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Abstract 

This study compared the accuracies of four differential item functioning (DIF) estimation 

methods, where each method makes use of only one of the following: raw data, logistic 

regression, loglinear models, or kernel smoothing. The major focus was on the estimation 

strategies’ potential for estimating score-level, conditional DIF. A secondary focus was on 

assessing the accuracy of strategies’ overall DIF effect sizes and statistical significance tests. A 

real data simulation was used to evaluate the estimation strategies with 6 items representing DIF 

and No DIF situations, and with 4 sample size combinations for the reference and focal group 

data. Results showed that the logistic regression estimation strategy was the most highly 

recommended strategy in terms of the bias and variability of its estimates and the power of its 

statistical significance test. The loglinear models strategy had flexibility advantages, but these 

advantages only offset the greater variability of its estimates and its reduced statistical power 

when sample sizes were large. The kernel smoothing estimation strategy was the least accurate 

of the considered strategies due to estimation problems when the reference and focal groups 

differed in overall ability. 

Key words:  DIF, kernel smoothing, loglinear models, logistic regression 
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While the psychometric literature has defined differential item functioning (DIF) as a 

performance difference between examinee groups at one level of ability (Dorans & Holland, 

1993; Lord, 1980; Shepard, 1982), considerable research has focused on developing and 

comparing DIF detection methods that summarize DIF across a total range of ability (Dorans & 

Kulick, 1986; Holland & Thayer, 1988; Kristjansson, Aylesworth, McDowell, & Zumbo, 2005; 

Roussos & Stout, 1996; Shealy & Stout, 1993; Swaminathan & Rogers, 1990; Zumbo, 1999; 

Zwick, Thayer, & Lewis, 2000). This work usually focuses on overall statistical significance 

tests of summary DIF indexes and, to a lesser extent, on the use of summary DIF indexes as 

overall effect sizes. Due to the potential of all summary measures to oversummarize in special 

circumstances (to be described below), effect sizes and significance tests of overall DIF may 

benefit by being supplemented with assessments of conditional, ability-level DIF. The purpose of 

this study was to compare the accuracies of four DIF estimation strategies for estimating 

conditional DIF (raw data, logistic regression, loglinear models, and kernel smoothing). 

Assessing Differential Item Functioning (DIF) 

The assessment of DIF is a determination of whether a studied item, Y, performs 

differently for reference examinees, R, and focal examinees, F, conditioned on the M levels of a 

variable that measures reference and focal examinees’ overall ability, mX . In this study, Y is 

dichotomously scored. mX  denotes an observed test score that excludes Y and all items 

containing extensive DIF, or C-DIF (Dorans & Holland, 1993). 

The extent of item Y’s DIF can be assessed by determining if the reference and focal 

conditional expected scores differ for any of the M levels of mX , 

mConditional DIF ( ) ( ) 0,   1,......,Fm RmE Y E Y m M= − ≠ = . (1) 

In typical DIF assessments, the M differences in (1) are summarized rather than individually 

evaluated. One common DIF summary measure is a focal-weighted average of (1)'s C-DIF 

estimates,  

( ) ( )m( ) ( ) Conditional DIFFm Fm
Fm Rm

m mFm Fm
m m

n nE Y E Y
n n

− =∑ ∑∑ ∑
, (2) 
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where Fmn  denotes the number of focal examinees at mX . The DIF summary statistic in (2) is 

referred to as a standardized expected score difference (i.e., standardized E-Dif; Dorans & 

Schmitt, 1993). The standardized E-Dif is used mostly as an effect size measure of overall DIF, 

but since an estimate of its standard error is available (Dorans & Holland, 1993), it can also be 

used as a statistical significance test. 

Potential difficulties with the standardized E-Dif measure are that it can downplay DIF in 

easy and hard items (Dorans & Holland, 1993, p. 59) or in items exhibiting large degrees of 

nonuniform DIF. In addition, the standardized E-Difs most frequently described weighting 

strategy, Fm

Fm
m

n
n∑

, may not be the most appropriate for particular purposes, such as evaluating 

DIF in the proximity of potential cut scores. To address these issues, it can be useful to 

supplement overall effect size and significance test DIF assessment by also assessing the M 

differences in (1) with respect to magnitude and with respect to the M conditional standard 

errors, 

( ( ) ( )) ( ( )) ( ( ))Fm Rm Fm RmSE E Y E Y Var E Y Var E Y− = + , (3) 

where the ( ( ))Var E Y  terms are the estimated variances of the expected item scores, ( )E Y . The 

assessment of (1) and (3) using different DIF estimation strategies is the major focus of this 

study. 

Differential Item Functioning (DIF) Estimation Strategies 

This section summarizes the raw, logistic regression, loglinear models, and kernel 

smoothing DIF estimation strategies of interest in a general overview and as applied to a specific 

DIF example. Specific details are given in Appendixes A, B, C, and D for how each estimation 

strategy can be used in (1), (2), and (3) for estimating conditional DIF, conditional standard 

errors, and the standardized E-Dif measure, and for overall statistical significance tests.  

The use of raw data for estimating conditional means and variances in DIF (Appendix A) 

has been described for estimating the standardized E-Dif measure, for plots of conditional 

differences (Dorans & Holland, 1993; Dorans & Kulick, 1986), and also for overall statistical 

significance tests in the related simultaneous item bias test (SIBTEST) framework (Shealy & 
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Stout, 1993). Raw data offers the most direct approach to DIF estimation and has the least 

potential for model misspecification error of the strategies considered in this study. The use of 

raw data produces conditional DIF estimates that are relatively unstable in terms of sampling 

variability, a feature that could make the estimates less useful than those based on other 

strategies. 

The application of logistic regression procedures to DIF assessment (French & Miller, 

1996; Jodoin & Gierl, 2001; Kristjansson et al., 2005; Swaminathan & Rogers, 1990) involves 

predicting the probability of a correct response on Y using logistic curves based on mX , 

membership in the reference or focal group, and the interaction of group membership and mX  

(Appendix B). Logistic regression has been studied as an overall significance test and has 

received attention for its estimates of conditional DIF (French & Miller, 1996) and effect sizes 

(Jodoin & Gierl, 2001; Zumbo, 1999). As a significance test, logistic regression has been shown 

to be a powerful test relative to other strategies (Swaminathan & Rogers, 1990), especially for 

detecting levels of DIF that are not the same at each level of mX  (i.e., nonuniform DIF). The 

accuracy of logistic regression’s conditional DIF estimates is less clear, as its imposition of 

logistic curves is the strongest of assumptions made on the data of all the DIF strategies 

considered in this study, perhaps increasing its potential for biased estimation (Hanson & 

Feinstein, 1995; Ramsay, 1991). 

The polynomial loglinear models assessed in this study were proposed by Hanson and 

Feinstein (1995). This estimation strategy is based on identifying DIF in terms of differences in 

four discrete frequency distributions of mX : the two frequency distributions of the reference 

group that gets Y correct and incorrect, and the two frequency distributions of the focal group 

that gets Y correct and incorrect (Appendix C). Polynomial loglinear models, one of many 

loglinear modeling proposals for assessing DIF, are iterative and more flexible versions of 

Mantel-Haenszel (Holland & Thayer, 1988), are more parsimonious than the “saturated” 

loglinear models described in Mellenbergh (1982), and have an observed score focus rather than 

other Rasch-focused loglinear models (Kelderman, 1984). Hanson and Feinstein provided 

demonstrations of the use of polynomial loglinear models for overall significance tests and for 

conditional DIF estimates. Conditional standard errors were not described. The Hanson and 
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Feinstein study demonstrated that loglinear models are more flexible and make fewer 

impositions on the data than logit models (such as logistic regression models). 

A final approach that is considered for assessing overall and conditional DIF is based on 

kernel smoothing (Ramsay, 1991). Kernel smoothing employs weighted averaging to reduce 

fluctuations in raw data estimates (Appendix D). This study employs kernel smoothing to 

separately smooth the raw focal and reference ( )mE Y ’s, an approach that is routinely used at 

ETS to assess conditional DIF and also to assess items’ nonparametric response curves. This 

version of kernel smoothing differs from prior versions employed in studies of kernel smoothing 

applications to DIF that are computationally intensive, nonparametric-IRT-based procedures 

(Douglas, Stout, & DiBello, 1996; Gierl & Bolt, 2001; Lyu, Dorans, & Ramsay, 1995; Ramsay, 

2000). 

Example. An example is presented to illustrate the distinguishing features of the four 

DIF estimation strategies. This example is based on the population data of one of the DIF items 

featured in this simulation study: the Science1 item. This item was flagged as a conditional DIF 

item favoring the male reference group (N = 34,336) as compared to the female focal group (N = 

18,560). More specific information about the DIF context of this item is described in this study’s 

section, Raw Population Data and Their Population Differential Item Functioning (DIF) 

Statistics.  

The standardized E-Dif values and overall significance tests based on the four DIF 

estimation strategies of interest are presented in Table 1. The standardized E-Dif values based on 

raw data, logistic regression, and loglinear models are identical when rounded to their first three 

decimal places (-0.140). The standardized E-Dif value based on kernel smoothing is somewhat 

different from those of the other three estimation strategies (-0.148). All four estimation 

strategies indicate statistically significant overall DIF.  

The conditional DIF and +/- 2 estimated standard error bands for the four estimation 

strategies are presented in Figures 1 to 4. The figures suggest that the Science1 item’s DIF is 

nonuniform (i.e., the level of DIF is not the same across the score levels of mX ). Specifically, 

DIF is shown to be large and statistically significant for the low-to-middle scores of mX  but 

close to zero (i.e., no DIF) and possibly statistically insignificant for the higher scores of mX . 
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These nonuniform, mX -varying conditional DIF estimates are missed when the focus is only on 

the overall standardized E-Dif values and significance tests (Table 1).  

Table 1 

Comparing the Four Differential Item Functioning (DIF) Estimation Strategies’ Overall DIF 

Assessments in the Study’s Population Data (Science1 Item) 

Method Standardized E-Dif Significance test statistic 

Raw data -0.140 z = -31.03* 

Logistic regression -0.140 2χ  = 1,146.62* (df = 2) 

Loglinear models -0.140 2χ  = 1,167.89* (df = 5) 

Kernel smoothing -0.148 z = -33.78* 

* p < .05. 

Science1 Item
Conditional DIF and Standard Errors

Raw Data

-0.4

-0.2

0

0.2

0.4
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D
IF

DIF +/- 2SEs

 

Figure 1. Science1 item: Raw data for conditional differential item functioning (DIF) and 

standard errors (SE). 
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Figures 1 to 4 illustrate how the four DIF estimation strategies differ: The conditional 

DIF estimates based on the raw data exhibit large fluctuations and relatively wide standard error 

bands (Figure 1), while the logistic regression method has narrow standard error bands and 

conditional DIF estimates that disagree with the raw data’s no DIF suggestion at the highest mX  

scores (Figure 2 vs. Figure 1). The loglinear model (Figure 3) and kernel smoothing (Figure 4) 

estimation strategies appear to reflect the trends in Figure 1’s raw data conditional DIF estimates 

more closely than the logistic regression method, with the standard error bands based on the 

loglinear model being wider than those of the kernel smoothing method at the lowest mX  scores.  

Science1 Item
Conditional DIF and Standard Errors 

Logistic Regression
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-0.2
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0.2

0.4
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X

D
IF

DIF +/- 2SEs

 

Figure 2. Science1 item: Logistic regression for conditional differential item functioning 

(DIF) and standard errors (SE). 
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Science1 Item
Conditional DIF and Standard Errors 

Loglinear Models
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Figure 3. Science1 item: Loglinear models for conditional differential item functioning 

(DIF) and standard errors (SE). 

Science1 Item 
Conditional DIF and Standard Errors 

Kernel Smoothing
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Figure 4. Science1 item: Kernel smoothing for conditional differential item functioning 

(DIF) and standard errors (SE). 
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This Differential Item Functioning (DIF) Study 

This DIF study is different from prior DIF studies in that the major focus is on the 

accuracy of estimation strategies’ conditional DIF and conditional standard error estimates, with 

somewhat less emphasis on the accuracy of their overall statistical significance tests and overall 

effect sizes (i.e., standardized E-Dif values; Dorans & Kulick, 1986). As implied in the reviews 

of the DIF estimation strategies of interest (raw data, logistic regression, loglinear models, and 

kernel smoothing), much of the prior research has not compared many of these estimation 

strategies directly to each other and with respect to this study’s conditional DIF focus. What 

studies have been done suggest the following findings from comparisons of the four DIF 

estimation strategies: 

• The estimation strategies may differ more with respect to their conditional DIF estimates 

than with respect to their ability to estimate the same summary DIF measure, the 

standardized E-Dif. This suggestion is based on prior studies that assessed the use of various 

modeling strategies for smoothing raw DIF estimates, which have shown that smoothing 

conditional DIF estimates and then aggregating these estimates into overall DIF measures 

does not improve overall DIF measures relative to simply using the raw data (Douglas et al., 

1996; Puhan, Moses, Yu, & Dorans, 2007).  

• An important issue in comparing the DIF estimation strategies is assessing them in terms of 

their tradeoff of flexibility to fit a range of conditional DIF curves versus statistical power to 

detect DIF. Specifically, the logistic regression strategy’s imposition of logistic functions 

onto the sample data is a less flexible and less data-adaptive estimation approach than 

loglinear models (Hanson & Feinstein, 1995), kernel smoothing (Ramsay, 1991), and raw 

data. Logistic regression’s reduced flexibility could result not only in reduced estimation 

accuracy for certain DIF situations, but also in increased statistical power because its overall 

chi-square tests are based on fewer degrees of freedom than that of the loglinear models 

estimation strategy (Appendixes B and C) and perhaps because its use of simpler modeling 

parameterizations produce smaller standard errors for conditional DIF estimates. 

• The kernel smoothing estimation strategy has its own distinguishing features that need to be 

compared with those of the other strategies. The described example showed that the 

conditional DIF and standardized E-Dif based on kernel smoothing differed from those of the 

other estimation strategies. The use of kernel smoothing as an overall statistical significance 
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test is an additional interest, as this issue has received little attention in prior studies and has 

not resulted in an extremely accurate significance test (Douglas et al., 1996). 

Method 

The raw data, logistic regression, loglinear modeling, and kernel smoothing DIF 

estimation strategies were compared in several simulations. Populations for DIF items were 

obtained from large-volume test data, and the DIF statistics computed from the raw population 

data were used as population DIF statistics. From these populations, sample datasets were 

randomly drawn at specific reference and focal group sample sizes. Conditional and overall DIF 

were assessed using each of the four strategies in each of the sample datasets. The accuracies of 

the estimation strategies were studied by averaging their results over 400 replications of sample 

datasets and comparing the averages to the population DIF statistics computed in the raw 

population data. 

Raw Population Data and Their Population Differential Item Functioning (DIF) Statistics 

The study used test data from two large-scale achievement tests as the populations. These 

populations are comprised of test data used to conduct actual DIF analyses, making these 

populations especially useful for realistic evaluations that are relevant for practice. Six 

conditional DIF items were found, three from a 69-item science test and three from an 80-item 

history test. The DIF was based on males and females, a comparison that resulted in large 

reference and focal populations. The science test data consisted of 52,896 examinees, with 

34,336 examinees in the reference group (i.e., male) and 18,560 examinees in the focal group 

(i.e., female). The history test data consisted of 325,250 examinees, with 147,737 examinees in 

the reference group (i.e., male) and 177,513 examinees in the focal group (i.e., female). 

Table 2 presents the population statistics of the six items, including their average item 

scores, point-biserial correlations with the matching variable, and the standardized average 

reference versus focal difference on the matching variable. Table 2 also shows the items’ 

standardized E-Dif values calculated from the raw population data (used as population DIF 

statistics in this study). Table 2’s summary of the six items shows that these items vary in their 

DIF-relevant characteristics, including different levels of reference versus focal abilities on the 

matching variable (the science vs. history items), easier and more difficult studied items 

(Science3 vs. the other five items), varied correlations with the matching variable, varied 
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magnitudes of DIF (Science1 and Science2 vs. Science3 and History2), and DIF situations where 

the reference group is favored (Science1 and Science2) and other DIF situations where the focal 

group is favored (Science3, History1, History2, and History3). 

Sample Sizes 

Random samples of the reference and focal data were drawn from the population data in 

reference/focal sizes of 2,000/2,000, 2,000/700, 700/700, and 700/200.  

Simulations 

The simulations were conducted to assess the raw, logistic regression, loglinear models, 

and kernel smoothing DIF estimation strategies with respect to their estimation of six different 

items and four reference and focal sample size combinations. For each of the 6 x 4 = 24 

combinations of DIF item and sample size, 400 datasets were randomly drawn from the 

population data. In each of these sample datasets, the four DIF estimation strategies were used to 

estimate the conditional DIF in the raw population data across all M levels of matching variable 

mX  (1), to estimate the M conditional standard errors of the conditional DIF estimates (3), to 

conduct significance tests of overall DIF (Appendixes A, B, C, and D), and to estimate the 

overall standardized E-Dif measure (2) in the raw population data. 

Table 2 

Summary of the Raw Population Data for the Six Studied Items (Y) 

Subject & item 
(Y) 

Average item 
score on Y in 
the combined 

focal and 
reference data 

Point-biserial 
correlation 

between X and 
Y in the 

combined focal 
and reference 

data 

Average 
standardized 

difference on X ,  
(focal-reference) 

Standardized  
E-Dif of Y 

based on raw 
data 

Science1 0.69 0.32 -0.41 -0.14 

Science2 0.75 0.42 -0.41 -0.12 

Science3 0.23 0.44 -0.41 0.07 

History1 0.77 0.38 -0.26 0.10 

History2 0.92 0.27 -0.26 0.08 

History3 0.76 0.40 -0.26 0.10 
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The study also considered 24 additional no DIF conditions for the six items and four 

sample sizes. For the no DIF conditions, the studied item’s conditional expected scores 

computed in the combined population reference and focal data were used as population 

parameters for randomly generating the reference and focal studied item responses in each of the 

sample datasets. The data generation for the no DIF conditions is illustrated in following three 

bullets: 

• For the Science1 item, the expected score of the combined population reference and 

population focal data at mX = 5 was 0.358. For the simulation of no DIF in the Science1 

item, the Science1 item scores for the reference and focal data at mX = 5 were created by 

randomly drawing values of either 0 or 1, where the probability of drawing a score of 1 at 

mX = 5 was 0.358. The result of this generation of Science1 item scores was that the 

expected (population) Science1 item score at mX = 5 was the same (no DIF) in the reference 

and focal sample data, 0.358. 

• For the Science3 item, the expected score of the combined population reference and 

population focal data at mX = 11 was 0.054. For the simulation of no DIF in the Science3 

item, the Science3 item scores for the reference and focal data at mX = 11 were created by 

randomly drawing values of either 0 or 1, where the probability of drawing a score of 1 at 

mX = 11 was 0.054. The result of this generation of Science3 item scores was that the 

expected (population) Science3 item score at mX = 11 was the same (no DIF) in the reference 

and focal sample data, 0.054. 

• For the History2 item, the expected score of the combined population reference and 

population focal data at mX = 27 was 0.849. For the simulation of no DIF in the History2 

item, the History2 item scores for the reference and focal data at mX = 27 were created by 

randomly drawing values of either 0 or 1, where the probability of drawing a score of 1 at 

mX = 27 was 0.849. The result of this generation of History2 item scores was that the 

expected (population) History2 item score at mX = 27 was the same (no DIF) in the reference 

and focal sample data, 0.849. 
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For all of the no DIF conditions, the scores for all mX  values of all six items were generated in 

the same manner as what was described in the previous three bullets. These scores resulted in 

reference and focal data where the expected (population) DIF was zero for all mX  values (1) and 

also zero when aggregated across all mX  values (2). This generation of no DIF made it possible 

for the DIF strategies to be assessed in no DIF conditions that preserved the overall 

characteristics of the studied items (i.e., difficulty, point-biserial correlations) and matching 

variables (score ranges, overall reference, and focal ability differences).  

For each of the 48 total conditions (4 sample sizes X 6 items X DIF vs. no DIF = 48), the 

accuracies of the four DIF estimation strategies’ conditional DIF and conditional standard error 

estimates, overall significance tests, and standardized E-Dif measures were assessed as averaged 

across the 400 replicated datasets and compared with the values computed in the raw population 

data. 

Accuracy measures. To evaluate the accuracy of the conditional DIF estimates for each 

of the study’s 48 conditions (six studied items, four sample size combinations and  DIF vs. no 

DIF conditions), measures were computed from the mean squared error ( MSE ) calculated at 

each of the M levels of the matching variable, mX , 

( )

( ) ( )

2

,

22

,

2

1
400

1          
400

           

m m replication m
replication

m m m replication m
replication

m m

MSE

Bias Variance

θ θ

θ θ θ θ

= −

⎡ ⎤= − + −⎢ ⎥⎣ ⎦

= +

∑

∑

, (4) 

where replication indicates one of the 400 random datasets drawn from one of the population 

distributions at one of the four sample size combinations, ,m replicationθ  is the estimated conditional 

DIF estimate in one of the 400 datasets at mX , mθ  is the average of the 400 sample datasets’ 

conditional DIF estimates at mX , and mθ  is the conditional DIF estimate computed in the raw 

population data at mX . 
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The square roots of the squared conditional squared bias and variance in (4) were taken 

and averaged with respect to the M score levels of mX  to form average absolute conditional bias 

and average conditional standard deviations, 

21Avg. Abs. Conditional Bias m
m

Bias
M

= ∑
, (5) 

m m

1 1Avg. Conditional SD m mVariance SD
M M

= =∑ ∑
. (6) 

To assess the extent to which strategies’ estimated conditional standard errors 

approximated their estimates’ actual variability (i.e., the mSD ’s in (6)), a measure similar to (5) 

was used, 

( )2

1Avg. Abs. Conditional SE Inaccuracy
Avg. Conditional SD

m m
m

SE SD

M

−
⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑
, (7) 

where mSE  is the average of a DIF strategy's estimated conditional standard errors across the 

400 replications of an item and sample size combination.  

Alternative summary measures to (5), (6), and (7) would be to average the mX -level 

squared differences or the signed differences rather than the absolute differences, and/or weight 

the mX -level results by a population distribution. The mX -level averaging was done on the 

absolute differences because it oriented the averaging directly on the conditional DIF and 

standard error quantities of interest rather than on the squared values. The averaging of absolute 

differences was desirable also because it produced summaries that were not influenced by the 

cancellation of positive and negative differences. The nonweighting in (5), (6), and (7) was used 

because, in practice, conditional DIF results would potentially be evaluated at score levels not 

necessarily based on where the most data are found. Preliminary evaluations of the results 

showed that the conclusions would not be dramatically altered by using alternative versions of 

(5), (6), and (7), but they would also not be identical to the reported results. Plots of the 

strategies’ estimation results were also created to supplement the summary measures. These plots 
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depicted the biases of the conditional DIF ( m mθ θ− ), and the size and accuracies of the standard 

error estimates ( mSE  vs. mSD ) for specific item and sample size combinations of interest. 

To evaluate the DIF strategies’ accuracy in terms of the standardized E-Dif measure, 

accuracy measures were created as the square roots of the squared bias (standardized E-Dif 

absolute bias) and variance (standardized E-Dif SD) parts of its own MSE , 

( )2 2Standardized E-Dif Absolute Bias Biasθ θ= − =
, (8) 

( )21Standardized E-Dif SD
400 replication

replication
Varianceθ θ= − =∑

. (9) 

where replicationθ  is the estimated standardized E-Dif value in one of the 400 datasets, θ  is the 

average of the 400 sample datasets’ standardized E-Dif values, and θ  is the raw data 

standardized E-Dif value computed in the population data.  

The accuracy of the DIF estimation strategies’ overall statistical significance tests was 

also assessed. For this evaluation, a rate was calculated for how often each estimation strategy 

indicated that DIF was statistically significant across the 400 replications of an item and sample 

size condition. When the studied item responses were drawn from the actual male and female 

population data, these rates were power rates (i.e., the rate at which the DIF estimation strategies 

correctly indicated DIF when DIF was in the population). When studied item responses for the 

male and female samples were randomly generated from a common set of conditional expected 

scores, these rates were Type I error rates (i.e., the rate at which the DIF estimation strategies 

incorrectly indicated DIF when DIF was not in the population). The superior strategy in terms of 

statistical significance tests was the one that had the largest power rate while staying sufficiently 

close to the desired 0.05 Type I error rate, where sufficient was defined as within a range of 

0.025 to 0.075. This range is known as Bradley’s (1978) liberal criterion of robustness and is 

commonly used to evaluate statistical strategies’ Type I error rates (e.g., Keselman, Wilcox, 

Othman, & Fradette, 2002). 
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Results 

Differential Item Functioning (DIF) Estimation Strategies’ Conditional DIF and Standard 

Error Results 

The results of DIF estimation strategies’ conditional DIF and standard error estimates are 

summarized by studied item (measures are averaged across the 4X2=8 combinations of sample 

size and DIF vs. no DIF; Table 3), by sample size (measures are averaged across the 6X2=12 

combinations of studied item and DIF vs. no DIF; Table 4) and by DIF versus no DIF (measures 

are averaged across the 6X4=24 combinations of studied item and sample size; Table 5). Each of 

these tables compares the four estimation strategies in terms of the extent to which their 

conditional DIF estimates systematically deviated from the population conditional DIF values 

(average. absolute conditional bias, or avg. abs. conditional bias), the variability of their 

conditional DIF estimates (average conditional standard deviation, or avg. conditional SD), and 

the accuracy of their conditional standard errors (average absolute conditional standard error 

inaccuracy, or avg. abs. conditional SE inaccuracy). The values of absolute bias, variability, and 

standard error accuracy for specific items, sample sizes, and DIF condition are bolded to indicate 

the best DIF estimation strategy and underlined to indicate the worst DIF estimation strategy. 

The DIF estimation strategies produced mixed results in terms of their absolute 

conditional bias for the items, sample sizes, and DIF conditions. The raw data strategy had the 

smallest absolute conditional biases for the three science items, while the loglinear models 

strategy had the smallest values for the History1 item and the logistic regression strategy had the 

smallest values for the History2 and History3 items. The kernel smoothing strategy had the 

largest absolute conditional biases for four of the six studied items. In terms of sample sizes, the 

logistic regression strategy had the smallest absolute conditional bias for the smallest sample size 

condition considered (700/200), while the raw data strategy had the smallest absolute conditional 

biases and the kernel smoothing strategy had the largest absolute conditional biases for the three 

larger sample size conditions (700/700, 2,000/700, and 2,000/2,000). For the no DIF conditions, 

the logistic regression strategy had the smallest absolute conditional bias and the raw data 

strategy had the largest absolute conditional bias. For the DIF conditions, the raw data strategy 

had the smallest absolute conditional bias while the kernel smoothing strategy had the largest 

absolute conditional bias.
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Table 3  

The Four Differential Item Functioning (DIF) Estimation Strategies’ Conditional DIF and Standard Error (SE) Results by Item 

 Avg. abs. conditional bias  Avg. conditional SD  Avg. abs. conditional SE inaccuracy 

Items Raw Logistic Loglinear Kernel  Raw Logistic Loglinear Kernel  Raw Logistic Loglinear Kernel 

Science1 0.013 0.023 0.021 0.027  0.214 0.034 0.074 0.042  0.413 0.062 0.093 0.143 

Science2 0.008 0.015 0.019 0.026  0.160 0.025 0.062 0.032  0.405 0.048 0.086 0.131 

Science3 0.011 0.023 0.019 0.024  0.188 0.033 0.070 0.043  0.379 0.062 0.106 0.174 

History1 0.023 0.017 0.016 0.018  0.205 0.032 0.083 0.041  0.451 0.041 0.084 0.166 

History2 0.020 0.010 0.013 0.013  0.177 0.036 0.079 0.033  0.545 0.088 0.082 0.201 

History3 0.014 0.011 0.014 0.017  0.196 0.031 0.076 0.041  0.428 0.065 0.082 0.161 

Note. The best strategy in terms of absolute bias, standard deviation, and standard error inaccuracy for each item is bolded while the 

worst strategy is underlined. Avg. abs. = average absolute, SD = standard deviation, SE = standard error. 

Table 4 

The Four Differential Item Functioning (DIF) Estimation Strategies’ Conditional DIF and Standard Error (SE) Results by 

Sample Size 

Sample 
sizes (R/F) 

Avg. abs. conditional bias  Avg. conditional SD  Avg. abs. conditional SE inaccuracy 
Raw Logistic Loglinear Kernel  Raw Logistic Loglinear Kernel  Raw Logistic Loglinear Kernel 

700/200 0.023 0.017 0.024 0.023  0.258 0.049 0.114 0.057  0.533 0.049 0.113 0.268 
700/700 0.015 0.016 0.014 0.021  0.201 0.032 0.075 0.039  0.445 0.084 0.073 0.145 
2,000/700 0.012 0.016 0.017 0.021  0.168 0.027 0.063 0.034  0.410 0.049 0.094 0.145 
2,000/2,000 0.010 0.016 0.013 0.019  0.133 0.019 0.044 0.025  0.360 0.062 0.076 0.092 

Note. The best strategy in terms of absolute bias, standard deviation, and standard error inaccuracy for each sample size is bolded while 

the worst strategy is underlined. Avg. abs. = average absolute, R/F = reference/focal, SD = standard deviation, SE = standard error. 
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Table 5  

The Four Differential Item Functioning (DIF) Estimation Strategies’ Conditional DIF and Standard Error (SE) Results by 

DIF/No DIF Conditions 

 Avg. abs. conditional bias  Avg. conditional SD  Avg. abs. conditional SE inaccuracy 

DIF Raw Logistic Loglinear Kernel  Raw Logistic Loglinear Kernel  Raw Logistic Loglinear Kernel 

No 0.015 0.004 0.009 0.011  0.191 0.032 0.074 0.039  0.440 0.048 0.091 0.164 

Yes 0.015 0.029 0.025 0.031  0.189 0.032 0.074 0.039  0.434 0.074 0.087 0.160 

Note. The best strategy in terms of absolute bias, standard deviation, and standard error inaccuracy for the DIF conditions is bolded 

while the worst strategy is underlined. Avg. abs. = average absolute, SD = standard deviation, SE = standard error. 
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The four DIF estimation strategies were fairly consistent in terms of the variability of 

their conditional DIF estimates (average. conditional standard deviation) across the items (Table 

3), sample sizes (Table 4), and DIF versus no DIF conditions (Table 5). The general result was 

that the most-to-least variable conditional DIF estimates were those based on raw data, loglinear 

models, kernel smoothing, and logistic regression. The raw data estimates were more than twice 

as variable as those of the second most variable loglinear models’ estimates, which in turn were 

usually more than twice as variable as those of the least variable logistic regression’s estimates.  

The four DIF estimation strategies were fairly consistent in terms of the accuracy of their 

conditional standard error estimates (average absolute conditional standard error inaccuracy) 

across the items (Table 3), sample sizes (Table 4), and DIF versus no DIF conditions (Table 5). 

Generally, the most-to-least accurate conditional standard error estimates were those based on 

logistic regression, loglinear models, kernel smoothing, and raw data.  

Plots to further assess the conditional DIF and standard error results. Plots were 

used to examine the estimation strategies’ bias and variability results in detail for a limited 

number of this study’s conditions. These plots focused on the results obtained for the Science1 

item, the results of which are representative of the plots produced for the other five items. To 

consider the biases of the DIF strategies’ conditional DIF estimates in the no DIF condition, 

Figures 5 and 6 plot the strategies’ conditional biases, where the studied item had no DIF in the 

population, and where the reference and focal datasets were drawn at sample sizes of 700/200 

(Figure 5) and at sample sizes of 2,000/2,000 (Figure 6). For the small sample size condition 

shown in Figure 5, the raw data and loglinear models estimation strategies exhibit their largest 

biases at the highest and lowest scores of mX , while the kernel smoothing estimation strategy 

exhibits small but consistently negative biases throughout many of the low to middle scores of 

mX . The strategies’ conditional biases are generally small when based on large sample sizes 

(Figure 6), though the raw data biases have fluctuations at the high and low scores of mX , the 

loglinear models’ biases are largest at the lowest scores of mX , and the kernel smoothing biases 

are small but consistently negative for many of the low to middle scores of mX . 
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Figure 5. Science1 item: Differential item functioning (DIF) estimation strategies’ 

conditional biases—population DIF = no, reference/focal sample sizes = 700/200.  
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Figure 6. Science1 item: Differential item functioning (DIF) estimation strategies’ 

conditional biases—population DIF = no, reference/focal sample sizes  =2,000/2,000. 
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To consider the estimation strategies’ biases in conditions where the studied item had 

DIF in the population, Figures 7 and 8 plot the strategies’ conditional biases where the Science1 

item had DIF in the population and where the reference and focal datasets were drawn at sample 

sizes of 700/200 (Figure 7) and at sample sizes of 2,000/2,000 (Figure 8). The bias results in 

Figures 7 and 8 are very erratic, due in large part to the fluctuations in the population conditional 

DIF (Figure 1). The major results require close inspection of the figures and show that the raw 

data estimates are generally less biased than those of the other three DIF estimation strategies, 

particularly at the highest and lowest scores of mX . The loglinear models’ estimation strategy 

produced conditional biases that were less accurate than those of the logistic regression 

estimation strategy for the small sample size condition (Figure 7) and more accurate than those 

of the logistic regression estimation strategy for the large sample size condition (Figure 8). The 

kernel smoothing biases deviated from the zero line to a larger extent than the biases based on 

raw data, loglinear models, and logistic regression estimation strategies. 

.
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Figure 7. Science1 item: Differential item functioning (DIF) estimation strategies’ 

conditional biases—population DIF = yes, reference/focal sample sizes =700/200. 
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Figure 8. Science1 item: Differential item functioning (DIF) estimation strategies’ 

conditional biases—population DIF = yes, reference/focal sample sizes = 2,000/2,000. 

 

 

 

To evaluate the DIF strategies’ variabilities and the accuracies of their estimated standard 

errors, Figures 9 to 12 plot the strategies’ conditional mSD  and mSE  values obtained from the 

Science1 item based on reference/focal sample sizes of 700/200 and 2,000/2,000. The major 

results shown in these plots are that the standard error estimates get smaller and more accurate 

with larger sample sizes. The standard error estimates based on 700/200 sample sizes using the 

raw data strategy (Figure 9) are particularly inaccurate in that they underestimate actual 

variability (i.e., the mSD ’s in (6)) for the majority of the mX  scores. The standard error estimates 

of the logistic regression (Figure 10), loglinear models (Figure 11), and kernel smoothing (Figure 

12) estimation strategies are smaller, smoother, and more accurate than those based on raw data. 
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Figure 9. Science1 item: Raw data for conditional standard error (SE) estimates. 
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Figure 10. Science1 item: Logistic regression for conditional standard error (SE) estimates. 
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Figure 11. Science1 item: Loglinear models for conditional standard error (SE) estimates. 
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Figure 12. Science1 item: Kernel smoothing for conditional standard error (SE) estimates. 
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Differential Item Functioning (DIF) Estimation Strategies and Standardized E-Dif 

Estimation 

The raw, logistic regression, loglinear models, and kernel smoothing DIF estimation 

strategies’ absolute biases and standard deviations in estimating the standardized E-Dif 

measure are shown for each item (Table 6), sample size combination (Table 7), and DIF versus 

no DIF condition (Table 8). The values of absolute bias and variability are bolded to indicate 

the best DIF estimation strategy and underlined to indicate the worst DIF strategy. In terms of 

absolute bias, the results show small (0.001) and almost identical absolute biases in the 

standardized E-Dif values based on raw data, logistic regression, and loglinear models, and 

larger (greater than 0.010) absolute bias values in the standardized E-Dif values based on 

kernel smoothing. In terms of standard deviations, the standardized E-Dif values based on raw 

data exhibited slightly larger (by at most .002) variability than those based on logistic 

regression, loglinear models, and kernel smoothing. 

Table 6 

The Four Differential Item Functioning (DIF) Estimation Strategies’ Accuracies for the 

Standardized E-Dif by Item 

 Standardized E-Dif absolute bias Standardized E-Dif SD 
Items Raw Logistic Loglinear Kernel Raw Logistic Loglinear Kernel 
Science1 0.001 0.001 0.001 0.015 0.026 0.025 0.025 0.025 
Science2 0.001 0.001 0.001 0.021 0.023 0.023 0.023 0.023 
Science3 0.001 0.002 0.001 0.011 0.019 0.018 0.018 0.019 
History1 0.001 0.001 0.001 0.008 0.022 0.021 0.021 0.021 
History2 0.000 0.000 0.000 0.004 0.015 0.015 0.015 0.014 
History3 0.001 0.001 0.001 0.009 0.022 0.021 0.021 0.021 

Note. The best strategy in terms of absolute bias and standard deviation for each item is bolded 

while the worst strategy is underlined. SD = standard deviation. 

Differential Item Functioning (DIF) Strategies’ Type I Error and Power Rates 

To evaluate the four DIF estimation strategies in terms of the accuracies of their overall 

statistical significance tests, Table 9 presents their Type I error (no DIF) and power (DIF) rates 

for the six considered items and Table 10 presents their Type I error rate and power rates for the 

four reference/focal sample sizes. In terms of Type I error, the raw data, logistic regression, and 

loglinear models estimation strategies were robust with respect to the 0.025 to 0.075 criterion 
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range, while the kernel smoothing estimation strategy produced consistently inflated Type I error 

rates. The estimation strategies could generally be ordered from most to least powerful as kernel 

smoothing, logistic regression, raw data, and loglinear models. The kernel smoothing estimation 

strategy’s high power rates are not useful due to its inability to sufficiently control Type I error. 

The loglinear models’ estimation strategy had power levels that suffered most in the smallest 

sample size condition (700/200) and had power levels that were very similar to those of the 

logistic regression and raw data strategies with the larger sample size conditions. 

Table 7 

The Four Differential Item Functioning (DIF) Estimation Strategies’ Accuracies for the 

Standardized E-Dif by Sample Size 

Sample sizes  
(R/F) 

Standardized E-Dif absolute bias Standardized E-Dif SD 
Raw Logistic Loglinear Kernel Raw Logistic Loglinear Kernel 

700/200 0.001 0.001 0.001 0.012 0.033 0.031 0.031 0.032 
700/700 0.000 0.001 0.001 0.012 0.022 0.021 0.021 0.021 
2,000/700 0.001 0.001 0.001 0.010 0.017 0.017 0.017 0.017 
2,000/2,000 0.001 0.001 0.001 0.010 0.013 0.012 0.012 0.012 

Note. The best strategy in terms of absolute bias and standard deviation for each sample size is 

bolded while the worst strategy is underlined. R/F = reference/focal; SD = standard deviation. 

Table 8 

The Four Differential Item Functioning (DIF) Estimation Strategies’ Accuracies for the 

Standardized E-Dif by DIF/No DIF 

 Standardized E-Dif absolute bias Standardized E-Dif SD 

DIF Raw Logistic Loglinear Kernel Raw Logistic Loglinear Kernel 

No 0.001 0.001 0.001 0.012 0.021 0.020 0.020 0.020

Yes 0.001 0.001 0.001 0.011 0.021 0.021 0.021 0.021

Note. The best strategy in terms absolute bias and standard deviation each DIF condition is 

bolded while the worst strategy is underlined. SD = standard deviation. 
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Table 9 

The Four Differential Item Functioning (DIF) Estimation Strategies’ Type I Error and Power 

Rates by Item 

DIF Items Raw Logistic Loglinear Kernel 
No  
(Type I error) 

Science1 0.056 0.057 0.069 0.119a 
Science2 0.037 0.053 0.045 0.193 a 
Science3 0.033 0.054 0.043 0.114 a 
History1 0.046 0.054 0.061 0.083 a 
History2 0.043 0.056 0.069 0.078 a 
History3 0.042 0.055 0.057 0.084 a 

      
Yes  
(Power) 

Science1 0.985 0.981 0.968 0.998 
Science2 0.959 0.961 0.930 0.996 
Science3 0.901 0.929 0.898 0.893 
History1 0.959 0.951 0.923 0.969 
History2 0.978 0.984 0.961 0.992 
History3 0.945 0.949 0.918 0.960 

Note. The most powerful strategy’s power rate is bolded while the least powerful strategy’s 

power rate is underlined. 
a Nonrobust Type I error rates that are outside the 0.025 to 0.075 range. 

Table 10 

The Four Differential Item Functioning (DIF) Estimation Strategies’ Type I Error and Power 

Rates by Sample Size 

DIF Sample 
sizes (R/F) 

Raw Logistic Loglinear Kernel 

No  
(Type I Error) 

700/200 0.052 0.060 0.072 0.103 a 
700/700 0.046 0.053 0.048 0.093 a 

2,000/700 0.034 0.047 0.055 0.107 a 
2,000/2,000 0.040 0.059 0.054 0.144 a 

      
Yes  
(Power) 

700/200 0.829 0.843 0.750 0.888 
700/700 0.990 0.995 0.984 0.985 

2,000/700 0.999 0.999 0.998 0.998 
2,000/2,000 1.000 1.000 1.000 1.000 

Note. The most powerful strategy’s power rate is bolded while the least powerful strategy’s 

power rate is underlined. R/F = reference/focal. 
a Nonrobust Type I error rates that are outside the 0.025 to 0.075 range. 
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Discussion 

The perspective of this study is that conditional DIF assessments are useful for evaluating 

an item’s DIF at a more detailed level than summary significance tests and effect sizes. This 

more detailed level can be important when summary DIF assessments oversummarize an item’s 

extent of DIF or summarize DIF when the summary is not of direct interest. The focus of the 

study was on evaluating the accuracy of four estimation strategies with respect to their 

conditional DIF estimates, with a secondary focus on these estimation strategies’ accuracies in 

estimating a common DIF effect size and their statistical significance tests. 

The overall results suggested that the logistic regression and loglinear models’ strategies 

were the most and second most recommended of the four evaluated DIF estimation strategies. 

The logistic regression estimation strategy was especially useful for estimating conditional DIF 

in small sample sizes and for a powerful statistical significance test of overall DIF. The loglinear 

models’ estimation strategy could approximate the conditional DIF in the population better than 

the logistic regression estimation strategy when the population’s conditional DIF was complex, 

however, it required large sample sizes for its flexibility to outweigh its relatively large standard 

errors and its reduced statistical power. The loglinear models’ estimation strategy offers a wider 

range of parameterizations than logistic regression (Appendix C), where increasing the number 

of parameters in the loglinear models from what was used in this study can approximate data 

even more closely, while decreasing the number of parameters can reduce standard errors and 

perhaps increase statistical power. The decision process for selecting appropriate 

parameterizations in the loglinear models’ strategy can be very extensive (e.g., Hanson & 

Feinstein, 1995). The raw data strategy produced conditional DIF estimates that were relatively 

unbiased with respect to the population’s conditional DIF, but also had high levels of variability 

that cause conditional DIF assessments to elude interpretation for all but the largest sample sizes. 

The raw data, logistic regression, and loglinear models estimated the standardized E-Dif measure 

of overall DIF with almost identical levels of accuracy. 

The performance of kernel smoothing made it the least desirable of the four considered 

DIF estimation strategies. It produced the most biased conditional DIF estimates of the four 

considered estimation strategies, had a significance test with an inflated Type I error rate, and 

was the only strategy with bias levels large enough to reduce the accuracy of the overall 

standardized E-Dif measure to levels of practical concern. The source of kernel smoothing’s 
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inaccuracy is that it smoothes the ( )mE Y ’s separately for the reference and focal groups, meaning 

that the groups’ smoothing parameters and extent to which each of the M levels of ( )mE Y  are 

weighted in its weighted averaging process are a direct function of the groups’ overall and 

conditional sample sizes (Appendix D). When the groups differ in their overall ability, the 

( )mE Y ’s that are closely fit and strongly smoothed are different across the groups, creating 

inaccuracy in the conditional DIF estimates that inflates bias and Type I error rates. The effect of 

reference and focal group differences on the accuracy of kernel smoothing can be observed in the 

higher Type I error rates, conditional biases, and overall biases of the science items than the 

history items (Tables 3, 6, and 9), as the science items’ data exhibited larger reference and focal 

differences than the history items’ data (Table 2). 

Some follow-up efforts were made to try to improve the application of kernel smoothing 

in DIF assessments; one involved smoothing the raw conditional DIF estimates and another used 

a single weighting function to smooth both the reference and focal ( )mE Y ’s. These efforts did 

not improve kernel smoothing beyond the version assessed in this study and even created 

additional inaccuracies which would be difficult to address (such as how to deal with one 

group’s missing data at an mX  score).  

Future Directions 

Some issues not considered in this study could be the basis of future studies. The current 

study compared the DIF strategies under simple conditions where all of the items making up the 

mX  score could be assumed to be non-DIF items. Future studies could evaluate the performance 

of the DIF estimation strategies when used with all items on the test making up mX  (including 

Y ) or when used with a data-based purification approach where all of the items on the test are 

evaluated for DIF and then the DIF items are excluded from mX  when evaluating Y . Wider 

ranges of reference and focal group sample sizes could also be considered. 

An important extension of this investigation is to the evaluation of conditional DIF in 

polytomous items. The features of polytomous items would likely accentuate the differences 

between the loglinear models and logistic regression strategies. The loglinear models’ strategy 

would require several parameters to model the frequency distributions of each possible score on 

the studied item, probably reducing its statistical power and making model convergence less 
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likely for small and moderate sample sizes. The unconstrained cumulative logits version of 

logistic regression has been demonstrated to have an accurate Type I error and high power as an 

overall significance test (Kristjansson et al., 2005), implying that its conditional DIF estimates 

would be most recommended. 

One DIF situation that could form an important follow-up study is a nonuniform DIF 

situation where the conditional DIF crosses to such an extent that the overall standardized E-Dif 

is close to zero. It may not be likely to find such a situation in practice, and even if found, this 

situation might be more likely explained by sampling variability than by substantive explanation. 

However, an extreme crossing DIF situation could be an important basis for studying the 

differences among the four DIF estimation strategies’ significance tests and null hypotheses. 

Specifically the logistic regression and loglinear models’ strategies explicitly incorporate 

nonuniform DIF into their test statistics, perhaps making them more likely to detect crossing DIF 

than the raw data and kernel smoothed standardized strategies that focus on testing the 

standardized E-Dif. 

Some readers might be more interested in assessing DIF that is defined in terms of an 

expected true score matching variable (Shealy & Stout, 1993) than in terms of an observed score 

matching variable (1). While the SIBTEST approach to DIF is different from that considered in 

this study, the logistic regression and loglinear models’ estimation strategies have potential to 

work within and improve the SIBTEST procedure. Moses and Miao (2007) have shown that the 

use of loglinear models for estimating conditional DIF rather than raw data provides stability that 

allows the SIBTEST regression correction to work more closely to how it is intended to work. 

The use of loglinear models, and potentially logistic regression models, also avoids and possibly 

improves on the use of data exclusion strategies that have been advocated for the SIBTEST 

procedure (Shealy & Stout). 

A final discussion point is how the DIF criteria used in this study affected how well the 

DIF strategies performed. As stated throughout this study’s Method section, the DIF criteria 

chosen in this study were the DIF values computed from large populations of raw test data. 

Reviewers of this study have expressed concerns that this study’s populations of raw test data 

may have advantaged some of the considered strategies (i.e., raw data, loglinear models) over 

others (i.e., logistic regression). These reviewer concerns can be informed by an awareness that 

comparative studies of DIF methods always require a choice of how the DIF criteria and 
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populations are defined. In prior DIF studies, DIF methods have been compared based on criteria 

and populations ranging from actual test data (Dorans & Holland, 1993; Hanson & Feinstein, 

1995; Lyu et al., 1995; Miller & Spray, 1993; Moses & Miao, 2007; Puhan et al., 2007) to data 

that have been simulated with degrees of nonuniform DIF and with presumed relationships 

between observed scores and latent variables (Douglas et al., 1996; Kristjansson et al., 2005; 

Roussos & Stout, 1996; Shealy & Stout, 1993; Swaminathan & Rogers, 1990).  

Because a choice is required for how criteria and populations are defined in DIF studies, 

justifications of these choices can be useful for interpreting DIF studies, their motivations, and 

their results. The justifications for the current study’s use of DIF values computed from large 

samples of raw test data as DIF criteria are that 1) large sample DIF criteria are realistic and 

therefore relevant for practice (as stated in this study’s Method section), and 2) all four of the 

considered DIF strategies have been recommended and used to estimate DIF in actual test data 

but have not been extensively compared (as stated in this study’s introduction). Additional 

investigations could be undertaken to address concerns that one or more of this study’s 

considered strategies was disadvantaged by this study’s use of realistic DIF criteria. The 

additional investigations could focus on comparing DIF estimation strategies with respect to 

artificial criteria that directly cater to strategies such as logistic regression (i.e., logistic item 

response functions rather than observed item response functions). 
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Appendix A 

Differential Item Functioning (DIF) Estimates Using Raw Data 

The reference and focal expected scores of (1) and (2) can be estimated as the sample 

means from the raw data 
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with estimated variances from the raw data, 
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The standard error of (2) can be estimated as, 

( )

2

( ( )) ( ( ))Fm
Fm Rm

m Fm
m

n Var E Y Var E Y
n

⎛ ⎞
⎜ ⎟ +⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑
, (A3) 

(Dorans & Holland, 1993, p. 50). The division of (A3) into (2) has been promoted as a z-test of 

DIF in (2) (e.g., the z-test of the SIBTEST version of the standardized E-Dif is described in 

Shealy & Stout, 1993, p. 169). 
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Appendix B 

Differential Item Functioning (DIF) Estimates Using Logistic Regression 

The application of logistic regression procedures to DIF assessment (French & Miller, 

1996; Jodoin & Gierl, 2001; Kristjansson et al., 2005; Swaminathan & Rogers, 1990) involves 

predicting the probability of a correct response (= 1) on dichotomously-scored Y based on total 

score, mX , and group membership. Logistic models of the separate reference and focal groups’ 

predicted Y’s can be estimated and directly used in (1) and (2) as the ( )E Y ’s, 

0 1

1 1( 1| )
1 1R R mRm m XP Y X

e eβ β− −= = =
+ +

t
R m-β D

 and  

0 1

1 1( 1| )
1 1F F mFm m XP Y X

e eβ β− −= = =
+ +

t
F m-β D

, (B1) 

The β  terms in the models are estimated by maximum likelihood. The rightmost expressions of 

(B1) are matrix expressions helpful for additional derivations, where tβ  is the transposed row 

vector of 0β  and 1β  terms, ( )0 1,β β , and mD  is the mth 2-by-1 design matrix containing 1 and 

mX , 
1

mX
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

Estimates of the variances of the ( )E Y ’s for (3) can be computed from (B1) based on 

differentiating the functions and applying the delta method. When ( 1| )Rm mP Y X=  is used as 

( )RmE Y , 
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where the 2-by-2 variance-covariance matrix ( )Var Rβ  is the negative inverse of the second 

derivatives of the ( 1| )Rm mP Y X=  model’s loglikelihood function with respect to the model’s 

parameters, Rβ , when the maximum likelihood algorithm converges (Rao, 1966). The estimation 

of ( ( ))FmVar E Y  is similar. 

The logistic regression’s overall significance test is based on modeling the probability of 

a correct response (=1) on Y using both the reference and focal data in overall models with total 

score mX , a dichotomously-coded group membership variable, mG , and the interaction of group 

membership and mX , mX mG . One model allows for DIF by expressing the separate reference 

and focal models in (B1) in an overall model, 

0 1 2 3

1( 1| , , )
1 m m m mm m m m m X G X GP Y X G X G

e β β β β− − − −= =
+ . (B3) 

Another model constrains Y’s DIF to be zero in the reference and focal data, 

0 1

1( 1| )
1 mm m XP Y X

e β β− −= =
+ . (B4) 

Model (B3) is a nonuniform DIF model that models Y based partly on constant reference and 

focal group differences ( 2 mGβ ) across mX  and partly on reference and focal group 

differences that are allowed to vary with mX  ( 3 m mX Gβ ). The logistic framework provides its 

own significance test for nonuniform DIF using the likelihood ratio test comparing models 

(B3) and (B4), 

2
4 32(ln ( ) ln ( ))B BL M L Mχ = − − , (B5) 

where 4ln ( )BL M  is the maximized loglikelihood for model (B4), 

( )4 , ,1 , ,0ln ( ) ln ( 1 | ) ln ( 0 | )B R F m m m R F m m m
m

L M n P Y X n P Y X+ += = + =∑
, (B6) 
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and , ,1R F mn +  and , ,0R F mn +  are the numbers of reference and focal examinees at score mX  that 

obtain 1 and 0 on Y, respectively. 3ln ( )BL M  is defined similarly. The statistic in (B5) is chi-

square distributed with degrees of freedom equal to the difference in the degrees of freedom for 

models (B3) and (B4), or 2. 
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Appendix C 

Differential Item Functioning (DIF) Estimates Using Loglinear Models 

Loglinear models are used to separately estimate the frequency distributions of the DIF 

matching variable mX  for each response category of Y. For the reference examinees who get Y 

correct (=1), the frequency distribution of mX  can be modeled as, 

1 0
1

ln( )
V

v
RmY v m

v

s Xβ β=
=

= +∑
, (C1) 

where 1RmYs =  is the expected (not actual) frequency of reference examinees who get Y correct and 

obtain score mX  and the β  terms are estimated using maximum likelihood (Holland & Thayer, 

2000). The V is chosen by the modeler and must be less than the total number of scores on mX , 

M. The maximum likelihood estimation of model (C1) produces a smoothed frequency 

distribution 1RmYs = , where the first V moments (mean, variance, skewness, etc.) match those of 

the observed frequency distribution, 1RmYn = . V is set at 4 for all models and conditions of this 

study. 

The ( )mE Y ’s are computed based on the separate modeling of four mX  frequency 

distributions, 1RmYs = , 0RmYs = , 1FmYs =  and 0FmYs = , with loglinear models such as (C1), 
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The ( )mE Y ’s from (C2) are used in (1) and (2). 

Estimates of the variances of the ( )E Y ’s for (3) can be computed from (C2) based on the 

delta method. For ( )RmE Y , 
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where 1( )RmYVar s =  is obtained from the 1RmYs =  model’s results and is the mth diagonal entry of 
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RY=1 RY=1s s RY=1 RY=1Σ DIAG s s , 
RY=1sDIAG  is the diagonalized matrix of RY=1s , RY=1D  is an 

M+1-by-V  design matrix containing all of the 1RmYs =  model’s v
mX  terms, and RY=1Var(β )  is the 

negative inverse of the second derivatives of the 1RmYs =  model’s loglikelihood function with 

respect to the model’s parameters, RY=1β , when the maximum likelihood algorithm converges 

(Holland & Thayer, 2000). The estimation of 0( )RmYVar s =  is similar to that of 1( )RmYVar s = . The 

estimation of ( ( ))FmVar E Y  is similar to that of ( ( ))RmVar E Y . 

Overall models of the mX  frequency distributions of the focal and reference data for the 

two possible scores on Y can be fit to create statistical significance tests of Y’s DIF. Let mG  be a 

dichotomously coded indicator of focal or reference group membership and let mY  indicate the 

obtained score on Y, where both levels of mG  and mY  appear for all levels of mX . Two models 

considered in this study are a nonuniform DIF model that combines all of the independently 

modeled 1RmYs = , 0RmYs = , 1FmYs =  and 0FmYs =  distributions of form (C1) into an overall model, 
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and a non-DIF model, 
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Model (C5) does not contain (C4)’s terms that allow for uniform DIF that is constant across the 

mX  categories, ,Y G m mY Gβ , and nonuniform DIF that allows DIF to vary across the mX  

categories, , , ,
1

V
v

X Y G v m m m
v

X Y Gβ
=
∑ . There are many variations on these two models for assessing 

DIF, and some of the implications of using other models are described in the Discussion section.  

A significance test of DIF can be computed by comparing the loglikelihoods of models 

(C4) and (C5), 

2
5 42(ln ( ) ln ( ))C CL M L Mχ = − − , (C6) 

where 5ln ( )CL M  is the maximized loglikelihood for model (C5), 

5ln ( ) ln( )GmY
C GmY
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sL M n
s
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The statistic in (C6) is chi-square distributed with degrees of freedom equal to the difference in 

the degrees of freedom for models (C5) and (C4), or V + 1. 
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Appendix D 

Differential Item Functioning (DIF) Estimates Using Kernel Smoothing 

Kernel smoothing computes kernel-smoothed ( )mE Y ’s as moving and weighted averages 

of the raw ( )mE Y ’s estimated in (A1). These kernel smoothed expected scores, ( )RmKSE Y  and 

( )FmKSE Y , can be used in (1) and (2), 

( )RmKSE Y = Rm Rw E(Y )  and ( )FmKSE Y = Fm Fw E(Y ) , (D1) 

where the RE(Y )  and FE(Y )  are M row vectors containing each of the raw ( )mE Y ’s, and Rmw  

and Fmw  are 1-by-M matrices each containing l = 1 to M kernel weights, ,Rm lw  and ,Fm lw . The 

kernel weights considered here are Gaussian weights, 
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, (D2) 

which are one type of kernel smoothing weights that include and are understood to perform 

similarly to quadratic, uniform, logistic weights (Douglas et al., 1996; Ramsay, 1991). In (D2), 

Rln  is the reference group’s sample size at lX , XRσ  is the reference group’s standard deviation 

on X, and h is a kernel bandwidth parameter that determines the extent of smoothing done to the 

( )mE Y ’s in computing the ( )mKSE Y ’s. Suggestions of default h values are typically based on 

total sample size (e.g., Douglas et al., 1996; Ramsay, 1991, p. 618). In this study h  is set at 
.21.1N − , where N is the reference group’s total sample size. The kernel weights for the focal 

group, ,Fm lw , are computed similarly to ,Rm lw  by using the focal group’s conditional and overall 

sample sizes and the focal group’s standard deviation of X. The kernel weights given in (D2) are 

how kernel smoothing is done at ETS to assess item response functions without the use of 

parametric models and also to assess conditional DIF. 
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The variances of (D1) that can be used in (3) can be computed using the raw conditional 

variances estimated in (A2) and the kernel weighting functions in (D2), 

( ( ))RmVar KSE Y = t
Rm R Rmw Var(E(Y ))w  and ( ( ))FmVar KSE Y = t

Fm F Fmw Var(E(Y ))w .

 (D3) 

In (D3), the ( )FVar E(Y )  and ( )RVar E(Y )  are M-by-M matrices containing the M raw 

conditional variances in the diagonal cells and zeros in the other cells. 

The estimate of the standard error for an overall kernel-smoothed standardized E-Dif 

statistic can be obtained by expressing the kernel-smoothed standardized E-Dif statistic based on 

using the kernel-smoothed terms in (D1) in (2), 
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and then applying the delta method, 
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In (D4) and (D5), FN  is the total sample size of the focal group, t
Fn  is the transposed M-by-1 

vector of the focal group’s observed frequencies at all M score levels of mX , and Fw  and Rw  are 

M-by-M matrices containing all M 1-by-M Rmw  and Fmw  matrices stacked from m = 1 to M. This 

study evaluates the accuracy of a z-test of (D4) based on dividing it by the square root of (D5). 




