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Abstract
Quality measurement is essential in every form of research, 

including institutional research and assessment. This paper 
addresses the erroneous assumptions institutional researchers 
often make with regard to survey research and provides an 
alternative method to producing more valid and reliable measures. 
Rasch measurement models are discussed and a demonstration 
is provided, thus highlighting the utility of the Rasch models in 
higher education research and practice.    

Making Meaningful Measurement in Survey 
Research: A Demonstration of the Utility of the 
Rasch Model 

Perhaps the greatest limitation of higher education research 
today pertains to quality measurement. In 1959, S. S. Stevens 
provided the widely cited definition of measurement in the social 
sciences. That is, “measurement is the assignment of numerals to 
events or objects according to rule” (p. 25). Unfortunately, many 
who read this work ignored his latter statement in the same text:

When operations are available to determine only rank order, it 
is of questionable propriety to compute means and standard 
deviations... If we want to interpret the result of averaging a 
set of data as an arithmetic mean in the usual sense, we need 
to begin with more than an ordinal assignment of numerals. 
(p. 29)

Distinguishing the difference between ordinal and interval 
scales is essential to quality measurement in the social sciences, 
especially survey research. Most survey researchers typically 
incorporate some form of an ordinal scale to coincide with the 
measurement of survey items. Then, the data are treated as if they 
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were interval, and linear statistical techniques are 
applied. Unfortunately, most survey researchers 
fail to realize most rating scales simply distinguish 
rank among response options. That is, one response 
option indicates more or less of something than 
the other options. These scales are not interval 
measures and should not be treated as such.  

Consider the following example of survey items 
provided by Bond and Fox (2001). A sample of grade 
school children was asked two questions:
1) 	 I am afraid that I will make mistakes when I use 

my computer.
2) 	 I am so afraid of computers I avoid using them.

A rating scale containing the following response 
options are provided: Strongly Disagree, Disagree, 
Neutral, Agree, and Strongly Agree. In theory, we 
expect our rating scale to look something like this:

	 Less Anxious	 More Anxious
1)  Mistake	 SD      D      N      A      SA
2)  Avoid using	 SD      D      N      A      SA

But, in reality, it may look something more like this:

	 Less Anxious	 More Anxious
1)  Mistake	 SD  D  N  A  SA
2)  Avoid using	 SD  D  N  A  SA

Under the classical approach, our problems only 
multiply when we add values (or scores) to these 
data. Hypothetical results might provide a mean of 
4.0 with a standard deviation of .8 for question #1, 
and a mean of 2.0 with a standard deviation of .8 
for question #2. What can one truly say about these 
items given simply a mean and standard deviation 
for each? Can one really make any meaningful 
inferences about individual respondents or their 
responses relative to other respondents? Typically, 
when interpreting the results, one would compare 
the two items and say that people generally agreed 
with the former statement more than the latter. One 
would then look at the mean scores and standard 
deviations and try to get a sense of the average 
level of agreement/disagreement indicated by 
these scores. Further clouding this picture, one 
would try to imagine how standard deviations 
affect all this. Of course, this excludes any discussion 

about sampling strategy, whether the sample data 
are representative of the population, and other 
methodological concerns. What is learned is that 
adding another item suddenly imposes additional 
problems for one’s interpretation of results. 

In the scenario given above, yet another 
erroneous assumption is made. This time, it is 
a failure to realize that all survey items are not 
equally important. Given the example provided, 
the second item clearly demonstrates a greater 
fear of computers. Suppose students generally 
disagreed (rating = 2.0) with the statement “I am 
so afraid of computers that I avoid using them,” 
yet also generally disagreed (rating = 2.0) with the 
statement “I am afraid that I will make mistakes 
when I use my computer.” Since these items seem 
to have different locations on a scale related to a 
student’s anxiousness about computers, does it 
really make any sense to score both of these items 
as 2.0 and treat them as though they represented 
the same attitude?

In the fields of assessment and institutional 
research, these mistakes are made all too often. 
Most institutional researchers and assessment 
professionals are unaware that the conventional 
techniques to analyze data fall under a 
methodological approach called “classical test 
theory” (CTT). Although CTT has its purposes, it 
often masks a great deal of important information. 
Since the 1950s, the psychometrics literature 
has increasingly advanced in its sophistication 
of methodological techniques to handle various 
types of data.  The more recent development is 
an approach called item response theory (IRT), or 
“modern test theory.” Although IRT techniques 
have been around for over 50 years, this important 
research has not trickled down into mainstream 
higher education literature largely due to higher 
education graduate programs’ lack of measurement 
training (Hutchinson & Lovell, 2004) and their lack 
of familiarity with and use of complex measurement 
software (Royal & Bradley, 2008). The following 
section will provide an overview of CTT and IRT and 
will make an argument for using IRT techniques, 
particularly the Rasch measurement model (Rasch, 
1960), when attempting to make meaningful 
measures.
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Classical Test Theory Versus Item Response Theory

Charles Spearman is largely considered the 
father of classical test theory, as he introduced 
the techniques in 1904. CTT is based on the linear 
relationship X = T + E, where the observed score 
(X) is equal to the true score (T) plus random error 
(E).  Popular statistical techniques such as Pearson’s 
correlation and Cronbach’s alpha are products of 
this form of statistical modeling.  Although CTT is 
great for providing overall, descriptive summaries 
of data, it is inadequate for truly objective 
measurement. Measurement pioneers like Bogardus 
with the Social Distance Scale (Bogardus, 1926) and 
L. L. Thurstone with the Thurstone Scale (Thurstone, 
1928) certainly provided an excellent foundation 
for measurement in the social sciences. However, it 
was not until the work of Thurstone was expanded 
nearly 30 years after its inception that measurement 
theorists were able to produce measurement 
models that met the rigorous requirements 
comparable to those found in the physical sciences.  
More discussion about the history of IRT will be 
provided later in this text. 

To provide an example that distinguishes the 
differences between CTT and IRT, consider the 
following popular example from the testing world: 
Two students are given the same test. The test items 
are arranged in hierarchical order with the least 
difficult item listed first and the most difficult item 
listed last.  

Here, 1s indicate a correct answer, 0s indicate an 
incorrect answer.  Notice, both students answered 
five items correctly.  However, Ken got the five 
easiest items correct and missed the five most 
difficult items.  Conversely, Tom missed the five 
easiest items, yet got the five most difficult items 
correct.  Under the CTT approach, both Ken and 
Tom would receive credit for getting 5 of 10 items 
correct and both would be given a score of 50% 
for the exam.  That is, both Ken and Tom would 
be considered to have equal ability as measured 
by the exam.  Although Ken and Tom received the 

same grade, their abilities are not really equal.  A 
number of things could have caused Tom to miss 
the first five questions.  Perhaps Tom arrived late, 
perhaps his test booklet did not contain the first 
five items, or perhaps these were word problems, 
and Tom is a foreign student for whom English is a 
second language?  What is clear is that there is more 
to the story.  Item response theory (IRT) can help 
investigate the characteristics of each item, as well 
as patterns of person responses to each item. The 
IRT perspective is far more informative than that of 
traditional statistical analyses.

Overview of Item Response Theory	

As mentioned previously, the concept of 
IRT has been around since the 1920s, but it was 
not until the 1950s and 1960s that IRT grew as a 
theory. The two most notable IRT pioneers from 
this time were Frederic Lord, a psychometrician 
at Education Testing Services (ETS), and a Danish 
mathematician named Georg Rasch. Although the 
two were attempting to solve many of the same 
issues in the assessment arena, their approaches 
differed significantly. In fact, the differences 
were so profound that IRT was divided into two 
very distinct avenues.  The primary difference 
between Lord’s approach and Rasch’s approach 
pertained to how the relationship between data 
and theory were conceptualized.  Lord contended 
that measurement models must fit the data.  
Rasch’s approach contended data must conform 
to the measurement model. It should be noted 
that these philosophical differences are still the 
subject of much debate today, although today’s 
psychometricians tend to be more accepting of 
others’ viewpoints.  Nonetheless, clear battle lines 
have historically existed between Rasch advocates 
and those who advocate the 2-parameter logistic 
(2PL) and 3-parameter logistic (3PL) approaches. In 
fact, in 1992, Ben Wright and Ron Hambleton had 
a very heated debate at the American Educational 
Research Association (AERA) annual conference 
before an audience of several hundred members 
that left a long-lasting impression on the tensions 
between these two camps (Wright, 1992). 

Another defining difference between Rasch 
models and other IRT models pertains to each 
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approach’s perspective on parameterization.  
Person parameters might represent factors such as 
a person’s ability or the strength of one’s attitude. 
Item parameters might include factors such as 
difficulty, discrimination, and guessing. From the 
Rasch perspective, factors such as discrimination 
and guessing violate the strict theoretical 
underpinnings of the model, as a requirement for 
objective measurement is to measure only one 
construct at a time. That is to say that Rasch models 
do not encompass two and three parameters.  Other 
IRT models, on the other hand, are concerned with 
producing models designed to fit the data. There 
is an IRT model that is 1-parameter and is virtually 
identical to the Rasch model. It is considered a 
special case of the 2PL model and is often referred 
to as the 1PL model (Birnbaum, 1968; Lord & Novick, 
1968). However, this model is used to statistically 
model data and is accordingly associated with the 
Lord tradition of IRT. For further information about 
how these models differ see Linacre (2005). 

Today, the Rasch model is the most popular and 
widely used IRT technique. This is due largely to the 
Rasch model’s concern with only one parameter 
(such as ability on a test, or in the case of a survey, 
the strength of one’s attitude), as two and three 
parameters (which control for factors such as 
discrimination and guessing) often do not apply. 
Further, 2PL and 3PL approaches are very complex, 
require significantly larger sample sizes than the 
1PL Rasch model, and 2PL and 3PL models require 
a great deal of technical expertise to perform the 
analyses. It is, in part, for these reasons that this 
paper will focus on the application of the Rasch 
model. However, should one wish to learn more 
about all IRT models, Embretson and Reise (2000) 
provide an excellent overview. 

 Differences Between CTT and Rasch Measurement

With regard to the specifics of CTT and Rasch 
approaches, it is important to point out many of the 
fundamental and philosophical differences.  Perhaps 
one of the most significant differences involves 
the treatment of error.  CTT techniques produce 
a standard error of measurement that spans the 
entire spectrum of person abilities (Becker, 2001). 
That is, under the CTT approach, all persons 

would fall along a homoscedastic line, essentially 
suggesting that every individual in the dataset has 
the exact same amount of error associated with his 
or her measures. Rasch measurement, on the other 
hand, produces a standard error for each person 
and item. Having standard error estimates for each 
person is incredibly useful for creating confidence 
bands to inform the researcher to what extent 
each person or item measure is stable, and perhaps 
useful (or not).  Under Rasch techniques, persons 
with extreme scores will typically possess larger 
standard errors than those located in the middle of 
the range, as one might intuitively expect.

Another very important distinction 
between CTT and Rasch models pertains to test 
independence.  As demonstrated in the testing 
example above, under CTT models, person ability 
is dependent upon the test. That is to say, persons 
will score higher on easier tests and score lower on 
harder tests. Under Rasch analysis, person ability 
is considered invariant, meaning an objective 
estimate of a person’s ability can be obtained 
regardless of the difficulty of the items. It is this 
principle that is largely the reason why many 
involved in the high-stakes testing arena have 
moved away from CTT and gravitated toward IRT 
techniques.

Other important distinctions include the 
treatment of missing data.  For CTT models, 
missing data are problematic (Montiel-Overall, 
2006; Moulton, 2009; Peugh & Enders, 2004). This is 
important to mention because traditional statistical 
analyses often use various data imputation 
techniques to handle missing data, such as 
computing expected averages and other proxy 
measures in the place of missing data, thus literally 
creating data to fill in the gaps where actual data 
are missing (Allison, 2001; Graham, 2009; Rubin, 
1996). For Rasch models, missing data are not a 
problem, as measurement becomes imprecise at 
only certain places (Fisher, 1995; Ludlow & O’Leary, 
1999). With Rasch models, measurement error is at 
its highest at the extreme ends of the continuum 
and becomes increasingly smaller as it advances 
toward the middle of the scale. Therefore, unless 
one has a sample full of extreme responses or a truly 
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excessive amount of data are missing, measurement 
precision is not a problem for Rasch models.  There 
are other significant distinctions between CTT and 
Rasch: CTT approaches are sample dependent, 
require normally distributed data and large samples, 
and necessitate representative data (Bond & Fox, 
2001; Bunderson, 2000; Hambleton, Swaminathan, 
& Rogers, 1991). Rasch models do not share these 
problems, as the goal is not to construct models 
to describe the data, but rather to fit the data to a 
measurement model.

Defining Objective Measurement

Although there are numerous IRT models, the 
Rasch model is the only model that is considered 
objective measurement. The Rasch model only 
takes into account item difficulty, whereas 2PL and 
3PL models control for the ability of the item to 
differentiate individuals based on their knowledge 
or opinion and to adjust the estimated probability 
for the likelihood of guessing a correct response. 
Some consider 2PL and 3PL models to be superior 
IRT models because they can account for additional 
parameters, especially if multidimensionality is 
a problem. Rasch proponents argue that this is 
an instance where more does not necessarily 
mean better, as 2PL and 3PL models estimate 
item parameters that mask the variation that 
would otherwise be identified as problematic. 
With that said, there are additional Rasch models 
that maintain the structure and philosophy of the 
dichotomous Rasch model, but are considered 
extensions of the model to accommodate different 
purposes.  For instance, the dichotomous Rasch 
model (1), models the probability of right/wrong 
responses or the probability of agreement/
disagreement. Particularly useful for survey research 
that utilizes a common rating scale, or tests that 
all use the same number of ordered response 
options per question, is the Rating Scale model 
(2) developed by David Andrich (1978).  Similarly, 
should one administer a survey that utilizes a rating 
scale that varies from item to item (for example, 
item #1 has a 5-point rating scale, whereas item #2 
has a 4-point rating scale) then the Partial Credit 
model (3) would be more appropriate (Rasch, 1960;

Wright, 1999).  These models are presented below 
with their formulae:

1)	 The (1PL) Rasch model for dichotomously 
scored items (Wright & Stone, 1979):

ln (Pni1/Pni0) = Bn – Di

2)	 The Rating Scale model for surveys with the 
same number of response options (Andrich, 
1978):

ln (Pnij/Pni (j–1)) = Bn – Di – Fj 
3)	 The Partial Credit model for surveys with 

response scales that vary from item to item 
(Masters, 1982).

ln (Pnij/Pni (j–1)) = Bn – Di – Fij = Bn – Dij

where,
Pnij is the probability that person n encountering 
item i is observed in category j,
Bn is the “ability” measure of person n, 
Di is the “difficulty” measure of item i, the point 
where the highest and lowest categories of the item 
are equally probable.
Fj is the “calibration” measure of category j relative 
to category j-1, the point where categories j-1 and 
j are equally probable relative to the measure of 
the item. No constraints are placed on the possible 
values of Fj.

Typically, resistance to the Rasch model is 
met with criticisms of unidimensionality.  That 
is, the notion that only one thing is measured 
at a time.  For some critics, the notion of 
measuring a unidimensional construct seems too 
simplistic. These critics are usually unaware that 
unidimensionality is a requirement of objective 
measurement. As Mike Linacre argues:

Physical measurement takes great pains to 
measure one thing at a time. We don’t want the 
patient’s temperature reading to be biased by 
his weight, or height, or blood pressure. It is only 
when we have clearly isolated one dimension 
that we can understand the meaning of the 
measure, and then study how that measure 
relates to measures on other dimensions. 
(Linacre, 1996, p. 513)
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Additionally, other critics of objective measurement 
often claim that interval scaling is not always 
necessary. This perspective has been coined “the 
rubber ruler” by measurement scholars. Think of a 
physical ruler. Would it be of any use if the measures 
separating each inch varied in distance? Would the 
ruler be useful if it changed each time we wanted to 
make a measure? In the world of mental constructs 
and psychometrics, do we want to create rulers that 
are based on normative groups, rulers that bend 
each time the sample changes? People concerned 
with objective measurement will argue “no.”

Perhaps the greatest limitation of the Rasch 
model is in its use.  Contrary to how some 
researchers use it, the Rasch model is not a causal 
model, and it is advised that researchers do not use 
it for this purpose.  The Rasch model is a relational 
model and is excellent at identifying relationships, 
but as introductory statistics teaches us, association 
does not imply causation.

Identifying Factors Within Surveys

Currently, there is a widespread practice of using 
factor analysis and structural equation modeling 
on survey data. Although factor analysis is useful 
for reducing data in an exploratory manner, it is 
bound by the characteristics of the sample and 
requires larger sample sizes (Kline, 1994). Rasch 
measurement, on the other hand, is not a sample-
dependent technique.  Several studies have 
investigated the use of factor analysis compared to 
Rasch modeling. Chang (1996) found both Rasch 
and factor analysis resulted in similar results, but 
Rasch results were more informative, more stable, 
and easier to interpret. The author found factor 
analysis is good for identifying proximity to the 
underlying variable, but not so good at identifying 
location in a vector space of other variables. Rasch 
analysis, on the other hand, provided locations 
for both persons and items on the variable. This is 
especially helpful in developing a construct theory.  
Smith (1996) suggests when the goal is exploratory 
in nature, use factor analyses first if the data equally 
consist of uncorrelated factors. However, if one 
factor emerges as dominant, use Rasch. If one 
begins by factor analyzing the data, it is a good 
idea to separate the items and analyze them further 

via Rasch analysis. Green (1996) found both factor 
analysis and Rasch can produce factor structures, 
but humorously stated “But isn’t that the fun of 
factor analysis? If each of us uses a different variance 
partitioning, rotation and obliqueness, then each of 
us can produce a different factor structure—our own 
personal existential ‘truth’!” (Green, 1996, p. 57). She 
went on to stress the importance of building from 
the known into the unknown in theory development 
to avoid such issues. Ben Wright (1994) argued a 
better approach for identifying factors is the use of 
a Rasch-based principal components analysis (PCA), 
as it is designed to measure the construct of interest. 
He went on to say if a factor cannot be established or 
confirmed through Rasch analysis then its existence 
is doubtful.

Structural Equation Modeling (SEM) is generally 
considered a positive step forward for statistical 
theory (Ludlow, 2002).  SEM allows researchers to 
specify which variables they want to investigate 
(usually based on some theoretical reason), as 
well as specify the relationships between the 
variables along with associated error components. 
The data are then analyzed to determine the 
extent to which they fit a given structure. An 
investigation of residuals can be extremely useful 
in identifying areas of the theory that need to be 
improved, modified, or removed. In some ways, 
Rasch modeling can be considered a form of SEM.  
They share a similar philosophy in that data should 
fit the model, as opposed to generating models 
that describe data. This is certainly a step in the 
right direction with regard to making meaningful 
measurement.

The Concept of Model and Data Fit

As mentioned previously, a major concern 
about using Rasch modeling is its need for 
unidimensionality. Some believe most surveys 
contain multidimensional constructs and question 
how the Rasch model can tease these apart.  To 
begin, Rasch models require data to fit the model.  
An investigation of fit statistics largely determines 
whether the data are unidimensional in nature.  
Both infit and outfit statistics are evaluated to 
determine how data-to-model fit occurs for each 
item and person. Infit statistics are fit statistics that 
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are sensitive to the inlier pattern of observations. 
Outfit statistics are sensitive to outlier observations. 
To illustrate the concept, consider the “idealized” 
Guttman scale (Guttman, 1944) presented in  
Figure 1.

Figure 1. Idealized Guttman scale.

If the data were to appear something like this,

we would expect larger infit statistics because the 
1s occurring in the middle-right section of the 
continuum, and the 0s appearing in the middle-
left section of the continuum are unexpected.  
Conversely, if the data were to appear something 
like this,

we would expect outfit statistics to be larger 
because observations at the extreme ends of the 
continuum are unexpected.  In survey research, 
infit and outfit statistics are incredibly useful for 
identifying problematic items or persons who 
appear to have “flat-lined” by randomly marking 
items or simply marking all items with a particular 
rating.  Investigating fit statistics is an excellent 
quality control element as evidence of data 
adequately fitting the model is a key indicator of 
validity. Therefore, it is advised each time a Rasch 
analysis is performed.  Further, removing extreme 
person and item data that grossly misfit the model’s 
expectations is perfectly acceptable, as removing 
misfitting persons and items improves the precision 
of the measures produced.

Additionally, suppose the data fit the model 
quite well.  It is possible that multidimensionality 
is still present within the data. A Principal 
Components Analysis (PCA) can detect 
multidimensionality by explaining the variance 
associated with both persons and items.  Keyform 
mapping is another technique with great utility. The 
author will provide a keyform map and provide a 
demonstration of its utility later in this text.  

Demonstration of the Rasch Model’s Person and Item 
Maps

To exhibit the power and utility of Rasch 
measurement, a demonstration of one of its 
powerful techniques, particularly the use of person 
and item maps, will be provided in this section. 
These maps are extremely valuable as they illustrate 
the construct hierarchy that is being measured by 
an assessment.  These maps are useful for exposing 
the empirical hierarchy of the dataset, which 
lends to testing and evaluating existing theories, 
or possibly generating new theories.  It should 
be noted that under CTT models and traditional 
statistical software packages, this technique cannot 
be performed.

With a basic understanding of the components 
appearing on the map, person and item maps can 
be incredibly easy to interpret. These maps have 
the ability to place both persons and items on the 
same scale, demonstrating how individuals and 
groups of persons interact with each of the items.  
This is paramount for making truly meaningful 
comparisons of results. Figure 2 presents an 
item map produced from a previously published 
article by Bradley, Royal, Cunningham, Weber, 
and Eli (2008). The survey instrument sought to 
solicit graduate students’ and university faculty’s 
perceptions of what constitutes “good” education 
research. Respondents were asked to rate their 
agreement with a series of items making up 
three primary constructs:  methods, theory, and 
ethics.  Because the items were rather lengthy, 
they were coded simply by construct. For example, 
M1, M2, M3, etc., referred to items pertaining to 
methodological issues. Items E1, E2, E3… and T1, T2, 
T3, etc., referred to items pertaining to ethical and 
theoretical issues, respectively. For the purposes 

Easiest Items

Least Able Person

Most Able Person

 1 2 3 4 5 6

 1 0 0 0 0 0

 1 1 0 0 0 0

 1 1 1 0 0 0

 1 1 1 1 0 0

 1 1 1 1 1 0

1

2

3

4

5

Hardest Items

1 1 1 0 0 1 1 0 0 0

0 0 1 1 1 0 0 0 1 1
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of this demonstration, only a few select items are 
highlighted to illustrate the interpretation of the 
map. This method is intended to allow readers of 

this manuscript to envision their data in the map, 
as opposed to focusing too much on the survey 
content provided.

Figure 2. Map of survey items by difficulty to endorse (logits).
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Understanding the Map

First, it is helpful to understand the layout 
and design of the map. The numbered, vertical 
column on the left indicates logit measures. Before 
proceeding further it is important to briefly provide 
some background to explain logit measures. Logits 
are the measures produced from raw scores when 
computed via the Rasch model. That is, the ordinal 
data that would appear as raw scores in a survey 
(i.e., ratings of 1, 2, 3, and 4) are converted to their 
natural logarithm, thus producing a measure that 
has interval properties. As mentioned previously, 
this conversion to truly interval data is at the heart 
of quality measurement and is one of the key 
distinctions of sound measurement. Once the raw 
score to logit conversion is complete, results are 
then interpretable. So, the numerical column on 
the left ranging from 4 to -3 indicates a ruler of 
logit scores. It should be noted that Rasch analysis 
produces logits for both persons and items, 
estimates which contain four decimal places and are 
quite exact. Person and item maps simply serve as 
a visualization of these findings. Therefore, precise 
logit measures would need to be found in other 
forms of Rasch output.  

Second, notice the map is delineated into 
two halves. The left side of the map contains 
person measures, and the right side contains 
item measures. Also, note that both person and 
item measures are placed along the same ruler, 
thus making it useful for easy and meaningful 
interpretation. Next, let us consider the marker line 
running vertically in the middle of the map. This line 
separates the two halves of the map. Notice, both 
sides of the map contain the symbols M, S, and T. 
These markers denote the mean (M), one standard 
deviation (S), and two standard deviations (T) for 
both persons and items. In this particular example, 
we can see that the person mean falls around 1.8 
logits, and the item mean falls at 0 logits. We can 
also see that two of the items, M12 and M15, fall at 
approximately 3 logits, and both items are beyond 
two standard deviations from the item mean.  

The final step in interpreting the item map is 
understanding the hierarchy produced. It is possible 
to produce the hierarchy in various ascending and 

descending order with regard to person and item 
distributions. However, for this demonstration, the 
default hierarchy generated from these maps will 
be illustrated. In this example, persons at the top of 
the map indicate they found it easier to endorse (or 
agree with) items than persons situated below them 
on the map. Essentially, persons at the top had the 
least difficulty endorsing items, while persons at 
the very bottom had the most difficulty endorsing 
items.  Items can be interpreted in a similar manner. 
Items at the very top of the map were the most 
difficult to endorse, whereas items at the bottom of 
the map were the easiest to endorse.  

Interpreting the Map

To provide some context to the example 
provided and to aid in the interpretation of results, 
survey items will be provided in full for items 
at the extreme ends of the item map.  That is, 
item M12 refers to the statement “High-quality 
research requires random sampling,” and M15 
refers to the statement “High-quality research can 
be determined solely by examining the research 
methodology.” Additionally, item E1 refers to the 
statement “High-quality research abides by ethical 
standards,” and item E3 refers to the statement 
“High-quality research should protect the safety and 
welfare of participants.” 

Based on the map, items M12 and M15 fell 
at the top, which indicates they were the two 
most difficult items to endorse. If one imagines a 
horizontal line spanning across the entire map from 
this row of items, one could see the proportion of 
persons who found these two items easy to endorse 
as well as the proportion of persons who found 
these items difficult to endorse.  Here, persons who 
fell in the range of 3 to 4 logits easily endorse these 
items.  The vast majority of persons fell 3 logits and 
below, suggesting respondents had a more difficult 
time endorsing these items. Depending on how 
far the person measures are away from 3 logits 
essentially answers the question of how difficult it 
was for each of the various respondents to endorse 
these items. The farther down the map the persons 
fell, the more difficulty they would have endorsing 
the two items at the top. 
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Also, notice the items at the bottom of the map, 
in particular, items E3 and E1. Following the same 
procedure as before, if one were to draw a line 
across these items through the person side of the 
map one would not find any persons at or below 
the measure. In fact, one would have to go up to 
approximately -0.3 logits on the scale before the 
lower end of the person measures appeared. This 
means that items that fell at or below approximately 
-0.3 logits were rather easy for respondents to 
endorse.   

To add a quality control element to this 
example, consider investigating the abbreviated 
items in the map. Items M12 and M15 read “High-
quality research requires random sampling,” and 
“High-quality research can be determined solely 
by examining the research methodology.” It makes 
sense that these items would be the most difficult 
to endorse, as these perspectives are likely to 
represent a minority perspective among faculty 
and graduate students who conduct research on 
educational issues. Items E1 and E3 read “High-
quality research abides by ethical standards,” and 
“High-quality research should protect the safety 
and welfare of participants.” Because one would 
expect this sample frame to generally agree with 
these statements, it is safe to assume the empirical 
hierarchy is ascending/descending in the direction 
consistent with this interpretation, thus providing 
evidence of construct validity.

To make the map more user-friendly and 
interpretable, one can convert the logits to a 
scale that is more meaningful.  For instance, if one 
wanted to create a scale that ranged from 0–100, 
one could use the “scaling calculator” function to do 
so.  Essentially, the idea would be to take the lowest 
logit value and convert it to 0, while taking the 
highest logit value and converting it to 100.  Using 
this function converts the scale while maintaining 
all its interval properties, thus making it potentially 
easier to read.

If one wanted to take the analysis of the 
map even further, one can actually calculate the 
distance between persons and items to calculate a 
probability that one is likely to endorse a particular 
item. It should be noted that although this is 

possible, it can be rather tricky.  In fact, it is a rather 
tedious and time-consuming endeavour and is 
probably unadvised unless one is working with 
very few people and items or has a strong reason 
for actually wanting to know this information.  
However, should one choose to do this, the 
following will need to be done.  First, identify 
the person and item measures for which you are 
interested in learning the probability that someone 
is likely to endorse the item.  For example, say a 
survey respondent has a logit value of 1.5, and 
you are interested in the probability of someone 
endorsing an item that has a difficulty estimate of 
0.3.  Simply subtract the difference between the 
person and item: 1.5 – 0.3 = 1.2.  Then, open an 
Excel spreadsheet and enter the formula:

=EXP(1.2)/(1+EXP(1.2))

This will produce a value of 0.768524783, or a 
probably of 77% that this person would endorse 
this particular item.

Keyform Mapping

Keyform maps arrange constructs and visually 
display how items hold with (and in comparison to) 
one another (see Figure 3).  Keyform maps ask the 
question “what is the average rating that we expect 
to observe for persons of a particular measure?” 
Using the same dataset from Bradley et al. (2008), 
data are mapped to keyform. Here, the column 
on the right indicates the items appearing on the 
survey. The 1s, 2s, 3s, and 4s appearing within 
the map indicate survey respondents’ responses 
to each item. To interpret this map, one would 
essentially draw a vertical line in a column and 
make comparisons.  For example, for item M15, 
the average response to this item was 2 (Disagree). 
However, going straight down the map we see 
items T6, M10, and M17 (among others) possess 
a 3 (indicating Agree). Going even further down 
the map, items E10, M7, and E2 (among others) 
have ratings of 4 (Strongly Agree).  This tells us that 
respondents who typically disagreed with item 
M15, happened to agree with items T6, M10, and 
M17, and strongly agreed with items E10, M7, and 
E2.  To provide some qualitative context, let us 
consider the content of the item with which most 
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Figure 3. Keyform map.
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respondents disagreed compared to the three items 
from this example with which they strongly agreed.  
Item M15 asks the question “High-quality research 
can be determined solely by examining the research 
methodology.” Items E10, M7, and E2 indicate 
“High-quality research should abide by the ethical 
guidelines recognized by the related professional 
organization in that field”; “High-quality research 
should follow a clear logic of inquiry”; and “High-
quality research informs participants about the 
consent to research,” respectively. Understanding 
this information can provide survey researchers 
with much more informative and meaningful 
information about the constructs present in their 
surveys.

Software and Analytical Techniques

Data analysis for this demonstration was 
performed using Winsteps measurement software 
(Linacre, 2009). Traditional statistical analyses 
involve coding data, importing/uploading to a 
statistical software program, choosing appropriate 
statistical techniques, performing analyses, and so 
on. In many ways, Winsteps measurement software 
is no different, but the ability to effectively write 
program code can greatly streamline the process. 
Similar to a traditional statistical analysis, a data file 
must be prepared. However, measurement software 
requires a control file, which contains commands for 
telling the program where to read the data, as well 
as what output to produce. Numerous examples of 
control files that should require minor modifications 
to fit your data are available on the Winsteps 
program’s website.  Also, a user-friendly data set-up 
feature is available to provide an alternative method 
for creating the control file. Typically, a check of 
summary statistics on the number of person and 
item data read by the program can provide an initial 
quality control check to ensure all the data were 
read into the program properly.

Like becoming acquainted to any analytical 
software package, understanding programs like 
Winsteps involves a learning curve. Online manuals 
contain most everything one would need to 
know, and countless examples can be found at the 
software’s homepage. For those interested in trying 
Winsteps measurement software, an evaluation/

student version called MINISTEP is available free 
of charge at www.winsteps.com. The evaluation/
student version allows analyses of records 
containing up to 75 persons and 25 items. This 
would be ideal for researchers wishing to survey a 
sample of less than 75 persons with a questionnaire 
containing 25 survey items or less. The full version 
has the capacity to analyze data sets containing up 
to 30,000 items and 10,000,000 persons.  

Other popular measurement software packages 
include RUMM and ConQuest. Both of these 
software packages are equipped to handle survey 
data and can produce similar output.  RUMM can 
be downloaded from http://www.rummlab.com.
au/. Although an evaluation copy is not available, 
those with an interest in potentially purchasing 
the software can request a limited-time license 
by contacting the RUMM Laboratory.  ConQuest 
software is available from www.assess.com.  A fully 
functional copy can be downloaded for 30 days for 
anyone interested in a trial version.

Conclusion

There are a number of useful techniques one 
can use to analyze survey data, all of which have 
their own strengths and weaknesses and generally 
require varying degrees of assumptions.  Traditional 
approaches are incredibly popular, but provide only 
a limited amount of utility. CTT techniques rely on 
calculating raw scores and often make erroneous 
assumptions about the levels of measurement of 
the variables. Exploring datasets and instruments 
with IRT techniques can provide an alternative view, 
especially now that computer software is readily 
available and affordable.  IRT analysis, particularly 
the Rasch measurement model, can convert ordinal 
raw scores to truly interval measures and correct 
many of the erroneous assumptions made by CTT 
models. Additionally, the output produced from 
Rasch models can provide a fresh perspective of 
findings, and may be potentially more meaningful.  

It is the researcher’s hope that assessment and 
institutional research practitioners will explore 
issues of measurement within their own research. It 
is important to understand that Rasch measurement 
is not intended to take the place of statistics, but 
rather to complement the use of statistics.  Utilizing 
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a theoretically sound and mathematically just 
approach like Rasch measurement eliminates 
assumptions researchers often make regarding 
methodological issues. Therefore, once proper 
measurement takes place, appropriate statistical 
techniques can then be applied, and the results 
will become more precise—and possibly more 
meaningful.

Editor’s Note:

In the beginning of time, before there was time, 
there were also no computing facilities other than 
a Monroe electromechanical desk calculator that 
could be raced with a Freidan by dividing a real 
number by zero.i When statistics were selected for 
dealing with analytical questions, criteria included 
the appropriateness of the model, the ability to 
explain the methodology and results, and the ease 
of computations. Graduate classes spent time on 
how to accelerate computations and calculations.

At that point of analytical emergence, the 
weak-true-score model found a basis in the linear 
modeling that supported correlation, Analysis of 
Variance, and regression analysis. Over time, we 
realized that the world was not unidimensional, so 
Factor Analysis, Cluster Analysis, and several other 
multivariate methodologies emerged. The general 
linear model and classical test theory of true score 
plus random error (typically normally distributed) 
maintained its dominance. Royal’s discussion is 
to remind us that the world has changed. The 
generalized linear model does not fit all. We should 
be somewhat prepared for this revelation with 
the popularity of the Logistic model, Log-Linear 
analysis, and Event Modeling/Survival Analysis. The 
barrier of computations has basically disappeared. 
It is appropriate that this article also helps lower 

i The Friden was faster but tended to jam so the Monroe usually won. We didn’t have a Marchant (http://infolab.
stanford.edu/pub/voy/museum/pictures/DisplayHector/121CalcFriden.jpg) .

the barrier of understanding and explaining non-
linear models. How do you respond to the author’s 
question, “Why has our profession been hesitant 
to consider models that were conceptualized 50 
years ago?” If the answer is complexity, why has 
there been the much greater acceptance of Data 
Mining and Hierarchical Linear Modeling, which are 
certainly complex methodologies, than there has 
been for Item Response Theory?

After reflecting on the slowness to accept the 
IRT alternative, and the possible lack of it in our 
instruction and research, the second question that 
Royal advances is “Which type of IRT is the most 
appropriate?” In other words, do we fit the model to 
the data or do we fit the data to the model? What 
are the ways to compose questions so that they are 
more likely to fit the Rasch model that assumes local 
independence and measure a single factor? 

The presentation of results with the person and 
item map is a viable alternative to the complexity 
of explaining results. The same is true of the 
keyform map.  The metrics of In-fit and Out-fit 
may be a bit more challenging to explain. Finally 
the computation of the likelihood an individual 
will endorse (Pass) an item has great relevance to 
our discussions, but is, as noted in the article, a bit 
trickier.

In summary, I think this is a very valuable 
example of a tool that can be appropriate for some 
of our research. I will caution, however, that when 
one goes beyond the traditional measure of ability 
as the overall performance on a sum of items, then 
the measure of the underlying ability is a bit more 
challenging. 

We have been provided with a road map, with 
some of the more common models for multiple 
situations, with the location of the computer 
software for the alternatives and with the challenge 
to learn and use new methodologies. This is a 
challenge that we need to seriously consider.
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