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Abstract 

One of the major objectives of large-scale educational surveys is reporting trends in academic 

achievement. For this purpose, a substantial number of items are carried from one assessment 

cycle to the next. The linking process that places academic abilities measured in different 

assessments on a common scale is usually based on a concurrent calibration of adjacent 

assessments using item response theory (IRT) models. It can be conjectured that the selection 

of common items has a direct effect on the estimation error of academic abilities due to item 

misfit, small changes in the common items, position effect, and other sources of construct-

irrelevant changes between measurement occasions. Hence, the error due to the common-item 

sampling could be a major source of error for the ability estimates. In operational analyses, 

generally two sources of error are accounted for in variance estimation: student sampling error 

and measurement error. A double jackknifing procedure is proposed to include a third source 

of the estimation error, the error due to common-item sampling. Three different versions of 

the double jackknifing were implemented and compared. The data used in this study were 

item responses from Grade 4 students who took the NAEP 2004 and 2008 math long-term 

trend (LTT) assessments. These student samples used in this study are representative samples 

of Grade 4 student population in 2004 and in 2008 across the US. The results showed that 

these three double jackknifing approaches resulted in similar standard error estimates that 

were slightly higher than the estimates from the traditional approach, regardless of whether an 

item sampling scheme was used or items were dropped at random.  
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Trend measurement and reporting is a major focus in large-scale surveys (Mazzeo & 

von Davier, 2008). In practice, the trend is maintained through a set of common items across 

adjacent assessments. If the trend estimates are interpreted within the limit of the trend items, 

there is no need to investigate linking errors caused by the selection of trend items. However, 

as pointed out by Monseur, Sibberns, and Hastedt (2008), an improvement in student 

performance based on the trend items is currently interpreted by report users and policy-

makers as an improvement in student performance for the whole domain assessed by the 

study. Hence, the inclusion of a linking error component based on item sampling and student 

sampling in reporting trends would be consistent with how trends are presently interpreted. 

The selection of common items might have a direct effect on the estimation error of academic 

abilities, which are latent in item response theory (IRT) models, due to item misfit, small 

changes in the common items, position effect, and other factors. Consequently, the error due 

to the common-item sampling could be a substantial source of error for the ability estimates. 

Although maintenance of a meaningful trend line is an important focus in large-scale 

educational surveys, the number of studies devoted to linking errors in large-scale surveys is 

surprisingly small. The reason might be partly due to the complexity of large-scale surveys, 

since most of these assessments employ partially balanced incomplete block (pBIB) design, 

stratified student sampling, IRT, and latent regression modeling to make inferences on the 

abilities defined in the framework for subgroups of interest. The complex sampling of items 

and students makes linking errors difficult to estimate and understand. In current operational 

analysis procedures, the student sampling uncertainty and measurement uncertainty were 

taken into account when calculating the estimation error of ability estimates. Cohen, Johnson, 

and Angeles (2001) attempted to account for the estimation error of ability estimates by 

considering both item and student sampling variation. A double jackknife procedure was 

employed to examine the effect of item sampling in addition to student sampling error. 

However, there is some concern about their derived formula for the standard errors 

(Haberman, 2005). Recently, Haberman, Lee, and Qian (2009) derived a formula for group 

jackknifing on both the item and student sampling. Their approach is to randomly drop one 

group of items and one group of students simultaneously. In fact, item jackknifing is not new. 

Sheehan and Mislevy (1988) looked into item jackknifing by dropping a group of equivalent 

items one at a time, and calculated the errors of the linear constants in the true-score equating. 
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Their findings were that item sampling was an important source of estimation error. In the 

study conducted by Michaelides and Haertel (2004), the authors pointed out that error due to 

common-item sampling depends not on the size of the examinee sample but on the number of 

common items used.  

In this study, we used double jackknifing to investigate the linking error in one of the 

National Assessment of Educational Progress (NAEP) assessments. The data we used was the 

long-term trend (LTT) math data from the 2004 and 2008 administrations. A compensatory 

general diagnostic model (GDM; von Davier, 2005) was used to calibrate the items as well as 

the subgroup ability distributions. The software mdltm (von Davier, 1995) was used for item 

calibration and for estimating standard errors, using the jackknife procedure. The rest of this 

paper is organized as follows: The first section briefly introduces the GDM, the second 

section describes the detailed procedure of double jackknifing used in this study, and the final 

section shows the results and includes a brief discussion. 

The Logistic Formulation of a Compensatory GDM  

A logistic formulation of the compensatory GDM under multiple-group assumption is 

introduced in this section. The probability of obtaining a response x  for item i  in the 

multiple-group GDM is expressed as  

( ) 1
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1 i
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where x is the response category for item i  ( { }0 1 ix , ,...,m∈ ); ( )1 Ka a ,...,a=


 represents a 

K-dimensional skill profile containing discrete, user-defined skill levels

{ }1 kk k kl kLa s ,...,s ,...,s∈  for 1k ,...,K= ; ( )1i iKq q ,...,q=


 are the corresponding Q-matrix 

entries relating item i to skill k ( ( )0 1 2ikq , , ...∈ for 1k ,...,K= ); the item parameters 

( ) \i ixgβ β=


and ( )i ikgγ γ=


are real-valued thresholds and K-dimensional slope parameters, 

respectively; and g is the group membership indicator. For model identification purposes, 

the researcher can impose necessary constraints on ikgk
γ∑ and xigβ∑ ; also, with a 
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nonzero Q-matrix entry, the slopes ikgγ help determine how much a particular skill 

component in ( )1 Ka a ,...,a=


 contributes to the conditional response probabilities for item i, 

given membership in group g . For multiple-group models with a common scale across 

populations, the item parameters are constrained to be equal across groups, so that 

ixg ixβ β=  for all items i and thresholds x, as well as ikg ikγ γ=  for all items i and skill 

dimensions k. It should be noted that even if the total number of ability dimension K and 

the number of levels for each dimension are moderate, the number of parameters in the 

discrete latent ability distribution is large for multiple-group analysis. For example, for a 

test measuring four dimensions and four levels specified for each dimension, the number of 

parameters in the latent ability distribution only to be estimated using Model 1 for four-

group analysis is 44 (4 1) 1020× − = ! Xu and von Davier (2008) took further steps to reduce 

the number of parameters in the discrete latent ability distribution by utilizing a loglinear 

model to capture basic features of the discrete latent ability distribution. Specifically, the 

joint probability of the discrete latent ability distribution can be modeled as 

2
1 2

1 1
log( ( , ,..., )) ,

K K K

g K kg k k k ij i j
k k i j

P a a a a a a aµ λ η δ
= = ≠

= + + +∑ ∑ ∑  (2) 

where µ , ,kgλ ,kη and ijδ are parameters in this loglinear smoothing model, and g  is a group 

index (Haberman, von Davier, & Lee, 2008; Xu & von Davier, 2008). 

Data and Model 

In this study, the LTT math assessment data were used for illustration to examine the 

difference between the double jackknifing and student-jackknifing. A couple of features in 

LTT mathematics assessment appear to make this database an ideal starting point for 

explorations with a double jackknife approach. One feature is that the assessment framework 

of the NAEP LTT defines the target of interest as a unidimensional ability variable. The other 

feature is the number of items taken by each student. Although a pBIB design is employed in 

the LTT math assessment, each student took about 50 items on average, which makes the LTT 

assessment a reasonably long test for an educational survey. This implies that student ability 



 

4 

 

can be estimated rather accurately, even without using latent regression models commonly 

applied to borrow information in shorter assessments. Hence, in this study, we did not use the 

latent regression model. Instead, we used a multiple-group GDM to calibrate the items and 

estimate the latent ability distributions for subgroups of interest. Due to the design of the LTT 

math assessments, a simplified version of the multiple-group GDM in Models 1 and 2 can be 

applied. Specifically, for each item i  there are only two categories, {0,1}x = , and the number 

of skill dimensions is 1K = . In addition, in this study, 31 quadrature points, distributed 

evenly from -4 to 4, were specified for the ability dimension. Hence, the model used in this 

particular study is written as 

  

        (3) 

 

 

 

It is noted that the group indicator g is dropped in Model 3 to calibrate all subgroups of 

interest on the same scale.  

It is well known that identifiability is a concern in IRT models, and this also applies to 

the GDM, which is used in our study as a general modeling framework that includes IRT as a 

special case. One prerequisite of identifiability in IRT models is that the indeterminacy of the 

IRT scale is removed. In order to achieve this, we fixed the mean and standard deviation of 

the ability distribution of the groups defined by ethnicity in the 2004 assessment to 0.0 and 

1.0, respectively. We chose to use the White ethnicity group assessed in 2004 as the reference 

group to the indeterminacy of the IRT scale. (This can be changed for future research, 

depending on the purpose of the study.) For our purposes, we needed an arbitrarily-chosen 

reference group so that the means of the other 2004 and the 2008 groups could be interpreted 

in terms of differences to this reference group.  

The data used in this study were item responses from Grade 4 students who took the 

NAEP 2004 and 2008 math LTT assessments. These student samples used in this study are 

representative samples of Grade 4 student population in 2004 and in 2008 across the US. The 

sample sizes for these two assessments are approximately 8,000 and 7,200, respectively. 
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There were six blocks within the 2004 and 2008 administrations, and five of them were trend 

blocks (i.e., five of the six blocks administered in 2004 were also administered in 2008.) This 

resulted in 112 trend items across these two administrations. Most students in the 2008 

assessment had taken two trend blocks. Each block contained about 20 to 26 items.  

Double Jackknifing in LTT Math Assessment 

The operational set of replicate weights was used for the student jackknifing. These 

weights were developed by first forming 62 pairs of primary sampling units (PSU). The two 

PSUs within each pair were assumed to be similar to each other in terms of their background 

features. Then, the jackknife samples were created by randomly dropping one PSU in one pair 

by assigning zero weight, and assigning double weight to the other PSU within this pair. 

Consequently, we obtained 62 weights for each student.  

Three approaches were employed to conduct the item jackknifing. The first approach 

was to create the jackknife samples by randomly selecting one item for each trend block and 

dropping these items. This yielded 23 jackknifing samples. This approach is referred to as 

random-item jackknifing. The second approach was to create the jackknife samples by first 

grouping the items into five groups within each trend block, based on their discrimination 

parameter estimates obtained from using original full data, and then dropping one such group 

at a time. This also yielded 23 jackknifing samples. This approach is referred to as A-item 

jackknifing. The third approach was similar to the second approach, only this time the 

grouping was based on the difficulty parameter estimates. This approach is referred to B-item 

jackknifing. The purpose of the second and third approaches was to examine the relationship 

between the item characteristics and the estimation error of group ability estimates. 

Double jackknifing is a combination of student jackknifing and item jackknifing. 

Specifically, for each jackknife sample, one of the 62 sets of weights was used, and five trend 

items on average were dropped from the assessment. Then, the jackknifed sample of 2004 and 

2008 assessments were calibrated concurrently to putting these assessments onto the same 

scale. Thus, for each approach (random-item jackknifing, A-item jackknifing and B-item 

jackknifing), there were 62*23 concurrent calibrations, for which the group mean and 

variance estimates were produced.  
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Analysis and Results  

Table 1 presents the subgroup mean estimates of these two assessment years across the 

three different jackknifing schemes. One can observe that different jackknifing schemes lead 

to mean estimates close to those from using the full data set. Table 2 shows the linking error 

under different jackknifing schemes. The linking error was calculated using the formula 

derived by Haberman (2005), “Let θ  be the true values for statistics of interest, such as group 

mean and standard deviation, and let ijθ be the estimate by dropping one group of items 

(indexed by i ) and one group of students (indexed by j )” (p. 2).  Then, the jackknife estimate 

can be written as 

/ij
i j

IJθ θ= ∑∑  , (4) 

where ,I J are the total number of jackknife groups for items and students, respectively. Let 

ij ijd θ θ= −  , then we have 

.

.

. . .

ij
j

ij
i

d

i J

d

j I

ij ij i j

d

d

e d d d

∑
=

∑
=

= − −  

                                    (5)

  

Finally, the jackknife error from the double jackknifing is calculated by 

2 2 ( 1)( 1)2 211
. . .I JJI

d jack i j ijI J IJ
i j i j

d d eσ − −−−
− = + −  ∑ ∑ ∑∑  (6) 

The jackknife error estimate from student jackknifing only is estimated from a 

different procedure.  That is, no item is dropped to form a jackknife sample.  Instead, 62 

jackknife samples with different sets of student replicate weights are formed and used to 

estimate the jackknife error. (A total of 62 samples were selected in NAEP operational 



 

7 

 

analysis by design.) Specifically, the jackknife error from student jackknifing only is 

calculated by aggregating these 62 squared differences, 

( )
62 2

1
student jack i

t
t t ,σ −

=

= −∑  (7)  

where it  denotes the estimator of the parameter obtained from the ith jackknife sample and 

t is the average of it s (Qian, Kaplan, Johnson, Krenzke, & Rust, 2001). For further 

discussion of the variance estimation procedure used by NAEP, interested readers may 

refer to the paper by Johnson (1989). 

Table 1 presents the estimates of ability means by subgroups defined by ethnicity 

across the 2004 and 2008 assessment cycles obtained in a joint calibration. Recall that the 

estimates obtained with the student-only and the three double-jackknifing schemes are 

based on constraints that set the mean of the 2004 White group to 0.0 and the standard 

deviation of that group to 1.0.  

Table 1 

The Group Mean Estimates From Different Sampling Schemes 

  

Student 
jackknifing 

 with  
all items 

Student 
jackknifing with  

random-item 
jackknifing 

Student 
jackknifing with  

A-item 
jackknifing 

Student 
jackknifing with  

B-item 
jackknifing 

Group 
Original 

skill mean Skill mean Skill mean Skill mean Skill mean 
2004 White 0.000a 0.000a 0.000a 0.000a 0.000a 
2004 Black -0.683 -0.683 -0.683 -0.683 -0.683 
2004 Hispanic -0.476 -0.476 -0.476 -0.476 -0.476 
2004 Asian 0.604 0.604 0.605 0.605 0.604 
2008 White 0.159 0.159 0.159 0.159 0.159 
2008 Black -0.592 -0.592 -0.592 -0.592 -0.592 
2008 Hispanic -0.346 -0.346 -0.346 -0.346 -0.346 
2008 Asian 0.723 0.723 0.723 0.724 0.723 
aThese numbers were fixed to 0 to make the model identifiable. 

As shown in Table 2, the error associated with a particular subgroup mean is similar 

across different double jackknifing schemes. Moreover, the estimation error produced by 
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double jackknifing is slightly larger than that produced by student-sample-only jackknifing. 

Note that the reference group is 2004 White, so there are no estimates available for this group.  

Table 2  

The Standard Error of Group Mean From Different Sampling Schemes 

Group 

Student 
jackknifing 

 with  
all items 

Student 
jackknifing with  

random-item 
jackknifing 

Student 
jackknifing with  

a-item 
jackknifing 

Student 
 jackknifing with  

b-item  
jackknifing 

2004 White — — — — 
2004 Black 0.066 0.067 0.068 0.070 
2004 Hispanic 0.046 0.051 0.054 0.055 
2004 Asian 0.139 0.140 0.145 0.142 
2008 White 0.061 0.060 0.062 0.063 
2008 Black 0.056 0.058 0.060 0.061 
2008 Hispanic 0.050 0.053 0.054 0.056 
2008 Asian 0.116 0.118 0.120 0.121 

Table 3 presents the estimates of group variances across years under different 

jackknifing schemes. For a particular subgroup, the jackknife estimates are similar to each 

other and are close to the estimates using the full set of items.  

Table 3 

The Group Standard Deviation Estimates From Different Sampling Schemes 

  

Student 
jackknifing 

 with  
all items 

Student  
jackknifing with  

random-item 
jackknifing 

Student  
jackknifing with  

a-item 
jackknifing 

Student 
jackknifing with  

b-item 
 jackknifing  

Group 
Original skill 

SD Skill SD Skill SD Skill SD Skill SD 
2004 White 1.000a 1.000 a 1.000 a 1.000 a 1.000 a 
2004 Black 0.919 0.919 0.919 0.919 0.919 
2004 Hispanic 0.977 0.977 0.977 0.978 0.977 
2004 Asian 1.180 1.180 1.182 1.182 1.181 
2008 White 1.027 1.027 1.028 1.027 1.028 
2008 Black 0.985 0.985 0.985 0.985 0.985 
2008 Hispanic 0.956 0.955 0.956 0.956 0.956 
2008 Asian 1.327 1.327 1.328 1.329 1.327 
aThese numbers were fixed to 1 to make the model identifiable. 
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Table 4 presents the standard error of the estimated standard deviation under different 

jackknifing schemes. Note that the reference group is 2004 White, so there are no estimates 

available for this group. 

Table 4 

The Standard Error of Group Standard Deviation Estimates From Different Sampling 
Schemes 

Group 

Student 
jackknifing with  

all items 

Student  
jackknifing with  

random-item 
jackknifing 

Student  
jackknifing with  

a-item 
jackknifing 

Student  
jackknifing with  

b-item 
 jackknifing  

2004 White — — — — 
2004 Black 0.032 0.039 0.048 0.039 
2004 Hispanic 0.034 0.041 0.044 0.038 
2004 Asian 0.062 0.063 0.064 0.062 
2008 White 0.027 0.029 0.027 0.029 
2008 Black 0.038 0.039 0.047 0.044 
2008 Hispanic 0.028 0.030 0.028 0.028 
2008 Asian 0.064 0.067 0.078 0.079 

As shown in Table 4, the estimation errors obtained from using double jackknifing are 

similar to those obtained from using other approaches and are, in most cases, slightly larger 

than the estimation error obtained from the one-sided jackknifing with the student sample.  

Discussion 

The results for the LTT data showed that the double jackknife is feasible and results in 

slightly increased estimates of standard errors of ability distribution parameters. Note, 

however, that NAEP LTT data were chosen for a number of reasons, first and foremost to 

obtain information about the feasibility of the double jackknife approach using a relatively 

long assessment instrument. The LTT data are characterized by observations that contain 50 

responses on average per student, which is on the high side when compared to other large-

scale survey assessments. In shorter assessments, the differences across approaches may look 

more dramatic, in the sense that a double jackknife with dropping 5/50 of the item set did not 

produce substantially increased errors.  

The good news is that the increase did, under the conditions outlined, not depend on 

the specific selection of items to be dropped. More specifically, the jackknife schemes that 

dropped items according to their discrimination (or difficulty) parameters did not result in 
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inflated jackknife estimates of standard errors compared to a random selection of dropped 

items. This implies the LTT mathematic assessment linkage is robust, so researchers can have 

confidence in interpreting the improvement of student performance in these assessments as an 

improvement for the whole domain assessed by the NAEP study. 

Note that this research has used the comprehensive reestimation of all parameters of 

the multiple group IRT model as described in Hsieh, Xu, and von Davier (2009). A less 

comprehensive approach like the one currently used operationally may have resulted in a 

larger difference between full item set and double jackknife. Further research is needed in this 

direction, as well as research on the effect of dropping items from shorter scales, or double 

jackknifing in models with multidimensional ability variables. 
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