 
Waldfogel, 2003; Lochman, Boxmeyer, Powell, Roth, & Windle, 2006; Peck, 2003; Schochet & 
Burghardt, 2007). The basic practice is to match participants between two levels of Factor A 
within each of two levels of Factor B, e.g., matching participants between treatment (program) 
and control (comparison) groups within dose subgroups, or matching participants between high-
dose and low-dose groups within treatment and/or control groups. These separate matches may 
make baseline equivalent between two levels of the matched factor, hence it may produce 
unbiased estimates of main effects of that factor, however, without making efforts to make 
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baseline equivalent among all four groups, it may not produce unbiased estimate of the 
interaction effect.  

Imai & van Dyk (2004) have generalized propensity score methods to study bivariate 
treatment variables (two continuous treatment variables) using stratification, however, less 
studies on applying propensity score methods to analyze two factors have been conducted so far. 
 
Purpose / Objective / Research Question / Focus of Study: 

The purpose of this study is through Monte Carlo simulation to compare several propensity 
score methods in approximating factorial experimental design and identify best approaches in 
reducing  bias and mean square error of parameter estimates of the main and interaction effects 
of two factors.  

 
Significance / Novelty of study: 

 Previous studies focused more on unbiased estimates of the effects of one factor, or the 
effects of one factor by the subgroups of another factor. The approaches for the unbiased 
estimates of the main and interaction effects of two factors in studies without full randomization 
were less examined. The current study will identify appropriate propensity score methods to 
analyze multiple factors, in particular, the interaction effects. 

 
Research Design: 

This paper first reviews Imai & van Dyk’s (2004) approach to analyzing two continuous 
treatment variables through stratifying sample based on the propensity scores on these two 
treatment variables. We extended Imai & van Dyk’s (2004) approach to analyzing two factors 
(binary variables) using stratification and matching method based on the propensity scores on 
these two factors.  We proposes a new application of propensity scoring, “factorial propensity 
score matching method”, in analyzing two factors. This is followed by introducing other 
potential propensity score methods in analyzing two factors. Finally, a Monte Carlo Simulation 
is used to evaluate these propensity score methods. 

One of the great contributions in Imai & van Dyk’s (2004) was to generalize propensity 
score application to analyzing two continuous treatment variables. Two propensity score 
functions for two continuous treatment variables are estimated based on two independent 
Gaussian linear regression models. The estimated two propensity score functions are used to 
subclassify the data into several subclasses. Figure 2 illustrates 3 ×  3 subclassification based on 
two propensity score functions (Imai & van Dyk, 2004). Data are subclassified into three 
subclasses (lower third, middle third, and upper third) based on each of two propensity score 
functions, respectively. Each cell of the 3 ×  3 table represents a subclass based on two 
propensity score functions jointly. In addition to 3 ×  3 subclassification, Imai & van Dyk’s 
(2004) also presented simulation results for 2 ×  2 and 4 ×  4 subclassification. In general, more 
subclasses produce less bias. Note that the subclassification method based on two propensity 
score functions could be used for two binary treatment variables. In addition, we could match 
data based on two propensity score functions. 

 

This is not a new algorithm for propensity score matching, but an application of currently 
available matching algorithm in analyzing the effects of two factors. The essential idea of this 
method is to create four equivalent groups to approximate a 2

“Factorial Propensity Score Matching Method” 

×2 factorial experiment design.  
Suppose there is a study with two factors: Factor A with two levels and Factor B with two 
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levels, like Figure 1. However, there is no full randomization, i.e., participants are not randomly 
assigned to four groups. The purpose of the study is to examine both the main effects and 
interaction effects of Factors A and B. The procedures of “factorial propensity score matching 
method” are below (Figure 3):  

1. Estimating two independent propensity score functions based on Factor A and Factor B, 
respectively, using binary logistic regression model 

1.1 Estimating propensity scores of being in Level 1 of Factor A 
1.2 Estimating propensity scores of being in Level 1 of Factor B 
1.3 Obtaining common support sample by including sample among four groups with 

overlapping propensity scores for Factor A and Factor B. 
2. Matching data using propensity scores based on Factor A within each of two levels of 

Factor B using the common support sample 
2.1 Within Level 1 of Factor B, matching A1B1 with A2B1 using existing matching 
algorithm, e.g., optimal matching (Ming & Rosenbaum, 2001), or greedy matching. The 
matched participants are in yellow and green areas in Cells A1B1 and A2B1. 
2.2 Within Level 2 of Factor B, matching A1B2 with A2B2 using existing matching 

algorithm. The matched participants are in yellow and green areas in Cells A1B2 and 
A2B2. 

2.3  Combining two matched datasets (named “matched on A”, in yellow and green 
areas) 

3. Matching data using propensity scores based on Factor B within each of two levels of 
Factor A using the common support sample 

3.1 Within Level 1 of Factor A, matching A1B1 with A1B2 using existing matching 
algorithm. The matched participants are in blue and green areas in Cells A1B1 and A1B2.  
3.2 Within Level 2 of Factor A, matching A2B1 with A2B2 using existing matching 

algorithm. The matched participants are in blue and green areas in Cells A2B1 and 
A2B2. 

3.3 Combining two matched datasets (named “matched on B” (in blue and green areas)) 
4. Finding the common participants in two matched datasets. This dataset consisting of 

common participants serves as the final analysis sample (in 4 green areas). 
Through these steps we can obtain four matched groups for impact analysis. 
 
Both the “factorial propensity score matching method” and Imai & van Dyk’s (2004) 

subclassification requires estimating two independent propensity score functions based on 
Factors A and B, respectively. Alternatively, we can collapse two dimensions (2×2) of 
treatments to one dimension (1×4) of treatment and use the propensity score methods that are 
appropriate for one-dimensional multiple groups analysis to analyze the effects of two factors. 

 

First, we convert 2
Other Propensity Score Methods for Analyzing Multiple Groups 

×2 design to 1×4 design, i.e., a design having one treatment variable 
with four levels: A1B1, A1B2, A2B1, and A2B2 (Figure 1).  

Second, the propensity scores can be estimated using multinomial logistic regression 
model, e.g., Group A1B1 as the reference group, all the other groups are compared with this 
reference group. 

Third, various propensity score methods can be applied to estimate the group differences, 
which can be easily converted to the estimates of the main and interaction effects of two factors. 
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These propensity score applications include: subclassification (Rosenbaum & Rubin, 1984), 
optimal nonbipartite matching (Lu, Greevy, Xu, & Beck, 2011; Lu & Rosenbaum, 2004), inverse 
of propensity score weighting (Imbens, 2000), and using propensity score as covariate. 
 

We conduct Monte Carlo Simulation for two scenarios: (1) semi-experiment, which 
concerns random assignment of Factor A while Factor B is not random assigned, and (2) non-
experiment, i.e., neither Factor A nor Factor B concerns random assignment, and Factors A and 
B are correlated. 

Monte Carlo Simulation 

1. Semi-experiment 
One example of this scenario is a design to study the main and interaction effects of new 

math curriculum (Factor A) and student socioeconomic status (SES) (Factor B): students are 
randomly assigned to treatment group (new math curriculum) and control group (business as 
usual), however, students are not randomly assigned to SES groups.  

(1) Model to produce data 
We adopted a revised model of Expression 9 in Schochet & Burghardt (2007, p. 101). The 

data are generated using the following equations: 
uWWB ++= 21

*
 

1=B  if 0* >B  and 0=B , otherwise      
eBABAAWWWWY +×+++×++++= 1010105555100 2

3
121    (1) 

where 1W  and 2W )1,0(~ N , are two covariates. A  is a dichotomous random variable indicating 
the status of Factor A (e.g., treatment and control). B  is a dichotomous variable indicating the 
status of Factor B (e.g., dichotomous SES) and it is a function of two covariates. Y  is the 
outcome. u  )1,0(~ N  and e  )100,0(~ N .  

This revised model differs from Schochet & Burghardt’s (2007) original model in that it 
includes three additional terms: (1) B10 , indicating the effect of Factor B, which is closer to 
reality, e.g., the later achievement gaps between SES groups still exist even though their baseline 
conditions are equivalent, (2) 3

15W , a higher-order term, and (3) AW ×25 , indicating that the 
effect of Factor A is associated with one baseline covariate. The conventional misspecified OLS 
regression model (e.g., omitting the higher-order or/and interaction term) would produce biased 
parameter estimates.  

The main and interaction effects of A  and B , i.e., the coefficients of A , B ,  and BA×  
are all 102

N

. We also allow the proportions of random assignment to Level 1 of Factor A to vary 
from 0.2 to 0.8 in a step of 0.1. Based on Model 1 we produce a sample with the total sample 
size  = 8,000 for each of seven proportion categories.  

(2) Analysis of the main and interaction effects of two factors 
We first analyze the full sample using an OLS model (Model 2). Note that Model 2 is a 

misspecified model, which simulates the reality that researchers might not know the correct 
model. These results serve as references for comparing with propensity score methods. 

iiiBAiBiAiii eBABAWWY ++++++= ×ββββββ )()( 22110      (2) 
Figure 4 shows the effects of two factors in terms of regression coefficients.  
 

                                                 
2 The mean of 

2W  in the full sample is 0, hence, the average effect of the term AW ×25   is 0. 
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We then apply propensity score methods to analyze the data. Table 1 presents various 
propensity score applications. First, the multinomial logistic regression model is run to estimate 
the generalized propensity score (Imbens, 2000) using covariates 1W  and 2W . The generalized 
propensity score is the conditional probability of receiving treatment t given pre-treatment 
covariate X, i.e., )|(),( XXtTprXtr === . Thus, each participant will have four generalized 
propensity scores associated with four groups. The distributions of the generalized propensity 
scores of being in the reference group (or any other particular group) for the four groups are 
examined for overlap. The sample with common support can be obtained by excluding 
participants whose probabilities of being in the reference group are bigger than the minimum 
value of four maximum probabilities, or smaller than the maximum value of the four minimum 
probabilities (called “common support sample”, Data 2 in Table 1).  

This “common support sample” is further used for greedy matching by matching the 
reference group with all the other three groups, respectively, based on the probabilities of being 
in the reference group. We then have three matched samples and each matched sample contains 
one sample of reference group. We choose the common sample of being in the reference group 
among three matched sample. The final matching sample includes the common sample of being 
in the reference group and their matching sample in all other three groups (Data 3 in Table 1).  

For the full sample and common support sample, we subclassify data into 9 subclasses 
based on the probabilities of being in the reference group, and obtain the weighted average 
parameter estimates across 9 subclasses3

),(
1

XtTr i =

. We also use the inverse of the generalized propensity 
score as weight (Imbens, 2000) to analyze data with full sample and “common supported 

sample”, respectively. The weight is , where iT  denotes the treatment that subject i 

actually received. Furthermore, using data with full sample we use the probabilities of being in 
the reference group as covariate to estimate the effects of two factors. All the estimates of the 
effects of two factors are conducted using OLS (Model 2) and ANOVA, respectively. 

Finally, two independent binary logistic regression models are used to estimate the 
propensity scores for Factor A and Factor B, respectively. The common support sample (Data 4 
in Table 1) is obtained by including overlap sample among four groups based on propensity 
scores for Factors A and B (Steps 1.1-1.3 in the procedure of “factorial propensity score 
matching method”). As illustrated in Figure 2, we apply 3 ×  3 subclassification based on two 
propensity score functions and estimate the weighted treatment effect across 9 subclasses (Imai 
& van Dyk, 2004). We then apply the “factorial propensity score matching” procedure (Steps 2-4) 
to get final matching sample (Data 5). Both the OLS (Model 2) and ANOVA models are used for 
data analysis. 

 
2. Non-experiment 
(1) Model to produce data 
In this scenario neither Factor A nor Factor B concerns random assignment and they are 

correlated. We also allow the proportion of Level 1 of Factor A and Factor B to vary. The data 
are generated using the following equations: 

                                                 
3 We choose to use 9 subclasses here in order to make results comparable with 3 ×  3 subclassification based on two 
propensity score functions. 
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auWWA ++= 21
*

 
1=A  if *A < Q( *A , aP )  and 0=A , otherwise 

buWWB ++= 32
*

 
1=B  if *B < Q( *B , bP )  and 0=B , otherwise 

eBABABWAWWWWWY +×+++×+×+++++= 101010555555100 31
3

2321  (3) 
where 1W , 2W , and 3W )1,0(~ N , are three covariates. A  is a dichotomous variable indicating 
the status of Factor A and it is a function of covariates 1W  and 2W . B  is a dichotomous variable 
indicating the status of Factor B and it is a function of covariates 2W   and 3W . Q is the quantile 
function of the normal distribution, i.e., the inverse of the cumulative distribution function.  aP  
and bP  are the proportions of Level 1 of Factor A and Factor B, respectively. Given the 
proportion of Level 1 of Factor A (or B), if *A  (or *B ) is smaller than the value that corresponds 
to the percentile, aP  (or bP ) of the normal distribution, then that individual is in Level 1. Y  is 
the outcome. au , bu  )1,0(~ N  and e )100,0(~ N .  

Model 3 is extended from Model 1. It included one more covariate. The main and 
interaction effects of A  and B , i.e., the coefficients of A , B ,  and BA×  are all 10. We allow 
the proportions of random assignment to Level 1 of Factor A and Factor B to vary: ( aP , bP ) = 
{(0.5, 0.5), (0.5, 0.3), (0.3, 0.3), (0.7, 0.3), (0.7, 0.7)}. Based on Model 3 we produce a sample 
with the total sample size N  = 8,000 for each of five proportion categories.  

(2) Analysis of the main and interaction effects of two factors 
We conduct similar analyses with semi-experiment scenario. We first analyze the full 

sample using an OLS model (Model 4). Note that Model 4 is a misspecified model, which 
simulates the reality that researchers might not know the correct model. These results serve as 
references for comparing with propensity score methods. 

iiiBAiBiAiiii eBABAWWWY +++++++= ×βββββββ )()()( 3322110    (4) 
We then apply propensity score methods to analyze the data. Table 2 presents various 

propensity score applications. Both the OLS (Model 4) and ANOVA models are used for data 
analysis. 

 
We replicate 1000 times for producing and analyzing data. The estimates of bias and MSE 

(mean square error) of the parameters (θ ) can be calculated as below. 

θθθ −= ∑
=

∧ K

k
kK

Bias
1

ˆ1)ˆ( , where k = 1, 2,…, K. K is the number of valid replications. 

2
2

1
)ˆ()ˆ(var)ˆ(1)ˆ( 





+=−=

∧∧

=

∧

∑ θθθθθ Bias
K

MSE
K

k
k

 
 
We estimate bias and MSE for Aβ , Bβ , and BA×β , respectively. We then calculate the sum 

of the absolute value of bias and the sum of MSE across these three parameters. Finally we 
calculate the percent reduction in summed bias and in summed MSE for propensity score 
methods as compared with the conventional OLS estimates. 
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Results and Conclusions:  
 

Table 3 and Table 4 present the average percentages of the final analysis samples in the full 
sample for semi-experiment and non-experiment simulations, respectively. The common support 
samples for both propensity score models are pretty large. It is bigger than 85% in semi-
experiment simulation and bigger than 68% in non-experiment simulation. However, it is not 
surprising that the matching samples are small because we used one-to-one matching and allow 
the sample allocation between two levels of Factor A and Factor B to vary. It is smaller than 
38% in semi-experiment simulation and smaller than 20% in non-experiment simulation. 

Table 5 and Table 6 present the results for percent reduction in the sum of the absolute 
value of bias and percent reduction in summed MSE (mean square error) among three parameters 
as compared with the conventional OLS estimate in semi-experiment simulation. For one 
multinomial propensity score model, application of common support sample has bigger bias and 
MSE reduction comparing with the full sample and OLS estimate has bigger bias and MSE 
reduction than ANOVA. These results are consistent with previous propensity scoring studies. In 
addition, including propensity score as covariate in the analysis has smaller effects in bias and 
MSE reduction than the other propensity score applications (e.g., subclassification and 
weighting). For two binary propensity score models, subclassification and factorial matching 
have similar good performance in MSE reduction as subclassification, weighing, and matching 
for one multinomial propensity score model when OLS regression is used, however, 
subclassification for two binary propensity score models has slightly smaller bias reduction than 
the others (e.g., 89% vs. 95%). 

Table 7 and Table 8 present the results for percent reduction in the sum of the absolute 
value of bias and percent reduction in summed MSE (mean square error) among three parameters 
as compared with the conventional OLS estimate in non-experiment simulation. Similar with 
semi-experiment simulation, in general, OLS estimate has better performance than ANOVA in 
bias and MSE reduction. Thus, below we only concern OLS estimate. Regarding bias reduction, 
the three approaches better than the conventional OLS analysis are: (1) inverse of propensity 
score weighting based on one multinomial propensity score model (53-85%), (2) 
subclassification (44-83%) and (3) factorial matching (13-96%) based on two binary propensity 
score models. Regarding MSE reduction, the three approaches better than the conventional OLS 
analysis are: (1) subclassification (50-88%) and (2) factorial matching (5-87%) based on two 
binary propensity score models, and (3) inverse of propensity score weighting based on one 
multinomial propensity score model (4-79%). In general, subclassification based on two binary 
propensity score models has more stable good performance in bias and MSE reduction. 

 
In sum, the simulation results from semi-experiment and non-experiment scenarios suggest 

three good propensity score applications in reducing bias and MSE of parameter estimates in 
analyzing two factors: (1) inverse of propensity score weighting based on one multinomial 
propensity score model, (2) subclassification and (3) factorial matching based on two binary 
propensity score models. Also note that the common support sample and covariate adjustment 
are preferred.  
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Tables 
 
 
Table 1: Propensity Score Applications in Monte Carlo Simulation for Semi-Experiment 
 
Propensity 
Score 
Model 

Data Application of 
Propensity Score 

Covariate 
Adjustmentd Analysis Model 

One 
multinomial 
propensity 
score model 

1. Full sample 

Subclassificationa 
No ANOVA (subclassification) 
Yes OLS (subclassification) 

Weightingb 
No ANOVA (weighting) 
Yes OLS (weighting) 

As covariatea 
No ANCOVA (as covariate) 
Yes OLS (as covariate) 

2. Common support 
sample (overlap 
among four groups)  

Subclassificationa 
No ANOVA (subclassification) 
Yes OLS (subclassification) 

Weightingb 
No ANOVA (weighting) 
Yes OLS (weighting) 

3. Overlap sample 
of matching one 
group with all other 
three groups using 
Data 2 above 

Matchinga 
No ANOVA 

Yes OLS 

Two binary 
propensity 
score 
models 

4. Common support 
sample (overlap 
among four groups)  

Subclassificationc 
No ANOVA (subclassification) 

Yes OLS (subclassification) 
5. Overlap sample 
of factorial 
matching using 
Data 4 above 

Matchingc 
No ANOVA (factorial matching) 

Yes OLS (factorial matching) 

 
Note:  
aSubclassification, matching, and as covariate are all based on the probabilities of being in the 
reference group. 
bWeighting is weighted by the inverse of the probabilities of being the group of treatment that 
participants actually received.  
cSubclassification and matching are based on two propensity score functions. 
dCovariate adjustment is to adjust for covariates 1W  and 2W . 
 



 

SREE Fall 2011 Conference Abstract Template  B-2 

 
Table 2: Propensity Score Applications in Monte Carlo Simulation for Non-Experiment 
 
Propensity 
Score 
Model 

Data Application of 
Propensity Score 

Covariate 
Adjustmentd Analysis Model 

One 
multinomial 
propensity 
score model 

1. Common support 
sample (overlap 
among four groups)  

Subclassificationa 
No ANOVA (subclassification) 
Yes OLS (subclassification) 

Weightingb 
No ANOVA (weighting) 
Yes OLS (weighting) 

2. Overlap sample 
of matching one 
group with all other 
three groups using 
Data 1 above 

Matchinga 
No ANOVA 

Yes OLS 

Two binary 
propensity 
score 
models 

3. Common support 
sample (overlap 
among four groups)  

Subclassificationc 
No ANOVA (subclassification) 

Yes OLS (subclassification) 
4. Overlap sample 
of factorial 
matching using 
Data 3 above 

Matchingc 
No ANOVA (factorial matching) 

Yes OLS (factorial matching) 

 
Note:  
aSubclassification, matching, and as covariate are all based on the probabilities of being in the 
reference group. 
bWeighting is weighted by the inverse of the probabilities of being the group of treatment that 
participants actually received.  
cSubclassification and matching are based on two propensity score functions. 
dCovariate adjustment is to adjust for covariates 1W , 2W , and 3W . 
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Table 3: Average Sample Sizes of Various Analyses in Semi-Experiment Simulation 
 
Propensity 
Score 
Model 

Data 
Proportion of Level 1 of Factor A 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 

One 
multinomial 
propensity 
score model 

1. Full sample 100 100 100 100 100 100 100 

2. Common support sample 
(overlap among four groups)  86 88 90 90 90 90 90 

3. Overlap sample of 
matching one group with all 
other three groups using 
Data 2 above 

8 15 22 28 27 22 15 

Two binary 
propensity 
score 
models 

4. Common support sample 
(overlap among four groups 
based on 2 propensity 
scores)  

85 87 88 88 88 87 86 

5. Overlap sample of 
factorial matching using 
Data 4 above 

15 23 30 37 30 23 15 

 
Note: Entries are the average percentages of the final analysis samples in the full sample (N = 
8000). 1000 replications. 
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Table 4: Average Sample Sizes of Various Analyses in Non-Experiment Simulation 
 

Propensity 
Score Model Data 

Proportion of Level 1 of Factor A and Factor B 

aP =0.5 

bP =0.5 
aP =0.5 

bP =0.3 
aP =0.3 

bP =0.3 
aP =0.7 

bP =0.3 
aP =0.7 

bP =0.7 

One 
multinomial 
propensity 
score model 

1. Common support sample 
(overlap among four groups)  82 80 74 81 75 

2. Overlap sample of 
matching one group with all 
other three groups using 
Data 1 above 

19 15 15 10 16 

Two binary 
propensity 
score models 

3. Common support sample 
(overlap among four groups 
based on 2 propensity 
scores)  

77 73 69 69 68 

4. Overlap sample of 
factorial matching using 
Data 3 above 

15 13 12 9 12 

 
Note: Entries are the average percentages of the final analysis samples in the full sample (N = 
8000). 1000 replications. 
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Table 5: Percent Bias Reduction in Semi-Experiment Simulation 
 

Propensity 
Score 
Model 

Data Analysis Model 
Proportion of Level 1 of Factor A 

Average 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 

One 
multinomial 
propensity 
score model 

1. Full sample 

ANOVA 
(subclassification) 75 74 75 73 75 75 75 75 

OLS 
(subclassification) 93 91 91 91 94 91 94 92 

ANOVA (weighting) 48 54 56 56 59 61 63 57 
OLS (weighting) 84 86 87 87 88 88 89 87 
ANCOVA (including 
propensity score as 
covariate) 

28 26 26 25 24 23 22 25 

OLS (including 
propensity score as 
covariate) 

25 24 23 22 21 20 20 22 

2. Common 
support sample 
(overlap among 
four groups)  

ANOVA 
(subclassification) 94 92 90 88 88 86 85 89 

OLS 
(subclassification) 97 96 95 95 95 95 95 95 

ANOVA (weighting) 84 87 92 90 88 86 83 87 
OLS (weighting) 98 98 97 96 96 96 96 97 

3. Overlap 
sample of 
matching one 
group with all 
other three 
groups using 
Data 2 above 

ANOVA 92 95 96 96 96 97 97 96 

OLS 92 94 95 96 97 98 98 96 

Two binary 
propensity 
score 
models 

4. Common 
support sample 
(overlap among 
four groups 
based on 2 
propensity 
scores)  

ANOVA 
(subclassification) 69 68 67 68 69 71 73 69 

OLS 
(subclassification) 90 90 89 89 89 89 90 89 

5. Overlap 
sample of 
factorial 
matching using 
Data 4 above 

ANOVA (factorial 
matching) 100 99 99 99 99 100 99 99 

OLS (factorial 
matching) 99 99 100 100 99 100 99 99 

 
Note: Entries are percent reduction in the sum of the absolute value of bias among three parameters as 
compared with the conventional OLS estimate. 1000 replications. 
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Table 6: Percent Reduction in Summed MSE (Mean Square Error) in Semi-Experiment Simulation 
 

Propensity 
Score 
Model 

Data Analysis Model 
Proportion of Level 1 of Factor A 

Average 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 

One 
multinomial 
propensity 
score model 

1. Full sample 

ANOVA 
(subclassification) 56 64 69 69 70 66 62 65 

OLS 
(subclassification) 79 85 88 88 89 88 86 86 

ANOVA (weighting) 9 21 34 37 36 41 26 29 
OLS (weighting) 85 88 89 90 89 89 84 88 
ANCOVA (including 
propensity score as 
covariate) 

29 32 35 37 39 39 40 36 

OLS (including 
propensity score as 
covariate) 

30 33 35 37 38 38 38 36 

2. Common 
support sample 
(overlap among 
four groups)  

ANOVA 
(subclassification) 89 90 90 89 89 87 85 88 

OLS 
(subclassification) 92 94 95 95 95 95 93 94 

ANOVA (weighting) 74 80 82 83 83 80 71 79 
OLS (weighting) 91 94 94 94 94 93 88 93 

3. Overlap 
sample of 
matching one 
group with all 
other three 
groups using 
Data 2 above 

ANOVA 78 90 94 95 96 95 93 92 

OLS 81 91 94 96 96 96 94 93 

Two binary 
propensity 
score 
models 

4. Common 
support sample 
(overlap among 
four groups 
based on 2 
propensity 
scores)  

ANOVA 
(subclassification) 76 76 77 78 80 82 84 79 

OLS 
(subclassification) 95 96 96 96 96 96 96 96 

5. Overlap 
sample of 
factorial 
matching using 
Data 4 above 

ANOVA (factorial 
matching) 88 93 95 97 96 95 93 94 

OLS (factorial 
matching) 92 95 96 97 97 96 95 95 

 
Note: Entries are percent reduction in summed MSE among three parameters as compared with the 
conventional OLS estimate. 1000 replications. 
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Table 7: Percent Bias Reduction in Non-Experiment Simulation 
 

Propensity 
Score 
Model 

Data Analysis Model 

Proportion of Level 1 of Factor A and Factor B 

aP =0.5 

bP =0.5 
aP =0.5 

bP =0.3 
aP =0.3 

bP =0.3 
aP =0.7 

bP =0.3 
aP =0.7 

bP =0.7 

One 
multinomial 
propensity 
score model 

1. Common 
support sample 
(overlap among 
four groups)  

ANOVA 
(subclassification) -51 -199 -90 -59 13 

OLS (subclassification) -94 -242 -142 -40 4 
ANOVA (weighting) 85 44 68 71 86 
OLS (weighting) 85 53 61 78 85 

2. Overlap 
sample of 
matching one 
group with all 
other three 
groups using 
Data 1 above 

ANOVA -54 -246 -128 -56 51 

OLS -110 -307 -217 -37 14 

Two binary 
propensity 
score 
models 

3. Common 
support sample 
(overlap among 
four groups 
based on 2 
propensity 
scores)  

ANOVA 
(subclassification) 3 -76 -39 48 56 

OLS (subclassification) 75 44 50 76 83 

4. Overlap 
sample of 
factorial 
matching using 
Data 3 above 

ANOVA (factorial 
matching) 98 13 49 30 70 

OLS (factorial matching) 96 13 43 30 72 

 
Note: Entries are percent reduction in the sum of the absolute value of bias among three parameters as 
compared with the conventional OLS estimate. 1000 replications. 
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Table 8: Percent Reduction in Summed MSE (Mean Square Error) in Non-Experiment Simulation 
 

Propensity 
Score 
Model 

Data Analysis Model 

Proportion of Level 1 of Factor A and Factor B 

aP =0.5 

bP =0.5 
aP =0.5 

bP =0.3 
aP =0.3 

bP =0.3 
aP =0.7 

bP =0.3 
aP =0.7 

bP =0.7 

One 
multinomial 
propensity 
score model 

1. Common 
support sample 
(overlap among 
four groups)  

ANOVA 
(subclassification) -167 -407 -159 -280 49 

OLS (subclassification) -301 -431 -302 -152 32 
ANOVA (weighting) -243 -208 -177 -38 52 
OLS (weighting) 4 6 10 48 79 

2. Overlap 
sample of 
matching one 
group with all 
other three 
groups using 
Data 1 above 

ANOVA -138 -497 -269 -264 78 

OLS -350 -605 -580 -124 46 

Two binary 
propensity 
score 
models 

3. Common 
support sample 
(overlap among 
four groups 
based on 2 
propensity 
scores)  

ANOVA 
(subclassification) -21 -83 -87 42 80 

OLS (subclassification) 74 50 54 72 88 

4. Overlap 
sample of 
factorial 
matching using 
Data 3 above 

ANOVA (factorial 
matching) 64 -5 24 11 84 

OLS (factorial matching) 70 5 31 15 87 

 
Note: Entries are percent reduction in summed MSE among three parameters as compared with the 
conventional OLS estimate. 1000 replications. 
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Figures 
 
 
Figure 1. 2×2 Factorial Design 
 

  Factor B 

  Level 1 Level 2 

Factor A  

Level 1 A1B1 A1B2 

Level 2 A2B1 A2B2 

 
 
Note: Adapted From Figure 8.1 by Shadish, Cook, & Campbell (2002, p.264) 
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Figure 2. 3 ×  3 Subclassification Based on Two Propensity Score Functions (Imai & van Dyk, 
2004) 
 
 
 

  Propensity function for Treatment B 

  Lower third Middle third Upper third 

Pr
op

en
si

ty
 fu

nc
tio

n 
fo

r T
re

at
m

en
t A

 

Upper third Subclass I Subclass II Subclass III 

Middle third Subclass IV Subclass V Subclass VI 

Lower third Subclass VII Subclass VIII Subclass XI 

  
 
 
Note: Adapted from Figure 4 by Imai & van Dyk (2004, p.861). Data are subclassified into three 
subclasses (lower third, middle third, and upper third) based on each of two propensity score 
functions, respectively. Each cell of the 3 ×  3 table represents a subclass based on two 
propensity score functions jointly. 
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Figure 3. Factorial Propensity Score Matching 
 
 
 

  Factor B 

  Level 1 Level 2 

Factor A 

Level 1 

 A1B1          A1B2 
             

                

              

Level 2 

              

                

             
  A2B1           A2B2 

 
 
Note: Yellow and green areas represent “matched on A”; blue and green areas represent 
“matched on B”. The four green areas represent the common participants in two matched 
datasets (Data 5 in Table 1). 
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Figure 4. Effects of Two Factors in Terms of Regression Coefficients 
 
 
 

  Factor B 

  Level 1 Level 2 

Factor A  

Level 1 0 
Bβ  

Level 2 Aβ  
BA

BA

×+
+
β

ββ
 

 
 
Note: The cell of Level 1 of Factor A and Level 1 of Factor B serving as the reference group. 


