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Abstract Body 

 

Background: 

Karabatsos and Walker (2011) introduced a new Bayesian nonparametric (BNP) regression 

model. Through analyses of real and simulated data, they showed that the BNP regression model 

outperforms other parametric and nonparametric regression models of common use, in terms of 

predictive accuracy of the outcome (dependent) variable. The other, outperformed, regression 

models include random-effects/hierarchical linear and generalized linear models, when the 

random effects were assumed to be normally-distributed (Laird & Ware, 1982; Breslow & 

Clayton 1993), and when the random effects were more generally modeled by a nonparametric,  

Dirichlet process (DP) mixture prior (Kleinman & Ibrahim, 1998a,1998b). 

Meanwhile, typical applications of causal inference focus on how a treatment causally affects 

the mean of the outcome, through the use of regression model that assume symmetrically-

distributed errors. However, in many applications, it may also be of interest to investigate how 

the treatment causally changes other aspects of the outcome distribution, such as the median (for 

robustness), the 10th percentile to study treatment effect on lower-achieving students, or even the 

entire outcome distribution (density). Also, the symmetric distribution assumption is almost 

always violated by real data, and such a violation can decrease the accuracy of causal inferences. 

 

Purpose of Study:  

We argue that the new BNP regression model provides a novel, richer, and more valid 

approach to causal inference, which allows the researcher to investigate how treatments causally 

change the entire distribution (density) of (potential) outcomes, including not only the mean, but 

also other features of the outcome variable, such as quantiles (e.g., median, 10th percentile), and 

the variance. We illustrate the BNP model through the analysis of observational data, to estimate 

the causal effect of exposure to excellent high school math education (versus non-exposure, the 

control), on ACT math achievement. In the data analysis, we also compare the predictive 

accuracy of the new BNP model against other regression models. These other models assume 

symmetric distributions for the outcomes, and for the inverse-link function of the propensity 

score model (when specified), and have been recommended for causal inference from 

observational data.  

The other models include the normal linear regression model, having one interaction between 

(1) subject (pre-treatment) covariates, (2) treatment indicators, and (3) indicators of ≥ 5 matched 

groups of subjects, formed either by subclassification (Rosenbaum & Rubin, 1984) or optimal 

full matching (Hansen & Klopfer, 2006; Rosenbaum,1989, 1991) on the estimated propensity 

score. We also compare with the BART model (Bayesian Additive Regression Trees; Chipman, 

et al. 2010), which provides a very flexible regression of observed outcomes on the treatment 

variable and the covariates (Hill, 2011). Extensive data-based simulation studies have shown 

that, in terms of bias and mean square error in causal effect estimation, these linear regression 

models and BART outperform normal linear regression of outcomes using (1) propensity-score-

based pair-matching or subclassification alone, (2) treatment indicators and estimated propensity 

scores as covariates, and (3) observation weights defined by inverse of propensity score 

estimates, when the only covariate is a treatment indicator (Robins, et al. 2000), and when the 

linear model also includes subject covariates (Kang & Schafer, 2007; Schafer & Kang, 2008; 

Hill, 2011). These results seemed to hold true, especially when both the outcome and propensity 

score models were misspecified for the data, which, arguably, almost always occurs in practice. 
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Novelty of study:  

The new BNP model is the first model that allows one to investigate how treatments causally 

effect the entire distribution (density) of the outcome variable, including any feature of the 

distribution that is of interest. Here we study the model for the analysis of observational data, 

though it can also be used to analyze data from a randomized study. Also, by comparing the 

models on predictive accuracy, we will answer an open question about whether the new BNP 

model can improve upon models that have been previously proposed for causal inference. 

 

Statistical Model: 

The BNP model is an infinite-mixture regression model, which allows the entire probability 

density (distribution) of the outcome variable to change flexibly with covariates; in the case of a 

discrete-valued outcome, the density is for the underlying latent response. The model consists of 

covariate-dependent mixture weights, defined by an ordered-probit regression that has an infinite 

sequence of random probit variances, and has systematic component defined by a random 

process, which we specify as the linear model with regression coefficients  . Each kernel of the 

infinite mixture is a possibly-distinct and general unimodal density, specifically, a scale-mixture 

of uniforms that is flexibly modeled by a nonparametric, stick-breaking prior (Ishwaran & 

James, 2001), which we specify as the Pitman-Yor process (more general than the DP). A feature 

of the BNP regression model is that, for any given covariate value, the outcome density becomes 

unimodal when the value is informative about the response, and becomes multimodal when it is 

not very informative. The BNP model is completed by assigning a prior distribution to all 

parameters of the model. For data analysis, the prior combines with the data via Bayes’ theorem, 

to yield the posterior distribution, which describes the plausible values of all model parameters. 

This posterior distribution is estimated using Markov Chain Monte Carlo (MCMC) methods, 

including a Gibbs sampling method that is useful for infinite-mixture models (Kalli et al., 2010). 

 

Research Setting, Subjects, Intervention, Design, and Data Collection:  

Through the analysis of data arising from an observational (quasi-experimental) study, we 

investigate the causal effect of exposure to excellent high school math education (the treatment), 

versus non exposure (the control), on ACT math score (ACT, 2007), among 99 undergraduate 

teacher candidates who have recently started attending and learning at the education schools of 

Loyola University Chicago (LUC), Northeastern Illinois University (NEIU), National-Louis 

University (NLU), and the University of Illinois-Chicago (UIC). The four universities have 

partnered to address the need to improve K-12 math education at Chicago urban schools, and 

they obtained candidates’ data from surveys, interviews, and admission reports. Of the 99 

candidates, 25.3% of candidates said that they received excellent math teaching in high school. 

On average, ACT math scores were higher for those who were exposed to excellent teaching 

(22.16) versus non-excellent teaching (20.23). Table 1 presents summary statistics for 45 

pretreatment (group-indicator 0-1) variables that describe each candidate's background. 

 

Data Analysis Details and Plan: 
For each member of a sample of teaching candidates indexed by i = 1,…,n, let xi = 

(x1i,…,xpi)
T
 denote a background (pre-treatment) covariate, let Ti {t = 0,1} denote the treatment 

variable where Ti = 1 when a candidate is exposed to the treatment of excellent high school math 

instruction, and Ti = 0 when s/he received the control treatment of non-exposure, and let 

(Yi(1),Yi(0)) denote a candidate's potential ACT math outcomes in response to treatment and to 
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control. A causal effect is a comparison of potential outcomes, such as Yi(1)  Yi(0). The 

fundamental problem of causal inference is that only outcome, namely Yi = tiYi(1) + (1ti)Yi(0), 

can be observed from each candidate, because s/he only receives one treatment, it  (Holland, 

1986). This makes causal effects not directly observable from the raw data. 

However, in the observational study, causal effects can be identified if the sample data satisfy 

3 assumptions (Imbens, 2004): (1) The Stable-Unit Treatment Value Assumption (SUTVA): 

potential outcomes for one candidate are independent of potential treatment status of any another 

candidate, given the observed covariates; (2) Unconfoundedness: potential outcomes and 

treatment assignments are independent, given any value of x, and thus, given any true propensity 

score e(x) = Pr[T = 1|x] (Rosenbaum & Rubin, 1983); and (3) Overlap: any candidate with any 

given value of x has a chance to receive either treatment or control. Note that SUTVA can be 

weakened by introducing a multi-valued treatment variable that describes both the treatment 

received by the candidate and by the other candidates. Then the other two assumptions can be 

cast in terms of this treatment variable (Imai & van Dyk, 2004). 

If all 3 assumptions hold, then E[Y(t) | x] = E[Y | T = t, x] = E[Y | T = t, e(x)] holds for any 

value of x, and for any t = 0,1, allowing causal effects to be identified by a regression model 

(Imbens, 2004), which preferably, admits consistent estimates of these conditional expectations.  

From this perspective, the treatment variable T is simply another covariate in the regression 

model, and causal inference entails a comparison of regression predictions E[Yi| Ti = 1, x] and 

E[Yi| Ti = 0,x] for each candidate i = 1,…,n, with the first prediction (second prediction, 

respectively) an "out-of-sample prediction" when Ti = 0 (when Ti = 1, respectively), as shown in 

the earlier research (Kang & Schafer, 2007; Schafer & Kang, 2008; Hill, 2011). For a given 

regression model, the accuracy of out-of-sample predictions can be assessed by leave-one-out 

cross-validated log-likelihood, CVLPL (Geisser & Eddy, 1979; Hastie, et al. 2009).  

We use the CVLPL criterion to compare the predictive performance between 20 regression 

models, including the new BNP model, BART, and 18 linear regression models, most of which 

are based either on subclassification, full matching, direct regression, or inverse-weighting, by 

the estimated propensity score. This also includes two DP-mixed, Hierarchical Linear Models 

(HLMs), each a random ANCOVA model with candidates nested within subclasses, and fully-

matched groups, respectively. For all 20 models, we assume that the data satisfy Assumptions 1-

3, as is typically done in the practice of causal inference. Propensity scores were estimated from 

the data, by fitting a binary logit regression of the treatment variable T on x, using forward 

selection of 1035 variables, including main effects of the 45 background covariates, and all two-

way interactions. Propensity score matching was done using the MatchIt (Ho et al., 2011) and 

optmatch (Hansen & Klopfer, 2006) packages of the R software (R Development Core Team, 

2011). The BART model was fit to the data, using the BayesTree package of R (Chipman, and 

McCulloch, 2010), based on 150,000 converged MCMC samples. The 18 linear regression 

models were fit using the MATLAB software (2011, The MathWorks, Natick, MA). The DP-mixed 

HLM was fit using 50,000 converged MCMC samples, via the DP package (Jara, 2007). 

More generally, when Assumptions 1-3 hold, E[{Y(t)} | x] = E[{Y}|T = t, x] = E[{Y}|T = 

t, e(x)] holds for all values of x, for t = 0, 1, and for any choice of function,  (Imbens, 2004). 

This includes not only the identity function  (Y) = Y, as implied earlier, but also includes other 

interesting choices of functions, such as the conditional distribution function, E[{Y(t)}| x] 

= )|(]|})({[E xx yFytY I  ( }{I  is the indicator function), and derivatives including the 

density function, quantiles, and the inter-quartile range (a robust measure of variance) (Imbens, 

2004). Then for any choice of function, , the conditional average treatment effect is given by: 
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This causal effect estimator avoids the questionable assumption that the sample is a random draw 

from a population (Imbens, 2004). The usual CATE estimator, CATE ]|)0()1([E1
1

i

n
in

YY x  , 

assumes  (Y) = Y. Though, clearly, other choices of functions   can be used to compare 

outcomes in terms of quantiles, inter-quartile range, and so on. 

Inferences with these more complicated functionals can be easily obtained from the posterior 

distribution of our BNP regression model, via MCMC. Also, for the BNP model, we specified a 

weakly-informative proper prior distribution, which accurately reflects little prior information on 

the model parameters. After combining this prior with the data via Bayes’ theorem, the resulting 

posterior of the model parameters will be based almost entirely on information from the sample 

data. The MCMC estimation of the model posterior distribution was performed using code we 

wrote in the MATLAB software, and was based on 50,000 converged MCMC samples. Also, for 

the BNP model, we define the covariates by indicator variables of 25 matched-groups of 

candidates, formed by optimal full matching, and interactions between the treatment indicator 

variable and these 25 matched-group indicator variables. This full-matching is based on absolute 

multivariate (L1) distance between each pair of the 99 candidates on the covariate vector x, after 

replacing each coordinate in the vector with their empirical ranks (Rosenbaum, 1991). This 

matching was done using the optmatch package of R (Hansen & Klopfer, 2006). 

 

Usefulness and Empirical Results of the Proposed Method (Model): 

In the analysis of the observational data, Table 2 shows that, in terms of the CVLPL measure 

of predictive accuracy, our new BNP model far-outperforms the BART model, and all the 18 

linear regression models mentioned earlier. All 20 models yielded positive estimates of the usual 

CATE estimator ( ]|)0()1([E1
1

i

n
in

YY x  ), suggesting that exposure to excellent high school 

math education (versus non-exposure/control) causes an increase in ACT math scores. Most 

models concluded that the 95% predictive interval of CATE was significantly higher than 0.  

From the posterior predictive distribution of the BNP model, Figure 1 and Table 3 present the 

estimated density, quantiles, and inter-quartile range of the ACT math scores, under exposure to 

excellent high math instruction, and under non-exposure (control), and the CATE density 

estimate. All these statistics were based on averaging over all the 99 candidates. Figure 1 also 

presents the posterior median and inter-quartile range of CATE, for each individual candidate.  

Given these results, and given the fact that the new BNP regression model outperformed all 

other regression models that assumed normally-distributed errors, it appears that the outcome 

and causal effect distributions are truly non-normal, skewed, heavy-tailed, and either unimodal 

or multimodal. Also, the results suggest that exposure to excellent high school math instruction 

(vs. non-exposure/control) significantly increases ACT math achievement. 

 

Conclusions:  
Through the analysis of an observational data set on math achievement, we showed that the 

new BNP regression model can provide richer causal inferences with higher predictive accuracy, 

compared to typical causal models which focus inference on the mean outcome, and which make 

restrictive parametric assumptions about the outcome variable and about the propensity score 

model. The new BNP model allows one to investigate how treatments causally change any 

interesting aspect of the distribution (density) of (potential) outcomes, in a flexible manner. 
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Appendix B. Tables and Figures 
 

Variable %   Variable % 

AfAm  13.1   HS_PerfArts  3.0 

AmInd  1.0   HS_Alternative  2.0 

Asian  8.1   HS_Size<200  10.1 

Latino  47.5   HS_Size 200-500 2.0 

White  27.3   HS_Size 500-1k 11.1 

Mixed  2.0   HS_Size 1k-1.5k 3.0 

Female  87.9   HS_Size 1.5k-2k 18.2 

Age 18 51.5   HS_Size 2.5k-3k 5.1 

Age 19 38.4   HS_Size 3k-3.5k 11.1 

Age 20 4.0   HS_Size>4k  7.1 

Age 21 2.0   HS_LowInc 0-20% 20.2 

Age 22-26 3.0   HS_LowInc 20-40% 14.1 

Age >27  1.0   HS_LowInc 40-60% 11.1 

HS_IL  94.9   HS_LowInc 60-80% 10.1 

HS_public  87.9   HS_LowInc 80-100% 29.3 

HS_private  11.1   HS_AfAm 60-90% 4.0 

HS_urban  56.6   HS_AfAm 90-100%  2.0 

HS_suburban  40.4   HS_Latino 60-90% 19.2 

HS_rural 2.0   HS_Latino 90-100% 6.1 

HS_cps  45.5   HS_mixed  35.4 

HS_Select  3.0   HS_White 60-90% 19.2 

HS_Magnet  1.0   HS_White 90-100% 1.0 

HS_CollegePrep  16.2       

 

Table 1. Descriptive statistics of pre-treatment variables among the 99 teacher candidates, 

including variables of candidate high school background (labeled HS). 
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CVLPL Out? CATE 2.5% 97.5% Regression (causal) model:  Predictors 

-177 N 1.53 .95 2.16 New BNP: ~I, FMrank, T by FMrank 

-259 N 1.89 .29 3.48 HLM/ANCOVA/DP: I, T, 7pc(x) by FM 

-259 N 1.88 .13 3.59 HLM/ANCOVA/DP: I, T, 7pc(x) by SC 

-260 Y 1.63 1.04 2.23 IPW/OLS: I, T, 7pc(x) 

-260 N 1.91 1.32 2.51 ANCOVA/OLS: I, T, 7pc(x) 

-262 N 1.15 -.16 2.49 BART: T, x 

-265 N .68 .10 1.27 OLS: I, T by SC, 7pc(x) 

-268 N 2.03 1.41 2.65 OLS: ~I, T, C, T by 5pc(x),  C by 5pc(x) 

-268 Y 1.78 1.16 2.41 IPW/OLS: I, T, T by 5pc(x), C by 5pc(x) 

-269 Y 2.29 1.74 2.85 OLS: I, T by FM, 7pc(x) 

-271 N .33 -.35 1.01 OLS: I, T by SC, T by 1pc(x), C by 1pc(x) 

-281 Y 1.38 .71 2.04 OLS: I, T by FM, T by 1pc(x),  C by 1pc(x) 

-286 N .53 -.25 1.32 OLS: ~I, T,C, T by SC, C by SC 

-287 N .70 -.12 1.52 OLS: I, T by SC 

-287 N 1.56 .70 2.42 IPW/OLS: I, T 

-288 N .77 -.09 1.62 OLS: I, T, ê(x) (polynomial, degree 1). 

-288 N .96 .10 1.82 OLS: I, T, logit(ê(x)) (polynomial, degree 1). 

-291 Y 2.38 1.59 3.17 OLS: I, T by FM 

-324 Y 1.81 1.10 2.52 OLS: ~I, T, C, T by FM, T by C 

-419 Y 1.33 .83 1.83 OLS: I, T, x 

Notes:           

(1)  Out?: Indicates whether any standardized residual indicated any outliers under the model. 

(2)  2.5%, 97.5%:  the 95% predictive interval bounds of CATE. 

(3)  New BNP: The new Bayesian nonparametric regression model, proposed in this paper. 

(4)  OLS:  Linear regression (causal) model fit under ordinary least squares. 

(5)  HLM/ANCOVA/DP:  A Dirichlet process mixed Hierarchical Linear Model, with a random 

ANCOVA model for each subclassified or fully-matched group. 

(6)  IPW: regression with each observation weighted by the estimated propensity score (ti/ê(xi))  + 

(1ti)/(1ê(xi)) . 

(7)  Npc(x): N principal components of x, for dimension reduction, and to ensure positive-definiteness  

for OLS. For each model, the number of components (e.g., 7pc(x)) was chosen to maximize CVLPL. 

(8)  I: intercept;  ~I: intercept excluded;  T: treatment indicator;  C: control indicator; 

(9)  x : vector of 45 variables describing a candidates background (see Table 1). 

(10)  ê(x):  Estimated propensity score from a fitted binary logit regression. 

(11)  For the two regression (causal) models having ê(x) as a predictor, polynomials of ê(x) up to order 

10 were considered. In each case, order 1 (linear) was found to maximize CVLPL. 

(12)  FM: 15 group indicators from full optimal matching of candidates on ê(x), into 16 groups. 

(13)  SC: 5 group indicators, from subclassification of candidates on ê(x), into 6 groups. 

(14)  FMrank: 24 group indicators, from full optimal matching of candidates on the ranking of the 

coordinates of x, into 25 groups. 

(15)  by: refers to an interaction, e.g., "T by SC". 

 

Table 2. Predictive accuracy (CVLPL) and CATE estimates for 20 regression (causal) models. 
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Figure 1. Top left panel: Posterior density estimated of ACT math scores, under the treatment 

(excellent high school math education), and under the control, averaged over the 99 candidates. 

Top right panel: CATE density posterior estimate, averaged over the candidates. Bottom panel: 

posterior median (dot) and inter-quartile range (line) of CATE, for each candidate. 

 

 

 

ACT Math Score 10% 25% 50% 75% 90% IQR

Under Excellent HS Math Education 17.81 20.23 21.96 23.56 25.7 3.33

Under Non-excellent (control) 17.65 18.89 20.31 21.71 23 2.81

 
Table 3. Posterior estimates of quantiles (percentiles) and inter-quartile range (IQR) of 

ACT math scores, under treatment and under control, averaged over candidates, and after 

controlling for candidate covariates. 




