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Abstract 

This study examined the scores on a state standards-based Grade 5 Science assessment obtained 

by a group of students without learning disabilities who took the standard form of the test and by 

three groups of students with learning disabilities: one taking the standard form of the test 

without accommodations or modifications, a second taking the test with accommodations, and a 

third group taking the test with modifications. The groups received accommodations or 

modifications that were specified in their 504 or IEP plans. Unlimited time was granted to 

complete the test. A series of item-level, then parcel-level, exploratory and confirmatory factor 

analyses investigated whether or not the assessment demonstrated factorial invariance for the 

four groups of students studied. The results of this study help substantiate the validity of test 

scores for students with disabilities who take the test with the particular set of accommodations 

or modifications that were used in this study. In addition, the results lend support to modifying 

this state’s policy in order to aggregate scores obtained by students without learning disabilities 

and by students with learning disabilities who have taken the assessment with accommodations 

or modifications required by their 504 plans or IEPs for AYP purposes.  

Key words: science assessment, students with learning disabilities, factor analysis, factorial 

invariance, item parcels 
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1. Background 

The historical record regarding accommodations and modifications for testing examinees 

with disabilities dates back over seven decades. The implications of interpreting test scores that 

result from accommodated or modified administrations have been debated for just as long. 

Pitoniak and Royer (2001) provided a thorough context for understanding the evolution of the 

practice, its effects on score validity, and its place in mainstream society.  

One of the first key distinctions mentioned in Pitoniak and Royer (2001) is between an 

accommodation and a modification in the context of testing. Hollenbeck, Tindal, and Almond 

(1998) distinguished the two terms as follows:  

“Accommodations do not change the nature of the construct being tested, but 

differentially affect a student’s or group’s performance in comparison to a peer 

group...modifications result in a change in the test (how it is given, how it is completed, 

or what construct is being assessed)...because of the lack of interaction between “group” 

and “change in test,” the modification itself does not qualify as an accommodation. 

(pp. 175–176). 

The definition of these two key terms led to a description by Pitoniak and Royer (2001) 

of the evolution of legal policy concerning those with disabilities. The highlights are discussed 

here. 

As referenced by Rosenfeld, Tannenbaum, and Wesley (1995) in Pitoniak and Royer 

(2001), accommodations were first allowed on the SAT® in the 1930s. Fischer (1994) is quoted 

in Pitoniak and Royer (2001) discussing how the U.S. Civil Service Commission first thought 

about modifying assessments measuring job-related abilities for candidates with disabilities in 

1946, with the validity investigations of such tests starting a decade later. From a legislative 

perspective, according to Pitoniak and Royer (2001), the Rehabilitation Act of 1973, the 

Americans with Disabilities Act (ADA) of 1990, and the Individuals with Disabilities 

Educational Acts (IDEAs) of 1991 and 1997 set the stage for current practices in this area. 

Section 504 of the Rehabilitation Act of 1973 stipulated how federally-funded programs 

or activities must require the provision for accommodations to those with disabilities in major life 

activities (e.g., speaking, learning, and working) to ensure equal access and participation. The 

ADA extended the 1973 legislation to employment and educational opportunities. The IDEA 

requires Individual Educational Programs (IEPs) for students with disabilities so they receive 
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proper instruction and services (including testing) in the least restrictive environments that are 

possible. The 1997 revision to the IDEA mandated that students with disabilities be included in 

general assessments at the district and state levels when given appropriate accommodations to 

take these assessments. 

The No Child Left Behind Act or NCLB (2001) reinforced the objectives of the 1997 

IDEA amendments and focused on improving the education of students with disabilities in two 

ways: (a) requiring states and districts to report scores for subgroups of students, including 

students with disabilities; and (b) holding schools accountable for Adequate Yearly Progress 

(AYP) of these subgroups on a state’s academic standards.  

Elbaum, Arguelles, Campbell, and Saleh (2004) discussed how the rising level of 

participation by students with disabilities in statewide assessments has stimulated considerable 

research and discussion concerning how to appropriately assign testing accommodations, how 

accommodations impact performance for students with and without disabilities, and the validity 

of interpretations of that performance when students are granted particular accommodations. Of 

particular concern is whether or not the scores obtained on a test where accommodations and/or 

modifications are permitted have the same meaning as scores obtained on a standard 

administration of the test. A second very important question is whether accommodations on a 

standard assessment truly lead to more valid interpretations of scores for groups of students who 

receive the accommodations. 

This study examined the scores on a state standards-based Grade 5 Science assessment 

obtained by students without learning disabilities who took the standard form of the test and by 

three groups of students with learning disabilities: (a) those taking the standard form of the test 

without accommodations or modifications, (b) those taking the test with accommodations as 

specified in their IEPs or 504 plans, and (c) those taking the test with state-approved 

modifications.  

The overall goal of the study was to determine whether or not this assessment had the 

same internal structure for those students with varying learning disabilities compared to those 

without learning disabilities taking the test under standard conditions. This was investigated by 

factor analyses of item-level, and then parcel-level, scores for all groups studied, using those 

students without learning disabilities as the primary reference group. Specifically, this study 

addressed the following research questions: 
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1.   Does the assessment measure the same construct(s) for examinees with learning 

disabilities who take the test under standard conditions as it does for the 

corresponding nondisabled population? 

2.   Does the assessment measure the same underlying construct(s) for examinees with 

learning disabilities who take the test with a test change (accommodations or 

modifications) as it does for the nondisabled population who take the test under 

standard conditions? 

The accommodations and modifications that were evaluated in this study were a general 

set of accommodations and modifications specified in students’ 504 plans or IEPs approved by 

this particular state for use in testing. The set of allowable accommodations and modifications on 

this Grade 5 Science test is described in Table 1. 

Table 1 

 List of Approved Accommodations and Modifications Used in Grade 5 Science 

Accommodations Marked in test booklet 

Dictated responses to scribe 

Used non-interfering 
assistive device 

Used Braille test 

Used large-print test 

Tested over more than 1 day 

Had supervised breaks 

Tested at most beneficial 
time of day 

Administered at home or in a 
hospital 

Used a dictionary 

Examiner presented with 
Manually Coded English 
(MCE) or American Sign 
Language (ASL)  

Examiner read test questions 
aloud 

Modifications Used a calculator 

Used an arithmetic table 

Used math manipulatives 

Used interfering assistive device 

 

It should be pointed out that the most frequently used supports for students on 

assessments are extra time and what is often referred to as an audio accommodation. For the 
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state under study, there were no time constraints for any students taking the test. When using 

an audio accommodation, a student either listened to a recording of the assessment questions 

and (sometimes) the assessment text, or the student had the questions/text read aloud to him or 

her by a human reader. Most states, including the state participating in this study, consider the 

audio accommodation for an English-language arts (ELA) assessment to actually be a 

modification. However, some states consider audio assistance to be an accommodation for 

science tests. The accommodation “Examiner read test questions aloud” displayed in Table 1 

was used in this study. Therefore for this report, those students receiving the audio 

accommodation were included in the group with learning disabilities who took the test with 

accommodations required by their 504 plans or IEPs. Modifications are thought to change the 

construct(s) being measured by the assessment, and consequently this state, like many other 

states, does not currently aggregate scores obtained using modifications with other scores for 

NCLB purposes. This research will attempt to show whether the scores obtained by students 

using approved modifications are valid and have similar meanings compared to scores 

obtained by students taking the test with accommodations. 

2. Review of Relevant Research 

Some of the most common accommodations or modifications for students with reading-

based learning disabilities were examined in the studies reviewed in this section. These 

accommodations or modifications were typically specified in 504 or IEP plans (including extra 

time and audio presentation, e.g., having the test read aloud, administered via audio cassette or 

administered with a screen reader). It should be noted that research in this area is difficult to 

conduct due to: 

 the multiple types of accommodations or modifications that are employed. 

 the variety and severity of disabilities of the examinees. 

 controversy regarding how each accommodation or modification might or might not 

change the test’s construct(s). 

 the inability to aggregate data across administrations because of database 

shortcomings (e.g., information about the type of accommodation or modification an 

individual receives is typically not collected).  
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Tindal and Fuchs (2000) completed an exhaustive review of research on testing 

accommodations for students with disabilities and this review has been updated more recently 

(Sireci, Li, & Scarpati, 2003).  

Section 2.1 will focus on studies that explain differences in test performance between 

groups on a test, typically done under true experimental conditions1. The focus has mostly been 

on reading and mathematics assessments, but some studies involving science assessments will be 

referenced in Section 2.2. Section 2.3 deals specifically with methods relating to examining the 

internal structure of a test. 

2.1 Experimental Studies on Accommodations 

The studies reviewed for this report indicate that the most common accommodations and 

modifications for students with reading-based learning disabilities are extra time and audio 

presentations. Research on extra time indicates that students with those types of disabilities do 

differentially benefit when compared with students without such disabilities (i.e., a differential 

boost2 is demonstrated when the two groups are compared and students with disabilities achieved 

greater gains than students without disabilities) and that extra time does not appear to alter the 

construct of most state achievement tests (Sireci, Li, & Scarpati, 2003). Research on the impact 

of an audio presentation on tests of reading or English-language arts is less conclusive than the 

research on timing, but will be described here.  

Fuchs, Fuchs, Eaton, Hamlett, Binkley, and Crouch (2000) researched the impact of 

commonly used testing accommodations on the performance of elementary school students with 

and without learning disabilities on a reading comprehension test. Results indicated that students 

with learning disabilities had a differential boost from the read-aloud accommodation, but not 

from extended time or from the use of large-print text.  

Three studies on the effects of audio presentation reviewed by Sireci, Li, and Scarpati 

(2003) indicated no gains for students with or without disabilities (Kosciolek & Ysseldyke, 2000; 

McKevitt & Elliot, 2003) or similar gains for both groups (Meloy, DeVille, & Frisbie, 2002). 

Sample sizes may have contributed to the different findings among the studies that tested the 

interaction model for differential boost. The Fuchs, et al. (2000) study had the largest total 

sample size (n = 365) and did detect a differential boost, while the study with the next largest 

total sample size (Meloy et al., 2002; n = 260) found similar gains for students with and without 

disabilities. The last two studies that tested the interaction model had small samples (31 in the 
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Kosciolek and Ysseldyke study and 79 in the McKevitt and Elliot study) and found no 

significant gains for students with or without disabilities. Other possible reasons for the 

inconsistent results are differences in the item types employed and in the grade levels of the 

students in the studies. 

Elbaum, Arguelles, Campbell, and Saleh (2004) examined the effect of students 

themselves reading a test aloud as an accommodation. Their study included 456 students (283 

with learning disabilities [LD]) in Grades 6 through 10. The researchers administered alternate 

forms of an assessment constructed of 3rd- to 5th-grade level reading passages with 

accompanying comprehension questions. All students first took the assessment in the standard 

condition and then with instructions to read the passages aloud at their own pace. The researchers 

found that “as a group of students, test performance did not differ in the two conditions, and 

students with LD did not benefit more from the accommodation than students without LD.” The 

researchers noticed, however, that the scores of LD students were more variable in the 

accommodated condition than were the scores of students without disabilities. They emphasized 

that the findings of their study, “….underscore the need to go beyond the interpretation of group 

mean differences in determining the validity of testing accommodations.”  

The data analyzed for this report, as is typical with studies carried out using data from 

large-scale state assessments, are considered to have come from a nonexperimental design. This 

means that students only took the exam one time under one set of conditions compared to two 

times in a typical experimental design study where the standard form and a parallel form of the 

test are used.  

2.2 Studies Focusing on Science 

Compared to reading and mathematics, fewer studies examine performance on science 

assessments when accommodations or modifications are provided. However, the number of 

existing studies is still quite large compared to other academic subjects. Sireci, Scarpati, and Li 

(2005) mentioned a few studies that look at accommodations for students with disabilities, on 

science exams. Meloy, DeVille, and Frisbie (2002) looked at the read-aloud accommodation and 

its effect on performance of middle school students on the Iowa Test of Basic Skills (ITBS) in 

four subjects, one of which was science. There were 260 participants across Grades 6 through 8, 

and the ratio of students without disabilities to students with reading-based learning disabilities 

was 3 to 1. Random assignment of all participants to the read-aloud or standard condition was 
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made and was consistently applied to all four tests. As expected, students without reading-based 

disabilities performed better than those with such disabilities under both conditions on all four 

tests, and scores were higher on the tests taken with the read-aloud test change compared to those 

on the standard forms. This is consistent with the view of the interaction hypothesis according to 

Fuchs, Fuchs, Eaton, Hamlett, and Karns (2000).  

A study by Brown and Augustine (2001) is referenced in the Sireci et al. (2005) paper as 

well, regarding the use of screen-reading software in administering publicly available National 

Assessment of Educational Progress (NAEP) science items to 96 participants. Standard and 

computer-read forms of the test were given. There was no significant difference in performance 

between conditions, after controlling for the reading ability of the students. 

A study by Koretz and Hamilton (2000) used data from the Kentucky Instructional 

Results Information System (KIRIS) assessment where multiple-choice items were added to the 

previously exclusive open-ended response exam for all academic subjects. Given a matrix 

sampling design of 12 of the 28 multiple-choice items, the authors focused their attention on the 

common set of 16 items. The state’s science assessment was given in Grades 4, 7, and 11.  

Across grades, students with disabilities scored 0.7–1.0 standard deviations (SDs) below 

those students without disabilities. Comparisons were also made within the disability group 

between those taking the test with and without accommodations. The accommodations most 

often used were oral presentation, paraphrasing, and dictation. Across grades, those taking the 

test with accommodations scored between 0.1 and 0.3 SDs below those students taking the test 

without accommodations on the multiple-choice items. Comparing mutually exclusive groups of 

accommodated students, those receiving an oral reading of the test scored almost 0.2 SDs higher 

compared to those receiving paraphrasing. Those receiving an oral reading and dictation or 

paraphrasing performed at least 0.1 SDs better than those receiving only an oral reading 

accommodation. The results from this study need to be interpreted in the context that students 

with disabilities found these multiple-choice items to be more difficult and that the items were 

less discriminating for students with disabilities than for students without disabilities. 

2.3 Studies of Internal Test Structure 

Studies using differential item functioning (DIF). In addition to the studies reviewed 

above, two recent studies have used operational test data to examine differential item 

functioning (DIF) by comparing the performance of students who received read-aloud 
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accommodations to that of a comparison group of students matched on total test score that did 

not receive accommodations on K–12 reading assessments. Cahalan-Laitusis, Cook, and Aicher 

(2004) examined DIF on third and seventh-grade assessments of English-language arts by 

comparing students with learning disabilities that received a read-aloud accommodation to two 

separate reference groups matched on total test score (students with disabilities who received no 

accommodations and students without disabilities who received no accommodations). The 

results indicated that 7–12% of the test items functioned differently for the focal group (students 

with learning disabilities who received read-aloud accommodations) when compared to either 

of the reference groups. Extra time was also examined, but no more than 1 percent of the items 

had DIF when the focal group received extra time and the reference group did not. A similar 

study by Bolt (2004) compared smaller samples of students on three state assessments of 

reading or English-language arts. In all three states, the read-aloud accommodation resulted in 

significantly more items with DIF than for other accommodations. Both of these studies provide 

evidence that a read-aloud accommodation may change the construct being assessed.  

Factor analysis studies using items or subscores. Only a small number of published 

studies have examined and compared the factor structures of assessments given to students 

without disabilities with those of assessments given to students with disabilities under 

accommodated and nonaccommodated conditions. Tippetts and Michaels (1997) analyzed data 

from the Maryland School Performance Assessment Program (MSPAP) and found that scores 

obtained by students with disabilities who received accommodations and scores obtained by 

students with disabilities who received no accommodations had comparable factor structures and 

concluded that this similarity of factor structures provided evidence of test fairness for the two 

populations taking the MSPAP.  

Meloy, DeVille, and Frisbie (2002) compared factor structures for students with 

disabilities taking the Iowa Tests of Basic Skills assessments with a read-aloud accommodation 

and for students without a disability taking the assessments without such an accommodation. 

These authors concluded that the read-aloud accommodation appeared to change the construct 

being measured for most accommodated students relative to students who were assessed under 

standard conditions.  

Huynh and Barton (2006) used confirmatory factor analysis to examine the effect of 

accommodations on the performance of students who took the reading portion of the Grade 10 
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South Carolina High School Exit Examination (HSEE). Three groups of students were studied: 

(a) students without disabilities who took the regular form of the test, (b) students with 

disabilities who were given the regular form of the test, and (c) students with disabilities who 

were given the test with a read-aloud accommodation. The purpose of their study was to assess 

the comparability of accommodated and non-accommodated scores. One of the specific issues 

they addressed was whether or not the accommodation changed the internal structure of the test.  

Initially, these authors carried out a principal components analysis on the correlation 

matrix of the assessment’s six subscores for each group of examinees. This indicated a single 

factor was adequate to summarize the data for each group. This was followed by a multigroup 

maximum likelihood confirmatory factor analysis of the six sub-scores to determine whether a 

one-factor model could best describe the data for all three groups considered together. The 

authors concluded that a one-factor model could be used to describe the data for those students 

taking the accommodated form (the first group) and the regular form (the other two groups). 

They concluded that the accommodations provided on the South Carolina High School Exit 

Examination did not substantially change the test’s internal structure and preserved the major 

construct underlying the test. 

Cook, Eignor, Sawaki, Steinberg, and Cline (2006) used both exploratory and 

confirmatory factor analyses to investigate whether the Grade 4 ELA test in a large state 

measured the same construct(s) for students without disabilities taking the test without 

accommodations compared to mutually exclusive groups of students with disabilities taking the 

test without and with accommodations. Accommodations used by the latter group were defined 

by the students’ 504 plans or IEPs. Interfactor correlations of the five content strands measured 

by the test were all generally high, indicative of a possible reduction in the number of factors 

present in the data. 

Exploratory analyses based on tetrachoric correlations from item-level data suggested a 

single factor provided a more parsimonious fit to the data for all groups under study, compared 

to separate reading and writing factors. As is often the case with large-scale assessments across 

subjects when item-level data is used, there was a presence of a very large general first factor for 

all groups, despite a low proportion of explained variance. This was supported through 

maximum likelihood confirmatory factor analyses among the individual groups and then in a 
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multigroup setting, as all model fit indices were within acceptable ranges for single-factor 

models and no appreciable improvement in model fit was found for two-factor models. 

Factor analysis studies using item parcels. Rock, Bennett, Kaplan, and Jirele (1988) 

examined the factor structure of the GRE® and the SAT for groups of examinees with and 

without learning disabilities. These authors felt that if the factor structure was the same for each 

test across these groups, this would lend support to the notion that the test scores have the same 

meaning for students with and without learning disabilities. At the time of the analysis, the SAT 

was composed of two tests (verbal and quantitative) and the GRE had three tests (verbal, 

quantitative, and analytical). These authors fit a two-factor model to the SAT and a three-factor 

model to the GRE, using item parcels and maximum-likelihood confirmatory factor analysis.  

They found that for the SAT, the two factors of verbal and quantitative ability fit the data 

reasonably well for examinees with learning disabilities who took a cassette-recorded version of 

the test, but the factors were less correlated for this group than for examinees without learning 

disabilities who did not receive this accommodation. Although the two-factor model fit overall, 

additional examination of the SAT verbal and quantitative factors showed evidence of 

differential meaning of scores for examinees with learning disabilities taking the cassette-

recorded version of the SAT. 

The GRE verbal, quantitative, and analytical factors were examined for test-takers 

without disabilities who did not receive accommodations on the assessment and for test-takers 

with visual impairments or physical disabilities who did receive accommodations. While the 

parcels created for the verbal and quantitative sections each formed a single factor for examinees 

with disabilities, the parcels created for the analytical section broke out into two factors (logical 

reasoning and analytical reasoning), rather than the one overall hypothesized factor. 

Cook, Steinberg, Sawaki, and Eignor (2008) examined a large-scale mathematics 

assessment in the same state and with the same groups as those described and used in this paper. 

Item parcels, balanced by difficulty within the five reported content strands, were created to 

facilitate interpretation of the internal structure of the test. The same three-factor structure 

emerged for all groups: (a) number sense; (b) algebra and functions combined with statistics, 

data analysis, and probability; and (c) measurement and geometry. However, the groups with 

learning disabilities each had a different variance on the latent measurement and geometry factor 

compared to the students without learning disabilities.  
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3. Overview of the Study 

The analyses carried out for this Grade 5 Science examination from the selected state 

were similar to those employed in the Cook et al. (2008) study that made use of mathematics 

data for the state in a previous year. Exploratory and confirmatory factor analyses (EFA and 

CFA, respectively) were first conducted at the item level, starting from matrices of tetrachoric 

correlations of dichotomously-scored item-level data. The focus of the analyses was to determine 

and compare the number of factors that accounted for the data among four different groups 

taking the Grade 5 Science test. The four groups were: 

 students without learning disabilities who took the test without accommodations 

(Group 1), 

 students with learning disabilities who took the test without accommodations 

(Group 2), 

 students with learning disabilities who took the test with accommodations defined by 

a 504 plan or IEP (Group 3), and 

 students with learning disabilities who took the test with modifications specified in a 

504 plan or IEP, including calculators, arithmetic tables or formulas, or manipulatives 

(Group 4). 

Item-level exploratory factor analyses, first without then with rotation of factors, were carried 

out to obtain a preliminary indication of the possible dimensionality of the data. This analysis 

was to be followed by a series of confirmatory factor analyses separately for each group to 

determine the number of factors for the Grade 5 Science assessment.  

However, there were limitations to following this item-level approach for each of the four 

groups examined in the study. As has been mentioned previously, sample size issues often arise 

in studies involving groups of students with specific disabilities or who need specific 

accommodations to take tests. The current study was conducted after a change in this particular 

state’s internal database classification system for accommodations, thereby making it more 

difficult to obtain sufficiently large samples to conduct confirmatory factor analyses. This had 

not been an issue for the Cook et al. (2006) study. It was for this reason that Group 4 could not 

be included in the item-level factor analyses. Also, for reasons to be mentioned later, there are 

psychometric concerns with performing item-level factor analyses. 
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Therefore, to complete the analysis of the internal structure for all groups under study, the 

items were grouped into parcels within content strands, balanced for difficulty, so that each 

parcel would have a minimum of four items (Cook, Dorans, & Eignor, 1988). Variance-

covariance matrices of parcel scores were used as inputs in model testing for this phase of the 

analysis. Individual-group and multi-group confirmatory models were then tested under a 

modified strand structure so that appropriate measurement model identification could be 

achieved and the research questions could be properly answered. The ultimate objective was to 

demonstrate the similarity, or invariance, of the factor structure across groups. 

4. Methods 

4.1 Description of the Test 

The Grade 5 Science assessment consisted of 60 multiple-choice items, covering three 

major content areas (Physical Science – 20 items, Life Science – 21 items, and Earth Science – 

19 items) and was a two-year cumulative exam so that each content area had Grade 4 and Grade 

5 components.  Students received scores on six reported content strands and this design reflected 

the state content standards. Table 2 provides a summary of the content strands and the numbers 

of items making up each strand. 

Table 2 

Number of Items by Content Area and Grade Level for Grade 5 Science 

Content area Grade 4 Grade 5 Total items 

Physical science 8 12 20 

Life science 10 11 21 

Earth science 7 12 19 

Total items 25 35 60 

The test placed more emphasis on material covered in Grade 5 (35 items) than Grade 4 

(25 items). Most questions were stand-alone items without a stimulus, but some questions were 

grouped by a common stimulus such as a diagram. 
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4.2 Description of the Samples 

This study evaluated the factor structure of the Grade 5 Science assessment when 

administered to four groups of students: students without disabilities who took the test under 

standard conditions (Group 1), students with learning disabilities who took the test under 

standard conditions (Group 2), students with learning disabilities who took the test with an 

accommodation defined in their 504 plan or IEP (Group 3), and students with learning 

disabilities who took the test with a modification specified in their 504 plans or IEPs (Group 4).  

The size of Group 1 was initially well over 230,000 students, so in preparation for the 

item-level analyses, a random sample of 30,000 examinees was created, primarily to facilitate the 

running of the various computer programs used in the analyses. Group 2 was reduced to roughly 

10% of its original size while Groups 3 and 4 were left intact. For the parcel-level analyses 

Groups 1, 2, and 3 were sampled down to 500 students, so that the results could be more 

comparable to those of Group 4. Sample sizes and raw score summary statistics for all groups for 

both the item-level and parcel-level analyses are shown in Table 3, with raw score summary 

statistics for the sampled-down groups (Groups 1 and 2) being comparable to their respective 

total samples.  

Table 3 

Raw Score Summary Statistics for Grade 5 Science Factor Analysis Samples 

 Item-level analyses Parcel-level analyses 

Group N Mean SD N Mean SD 

1 – Non-LD 30,000 34.5 10.3 500 35.0 9.9 

2 – LD, no accommodations 11,394 23.4 9.1 500 23.3 8.9 

3 – LD, IEP/504 accommodations 3,231 23.4 8.5 500 23.0 8.0 

4 – LD, IEP/504 modifications 295 22.8 9.1 295 22.8 9.1 

It can be seen from a review of the information provided in Table 3 that, as expected, the 

performance of students without learning disabilities (Group 1) was approximately one SD above 

that of students with learning disabilities who took the test without accommodations (Group 2). 

Additionally, the performance of students with learning disabilities who took the test with 

accommodations (Group 3) and of students taking the test with modifications (Group 4) were not 
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substantially different from that of Group 2. More information on the construction of the samples 

used in the parcel-level analyses will be provided later. However, it is evident that the 

performance of the samples used in the parcel-level analyses were not significantly different 

from comparable samples used in the item-level analyses.  

4.3 Description of Possible Factor Structure 

An initial hypothesis about the underlying structure of the test was that it corresponded to 

the existing strand structure, that is, the test had six underlying factors, one for each strand. Such 

a configuration made sense given that separate scores were reported for each of the six strands. 

Given the description of the strands, these were likely to be correlated. 

However, a closer look at the items, both within and across the strands, reinforced the 

observation that the strands were likely to only be conceptual in nature, and may not in any way 

have corresponded to the underlying empirical structure of the test. It might then be reasonable to 

hypothesize that the test had either three underlying factors, one for each content area (Physical 

Science, Life Science, and Earth Science), or two underlying factors, one for Grade 4 content and 

one for Grade 5 content, and that in each instance these factors would be correlated. Finally, since 

the test is by title a science assessment, it was reasonable to hypothesize that the test had only one 

underlying factor, accounting for data from each content area and each grade level. All items 

appeared to heavily depend on the examinee being able to read and understand a wide array of 

scientific concepts and terms, possibly suggesting one underlying factor. The exploratory and 

confirmatory factor analyses that were conducted were influenced by the various hypotheses about 

the number of underlying dimensions that explained the data, and whether these were similar in 

nature across groups.  

5. Analyses 

5.1 General Descriptive and Psychometric Statistics 

Table 3 displayed the raw score summary statistics for the groups of interest on the entire 

test, but it was worth looking at performance on the individual strands to see if any patterns 

emerged to help form hypotheses for factor analyses to be conducted later. Figure 1 shows each 

group’s performance measured by percent correct3on the total test and each of the six strands. 



15 

 

Figure 1. Percent correct on the total test and by strand4 by group. 

We begin to see differing patterns of performance between Group 1 and Groups 2, 3, and 4. We 

also see that content area performance tended to be ordered by Life Science, then Physical 

Science and Earth Science. All groups were weakest on the Earth Science Grade 4 strand. Grade 

5 strand performance tends to be approximately equal to that of Grade 4, with the exception of 

Earth Science. Table 4 displays the Cronbach’s Alpha reliabilities for the total test and at the 

strand level. Strand-level values are adjusted for strand length.5 

Table 4 

Total Test and Strand Length-Adjusted Reliabilities by Group 

Group Total 
test 

PS5 (12) PS4 (8) LS5 (11) LS4 (10) ES5 (12) ES4 (7) 

1: Non-LD 0.89 0.75 0.81 0.77 0.80 0.77 0.84 

2: LD, no 
accommodations 

0.85 0.74 0.78 0.75 0.77 0.75 0.76 

3: LD, IEP/504 
accommodations 

0.82 0.73 0.78 0.71 0.76 0.73 0.74 

4: LD, IEP/504 
modifications 

0.85 0.74 0.76 0.75 0.77 0.75 0.78 
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The unadjusted strand reliabilities ranged from 0.31 to 0.63. Based on Spearman-Brown adjusted 

values, the reliabilities of the individual strands were closer to the reliabilities for the total test in 

each group. This allows for factor solutions generated from the item-level data positing that the 

number of factors is equal to the number of strands to be readily interpretable. 

Finally, Table 5 displays the correlation of observed strand scores to total test score. 

Table 5 

Correlations of Observed Strand Scores to Total Test Score 

Group PS5 (12) PS4 (8) LS5 (11) LS4 (10) ES5 (12) ES4 (7) 

1: Non-LD 0.81 0.74 0.80 0.82 0.82 0.71 

2: LD, no 
accommodations 

0.79 0.69 0.76 0.77 0.80 0.58 

3: LD, IEP/504 
accommodations 

0.75 0.67 0.73 0.76 0.77 0.56 

4: LD, IEP/504 
modifications 

0.78 0.65 0.78 0.77 0.77 0.68 

The range of correlations across groups and strands based on the item-level data 

ranges from 0.56 to 0.82, which is quite a large range. The observed intercorrelations of the 

strands range from 0.29 to 0.63 (raw) and 0.61 to 1.00 (adjusted for attenuation) across 

groups, which may raise issues about whether a measurement model could be represented by 

the individual strands based on item-level data. Appendix A displays the matrices of 

observed intercorrelations among the strands adjusted for attenuation. While observed 

descriptive statistics are helpful in interpreting how different groups of students did on the 

test, formal factor analyses must also be conducted before making a decision on the number 

of factors to use. Table 6 shows the factor analyses to be conducted and the sections of the 

paper where these steps are referenced. 
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Table 6 

Summary of Proposed Factor Analyses 

Level Analysis Type Objective 
Number 

of factors 
expected 

Groups Section 

Item 

1 Eigenvalue estimation 

Rough 
estimate of 
number of 
factors 

NA 1,2,3 5.2 

2 
Common exploratory 
factor analysis – no 
rotation 

Rough 
estimate of 
number of 
factors 

1 1,2,3 5.2 

2 
Common exploratory 
factor analysis – 
rotations performed 

Finer 
indication of 
the number of 
factors 

3 or 6 1,2,3 5.2 

3 
Confirmatory factor 
analysis 

Final 
indication of 
the number of 
factors 

1 or 3 1,2,3 5.2 

Parcel 

4 Eigenvalue estimation 

Rough 
estimate of 
number of 
factors 

NA All 5.3 

5 
Common exploratory 
factor analysis – no 
rotation 

Rough 
estimate of 
number of 
factors 

1 All 5.3 

5 
Common exploratory 
factor analysis – 
rotations performed 

Finer 
indication of 
the number of 
factors 

3 All 5.3 

6 Confirmatory factor 
analysis – Part 1 

Final 
indication of 
the number of 
factors 

1 or 3 All 5.3 

7 
Confirmatory factor 
analysis – Part 2 

Tests to 
determine 
whether 
factor 
structure is 
invariant 
across groups 

1 All 5.3 
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5.2 Item-Level Factor Analyses 

As previously mentioned, the factor analyses performed in this study were first done at 

the item level. However, the analyses could not be done for all groups, due to sample size 

limitations in conjunction with test length.6 For that reason, only individual-group confirmatory 

analyses were conducted using item-level data where sample sizes were sufficient. Since 

matrices of tetrachoric correlations were used in these analyses, the following is a brief 

justification of their uses in these circumstances. 

Exploratory linear factor analysis of test-level data from a single population can be 

conducted utilizing a covariance matrix. However, when the data to be come from 

dichotomously-scored items, as used here, a sample covariance matrix, may in some instances, 

when used in confirmatory fashion, lead to incorrect inferences about the underlying structure of 

the data (Hoyle & Panter, 1995). In such a situation, a correlation matrix should be used. The 

next question is whether to use phi correlations (product-moment correlations at the item level) 

or tetrachoric correlations. 

Problems inherent in the factor analysis of item-level phi coefficients are well 

documented (Carroll, 1945; Mislevy, 1986; Cook, Dorans, & Eignor, 1988). Much of the early 

discussion focused on the fact that a factor analysis of phi coefficients typically resulted in factor 

solutions containing artifactual or difficulty factors. McDonald and Ahlawat (1974) stated that 

the artifactual factors are not due to the way the items are scored (i.e., dichotomously), but rather 

result from the fact that a nonlinear model is needed to characterize the regression of the scores 

on the underlying factors, instead of the assumed linear model. However, because of the 

assumptions underlying the creation of tetrachoric correlations, artifactual difficulty factors 

should not result (Christoffersson, 1975; Muthen, 1978, 1989), or rather that a linear factor 

model should be appropriate. With phi correlations, the assumption of a linear model is 

inappropriate. 

The use of tetrachoric correlations is not free from other problems. Carroll (1945) 

documented the problems involved with a linear factor analysis of tetrachoric correlation 

coefficients based on binary-scored multiple-choice items, where guessing is possible, and has 

provided formulas to correct the tetrachoric correlations for the effects of guessing. Mislevy 

(1986) discussed that even if tetrachorics have been corrected for guessing, the sample 
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tetrachoric correlation matrix may not necessarily be positive definite, in which case a factor 

solution may not be obtainable. 

In lieu of using a linear factor analysis of tetrachorics resulting from dichotomously- 

scored data in exploratory analyses, a number of researchers have developed nonlinear factor 

analytic procedures to be used with such data (Bock, Gibbons, & Muraki, 1988; Fraser & 

McDonald, 1988). Such procedures operate directly on the item scores rather than on the 

correlation matrix, and are similar to multidimensional item response theory techniques. Waller 

(1991) pointed out that in an extensive simulation study done by Knol and Burger (1988), 

multiple linear and nonlinear factor analytic procedures for dealing with binary-scored item data 

were employed, and these authors concluded that “a common [iterated] factor analysis of the 

matrix of tetrachoric correlations yields the best estimates” (p. 199). Since the Knol and Burger 

study was a simulation study, “best” could be defined as the method that generated the smallest 

mean-squared error of parameter recovery. Based on these results, Waller went on to apply the 

linear factor analysis of tetrachoric correlations to data from the Minnesota Multiphasic 

Personality Inventory (MMPI) in looking at its underlying structure. 

The item-level exploratory factor analyses in this study were therefore conducted 

employing a linear factor analytic model with a matrix of tetrachoric correlations. The program 

PRELIS (Joreskog & Sorbom, 2005b) produced the tetrachoric correlation matrices. There is no 

specific correction for guessing in producing these estimates, but the aim is to look at interfactor 

correlations and factor loadings, and guessing mostly affects factor intercepts, which were not 

examined.  

It is important to discuss concerns raised by Mulaik (1972) about the use of correlation 

matrices. Comparing factors derived from correlation matrics instead of variance-covariance 

matrices computed for samples from different experimental populations, “violates the principle 

that the analysis must be in the same metric for the factor-pattern-matrix coefficients to be 

comparable across populations. Using correlation coefficients in each analysis forces the 

variables to have unit variances in each population, thereby creating a different matrix for each 

population. Before factors obtained from correlation matrices are compared, the factor-pattern 

matrices should be modified to express a common metric for the observed variables” (p. 356). 

Mulaik’s concerns were addressed by directly comparing factor structures across groups, not 

based on the results from item-level confirmatory factor analyses, but rather based on multi-
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group confirmatory factor analyses that utilized variance-covariance matrices of item parcel 

scores. 

Item-level exploratory factor analyses. The matrices of tetrachoric correlations were 

entered into SAS (2003) to perform exploratory factor analyses using maximum likelihood 

extraction with no rotation at first (for one factor) and later, promax rotation (for more than one 

factor). Scree plots (Child, 1970) of the first 12 eigenvalues computed from the matrix of 

tetrachoric correlations between items are displayed in Figure 2 for Groups 1, 2, and 3 since 

Group 4 was omitted from the item-level analyses. The scree plot was generated from 

preliminary eigenvalues generated from the tetrachoric correlation matrix with prior 

communality estimates on the diagonals.7 

 

Figure 2. Partial scree plot for groups 1, 2, and 3. 
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Group 2, and 14% of the variance for Group 3. More noise in the data was likely present for the 

groups with learning disabilities. The low proportion of explained variance was expected from the 

item-level data. 

It is clear from the scree plot that beyond the first dimension, there was little additional 

explanatory power to be gained from further dimensionalizing the data. Attempts to extract more 

dimensions using promax rotation so that the factors could be correlated (Hendrickson & White, 

1964) sometimes led to Heywood cases for some groups, which was evidence of possibly 

overfactoring the data. Also, chi-square tests hypothesizing whether the number of factors 

extracted was sufficient yielded significant p-values even for a six-factor structure (i.e., indicating 

that more than six factors are needed), was dubious in this context. Therefore, more weight was 

placed on the results from the confirmatory factor analyses for the following reasons: (a) items 

may be assigned to specific factors, which is not the case in exploratory models; (b) the results 

from hypothesis tests on the sufficiency on the number of factors correct for non-normality in the 

data, and therefore can also be more easily interpreted; and (c) the fit indices obtained from 

confirmatory models can be more readily interpreted .  

Item-level confirmatory factor analyses. Item-level confirmatory factor analyses were 

conducted using LISREL 8.72 (Joreskog & Sorbom, 2005a) using maximum likelihood 

estimation, the tetrachoric correlation matrix, and the asymptotic covariance matrix for each 

group separately to determine the proper number of factors to fit the data. The results showed that 

a single factor resulted in the most parsimonious fit to the data compared to a model based on 

content areas (three factors) or a model based on all the reporting strands (six factors). This 

finding was based on examination of fit statistics as suggested by Hoyle and Panter (1995), such 

as the root mean square error of approximation (RMSEA)8 which was less than 0.02 for all 

groups and all models. Values of the comparative fit index (CFI)9 and goodness-of-fit index 

(GFI)10 were above 0.90 for all groups and models, yet slightly below preferred thresholds.  

The finding of adequate fit with a one-factor model was supported by high inter-factor 

correlations of 0.90 or greater when multiple factors were extracted. As suggested by Bagozzi and 

Yi (1988), the confidence intervals for the correlations based on ± 2 standard errors included 1.00, 

among factors in the three and six-factor designs for Groups 1, 2, and 3. It was for this reason that 

item parcels were subsequently created so that multi-group confirmatory analyses could be 

properly carried out for all four groups in the study.  
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5.3 Parcel-Level Factor Analyses 

Rock, Bennett, and Kaplan (1985), in a factor analysis of the SAT comparing students 

without disabilities to several different groups of students with disabilities, recommended the use 

of item parcels over individual items in factor analyses based on a few guiding principles: (a) 

reliability is naturally higher when more items are put together, (b) non-linear relationships exist 

between items that are dichotomously scored which under certain circumstances can create more 

factors than are really present, (c) statistical power increases in hypothesis testing with parcels 

when the parcel distributions are multivariate normal, which is more likely to be the case than 

with item-level data. 11 

In this Grade 5 Science assessment, the 60 items were divided into 11 parcels with 

approximately the same level of difficulty within each of the six individual reporting strands, 

based on item statistics from Group 1.12 The Earth Science Grade 4 strand which had seven items 

could not be split into parcels since the minimum number of items going into a parcel was set at 

four, and was therefore left as its own parcel. Group sample sizes were further reduced to 500 to 

make interpretation of findings more similar across groups. Distributional properties of test 

performance were preserved when this sampling was conducted, as previously shown in Table 3. 

The overall sample size of Group 4 was 295, so the entire group was used for this set of analyses. 

Table 7 displays the parcel design for the Grade 5 Science assessment.  

Table 7 

Original Grade 5 Science Parcel Design 

Strand 
Number 
of items 
in strand 

Parcel 
number 

Number 
of items 
in parcel 

Average parcel 
difficulty 

Physical Science Grade 5 12 
1 6 0.57 
2 6 0.57 

Physical Science Grade 4 8 
3 4 0.57 
4 4 0.58 

Life Science Grade 5 11 
5 6 0.62 
6 5 0.61 

Life Science Grade 4 10 
7 5 0.61 
8 5 0.61 

Earth Science Grade 5 12 
9 6 0.61 
10 6 0.61 

Earth Science Grade 4 7 11 7 0.41 
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While the range of percent correct values ranged from 0.27 to 0.89 at the individual 

item level, the average difficulties of the parcels ranged from 0.41 to 0.62, yet were balanced 

within strands as is evident from Table 7.13  

It should be noted that only one parceling design was used, and a number of alternative 

methods could also have been tried. 

Parcel-level exploratory factor analyses. As with the item-level analyses, a scree plot 

was generated to get a rough approximation of an appropriate number of factors to fit to the 

parcel-level data. Figure 3 shows the scree plot for the groups. 

 

 

Figure 3. Complete scree plot for all groups. 
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Given the first eigenvalue was again large compared to subsequent eigenvalues, it made 

sense that a single factor may fit the data. The proportion of explained variance accounted for by 

the first eigenvalue ranged from 32 to 44 percent across the four groups. 

Exploratory factor analyses were conducted in SAS using each group’s variance-

covariance matrix as an input and using maximum likelihood extraction with no rotation at first 

(for one factor) and later, promax rotation (for more than one factor).14 All group sample sizes 

were sufficient given 11 parcels15. For each group, p-values testing for whether one factor was 

sufficient to fit the data were all above 0.05, indicative of adequate fit, and all parcels had 

loadings of at least 0.30 on the general factor. (See Table 9 for a summary of these results.) 

Individual factor loadings by parcel can be found in Appendix C. 

Table 8 

Summary of Parcel Factor Loadings on General Science Factor 

Group 
Model 

DF 
Model χ2 p-value Range of loadings 

1: Non-LD 44 35.340 0.821 0.509-0.672 

2: LD, no accommodations 44 54.377 0.136 0.440-0.669 

3: LD, IEP/504 accommodations 44 42.391 0.541 0.369-0.610 

4: LD, IEP/504 modifications 44 46.474 0.371 0.414-0.643 

When rotations were applied in extracting multiple factors, the p-values further increased, 

but there was no clear interpretability of additional factors. Therefore, only a single factor was 

considered. However, as mentioned previously, confirmatory models provided more concrete 

evidence to support this hypothesis.  

Parcel-level individual-group confirmatory factor analyses. Even though evidence 

showed that a single factor may be sufficient to fit the data for all groups, attempts were made to 

confirm more than a single factor for this test. The reason was to identify any disparate patterns 

in fit indices, factor loadings, or interfactor correlations across groups that might suggest a 

different course of action in further analyses. Proposed additional models were a grade-level 

design (two factors) and a content area design (three factors). The six-factor model originally 

proposed in the item-level analyses with one strand assigned to each factor was not considered 
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for the parcel-level analyses because based on the scree plot, little additional explanatory power 

would be gained from such a design. The two-factor model was ruled out after consultation with 

the developers of the test, so the only designs under study were a single-factor and a three-factor 

design. 

The conditions for proper model identification (Kline, 1998) were met under the 

proposed three-factor model design as displayed in Figure 4. 

 

Figure 4. Proposed Grade 5 Science three-factor parcel design. 

The factor loading for the first parcel (or in the three-factor case, the first parcel of each 

factor) was fixed to one to aid in model identification.16 

The testing of multi-group confirmatory factor analysis models in an extensive and 

exhaustive fashion to obtain estimates of multivariate normality and robust parameter estimates 
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was done using EQS 6.1 (Bentler & Wu, 2006) using maximum likelihood estimation for free 

parameters. The results from the single-factor and three-factor individual-group models are 

displayed in Table 10. 

Table 9 

Summary of Individual-Group Parcel-Level Confirmatory Factor Analysis Results 

Group N 
Model 

DF 
ML         
χ 2 

RMSEA CFI GFI 
Mardia 

normalized 
estimate 

Group 1: 1 factor 500 44 35.709 0.000 1.000 0.987 -2.260 
Group 1: 3 factors 500 41 30.607 0.000 1.000 0.989 -2.260 
         
Group 2: 1 factor 500 44 54.946 0.022 0.991 0.980 -2.327 
Group 2: 3 factors 500 41 49.480 0.020 0.993 0.982 -2.327 
         
Group 3: 1 factor 500 44 42.834 0.000 1.000 0.985 -3.882 
Group 3: 3 factors 500 41 34.743 0.000 1.000 0.988 -3.882 
         
Group 4: 1 factor 295 44 47.305 0.016 0.996 0.971 -1.612 
Group 4: 3 factors 295 41 34.963 0.000 1.000 0.979 -1.612 

    

χ 2 difference tests Δ DF Δ χ 2 p-value 

Group 1: 3 factors – 1 factor 3 5.102 0.164 

Group 2: 3 factors – 1 factor 3 5.466 0.141 

Group 3: 3 factors – 1 factor 3 8.091 0.044 

Group 4: 3 factors – 1 factor 3 12.342 0.006 

EQS outputs the Mardia (1970) coefficient of multivariate kurtosis, which is important in 

determining whether maximum likelihood estimates for factor loadings, standard errors, 

variances, and covariances (where applicable) are sufficient for interpretation under the 

assumption of multivariate normality. The authors felt that the normalized values of the Mardia 

coefficient were low enough across groups not to reject the hypothesis that the data came from a 

multivariate normal distribution. 

The results from the individual confirmatory analyses did somewhat agree with the 

results from the exploratory analyses on the parcels as the model chi-square was lowest for 

Group 1 and highest for Group 2. The RMSEA values for both the one-factor and three-factor 
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solutions were well below the 0.05 cutoff, and the CFI and GFI values were close to 1.00, all 

indicative of a good fit to the model for both designs across all four groups.  

There is no clear consensus as to whether fit indices or changes in model chi-square 

values should be used as a guide to judge model adequacy, but both approaches should be 

acknowledged. To test whether the three-factor model sufficiently improved the fit, the changes 

in model chi-square values were compared to the critical values of the chi-square distribution 

given the changes in degrees of freedom. These changes are shown in the lower part of Table 10. 

The changes in model chi-square values were significant at the 0.05 level of significance for 

Groups 3 and 4, which would suggest that a three-factor model might fit the data better for these 

groups.  

 Since chi-square difference tests are heavily dependent on sample size, the changes in fit 

indices ultimately took precedence over the changes in model chi-square values as the criterion 

for model adequacy. In comparing the three-factor design to the one-factor design for each 

group, changes in the CFI were less than 0.01, representing model equivalence (Cheung & 

Rensvold, 2002). A key additional piece of information, the latent factor intercorrelations (Table 

11), led to the final choice of a single-factor model for all groups. 

Table 10 

Latent Factor Intercorrelation Matrices From Three-Factor Individual-Group Confirmatory 

Factor Analysis Models 

 Correlations 

Group 

Physical 
Science 

with Life 
Science 

Physical 
Science 

with Earth 
Science 

Life 
Science 

with Earth 
Science 

1: Non-LD 0.941 1.000 0.970 
2: LD, no accommodations 0.947 0.906 0.960 
3: LD, IEP/504 accommodations 0.925 0.892 0.869 
4: LD, IEP/504 modifications 0.876 0.864 0.901 

Since the latent correlation between Physical Science and Earth Science was 1.0, the 

results from the three-factor model were treated somewhat cautiously, and thus it was determined 

that a single factor could best explain the data for all groups. This was based on the Bagozzi and 

Yi (1988) criterion for sufficiently high correlations mentioned earlier. 
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Parcel-level multi-group confirmatory factor analyses. The results from the 

individual-group confirmatory models indicating that a single factor could best explain the Grade 

5 Science assessment data became the basis for testing a one-factor multi-group confirmatory 

model. The goal was to show factorial invariance across the groups under study. Brown (2006) 

discussed different approaches to enter constraints. Table 12 displays the four proposed steps to 

complete this process according to his recommendations.  

Table 11 

Summary of Proposed Parcel-Level Multi-Group Confirmatory Factor Analyses 

Model Objective Constraints imposed 

1 (Least restrictive) Establish the same number of 
factors across groups 

None 

2 Test whether factor loadings 
are the same across groups 

Factor loadings equal across 
groups 

3 Test whether factor standard 
errors (SEs) are the same 
across groups 

Factor loadings and standard errors 
(SEs) equal across groups 

4 (Most restrictive) Test whether factor variances 
are the same across groups 

Factor loadings, standard errors 
(SEs), and variances equal across 
groups 

At each step in the process, model fit indices produced by EQS were checked for reasonableness 

before proceeding to the next step. If there was any model misfit, equality constraints could be 

relaxed, if necessary. Testing the most restrictive model suggested above would show true 

invariance as suggested by Byrne (1998), but she cautioned that this test can be too stringent. 

The establishment of the baseline model described in Step 1 combined the individual-

group models described in the previous section and stacked them together as one model with the 

degrees of freedom from the individual models being additive. More degrees of freedom were 

added as constraints are imposed. Table 13 summarizes the results from these multi-group 

confirmatory models. 
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Table 12 

Summary of Parcel-Level Multi-Group Confirmatory Factor Analysis Results 

Model Constraints DF 
ML        
χ2 RMSEA CFI GFI Δ DF Δχ2 p-value 

1 None 176 180.795 0.008 0.999 0.982 - - - 

2 Loadings 206 238.158 0.019 0.993 0.976 30 57.363 0.002 

3 Loadings 
+ SEs 

239 290.491 0.022 0.989 0.971 33 52.333 0.018 

4 Loadings 
+ SEs 

+variances 

242 310.399 0.025 0.985 0.969 3 19.908 < 0.001 

          

As constraints were imposed in Steps 2 through 4, the model fit indices decreased as one might 

expect. However, the RMSEA, CFI, and GFI were all within normally accepted boundaries for 

adequate model fit at all steps. The change in CFI between Models 1 and 2 was less than 0.01, 

indicating partial factorial invariance, but reached the 0.01 threshold between Models 2 and 3, 

compared to Model 1. The interpretation was that while the factor loadings could be considered 

to be equivalent across groups, the standard errors of these loadings may differ across groups.  

Given the misfit between Models 2 and 3, attempts were made to locate the source of the 

misfit. This was done for Model 3 using the Lagrange Multiplier test for releasing constraints 

provided by EQS. The cumulative multivariate statistics were examined to determine which 

constraints had univariate chi-square increments with significant associated probabilities (p < 

0.05). There were seven constraints whose univariate chi-square values were large enough to 

result in significant changes in the cumulative chi-square. Three of these were identified as 

attempts to constrain the factor standard errors to be equal between Group 1 and the other three 

groups for Parcel 11, corresponding to the Earth Science Grade 4 strand. Given the source of the 

misfit could be clearly identified, Model 3 was rerun with the three factor standard error 

constraints relaxed, and the fit statistics were reexamined.17 Table 14 displays the results from 

the modified model where factor loadings were constrained to be equal and the standard errors 

for all parcels except for Earth Science Grade 4 were constrained to be equal. 
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Table 13 

 Summary of Revised Parcel-Level Multi-Group Confirmatory Factor Analysis Results 

Model Constraints DF 
ML         
χ2 RMSEA CFI GFI Δ DF Δχ2 p-value 

1 None 176 180.795 0.008 0.999 0.982 - - - 

2 Loadings 206 238.158 0.019 0.993 0.976 30 57.363 0.002 

3A 
Loadings + 
SEs except 
Parcel 11 

236 268.662 0.018 0.993 0.973 30 30.504 0.440 

The relaxing of the one factor standard error equality constraint for Parcel 11 achieved strong 

factorial invariance as the change in CFI was not significant compared to Model 1. The analysis 

continued from this point; however when the factor variances were constrained to be equal across 

the groups, model misfit was detected again, as the latent factor variances between Group 1 (Non-

LD) and Group 3 (LD, IEP/504 accommodations) appeared to be significantly different. The 

results from Model 3A confirmed this finding, as the latent factor variance of Group 1 was 0.859 

with a standard error of 0.085, and the latent factor variance of Group 3 was 0.539 with a standard 

error of 0.056. The corresponding latent factor variance of Group 2 was 0.704 with a standard error 

of 0.071, and the latent factor variance of Group 4 was 0.727 with a standard error of 0.086. Given 

that Group 3 was the only LD group to show this difference compared to the non-LD group, the 

authors chose to end the invariance analyses at this point. Table 15 displays the standardized factor 

loadings of the revised factor standard error equality constraint invariance model (Model 3A).  

Table 14 

 Summary of Standardized Factor Loadings for Final Factor Invariance Model 

  Groups 
# Strand 1 2 3 4 
1 PS5a18 0.636 0.598 0.547 0.604 
2 PS5b 0.623 0.585 0.534 0.591 
3 PS4a 0.482 0.445 0.399 0.451 
4 PS4b 0.567 0.529 0.479 0.535 
5 LS5a 0.664 0.626 0.575 0.632 
6 LS5b 0.508 0.471 0.424 0.477 
7 LS4a 0.628 0.589 0.538 0.595 
8 LS4b 0.665 0.627 0.576 0.633 
9 ES5a 0.664 0.626 0.575 0.632 
10 ES5b 0.608 0.570 0.519 0.576 
11 ES4 0.523 0.542 0.491 0.583 
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Most parcels across groups have standardized factor loadings above a substantive level of 

0.50 suggested by Bagozzi and Yi (1988). Other parcels are considered to have moderate factor 

loadings. A full display of the information in Table 15, including the final unstandardized factor 

loadings, standard errors, and explained variance for Model 3A can be found in Appendix D. The 

proportion of explained variance, expressed as an average of the individual parcel R2 values, was 

36% for Group 1, 32% for Group 2, 27% for Group 3, and 33% for Group 4.  

Therefore, based on this particular parcel construction of the Grade 5 Science test data, 

the test can be considered unidimensional for all groups. Factor loading equality invariance was 

achieved for all groups and invariance of the factor standard errors was achieved when the 

constraints on the standard errors for the one parcel related to Earth Science Grade 4 were 

relaxed. More importantly, a similar factor structure exists for students without learning 

disabilities compared to students with learning disabilities taking this test without or with 

accommodations and/or modifications, which the research was intended to explore. The results 

provide an indication that the accommodations and modifications do not change the overall 

science construct being measured. This demonstrates that the scores from this assessment can be 

compared because the same number of factors was found to exist across groups. The results are 

similar to those found in several studies (Rock et al., 1988; Meloy et al., 2002; Cook et al., 

2008). However, properties of this latent construct may differ slightly across groups based on 

some of the model results.  

6. Discussion and Conclusions 

The purpose of this study was to examine the scores on a state standards-based science 

assessment obtained by a group of students without learning disabilities who took the standard 

form of the test and by three groups of students with learning disabilities: one taking the test 

without accommodations or modifications, a second taking the test with accommodations, and a 

third group taking the test with modifications. The investigation focused on whether or not the 

science assessment demonstrated factorial invariance for the four groups of students studied. A 

series of exploratory and confirmatory factor analyses were conducted first at the item level and 

then at the parcel level. Full analyses could not be completed at the item level since the sample 

size for students with disabilities taking the test with modifications was insufficient to carry out 

confirmatory analyses, and was therefore removed from all item-level analyses. However, there 

was evidence that a single factor might exist for the remaining three groups.  
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Item parcels created within content strands were balanced for difficulty, and exploratory 

and confirmatory factor analysis models made use of parcel-level scores. Exploratory analyses 

again suggested the presence of a single factor that fit the data. Individual-group confirmatory 

models tested whether a single factor truly fit the data well or whether a three-factor model based 

on content areas across grades would fit better. There was no significant improvement in model 

fit based on a three-factor model for students without learning disabilities taking the test under 

standard conditions (Group 1) and students with learning disabilities taking the test under 

standard conditions (Group 2), compared to a single-factor model. For students with learning 

disabilities taking the test with accommodations (Group 3) or modifications (Group 4), 

examination of the matrices of estimated latent factor intercorrelations provided more convincing 

evidence beyond the fit indices that a single factor existed for these groups as well.  

Finally, a single-factor multi-group confirmatory model tested whether a single factor 

would best fit the data across groups, including the gradual inclusion of model constraints (factor 

loadings, then factor standard errors, then factor variances). When the factor loading equality 

constraints were imposed, invariance was detected across all groups, that is, the changes in the 

CFI for the more restrictive model were below the 0.01 threshold compared to the baseline 

model. All but one latent factor standard error was invariant across all groups, that for the Earth 

Science Grade 4 strand. When this equality constraint was relaxed, the factor variances for non-

LD students (Group 1) and LD students taking the test with accommodations specified in their 

IEPs or 504 plans (Group 3) were found to be different. In summary, the results of the analyses 

indicated that the Grade 5 Science assessment was unidimensional; that is, the test measured a 

single factor for all four groups investigated, but this factor slightly differed in composition 

across all the groups studied.  

The results were consistent with Rock, Bennett, Kaplan, and Jirele (1988) and Meloy, 

DeVille, and Frisbie (2002) who found that when factor structures were compared for students 

with disabilities who received a read-aloud accommodation to students without disabilities, there 

was reason to suspect a difference in factor structures between these two groups. Additionally, 

Cook et al. (2008) found that when factor structures were compared for students without learning 

disabilities to students with learning disabilities taking a mathematics assessment with and 

without accommodations, of the three factors hypothesized to fit the data, the disability groups 

together behaved differently on the dimension characterizing measurement and geometry in 
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terms of factor standard errors, variances, and covariances with other factors compared to 

students without disabilities taking the test under standard conditions. In that instance, similar 

multi-group models were constructed as for the science assessment described in this paper, but 

equality constraints were relaxed for the students without disabilities in some instances. 

The results of this study are important for a number of reasons. One very important 

reason is that the presence of a single factor across groups lends support to aggregating together 

scores that are obtained by students without learning disabilities and that were obtained by 

students with learning disabilities who have taken the assessment with accommodations or 

modifications required by their 504 plans or IEPs for AYP purposes. In addition, the results 

provide evidence that the tests have some degree of validity for students with learning disabilities 

who take the test with and without the particular set of accommodations or modifications that 

were employed in this study. It is also very important to point out that while invariance across 

the four groups was limited to the factor loadings and the factor standard errors after a minor 

modification of the multi-group confirmatory model, there was still evidence that the test 

measured the same overall construct for all groups, and therefore the test scores may have similar 

meanings for all of the groups participating in this study.  

The use of item parcels facilitated the level of hypothesis testing carried out in this paper, 

since groups with small sample sizes can be more readily included in factor analysis studies and 

more explained variance can be obtained from parcel-level data compared to the use of 

individual items. A note of caution is that while the parcel design put into place here produced 

the desired result, it is unclear whether other parceling designs would yield similar outcomes, 

and is worthy of further study. The unidimensionality of this assessment also demonstrated how 

the total test score can be useful in relating the factor structure to overall performance and 

validity (e.g. for use in studies involving differential item functioning). However, as noted for the 

Cook et al. (2008) study on the mathematics test which originated from the same state, the same 

grade, and the same testing year as the Grade 5 Science test analyzed here at the parcel level, this 

may not be the case for all subjects, grades, and groups of students and must be considered for 

other analyses or studies.
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Notes 
1 Under permitted conditions, disabled and non-disabled groups would each take the test with 

and without accommodations, creating a set of four scores. This is not the same set of scores 

from the groups used in the analyses reported in this paper, because the non-disabled group 

did not take the test with accommodations.  

2 Sireci, et al. (2003). defined the Interaction Hypothesis (also referred to as differential boost, by 

Phillips (1994)) as, “The interaction hypothesis states that (a) when test accommodations are 

given to the students with disabilities (SWD) who need them, their test scores will improve, 

relative to the scores they would attain when taking the test under standard conditions and (b) 

students without disabilities will not exhibit higher scores when taking the test with those 

accommodations. Fuchs, Fuchs, Eaton, Hamlett, and Karns (2000) allowed for students 

without disabilities to also improve performance when taking the test with those 

accommodations. 

3 Percent correct is defined here as the number of correct responses for the strand divided by the 

number of items in the strand. 

4 The following strand abbreviations are used throughout the paper: PS5: Physical Science Grade 

5; PS4: Physical Science Grade 4; LS5: Life Science Grade 5; LS4: Life Science Grade 4; 

ES5: Earth Science Grade 5; ES4: Earth Science Grade 4. The numbers of items in each 

strand are in parentheses. 

5 The adjusted Cronbach’s Alpha was computed as (60/SL)(α)/(1+ (59/SL)(α)) where SL is 

strand length and α is Cronbach’s Alpha. The number 60 represents the number of items on 

the test.  

6 Results from factor analyses are generally robust if the sample size exceeds the quantity of 

.5(k)(k-1) where k is the number of test questions. This allows for proper accuracy in 

calculating the asymptotic covariance matrix obtained in confirmatory factor analysis (see 

Joreskog & Sorbom [2005b] for a justification) according to the weighted least squares 

(WLS) method , but could be applied in theory to the maximum likelihood method used here. 
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Given the test consisted of 60 items, the suggested minimum sample size was 1770, which 

was not possible with Group 4. 

7 A more common practice is to use the correlation matrix with diagonal entries of 1 (Fabriger, 

Wegener, MacCallum & Strahan, 1999). 

8 Evaluates the extent to which the model approximates the data, taking into account the model 

complexity. A RMSEA of approximately 0.06 or below is considered to be an indication of 

close fit (Hu & Bentler, 1999) and 0.08 or below indicates adequate fit as proposed by 

Browne and Cudeck (1993). 

9 An incremental fit index, which assesses overall improvement of a proposed model over an 

independence model where the observed variables are uncorrelated. A CFI of 0.95 or above 

indicates an adequate model fit (Byrne, 2006). 

10 An absolute model fit index, which is analogous to a model R2 in multiple regression analysis. 

A GFI of 0.95 or above indicates an adequate model fit (Miles & Shevlin, 1998).  

11 A generic description of the pros and cons of item parceling can be found in Little, 

Cunningham, Shahar and Widman (2002) 

12 Creating parcels of equal difficulty within content strands was employed by Cook et al. (1988) 

in an attempt to ensure that difficulty did not in any way affect the factor loadings that were 

obtained. The same practice was employed in this study. 

13 In theory, a single parcel representing Earth Science Grade 4 would not be desirable. However, 

as shown later, a six-factor model using item parcel data was not retained, so this was not 

deemed to be a significant issue by the authors since this parcel could either load on a latent 

earth science factor for both grades or a single latent science factor.  

14 Please refer to Appendix B for the variance-covariance matrix for each group. 

15 Please refer to Footnote 7 for the formula to calculate the suggested minimum sample size. 

16 This was an arbitrary decision, but was acceptable because whichever parcels were fixed 

would not change the results, since the results would be mathematically equivalent as 

suggested by Kline (1998) and Raykov and Marcoulides (2000). 
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17 The strategy employed here was also used by Cook et al. (2008) in analyzing a mathematics 

assessment from the same state used in this analysis, whereby factor equality invariance held, 

and when further testing for invariance resulted in model misfit, specific equality constraints 

were identified and relaxed, and the analysis continued. 
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Appendix A 

Observed Reporting Strand Intercorrelation Matrices by Group Adjusted for Attenuation 

Table A1 

Reporting Strand Intercorrelation Matrix for Grade 5 Science – Group 1 

Strand 1 2 3 4 5 

1. Physical Science Grade 5 1.000        

2. Physical Science Grade 4 0.784 1.000      

3. Life Science Grade 5 0.934 0.840 1.000    

4. Life Science Grade 4 0.952 0.862 1.000 1.000  

5. Earth Science Grade 5 0.656 0.606 0.735 0.808 1.000 

6. Earth Science Grade 4 0.853 0.810 0.920 1.000 0.749 

 

Table A2 

Reporting Strand Intercorrelation Matrix for Grade 5 Science – Group 2 

Strand 1 2 3 4 5 

1. Physical Science Grade 5 1.000     

2. Physical Science Grade 4 0.964 1.000    

3. Life Science Grade 5 0.955 0.882 1.000   

4. Life Science Grade 4 0.993 0.922 1.000 1.000  

5. Earth Science Grade 5 1.000 0.902 0.936 0.968 1.000 

6. Earth Science Grade 4 0.825 0.765 0.771 0.871 0.863 
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Table A3 

Reporting Strand Inter-Correlation Matrix for Grade 5 Science – Group 3 

Strand 1 2 3 4 5 

1. Physical Science Grade 5 1.000     

2. Physical Science Grade 4 0.964 1.000    

3. Life Science Grade 5 0.955 0.882 1.000   

4. Life Science Grade 4 0.993 0.922 1.000 1.000  

5. Earth Science Grade 5 1.000 0.902 0.936 0.968 1.000 

6. Earth Science Grade 4 0.805 0.792 0.772 0.652 0.915 

 

Table A4 

Reporting Strand Inter-Correlation Matrix for Grade 5 Science – Group 4 

Strand 1 2 3 4 5 

1. Physical Science Grade 5 1.000     

2. Physical Science Grade 4 0.988 1.000    

3. Life Science Grade 5 0.907 0.904 1.000   

4. Life Science Grade 4 0.915 0.816 1.000 1.000  

5. Earth Science Grade 5 0.941 0.756 0.923 0.867 1.000 

6. Earth Science Grade 4 1.000 0.872 0.856 0.878 0.986 
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Appendix B 

Parcel-Covariance Matrices 

Table B1 

Parcel Variance-Covariance Matrix - Group 1 

# 1 2 3 4 5 6 7 8 9 10 11 

1 1.859 

2 0.841 2.141 

3 0.522 0.551 1.240 

4 0.680 0.640 0.463 1.256 

5 0.848 0.948 0.586 0.660 2.191 

6 0.605 0.593 0.421 0.434 0.642 1.597 

7 0.623 0.749 0.419 0.525 0.745 0.473 1.632 

8 0.679 0.781 0.515 0.567 0.923 0.526 0.735 1.613 

9 0.829 0.852 0.493 0.696 0.830 0.589 0.715 0.687 2.031 

10 0.746 0.817 0.488 0.607 0.829 0.546 0.616 0.752 0.821 1.891 

11 1.010 1.056 0.610 0.854 1.221 0.719 0.901 0.915 1.033 0.872 3.206 

Table B2 

Parcel Variance-Covariance Matrix - Group 2 

#  1 2 3 4 5 6 7 8 9 10 11 

1 2.149          

2 0.787 2.026         

3 0.516 0.366 1.193        

4 0.429 0.464 0.383 1.123       

5 0.845 0.724 0.456 0.515 1.907      

6 0.494 0.467 0.173 0.213 0.499 1.674     

7 0.627 0.663 0.328 0.425 0.681 0.455 1.607    

8 0.630 0.618 0.395 0.412 0.742 0.475 0.560 1.578   

9 0.890 0.813 0.423 0.515 0.860 0.598 0.863 0.687 2.245  

10 0.689 0.615 0.379 0.453 0.673 0.486 0.626 0.688 0.919 2.035 

11 0.604 0.457 0.216 0.359 0.482 0.410 0.556 0.450 0.632 0.472 1.911 
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Table B3 

Parcel Variance-Covariance Matrix - Group 3 

# 1 2 3 4 5 6 7 8 9 10 11 

1 1.902 

2 0.688 1.983 

3 0.325 0.261 1.127 

4 0.270 0.348 0.216 1.116

5 0.503 0.446 0.317 0.372 1.752

6 0.435 0.424 0.148 0.273 0.348 1.445

7 0.542 0.461 0.299 0.308 0.520 0.342 1.509

8 0.574 0.491 0.289 0.346 0.564 0.410 0.626 1.568

9 0.602 0.604 0.321 0.352 0.625 0.421 0.555 0.588 1.960 

10 0.498 0.538 0.226 0.379 0.379 0.337 0.468 0.507 0.699 1.850 

11 0.381 0.461 0.212 0.224 0.469 0.181 0.404 0.435 0.492 0.416 1.864
 

Table B4 

Parcel Variance-Covariance Matrix- Group 4 

# 1 2 3 4 5 6 7 8 9 10 11 

1 1.964 

2 0.752 1.944 

3 0.479 0.373 1.142 

4 0.516 0.502 0.263 1.167

5 0.723 0.743 0.470 0.406 2.094

6 0.622 0.519 0.311 0.366 0.625 1.665

7 0.622 0.503 0.182 0.344 0.705 0.618 1.696

8 0.650 0.641 0.408 0.415 0.779 0.558 0.629 1.592

9 0.635 0.703 0.356 0.356 0.808 0.516 0.589 0.666 1.878 

10 0.657 0.690 0.336 0.415 0.838 0.581 0.628 0.594 0.876 2.206 

11 0.723 0.873 0.314 0.518 0.673 0.582 0.697 0.792 0.824 0.802 2.055
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Appendix C 

Summary of Parcel-Level Exploratory Factor Analyses by Group 

 

# Strand Items Group 1 Group 2 Group 3 Group 4 

1 PS5a 6 0.645 0.605 0.548 0.598 

2 PS5b 6 0.643 0.573 0.518 0.600 

3 PS4a 4 0.527 0.440 0.369 0.414 

4 PS4b 4 0.639 0.515 0.435 0.482 

5 LS5a 6 0.672 0.647 0.536 0.624 

6 LS5b 5 0.509 0.435 0.424 0.532 

7 LS4a 5 0.601 0.616 0.580 0.558 

8 LS4b 5 0.663 0.605 0.610 0.643 

9 ES5a 6 0.633 0.669 0.593 0.614 

10 ES5b 6 0.616 0.575 0.509 0.575 

11 ES4 7 0.634 0.445 0.414 0.639 

Note. The strand abbreviations are PS5 = Physical Science Grade 5, PS4 = Physical Science 
Grade 4, LS5 = Life Science Grade 5, LS4 = Life Science Grade 4, ES5 = Earth Science Grade 
5, ES4 = Earth Science Grade 4.  
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Appendix D 

Summary of Factor Loadings and Residuals From Final Parcel-Level Multi-Group 

Confirmatory Factor Analyses 

Table D1 

Summary of Factor Loadings, Standard Errors and Explained Variance – Group 1 

# Strand 
Unstd. 
loading 

Unstd. 
loading SE

Std. 
loading 

Unstd. 
residual 

Unstd. 
residual SE

Std. 
residual 

R2 

1 PS5a 1.000 NA 0.636 1.264 0.047 0.772 0.405 
2 PS5b 0.994 0.050 0.623 1.336 0.049 0.782 0.388 
3 PS4a 0.576 0.036 0.482 0.945 0.033 0.876 0.232 
4 PS4b 0.680 0.037 0.567 0.839 0.030 0.824 0.321 
5 LS5a 1.048 0.050 0.664 1.199 0.046 0.748 0.440 
6 LS5b 0.707 0.042 0.508 1.234 0.044 0.861 0.258 
7 LS4a 0.889 0.045 0.628 1.044 0.039 0.779 0.394 
8 LS4b 0.941 0.045 0.665 0.962 0.037 0.747 0.442 
9 ES5a 1.067 0.051 0.664 1.243 0.047 0.748 0.440 
10 ES5b 0.953 0.049 0.608 1.331 0.049 0.794 0.370 
11 ES4 0.947 0.052 0.523 2.049 0.137 0.852 0.273 

Note. The strand abbreviations are PS5 = Physical Science Grade 5, PS4 = Physical Science 
Grade 4, LS5 = Life Science Grade 5, LS4 = Life Science Grade 4, ES5 = Earth Science Grade 
5, ES4 = Earth Science Grade 4. Unstd. = Unstandardized, Std. = Standardized.   
 
Table D2 

Summary of Factor Loadings, Standard Errors and Explained Variance – Group 2 

# Strand 
Unstd. 
loading 

Unstd. 
loading SE

Std. 
loading 

Unstd. 
residual 

Unstd. 
residual SE 

Std. 
residual 

R2 

1 PS5a  1.000 NA 0.598 1.264 0.047 0.801 0.358 
2 PS5b 0.994 0.050 0.585 1.336 0.049 0.811 0.342 
3 PS4a 0.576 0.036 0.445 0.945 0.033 0.895 0.198 
4 PS4b 0.680 0.037 0.529 0.839 0.030 0.849 0.279 
5 LS5a 1.048 0.050 0.626 1.199 0.046 0.780 0.392 
6 LS5b 0.707 0.042 0.471 1.234 0.044 0.882 0.222 
7 LS4a 0.889 0.045 0.589 1.044 0.039 0.808 0.347 
8 LS4b 0.941 0.045 0.627 0.962 0.037 0.779 0.393 
9 ES5a 1.067 0.051 0.626 1.243 0.047 0.780 0.392 
10 ES5b 0.953 0.049 0.570 1.331 0.049 0.822 0.325 
11 ES4 0.947 0.052 0.542 1.519 0.103 0.840 0.294 

Note. Unstd. = unstandardized; Std. = standardized. See note below Table D1 for strand 
abbreviations. 
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Table D3 

Summary of Factor Loadings, Standard Errors and Explained Variance – Group 3 

# 
Strand 

Unstd. 
loading 

Unstd. 
loading SE

Std. 
loading 

Unstd. 
residual 

Unstd. 
residual SE

Std. 
residual 

R2 

1 PS5a 1.000 NA 0.547 1.264 0.047 0.837 0.299 
2 PS5b 0.994 0.050 0.534 1.336 0.049 0.846 0.285 
3 PS4a 0.576 0.036 0.399 0.945 0.033 0.917 0.159 
4 PS4b 0.680 0.037 0.479 0.839 0.030 0.878 0.229 
5 LS5a 1.048 0.050 0.575 1.199 0.046 0.818 0.331 
6 LS5b 0.707 0.042 0.424 1.234 0.044 0.906 0.179 
7 LS4a 0.889 0.045 0.538 1.044 0.039 0.843 0.290 
8 LS4b 0.941 0.045 0.576 0.962 0.037 0.817 0.332 
9 ES5a 1.067 0.051 0.575 1.243 0.047 0.818 0.331 
10 ES5b 0.953 0.049 0.519 1.331 0.049 0.855 0.269 
11 ES4 0.947 0.052 0.491 1.525 0.103 0.871 0.241 

Note. Unstd. = unstandardized; Std. = standardized. See note below Table D1 for strand 
abbreviations. 

 
Table D4 

Summary of Factor Loadings, Standard Errors and Explained Variance – Group 4 

# Strand 
Unstd. 
loading 

Unstd. 
loading SE

Std. 
loading 

Unstd. 
residual 

Unstd. 
residual SE

Std. 
residual 

R2 

1 PS5a  1.000 NA 0.604 1.264 0.047 0.797 0.365 
2 PS5b 0.994 0.050 0.591 1.336 0.049 0.807 0.349 
3 PS4a 0.576 0.036 0.451 0.945 0.033 0.892 0.203 
4 PS4b 0.680 0.037 0.535 0.839 0.030 0.845 0.286 
5 LS5a 1.048 0.050 0.632 1.199 0.046 0.775 0.400 
6 LS5b 0.707 0.042 0.477 1.234 0.044 0.879 0.228 
7 LS4a 0.889 0.045 0.595 1.044 0.039 0.803 0.355 
8 LS4b 0.941 0.045 0.633 0.962 0.037 0.774 0.401 
9 ES5a 1.067 0.051 0.632 1.243 0.047 0.775 0.400 
10 ES5b 0.953 0.049 0.576 1.331 0.049 0.818 0.332 
11 ES4 0.947 0.052 0.583 1.264 0.113 0.812 0.340 

Note. Unstd. = unstandardized; Std. = standardized. See note below Table D1 for strand 
abbreviations.


