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Abstract 

In the equating literature, a recurring concern is that equating functions that utilize a single 

anchor to account for examinee groups’ nonequivalence are biased when the groups are 

extremely different and/or when the anchor only weakly measures what the tests measure. 

Several proposals have been made to address this equating bias by incorporating more than one 

anchor into nonequivalent groups with anchor test (NEAT) equating functions. These proposals 

have not been extensively considered or comparatively evaluated. This study evaluates three 

methods for incorporating more than one anchor into NEAT equating functions, including 

poststratification, imputation, and propensity score matching. The three methods are studied and 

compared in two examples. The implications for using the three equating approaches in practice 

and for developing alternative strategies to incorporate two anchors are discussed. 

Key words: NEAT equating, multiple anchors, psychometrics, standardized tests 
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Background 

Nonequivalent groups with anchor test (NEAT) equating methods are traditionally based 

on using a single anchor to account for examinee group differences (Braun & Holland, 1982; 

Kolen & Brennan, 2004; von Davier, Holland, & Thayer, 2004). These equating methods can be 

extended so that more than one anchor is incorporated. NEAT equating methods based on 

multiple anchors are potentially useful when the tests being equated measure such broad content 

that a single anchor may not reflect them, and/or when the examinee group differences are so 

large that the use of a single anchor to estimate these differences may produce biased equating 

results (Angoff, 1984; Livingston, 2004; Lord, 1960).  

Suggestions have been made for how to incorporate more than one anchor into NEAT 

equating (Angoff, 1984; Kolen, 1990; Liou, Cheng & Li, 2001; Livingston, Dorans, & Wright, 

1990; Skaggs, 1990). These suggestions are fairly diverse and have included direct extensions of 

traditional single anchor equating methods and more elaborate propensity score matching and 

missing data imputation methods. Most of these suggestions have not been extensively 

researched or compared. The purpose of this paper is to develop and compare three proposed 

approaches for using two anchors to equate tests taken by nonequivalent examinee groups.  

This paper begins by describing the traditional NEAT data collection design where a 

single anchor is administered to both groups and the extension of this design to the situation 

where two anchors are administered. The assumptions for equating with one and two anchors are 

described primarily in terms of the poststratification NEAT equating method (von Davier et al., 

2004). Poststratification equating provides a useful basis for understanding the three approaches 

of interest, including two-anchor poststratification (Angoff, 1984), missing data imputation (Liou 

et al., 2001), and propensity score matching (Livingston, Dorans, & Wright, 1990). After being 

described, these three approaches are applied in two equating situations where the use of two 

anchors is expected to produce improved equating results (i.e., equating when anchors do not 

perfectly reflect the tests and equating when there are large examinee group differences). The 

final discussion focuses on the implications for using the three equating approaches in practice 

and for developing alternative strategies to incorporate two anchors into an equating function. 
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One- and Two-Anchor Nonequivalent Groups With Anchor Test (NEAT) Data Collection 

Designs and Equating 

Data collection and equating using one anchor. For the traditional NEAT design 

(Table 1), the data are collected as two samples from nonequivalent populations (P and Q) that 

take different tests (X or Y) and the same anchor (A). The goal of equating is to produce a 

conversion from the scores of X to the scores of Y that eliminates the test forms’ difficulty 

differences. The equating conversion must account for how examinee group differences 

influence the test scores. One way to address examinee group differences is to use the groups’ A 

scores to estimate the X and Y distributions for a hypothetical single population, T, that is a 

synthetic mixture of P and Q, 

(1 ) ,  0 1.T wP w Q w      (1) 

When X and Y data are available for population T, the X-to-Y equating function can be computed. 

This equating approach is poststratification equating using a single anchor, A. 

Table 1  

The One-Anchor Nonequivalent Groups With Anchor Test (NEAT) Design 

 New test (X) Anchor (A) Old test (Y) 
New group (P) √ √  
Old group (Q)  √ √ 

The X and Y distributions in population T can be obtained through estimating  T’s 

bivariate (X, A) and (Y, A) distributions using the observed data (Table 1) and making 

assumptions about the unobserved data. For poststratification equating, the (X, A) probability 

distribution in T, TProb ( , )X A , can be estimated as  

T P QProb ( , ) Prob ( , ) (1 )Prob ( , ).X A w X A w X A    (2) 

In Equation 2, PProb ( , )X A  is the joint (X, A) probability distribution observed in examinee 

group P. QProb ( , )X A  is the joint (X, A) probability distribution estimated for examinee group Q 

by assuming that the “X-given-A” conditional probabilities observed in examinee group P, 
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PProb ( | )X A , are group invariant and can be used to predict Q’s joint (X, A) probability 

distribution based on Q’s A distribution, 

Q P Q

P
Q

P

Prob ( , ) Prob ( | )Prob ( )

Prob ( , )
                    Prob ( ).

Prob ( )

X A X A A

X A
A

A




 (3) 

Data collection and equating using two anchors. The interest of this study is in 

extending and comparing approaches such as Equations 2 and 3 to the situation where the P and 

Q groups’ data are collected for two anchors, A1 and A2 (Table 2). The goal of equating in this 

situation is the same as for the one-anchor situation: to produce a conversion from the scores of 

X to the scores of Y that eliminates the test forms’ difficulty differences. To use two anchors to 

account for examinee groups’ influences on test scores, population  T’s trivariate distributions 

can be estimated by extending Equation 2,  

T P QProb ( , , ) Prob ( , , ) (1 )Prob ( , , ),X A1 A2 w X A1 A2 w X A1 A2    (4) 

by using the observed PProb ( , , )X A1 A2  and making group invariance assumptions that extend 

Equation 3,  

Q P Q

P
Q

P

Prob ( , , ) Prob ( | , )Prob ( , )

Prob ( , , ) .                            Prob ( , 2)
Prob ( , )

X A1 A2 X A1 A2 A1 A2

X A1 A2
A1 A

A1 A2




 (5) 

Table 2  

The Two-Anchor Nonequivalent Groups With Anchor Test (NEAT) Design 

 New test (X) Anchor (A1) Anchor (A2) Old test (Y) 
New group (P) √ √ √  
Old group (Q)  √ √ √ 

Two-anchor equating approaches based on Equations 4 and 5 may result in improved 

equating results relative to one-anchor poststratification equating based on Equations 2 and 3. 

One-anchor equating results based on Equations 2 and 3 are known to be inaccurate when test–

anchor correlations are weak (Livingston, 2004). The two anchors are likely to be more highly 
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correlated with the test scores than one anchor, meaning that the use of two anchors should give 

a more accurate account of how examinee group differences influence test scores than one 

anchor. Equating research has shown that equating functions based on the two-anchor group 

invariance assumption in Equation 5 can be more accurate than equating functions based on the 

one-anchor group invariance assumption in Equation 3 (Dorans, Liu, & Hammond, 2008). The 

next section describes three approaches for incorporating two anchors as in Equations 4 and 5. 

Three Equating Approaches Involving Two Anchors in the Nonequivalent Groups With 

Anchor Test (NEAT) Design 

The three equating approaches proposed for utilizing two anchors in NEAT equating are 

poststratification (Angoff, 1984), imputation (Liou et al., 2001), and propensity score matching 

(Livingston et al., 1990). All three approaches are based on similar assumptions–that the X and Y 

distributions that are not directly observed in P or Q can be estimated using P and Q’s A1 and A2 

scores and the conditional relationships observed in Q and P. All three approaches can be used to 

implement the major steps of observed score equating (von Davier et al., 2004), including 

presmoothing, estimating the X and Y distributions for synthetic group T, continuizing the X and 

Y distributions, computing linear and curvilinear equating functions, and assessing the equating 

functions with respect to their standard errors. The general characteristics of the 

poststratification, imputation, and propensity score matching approaches are described in the 

following section. Additional details of the approaches are described in the Appendix and in von 

Davier et al. 

Poststratification. The two-anchor poststratification equating method builds directly on 

the one-anchor poststratification method (Angoff, 1984; Lord, 1975). This approach extends the 

one-anchor poststratification method (von Davier et al., 2004) by applying loglinear models to 

presmooth P’s trivariate (X, A1, A2) distribution and Q’s trivariate (Y, A1, A2) distribution, 

computing  T’s X and Y distributions from the presmoothed distributions using Equations 4 and 

5, and computing linear and curvilinear X-to-Y equating functions and their standard errors based 

on  T’s X and Y distributions. Standard errors can be estimated for the differences between linear 

and curvilinear equating functions. In contrast to the imputation and propensity score matching 

approaches, standard errors can also be estimated for the differences between two-anchor and 

one-anchor equating functions (see Appendix). 
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Imputation. The application of missing data imputation (Little & Rubin, 1987) to the 

computation of synthetic population equating functions was considered by Liou and Cheng 

(1995) and Liou et al. (2001). In this imputation approach, population  T’s X and Y distributions 

are estimated by the imputation of population Q’s missing X data and population P’s missing Y 

data. The assumption of the imputation is that, given the anchor scores, the missing X data in Q 

and the missing Y data in P are missing at random and therefore imputable, based on the anchor 

scores’ observed relationships with the tests (Equations 3 and 5). To impute the missing data, 

Liou et al. modified Holland and Thayer’s (1987, 2000) loglinear presmoothing algorithm so that 

Equations 4 and 5 are used to repeatedly compute expectations of the missing data in an iterative 

expectation maximization (EM) algorithm. When the EM algorithm converges, population  T’s X 

and Y distributions can be computed from  T’s imputed and loglinear presmoothed (X, A1, A2) 

and (Y, A1, A2) distributions. The imputed X and Y distributions for population T imply a single 

group design, meaning that X-to-Y curvilinear and linear equating functions and their standard 

errors can be computed as single group equating functions (von Davier et al., 2004). 

Propensity score matching. The application of propensity score matching to equating 

was suggested in Livingston et al. (1990). Rather than use the two anchors in their original form, 

a single variable (i.e., propensity score) is constructed as the weighted combination of A1 and A2 

that maximally predicts membership in the examinee administration groups. For example, a 

logistic regression that predicts membership in P can be estimated for all P and Q examinees’ 

data based on examinees’ anchor scores,  

0 1 2 31 2 1 2

1 .Propensity( | , )
1 A A A A

P A1 A2
e       


 (6) 

Examinees from P and Q who have the same Propensity( | , )P A1 A2  scores are considered 

equivalent (i.e., matched). Alternative parameterizations of Equation 6 could be used, and 

Equation 6 can be extended to a large number of anchors and matching variables. 

To apply propensity score matching to this study’s equating context, the recommended 

propensity score matching approach from Rosenbaum and Rubin (1984) is followed. In 

Rosenbaum and Rubin’s (1984) proposal, categories of P and Q’s Propensity( | , )P A1 A2  scores 

are formed based on the percentiles of the Propensity( | , )P A1 A2  scores and the P and Q 

examinees who fall into the same category are considered equivalent. In the current study, the 
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categorized propensity scores are used as a single anchor for estimating  T’s X and Y distributions 

and equating X-to-Y as in traditional one-anchor poststratification equating, that is, substituting 

the categorized Propensity( | , )P A1 A2  scores for A in Equations 2 and 3. Other propensity score 

matching approaches developed for nonrandomized medical studies propose the use of the 

uncategorized propensity scores for drawing a small number of individuals from a large control 

group to match each individual from a small treatment group (Rosenbaum & Rubin, 1985; Rubin 

& Thomas, 1996; Rubin & Thomas, 2000). The use of categorized propensity scores was 

followed rather than other propensity score matching approaches because the categorized 

propensity scores allow for using all available examinee data (not drawing samples from either P 

or Q) and for defining the equating group of interest as a weighted, synthetic mixture of P and 

Q’s data (i.e., Equations 1, 2, and 4 where w does not have to be set to 0 or 1).  

This Study 

The discussion from the previous section shows that the poststratification, imputation, 

and propensity score matching approaches can all be used to incorporate two anchors to estimate 

a synthetic population’s equating function. Perhaps the two-anchor results of the three 

approaches will be similar, but this has not been extensively considered in prior work. Some 

research has shown that for situations involving one anchor, poststratification and imputation can 

produce similar results (Liou & Cheng, 1995). Other work has shown that imputation based on 

one anchor and one demographic variable can produce results that are similar to those of 

unsmoothed poststratification equating based on one anchor (Liou et al., 2001). Applying the 

poststratification and imputation approaches to situations involving two anchors should be useful 

for determining if these approaches’ similarities hold when they are based on the same 

presmoothing models and when the approaches are used to compare two-anchor curvilinear and 

linear functions.  

The evaluation of the application of propensity score matching to two-anchor equating 

functions has been less researched and is a more exploratory approach at this point than the 

poststratification and imputation approaches. It would seem that the estimation and 

categorization of the propensity scores would introduce inaccuracy into the results. These 

potential inaccuracies were not described in one study that assessed the potential of propensity 

score matching for including demographic variables in equating applications (Paek, Liu, & Oh, 
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2006). By comparing results based on propensity score matching to those obtained from the 

poststratification and imputation approaches, the current study can provide bases for evaluating 

the accuracy of equating results based on propensity score matching.  

The next two sections apply the poststratification, imputation, and propensity score 

matching approaches in two examples involving two possible anchors. In both situations, the use 

of two anchors is expected to improve equating. In the first example, tests are to be equated 

across extremely different examinee groups. In the second example, composite tests that include 

multiple-choice and constructed response items and anchors are equated.  

First Example: Equating Across Very Different Groups With Internal and External 

Anchors1 

In the following example, the two-anchor poststratification, imputation, and propensity 

score matching approaches are used to produce a conversion for the scores of two forms of a 

formula-scored, multiple-choice mathematics test. The descriptive statistics for the P group’s 

(X, A1, A2) scores and the Q group’s (Y, A1, A2) scores are shown in Tables 3 and 4. A1 is a 16-

item anchor that is internal to test forms X and Y and is the anchor that was intended to be used in 

the actual X-to-Y equating. The importance of using two anchors (A1, A2) is apparent when the 

implications of using only anchor A1 are described. Specifically, A1’s correlations with X and Y 

(0.90) can be interpreted as not quite as large as would be desired to address the fairly large 

standardized mean differences between P and Q (-0.57). Test–anchor correlations that are not as 

large as desired and large standardized mean differences on the anchor suggest that equating 

results based only on the use of A1 could be inaccurate (Livingston, 2004). 

Table 3 

First Example: Statistics for Test X and Anchors A1 and A2 in P (NP = 13,639) 

 Min. 
observed & 
(possible) 

Max  
observed & 
(possible) 

Mean SD Skew Kurtosis  Correlations 
 

X          A1       A2 
X -5 & (-12) 50 & (50) 20.89 10.48 0.09 -0.65  1.00   
A1 -4 & (-4) 16 & (16) 7.47 3.75 -0.06 -0.51  0.90 1.00  
A2 200 & (200) 800 & (800) 609.38 101.27 -0.55 0.05  0.84 0.76 1.00 
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Table 4 

First Example: Statistics for Test Y and Anchors A1 and A2 in Q (NQ = 11,389) 

 Min. 
observed & 
(possible) 

Max  
observed & 
(possible) 

Mean SD Skew Kurtosis  Correlations 
 

Y          A1       A2 
Y -8 & (-12) 50 & (50) 28.64 9.72 -0.42 -0.15  1.00   

A1 -4 & (-4) 16 & (16) 9.52 3.45 -0.36 -0.24  0.90 1.00  
A2 200 & (200) 800 & (800) 662.91 83.14 -0.75 1.01  0.80 0.71 1.00

A2 is a second external anchor, an equated and scaled score on a mathematics test from a 

different testing program. Similar to A1, the P group is of lower ability than the Q group on A2 

(i.e., standardized mean difference = -0.58; Tables 3 and 4). The correlations of A2 with X and Y 

are moderately high (0.84 and 0.80, respectively). The correlations of A2 with A1 are also 

moderately high (0.76 and 0.71), but perhaps not so large as to indicate that the anchors provide 

redundant information about examinee abilities. 

Multiple regression analyses show that the predictions of test scores X and Y can be 

improved from squared correlations of about 0.82 with only A1 to squared correlations of about 

0.87 with both A1 and A2. These improved squared correlations with the test scores are 

descriptive evidence that using both A1 and A2 will provide a more accurate account of how 

examinee differences affect the X and Y test score differences and will enhance the accuracy of 

the X-to-Y results. The statistical implications of using both A1 and A2 are assessed directly on 

the X-to-Y results. 

The Use of A1 and A2 in the Equating Process 

The following paragraphs describe the results of using poststratification, imputation, and 

propensity score matching to compute the X-to-Y scaling function using anchors A1 and A2. The 

major steps of equating are presented, including presmoothing, the estimation of the X and Y 

distributions in synthetic population T, and the comparison of linear and curvilinear two-anchor 

functions in terms of scaled score differences and standard errors. The major interest is using the 

poststratification, imputation, and propensity score matching approaches to gauge the importance 

of A2 for the actual scaling results. For this interest, the three approaches’ results based on using 

both A1 and A2 will be compared to those based on using only A1.  

Presmoothing. Loglinear models were used to presmooth the (X, A1, A2) and (Y, A1, A2) 

trivariate distributions. For the poststratification method, the loglinear presmoothing is applied to 
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P’s (X, A1, A2) distribution and Q’s (Y, A1, A2) distribution (e.g., von Davier et al., 2004). For 

missing data imputation, the loglinear presmoothing is applied to population  T’s trivariate (X, 

A1, A2) and (Y, A1, A2) distributions (Liou & Cheng, 1995; Liou et al., 2001). The loglinear 

models used to presmooth these four trivariate distributions were based on the same 

parameterization, fitting five moments in the marginal test distributions (X or Y), five moments in 

the A1 distributions, six moments in the A2 distributions, and the first and second cross-moments 

of the joint (test, A1), (test, A2), and (A1, A2) distributions and the (X, A1, A2) and (Y,A1, A2) 

distributions. These models were selected because they resembled the models actually used to 

equate these data in practice, and also because evaluations of residuals and model fit indices did 

not reveal obvious model misspecifications. 

For the propensity score matching approach, propensity scores were estimated by 

predicting P and Q group membership for all of the P and Q data, using the logistic regression 

model in Equation 6. These propensity scores were divided into 10 categories, based on the 

predicted probabilities’ deciles. Sensitivity analyses were conducted to compare these 

categorized propensity scores to those produced from alternative logistic regression models and 

categorization schemes. The categorized propensity scores based on model Equation 6 and 

categories defined in terms of deciles were used because they had high correlations with tests X 

and Y (0.92) and because the standardized mean differences between P and Q for A1 and A2 

within each of the 10 categories were smaller than with alternative models and categorizations. 

Bivariate loglinear presmoothing models were used to presmooth P’s (X, CategorizedPropensity) 

and Q’s (Y, CategorizedPropensity) bivariate distributions, fitting five moments in the test 

distributions, five moments in the categorized propensity score distribution, and the first cross-

moment between the test and categorized propensity scores.  

Test score distribution estimation in synthetic population T. All of the presmoothing 

results from the presmoothing step were used to estimate the X and Y score distributions in the 

synthetic population, (1 ) ,  0.5   T wP w Q w . For the poststratification method, this 

estimation was done using Equations 4 and 5 and P and Q’s presmoothed trivariate distributions. 

For missing data imputation, this estimation was done using the trivariate distributions imputed 

for population T in the presmoothing step. For propensity score matching, this estimation was 

done using Equations 2 and 3 and P and Q’s presmoothed bivariate distributions of the tests and 

the categorized propensity scores. 



10 

The descriptive statistics of population  T’s X and Y score distributions are shown in 

Table 5. The X and Y score distributions are plotted in Figures 1 and 2. The score distributions 

are essentially identical for the two-anchor poststratification and imputation approaches and are 

somewhat different for the propensity score matching approach. The X and Y means in Table 5 

indicate that X is more difficult than Y by 1.9 or 2.1 points.  

Table 5 

First Example: Synthetic Population Distributions for X and Y, Two-Anchor Matching 

 XP+Q 

PSE 
XP+Q 

Imputation 
XP+Q 

Propensity 
score matching 

YP+Q 

PSE 
YP+Q 

Imputation 
YP+Q 

Propensity  
score matching 

Mean 23.76 23.76 23.69 25.69 25.69 25.81 
SD 10.52 10.51 10.51 10.71 10.71 10.58 

Skew -0.10 -0.10 -0.13 -0.30 -0.30 -0.26 
Kurtosis -0.60 -0.60 -0.61 -0.47 -0.47 -0.47 

Note. PSE = poststratification equating. 

  

Figure 1. First example. Relative frequency distributions of New Form X in Synthetic 

Population T based on the internal and external anchors. 
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Figure 2. First example. Relative frequency distributions of Reference Form Y in Synthetic 

Population T based on the internal and external anchors. 

Test score conversion functions and their evaluation. Several test score conversions 

based on the poststratification, imputation, and propensity score matching approaches were 

evaluated. To assess the extent of curvilinearity in the two-anchor conversions, linear and 

curvilinear X-to-Y kernel functions were computed from the three approaches’ X and Y 

distributions estimated in population T. The curvilinear versus linear score differences and the  

+/- 2 standard errors of these equated differences (SEEDs) are plotted in Figures 3 

(poststratification), 4 (imputation), and 5 (propensity score matching). For all three approaches, 

the differences between the curvilinear and linear functions exceed two standard errors 

throughout most of the score range. The largest differences between the curvilinear and linear 

functions occur at the minimum and maximum scores. These differences based on the propensity 

score matching approach are somewhat different from those based on the poststratification and 

imputation approaches. The overall results of Figures 3 through 5 show that, based on all 

approaches, the curvilinear function should be selected rather than the linear function.  
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Figure 3. First example. Curvilinear vs. linear scaled score differences based on two-anchor 

poststratification. 

 

Figure 4. First example. Curvilinear vs. linear scaled score differences based on two-anchor 

imputation. 

 

Figure 5. First example. Curvilinear vs. linear scaled score differences based on two-anchor 

propensity score matching. 
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correlations between A1 and tests X and Y may not be large enough to completely account for the large 

differences between P and Q. While the use of A2 would appear to improve the X-to-Y conversion 

because it improves the correlations between the anchors and the tests, the question is what the impact 

is on the actual X-to-Y conversion. For this assessment, the three approaches’ curvilinear X-to-Y 

functions were computed with only A1 using the previously described presmoothing, test score 

distribution estimation and equating steps. The two-anchor (A1 and A2) versus one-anchor (A1 only) 

differences for the approaches are plotted in Figures 6 (poststratification), 7 (imputation), and 8 

(propensity score matching). For the poststratification approach, it was possible to compute +/- 2SEED 

lines for the two-anchor versus one-anchor differences.  

 

Figure 6. First example. Curvilinear two-anchor poststratification vs. curvilinear  

one-anchor poststratification. 

 

Figure 7. First example. Curvilinear two-anchor imputation vs. curvilinear  

one-anchor imputation. 
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Figure 8. First example. Curvilinear two-anchor propensity score matching vs. curvilinear 

one-anchor propensity score matching. 

The results show that the two-anchor function is lower than the one-anchor equating 

function for most of the X scores. These differences are about 1 score point at their largest and 

many exceed the +/- 2 SEED lines (Figure 6). The poststratification, imputation, and propensity 

score matching approaches produce similar results in terms of the magnitude of the two-anchor 

versus one-anchor score differences. The score differences based on propensity score matching 

(Figure 8) are visibly different from those of the poststratification (Figure 6) and imputation 

(Figure 7) approaches.  

Second Example: Equating Composite Test Forms With Multiple-Choice and Constructed 

Response Anchors2 

The second considered example involves the equating of the composite (multiple-choice 

plus constructed response) forms of a teacher certification exam. There are two anchors 

available, where A1 denotes a 12-item multiple-choice anchor and A2 denotes a sum of six 2-

point constructed response items that is multiplied by 2 when included in the composite. 

Composite form X has a total of 70 points and composite form Y has a total of 72 points. To 

account for human rater drift in the scoring of A2, only a small sample of the available examinee 

data for group Q are used (NQ = 403) in the equatings; the data from examinees whose A2 

responses were re-scored when group P’s A2 responses were scored. The result is that in P’s 

trivariate (X, A1, A2) distribution A2 is internal to and contributes to the X score while in Q’s 

trivariate (Y, A1, A2) distribution, A2 is external to and does not contribute to the Y score3.  
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Comparisons of the P and Q groups’ test and anchor scores provide somewhat ambiguous 

results (Tables 6 and 7), suggesting that the large group of P examinees is essentially equivalent 

to Q on A1 (i.e., the mean differences between P and Q are 0.02 standardized units) but 

considerably less able than Q on A2 (i.e., the mean differences between P and Q are -0.20 

standardized units). For both groups, A2 is more highly correlated with composite forms X and Y 

than A1 (0.79 and 0.69 vs. 0.59 and 0.60). Tables 6 and 7 show that A1 and A2 are weakly 

correlated with each other (0.28 and 0.30), an expected result for composite forms where 

multiple-choice and constructed response questions likely measure different skills and abilities.  

Table 6 

Second Example: Statistics for Test X and Anchors A1 and A2 in P (NP = 2,875) 

 Min. 
observed & 
(possible) 

Max  
observed & 
(possible) 

Mean SD Skew Kurtosis  Correlations 
 

X          A1       A2 
X 13 & (0) 64 & (70) 43.10 8.06 -0.42 0.22  1.00   
A1 1 & (0) 12 & (12) 8.28 2.12 -0.42 -0.08  0.59 1.00  
A2 0 & (0) 24 & (24) 12.39 4.47 -0.32 -0.10  0.79 0.28 1.00 

Table 7 

Second Example: Statistics for Test Y and Anchors A1 and A2 in Q (NQ = 403) 

 Min. 
observed & 
(possible) 

Max  
observed & 
(possible) 

Mean SD Skew Kurtosis  Correlations 
 

Y          A1       A2 
Y 16 & (0) 64 & (72) 42.66 9.47 -0.45 0.08  1.00   

A1 2 & (0) 12 & (12) 8.23 2.18 -0.30 -0.53  0.60 1.00  
A2 0 & (0) 24 & (24) 13.35 5.26 -0.56 -0.08  0.69 0.30 1.00

Two questions are particularly important for evaluating the use of two anchors in this 

situation. The first is whether the multiple-choice anchor, A1, can adequately account for 

examinee group differences on the X and Y composite forms. The use of multiple-choice anchors 

to equate composite forms is not the most recommended practice in recent research (Kim, 

Walker, & McHale, 2008) and is not likely to produce strong equatings (see Note 2, p. 31). 

However, in several testing programs, there is interest in using multiple-choice anchors due 

partly to the high costs associated with the use of constructed response anchors. The squared 

correlations from predicting the X and Y scores with A1 are 0.35 (P) and 0.36 (Q). The squared 

correlations from predicting the X and Y scores with both A1 and A2 are 0.78 (P) and 0.64 (Q). 
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The substantial increases in squared correlations suggest that using both anchors rather than A1 

will result in a significant improvement in the results. The differences in A1 and A2’s indications 

of P and Q differences (i.e., P and Q are nearly equivalent on A1 but different on A2) may also 

contribute to results that differ when using only A1 rather than using both A1 and A2. The 

question of how the results based on A1 differ from those based on A1 and A2 for the 

poststratification, imputation, and propensity score matching approaches requires evaluation. 

A second question that arises when both multiple-choice and constructed response 

anchors are available is how to make the best use of the two anchors. While the approaches 

described in this study utilize each anchor to the extent that they jointly correlate with test scores, 

in practice the two anchors are usually used as a single summed score. The squared correlations 

from predicting the X and Y scores with the summed anchor are 0.77 (P) and 0.62 (Q). The 

squared correlations from predicting the X and Y scores with the separate anchors are 0.78 (P) 

and 0.64 (Q). From the perspective of correlations and prediction accuracy, there is potential for 

slight improvements in equating from using the two anchors separately rather than in a summed 

form. The implications of the slight improvements in the squared correlations are evaluated in 

direct comparisons of the equating results based on the two anchors and on the single summed 

anchor.  

The Use of A1 and A2 in the Equating Process 

The following paragraphs describe the results of using poststratification, imputation, and 

propensity score matching to compute the X-to-Y equating function using anchors A1 and A2. 

The discussion focuses on the major steps of equating, including presmoothing, the estimation of 

the X and Y distributions in synthetic population T, and the comparison of linear and curvilinear 

two-anchor equating functions with respect to equated score differences and standard errors. 

Two additional interests are what results based on the poststratification, imputation, and 

propensity score matching approaches suggest about the importance of A2 for the actual equating 

results, and what the approaches suggest about using a single summed anchor rather than the 

separate use of A1 and A2.  

Presmoothing. Loglinear models were used to presmooth the (X, A1, A2) and (Y, A1, A2) 

trivariate distributions. For the poststratification method, the loglinear presmoothing is applied to 

P’s (X, A1, A2) distribution and Q’s (Y, A1, A2) distribution (e.g., von Davier et al., 2004). For 

missing data imputation, the loglinear presmoothing is applied to population  T’s trivariate (X, 
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A1, A2) and (Y, A1, A2) distributions (Liou & Cheng, 1995; Liou et al., 2001). The loglinear 

models used to presmooth these four trivariate distributions were based on the same 

parameterization, fitting five moments in the marginal test distributions (X or Y), five moments in 

the A1 distributions, five moments in the A2 distributions, and the first cross-moments of the 

joint (test, A1), (test, A2), and (A1, A2) distributions and the (X, A1, A2) and (Y, A1, A2) 

distributions. The models for P treated A2 as an internal anchor and the models for Q treated A2 

as an external anchor. These models were selected because they resembled the models actually 

used to equate these data in practice, and also because evaluations of residuals and model fit 

indices did not reveal obvious model misspecifications.  

For the propensity score matching approach, propensity scores were estimated by 

predicting P and Q group membership for all of the P and Q data, using logistic regression. 

Several logistic regression models similar to Equation 6 were considered, including those that 

used linear and quadratic functions of A1 and A2 and A1A2. Several categorization schemes were 

considered for the propensity scores produced from the logistic regression models. The logistic 

regression model and propensity score categorization that produced categorized propensity 

scores with the highest correlations with the tests (0.67) and also produced the smallest 

standardized mean differences between P and Q for A1 and A2 within the categories were 

selected. The propensity scores were obtained by predicting membership in P and Q for all of the 

P and Q group data with the following logistic regression model:  

0 1 22 1 2

1 .Propensity( | 1, 2)
1 A A A

P A A
e     


 (7) 

These propensity scores were divided into 10 categories based on the predicted probabilities’ 

deciles. Bivariate loglinear presmoothing models were used to presmooth 

P’s (X, CategorizedPropensity) and Q’s (Y, CategorizedPropensity) bivariate distributions, 

fitting five moments in the test distributions, five moments in the categorized propensity score 

distribution, and the first cross-moment between the test and categorized propensity scores.  

Test score distribution estimation in synthetic population T. All of the presmoothing 

results from the presmoothing step were used to estimate the X and Y score distributions in 

synthetic population, (1 ) ,  0.5   T wP w Q w . For the poststratification method, this 

estimation was done using Equations 4 and 5 and P and Q’s presmoothed trivariate distributions. 
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For missing data imputation, this estimation was done using the trivariate distributions imputed 

for population T in the presmoothing step. For propensity score matching, this estimation was 

done using Equations 2 and 3 and P and Q’s presmoothed bivariate distributions of the tests and 

categorized propensity scores. 

The descriptive statistics of population  T’s X and Y score distributions are shown in 

Table 8. The score distributions are plotted in Figures 9 and 10. The score distributions are very 

similar for the two-anchor poststratification and imputation approaches. The X and Y score 

distributions based on propensity score matching differ from those of the poststratification and 

imputation approaches, particularly in their standard deviations. The X and Y means in Table 5 

indicate that X is easier than Y. 

Table 8 

Second Example: Synthetic Population Distributions for X and Y, Two-Anchor Matching 

 XP+Q 

PSE 
XP+Q 

Imputation 
XP+Q 

Propensity Score 
Matching 

 YP+Q 

PSE 
YP+Q 

Imputation 
YP+Q 

Propensity  
score matching 

Mean 43.61 43.61 43.72  42.28 42.28 42.07 
SD 8.51 8.54 8.16  9.18 9.18 9.46 

Skew -0.44 -0.47 -0.46  -0.43 -0.43 -0.41 
Kurtosis 0.15 0.18 0.25  0.10 0.12 0.00 

Note. PSE = poststratification equating 

 

Figure 9. Second example. Relative frequency distributions of New Form X in Synthetic 

Population T based on the multiple-choice (MC) and constructed-response (CR) anchor 

scores.  
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Conversion functions and their evaluation. In evaluating the equating results from the 

poststratification, imputation, and propensity score matching approaches, three comparisons 

were of interest. The first comparison assesses the curvilinearity of the approaches’ two-anchor 

equating functions. The second comparison addresses the question of whether the multiple-

choice anchor, A1, can adequately account for examinee group differences on the composite 

forms with both multiple-choice and constructed response items. The third comparison considers 

whether the approaches’ two-anchor results differ from their results when a summed anchor is 

used, A1+ A2. 

 

Figure 10. Second example. Relative frequency distributions of Reference Form Y in 

Synthetic Population T based on the multiple-choice (MC) and constructed-response (CR) 

anchor scores.  

To evaluate the curvilinearity of the approaches’ two-anchor equating functions, linear 

and curvilinear two-anchor equating functions were computed using the poststratification, 

imputation, and propensity score matching approaches. The differences between these equating 

functions are plotted in Figures 11 (poststratification), 12 (imputation), and 13 (propensity score 

matching). For poststratification and imputation, the curvilinear equating function’s differences 

from the linear equating function are within two SEEDs throughout the score range. For 

propensity score matching, the differences between the curvilinear and linear equating functions 

are small and within two SEEDs for all but the lowest scores. The overall results of Figures 11 
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through 13 show that, based on all three approaches, the linear equating function should be 

selected rather than the curvilinear equating function. 

 

Figure 11. Second example. Curvilinear versus linear equated score differences based on 

two-anchor poststratification. 

 

Figure 12. Second example. Curvilinear versus linear equated score differences based on 

two-anchor imputation. 

For the question of whether the multiple-choice anchor A1 can adequately account for 

examinee group differences on the X and Y composite forms, linear equating functions based 

on using the two anchors, A1 and A2, were computed and compared to linear scaling 

functions based on only A1 for the poststratification, imputation, and propensity score 

matching approaches. The differences between these functions are plotted in Figures 14 

(poststratification), 15 (imputation), and 16 (propensity score matching). The results are very 

similar for the poststratification and imputation approaches, showing that the two-anchor 

equating function is higher than the one-anchor scaling function for X scores below 30, and 
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lower than the one-anchor scaling function for scores between 30 and 70. These differences 

are about 3 score points, at their largest, and exceed the +/- 2 SEED lines for scores above 40 

(Figure 14). For the propensity score matching approach, the two-anchor equating function is 

lower than the one-anchor scaling function for the whole score range by about 1.5 points 

(Figure 16). The somewhat different results produced from the propensity score matching 

approach correspond to differences in the estimates of population  T’s X and Y standard 

deviations when based on propensity score matching rather than on the poststratification and 

imputation approaches (Table 8). 

 

Figure 13. Second example. Curvilinear versus linear equated score differences based on 

two-anchor propensity score matching. 

 

Figure 14. Second example. Linear two-anchor poststratification versus linear one-anchor 

poststratification. 
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Figure 15. Second example. Linear two-anchor imputation versus linear one-anchor 

imputation. 

 

Figure 16. Second example. Linear two-anchor propensity score matching versus linear 

one-anchor propensity score matching. 

For the question of whether the use of A1 and A2 in a summed form produces equating 

results that differ from the results obtained from using A1 and A2 jointly, linear equating functions 
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compared to linear equating functions computed using the A1 and A2 jointly. The differences 

between these equating functions are plotted in Figures 17 (poststratification), 18 (imputation), and 

19 (propensity score matching). The results show that, for the poststratification and imputation 

approaches, the two-anchor equating function is almost identical to the summed anchor equating 

function for the lower range of the X scores and is slightly higher than the summed anchor equating 

function for the upper range of the X scores. Although the differences are small (between one third 

to one half of 1 score point), many exceed the +/- 2 SEED lines (Figure 17). 
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Figure 17. Second example. Linear two-anchor poststratification versus linear summed 

anchor poststratification. 

 

Figure 18. Second example. Linear two-anchor imputation versus linear summed anchor 

imputation. 

 

Figure 19. Second example. Linear two-anchor propensity score matching versus linear 

summed anchor propensity score matching. 
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For the propensity score matching approach (Figure 19), the two-anchor equating 

function is lower than the summed anchor equating function for X scores below 48 and is higher 

than the summed anchor equating function for X scores above 48. As in the results of comparing 

equating functions based on only A1 to those based on A1 and A2, the difference between the 

propensity score matching results and the poststratification and imputation results correspond to 

the differences in the approaches’ estimates of  T’s X and Y standard deviations (Table 8). The 

slightly different results between the two-anchor and summed anchor equating functions based 

on the poststratification and imputation approaches are more consistent with the slightly different 

squared correlations of the summed anchors and tests (0.77 and 0.62) and the joint anchors and 

tests (0.78 and 0.64) than the larger differences indicated in propensity score matching. 

Discussion 

The traditional NEAT design’s incorporation of a single anchor to address examinee 

group differences on test scores has been a long-standing concern in equating research (Angoff, 

1984; Kolen & Brennan, 2004; Livingston et al., 1990). This concern appears to be most serious 

when NEAT equating is conducted across examinee groups that are extremely different in ability 

and/or when the tests measure content that is likely to be broader than the content measured by 

the anchor. Various proposals have been made for using more than one anchor to account for 

examinee group differences. Three approaches to incorporating two anchors in equating have 

been proposed but not extensively studied or compared: poststratification, missing data 

imputation, and propensity score matching (Angoff, 1984; Liou & Cheng, 1995; Liou et al., 

2001; Livingston et al., 1990). This paper described how the approaches could be used to 

implement the assumptions and equating of the poststratification method. The three approaches 

were demonstrated in two situations where the use of two anchors would appear to be warranted. 

The results of this study’s applications showed that the poststratification, imputation, and 

propensity score matching approaches could all be used in similar ways to incorporate two 

anchors and compute equating and scaling functions. The poststratification and imputation 

methods produced results that were essentially identical for both examples of this study, a 

finding that was not emphasized in prior evaluations of imputation applications in equating (Liou 

& Cheng, 1995; Liou et al., 2001). Propensity score matching produced results that were similar 

to the results of the other approaches for the first example, but somewhat different results for the 



25 

second example. The next section describes the issues involved in the three approaches in more 

detail. 

Two-Anchor Equating Methods 

As shown in this paper, the missing data imputation approach is a more limited version of 

the poststratification approach. Imputation uses the same loglinear presmoothing methods as 

used in poststratification equating, but incorporates the poststratification assumptions directly 

into the presmoothing to impute test and anchor distributions for synthetic population T. The 

result is a more complex equating process that produces results that are similar to those of 

poststratification equating. One difficulty with imputation is that the standard errors and SEEDs 

tend to be inaccurate due to difficulties with incorporating sample sizes into standard error 

formulas that reflect both the complete and the imputed data. The unresolved question is how to 

simultaneously account for complete data on A1 and A2, but incomplete data on X and Y.  

The application of propensity score matching to two-anchor equating requires logistic 

regression models and categorizations that add ambiguity and probably inaccuracy to its results. 

For this study’s second example, where these modeling and categorization decisions were 

complex due to each anchor giving inconsistent information about the examinee groups, the 

propensity score matching produced X and Y distributions on T with standard deviations that 

were different from those of the poststratification and imputation approaches (Table 8). The 

resulting linear functions based on propensity score matching had considerably different slopes 

from those of the other methods, and the differences between equating functions reflected these 

different slopes (Figures 16 and 19). Some follow-up simulations showed that the standard errors 

and SEEDs based on propensity score matching were inaccurate due to uncertainty in how to 

incorporate the influences of the categorization decisions in the equating variability estimates. 

Approaches other than this study’s use of categorized propensity scores would have likely 

produced more closely matching examinees from the P and Q groups (Rosenbaum & Rubin, 

1985; Rubin & Thomas, 1996; Rubin & Thomas, 2000), but these approaches involve discarding 

data and matching the individuals of one group to those in the other group rather than estimating 

score distributions for a synthetic mixture of the P and Q groups’ data. 

The problems with propensity score matching prompt the question of whether it should 

be used at all in equating and scaling situations. While the results of this study discourage the use 

of propensity score matching for situations involving one or two anchors, propensity score 
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matching could still be valuable when there are more than two possible anchors. For example, a 

situation could be encountered where there are several available anchors, including examinees’ 

pass/fail decisions, grade point averages, scaled item response theory (IRT) thetas, and more than 

one internal anchor. For this situation, the loglinear presmoothing models used by the 

poststratification and imputation approaches would be exceedingly large and much more 

unwieldy than the logistic regression modeling used by propensity score matching.  

The overall results of this study suggest that when using two anchors, the 

poststratification approach works better than the imputation and propensity score matching 

approaches. Poststratification is the most flexible approach in terms of the SEEDs that can be 

produced for evaluating competing equating and scaling functions. Some follow-up simulations 

have shown that the standard errors and SEEDs for poststratification functions are more accurate 

than those of the imputation and propensity score matching approaches. To the extent one-anchor 

poststratification equating functions are biased due to test–anchor correlations that are too small 

(Livingston, 2004), two-anchor poststratification improves accuracy because the two anchors 

likely have larger correlations with the tests than one anchor. A question for further study is 

whether approaches can be developed for incorporating multiple anchors outside of the 

poststratification framework.  

Other Two-Anchor Possibilities 

In the situation of NEAT equating with one anchor, the chained equating approach may 

be more accurate than poststratification because it ignores the test–anchor correlations 

(Livingston, 2004; Livingston et al., 1990). The incorporation of two anchors into chained 

equating is less straightforward than for poststratification equating. Chained equating is based on 

the marginal distributions of the tests and anchors involved, so that there are several possible 

chained equating functions based on each anchor that can potentially be used. If multiple anchors 

are used in chained equating, there is a different chained equating function corresponding to each 

possible order of the anchors in the equating chain. Reasonable ways to convert two anchors into 

a summed, single anchor for chained equating exist in some situations (this study’s second 

example) but not in others (this study’s first example). Perhaps the way to use multiple anchors 

that have no obvious way of being summed in chained equating is through converting them into 

a single propensity score.  
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Another alternative to poststratification equating might be to poststratify on the joint 

distribution of one or both of the anchors’ expected true scores rather than on the joint 

distribution of their observed scores. This strategy would be analogous to the Levine observed 

equating approach. Some work has been done to conduct loglinear presmoothing on observed 

and expected true score distributions (Chen & Holland, in preparation). Such an approach could 

expand on the flexibility of this study’s two-anchor poststratification approach. In particular, 

some potential anchors may be considered as directly measuring what the tests measure, while 

others are predictors of examinee group membership but not necessarily congeneric with the 

tests (Wright & Dorans, 1993). The ability to presmooth the expected true score distributions of 

the first type of anchors and presmooth the observed score distributions of the second type of 

anchors could result in the most appropriate treatment of multiple anchors in NEAT equating.  

Terminology Implications 

An important question in this paper’s discussion of the first and second examples was 

whether the two-anchor results produced for the first example and the one-anchor results 

produced for the second example constituted equatings or whether they were more appropriately 

referred to as scalings. Although interchangeable scores was an equating goal that was common 

to both examples, scaling and equating labels were used to distinguish results (see Notes 1 and 2, 

p. 30). These labels were used primarily based on equating practitioners’ judgments about how 

representative the anchors were of the tests involved. The equating literature’s syntheses and 

studies are not completely clear on what label is most appropriate for a score conversion that 

utilizes one or more anchors that represent the tests to varying degrees (Holland & Dorans, 2006; 

Dorans, Liu, & Hammond, 2008; Wright & Dorans, 1993). A need for future discussions of 

equating and scaling terminology is clarification and criteria for what types of anchors are likely 

to produce scalings and equatings.  
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Notes
\ 

1 Practitioners from the testing program where this first example’s data came from have used 

internal anchors for some test score conversions and external anchors for others. These 

practitioners refer to the test score conversions produced from internal anchors as equatings. 

Conversions based on external anchors are referred to as scalings rather than equatings 

because the external anchor is not completely representative of the tests. Though the general 

goal of this first example is to produce an equating function for two tests, the two anchor 

results produced from using both the internal and external anchors will be referred to as 

scalings rather than as equatings.  

2 Equating practitioners often regard conversions of composite scores using anchors composed of 

multiple-choice and constructed response items as equatings and conversions using anchors 

composed of only multiple-choice items as scalings. Though the general goal of this second 

example is to produce an equating for two composite forms, the results produced from using 

both multiple-choice and constructed response items in the anchor will be referred to as 

equatings and the results produced from using only multiple-choice items in the anchor will 

be referred to as scalings. 

3 In the equating sample, Q’s A2 responses on the reference form were rescored by the same pool 

of readers who scored P’s A2 responses on the new form. Therefore, for Q, A2 is external to 

total score Y because Y score came from the operational scoring at the time when reference 

form was administered; the part score on A2 that contributed to Y was given by another set of 

readers. 
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Appendix 

SEEDs for Two-Anchor Equating and Scaling Functions 

This appendix provides an overview of the standard errors of equating (or scaling) 

differences (SEEDs) that are used to evaluate the two anchor functions. The SEED has the 

general form (von Davier, Holland, & Thayer, 2004)  

ySEED (x) e1 DF1 e2 DF2J J C - J J C=
, (A1) 

where the DFJ C  terms denote the transformation of the loglinear presmoothed distributions into 

the X and Y score probabilities in synthetic population T, and the eJ  terms denote vectors of the 

derivatives of the equating (or scaling) functions with respect to the X and Y score probabilities 

in synthetic population T. Different SEEDs can be calculated using Equation A1.  

Approaches’ Loglinear Presmoothing Models and Their C  terms 

The poststratification, imputation, and propensity score matching approaches all rely on 

loglinear models for their presmoothing. For the poststratification and imputation approaches, 

the loglinear models used are trivariate models of the (X, A1, A2) and (Y, A1, A2) distributions in 

the data provided by P and Q (poststratification) or directly in the synthetic T distribution 

(imputation). To illustrate, the loglinear presmoothing model of the (X, A1, A2) distribution has 

the following form, 
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, (A2) 

where j lmp  is the probability of the score xj, A1l, a2m (i.e., score xj on test X, score A1l on test A1, 

and score a2m on test A2) and the   and  ’s are free parameters estimated in the model-fitting 

process. The propensity score matching approach also uses a loglinear model for its 

presmoothing, but on the bivariate distribution of the tests and the categorized propensity score. 
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To illustrate, the loglinear presmoothing model of the (X, CAT Propensity( | 1, 2)P A A ) 

distribution has the following form, 

1 1

1 1
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. (A3) 

The C  matrices for loglinear models such as Equations A2 and A3 have the same number of 

columns as the parameters in the loglinear models and can be computed as described in Holland 

and Thayer (2000). 

Approaches’ DFJ  Terms 

The DFJ  matrices are based on how the C  matrices from the poststratification, 

imputation, and propensity score matching approaches are transformed into X and Y probability 

distributions for synthetic population T. The transformations are conceptually described in 

Equations 2 through 4 in this paper and are described in more detail in von Davier et al. (2004). 

The one-anchor DFJ  that is directly used in propensity score matching is specifically described 

in von Davier et al. The two-anchor DFJ  that is used in two-anchor poststratification extends the 

computations of the one-anchor DFJ  by using the joint probabilities of the two anchors, A1 and 

A2, rather than the univariate probabilities of the single anchor, A. The imputation DFJ  is based 

on the single group design described in von Davier et al. because imputation produces X and Y 

distributions for a single group, T, in its loglinear presmoothing step.  

eJ  Terms 

The eJ  terms are the derivatives of the equating (or scaling) functions with respect to the 

X and Y score probabilities. Throughout this paper, the eJ  terms pertain to linear and curvilinear 

kernel functions and are similarly computed for the poststratification, imputation, and propensity 

score matching approaches. The details for computing eJ  are in von Davier et al. (2004). 
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SEEDs and Their e DFJ J C Terms 

SEEDs can be calculated as in Equation A1 based on the two functions’ e DFJ J C  terms. 

The poststratification, imputation, and propensity score matching approaches can all be used to 

compute SEEDs to compare linear and curvilinear functions that differ only in their eJ  values.  

The poststratification approach is somewhat more general than imputation and propensity 

score matching, so that SEEDs for additional function comparisons can be computed. Because 

the loglinear presmoothing models and the estimation of  T’s distributions are done in separate 

steps in poststratification equating, it is possible to add additional conversions of the loglinear 

presmoothing results. Two such conversions of interest involve transforming the trivariate 

loglinear presmoothed distributions into bivariate distributions, by either aggregating the 

presmoothed results over one anchor or over the sum of the scores on the two anchors. When 

these conversions are applied to the loglinear presmoothed results and its C  matrices and are 

used to compute one-anchor results, SEEDs for evaluating two-anchor versus one-anchor or two-

anchor versus a summed anchor functions can be computed. 


