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Abstract 

This paper presents an application of a jackknifing approach to variance estimation of ability 

inferences for groups of students, using a multidimensional discrete model for item response 

data. The data utilized to demonstrate the approach come from the National Assessment of 

Educational Progress (NAEP). In contrast to the operational approach used in NAEP, where 

plausible values are used to make ability inferences, the approach presented in this paper 

reestimates all parameters of the model, and makes ability inferences based on replicate samples 

of the jackknife without using plausible values.  

Results of the standard errors are presented for estimates of group means, total means, 

and other statistics used in official reporting by NAEP. Differences in results between this 

approach and the operational approach are discussed. 

Key words: NAEP, jackknife, general diagnostic model, variance estimation, plausible values 
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1. Background 

1.1 National Assessment of Educational Progress (NAEP)  

As an ongoing national research study, the National Assessment of Educational Progress 

(NAEP) is designed to provide national and state information on the academic performance of 

America’s students (fourth, eighth, and twelfth graders) in various subjects, such as reading, 

mathematics, writing, science, and other subject areas. Often referred to as “the nation’s report 

card,” NAEP is administered by the U.S. Department of Education and the National Center for 

Education Statistics (NCES). It includes a range of surveys and assessments, which provide 

information on students’ educational experiences, teachers’ characteristics and practices, and 

school climate.  

Like many national surveys, NAEP has adopted a complex sampling design to select 

student participants in the assessments. The major feature of the complex sample design includes 

cluster sampling (utilizing the differential sample selection characteristics) and sampling weights 

(including adjustments for school and student nonresponse and poststratification). As a major 

source of uncertainty, sampling variability provides information about how much variation in a 

given statistic would likely occur if another equivalent sample of individuals were observed 

(Qian, Kaplan, Johnson, Krenzke, & Rust, 2001). Another important source of variability of 

NAEP scores is measurement error. Since items in NAEP assessments are administered 

according to a partially balanced incomplete block (pBIB) design, each student responds to only 

relatively few items. Thus, the uncertainty in estimation of proficiency is also a variability 

component due to the imprecision in the measurement of the scale scores (Johnson, 1989; Li & 

Oranje, 2007; Mazzeo, Donoghue, Li, & Johnson, 2006; Qian et al., 2001).   

1.2. Objective of the Inquiry 

A major goal of NAEP is to provide various ability inferences of the target population as 

well as the subpopulations of American youth. Since 1984, NAEP has reported these academic 

results using item response theory (IRT) models (Lord & Novick, 1968; Rasch, 1960) and latent 

regression models (Mislevy, 1991). The IRT models are used to calibrate the cognitive items, 

and the latent regression models are used to make inferences on the latent abilities. 

Operationally, through the use of the software CGROUP,1 population-related ability 

estimates, such as subpopulation means, achievement levels, and score distributions for various 

reporting groups, are obtained from examinees’ item response data and background data 



2 

(Mazzeo et al., 2006; Mislevy, 1991; von Davier, Sinharay, Oranje, & Beaton, 2007). This 

marginal estimation approach involves two stages: the parameters of a latent regression model 

are estimated in the first stage, assuming the item parameters are fixed; then this model, with its 

estimated parameters, is used to generate a set of plausible values (Mislevy, 1991). These 

plausible values are used to obtain the estimates for means, standard deviations, percentiles, and 

other summary ability inferences. A jackknifing approach coupled with the plausible values is 

adopted in NAEP operation to obtain estimation error for different population statistics (Johnson 

& Rost, 1992). 

One consequence of ignoring the complex sample design is that the magnitude of the 

standard error of group-level statistics tends to be underestimated. It has been argued that the 

effect of ignoring the complex structure on the parameters of interest is relatively large in an 

NAEP operationally saturated model. In some situations, the effect is even more substantial 

(Mazzeo et al., 2006, pp. 68–69). This finding may be the result of assuming common-variance 

across subpopulations embedded in the latent regression models, and this effect may be 

alleviated by using a model that allows for the estimation of group-specific variances (Mazzeo et 

al., 2006; Thomas, 2000; von Davier, 2003). The general diagnostic model (GDM; von Davier, 

2005) is such a model that allows for different ability variance assumptions for different 

subgroups (Xu & von Davier, 2006, 2008). In addition, the GDM makes it possible to estimate 

the item parameters and the parameters in the regression models simultaneously and repeatedly 

for jackknifing samples, due to the parsimonious feature of the model. In contrast, current NAEP 

operation does not have the capability to perform simultaneous estimation for jackknifing 

samples. Thus, the primary goal of this study is to use GDM, assuming a multiple-group 

population model, to obtain the estimation error based on a jackknife resampling procedure and 

compare it with the operational results. 

2. General Diagnostic Models (GDM) 

The GDM (von Davier, 2005) contains a large array of statistical models such as latent 

class analysis (LCA) models (Lazarsfeld & Henry, 1968; Goodman, 1974; McCutcheon, 1987) 

as well as discrete latent trait models with prespecified skill profiles and levels, and 

multidimensional IRT (MIRT) models (Ackerman, 1994, 1996). For instance, the GDM can be 

used to perform multiple classifications of examinees based on their response patterns with 

respect to skill attributes. Using ideas from IRT, log-linear models, and LCA, GDM can be 
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viewed as a general modeling framework for confirmatory multidimensional item response 

models (von Davier, 2005, 2007; von Davier & Rost, 2006; von Davier & Yamamoto, 2004). 

Within this comprehensive framework, many well-known models in measurement and 

educational testing—such as the unidimensional and multidimensional versions of the Rasch 

model (RM; Rasch, 1960), the two-parameter logistic item response theory (2PL-IRT) model 

(Lord & Novick, 1968), and the generalized partial credit model (GPCM; Muraki, 1992), 

together with a variety of skill profile models—are special cases of the GDM (von Davier, 

2005).  

In the following analyses, we will apply a compensatory GDM and use the software of 

mdltm (von Davier, 2005) to estimate the parameters of the model. In addition, we adopt a log-

linear smoothing technique to facilitate the estimation of the latent skill space (Xu & von Davier, 

2008).  Through the use of a log-linear smoothing method, not only will the number of estimated 

parameters (associated with the latent skill distribution) be reduced substantially, but the 

interrelationship among distinct latent skills will also be well accounted for. In the software 

mdltm, the expectation-maximization algorithm (EM; Dempster, Laird, & Rubin, 1977) is 

implemented and used for parameter estimation. This implementation enables one to use 

standard tools from IRT for scale linking, deriving measures of model goodness of fit, assessing 

item and person fit, and estimating parameters (von Davier, 2005).  

2.1 The Logistic Formulation of a Compensatory General Diagnostic Model (GDM) 

In this section, we introduce the logistic formulation of the compensatory GDM applied 

in this study. The probability of obtaining a response x in the GDM is given as follows:  

  1

1 1
1 i

K

xic ikc kk

i i i i m K

yic ikc ky k

exp x
P X x ,q , ,a ,c ,

exp y

  
 

  



 

   
   


 

  
 (1) 

where x is the response category for each item i (  1 2 ix , ,...,m );  1 Ka a ,...,a


 represents a K-

dimensional skill profile containing discrete, user-defined skill levels  1 kk k kl kLa s ,...,s ,...,s , for 

1k ,...,K ;  1i i iKq q ,...,q   are the corresponding Q-matrix entries relating item i to skill k (

 0 1 2ikq , , ... , for 1k ,...,K );  the parameters xic  and  1ikc i c iKc,...,    are real-valued 
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thresholds and K-dimensional slope parameters, respectively, and c is the group membership 

indicator. For model identification purposes, the researcher can impose necessary constraints on

ikck
 and xic ; also, with a non-zero Q-matrix entry, the slopes ik  help determine how 

much a particular skill component in  1 Ka a ,...,a


 contributes to the conditional response 

probabilities for item i given membership in group c. For multiple group models with a common 

scale across populations, the item parameters are constrained to be equal across groups, so that 

ixc ixg ix     for all items i and thresholds x as well as ikc ikg ik     for all items i and skill 

dimensions k. 

2.2 The Log-Linear Smoothing of Latent Class Space 

In this section, we introduce the log-linear smoothing of the latent skill space predefined 

by the design matrix. Suppose we have K skills/attributes, the probability of a certain 

combination of these skills can be approximated by: 

2
1 2 ,log( ( , ,..., )) ,g K k g k k k ij i j

k k i j

P           


       (2) 

where , k , k and ij are parameters in this log-linear smoothing model, and g is a group index 

(Xu & von Davier, 2008; Haberman, von Davier, & Lee, 2008). 

3. Sample and Data Sources 

In order to obtain a representative sample, approximately 191,000 fourth graders from 

7,600 schools were sampled and assessed in the NAEP 2003 reading assessment. Given the 

fulfillment of the minimum guidelines, results are presented for the nation, 50 states, and three 

jurisdictions that participated in the 2003 assessment, and for nine districts that participated in 

the Trial Urban District Assessment (TUDA; Donahue, Daane, & Jin, 2005). In addition, unlike 

the results obtained from participating states and other jurisdictions, the national results reflect 

both public and nonpublic school student performance. Generally, NAEP reports not only the 

overall results, but also the performance of various subgroups of students, where the statistics 

such as average scores and achievement-level percentages are the foci of interest.  

Developed by the National Assessment Governing Board (NAGB), two reading contexts2 

and four reading aspects3 were specified in the framework of 2003 reading assessment to 
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evaluate reading performance of fourth graders, such as population related means and standard 

deviation as well as percentiles. In order to minimize the burden on any individual student, 

NAEP uses matrix sampling, where each student is administered a small portion of the entire 

assessment. For instance, in fourth grade, students were given a test booklet that consists of two 

25-minute blocks, and the item types included multiple-choice, short constructed-response, and 

extended constructed-response items. In addition, students were asked to complete two sections 

of background information questions (Donahue et al., 2005). The two reading contexts—reading 

for literary experience and reading to gain information—are currently taken as two subscales of 

psychometric analysis of NAEP Grade 4 assessments. These two subscales are denoted by skill 1 

and skill 2 in this study, respectively. 

Similar to 2003, in 2005, a nationally representative sample of more than 165,000 fourth-

grade students participated in the assessment. The national results were based on a representative 

sample of students in both public and nonpublic schools.4 The framework used for the NAEP 

2005 reading assessment is the same as that used in 2003 (Perie, Grigg, & Donahue, 2005; see 

Table 1).  

Table 1 

The Number of Items in National Assessment of Educational Progress (NAEP) 2003 and 2005 

Reading Assessments 

Year Subscales 

Response categories in the item 

Total 
Multiple-

choice 

Short 
constructed-

response 

Extended 
constructed-

response  

2003 Reading for literary experience 40 8 3 51 

 Reading to gain information 40 8 3 51 

2005 Reading for literary experience 41 5 4 50 
 Reading to gain information 35 11 3 49 

4. Variance Estimation 

In survey practice, the simple random sampling assumption is often violated. Thus, 

corrections to the calculation of desired statistics are needed. When the variance estimation of a 

nonlinear statistic becomes the focus of interest, this correction can be made in two plausible 

ways. One is the Taylor series linearization method: using a linear estimator to approximate the 

nonlinear one while accounting for complex sample design (Binder, 1983; Li & Oranje, 2007; 
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Williams, 2000). The other is the replication method: recomputing the statistic of interest using 

different, comparable sets to the original sample to measure the variance of the parameter 

estimator (Fay, 1989; Rust, 1985). 

In the present study, we apply the resampling-based approach. Resampling techniques, 

such as the jackknife, balanced repeated replication (BRR), the methods of random groups, and 

the bootstrap were used in earlier developments in variance estimation (Efron, 1982; Rust, 1985; 

Rust & Rao, 1996; Johnson, 1989). By permitting fractional weighting of observations, the class 

of replication methods becomes considerably broader and more flexible (Fay, 1989). That is, 

through associating replicate weights with the characteristics of the observed sample cases, this 

replicate weighting approach lends itself particularly well to the analysis of data with highly 

complex design features (Dippo, Fay, & Morganstein, 1984).  

The NAEP uses a modified BRR, derived from the jackknife procedure (Miller, 1974), to 

obtain the variance estimate of a statistic. The student replicate weights (SRWTs) in jackknife 

samples are derived based upon adjustments to the initial base weight. Examples of the 

adjustments may include nonresponse, trimming, poststratification, and the probability of 

selection for each primary sampling unit (Allen, Donoghue, & Schoeps, 2001). In NAEP 2003 

and 2005 reading assessments, there were 625 jackknife samples with different sets of SRWTs. 

Consequently, the estimated variance of parameter estimate, t, was calculated by aggregating 

these 62 squared differences,    
62

2

1
i

t

v̂ t t t


  , where it  denotes the estimator of the parameter 

obtained from the ith jackknife sample (Qian et al., 2001). For further discussion of the variance 

estimation procedure used by NAEP, interested readers may refer to the paper by Johnson (1989, 

p. 315).   

5. Empirical Evaluation 

The GDM with both a single-group and a multiple-group assumption was applied to 

analyze the data. Under a single-group assumption, all students are assumed to belong to a single 

population with one latent skill distribution, while under a multiple-group assumption, different 

latent skill distributions are allowed for different groups. In this study, the multiple-group 

variable is defined by race/ethnicity. Four ethnicity groups are distinguished to form the different 

levels of this variable: White group, Black group, Hispanic group, and Asian/Pacific Islander 

group.  As shown in Tables 2 and 5, compared to the results from the single-group assumption, 
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the results from using the multiple-group assumption show better fit in terms of several fit 

indexes, such as the Bayesian information criterion (BIC; Schwartz, 1978), Akaike information 

criterion (AIC; Akaike, 1974), and log-likelihood. Hence, in this study, the results from the 

multiple-group assumption, such as group means and standard deviation as well as the estimation 

error of the group mean, are compared with the results from NAEP operational analysis. The 

scale used in these comparisons is the one obtained from IRT calibrations, not the one converted 

to the NAEP reporting scale.   

5.1 National Assessment of Educational Progress (NAEP) 2003 Reading Assessment for 

Fourth-Grade Students 

The model fit indexes under different assumptions are shown in Table 2. One can observe 

that the GDM with a race-group assumption has better model fit. Thus the GDM coupled with 

the race-group assumption is used in comparison to the operational results. 

Table 2  

Model Evaluation Based on National Assessment of Educational Progress (NAEP) 2003 

Reading Assessment 

Model # of parameters -2 * log-likelihood AIC per person BIC 

Single-group analysis  240 4,247,410 .607 4,250,328 
Race-group analysis  960 4,215,853 .603 4,227,528 

Note. AIC = Akaike information criterion, BIC = Bayesian information criterion.  

The mean and standard deviation for race/ethnicity subgroups are shown in Table 3. 

Similar patterns are shown in the results from using the GDM with race-group assumption and 

from NAEP operation. That is, from high to low score, the four racial groups have the following 

order: White group, Asian/Pacific Islander group, Hispanic group, and African American group. 

In addition, we can observe differences in the means for subgroups, and the differences are 

relatively large in subgroups of small sample size (such as in the Asian group). Moreover, the 

standard deviation estimates are smaller for White and Asian students when using the current 

approach, while on the contrary, the standard deviation estimates are larger for Black and 

Hispanic students when using the current approach. 
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Table 4 shows the comparison between the standard errors associated with the group 

mean estimates. The standard errors from using the current approach are slightly larger than 

those from the operation. 

Table 3 

The Mean and Standard Deviation for Ethnicity Subgroups in 2003 Assessment 

 The results from using GDM NAEP operational results 

 Literary subscale 
Information 

subscale 
Literary subscale 

Information 
subscale 

 Mean SD Mean SD Mean SD Mean SD 
White 0.689 0.938 0.577 0.982 0.691 0.956 0.575 1.002 
African American -0.140 1.054 -0.351 1.070 -0.144 1.016 -0.349 1.031 
Hispanic  -0.046 1.065 -0.290 1.099 -0.059 1.034 -0.282 1.051 
Asian/Pacific 
Islander  

0.571 0.991 0.495 0.987 0.613 1.030 0.478 1.083 

Note. GDM = general diagnostic model, NAEP = National Assessment of Educational Progress. 

Table 4 

Standard Errors for Subgroup Mean Estimates in 2003 Assessment 

White group (sample size 118,061) 

 Using GDM NAEP operation 
Ratio of GDM to 

the operation 
Literary .007 .006 1.167 
Information .008 .006 1.333 

Black group (sample size 35,308) 

 Using GDM  NAEP operation 
Ratio of GDM to 

the operation 
Literary .017 .011 1.545 
Information .018 .011 1.636 

Hispanic group (sample size 23,839) 

 Using GDM  NAEP operation 
Ratio of GDM to 

the operation 
Literary .021 .016 1.312 
Information .019 .017 1.118 

Asian/Pacific Islander group (sample size 8,223) 

 Using GDM  NAEP operation 
Ratio of GDM to 

the operation 
Literary .032 .033 0.970 
Information .038 .033 1.151 

Note. GDM = general diagnostic model, NAEP = National Assessment of Educational Progress. 
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5.2 National Assessment of Educational Progress (NAEP) 2005 Reading Assessment for 

Fourth-Grade Students 

The model fit indexes are shown in Table 5. The GDM with a race-group assumption has 

a better fit than a single-group assumption. Hence the race-group analysis is used in the 

comparison with the operational results. 

Table 5 

Model Evaluation Based on National Assessment of Educational Progress (NAEP) 2005 

Reading Assessment 

Model # of parameters -2*log-likelihood AIC per person  BIC 

Single-group analysis  235 3,650,627 .610 3,653,452 

Race-group analysis  940 3,625,153 .606 3,636,450 

Note. AIC = Akaike information criterion, BIC = Bayesian information criterion.  

The mean and standard deviation for racial subgroups are shown in Table 6. Large 

differences in ability estimates are evident with respect to the literary-experience subscale 

between the operation and current approaches. In addition, the standard deviations for White and 

Asian/Pacific Islander students tend to be smaller when using the current approach rather than 

the operational approach; while the standard deviations for Hispanic and Black students are 

larger compared to the operation. 

Table 7 shows the comparison between the estimation errors for the group mean in 2005 

data.  Again, we observe that the standard errors for group means from the current approach are 

slightly larger than those from the NAEP operation. 

6. Summary and Discussion 

The application of the GDM in this paper is not focused on the detection of skills 

measured by the NAEP assessment, but on the improvement of ability estimates by borrowing 

information across subscales defined by the framework and on making ability inference based on 

a multiple-group population model. Compared with the NAEP operational analysis, where 

hundreds of background variables are used to extract group ability estimates, this approach is 

much more parsimonious. 
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Table 6 

The Mean and Standard Deviations for Subgroups in 2005 Assessment 

 The results from using GDM NAPE operational analysis 

 
Literary 
subscale 

Information 
Subscale 

Literary 
subscale 

Information 
Subscale 

 Mean SD Mean SD Mean SD Mean SD 

White group 0.880 0.872 0.501 1.027 0.910 0.930 0.500 1.028 

African 
American group 

0.177 1.081 -0.422 1.067 0.119 0.970 -0.410 1.049 

Hispanic group 0.264 1.087 -0.340 1.112 0.206 1.007 -0.341 1.102 

Asian/Pacific 
Islander group 

0.866 0.921 0.482 1.020 0.917 1.000. 0.462 1.114 

Note. GDM = general diagnostic model, NAEP = National Assessment of Educational Progress. 

Table 7 

Standard Errors for Subgroup Means in 2005 Assessment 

White group (sample size 99,425) 

 Using GDM 
NAEP 

operation 
Ratio of GDM to 

operation 

Literary 0.007 0.005 1.400 

Information 0.008 0.006 1.333 

Black group (sample size 27,897) 

 Using GDM 
NAEP 

operation 
Ratio of GDM to 

operation 

Literary 0.012 0.008 1.500 

Information 0.014 0.009 1.555 

Hispanic group (sample size 25,122) 

 Using GDM 
NAEP 

operation 
Ratio of GDM to 

operation 

Literary 0.016 0.014 1.143 

Information 0.016 0.015 1.067 

Asian group (sample size 7,706) 

 Using GDM 
NAEP 

operation 
Ratio of GDM to 

operation 

Literary 0.024   0.019 1.263 

Information 0.026 0.022 1.182 

Note. GDM = general diagnostic model, NAEP = National Assessment of Educational Progress. 
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The primary goal of this study was to obtain the estimation error of subgroup ability 

means and standard deviations under the GDM framework. Specifically, 62 jackknife samples 

coupled with different sets of weights, which are utilized in NAEP operation, are used in our 

current procedure.  The results have shown that the estimation errors for racial subgroup means 

are slightly larger in the current approach than those in the operation. This increase may be due 

to the fact that the uncertainty in the item parameters is ignored in NAEP operation.  

A number of differences were noticed between the approach taken using the GDM and 

the results using operational procedures. For one, the operational approach assumes normality in 

the conditional distribution of the latent trait, given the item responses and a large number of the 

background variables (von Davier, 2003). In contrast, the GDM approach does not assume a 

particular form of multidimensional ability distributions. As mentioned above, the GDM 

approach estimates item parameters of the MIRT model jointly and estimates the population 

model, a mixture of multiple (in this case, four known) populations concurrently with the item 

parameters. Most importantly, the item parameters in the operational analysis are assumed to be 

fixed and known, both for the purposes of estimating the population model and for the jackknife 

replications, while our proposed approach reestimates the item parameters and population 

distributions for each of the 62 jackknife samples. The capability of reestimating all parameters 

used in the GDM enables one to implement a complete jackknife procedure, which results in 

relatively large estimation errors for the group ability means.   

The application of the GDM to the NAEP assessment data is not limited to what has been 

shown in this paper. In fact, the GDM is able to (a) facilitate the dimensionality exploration of 

the NAEP assessment (von Davier, 2005) and (b) reduce the number of background covariates 

when making inferences on group ability estimates. For example, the multiple-group assumption 

under the GDM allows for possibly different ability distributions (certainly different variance 

structures) across groups. This heterogeneity of variance structure may reduce the secondary bias 

in the group mean estimates (Thomas, 2000). This ongoing research study is geared toward 

expanding analysis and reporting alternatives for NAEP.   

The complexity of the latent ability space introduces corresponding complexities into the 

statistical modeling and score reporting. In practice, because data-driven model specification is 

often messy, a high level of expert judgment is needed in formulating appropriate models. 

Moreover, these inferences must be communicated in ways that are of the most use to all 
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stakeholders. For instance, recently, Xu (2007) conducted an investigation to examine whether 

the monotonicity property can generally be sustained in GDM so that simple data summaries 

(e.g., the observed total score) can help inform the ordered categories of the latent trait and lead 

to the reporting of valid and reliable scaled scores. Obviously, in recent years, a parametrically 

complex IRT modeling framework has been called for. However, a general principle that the 

researcher should always keep in mind is the requirement that the assessment’s purposes be 

fulfilled with the minimal degree of complexity. That is, in applying the principle of parsimony 

to the cognitive diagnosis model and skill assessment system, the model must be complex 

enough to provide sufficient skill information and still be parsimonious enough for the obtained 

skill information to meet user needs (DiBello & Stout, 2007; Haberman & von Davier, 2007). 

Finally, the question of whether the larger variance estimates were observed because the 

GDM approach was carried out with a complete jackknife, that is, using recalibrations of item 

parameters and reestimated population models, rather than a jackknife based on imputations 

from a model that uses the complete sample, needs further investigation. If this was indeed the 

reason for observing larger variance estimates when using the GDM approach rather than the 

operational processes, an inquiry is needed into whether the added portion of variance reflects 

the true sampling variance of the parameters. If this proves true, the more complete jackknife 

approach should be adopted in operational practice. 
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Notes 
 

1 CGROUP uses a Laplace approximation and is designed to be computationally feasible for a 

test with more than two dimensions (von Davier & Sinharay, 2004).  

2 Namely, reading for literary experience and reading to gain information.  

3 Namely, forming a general understanding, developing interpretation, making reader/text 

connections, and examining content and structure.  

4 In 2005, the definition of the national sample was changed: it now includes all of the 

international Department of Defense schools (Perie, Grigg, & Donahue, 2005). 

5 62 was selected in NAEP operational analysis by design. 


