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Abstract

This report shows that the deterministic-input noisy-AND (DINA) model is a special case of

more general compensatory diagnostic models by means of a reparameterization of the skill

space and the design (Q-) matrix of item by skills associations. This reparameterization

produces a compensatory model that is equivalent to the (conjunctive) DINA model, and

is valid for all types of complex structure Q-matrices, not only for trivial cases. This

equivalency uses the GDM as the basis, is not based on recent developments of diagnosis

models such as G-DINA or LCDM. Model equivalency is a topic of some relevance as soon

as researchers want to draw conclusions derived from any particular model-based estimates.

It can be shown that for multidimensional models, there are often multiple ways to specify

different sets of latent variables and their relationships to observed variables. This report

goes beyond showing that multiple versions of a design matrix lead to the same model-based

conditional probability space; it shows that a conjunctive diagnostic classification model

can be expressed as a constrained special case of a compensatory diagnostic modeling

framework.
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This report shows that the deterministic-input noisy-AND (DINA; Macready &

Dayton, 1977; Junker & Sijtsma, 2001) model is a special case of a general compensatory

diagnostic model by means of a reparameterization of the skill space and the design (Q-)

matrix of item by skills associations. This reparameterization produces a compensatory

model that is equivalent to the (conjunctive) DINA model, and is valid for all types of

complex structure Q-matrices, not only for trivial cases. This equivalency uses the general

diagnostic model (GDM; von Davier, 2005) as the basis and is not based on recently derived

instances of diagnosis models such as generalized (G-)DINA (de La Torre, 2011) or the

loglinear cognitive diagnosis model (LCDM; Henson, Templin, & Willse, 2009). Model

equivalency is a topic of some relevance as soon as researchers want to draw conclusions

derived from any particular model-based estimates. It can be shown that in the case of

multidimensional models, multiple ways to specify different sets of latent variables and their

relationships to observed variables can be found. For diagnostic classification models, this

point was made by Maris and Bechger (2009). For example, Rijmen (2010) showed this

for the testlet (Bradlow, Wainer, & Wang, 1999) and bifactor (Gibbons & Hedeker, 1992)

models. It is well known that for structural equation models, different structural equation

models (SEMs) can produce the covariance matrix in similar fashion. For example, Yung,

Thissen, and McLeod (1999) demonstrated an equivalency between higher order factor

models and the hierarchical factor model. This report adds to the active model equivalency

discussion.

In contrast to the preceding considerations, this report looks at a different model

equivalency type. This report shows how a conjunctive diagnostic classification model can

be understood as a constrained special case of a compensatory modeling framework. The

compensatory general diagnostic model (GDM; von Davier, 2005) is used for this purpose

in this report, but once we arrive there, it is easy to show that the same equivalency can be

proved using a constrained diagnostic latent class model, for example, of the type described

by von Davier, DiBello, and Yamamoto (2008). Although, to some degree, it may seem

inconsequential that the majority of diagnostic models can be described as latent structure

models (von Davier, 2009), it appears less trivial to show that a conjunctive model, that
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is, a model that does not allow for compensatory functioning of skills, can be reexpressed

using a reparameterization of the skill space, and in this way, alternatively, one can use a

compensatory diagnostic model.

In addition to showing that one model is equivalent to a special case of more general

models, the result discussed here helps in deciding whether the DINA model or some other

diagnostic model is appropriate for the data at hand. The selection of a particular model

should be made after examining how model assumptions can be regarded in the context of

theoretical considerations that guide the construction of tests. In committing to the DINA

model, the researcher withholds examining the appropriateness of other models. This

way, the researcher cannot examine whether the restrictions used in the DINA model are

suitable or whether a more general model should have been chosen. Embedding the DINA

model, or better, the DINA-equivalent model, into a larger modeling framework allows

model comparisons and examination of their results. Because any model can only represent

an approximation of reality, it is helpful to establish a more general basis on which models

can be compared in determining skill requirements for each item or the appropriateness of

assumed skill functions as compensatory or noncompensatory-conjunctive. The results of

this report will, it is hoped, facilitate these kinds of model comparisons.

The DINA Model

The DINA model is an example of a diagnostic model that has received much

attention by researchers in recent years. The DINA model is considered conjunctive because

it diminishes respondent skills by item attribute comparison in such a way that only

respondents with all necessary skills have a high probability of solving an item, whereas

respondents lacking any of one or more skills have an identical low probability of solving an

item.

More formally, the DINA model can be characterized as follows. Consider I,N,K

integers denoting the number of items i = 1, . . . , I, the number of respondents v = 1, . . . , N ,

and the dimension of a latent variable a = (a1, . . . , aK), respectively. For each item i

and each respondent v, a binary (observable) response variable Xvi ∈ {0, 1} exists such
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that 0 represents a correct response and 1 represents an incorrect response. Consider

a = (a1, . . . , aK) to be the skill pattern. We often assume when working with diagnostic

models that this vector-valued latent variable has binary components ak ∈ {0, 1}, indicating

whether skills are absent or present, k = 1 . . . K; however, it should be noted that

polytomous ordered skill variables can also be used (von Davier, 2005). For each item, let

qi = (qi1, . . . , qiK),

where qik ∈ {0, 1} defines the required skills vector; in other words, qik = 1 if skill k is an

item i requirement, and qik = 0 otherwise. Subsequently, define the conjunction function

for respondent v and item i as

ηvi = f(qi, av) =
K∏
k=1

αqik
vk .

This function is derived from the respondent skills vector av = (av1, . . . , avK) and the

required skills vector qi = (qi1, . . . , qiK) and has a value of ηvi = 1 if respondent v possesses

all required skills for item i, and ηvi = 0 otherwise.

In the case that the DINA model is applicable, we can write the probability of a

correct response for respondent v and item i:

P (Xvi = 1|ηvi, gi, si) = g1−ηvi
i (1− si)

ηvi ,

where giis the guessing probability for item i, quantifying the rate at which a person not in

possession of all the required skills will correctly respond to item i, and si is the slipping

probability, which quantifies the rate at which a respondent in possession of all required

skills will incorrectly respond.

It should be noted that gi and si are item parameters so that each item has two

corresponding parameters. Also, the skill vectors av = (av1, . . . , avK) are unobserved, so

it should be assumed that skill distribution P(A = (a1, . . . , aK)) = π(a1,...,aK) is unknown.

Therefore we find that ||{0, 1}||K − 1 = 2K − 1 in the case of an attempt toward an

unconstrained estimate of the distribution of skills. There may be fewer parameters if one

uses a parametric distribution over the skill space. Using small or medium samples, Xu
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and von Davier (2008) showed these additional parameters π(a1,...,aK) are a computational

estimation burden even for a moderate number of skills. Von Davier and Yamamoto

(2004) and Xu and von Davier (2006) introduced log-linear models that could be utilized

to significantly reduce the number of parameters needed with diagnostic models for the

estimation of multidimensional discrete skill distributions.

A Reparameterization of the DINA Model

In reparameterizing the DINA model to be a compensatory diagnostic model, one

must define a transformed skill space and a constrained skill distribution space. In addition,

to match the modified skill space, one must introduce a reparameterized vector of required

skills that is based on the mapping

d =
K∑
k=1

2(k−1)qk

from the set of original skill requirement vectors qi = (qi1, . . . , qiK) ̸= (0, . . . , 0) to an

integer d. Then define

q∗ = (q∗1, . . . , q
∗
D)

with D = 2K − 1 and with

q∗d = 1

for d =
∑K

k=1 2
(k−1)qk as well as

q∗j = 0

for j ̸= d. If qi = (qi1, . . . , qiK) = (0, . . . , 0), then let q∗j = 0 for all j = 1, . . . , D.

The reparameterized skills requirement vectors are based on a mapping g : 2K 7→ 2D

with D = 2K − 1. This obviously means that we have a (much) larger space of potential

skill requirements. Note, however, that only 2K of these actually appear as existing skill

requirements in the form of a q∗ vector. Table 1 shows an example with three skills, in this

case, D = 23 − 1 = 7.

The skill vectors a = (a1, . . . , aK) are mapped in a similar way into reparameterized

skill vectors a∗
t = (a∗t1, . . . , a

∗
tD). Let the Q-matrix that contains the skill requirement
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Table 1
Q-Matrix for a Three-Skill DINA Model and the Corresponding Q-Matrix
Entries for an Equivalent Compensatory CDM

DINA q Reparameterized q∗

A B C 1 2 3 4 5 6 7
1 0 0 0 0 0 0 0 0 0 0
2 1 0 0 1 0 0 0 0 0 0
3 0 1 0 0 1 0 0 0 0 0
4 1 1 0 0 0 1 0 0 0 0
5 0 0 1 0 0 0 1 0 0 0
6 1 0 1 0 0 0 0 1 0 0
7 0 1 1 0 0 0 0 0 1 0
8 1 1 1 0 0 0 0 0 0 1

vectors be expressed in the following way:

Q =


q1

. . .

qI

 .

We can thus define for each skill vector at = (at1, . . . , atK), with the corresponding

transformed skill vector a∗
t = (a∗t1, . . . , a

∗
tD), with

a∗tl = 1,

if there exists an item i′ (i.e., a row i′ in the Q-matrix) with

l =
K∑
k=1

2(k−1)qi′k

K∏
k=1

a
qi′k
tk = 1,

and a∗tl = 0 otherwise.

This definition ensures that the transformed skill vector a∗
t = (at1, . . . , atD)

contains skills at all positions that indicate the possession of all (or more) skills than the

corresponding requirements vectors qi
∗ = g(qi) for i = 1, . . . , I indicate. It should be noted

that this defines 2K − 1 nonzero skill vectors as well as the zero-skills vector. An example
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Table 2
Skill Patterns for a Three-Skill DINA Model and the Corresponding Skill
Patterns for an Equivalent Compensatory CDM

DINA a Transformed skill pattern a∗

A B C 1 2 3 4 5 6 7
1 0 0 0 0 0 0 0 0 0 0
2 1 0 0 1 0 0 0 0 0 0
3 0 1 0 0 1 0 0 0 0 0
4 1 1 0 1 1 1 0 0 0 0
5 0 0 1 0 0 0 1 0 0 0
6 1 0 1 1 0 1 0 1 0 0
7 0 1 1 0 1 1 0 0 1 0
8 1 1 1 1 1 1 1 1 1 1

using three skills is shown in Table 2. The set of 2K reparameterized skill vectors is denoted

T (a).

It is evident that DINA skill patterns and the transformed skill patterns do not

differ much when there is only one skill involved. Note, however, that as soon as there

are two skills present in the DINA skill pattern, the reparameterized skill patterns contain

three skills: two for items that require only one of the two (DINA) skills and one for items

that indeed require both (DINA) skills.

Implementing a model that is equivalent to DINA should be simple when taking

into account the preceding definitions. Using the GDM, we can write the following:

P (Xvi = 1|q∗, a∗) =
exp (βi +

∑
k γika

∗
kq

∗
ik)

1 + exp (βi +
∑

k γika
∗
kq

∗
ik)

=
exp

(
βi + γika

∗
k(i)

)
1 + exp

(
βi + γika∗k(i)

) ,
which assumes that each row of the reparameterized Q-matrix includes only one nonzero

entry. Additionally, the following constraint is needed:

πa∗ = 0;

this is for all skill vectors not in T (a). In other words, only 2K − 1 parameters are needed

to estimate the skill vector for probabilities in T (a). Also, each item in the reparameterized

DINA-equivalent GDM has only two parameters. Each item has a logistic threshold
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parameter βi that corresponds to the (nonlogistic) DINA guessing parameter by

gi =
exp (βi)

1 + exp (βi)
;

the DINA slipping parameter can be expressed as follows:

1− si =
exp (βi + γi)

1 + exp (βi + γi)
.

For a person with a skill vector av = (av1, . . . , avK) and the associated transformed skill

vector a∗
v = (a∗v1, . . . , a

∗
vD), we have

g1−ηvi
i (1− si)

ηvi =

(
exp(βi)

1 + exp(βi)

)1−a∗
vk(i)

 exp
(
βi + γik(i)

)
1 + exp

(
βi + γik(i)

)
a∗

vk(i)

,

equivalent to

g1−ηvi
i (1− si)

ηvi =
exp

(
βi + γik(i)a

∗
vk(i)

)
1 + exp

(
βi + γik(i)a∗vk(i)

) .
Finally,

g1−ηvi
i (1− si)

ηvi =
exp

(
βi +

∑
k γik(i)a

∗
vkq

∗
ik

)
1 + exp

(
βi +

∑
k γik(i)a

∗
vkq

∗
ik

)
is obtained as the probability of a correct response. Note that the right-hand side is based

on a GDM using the transformed skill patterns and Q-matrix, whereas the left-hand side is

based on the DINA using the original skill patterns and Q-matrix. The preceding result is

well defined because there is only k ∈ {1, ..., D} with q∗ik = 1; thus a∗vk(i) =
∑D

k=1 a
∗
vkq

∗
ik. In

addition, a∗vk(i) = 1 if ηvi =
∏K

k=1 a
qik
vk = 1 and a∗vk(i) = 0 if ηvi =

∏K
k=1 a

qik
vk = 0, by definition

of the transformed skill vector a∗
v = (a∗v1, . . . , a

∗
vD), thus proving that the DINA model and

the reparameterized simple-structure, compensatory GDM are equivalent. It is important

to note that this does not mean that this holds only for simple structure DINA models.

The example given in the table above is not a simple structure DINA, and the derivations

hold for any DINA model, with any type of Q-matrix that leads to an identifiable model.

Discussion

Here we report on a reparameterization of the DINA model as equivalent to a

compensatory GDM. Though the models have different skill definitions, they contain an
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identical number of reparameterized parameters. The reader is left to his or her own

evaluation of the interpretability of the DINA model; that is, we ask, Are the skills really

conjunctive, or could some skills-based models also be reexpressed as compensatory? Note

that extensions of the DINA model tackle a different issue than what we present here.

The G-DINA (de la Torre, 2011) and other extensions or modifications extend the model

space, rendering the DINA a submodel of a larger framework; however, when they are

specified as a DINA, the skills remain conjunctive. The results of this report enable a

different procedure: Without extending either the DINA or the compensatory GDM, there

is equivalency between the two because of alternative skills definitions, meaning that the

same data can be fitted in identical ways using different sets of skills and different modeling

approaches. As a result, the conjunctive feature of the DINA appears to be illusory because

there is an equivalent model based on a higher dimensional but constrained skill space and

a simple-structure Q-matrix.

This result also suggests new ways to test the DINA model. To ensure equivalence,

all but 2K skill pattern probabilities must be constrained to be 0.0. If we relax that

constraint and allow all skill vectors a nonzero probability, we have a model that can be

tested against the DINA-equivalent model. This may be an aid in evaluating the fit of the

DINA model compared to less constrained models and may help researchers in determining

if the conjunctive skills assumption for the DINA model is truly appropriate. Future

extensions to related models, such as the DINO model, should be straightforward using the

tools provided here.
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